
Oracle® Data Mining
API Guide

19c
E97869-07
May 2021

Oracle Data Mining API Guide, 19c

E97869-07

Copyright © 2005, 2021, Oracle and/or its affiliates.

Primary Author: Sarika Surampudi

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxii

Documentation Accessibility xxii

Diversity and Inclusion xxii

Related Resources xxiii

Conventions xxiii

Part I Introductions

1 Introduction to Oracle Data Mining

1.1 About Oracle Data Mining 1-1

1.2 Data Mining in the Database Kernel 1-1

1.3 Data Mining in Oracle Exadata 1-2

1.4 About Partitioned Model 1-3

1.5 Interfaces to Oracle Data Mining 1-3

1.5.1 PL/SQL API 1-3

1.5.2 SQL Functions 1-4

1.5.3 Oracle Data Miner 1-5

1.5.4 Predictive Analytics 1-5

1.6 Overview of Database Analytics 1-6

2 Oracle Data Mining Basics

2.1 Mining Functions 2-1

2.1.1 Supervised Data Mining 2-1

2.1.1.1 Supervised Learning: Testing 2-2

2.1.1.2 Supervised Learning: Scoring 2-2

2.1.2 Unsupervised Data Mining 2-2

2.1.2.1 Unsupervised Learning: Scoring 2-3

2.2 Algorithms 2-3

2.2.1 Oracle Data Mining Supervised Algorithms 2-4

iii

2.2.2 Oracle Data Mining Unsupervised Algorithms 2-5

2.3 Data Preparation 2-6

2.3.1 Oracle Data Mining Simplifies Data Preparation 2-6

2.3.2 Case Data 2-7

2.3.2.1 Nested Data 2-7

2.3.3 Text Data 2-7

2.4 In-Database Scoring 2-8

2.4.1 Parallel Execution and Ease of Administration 2-8

2.4.2 SQL Functions for Model Apply and Dynamic Scoring 2-8

Part II Mining Functions

3 Regression

3.1 About Regression 3-1

3.1.1 How Does Regression Work? 3-1

3.1.1.1 Linear Regression 3-2

3.1.1.2 Multivariate Linear Regression 3-3

3.1.1.3 Regression Coefficients 3-3

3.1.1.4 Nonlinear Regression 3-3

3.1.1.5 Multivariate Nonlinear Regression 3-4

3.1.1.6 Confidence Bounds 3-4

3.2 Testing a Regression Model 3-4

3.2.1 Regression Statistics 3-4

3.2.1.1 Root Mean Squared Error 3-4

3.2.1.2 Mean Absolute Error 3-5

3.3 Regression Algorithms 3-5

4 Classification

4.1 About Classification 4-1

4.2 Testing a Classification Model 4-2

4.2.1 Confusion Matrix 4-2

4.2.2 Lift 4-3

4.2.2.1 Lift Statistics 4-3

4.2.3 Receiver Operating Characteristic (ROC) 4-4

4.2.3.1 The ROC Curve 4-5

4.2.3.2 Area Under the Curve 4-5

4.2.3.3 ROC and Model Bias 4-5

4.2.3.4 ROC Statistics 4-5

4.3 Biasing a Classification Model 4-6

iv

4.3.1 Costs 4-6

4.3.1.1 Costs Versus Accuracy 4-6

4.3.1.2 Positive and Negative Classes 4-6

4.3.1.3 Assigning Costs and Benefits 4-7

4.3.2 Priors and Class Weights 4-8

4.4 Classification Algorithms 4-9

5 Anomaly Detection

5.1 About Anomaly Detection 5-1

5.1.1 One-Class Classification 5-1

5.1.2 Anomaly Detection for Single-Class Data 5-2

5.1.3 Anomaly Detection for Finding Outliers 5-2

5.2 Anomaly Detection Algorithm 5-3

6 Clustering

6.1 About Clustering 6-1

6.1.1 How are Clusters Computed? 6-1

6.1.2 Scoring New Data 6-2

6.1.3 Hierarchical Clustering 6-2

6.1.3.1 Rules 6-2

6.1.3.2 Support and Confidence 6-2

6.2 Evaluating a Clustering Model 6-2

6.3 Clustering Algorithms 6-2

7 Association

7.1 About Association 7-1

7.1.1 Association Rules 7-1

7.1.2 Market-Basket Analysis 7-1

7.1.3 Association Rules and eCommerce 7-2

7.2 Transactional Data 7-2

7.3 Association Algorithm 7-3

8 Feature Selection and Extraction

8.1 Finding the Best Attributes 8-1

8.2 About Feature Selection and Attribute Importance 8-2

8.2.1 Attribute Importance and Scoring 8-2

8.3 About Feature Extraction 8-2

8.3.1 Feature Extraction and Scoring 8-3

v

8.4 Algorithms for Attribute Importance and Feature Extraction 8-3

9 Time Series

9.1 About Time Series 9-1

9.2 Choosing a Time Series Model 9-1

9.3 Time Series Statistics 9-2

9.3.1 Conditional Log-Likelihood 9-2

9.3.2 Mean Square Error (MSE) and Other Error Measures 9-3

9.3.3 Irregular Time Series 9-4

9.3.4 Build Apply 9-4

9.4 Time Series Algorithm 9-4

Part III Algorithms

10

Apriori

10.1 About Apriori 10-1

10.2 Association Rules and Frequent Itemsets 10-2

10.2.1 Antecedent and Consequent 10-2

10.2.2 Confidence 10-2

10.3 Data Preparation for Apriori 10-2

10.3.1 Native Transactional Data and Star Schemas 10-2

10.3.2 Items and Collections 10-2

10.3.3 Sparse Data 10-3

10.3.4 Improved Sampling 10-3

10.3.4.1 Sampling Implementation 10-4

10.4 Calculating Association Rules 10-4

10.4.1 Itemsets 10-4

10.4.2 Frequent Itemsets 10-5

10.4.3 Example: Calculating Rules from Frequent Itemsets 10-6

10.4.4 Aggregates 10-7

10.4.5 Example: Calculating Aggregates 10-8

10.4.6 Including and Excluding Rules 10-8

10.4.7 Performance Impact for Aggregates 10-9

10.5 Evaluating Association Rules 10-9

10.5.1 Support 10-9

10.5.2 Minimum Support Count 10-9

10.5.3 Confidence 10-10

10.5.4 Reverse Confidence 10-10

vi

10.5.5 Lift 10-10

11

CUR Matrix Decomposition

11.1 About CUR Matrix Decomposition 11-1

11.2 Singular Vectors 11-1

11.3 Statistical Leverage Score 11-2

11.4 Column (Attribute) Selection and Row Selection 11-2

11.5 CUR Matrix Decomposition Algorithm Configuration 11-3

12

Decision Tree

12.1 About Decision Tree 12-1

12.1.1 Decision Tree Rules 12-1

12.1.1.1 Confidence and Support 12-2

12.1.2 Advantages of Decision Trees 12-3

12.1.3 XML for Decision Tree Models 12-3

12.2 Growing a Decision Tree 12-3

12.2.1 Splitting 12-4

12.2.2 Cost Matrix 12-5

12.2.3 Preventing Over-Fitting 12-5

12.3 Tuning the Decision Tree Algorithm 12-5

12.4 Data Preparation for Decision Tree 12-6

13

Expectation Maximization

13.1 About Expectation Maximization 13-1

13.1.1 Expectation Step and Maximization Step 13-1

13.1.2 Probability Density Estimation 13-1

13.2 Algorithm Enhancements 13-2

13.2.1 Scalability 13-2

13.2.2 High Dimensionality 13-3

13.2.3 Number of Components 13-3

13.2.4 Parameter Initialization 13-3

13.2.5 From Components to Clusters 13-3

13.3 Configuring the Algorithm 13-4

13.4 Data Preparation for Expectation Maximization 13-4

14

Explicit Semantic Analysis

14.1 About Explicit Semantic Analysis 14-1

14.1.1 Scoring with ESA 14-2

vii

14.1.2 Scoring Large ESA Models 14-2

14.2 ESA for Text Mining 14-2

14.3 Data Preparation for ESA 14-3

14.4 Terminologies in Explicit Semantic Analysis 14-3

15

Exponential Smoothing

15.1 About Exponential Smoothing 15-1

15.1.1 Exponential Smoothing Models 15-1

15.1.2 Simple Exponential Smoothing 15-2

15.1.3 Models with Trend but No Seasonality 15-2

15.1.4 Models with Seasonality but No Trend 15-2

15.1.5 Models with Trend and Seasonality 15-3

15.1.6 Prediction Intervals 15-3

15.2 Data Preparation for Exponential Smoothing Models 15-3

15.2.1 Input Data 15-4

15.2.2 Accumulation 15-4

15.2.3 Missing Value 15-4

15.2.4 Prediction 15-5

15.2.5 Parallellism by Partition 15-5

16

Generalized Linear Models

16.1 About Generalized Linear Models 16-1

16.2 GLM in Oracle Data Mining 16-2

16.2.1 Interpretability and Transparency 16-2

16.2.2 Wide Data 16-2

16.2.3 Confidence Bounds 16-2

16.2.4 Ridge Regression 16-3

16.2.4.1 Configuring Ridge Regression 16-3

16.2.4.2 Ridge and Confidence Bounds 16-4

16.2.4.3 Ridge and Data Preparation 16-4

16.3 Scalable Feature Selection 16-4

16.3.1 Feature Selection 16-4

16.3.1.1 Configuring Feature Selection 16-4

16.3.1.2 Feature Selection and Ridge Regression 16-5

16.3.2 Feature Generation 16-5

16.3.2.1 Configuring Feature Generation 16-5

16.4 Tuning and Diagnostics for GLM 16-5

16.4.1 Build Settings 16-5

16.4.2 Diagnostics 16-6

viii

16.4.2.1 Coefficient Statistics 16-6

16.4.2.2 Global Model Statistics 16-6

16.4.2.3 Row Diagnostics 16-7

16.5 GLM Solvers 16-7

16.6 Data Preparation for GLM 16-7

16.6.1 Data Preparation for Linear Regression 16-8

16.6.2 Data Preparation for Logistic Regression 16-8

16.6.3 Missing Values 16-9

16.7 Linear Regression 16-9

16.7.1 Coefficient Statistics for Linear Regression 16-10

16.7.2 Global Model Statistics for Linear Regression 16-10

16.7.3 Row Diagnostics for Linear Regression 16-11

16.8 Logistic Regression 16-11

16.8.1 Reference Class 16-11

16.8.2 Class Weights 16-11

16.8.3 Coefficient Statistics for Logistic Regression 16-11

16.8.4 Global Model Statistics for Logistic Regression 16-12

16.8.5 Row Diagnostics for Logistic Regression 16-12

17

k-Means

17.1 About k-Means 17-1

17.1.1 Oracle Data Mining Enhanced k-Means 17-1

17.1.2 Centroid 17-1

17.2 k-Means Algorithm Configuration 17-2

17.3 Data Preparation for k-Means 17-2

18

Minimum Description Length

18.1 About MDL 18-1

18.1.1 Compression and Entropy 18-1

18.1.1.1 Values of a Random Variable: Statistical Distribution 18-2

18.1.1.2 Values of a Random Variable: Significant Predictors 18-2

18.1.1.3 Total Entropy 18-2

18.1.2 Model Size 18-2

18.1.3 Model Selection 18-2

18.1.4 The MDL Metric 18-3

18.2 Data Preparation for MDL 18-3

ix

19

Naive Bayes

19.1 About Naive Bayes 19-1

19.1.1 Advantages of Naive Bayes 19-3

19.2 Tuning a Naive Bayes Model 19-3

19.3 Data Preparation for Naive Bayes 19-3

20

Neural Network

20.1 About Neural Network 20-1

20.1.1 Neuron and activation function 20-1

20.1.2 Loss or Cost function 20-2

20.1.3 Forward-Backward Propagation 20-2

20.1.4 Optimization Solver 20-2

20.1.5 Regularization 20-2

20.1.6 Convergence Check 20-3

20.1.7 LBFGS_SCALE_HESSIAN 20-3

20.1.8 NNET_HELDASIDE_MAX_FAIL 20-3

20.2 Data Preparation for Neural Network 20-3

20.3 Neural Network Algorithm Configuration 20-4

20.4 Scoring with Neural Network 20-5

21

Non-Negative Matrix Factorization

21.1 About NMF 21-1

21.1.1 Matrix Factorization 21-1

21.1.2 Scoring with NMF 21-2

21.1.3 Text Mining with NMF 21-2

21.2 Tuning the NMF Algorithm 21-2

21.3 Data Preparation for NMF 21-3

22

O-Cluster

22.1 About O-Cluster 22-1

22.1.1 Partitioning Strategy 22-1

22.1.1.1 Partitioning Numerical Attributes 22-2

22.1.1.2 Partitioning Categorical Attributes 22-2

22.1.2 Active Sampling 22-2

22.1.3 Process Flow 22-2

22.1.4 Scoring 22-3

22.2 Tuning the O-Cluster Algorithm 22-3

22.3 Data Preparation for O-Cluster 22-3

x

22.3.1 User-Specified Data Preparation for O-Cluster 22-4

23

R Extensibility

23.1 Oracle Data Mining with R Extensibility 23-1

23.2 Scoring with R 23-2

23.3 About Algorithm Meta Data Registration 23-2

23.3.1 Algorithm Meta Data Registration 23-2

24

Random Forest

24.1 About Random Forest 24-1

24.2 Building a Random Forest 24-1

24.3 Scoring with Random Forest 24-2

25

Singular Value Decomposition

25.1 About Singular Value Decomposition 25-1

25.1.1 Matrix Manipulation 25-1

25.1.2 Low Rank Decomposition 25-2

25.1.3 Scalability 25-2

25.2 Configuring the Algorithm 25-3

25.2.1 Model Size 25-3

25.2.2 Performance 25-3

25.2.3 PCA scoring 25-3

25.3 Data Preparation for SVD 25-4

26

Support Vector Machines

26.1 About Support Vector Machines 26-1

26.1.1 Advantages of SVM 26-1

26.1.2 Advantages of SVM in Oracle Data Mining 26-2

26.1.2.1 Usability 26-2

26.1.2.2 Scalability 26-2

26.1.3 Kernel-Based Learning 26-2

26.2 Tuning an SVM Model 26-3

26.3 Data Preparation for SVM 26-3

26.3.1 Normalization 26-4

26.3.2 SVM and Automatic Data Preparation 26-4

26.4 SVM Classification 26-4

26.4.1 Class Weights 26-4

26.5 One-Class SVM 26-5

xi

26.6 SVM Regression 26-5

Part IV Using the Data Mining API

27

Data Mining With SQL

27.1 Highlights of the Data Mining API 27-1

27.2 Example: Targeting Likely Candidates for a Sales Promotion 27-2

27.3 Example: Analyzing Preferred Customers 27-3

27.4 Example: Segmenting Customer Data 27-5

27.5 Example : Building an ESA Model with a Wiki Dataset 27-6

28

About the Data Mining API

28.1 About Mining Models 28-1

28.2 Data Mining Data Dictionary Views 28-2

28.2.1 ALL_MINING_MODELS 28-2

28.2.2 ALL_MINING_MODEL_ATTRIBUTES 28-3

28.2.3 ALL_MINING_MODEL_PARTITIONS 28-4

28.2.4 ALL_MINING_MODEL_SETTINGS 28-5

28.2.5 ALL_MINING_MODEL_VIEWS 28-6

28.2.6 ALL_MINING_MODEL_XFORMS 28-7

28.3 Data Mining PL/SQL Packages 28-7

28.3.1 DBMS_DATA_MINING 28-8

28.3.2 DBMS_DATA_MINING_TRANSFORM 28-8

28.3.2.1 Transformation Methods in
DBMS_DATA_MINING_TRANSFORM 28-9

28.3.3 DBMS_PREDICTIVE_ANALYTICS 28-9

28.4 Data Mining SQL Scoring Functions 28-10

29

Preparing the Data

29.1 Data Requirements 29-1

29.1.1 Column Data Types 29-2

29.1.2 Data Sets for Classification and Regression 29-2

29.1.3 Scoring Requirements 29-2

29.2 About Attributes 29-3

29.2.1 Data Attributes and Model Attributes 29-3

29.2.2 Target Attribute 29-4

29.2.3 Numericals, Categoricals, and Unstructured Text 29-5

29.2.4 Model Signature 29-5

xii

29.2.5 Scoping of Model Attribute Name 29-6

29.2.6 Model Details 29-6

29.3 Using Nested Data 29-7

29.3.1 Nested Object Types 29-7

29.3.2 Example: Transforming Transactional Data for Mining 29-8

29.4 Using Market Basket Data 29-10

29.4.1 Example: Creating a Nested Column for Market Basket Analysis 29-10

29.5 Using Retail Analysis Data 29-11

29.5.1 Example: Calculating Aggregates 29-12

29.6 Handling Missing Values 29-12

29.6.1 Examples: Missing Values or Sparse Data? 29-13

29.6.1.1 Sparsity in a Sales Table 29-13

29.6.1.2 Missing Values in a Table of Customer Data 29-13

29.6.2 Missing Value Treatment in Oracle Data Mining 29-13

29.6.3 Changing the Missing Value Treatment 29-15

30

Transforming the Data

30.1 About Transformations 30-1

30.2 Preparing the Case Table 30-2

30.2.1 Creating Nested Columns 30-2

30.2.2 Converting Column Data Types 30-2

30.2.3 Text Transformation 30-2

30.2.4 About Business and Domain-Sensitive Transformations 30-3

30.3 Understanding Automatic Data Preparation 30-3

30.3.1 Binning 30-3

30.3.2 Normalization 30-4

30.3.3 How ADP Transforms the Data 30-4

30.4 Embedding Transformations in a Model 30-5

30.4.1 Specifying Transformation Instructions for an Attribute 30-5

30.4.1.1 Expression Records 30-6

30.4.1.2 Attribute Specifications 30-6

30.4.2 Building a Transformation List 30-7

30.4.2.1 SET_TRANSFORM 30-7

30.4.2.2 The STACK Interface 30-8

30.4.2.3 GET_MODEL_TRANSFORMATIONS and
GET_TRANSFORM_LIST 30-8

30.4.3 Transformation Lists and Automatic Data Preparation 30-9

30.4.4 Oracle Data Mining Transformation Routines 30-9

30.4.4.1 Binning Routines 30-9

30.4.4.2 Normalization Routines 30-10

30.4.4.3 Outlier Treatment 30-11

xiii

30.4.4.4 Routines for Outlier Treatment 30-11

30.5 Understanding Reverse Transformations 30-12

31

Creating a Model

31.1 Before Creating a Model 31-1

31.2 The CREATE_MODEL Procedure 31-1

31.2.1 Choosing the Mining Function 31-2

31.2.2 Choosing the Algorithm 31-3

31.2.3 Supplying Transformations 31-4

31.2.3.1 Creating a Transformation List 31-5

31.2.3.2 Transformation List and Automatic Data Preparation 31-5

31.2.4 About Partitioned Model 31-5

31.2.4.1 Partitioned Model Build Process 31-6

31.2.4.2 DDL in Partitioned model 31-6

31.2.4.3 Partitioned Model scoring 31-7

31.3 Specifying Model Settings 31-8

31.3.1 Specifying Costs 31-9

31.3.2 Specifying Prior Probabilities 31-10

31.3.3 Specifying Class Weights 31-10

31.3.4 Model Settings in the Data Dictionary 31-11

31.3.5 Specifying Mining Model Settings for R Model 31-12

31.3.5.1 ALGO_EXTENSIBLE_LANG 31-12

31.3.5.2 RALG_BUILD_FUNCTION 31-13

31.3.5.3 RALG_DETAILS_FUNCTION 31-15

31.3.5.4 RALG_SCORE_FUNCTION 31-16

31.3.5.5 RALG_WEIGHT_FUNCTION 31-19

31.3.5.6 Registered R Scripts 31-20

31.3.5.7 R Model Demonstration Scripts 31-20

31.4 Model Detail Views 31-20

31.4.1 Model Detail Views for Association Rules 31-21

31.4.2 Model Detail View for Frequent Itemsets 31-26

31.4.3 Model Detail View for Transactional Itemsets 31-27

31.4.4 Model Detail View for Transactional Rule 31-28

31.4.5 Model Detail Views for Classification Algorithms 31-29

31.4.6 Model Detail Views for Decision Tree 31-30

31.4.7 Model Detail Views for Generalized Linear Model 31-32

31.4.8 Model Detail Views for Naive Bayes 31-40

31.4.9 Model Detail Views for Neural Network 31-41

31.4.10 Model Detail Views for Random Forest 31-42

31.4.11 Model Detail View for Support Vector Machine 31-43

xiv

31.4.12 Model Detail Views for Clustering Algorithms 31-44

31.4.13 Model Detail Views for Expectation Maximization 31-47

31.4.14 Model Detail Views for k-Means 31-51

31.4.15 Model Detail Views for O-Cluster 31-52

31.4.16 Model Detail Views for CUR Matrix Decomposition 31-54

31.4.17 Model Detail Views for Explicit Semantic Analysis 31-55

31.4.18 Model Detail Views for Exponential Smoothing Models 31-57

31.4.19 Model Detail Views for Non-Negative Matrix Factorization 31-59

31.4.20 Model Detail Views for Singular Value Decomposition 31-60

31.4.21 Model Detail View for Minimum Description Length 31-63

31.4.22 Model Detail View for Binning 31-64

31.4.23 Model Detail Views for Global Information 31-64

31.4.24 Model Detail View for Normalization and Missing Value Handling 31-66

32

Scoring and Deployment

32.1 About Scoring and Deployment 32-1

32.2 Using the Data Mining SQL Functions 32-2

32.2.1 Choosing the Predictors 32-2

32.2.2 Single-Record Scoring 32-3

32.3 Prediction Details 32-4

32.3.1 Cluster Details 32-4

32.3.2 Feature Details 32-5

32.3.3 Prediction Details 32-5

32.3.4 GROUPING Hint 32-7

32.4 Real-Time Scoring 32-8

32.5 Dynamic Scoring 32-8

32.6 Cost-Sensitive Decision Making 32-10

32.7 DBMS_DATA_MINING.Apply 32-12

33

Mining Unstructured Text

33.1 About Unstructured Text 33-1

33.2 About Text Mining and Oracle Text 33-1

33.3 Data Preparation for Text Features 33-2

33.4 Creating a Model that Includes Text Mining 33-2

33.5 Creating a Text Policy 33-4

33.6 Configuring a Text Attribute 33-5

xv

34

Administrative Tasks for Oracle Data Mining

34.1 Installing and Configuring a Database for Data Mining 34-1

34.1.1 About Installation 34-1

34.1.2 Enabling or Disabling a Database Option 34-2

34.1.3 Database Tuning Considerations for Data Mining 34-2

34.2 Upgrading or Downgrading Oracle Data Mining 34-3

34.2.1 Pre-Upgrade Steps 34-3

34.2.1.1 Dropping Models Created in Java 34-3

34.2.1.2 Dropping Mining Activities Created in Oracle Data Miner Classic 34-3

34.2.2 Upgrading Oracle Data Mining 34-4

34.2.2.1 Using Database Upgrade Assistant to Upgrade Oracle Data
Mining 34-4

34.2.2.2 Using Export/Import to Upgrade Data Mining Models 34-5

34.2.3 Post Upgrade Steps 34-6

34.2.4 Downgrading Oracle Data Mining 34-7

34.3 Exporting and Importing Mining Models 34-7

34.3.1 About Oracle Data Pump 34-7

34.3.2 Options for Exporting and Importing Mining Models 34-8

34.3.3 Directory Objects for EXPORT_MODEL and IMPORT_MODEL 34-9

34.3.4 Using EXPORT_MODEL and IMPORT_MODEL 34-10

34.3.5 EXPORT and IMPORT Serialized Models 34-12

34.3.6 Importing From PMML 34-12

34.4 Controlling Access to Mining Models and Data 34-12

34.4.1 Creating a Data Mining User 34-12

34.4.1.1 Granting Privileges for Data Mining 34-14

34.4.2 System Privileges for Data Mining 34-14

34.4.3 Object Privileges for Mining Models 34-15

34.5 Auditing and Adding Comments to Mining Models 34-16

34.5.1 Adding a Comment to a Mining Model 34-16

34.5.2 Auditing Mining Models 34-17

35

The Data Mining Sample Programs

35.1 About the Data Mining Sample Programs 35-1

35.2 Installing the Data Mining Sample Programs 35-2

35.3 The Data Mining Sample Data 35-3

Part V Oracle Data Mining API Reference

xvi

36

PL/SQL Packages

36.1 DBMS_DATA_MINING 36-1

36.1.1 Using DBMS_DATA_MINING 36-1

36.1.1.1 DBMS_DATA_MINING Overview 36-2

36.1.1.2 DBMS_DATA_MINING Security Model 36-3

36.1.1.3 DBMS_DATA_MINING — Mining Functions 36-4

36.1.2 DBMS_DATA_MINING — Model Settings 36-5

36.1.2.1 DBMS_DATA_MINING — Algorithm Names 36-5

36.1.2.2 DBMS_DATA_MINING — Automatic Data Preparation 36-6

36.1.2.3 DBMS_DATA_MINING — Mining Function Settings 36-8

36.1.2.4 DBMS_DATA_MINING — Global Settings 36-13

36.1.2.5 DBMS_DATA_MINING — Algorithm Settings:
ALGO_EXTENSIBLE_LANG 36-16

36.1.2.6 DBMS_DATA_MINING — Algorithm Settings: CUR Matrix
Decomposition 36-18

36.1.2.7 DBMS_DATA_MINING — Algorithm Settings: Decision Tree 36-19

36.1.2.8 DBMS_DATA_MINING — Algorithm Settings: Expectation
Maximization 36-20

36.1.2.9 DBMS_DATA_MINING — Algorithm Settings: Explicit Semantic
Analysis 36-23

36.1.2.10 DBMS_DATA_MINING — Algorithm Settings: Exponential
Smoothing 36-24

36.1.2.11 DBMS_DATA_MINING — Algorithm Settings: Generalized
Linear Models 36-28

36.1.2.12 DBMS_DATA_MINING — Algorithm Settings: k-Means 36-31

36.1.2.13 DBMS_DATA_MINING — Algorithm Settings: Naive Bayes 36-32

36.1.2.14 DBMS_DATA_MINING — Algorithm Settings: Neural Network 36-33

36.1.2.15 DBMS_DATA_MINING — Algorithm Settings: Non-Negative
Matrix Factorization 36-37

36.1.2.16 DBMS_DATA_MINING — Algorithm Settings: O-Cluster 36-37

36.1.2.17 DBMS_DATA_MINING — Algorithm Settings: Random Forest 36-38

36.1.2.18 DBMS_DATA_MINING — Algorithm Constants and Settings:
Singular Value Decomposition 36-39

36.1.2.19 DBMS_DATA_MINING — Algorithm Settings: Support Vector
Machine 36-41

36.1.3 DBMS_DATA_MINING — Solver Settings 36-42

36.1.3.1 DBMS_DATA_MINING — Solver Settings: ADMM 36-42

36.1.3.2 DBMS_DATA_MINING — Solver Settings: LBFGS 36-43

36.1.4 DBMS_DATA_MINING Datatypes 36-43

36.1.4.1 Deprecated Types 36-44

36.1.5 Summary of DBMS_DATA_MINING Subprograms 36-49

36.1.5.1 ADD_COST_MATRIX Procedure 36-52

36.1.5.2 ADD_PARTITION Procedure 36-54

xvii

36.1.5.3 ALTER_REVERSE_EXPRESSION Procedure 36-55

36.1.5.4 APPLY Procedure 36-59

36.1.5.5 COMPUTE_CONFUSION_MATRIX Procedure 36-62

36.1.5.6 COMPUTE_CONFUSION_MATRIX_PART Procedure 36-68

36.1.5.7 COMPUTE_LIFT Procedure 36-75

36.1.5.8 COMPUTE_LIFT_PART Procedure 36-80

36.1.5.9 COMPUTE_ROC Procedure 36-86

36.1.5.10 COMPUTE_ROC_PART Procedure 36-90

36.1.5.11 CREATE_MODEL Procedure 36-95

36.1.5.12 CREATE_MODEL2 Procedure 36-99

36.1.5.13 Create Model Using Registration Information 36-101

36.1.5.14 DROP_ALGORITHM Procedure 36-101

36.1.5.15 DROP_PARTITION Procedure 36-102

36.1.5.16 DROP_MODEL Procedure 36-102

36.1.5.17 EXPORT_MODEL Procedure 36-103

36.1.5.18 EXPORT_SERMODEL Procedure 36-106

36.1.5.19 FETCH_JSON_SCHEMA Procedure 36-107

36.1.5.20 GET_ASSOCIATION_RULES Function 36-108

36.1.5.21 GET_FREQUENT_ITEMSETS Function 36-113

36.1.5.22 GET_MODEL_COST_MATRIX Function 36-115

36.1.5.23 GET_MODEL_DETAILS_AI Function 36-117

36.1.5.24 GET_MODEL_DETAILS_EM Function 36-118

36.1.5.25 GET_MODEL_DETAILS_EM_COMP Function 36-120

36.1.5.26 GET_MODEL_DETAILS_EM_PROJ Function 36-122

36.1.5.27 GET_MODEL_DETAILS_GLM Function 36-123

36.1.5.28 GET_MODEL_DETAILS_GLOBAL Function 36-127

36.1.5.29 GET_MODEL_DETAILS_KM Function 36-128

36.1.5.30 GET_MODEL_DETAILS_NB Function 36-130

36.1.5.31 GET_MODEL_DETAILS_NMF Function 36-132

36.1.5.32 GET_MODEL_DETAILS_OC Function 36-134

36.1.5.33 GET_MODEL_SETTINGS Function 36-136

36.1.5.34 GET_MODEL_SIGNATURE Function 36-137

36.1.5.35 GET_MODEL_DETAILS_SVD Function 36-139

36.1.5.36 GET_MODEL_DETAILS_SVM Function 36-141

36.1.5.37 GET_MODEL_DETAILS_XML Function 36-144

36.1.5.38 GET_MODEL_TRANSFORMATIONS Function 36-146

36.1.5.39 GET_TRANSFORM_LIST Procedure 36-149

36.1.5.40 IMPORT_MODEL Procedure 36-152

36.1.5.41 IMPORT_SERMODEL Procedure 36-157

36.1.5.42 JSON Schema for R Extensible Algorithm 36-158

36.1.5.43 REGISTER_ALGORITHM Procedure 36-162

xviii

36.1.5.44 RANK_APPLY Procedure 36-163

36.1.5.45 REMOVE_COST_MATRIX Procedure 36-166

36.1.5.46 RENAME_MODEL Procedure 36-167

36.2 DBMS_DATA_MINING_TRANSFORM 36-168

36.2.1 Using DBMS_DATA_MINING_TRANSFORM 36-168

36.2.1.1 DBMS_DATA_MINING_TRANSFORM Overview 36-169

36.2.1.2 DBMS_DATA_MINING_TRANSFORM Security Model 36-171

36.2.1.3 DBMS_DATA_MINING_TRANSFORM Datatypes 36-172

36.2.1.4 DBMS_DATA_MINING_TRANSFORM Constants 36-174

36.2.2 DBMS_DATA_MINING_TRANSFORM Operational Notes 36-175

36.2.2.1 DBMS_DATA_MINING_TRANSFORM — About Transformation
Lists 36-177

36.2.2.2 DBMS_DATA_MINING_TRANSFORM — About Stacking and
Stack Procedures 36-180

36.2.2.3 DBMS_DATA_MINING_TRANSFORM — Nested Data
Transformations 36-181

36.2.3 Summary of DBMS_DATA_MINING_TRANSFORM Subprograms 36-185

36.2.3.1 CREATE_BIN_CAT Procedure 36-187

36.2.3.2 CREATE_BIN_NUM Procedure 36-188

36.2.3.3 CREATE_CLIP Procedure 36-190

36.2.3.4 CREATE_COL_REM Procedure 36-191

36.2.3.5 CREATE_MISS_CAT Procedure 36-193

36.2.3.6 CREATE_MISS_NUM Procedure 36-194

36.2.3.7 CREATE_NORM_LIN Procedure 36-195

36.2.3.8 DESCRIBE_STACK Procedure 36-197

36.2.3.9 GET_EXPRESSION Function 36-199

36.2.3.10 INSERT_AUTOBIN_NUM_EQWIDTH Procedure 36-200

36.2.3.11 INSERT_BIN_CAT_FREQ Procedure 36-204

36.2.3.12 INSERT_BIN_NUM_EQWIDTH Procedure 36-208

36.2.3.13 INSERT_BIN_NUM_QTILE Procedure 36-212

36.2.3.14 INSERT_BIN_SUPER Procedure 36-214

36.2.3.15 INSERT_CLIP_TRIM_TAIL Procedure 36-218

36.2.3.16 INSERT_CLIP_WINSOR_TAIL Procedure 36-221

36.2.3.17 INSERT_MISS_CAT_MODE Procedure 36-224

36.2.3.18 INSERT_MISS_NUM_MEAN Procedure 36-226

36.2.3.19 INSERT_NORM_LIN_MINMAX Procedure 36-229

36.2.3.20 INSERT_NORM_LIN_SCALE Procedure 36-231

36.2.3.21 INSERT_NORM_LIN_ZSCORE Procedure 36-233

36.2.3.22 SET_EXPRESSION Procedure 36-235

36.2.3.23 SET_TRANSFORM Procedure 36-238

36.2.3.24 STACK_BIN_CAT Procedure 36-239

36.2.3.25 STACK_BIN_NUM Procedure 36-241

xix

36.2.3.26 STACK_CLIP Procedure 36-243

36.2.3.27 STACK_COL_REM Procedure 36-245

36.2.3.28 STACK_MISS_CAT Procedure 36-247

36.2.3.29 STACK_MISS_NUM Procedure 36-249

36.2.3.30 STACK_NORM_LIN Procedure 36-251

36.2.3.31 XFORM_BIN_CAT Procedure 36-253

36.2.3.32 XFORM_BIN_NUM Procedure 36-255

36.2.3.33 XFORM_CLIP Procedure 36-258

36.2.3.34 XFORM_COL_REM Procedure 36-260

36.2.3.35 XFORM_EXPR_NUM Procedure 36-261

36.2.3.36 XFORM_EXPR_STR Procedure 36-263

36.2.3.37 XFORM_MISS_CAT Procedure 36-266

36.2.3.38 XFORM_MISS_NUM Procedure 36-268

36.2.3.39 XFORM_NORM_LIN Procedure 36-270

36.2.3.40 XFORM_STACK Procedure 36-272

36.3 DBMS_PREDICTIVE_ANALYTICS 36-274

36.3.1 Using DBMS_PREDICTIVE_ANALYTICS 36-274

36.3.1.1 DBMS_PREDICTIVE_ANALYTICS Overview 36-275

36.3.1.2 DBMS_PREDICTIVE_ANALYTICS Security Model 36-275

36.3.2 Summary of DBMS_PREDICTIVE_ANALYTICS Subprograms 36-275

36.3.2.1 EXPLAIN Procedure 36-276

36.3.2.2 PREDICT Procedure 36-278

36.3.2.3 PROFILE Procedure 36-280

37

Data Dictionary Views

37.1 ALL_MINING_MODELS 37-1

37.2 ALL_MINING_MODEL_ATTRIBUTES 37-3

37.3 ALL_MINING_MODEL_PARTITIONS 37-5

37.4 ALL_MINING_MODEL_SETTINGS 37-5

37.5 ALL_MINING_MODEL_VIEWS 37-6

37.6 ALL_MINING_MODEL_XFORMS 37-7

38

SQL Scoring Functions

38.1 CLUSTER_DETAILS 38-1

38.2 CLUSTER_DISTANCE 38-5

38.3 CLUSTER_ID 38-7

38.4 CLUSTER_PROBABILITY 38-10

38.5 CLUSTER_SET 38-12

38.6 FEATURE_COMPARE 38-15

xx

38.7 FEATURE_DETAILS 38-17

38.8 FEATURE_ID 38-20

38.9 FEATURE_SET 38-22

38.10 FEATURE_VALUE 38-25

38.11 ORA_DM_PARTITION_NAME 38-28

38.12 PREDICTION 38-29

38.13 PREDICTION_BOUNDS 38-33

38.14 PREDICTION_COST 38-35

38.15 PREDICTION_DETAILS 38-38

38.16 PREDICTION_PROBABILITY 38-43

38.17 PREDICTION_SET 38-46

xxi

Preface

This preface contains the following topics:

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Resources

• Conventions

Audience
This guide is intended for application developers and database administrators who are
familiar with SQL programming and Oracle Database administration and who have a
basic understanding of data mining concepts.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values
having a diverse workforce that increases thought leadership and innovation. As
part of our initiative to build a more inclusive culture that positively impacts our
employees, customers, and partners, we are working to remove insensitive terms from
our products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Preface

xxii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Resources
For more information, see these Oracle resources:

• Oracle Public Cloud

http://cloud.oracle.com

• Oracle Data Mining Concepts

• Oracle Data Mining User’s Guide

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database Reference

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements
associated with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables
for which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs,
code in examples, text that appears on the screen, or text that you
enter.

Preface

xxiii

http://cloud.oracle.com

Part I
Introductions

Part I presents an introduction to Oracle Data Mining. The first chapter is a general,
high-level overview for those who are new to data mining technology.

Part I contains the following chapters:

• Introduction to Oracle Data Mining

• Oracle Data Mining Basics

1
Introduction to Oracle Data Mining

Introduces Oracle Data Mining to perform a variety of mining tasks.

• About Oracle Data Mining

• Data Mining in the Database Kernel

• Oracle Data Mining with R Extensibility

• Data Mining in Oracle Exadata

• About Partitioned Model

• Interfaces to Oracle Data Mining

• Overview of Database Analytics

1.1 About Oracle Data Mining
Understand the uses of Oracle Data Mining and learn about different mining
techniques.

Oracle Data Mining provides a powerful, state-of-the-art data mining capability within
Oracle Database. You can use Oracle Data Mining to build and deploy predictive
and descriptive data mining applications, to add intelligent capabilities to existing
applications, and to generate predictive queries for data exploration.

Oracle Data Mining offers a comprehensive set of in-database algorithms for
performing a variety of mining tasks, such as classification, regression, anomaly
detection, feature extraction, clustering, and market basket analysis. The algorithms
can work on standard case data, transactional data, star schemas, and text and other
forms of unstructured data. Oracle Data Mining is uniquely suited to the mining of very
large data sets.

Oracle Data Mining is one of the two components of the Oracle Advanced Analytics
Option of Oracle Database Enterprise Edition. The other component is Oracle R
Enterprise, which integrates R, the open-source statistical environment, with Oracle
Database. Together, Oracle Data Mining and Oracle R Enterprise constitute a
comprehensive advanced analytics platform for big data analytics.

Related Topics

• Oracle R Enterprise Documentation Library

1.2 Data Mining in the Database Kernel
Learn about implementation of Data Mining.

Oracle Data Mining is implemented in the Oracle Database kernel. Data Mining
models are first class database objects. Oracle Data Mining processes use built-in

1-1

unilink:ore_lib

features of Oracle Database to maximize scalability and make efficient use of system
resources.

Data mining within Oracle Database offers many advantages:

• No Data Movement: Some data mining products require that the data be exported
from a corporate database and converted to a specialized format for mining. With
Oracle Data Mining, no data movement or conversion is needed. This makes
the entire mining process less complex, time-consuming, and error-prone, and it
allows for the mining of very large data sets.

• Security: Your data is protected by the extensive security mechanisms of Oracle
Database. Moreover, specific database privileges are needed for different data
mining activities. Only users with the appropriate privileges can define, manipulate,
or apply mining model objects.

• Data Preparation and Administration: Most data must be cleansed, filtered,
normalized, sampled, and transformed in various ways before it can be mined. Up
to 80% of the effort in a data mining project is often devoted to data preparation.
Oracle Data Mining can automatically manage key steps in the data preparation
process. Additionally, Oracle Database provides extensive administrative tools for
preparing and managing data.

• Ease of Data Refresh: Mining processes within Oracle Database have ready
access to refreshed data. Oracle Data Mining can easily deliver mining results
based on current data, thereby maximizing its timeliness and relevance.

• Oracle Database Analytics: Oracle Database offers many features for advanced
analytics and business intelligence. Oracle Data Mining can easily be integrated
with other analytical features of the database, such as statistical analysis and
OLAP.

• Oracle Technology Stack: You can take advantage of all aspects of Oracle's
technology stack to integrate data mining within a larger framework for business
intelligence or scientific inquiry.

• Domain Environment: Data mining models have to be built, tested, validated,
managed, and deployed in their appropriate application domain environments.
Data mining results may need to be post-processed as part of domain specific
computations (for example, calculating estimated risks and response probabilities)
and then stored into permanent repositories or data warehouses. With Oracle
Data Mining, the pre- and post-mining activities can all be accomplished within the
same environment.

• Application Programming Interfaces: The PL/SQL API and SQL language
operators provide direct access to Oracle Data Mining functionality in Oracle
Database.

Related Topics

• Overview of Database Analytics

1.3 Data Mining in Oracle Exadata
Understand scoring in Oracle Exadata.

Scoring refers to the process of applying a data mining model to data to generate
predictions. The scoring process may require significant system resources. Vast
amounts of data may be involved, and algorithmic processing may be very complex.

Chapter 1
Data Mining in Oracle Exadata

1-2

With Oracle Data Mining, scoring can be off-loaded to intelligent Oracle Exadata
Storage Servers where processing is extremely performant.

Oracle Exadata Storage Servers combine Oracle's smart storage software and
Oracle's industry-standard Sun hardware to deliver the industry's highest database
storage performance. For more information about Oracle Exadata, visit the Oracle
Technology Network.

Related Topics

• http://www.oracle.com/us/products/database/exadata/index.htm

1.4 About Partitioned Model
Introduces partitioned model to organise and represent multiple models.

Oracle Data Mining supports building of a persistent Oracle Data Mining partitioned
model. A partitioned model organizes and represents multiple models as partitions in
a single model entity, enabling a user to easily build and manage models tailored to
independent slices of data. Persistent means that the partitioned model has an on-disk
representation. The product manages the organization of the partitioned model and
simplifies the process of scoring the partitioned model. You must include the partition
columns as part of the USING clause when scoring.

The partition names, key values, and the structure of the partitioned model are visible
in the ALL_MINING_MODEL_PARTITIONS view.

Related Topics

• Oracle Database Reference

• Oracle Data Mining User’s Guide

1.5 Interfaces to Oracle Data Mining
The programmatic interfaces to Oracle Data Mining are PL/SQL for building and
maintaining models and a family of SQL functions for scoring. Oracle Data Mining also
supports a graphical user interface, which is implemented as an extension to Oracle
SQL Developer.

Oracle Predictive Analytics, a set of simplified data mining routines, is built on top of
Oracle Data Mining and is implemented as a PL/SQL package.

1.5.1 PL/SQL API
The Oracle Data Mining PL/SQL API is implemented in the DBMS_DATA_MINING PL/SQL
package, which contains routines for building, testing, and maintaining data mining
models. A batch apply operation is also included in this package.

The following example shows part of a simple PL/SQL script for creating an SVM
classification model called SVMC_SH_Clas_sample. The model build uses weights,
specified in a weights table, and settings, specified in a settings table. The weights
influence the weighting of target classes. The settings override default behavior. The
model uses Automatic Data Preparation (prep_auto_on setting). The model is trained
on the data in mining_data_build_v.

Chapter 1
About Partitioned Model

1-3

unilink:prod_db_exadata

Example 1-1 Creating a Classification Model

----------------------- CREATE AND POPULATE A CLASS WEIGHTS TABLE ------------
CREATE TABLE svmc_sh_sample_class_wt (
 target_value NUMBER,
 class_weight NUMBER);
INSERT INTO svmc_sh_sample_class_wt VALUES (0,0.35);
INSERT INTO svmc_sh_sample_class_wt VALUES (1,0.65);
COMMIT;
----------------------- CREATE AND POPULATE A SETTINGS TABLE ------------------
CREATE TABLE svmc_sh_sample_settings (
 setting_name VARCHAR2(30),
 setting_value VARCHAR2(4000));
BEGIN
INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.algo_name, dbms_data_mining.algo_support_vector_machines);
INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.svms_kernel_function, dbms_data_mining.svms_linear);
INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.clas_weights_table_name, 'svmc_sh_sample_class_wt');
INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.prep_auto, dbms_data_mining.prep_auto_on);
END;
/
------------------------ CREATE THE MODEL -------------------------------------
BEGIN
 DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'SVMC_SH_Clas_sample',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data_build_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 settings_table_name => 'svmc_sh_sample_settings');
END;
/

1.5.2 SQL Functions
The Data Mining SQL functions perform prediction, clustering, and feature extraction.

The functions score data by applying a mining model object or by executing an
analytic clause that performs dynamic scoring.

The following example shows a query that applies the classification model
svmc_sh_clas_sample to the data in the view mining_data_apply_v. The query returns
the average age of customers who are likely to use an affinity card. The results are
broken out by gender.

Example 1-2 The PREDICTION Function

SELECT cust_gender,
 COUNT(*) AS cnt,
 ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION(svmc_sh_clas_sample USING *) = 1
GROUP BY cust_gender
ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------

Chapter 1
Interfaces to Oracle Data Mining

1-4

F 59 41
M 409 45

Related Topics

• In-Database Scoring

1.5.3 Oracle Data Miner
Oracle Data Miner is a graphical interface to Oracle Data Mining. Oracle Data Miner is
an extension to Oracle SQL Developer, which is available for download free of charge
on the Oracle Technology Network.

Oracle Data Miner uses a work flow paradigm to capture, document, and automate the
process of building, evaluating, and applying data mining models. Within a work flow,
you can specify data transformations, build and evaluate multiple models, and score
multiple data sets. You can then save work flows and share them with other users.

Figure 1-1 An Oracle Data Miner Workflow

NEW_CUST_INSUR_LTVExplore Data

CUST_INSUR_LTV

Customer

Segments

Cluster

Cleanse Data 5 Response

Models
Likely

Customers

For information about Oracle Data Miner, including installation instructions, visit Oracle
Technology Network.

Related Topics

• Oracle Data Miner

1.5.4 Predictive Analytics
Predictive analytics is a technology that captures data mining processes in simple
routines.

Chapter 1
Interfaces to Oracle Data Mining

1-5

unilink:dataminer_wf

Sometimes called "one-click data mining," predictive analytics simplifies and
automates the data mining process.

Predictive analytics uses data mining technology, but knowledge of data mining is
not needed to use predictive analytics. You can use predictive analytics simply by
specifying an operation to perform on your data. You do not need to create or use
mining models or understand the mining functions and algorithms summarized in
"Oracle Data Mining Basics ".

Oracle Data Mining predictive analytics operations are described in the following table:

Table 1-1 Oracle Predictive Analytics Operations

Operation Description

EXPLAIN Explains how individual predictors (columns) affect the variation of values
in a target column

PREDICT For each case (row), predicts the values in a target column

PROFILE Creates a set of rules for cases (rows) that imply the same target value

The Oracle predictive analytics operations are implemented in the
DBMS_PREDICTIVE_ANALYTICS PL/SQL package. They are also available in Oracle Data
Miner.

Related Topics

• Oracle Data Mining Basics
Understand the basic concepts of Oracle Data Mining.

1.6 Overview of Database Analytics
Oracle Database supports an array of native analytical features that are independent
of the Oracle Advanced Analytics Option. Since all these features are part of a
common server it is possible to combine them efficiently. The results of analytical
processing can be integrated with Oracle Business Intelligence Suite Enterprise
Edition and other BI tools and applications.

The possibilities for combining different analytics are virtually limitless. Example 1-3
shows data mining and text processing within a single SQL query. The query selects
all customers who have a high propensity to attrite (> 80% chance), are valuable
customers (customer value rating > 90), and have had a recent conversation with
customer services regarding a Checking Plus account. The propensity to attrite
information is computed using a Data Mining model called tree_model. The query
uses the Oracle Text CONTAINS operator to search call center notes for references to
Checking Plus accounts.

Some of the native analytics supported by Oracle Database are described in the
following table:

Chapter 1
Overview of Database Analytics

1-6

Table 1-2 Oracle Database Native Analytics

Analytical
Feature

Description Documented In...

Complex
data
transformat
ions

Data transformation is a key aspect of analytical
applications and ETL (extract, transform, and
load). You can use SQL expressions to implement
data transformations, or you can use the
DBMS_DATA_MINING_TRANSFORM package.

DBMS_DATA_MINING_TRANSFORM is a flexible data
transformation package that includes a variety of
missing value and outlier treatments, as well as binning
and normalization capabilities.

Oracle Database PL/SQL Packages
and Types Reference

Statistical
functions

Oracle Database provides a long list of SQL statistical
functions with support for: hypothesis testing (such as
t-test, F-test), correlation computation (such as pearson
correlation), cross-tab statistics, and descriptive statistics
(such as median and mode). The DBMS_STAT_FUNCS
package adds distribution fitting procedures and a
summary procedure that returns descriptive statistics
for a column.

Oracle Database SQL Language
Reference and Oracle Database
PL/SQL Packages and Types
Reference

Window
and analytic
SQL
functions

Oracle Database supports analytic and windowing
functions for computing cumulative, moving, and
centered aggregates. With windowing aggregate
functions, you can calculate moving and cumulative
versions of SUM, AVERAGE, COUNT, MAX, MIN, and many
more functions.

Oracle Database Data
Warehousing Guide

Linear
algebra

The UTL_NLA package exposes a subset of the popular
BLAS and LAPACK (Version 3.0) libraries for operations
on vectors and matrices represented as VARRAYs. This
package includes procedures to solve systems of linear
equations, invert matrices, and compute eigenvalues and
eigenvectors.

Oracle Database PL/SQL Packages
and Types Reference

OLAP Oracle OLAP supports multidimensional analysis
and can be used to improve performance of
multidimensional queries. Oracle OLAP provides
functionality previously found only in specialized
OLAP databases. Moving beyond drill-downs and roll-
ups, Oracle OLAP also supports time-series analysis,
modeling, and forecasting.

Oracle OLAP User’s Guide

Spatial
analytics

Oracle Spatial provides advanced spatial features to
support high-end GIS and LBS solutions. Oracle Spatial's
analysis and mining capabilities include functions
for binning, detection of regional patterns, spatial
correlation, colocation mining, and spatial clustering.
Oracle Spatial also includes support for topology and
network data models and analytics. The topology data
model of Oracle Spatial allows one to work with data
about nodes, edges, and faces in a topology. It includes
network analysis functions for computing shortest path,
minimum cost spanning tree, nearest-neighbors analysis,
traveling salesman problem, among others.

Oracle Spatial and Graph
Developer's Guide

Chapter 1
Overview of Database Analytics

1-7

Table 1-2 (Cont.) Oracle Database Native Analytics

Analytical
Feature

Description Documented In...

Text Mining Oracle Text uses standard SQL to index, search, and
analyze text and documents stored in the Oracle
database, in files, and on the web. Oracle Text also
supports automatic classification and clustering of
document collections. Many of the analytical features of
Oracle Text are layered on top of Oracle Data Mining
functionality.

Oracle Text Application
Developer's Guide

Example 1-3 SQL Query Combining Oracle Data Mining and Oracle Text

SELECT A.cust_name, A.contact_info
 FROM customers A
 WHERE PREDICTION_PROBABILITY(tree_model,
 'attrite' USING A.*) > 0.8
 AND A.cust_value > 90
 AND A.cust_id IN
 (SELECT B.cust_id
 FROM call_center B
 WHERE B.call_date BETWEEN '01-Jan-2005'
 AND '30-Jun-2005'
 AND CONTAINS(B.notes, 'Checking Plus', 1) > 0);

Chapter 1
Overview of Database Analytics

1-8

2
Oracle Data Mining Basics

Understand the basic concepts of Oracle Data Mining.

• Mining Functions

• Algorithms

• Data Preparation

• In-Database Scoring

2.1 Mining Functions
Introduces the concept of data mining functions.

A basic understanding of data mining functions and algorithms is required for using
Oracle Data Mining.

Each data mining function specifies a class of problems that can be modeled and
solved. Data mining functions fall generally into two categories: supervised and
unsupervised. Notions of supervised and unsupervised learning are derived from the
science of machine learning, which has been called a sub-area of artificial intelligence.

Artificial intelligence refers to the implementation and study of systems that exhibit
autonomous intelligence or behavior of their own. Machine learning deals with
techniques that enable devices to learn from their own performance and modify their
own functioning. Data mining applies machine learning concepts to data.

Related Topics

• Algorithms

2.1.1 Supervised Data Mining
Supervised learning is also known as directed learning. The learning process is
directed by a previously known dependent attribute or target. Directed data mining
attempts to explain the behavior of the target as a function of a set of independent
attributes or predictors.

Supervised learning generally results in predictive models. This is in contrast to
unsupervised learning where the goal is pattern detection.

The building of a supervised model involves training, a process whereby the software
analyzes many cases where the target value is already known. In the training process,
the model "learns" the logic for making the prediction. For example, a model that seeks
to identify the customers who are likely to respond to a promotion must be trained by
analyzing the characteristics of many customers who are known to have responded or
not responded to a promotion in the past.

2-1

2.1.1.1 Supervised Learning: Testing
Separate data sets are required for building (training) and testing some predictive
models. The build data (training data) and test data must have the same column
structure. Typically, one large table or view is split into two data sets: one for building
the model, and the other for testing the model.

The process of applying the model to test data helps to determine whether the model,
built on one chosen sample, is generalizable to other data. In particular, it helps to
avoid the phenomenon of overfitting, which can occur when the logic of the model fits
the build data too well and therefore has little predictive power.

2.1.1.2 Supervised Learning: Scoring
Apply data, also called scoring data, is the actual population to which a model is
applied. For example, you might build a model that identifies the characteristics of
customers who frequently buy a certain product. To obtain a list of customers who
shop at a certain store and are likely to buy a related product, you might apply the
model to the customer data for that store. In this case, the store customer data is the
scoring data.

Most supervised learning can be applied to a population of interest. The principal
supervised mining techniques, Classification and Regression, can both be used for
scoring.

Oracle Data Mining does not support the scoring operation for Attribute Importance,
another supervised function. Models of this type are built on a population of interest to
obtain information about that population; they cannot be applied to separate data. An
attribute importance model returns and ranks the attributes that are most important in
predicting a target value.

Oracle Data Mining supports the supervised data mining functions described in the
following table:

Table 2-1 Oracle Data Mining Supervised Functions

Function Description Sample Problem

Attribute Importance Identifies the attributes that are
most important in predicting a target
attribute

Given customer response to an affinity
card program, find the most significant
predictors

Classification Assigns items to discrete classes and
predicts the class to which an item
belongs

Given demographic data about a set of
customers, predict customer response to
an affinity card program

Regression Approximates and forecasts
continuous values

Given demographic and purchasing
data about a set of customers, predict
customers' age

2.1.2 Unsupervised Data Mining
Unsupervised learning is non-directed. There is no distinction between dependent and
independent attributes. There is no previously-known result to guide the algorithm in
building the model.

Chapter 2
Mining Functions

2-2

Unsupervised learning can be used for descriptive purposes. It can also be used to
make predictions.

2.1.2.1 Unsupervised Learning: Scoring
Introduces unsupervised learning, supported scoring operations, and unsupervised
Oracle Data Mining functions.

Although unsupervised data mining does not specify a target, most unsupervised
learning can be applied to a population of interest. For example, clustering models
use descriptive data mining techniques, but they can be applied to classify cases
according to their cluster assignments. Anomaly detection, although unsupervised, is
typically used to predict whether a data point is typical among a set of cases.

Oracle Data Mining supports the scoring operation for Clustering and Feature
Extraction, both unsupervised mining functions. Oracle Data Mining does not
support the scoring operation for Association Rules, another unsupervised function.
Association models are built on a population of interest to obtain information about
that population; they cannot be applied to separate data. An association model returns
rules that explain how items or events are associated with each other. The association
rules are returned with statistics that can be used to rank them according to their
probability.

Oracle Data Mining supports the unsupervised functions described in the following
table:

Table 2-2 Oracle Data Mining Unsupervised Functions

Function Description Sample Problem

Anomaly Detection Identifies items (outliers) that do not
satisfy the characteristics of "normal"
data

Given demographic data about a set of
customers, identify customer purchasing
behavior that is significantly different from
the norm

Association Rules Finds items that tend to co-occur in
the data and specifies the rules that
govern their co-occurrence

Find the items that tend to be purchased
together and specify their relationship

Clustering Finds natural groupings in the data Segment demographic data into clusters
and rank the probability that an individual
belongs to a given cluster

Feature Extraction Creates new attributes (features)
using linear combinations of the
original attributes

Given demographic data about a set of
customers, group the attributes into general
characteristics of the customers

Related Topics

• Mining Functions
Part II provides basic conceptual information about the mining functions that the
Oracle Data Mining supports.

• In-Database Scoring

2.2 Algorithms
An algorithm is a mathematical procedure for solving a specific kind of problem.
Oracle Data Mining supports at least one algorithm for each data mining function.

Chapter 2
Algorithms

2-3

For some functions, you can choose among several algorithms. For example, Oracle
Data Mining supports four classification algorithms.

Each data mining model is produced by a specific algorithm. Some data mining
problems can best be solved by using more than one algorithm. This necessitates
the development of more than one model. For example, you might first use a feature
extraction model to create an optimized set of predictors, then a classification model to
make a prediction on the results.

2.2.1 Oracle Data Mining Supervised Algorithms
Oracle Data Mining supports the supervised data mining algorithms described in the
following table. The algorithm abbreviations are used throughout this manual.

Table 2-3 Oracle Data Mining Algorithms for Supervised Functions

Algorithm Function Description

Decision Tree Classification Decision trees extract predictive information in the form of human-
understandable rules. The rules are if-then-else expressions; they
explain the decisions that lead to the prediction.

Explicit Semantic
Analysis

Classification Explicit Semantic Analysis (ESA) is designed to make predictions
for text data. This algorithm can address use cases with hundreds
of thousands of classes. In Oracle Database 12c Release 2, ESA was
introduced as Feature Extraction algorithm.

Exponential
Smoothing

Time Series Exponential Smoothing (ESM) provides forecasts for time series
data. Forecasts are made for each time period within a user-
specified forecast window. ESM provides a total of 14 different time
series models, including all the most popular estimates of trend and
seasonal effects. Choice of model is controlled by user settings. ESM
provides confidence bounds on its forecasts.

Generalized Linear
Models

Classification
and Regression

Generalized Linear Models (GLM) implement logistic regression
for classification of binary targets and linear regression for
continuous targets. GLM classification supports confidence bounds
for prediction probabilities. GLM regression supports confidence
bounds for predictions.

Minimum
Description Length

Attribute
Importance

Minimum Description Length (MDL) is an information theoretic
model selection principle. MDL assumes that the simplest, most
compact representation of data is the best and most probable
explanation of the data.

Naive Bayes Classification Naive Bayes makes predictions using Bayes' Theorem, which
derives the probability of a prediction from the underlying
evidence, as observed in the data.

Neural Network Classification
and Regression

Neural Network in Machine Learning is an artificial algorithm
inspired from biological neural network and is used to estimate or
approximate functions that depend on a large number of generally
unknown inputs. Neural Network is designed for Classification and
Regression.

Random Forest Classification Random Forest is a powerful machine learning algorithm.Random
Forest algorithm builds a number of decision tree models and
predicts using the ensemble of trees.

Chapter 2
Algorithms

2-4

Table 2-3 (Cont.) Oracle Data Mining Algorithms for Supervised Functions

Algorithm Function Description

Support Vector
Machines

Classification
and Regression

Distinct versions of Support Vector Machines (SVM) use different
kernel functions to handle different types of data sets. Linear and
Gaussian (nonlinear) kernels are supported.
SVM classification attempts to separate the target classes with the
widest possible margin.
SVM regression tries to find a continuous function such that the
maximum number of data points lie within an epsilon-wide tube
around it.

2.2.2 Oracle Data Mining Unsupervised Algorithms
Learn about unsupervised algorithms that Oracle Data Mining supports.

Oracle Data Mining supports the unsupervised data mining algorithms described in the
following table. The algorithm abbreviations are used throughout this manual.

Table 2-4 Oracle Data Mining Algorithms for Unsupervised Functions

Algorithm Function Description

Apriori Association Apriori performs market basket analysis by identifying co-
occurring items (frequent itemsets) within a set. Apriori finds
rules with support greater than a specified minimum support
and confidence greater than a specified minimum confidence.

CUR matrix
decomposition

Attribute
Importance

CUR matrix decomposition is an alternative to Support Vector
Machines(SVM) and Principal Component Analysis (PCA) and
an important tool for exploratory data analysis. This algorithm
performs analytical processing and singles out important
columns and rows.

Expectation
Maximization

Clustering Expectation Maximization (EM) is a density estimation algorithm
that performs probabilistic clustering. In density estimation, the
goal is to construct a density function that captures how a
given population is distributed. The density estimate is based on
observed data that represents a sample of the population.
Oracle Data Mining supports probabilistic clustering and data
frequency estimates and other applications of Expectation
Maximization.

Explicit Semantic
Analysis

Feature Extraction Explicit Semantic Analysis (ESA) uses existing knowledge base
as features. An attribute vector represents each feature or a
concept. ESA creates a reverse index that maps every attribute to
the knowledge base concepts or the concept-attribute association
vector value.

k-Means Clustering k-Means is a distance-based clustering algorithm that partitions
the data into a predetermined number of clusters. Each cluster
has a centroid (center of gravity). Cases (individuals within the
population) that are in a cluster are close to the centroid.
Oracle Data Mining supports an enhanced version of k-Means.
It goes beyond the classical implementation by defining a
hierarchical parent-child relationship of clusters.

Chapter 2
Algorithms

2-5

Table 2-4 (Cont.) Oracle Data Mining Algorithms for Unsupervised Functions

Algorithm Function Description

Non-Negative
Matrix
Factorization

Feature Extraction Non-Negative Matrix Factorization (NMF) generates new
attributes using linear combinations of the original attributes.
The coefficients of the linear combinations are non-negative.
During model apply, an NMF model maps the original data into
the new set of attributes (features) discovered by the model.

One Class Support
Vector Machines

Anomaly
Detection

One-class SVM builds a profile of one class. When the model is
applied, it identifies cases that are somehow different from that
profile. This allows for the detection of rare cases that are not
necessarily related to each other.

Orthogonal
Partitioning
Clustering

Clustering Orthogonal Partitioning Clustering (o-cluster) creates a
hierarchical, grid-based clustering model. The algorithm creates
clusters that define dense areas in the attribute space. A
sensitivity parameter defines the baseline density level.

Singular Value
Decomposition
and Principal
Component
Analysis

Feature Extraction Singular Value Decomposition (SVD) and Principal Component
Analysis (PCA) are orthogonal linear transformations that are
optimal at capturing the underlying variance of the data. This
property is extremely useful for reducing the dimensionality
of high-dimensional data and for supporting meaningful data
visualization.
In addition to dimensionality reduction, SVD and PCA have a
number of other important applications, such as data de-noising
(smoothing), data compression, matrix inversion, and solving a
system of linear equations.

Related Topics

• Algorithms
Part III provides basic conceptual information about the algorithms supported
by Oracle Data Mining. There is at least one algorithm for each of the mining
functions.

2.3 Data Preparation
The quality of a model depends to a large extent on the quality of the data used to
build (train) it. Much of the time spent in any given data mining project is devoted to
data preparation. The data must be carefully inspected, cleansed, and transformed,
and algorithm-appropriate data preparation methods must be applied.

The process of data preparation is further complicated by the fact that any data to
which a model is applied, whether for testing or for scoring, must undergo the same
transformations as the data used to train the model.

2.3.1 Oracle Data Mining Simplifies Data Preparation
Oracle Data Mining offers several features that significantly simplify the process of
data preparation:

• Embedded data preparation: The transformations used in training the model
are embedded in the model and automatically executed whenever the model is
applied to new data. If you specify transformations for the model, you only have to
specify them once.

Chapter 2
Data Preparation

2-6

• Automatic Data Preparation (ADP): Oracle Data Mining supports an automated
data preparation mode. When ADP is active, Oracle Data Mining automatically
performs the data transformations required by the algorithm. The transformation
instructions are embedded in the model along with any user-specified
transformation instructions.

• Automatic management of missing values and sparse data: Oracle Data Mining
uses consistent methodology across mining algorithms to handle sparsity and
missing values.

• Transparency: Oracle Data Mining provides model details, which are a view of
the attributes that are internal to the model. This insight into the inner details
of the model is possible because of reverse transformations, which map the
transformed attribute values to a form that can be interpreted by a user. Where
possible, attribute values are reversed to the original column values. Reverse
transformations are also applied to the target of a supervised model, thus the
results of scoring are in the same units as the units of the original target.

• Tools for custom data preparation: Oracle Data Mining provides many common
transformation routines in the DBMS_DATA_MINING_TRANSFORM PL/SQL package.
You can use these routines, or develop your own routines in SQL, or both. The
SQL language is well suited for implementing transformations in the database. You
can use custom transformation instructions along with ADP or instead of ADP.

2.3.2 Case Data
Most data mining algorithms act on single-record case data, where the information for
each case is stored in a separate row. The data attributes for the cases are stored in
the columns.

When the data is organized in transactions, the data for one case (one transaction) is
stored in many rows. An example of transactional data is market basket data. With the
single exception of Association Rules, which can operate on native transactional data,
Oracle Data Mining algorithms require single-record case organization.

2.3.2.1 Nested Data
Oracle Data Mining supports attributes in nested columns. A transactional table can be
cast as a nested column and included in a table of single-record case data. Similarly,
star schemas can be cast as nested columns. With nested data transformations,
Oracle Data Mining can effectively mine data originating from multiple sources and
configurations.

2.3.3 Text Data
Prepare and transform unstructured text data for data mining.

Oracle Data Mining interprets CLOB columns and long VARCHAR2 columns automatically
as unstructured text. Additionally, you can specify columns of short VARCHAR2, CHAR,
BLOB, and BFILE as unstructured text. Unstructured text includes data items such
as web pages, document libraries, Power Point presentations, product specifications,
emails, comment fields in reports, and call center notes.

Oracle Data Mining uses Oracle Text utilities and term weighting strategies to
transform unstructured text for mining. In text transformation, text terms are extracted
and given numeric values in a text index. The text transformation process is

Chapter 2
Data Preparation

2-7

configurable for the model and for individual attributes. Once transformed, the text
can by mined with a data mining algorithm.

Related Topics

• Preparing the Data

• Transforming the Data

• Mining Unstructured Text

2.4 In-Database Scoring
Scoring is the application of a data mining algorithm to new data. In traditional data
mining, models are built using specialized software on a remote system and deployed
to another system for scoring. This is a cumbersome, error-prone process open to
security violations and difficulties in data synchronization.

With Oracle Data Mining, scoring is easy and secure. The scoring engine and the data
both reside within the database. Scoring is an extension to the SQL language, so the
results of mining can easily be incorporated into applications and reporting systems.

2.4.1 Parallel Execution and Ease of Administration
All Oracle Data Mining scoring routines support parallel execution for scoring large
data sets.

In-database scoring provides performance advantages. All Oracle Data Mining scoring
routines support parallel execution, which significantly reduces the time required for
executing complex queries and scoring large data sets.

In-database mining minimizes the IT effort needed to support data mining initiatives.
Using standard database techniques, models can easily be refreshed (re-created) on
more recent data and redeployed. The deployment is immediate since the scoring
query remains the same; only the underlying model is replaced in the database.

Related Topics

• Oracle Database VLDB and Partitioning Guide

2.4.2 SQL Functions for Model Apply and Dynamic Scoring
In Oracle Data Mining, scoring is performed by SQL language functions. Understand
the different ways involved in SQL function scoring.

The functions perform prediction, clustering, and feature extraction. The functions can
be invoked in two different ways: By applying a mining model object (Example 2-1),
or by executing an analytic clause that computes the mining analysis dynamically and
applies it to the data (Example 2-2). Dynamic scoring, which eliminates the need for a
model, can supplement, or even replace, the more traditional data mining methodology
described in "The Data Mining Process".

In Example 2-1, the PREDICTION_PROBABILITY function applies the model
svmc_sh_clas_sample, created in Example 1-1, to score the data in
mining_data_apply_v. The function returns the ten customers in Italy who are most
likely to use an affinity card.

Chapter 2
In-Database Scoring

2-8

In Example 2-2, the functions PREDICTION and PREDICTION_PROBABILITY use
the analytic syntax (the OVER () clause) to dynamically score the data in
mining_data_apply_v. The query returns the customers who currently do not have
an affinity card with the probability that they are likely to use.

Example 2-1 Applying a Mining Model to Score Data

SELECT cust_id FROM
 (SELECT cust_id,
 rank() over (order by PREDICTION_PROBABILITY(svmc_sh_clas_sample, 1
 USING *) DESC, cust_id) rnk
 FROM mining_data_apply_v
 WHERE country_name = 'Italy')
WHERE rnk <= 10
ORDER BY rnk;

 CUST_ID

 101445
 100179
 100662
 100733
 100554
 100081
 100344
 100324
 100185
 101345

Example 2-2 Executing an Analytic Function to Score Data

SELECT cust_id, pred_prob FROM
 (SELECT cust_id, affinity_card,
 PREDICTION(FOR TO_CHAR(affinity_card) USING *) OVER () pred_card,
 PREDICTION_PROBABILITY(FOR TO_CHAR(affinity_card),1 USING *) OVER ()
pred_prob
 FROM mining_data_build_v)
WHERE affinity_card = 0
AND pred_card = 1
ORDER BY pred_prob DESC;

 CUST_ID PRED_PROB
---------- ---------
 102434 .96
 102365 .96
 102330 .96
 101733 .95
 102615 .94
 102686 .94
 102749 .93
 .
 .
 .
 101656 .51

Chapter 2
In-Database Scoring

2-9

Part II
Mining Functions

Part II provides basic conceptual information about the mining functions that the
Oracle Data Mining supports.

Mining functions represent a class of mining problems that can be solved using data
mining algorithms.

Part II contains these chapters:

• Regression

• Classification

• Anomaly Detection

• Clustering

• Association

• Feature Selection and Extraction

• Time Series

Note:

The term mining function has no relationship to a SQL language function.

Related Topics

• Algorithms
Part III provides basic conceptual information about the algorithms supported
by Oracle Data Mining. There is at least one algorithm for each of the mining
functions.

• Oracle Database SQL Language Reference

3
Regression

Learn how to predict a continuous numerical target through Regression - the
supervised mining function.

• About Regression

• Testing a Regression Model

• Regression Algorithms

Related Topics

• Oracle Data Mining Basics
Understand the basic concepts of Oracle Data Mining.

3.1 About Regression
Regression is a data mining function that predicts numeric values along a continuum.
Profit, sales, mortgage rates, house values, square footage, temperature, or distance
can be predicted using Regression techniques. For example, a Regression model can
be used to predict the value of a house based on location, number of rooms, lot size,
and other factors.

A Regression task begins with a data set in which the target values are known. For
example, a Regression model that predicts house values can be developed based on
observed data for many houses over a period of time. In addition to the value, the
data can track the age of the house, square footage, number of rooms, taxes, school
district, proximity to shopping centers, and so on. House value can be the target, the
other attributes are the predictors, and the data for each house constitutes a case.

In the model build (training) process, a Regression algorithm estimates the value
of the target as a function of the predictors for each case in the build data. These
relationships between predictors and target are summarized in a model, which can
then be applied to a different data set in which the target values are unknown.

Regression models are tested by computing various statistics that measure the
difference between the predicted values and the expected values. The historical data
for a Regression project is typically divided into two data sets: one for building the
model, the other for testing the model.

Regression modeling has many applications in trend analysis, business planning,
marketing, financial forecasting, time series prediction, biomedical and drug response
modeling, and environmental modeling.

3.1.1 How Does Regression Work?
You do not need to understand the mathematics used in regression analysis to
develop and use quality regression models for data mining. However, it is helpful to
understand a few basic concepts.

3-1

Regression analysis seeks to determine the values of parameters for a function that
cause the function to best fit a set of data observations that you provide. The following
equation expresses these relationships in symbols. It shows that regression is the
process of estimating the value of a continuous target (y) as a function (F) of one or
more predictors (x1 , x2 , ..., xn), a set of parameters (θ1 , θ2 , ..., θn), and a measure of
error (e).

y = F(x,θ) + e

The predictors can be understood as independent variables and the target as a
dependent variable. The error, also called the residual, is the difference between the
expected and predicted value of the dependent variable. The regression parameters
are also known as regression coefficients.

The process of training a regression model involves finding the parameter values that
minimize a measure of the error, for example, the sum of squared errors.

There are different families of regression functions and different ways of measuring the
error.

3.1.1.1 Linear Regression
A linear regression technique can be used if the relationship between the predictors
and the target can be approximated with a straight line.

Regression with a single predictor is the easiest to visualize. Simple linear regression
with a single predictor is shown in the following figure:

Figure 3-1 Linear Regression With a Single Predictor

Y

X

error

error

Linear regression with a single predictor can be expressed with the following equation.

y = θ2x + θ1 + e

The regression parameters in simple linear regression are:

Chapter 3
About Regression

3-2

• The slope of the line (2) — the angle between a data point and the regression line

• The y intercept (1) — the point where x crosses the y axis (x = 0)

3.1.1.2 Multivariate Linear Regression
The term multivariate linear regression refers to linear regression with two or more
predictors (x1, x2, …, xn). When multiple predictors are used, the regression line
cannot be visualized in two-dimensional space. However, the line can be computed
simply by expanding the equation for single-predictor linear regression to include the
parameters for each of the predictors.

y = θ1 + θ2x1 + θ3x2 + θn xn-1 + e

3.1.1.3 Regression Coefficients
In multivariate linear regression, the regression parameters are often referred to as
coefficients. When you build a multivariate linear regression model, the algorithm
computes a coefficient for each of the predictors used by the model. The coefficient
is a measure of the impact of the predictor x on the target y. Numerous statistics are
available for analyzing the regression coefficients to evaluate how well the regression
line fits the data.

3.1.1.4 Nonlinear Regression
Often the relationship between x and y cannot be approximated with a straight line. In
this case, a nonlinear regression technique can be used. Alternatively, the data can be
preprocessed to make the relationship linear.

Nonlinear regression models define y as a function of x using an equation that is more
complicated than the linear regression equation. In the following figure, x and y have a
nonlinear relationship.

Figure 3-2 Nonlinear Regression With a Single Predictor

Y

X

error

error

Chapter 3
About Regression

3-3

3.1.1.5 Multivariate Nonlinear Regression
The term multivariate nonlinear regression refers to nonlinear regression with two
or more predictors (x1, x2, …, xn). When multiple predictors are used, the nonlinear
relationship cannot be visualized in two-dimensional space.

3.1.1.6 Confidence Bounds
A Regression model predicts a numeric target value for each case in the scoring data.
In addition to the predictions, some Regression algorithms can identify confidence
bounds, which are the upper and lower boundaries of an interval in which the
predicted value is likely to lie.

When a model is built to make predictions with a given confidence, the confidence
interval is produced along with the predictions. For example, a model predicts
the value of a house to be $500,000 with a 95% confidence that the value is
between $475,000 and $525,000.

3.2 Testing a Regression Model
A regression model is tested by applying it to test data with known target values and
comparing the predicted values with the known values.

The test data must be compatible with the data used to build the model and must be
prepared in the same way that the build data was prepared. Typically the build data
and test data come from the same historical data set. A percentage of the records is
used to build the model; the remaining records are used to test the model.

Test metrics are used to assess how accurately the model predicts these known
values. If the model performs well and meets the business requirements, it can then
be applied to new data to predict the future.

3.2.1 Regression Statistics
The Root Mean Squared Error and the Mean Absolute Error are commonly used
statistics for evaluating the overall quality of a regression model. Different statistics
may also be available depending on the regression methods used by the algorithm.

3.2.1.1 Root Mean Squared Error
The Root Mean Squared Error (RMSE) is the square root of the average squared
distance of a data point from the fitted line.

This SQL expression calculates the RMSE.

SQRT(AVG((predicted_value - actual_value) * (predicted_value -
actual_value)))

This formula shows the RMSE in mathematical symbols. The large sigma character
represents summation; j represents the current predictor, and n represents the number
of predictors.

Chapter 3
Testing a Regression Model

3-4

Figure 3-3 Room Mean Squared Error

RMSE = 1
n

n

j = 1

(y
j - ŷ

j
) 2

3.2.1.2 Mean Absolute Error
The Mean Absolute Error (MAE) is the average of the absolute value of the residuals
(error). The MAE is very similar to the RMSE but is less sensitive to large errors.

This SQL expression calculates the MAE.

AVG(ABS(predicted_value - actual_value))

This formula shows the MAE in mathematical symbols. The large sigma character
represents summation; j represents the current predictor, and n represents the number
of predictors.

Figure 3-4 Mean Absolute Error

MAE = 1
n

n

j = 1

| y
j - ŷ

j
|

3.3 Regression Algorithms
Oracle Data Mining supports three algorithms for Regression Generalized Linear
Models (GLM), Neural Network (NN), and Support Vector Machines (SVM).

Generalized Linear Models (GLM) and Support Vector Machines (SVM) algorithms
are particularly suited for mining data sets that have very high dimensionality (many
attributes), including transactional and unstructured data.

• Generalized Linear Models (GLM)

GLM is a popular statistical technique for linear modeling. Oracle Data Mining
implements GLM for Regression and for binary classification. GLM provides
extensive coefficient statistics and model statistics, as well as row diagnostics.
GLM also supports confidence bounds.

• Neural Network

Neural networks are powerful algorithms that can learn arbitrary nonlinear
regression functions.

• Support Vector Machines (SVM)

SVM is a powerful, state-of-the-art algorithm for linear and nonlinear Regression.
Oracle Data Mining implements SVM for Regression, classification, and anomaly

Chapter 3
Regression Algorithms

3-5

detection. SVM Regression supports two kernels: the Gaussian kernel for
nonlinear Regression, and the linear kernel for Linear Regression.

Note:

Oracle Data Mining uses linear kernel SVM as the default Regression
algorithm.

Related Topics

• Generalized Linear Models
Learn how to use Generalized Linear Models (GLM) statistical technique for Linear
modeling.

• Support Vector Machines
Learn how to use Support Vector Machines, a powerful algorithm based on
statistical learning theory.

• Neural Network
Learn about Neural Network for Regression and Classification mining functions.

Chapter 3
Regression Algorithms

3-6

4
Classification

Learn how to predict a categorical target through Classification - the supervised mining
function.

• About Classification

• Testing a Classification Model

• Biasing a Classification Model

• Classification Algorithms

Related Topics

• Oracle Data Mining Basics
Understand the basic concepts of Oracle Data Mining.

4.1 About Classification
Classification is a data mining function that assigns items in a collection to target
categories or classes. The goal of classification is to accurately predict the target class
for each case in the data. For example, a classification model can be used to identify
loan applicants as low, medium, or high credit risks.

A classification task begins with a data set in which the class assignments are known.
For example, a classification model that predicts credit risk can be developed based
on observed data for many loan applicants over a period of time. In addition to the
historical credit rating, the data might track employment history, home ownership or
rental, years of residence, number and type of investments, and so on. Credit rating
is the target, the other attributes are the predictors, and the data for each customer
constitutes a case.

Classifications are discrete and do not imply order. Continuous, floating-point values
indicate a numerical, rather than a categorical, target. A predictive model with a
numerical target uses a regression algorithm, not a classification algorithm.

The simplest type of classification problem is binary classification. In binary
classification, the target attribute has only two possible values: for example, high credit
rating or low credit rating. Multiclass targets have more than two values: for example,
low, medium, high, or unknown credit rating.

In the model build (training) process, a classification algorithm finds relationships
between the values of the predictors and the values of the target. Different
classification algorithms use different techniques for finding relationships. These
relationships are summarized in a model, which can then be applied to a different
data set in which the class assignments are unknown.

Classification models are tested by comparing the predicted values to known target
values in a set of test data. The historical data for a classification project is typically
divided into two data sets: one for building the model; the other for testing the model.

4-1

Applying a classification model results in class assignments and probabilities for each
case. For example, a model that classifies customers as low, medium, or high value
also predicts the probability of each classification for each customer.

Classification has many applications in customer segmentation, business modeling,
marketing, credit analysis, and biomedical and drug response modeling.

4.2 Testing a Classification Model
A classification model is tested by applying it to test data with known target values and
comparing the predicted values with the known values.

The test data must be compatible with the data used to build the model and must be
prepared in the same way that the build data was prepared. Typically the build data
and test data come from the same historical data set. A percentage of the records is
used to build the model; the remaining records are used to test the model.

Test metrics are used to assess how accurately the model predicts the known values.
If the model performs well and meets the business requirements, it can then be
applied to new data to predict the future.

4.2.1 Confusion Matrix
A confusion matrix displays the number of correct and incorrect predictions made
by the model compared with the actual classifications in the test data. The matrix is
n-by-n, where n is the number of classes.

The following figure shows a confusion matrix for a binary classification model. The
rows present the number of actual classifications in the test data. The columns present
the number of predicted classifications made by the model.

Figure 4-1 Confusion Matrix for a Binary Classification Model

PREDICTED CLASS

ACTUAL CLASS

affinity_card = 1 affinity_card = 0

72510affinity_card = 0

25516affinity_card = 1

In this example, the model correctly predicted the positive class (also called true
positive (TP)) for affinity_card 516 times and incorrectly predicted (also called
false negative (FN)) it 25 times. The model correctly predicted the negative class
(also called true negative (TN)) for affinity_card 725 times and incorrectly predicted
(also called false positive (FP)) it 10 times. The following can be computed from this
confusion matrix:

Chapter 4
Testing a Classification Model

4-2

• The model made 1241 correct predictions, that is, TP + TN, (516 + 725).

• The model made 35 incorrect predictions, that is, FN + FP, (25 + 10).

• There are 1276 total scored cases, (516 + 25 + 10 + 725).

• The error rate is 35/1276 = 0.0274. (FN+FP/Total)

• The overall accuracy rate is 1241/1276 = 0.9725 (TP+TN)/Total).

Precision and Recall

Consider the same example, the accuracy rate shows 0.97. However, there are cases
where the model has incorrectly predicted. Precision (positive predicted value) is
the ability of a classification model to return only relevant cases. Precision can be
calculated as TP/TP+FP. Recall (sensitivity or true positive rate) is the ability of a
classification model to return relevant cases. Recall can be calculated as TP/TP+FN.
The precision in this example is 516/526 = 0.98. The recall in this example is
516/541 = 0.95. Ideally, the model is good when both precision and recall are 1.
This can happen when the numerator and the denominator are equal. That means, for
precision, FP is zero and for recall, FN is zero.

4.2.2 Lift
Lift measures the degree to which the predictions of a classification model are better
than randomly-generated predictions.

Lift applies to binary classification only, and it requires the designation of a positive
class. If the model itself does not have a binary target, you can compute lift by
designating one class as positive and combining all the other classes together as one
negative class.

Numerous statistics can be calculated to support the notion of lift. Basically, lift can
be understood as a ratio of two percentages: the percentage of correct positive
classifications made by the model to the percentage of actual positive classifications
in the test data. For example, if 40% of the customers in a marketing survey have
responded favorably (the positive classification) to a promotional campaign in the past
and the model accurately predicts 75% of them, the lift is obtained by dividing .75
by .40. The resulting lift is 1.875.

Lift is computed against quantiles that each contain the same number of cases. The
data is divided into quantiles after it is scored. It is ranked by probability of the positive
class from highest to lowest, so that the highest concentration of positive predictions is
in the top quantiles. A typical number of quantiles is 10.

Lift is commonly used to measure the performance of response models in marketing
applications. The purpose of a response model is to identify segments of the
population with potentially high concentrations of positive responders to a marketing
campaign. Lift reveals how much of the population must be solicited to obtain the
highest percentage of potential responders.

Related Topics

• Positive and Negative Classes
Discusses the importance of positive and negative classes in a confusion matrix.

4.2.2.1 Lift Statistics
Learn the different Lift statistics that Oracle Data Mining can compute.

Chapter 4
Testing a Classification Model

4-3

Oracle Data Mining computes the following lift statistics:

• Probability threshold for a quantile n is the minimum probability for the positive
target to be included in this quantile or any preceding quantiles (quantiles n-1,
n-2,..., 1). If a cost matrix is used, a cost threshold is reported instead. The cost
threshold is the maximum cost for the positive target to be included in this quantile
or any of the preceding quantiles.

• Cumulative gain is the ratio of the cumulative number of positive targets to the
total number of positive targets.

• Target density of a quantile is the number of true positive instances in that
quantile divided by the total number of instances in the quantile.

• Cumulative target density for quantile n is the target density computed over the
first n quantiles.

• Quantile lift is the ratio of the target density for the quantile to the target density
over all the test data.

• Cumulative percentage of records for a quantile is the percentage of all cases
represented by the first n quantiles, starting at the end that is most confidently
positive, up to and including the given quantile.

• Cumulative number of targets for quantile n is the number of true positive
instances in the first n quantiles.

• Cumulative number of nontargets is the number of actually negative instances
in the first n quantiles.

• Cumulative lift for a quantile is the ratio of the cumulative target density to the
target density over all the test data.

Related Topics

• Costs

4.2.3 Receiver Operating Characteristic (ROC)
ROC is a metric for comparing predicted and actual target values in a classification
model.

ROC, like Lift, applies to Binary Classification and requires the designation of a
positive class.

You can use ROC to gain insight into the decision-making ability of the model. How
likely is the model to accurately predict the negative or the positive class?

ROC measures the impact of changes in the probability threshold. The probability
threshold is the decision point used by the model for classification. The default
probability threshold for binary classification is 0.5. When the probability of a prediction
is 50% or more, the model predicts that class. When the probability is less than 50%,
the other class is predicted. (In multiclass classification, the predicted class is the one
predicted with the highest probability.)

Related Topics

• Positive and Negative Classes
Discusses the importance of positive and negative classes in a confusion matrix.

Chapter 4
Testing a Classification Model

4-4

4.2.3.1 The ROC Curve
ROC can be plotted as a curve on an X-Y axis. The false positive rate is placed on
the X axis. The true positive rate is placed on the Y axis.

The top left corner is the optimal location on an ROC graph, indicating a high true
positive rate and a low false positive rate.

4.2.3.2 Area Under the Curve
The area under the ROC curve (AUC) measures the discriminating ability of a binary
classification model. The larger the AUC, the higher the likelihood that an actual
positive case is assigned, and a higher probability of being positive than an actual
negative case. The AUC measure is especially useful for data sets with unbalanced
target distribution (one target class dominates the other).

4.2.3.3 ROC and Model Bias
The ROC curve for a model represents all the possible combinations of values in its
confusion matrix.

Changes in the probability threshold affect the predictions made by the model. For
instance, if the threshold for predicting the positive class is changed from 0.5 to 0.6,
then fewer positive predictions are made. This affects the distribution of values in the
confusion matrix: the number of true and false positives and true and false negatives
differ.

You can use ROC to find the probability thresholds that yield the highest overall
accuracy or the highest per-class accuracy. For example, if it is important to you to
accurately predict the positive class, but you don't care about prediction errors for the
negative class, then you can lower the threshold for the positive class. This can bias
the model in favor of the positive class.

A cost matrix is a convenient mechanism for changing the probability thresholds for
model scoring.

Related Topics

• Costs

4.2.3.4 ROC Statistics
Oracle Data Mining computes the following ROC statistics:

• Probability threshold: The minimum predicted positive class probability resulting
in a positive class prediction. Different threshold values result in different hit rates
and different false alarm rates.

• True negatives: Negative cases in the test data with predicted probabilities strictly
less than the probability threshold (correctly predicted).

• True positives: Positive cases in the test data with predicted probabilities greater
than or equal to the probability threshold (correctly predicted).

• False negatives: Positive cases in the test data with predicted probabilities strictly
less than the probability threshold (incorrectly predicted).

Chapter 4
Testing a Classification Model

4-5

• False positives: Negative cases in the test data with predicted probabilities
greater than or equal to the probability threshold (incorrectly predicted).

• True positive fraction: Hit rate. (true positives/(true positives + false negatives))

• False positive fraction: False alarm rate. (false positives/(false positives + true
negatives))

4.3 Biasing a Classification Model
Costs, prior probabilities, and class weights are methods for biasing classification
models.

4.3.1 Costs
A cost matrix is a mechanism for influencing the decision making of a model. A cost
matrix can cause the model to minimize costly misclassifications. It can also cause the
model to maximize beneficial accurate classifications.

For example, if a model classifies a customer with poor credit as low risk, this error is
costly. A cost matrix can bias the model to avoid this type of error. The cost matrix can
also be used to bias the model in favor of the correct classification of customers who
have the worst credit history.

ROC is a useful metric for evaluating how a model behaves with different probability
thresholds. You can use ROC to help you find optimal costs for a given classifier
given different usage scenarios. You can use this information to create cost matrices to
influence the deployment of the model.

4.3.1.1 Costs Versus Accuracy
Compares Cost matrix and Confusion matrix for costs and accuracy to evaluate model
quality.

Like a confusion matrix, a cost matrix is an n-by-n matrix, where n is the number of
classes. Both confusion matrices and cost matrices include each possible combination
of actual and predicted results based on a given set of test data.

A confusion matrix is used to measure accuracy, the ratio of correct predictions to the
total number of predictions. A cost matrix is used to specify the relative importance
of accuracy for different predictions. In most business applications, it is important to
consider costs in addition to accuracy when evaluating model quality.

Related Topics

• Confusion Matrix

4.3.1.2 Positive and Negative Classes
Discusses the importance of positive and negative classes in a confusion matrix.

The positive class is the class that you care the most about. Designation of a positive
class is required for computing Lift and ROC.

In the confusion matrix, in the following figure, the value 1 is designated as the
positive class. This means that the creator of the model has determined that it is more
important to accurately predict customers who increase spending with an affinity card

Chapter 4
Biasing a Classification Model

4-6

(affinity_card=1) than to accurately predict non-responders (affinity_card=0). If
you give affinity cards to some customers who are not likely to use them, there is
little loss to the company since the cost of the cards is low. However, if you overlook
the customers who are likely to respond, you miss the opportunity to increase your
revenue.

Figure 4-2 Positive and Negative Predictions

PREDICTED CLASS

ACTUAL CLASS

affinity_card = 1 affinity_card = 0

725

(true negative)

10

(false positive)
affinity_card = 0

25

(false negative)

516

(true positive)
affinity_card = 1

The true and false positive rates in this confusion matrix are:

• False positive rate — 10/(10 + 725) =.01

• True positive rate — 516/(516 + 25) =.95

Related Topics

• Lift
Lift measures the degree to which the predictions of a classification model are
better than randomly-generated predictions.

• Receiver Operating Characteristic (ROC)
ROC is a metric for comparing predicted and actual target values in a classification
model.

4.3.1.3 Assigning Costs and Benefits
In a cost matrix, positive numbers (costs) can be used to influence negative outcomes.
Since negative costs are interpreted as benefits, negative numbers (benefits) can be
used to influence positive outcomes.

Suppose you have calculated that it costs your business $1500 when you do not
give an affinity card to a customer who can increase spending. Using the model with
the confusion matrix shown in Figure 4-2, each false negative (misclassification of
a responder) costs $1500. Misclassifying a non-responder is less expensive to your
business. You estimate that each false positive (misclassification of a non-responder)
only costs $300.

You want to keep these costs in mind when you design a promotion campaign. You
estimate that it costs $10 to include a customer in the promotion. For this reason, you
associate a benefit of $10 with each true negative prediction, because you can simply
eliminate those customers from your promotion. Each customer that you eliminate

Chapter 4
Biasing a Classification Model

4-7

represents a savings of $10. In your cost matrix, you specify this benefit as -10, a
negative cost.

The following figure shows how you would represent these costs and benefits in a cost
matrix:

Figure 4-3 Cost Matrix Representing Costs and Benefits

PREDICTED

ACTUAL

affinity_card = 1 affinity_card = 0

-10300affinity_card = 0

15000affinity_card = 1

With Oracle Data Mining you can specify costs to influence the scoring of any
classification model. Decision Tree models can also use a cost matrix to influence
the model build.

4.3.2 Priors and Class Weights
Learn about Priors and Class Weights in a Classification model to produce a useful
result.

With Bayesian models, you can specify Prior probabilities to offset differences in
distribution between the build data and the real population (scoring data). With other
forms of Classification, you are able to specify Class Weights, which have the same
biasing effect as priors.

In many problems, one target value dominates in frequency. For example, the positive
responses for a telephone marketing campaign is 2% or less, and the occurrence of
fraud in credit card transactions is less than 1%. A classification model built on historic
data of this type cannot observe enough of the rare class to be able to distinguish
the characteristics of the two classes; the result can be a model that when applied to
new data predicts the frequent class for every case. While such a model can be highly
accurate, it is not be very useful. This illustrates that it is not a good idea to rely solely
on accuracy when judging the quality of a Classification model.

To correct for unrealistic distributions in the training data, you can specify priors for the
model build process. Other approaches to compensating for data distribution issues
include stratified sampling and anomaly detection.

Chapter 4
Biasing a Classification Model

4-8

Related Topics

• Anomaly Detection
Learn how to detect rare cases in the data through Anomaly Detection - an
unsupervised function.

4.4 Classification Algorithms
Learn different Classification algorithms used in Oracle Data Mining.

Oracle Data Mining provides the following algorithms for classification:

• Decision Tree

Decision trees automatically generate rules, which are conditional statements that
reveal the logic used to build the tree.

• Explicit Semantic Analysis

Explicit Semantic Analysis (ESA) is designed to make predictions for text data.
This algorithm can address use cases with hundreds of thousands of classes.

• Naive Bayes

Naive Bayes uses Bayes' Theorem, a formula that calculates a probability by
counting the frequency of values and combinations of values in the historical data.

• Generalized Linear Models (GLM)

GLM is a popular statistical technique for linear modeling. Oracle Data Mining
implements GLM for binary classification and for regression. GLM provides
extensive coefficient statistics and model statistics, as well as row diagnostics.
GLM also supports confidence bounds.

• Random Forest

Random Forest is a powerful and popular machine learning algorithm that brings
significant performance and scalability benefits.

• Support Vector Machines (SVM)

SVM is a powerful, state-of-the-art algorithm based on linear and nonlinear
regression. Oracle Data Mining implements SVM for binary and multiclass
classification.

Note:

Oracle Data Mining uses Naive Bayes as the default classification algorithm.

Related Topics

• Decision Tree
Learn how to use Decision Tree algorithm. Decision Tree is one of the
Classification algorithms that the Oracle Data Mining supports.

• Explicit Semantic Analysis
Learn how to use Explicit Semantic Analysis (ESA) as an unsupervised algorithm
for Feature Extraction function and as a supervised algorithm for Classification.

Chapter 4
Classification Algorithms

4-9

• Naive Bayes
Learn how to use Naive Bayes Classification algorithm that the Oracle Data Mining
supports.

• Generalized Linear Models
Learn how to use Generalized Linear Models (GLM) statistical technique for Linear
modeling.

• Random Forest
Learn how to use Random Forest as a classification algorithm.

• Support Vector Machines
Learn how to use Support Vector Machines, a powerful algorithm based on
statistical learning theory.

Chapter 4
Classification Algorithms

4-10

5
Anomaly Detection

Learn how to detect rare cases in the data through Anomaly Detection - an
unsupervised function.

• About Anomaly Detection

• Anomaly Detection Algorithm

Related Topics

• Oracle Data Mining Basics
Understand the basic concepts of Oracle Data Mining.

See Also:

• Campos, M.M., Milenova, B.L., Yarmus, J.S., "Creation and Deployment
of Data Mining-Based Intrusion Detection Systems in Oracle Database
10g"

Oracle Data Mining

5.1 About Anomaly Detection
The goal of anomaly detection is to identify cases that are unusual within data that is
seemingly homogeneous. Anomaly detection is an important tool for detecting fraud,
network intrusion, and other rare events that can have great significance but are hard
to find.

Anomaly detection can be used to solve problems like the following:

• A law enforcement agency compiles data about illegal activities, but nothing about
legitimate activities. How can a suspicious activity be flagged?

The law enforcement data is all of one class. There are no counter-examples.

• An insurance agency processes millions of insurance claims, knowing that a very
small number are fraudulent. How can the fraudulent claims be identified?

The claims data contains very few counter-examples. They are outliers.

5.1.1 One-Class Classification
Learn about Anomaly Detection as one-class Classification in training data.

Anomaly detection is a form of Classification. Anomaly detection is implemented as
one-class Classification, because only one class is represented in the training data.
An anomaly detection model predicts whether a data point is typical for a given

5-1

distribution or not. An atypical data point can be either an outlier or an example of
a previously unseen class.

Normally, a Classification model must be trained on data that includes both examples
and counter-examples for each class so that the model can learn to distinguish
between them. For example, a model that predicts the side effects of a medication
must be trained on data that includes a wide range of responses to the medication.

A one-class classifier develops a profile that generally describes a typical case in
the training data. Deviation from the profile is identified as an anomaly. One-class
classifiers are sometimes referred to as positive security models, because they seek to
identify "good" behaviors and assume that all other behaviors are bad.

Note:

Solving a one-class classification problem can be difficult. The accuracy
of one-class classifiers cannot usually match the accuracy of standard
classifiers built with meaningful counterexamples.

The goal of anomaly detection is to provide some useful information where
no information was previously attainable. However, if there are enough of the
"rare" cases so that stratified sampling produce a training set with enough
counter examples for a standard classification model, then that is generally a
better solution.

Related Topics

• About Classification

5.1.2 Anomaly Detection for Single-Class Data
In single-class data, all the cases have the same classification. Counter-examples,
instances of another class, are hard to specify or expensive to collect. For instance,
in text document classification, it is easy to classify a document under a given
topic. However, the universe of documents outside of this topic can be very large
and diverse. Thus, it is not feasible to specify other types of documents as counter-
examples.

Anomaly detection can be used to find unusual instances of a particular type of
document.

5.1.3 Anomaly Detection for Finding Outliers
Outliers are cases that are unusual because they fall outside the distribution that is
considered normal for the data. For example, census data shows a median household
income of $70,000 and a mean household income of $80,000, but one or two
households have an income of $200,000. These cases can probably be identified as
outliers.

The distance from the center of a normal distribution indicates how typical a given
point is with respect to the distribution of the data. Each case can be ranked according
to the probability that it is either typical or atypical.

Chapter 5
About Anomaly Detection

5-2

The presence of outliers can have a deleterious effect on many forms of data mining.
You can use Anomaly Detection to identify outliners before mining the data.

5.2 Anomaly Detection Algorithm
Learn about One-Class Support Vector Machines (SVM) for Anomaly Detection.

Oracle Data Mining supports One-Class Support Vector Machines (SVM) for Anomaly
Detection. When used for Anomaly Detection, SVM classification does not use a
target.

Related Topics

• One-Class SVM

Chapter 5
Anomaly Detection Algorithm

5-3

6
Clustering

Learn how to discover natural groupings in the data through Clustering - the
unsupervised mining function.

• About Clustering

• Evaluating a Clustering Model

• Clustering Algorithms

Related Topics

• Oracle Data Mining Basics
Understand the basic concepts of Oracle Data Mining.

6.1 About Clustering
Clustering analysis finds clusters of data objects that are similar to one another. The
members of a cluster are more like each other than they are like members of other
clusters. Different clusters can have members in common. The goal of clustering
analysis is to find high-quality clusters such that the inter-cluster similarity is low and
the intra-cluster similarity is high.

Clustering, like classification, is used to segment the data. Unlike classification,
clustering models segment data into groups that were not previously defined.
Classification models segment data by assigning it to previously-defined classes,
which are specified in a target. Clustering models do not use a target.

Clustering is useful for exploring data. You can use Clustering algorithms to find
natural groupings when there are many cases and no obvious groupings.

Clustering can serve as a useful data-preprocessing step to identify homogeneous
groups on which you can build supervised models.

You can also use Clustering for Anomaly Detection. Once you segment the data into
clusters, you find that some cases do not fit well into any clusters. These cases are
anomalies or outliers.

6.1.1 How are Clusters Computed?
There are several different approaches to the computation of clusters. Oracle Data
Mining supports the following methods:

• Density-based: This type of clustering finds the underlying distribution of the data
and estimates how areas of high density in the data correspond to peaks in the
distribution. High-density areas are interpreted as clusters. Density-based cluster
estimation is probabilistic.

• Distance-based: This type of clustering uses a distance metric to determine
similarity between data objects. The distance metric measures the distance

6-1

between actual cases in the cluster and the prototypical case for the cluster. The
prototypical case is known as the centroid.

• Grid-based: This type of clustering divides the input space into hyper-rectangular
cells and identifies adjacent high-density cells to form clusters.

6.1.2 Scoring New Data
Although clustering is an unsupervised mining function, Oracle Data Mining supports
the scoring operation for clustering. New data is scored probabilistically.

6.1.3 Hierarchical Clustering
The clustering algorithms supported by Oracle Data Mining perform hierarchical
clustering. The leaf clusters are the final clusters generated by the algorithm. Clusters
higher up in the hierarchy are intermediate clusters.

6.1.3.1 Rules
Rules describe the data in each cluster. A rule is a conditional statement that captures
the logic used to split a parent cluster into child clusters. A rule describes the
conditions for a case to be assigned with some probability to a cluster.

6.1.3.2 Support and Confidence
Support and confidence are metrics that describe the relationships between
clustering rules and cases. Support is the percentage of cases for which the rule
holds. Confidence is the probability that a case described by this rule is actually
assigned to the cluster.

6.2 Evaluating a Clustering Model
Since known classes are not used in clustering, the interpretation of clusters can
present difficulties. How do you know if the clusters can reliably be used for business
decision making?

Oracle Data Mining clustering models support a high degree of model transparency.
You can evaluate the model by examining information generated by the clustering
algorithm: for example, the centroid of a distance-based cluster. Moreover, because
the clustering process is hierarchical, you can evaluate the rules and other information
related to each cluster's position in the hierarchy.

6.3 Clustering Algorithms
Learn different Clustering algorithms used in Oracle Data Mining.

Oracle Data Mining supports these Clustering algorithms:

• Expectation Maximization

Expectation Maximization is a probabilistic, density-estimation Clustering
algorithm.

• k-Means

Chapter 6
Evaluating a Clustering Model

6-2

k-Means is a distance-based Clustering algorithm. Oracle Data Mining supports an
enhanced version of k-Means.

• Orthogonal Partitioning Clustering (O-Cluster)

O-Cluster is a proprietary, grid-based Clustering algorithm.

See Also:

Campos, M.M., Milenova, B.L., "O-Cluster: Scalable Clustering of Large
High Dimensional Data Sets", Oracle Data Mining Technologies, 10 Van
De Graaff Drive, Burlington, MA 01803.

The main characteristics of the two algorithms are compared in the following table.

Table 6-1 Clustering Algorithms Compared

Feature k-Means O-Cluster Expectation Maximization

Clustering
methodolgy

Distance-based Grid-based Distribution-based

Number of cases Handles data sets of
any size

More appropriate for data
sets that have more than 500
cases. Handles large tables
through active sampling

Handles data sets of any
size

Number of attributes More appropriate for
data sets with a low
number of attributes

More appropriate for data
sets with a high number of
attributes

Appropriate for data
sets with many or few
attributes

Number of clusters User-specified Automatically determined Automatically determined

Hierarchical
clustering

Yes Yes Yes

Probabilistic cluster
assignment

Yes Yes Yes

Note:

Oracle Data Mining uses k-Means as the default Clustering algorithm.

Related Topics

• Oracle Data Mining

• Expectation Maximization
Learn how to use Expectation Maximization Clustering algorithm.

• k-Means
Learn how to use enhanced k-Means Clustering algorithm that the Oracle Data
Mining supports.

• O-Cluster
Learn how to use Orthogonal Partitioning Clustering (O-Cluster), an Oracle-
proprietary Clustering algorithm.

Chapter 6
Clustering Algorithms

6-3

unilink:datamining_index

7
Association

Learn how to discover Association Rules through Association - an unsupervised
mining function.

• About Association

• Transactional Data

• Association Algorithm

Related Topics

• Oracle Data Mining Basics
Understand the basic concepts of Oracle Data Mining.

7.1 About Association
Association is a data mining function that discovers the probability of the co-
occurrence of items in a collection. The relationships between co-occurring items are
expressed as Association Rules.

7.1.1 Association Rules
The results of an Association model are the rules that identify patterns of association
within the data. Oracle Data Mining does not support the scoring operation for
association modeling.

Association Rules can be applied as follows:

Support: How often do these items occur together in the data?
Confidence: How frequently the consequent occurs in transactions that contain the
antecedent.
Value: How much business value is connected to item associations

7.1.2 Market-Basket Analysis
Association rules are often used to analyze sales transactions. For example, it is noted
that customers who buy cereal at the grocery store often buy milk at the same time.
In fact, association analysis find that 85% of the checkout sessions that include cereal
also include milk. This relationship can be formulated as the following rule:

Cereal implies milk with 85% confidence

This application of association modeling is called market-basket analysis. It is
valuable for direct marketing, sales promotions, and for discovering business trends.
Market-basket analysis can also be used effectively for store layout, catalog design,
and cross-sell.

7-1

7.1.3 Association Rules and eCommerce
Learn about application of Association Rules in other domains.

Association modeling has important applications in other domains as well. For
example, in e-commerce applications, Association Rules may be used for Web page
personalization. An association model might find that a user who visits pages A and B
is 70% likely to also visit page C in the same session. Based on this rule, a dynamic
link can be created for users who are likely to be interested in page C. The association
rule is expressed as follows:

A and B imply C with 70% confidence

Related Topics

• Confidence
The confidence of a rule indicates the probability of both the antecedent and the
consequent appearing in the same transaction.

7.2 Transactional Data
Learn about transactional data, also known as market-basket data.

Unlike other data mining functions, Association is transaction-based. In transaction
processing, a case includes a collection of items such as the contents of a market
basket at the checkout counter. The collection of items in the transaction is an attribute
of the transaction. Other attributes might be a timestamp or user ID associated with
the transaction.

Transactional data, also known as market-basket data, is said to be in multi-record
case format because a set of records (rows) constitute a case. For example, in the
following figure, case 11 is made up of three rows while cases 12 and 13 are each
made up of four rows.

Figure 7-1 Transactional Data

attribute2

OPER_ID

m5203
m5203
m5203
m5203
m5203
m5203
m5203
q5597
q5597
q5597
q5597

attribute1

ITEM_ID

B
D
E
A
B
C
E
B
C
D
E

case ID

TRANS_ID

11
11
11
12
12
12
12
13
13
13
13

Non transactional data is said to be in a single-record case format because a
single record (row) constitutes a case. In Oracle Data Mining, association models

Chapter 7
Transactional Data

7-2

can be built using either transactional or non transactional or two-dimensional data
formats. If the data is non transactional, it is possible to transform to a nested
column to make it transactional before association mining activities can be performed.
Transactional format is the usual format but, the Association Rules model does
accept two-dimensional input format. For non transactional input format, each distinct
combination of the content in all columns other than the case ID column is treated as a
unique item.

Related Topics

• Oracle Data Mining User’s Guide

• Data Preparation for Apriori

7.3 Association Algorithm
Oracle Data Mining uses the Apriori algorithm to calculate association rules for items
in frequent itemsets.

Chapter 7
Association Algorithm

7-3

8
Feature Selection and Extraction

Learn how to perform Feature Selection, Feature Extraction, and Attribute Importance.

Oracle Data Mining supports attribute importance as a supervised mining function and
feature extraction as an unsupervised mining function.

• Finding the Best Attributes

• About Feature Selection and Attribute Importance

• About Feature Extraction

Related Topics

• Oracle Data Mining Basics
Understand the basic concepts of Oracle Data Mining.

8.1 Finding the Best Attributes
Sometimes too much information can reduce the effectiveness of data mining. Some
of the columns of data attributes assembled for building and testing a model do not
contribute meaningful information to the model. Some do actually detract from the
quality and accuracy of the model.

For example, you want to collect a great deal of data about a given population
because you want to predict the likelihood of a certain illness within this group. Some
of this information, perhaps much of it, has little or no effect on susceptibility to the
illness. It is possible that attributes such as the number of cars per household do not
have effect whatsoever.

Irrelevant attributes add noise to the data and affect model accuracy. Noise increases
the size of the model and the time and system resources needed for model building
and scoring.

Data sets with many attributes can contain groups of attributes that are correlated.
These attributes actually measure the same underlying feature. Their presence
together in the build data can skew the logic of the algorithm and affect the accuracy of
the model.

Wide data (many attributes) generally presents processing challenges for data mining
algorithms. Model attributes are the dimensions of the processing space used by
the algorithm. The higher the dimensionality of the processing space, the higher the
computation cost involved in algorithmic processing.

To minimize the effects of noise, correlation, and high dimensionality, some form of
dimension reduction is sometimes a desirable preprocessing step for data mining.
Feature selection and extraction are two approaches to dimension reduction.

• Feature selection: Selecting the most relevant attributes

• Feature extraction: Combining attributes into a new reduced set of features

8-1

8.2 About Feature Selection and Attribute Importance
Finding the most significant predictors is the goal of some data mining projects. For
example, a model might seek to find the principal characteristics of clients who pose a
high credit risk.

Oracle Data Mining supports the Attribute Importance mining function, which ranks
attributes according to their importance in predicting a target. Attribute importance
does not actually perform feature selection since all the predictors are retained in the
model. In true feature selection, the attributes that are ranked below a given threshold
of importance are removed from the model.

Feature selection is useful as a preprocessing step to improve computational
efficiency in predictive modeling. Oracle Data Mining implements feature selection
for optimization within the Decision Tree algorithm and within Naive Bayes when
Automatic Data Preparation (ADP) is enabled. Generalized Linear Model (GLM) can
be configured to perform feature selection as a preprocessing step.

8.2.1 Attribute Importance and Scoring
Oracle Data Mining does not support the scoring operation for attribute importance.
The results of attribute importance are the attributes of the build data ranked according
to their predictive influence. The ranking and the measure of importance can be used
in selecting training data for classification models.

8.3 About Feature Extraction
Feature Extraction is an attribute reduction process. Unlike feature selection, which
selects and retains the most significant attributes, Feature Extraction actually
transforms the attributes. The transformed attributes, or features, are linear
combinations of the original attributes.

The Feature Extraction process results in a much smaller and richer set of attributes.
The maximum number of features can be user-specified or determined by the
algorithm. By default, the algorithm determines it.

Models built on extracted features can be of higher quality, because fewer and more
meaningful attributes describe the data.

Feature Extraction projects a data set with higher dimensionality onto a smaller
number of dimensions. As such it is useful for data visualization, since a complex
data set can be effectively visualized when it is reduced to two or three dimensions.

Some applications of Feature Extraction are latent semantic analysis, data
compression, data decomposition and projection, and pattern recognition. Feature
Extraction can also be used to enhance the speed and effectiveness of supervised
learning.

Feature Extraction can be used to extract the themes of a document collection,
where documents are represented by a set of key words and their frequencies. Each
theme (feature) is represented by a combination of keywords. The documents in the
collection can then be expressed in terms of the discovered themes.

Chapter 8
About Feature Selection and Attribute Importance

8-2

8.3.1 Feature Extraction and Scoring
Oracle Data Mining supports the scoring operation for feature extraction. As an
unsupervised mining function, feature extraction does not involve a target. When
applied, a feature extraction model transforms the input into a set of features.

8.4 Algorithms for Attribute Importance and Feature
Extraction

Understand the algorithms used for Attribute Importance and Feature Extraction.

Oracle Data Mining supports the following algorithms for Attribute Importance:

• Minimum Description Length

• CUR matrix decomposition

Oracle Data Mining supports these feature extraction algorithms:

• Explicit Semantic Analysis (ESA).

• Non-Negative Matrix Factorization (NMF).

• Singular Value Decomposition (SVD) and Prediction Component Analysis
(PCA).

Note:

Oracle Data Mining uses NMF as the default feature extraction algorithm.

Related Topics

• CUR Matrix Decomposition
Learn how to use CUR decomposition based algorithm for attribute importance.

• Explicit Semantic Analysis
Learn how to use Explicit Semantic Analysis (ESA) as an unsupervised algorithm
for Feature Extraction function and as a supervised algorithm for Classification.

• Minimum Description Length
Learn how to use Minimum Description Length, the supervised technique for
calculating Attribute Importance.

• Non-Negative Matrix Factorization
Learn how to use Non-Negative Matrix Factorization (NMF), the unsupervised
algorithm, that the Oracle Data Mining uses for Feature Extraction.

• Singular Value Decomposition
Learn how to use Singular Value Decomposition, an unsupervised algorithm for
Feature Extraction.

Chapter 8
Algorithms for Attribute Importance and Feature Extraction

8-3

9
Time Series

Learn about Time Series as an Oracle Data Mining Regression function.

• About Time Series

• Choosing a Time Series Model

• Time Series Statistics

• Time Series Algorithm

9.1 About Time Series
Time Series is a new data mining function that forecasts target value based solely on
a known history of target values. It is a specialized form of Regression, known in the
literature as auto-regressive modeling.

The input to time series analysis is a sequence of target values. A case id column
specifies the order of the sequence. The case id can be of type NUMBER or a date
type (date, datetime, timestamp with timezone, or timestamp with local timezone).
Regardless of case id type, the user can request that the model include trend,
seasonal effects or both in its forecast computation. When the case id is a date
type, the user must specify a time interval (for example, month) over which the target
values are to be aggregated, along with an aggregation procedure (for example, sum).
Aggregation is performed by the algorithm prior to constructing the model.

The time series model provide estimates of the target value for each step of a
time window that can include up to 30 steps beyond the historical data. Like other
Regression models, Time Series models compute various statistics that measure the
goodness of fit to historical data.

Forecasting is a critical component of business and governmental decision making.
It has applications at the strategic, tactical and operation level. The following are the
applications of forecasting:

• Projecting return on investment, including growth and the strategic effect of
innovations

• Addressing tactical issues such as projecting costs, inventory requirements and
customer satisfaction

• Setting operational targets and predicting quality and conformance with standards

Related Topics

• Regression
Learn how to predict a continuous numerical target through Regression - the
supervised mining function.

9.2 Choosing a Time Series Model
Learn how to select a Time Series model.

9-1

Time Series data may contain patterns that can affect predictive accuracy. For
example, during a period of economic growth, there may be an upward trend in sales.
Sales may increase in specific seasons (bathing suits in summer). To accommodate
such series, it can be useful to choose a model that incorporates trend, seasonal
effects, or both.

Trend can be difficult to estimate, when you must represent trend by a single constant.
For example, if there is a grow rate of 10%, then after 7 steps, the value doubles.
Local growth rates, appropriate to a few time steps can easily approach such levels,
but thereafter drop. Damped trend models can more accurately represent such data,
by reducing cumulative trend effects. Damped trend models can better represent
variability in trend effects over the historical data. Damped trend models are a good
choice when the data have significant, but variable trend.

Since modeling attempts to reduce error, how error is measured can affect model
predictions. For example, data that exhibit a wide range of values may be better
represented by error as fraction of level. An error of a few hundred feet in the
measurement of the height of a mountain may be equivalent to an error of an inch
or two in the measurement of the height of a child. Errors that are measured relative
to value are called multiplicative errors. Errors that are the same across values are
called additive errors. If there are multiplicative effects in the model, then the error
type is multiplicative. If there are no explicit multiplicative effects, error type is left
to user specification. The type need not be the same across individual effects. For
example, trend can be additive while seasonality is multiplicative. This particular mixed
type effect combination defines the popular Holt-Winters model.

Note:

Multiplicative error is not an appropriate choice for data that contain zeros
or negative values. Thus, when the data contains such values, it is best
not to choose a model with multiplicative effects or to set error type to be
multiplicative.

9.3 Time Series Statistics
Learn to evaluate model quality by applying commonly used statistics.

As with other Regression functions, there are commonly used statistics for evaluating
the overall model quality. An expert user can also specify one of these figures of merit
as criterion to optimize by the model build process. Choosing an optimization criterion
is not required because model-specific defaults are available.

9.3.1 Conditional Log-Likelihood
Log-likelihood is a figure of merit often used as an optimization criterion for models
that provide probability estimates for predictions which depend on the values of the
model’s parameters.

The model probability estimates for the actual values in the training data then yields
an estimate of the likelihood of the parameter values. Parameter values that yield high
probabilities for the observed target values have high likelihood, and therefore indicate
a good model. The calculation of log-likelihood depends on the form of the model.

Chapter 9
Time Series Statistics

9-2

Conditional log-likelihood breaks the parameters into two groups. One group is
assumed to be correct and the other is assumed the source of any errors. Conditional
log-likelihood is the log-likelihood of the latter group conditioned on the former group.
For example, Exponential Smoothing models (ESMs) make an estimate of the initial
model state. The conditional log-likelihood of an ESM is conditional on that initial
model state (assumed to be correct). The ESM conditional log-likelihood is as follows:

where et is the error at time t and k(x(t-1)) is 1 for ESM models with additive errors
and is the estimated level at the previous time step in models with multiplicative error.

9.3.2 Mean Square Error (MSE) and Other Error Measures
Another time series figure of merit, that can also be used as an optimization criterion,
is Mean Square Error (MSE).

The mean square error is computed as:

where the error at time t is the difference between the actual and model one step
ahead forecast value at time t for models with additive error and that difference divided
by the one-step ahead forecast for models with multiplicative error.

Note:

These "forecasts" are for over periods already observed and part of the input
time series.

Since time series models can forecast for each of multiple steps ahead, time series
can measure the error associated with such forecasts. Average Mean Square Error
(AMSE), another figure of merit, does exactly that. For each period in the input time
series, it computes a multi-step forecast, computes the error of those forecasts and
averages the errors. AMSE computes the individual errors exactly as MSE does
taking cognizance of error type (additive or multiplicative). The number of steps, k,
is determined by the user (default 3). The formula is as follows:

Chapter 9
Time Series Statistics

9-3

Other figure of merit relatives of MSE include the Residual Standard Error (RMSE),
which is the square root of MSE, and the Mean Absolute Error (MAE) which is the
average of the absolute value of the errors.

9.3.3 Irregular Time Series
Irregular time series are time series data where the time intervals between observed
values are not equally spaced.

One common practice is for the time intervals between adjacent steps to be equally
spaced. However, it is not always convenient or realistic to force such spacing on time
series. Irregular time series do not make the assumption that time series are equally
spaced, but instead use the case id’s date and time values to compute the intervals
between observed values. Models are constructed directly on the observed values
with their observed spacing. Oracle time series analysis handles irregular time series.

9.3.4 Build Apply
Learn about build and apply operations of Time Series function.

Many of the Oracle Data Mining functions have separate build and apply operations,
because you can construct and potentially apply a model to many different sets of
input data. However, time series input consists of the target value history only. Thus,
there is only one set of appropriate input data. When new data arrive, good practice
dictates that a new model be built. Since the model is only intended to be used once,
the model statistics and forecasts are produced during model build and are available
through the model views.

9.4 Time Series Algorithm
Oracle Data Mining uses the algorithm Exponential Smoothing to forecast from time
series data.

Related Topics

• Exponential Smoothing
Learn about Exponential Smoothing.

Chapter 9
Time Series Algorithm

9-4

Part III
Algorithms

Part III provides basic conceptual information about the algorithms supported by
Oracle Data Mining. There is at least one algorithm for each of the mining functions.

Part III contains these chapters:

• Apriori

• CUR Matrix Decomposition

• Decision Tree

• Expectation Maximization

• Explicit Semantic Analysis

• Exponential Smoothing

• Generalized Linear Models

• k-Means

• Minimum Description Length

• Naive Bayes

• Neural Network

• Non-Negative Matrix Factorization

• O-Cluster

• R Extensibility

• Random Forest

• Singular Value Decomposition

• Support Vector Machines

Related Topics

• Mining Functions
Part II provides basic conceptual information about the mining functions that the
Oracle Data Mining supports.

10
Apriori

Learn how to calculate Association Rules using Apriori algorithm.

• About Apriori

• Association Rules and Frequent Itemsets

• Data Preparation for Apriori

• Calculating Association Rules

• Evaluating Association Rules

Related Topics

• Association
Learn how to discover Association Rules through Association - an unsupervised
mining function.

10.1 About Apriori
Learn about Apriori.

An association mining problem can be decomposed into the following subproblems:

• Find all combinations of items in a set of transactions that occur with a specified
minimum frequency. These combinations are called frequent itemsets.

• Calculate rules that express the probable co-occurrence of items within frequent
itemsets.

Apriori calculates the probability of an item being present in a frequent itemset, given
that another item or items is present.

Association rule mining is not recommended for finding associations involving rare
events in problem domains with a large number of items. Apriori discovers patterns
with frequencies above the minimum support threshold. Therefore, to find associations
involving rare events, the algorithm must run with very low minimum support values.
However, doing so potentially explodes the number of enumerated itemsets, especially
in cases with a large number of items. This increases the execution time significantly.
Classification or Anomaly Detection is more suitable for discovering rare events when
the data has a high number of attributes.

The build process for Apriori supports parallel execution.

Related Topics

• Example: Calculating Rules from Frequent Itemsets
Example to calculating rules from Frequent itemsets.

• Oracle Database VLDB and Partitioning Guide

10-1

10.2 Association Rules and Frequent Itemsets
The Apriori algorithm calculates rules that express probabilistic relationships between
items in frequent itemsets. For example, a rule derived from frequent itemsets
containing A, B, and C might state that if A and B are included in a transaction, then C
is likely to also be included.

An association rule states that an item or group of items implies the presence of
another item with some probability. Unlike decision tree rules, which predict a target,
association rules simply express correlation.

10.2.1 Antecedent and Consequent
The IF component of an association rule is known as the antecedent. The THEN
component is known as the consequent. The antecedent and the consequent are
disjoint; they have no items in common.

Oracle Data Mining supports association rules that have one or more items in the
antecedent and a single item in the consequent.

10.2.2 Confidence
Rules have an associated confidence, which is the conditional probability that the
consequent occurs given the occurrence of the antecedent. You can specify the
minimum confidence for rules.

10.3 Data Preparation for Apriori
Association models are designed to use transactional data. In transactional data, there
is a one-to-many relationship between the case identifier and the values for each case.
Each case ID/value pair is specified in a separate record (row).

10.3.1 Native Transactional Data and Star Schemas
Learn about storage format of transactional data.

Transactional data may be stored in native transactional format, with a non-unique
case ID column and a values column, or it may be stored in some other configuration,
such as a star schema. If the data is not stored in native transactional format, it must
be transformed to a nested column for processing by the Apriori algorithm.

Related Topics

• Transactional Data
Learn about transactional data, also known as market-basket data.

• Oracle Data Mining User’s Guide

10.3.2 Items and Collections
In transactional data, a collection of items is associated with each case. The collection
theoretically includes all possible members of the collection. For example, all products
can theoretically be purchased in a single market-basket transaction. However, in

Chapter 10
Association Rules and Frequent Itemsets

10-2

actuality, only a tiny subset of all possible items are present in a given transaction; the
items in the market-basket represent only a small fraction of the items available for
sale in the store.

10.3.3 Sparse Data
Learn about missing items through sparsity.

Missing items in a collection indicate sparsity. Missing items may be present with a
null value, or they may simply be missing.

Nulls in transactional data are assumed to represent values that are known but not
present in the transaction. For example, three items out of hundreds of possible items
might be purchased in a single transaction. The items that were not purchased are
known but not present in the transaction.

Oracle Data Mining assumes sparsity in transactional data. The Apriori algorithm is
optimized for processing sparse data.

Note:

Apriori is not affected by Automatic Data Preparation.

Related Topics

• Oracle Data Mining User’s Guide

10.3.4 Improved Sampling
Association Rules (AR) can use a good sample size with performance guarantee,
based on the work of Riondato and Upfal.

The AR algorithm computes the sample size by the following inputs:

• d-index of the dataset

• Absolute error ε

• Confidence level γ

d-index is defined as the maximum integer d such that the dataset contains at least d
transactions of length d at the minimum. It is the upper bound of Vapnik-Chervonenkis
(VC) dimension. The AR algorithm computes d-index of the dataset by scanning the
length of all transactions in the dataset.

Users specify absolute error ε and confidence level γ parameters. A large d-index,
small AR support, small ε or large γ can cause a large sample size. The sample size
theoretically guarantees that the absolute error of both the support and confidence of
the approximated AR (from sampling) is less than ε compared to the exact AR with
probability (or confidence level) at least γ. In this document this sample size is called
AR-specific sample size.

Chapter 10
Data Preparation for Apriori

10-3

10.3.4.1 Sampling Implementation
The sample size is only computed when users turn on the sampling (ODMS_SAMPLING is
set as ODMS_SAMPLING_ENABLE) and do not specify the sample size (ODMS_SAMPLE_SIZE
is unspecified).

Usage Notes

1. If ODMS_SAMPLING is unspecified or set as ODMS_SAMPLING_DISABLE, the sampling is
not performed for AR and the exact AR is obtained.

2. If ODMS_SAMPLING is set as ODMS_SAMPLING_ENABLE and if ODMS_SAMPLE_SIZE
is specified as positive integer number then the user-specified sample size
(ODMS_SAMPLE_SIZE) is utilized. The sampling is performed in the general data
preparation stage before the AR algorithm. The AR-specific sample size is not
computed. The approximated AR is obtained.

3. If ODMS_SAMPLING is set as ODMS_SAMPLING_ENABLE and ODMS_SAMPLE_SIZE is
not specified, the AR-specified sample size is computed and then sampling is
performed in the AR algorithm. The approximated AR is obtained.

Note:

If the computed AR-specific sample size is larger than or equal to the
total transaction size in the dataset, the sampling is not performed and
the exact AR is obtained.

If users do not have a good idea on the choice of sample size for AR, it is suggested
to leave ODMS_SAMPLE_SIZE unspecified, only specify proper values for sampling
parameters and let AR algorithm compute the suitable AR-specific sample size.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

10.4 Calculating Association Rules
The first step in association analysis is the enumeration of itemsets. An itemset is any
combination of two or more items in a transaction.

10.4.1 Itemsets
Learn about itemsets.

The maximum number of items in an itemset is user-specified. If the maximum is
two, then all the item pairs are counted. If the maximum is greater than two, then all
the item pairs, all the item triples, and all the item combinations up to the specified
maximum are counted.

The following table shows the itemsets derived from the transactions shown in the
following example, assuming that maximum number of items in an itemset is set to 3.

Chapter 10
Calculating Association Rules

10-4

Table 10-1 Itemsets

Transaction Itemsets

11 (B,D) (B,E) (D,E) (B,D,E)

12 (A,B) (A,C) (A,E) (B,C) (B,E) (C,E) (A,B,C) (A,B,E) (A,C,E) (B,C,E)

13 (B,C) (B,D) (B,E) (C,D) (C,E) (D,E) (B,C,D) (B,C,E) (B,D,E) (C,D,E)

Example 10-1 Sample Transactional Data

TRANS_ID ITEM_ID
--------- -------------------
11 B
11 D
11 E
12 A
12 B
12 C
12 E
13 B
13 C
13 D
13 E

10.4.2 Frequent Itemsets
Learn about Frequent Itemsets and Support.

Association rules are calculated from itemsets. If rules are generated from all possible
itemsets, there can be a very high number of rules and the rules may not be very
meaningful. Also, the model can take a long time to build. Typically it is desirable
to only generate rules from itemsets that are well-represented in the data. Frequent
itemsets are those that occur with a minimum frequency specified by the user.

The minimum frequent itemset Support is a user-specified percentage that limits the
number of itemsets used for association rules. An itemset must appear in at least this
percentage of all the transactions if it is to be used as a basis for rules.

The following table shows the itemsets from Table 10-1 that are frequent itemsets with
support > 66%.

Table 10-2 Frequent Itemsets

Frequent Itemset Transactions Support

(B,C) 2 of 3 67%

(B,D) 2 of 3 67%

(B,E) 3 of 3 100%

(C,E) 2 of 3 67%

(D,E) 2 of 3 67%

(B,C,E) 2 of 3 67%

(B,D,E) 2 of 3 67%

Chapter 10
Calculating Association Rules

10-5

Related Topics

• Apriori
Learn how to calculate Association Rules using Apriori algorithm.

10.4.3 Example: Calculating Rules from Frequent Itemsets
Example to calculating rules from Frequent itemsets.

The following tables show the itemsets and frequent itemsets that were calculated
in "Association". The frequent itemsets are the itemsets that occur with a minimum
support of 67%; at least 2 of the 3 transactions must include the itemset.

Table 10-3 Itemsets

Transaction Itemsets

11 (B,D) (B,E) (D,E) (B,D,E)

12 (A,B) (A,C) (A,E) (B,C) (B,E) (C,E) (A,B,C) (A,B,E) (A,C,E) (B,C,E)

13 (B,C) (B,D) (B,E) (C,D) (C,E) (D,E) (B,C,D) (B,C,E) (B,D,E) (C,D,E)

Table 10-4 Frequent Itemsets with Minimum Support 67%

Itemset Transactions Support

(B,C) 12 and 13 67%

(B,D) 11 and 13 67%

(B,E) 11, 12, and 13 100%

(C,E) 12 and 13 67%

(D,E) 11 and 13 67%

(B,C,E) 12 and 13 67%

(B,D,E) 11 and 13 67%

A rule expresses a conditional probability. Confidence in a rule is calculated by dividing
the probability of the items occurring together by the probability of the occurrence of
the antecedent.

For example, if B (antecedent) is present, what is the chance that C (consequent) is
also present? What is the confidence for the rule "IF B, THEN C"?

As shown in Table 10-3:

• All 3 transactions include B (3/3 or 100%)

• Only 2 transactions include both B and C (2/3 or 67%)

• Therefore, the confidence of the rule "IF B, THEN C" is 67/100 or 67%.

The following table the rules that can be derived from the frequent itemsets in
Table 10-4.

Chapter 10
Calculating Association Rules

10-6

Table 10-5 Frequent Itemsets and Rules

Frequent Itemset Rules prob(antecedent and
consequent) / prob(antecedent)

Confidence

(B,C) (If B then C)
(If C then B)

67/100
67/67

67%
100%

(B,D) (If B then D)
(If D then B)

67/100
67/67

67%
100%

(B,E) (If B then E)
(If E then B)

100/100
100/100

100%
100%

(C,E) (If C then E)
(If E then C)

67/67
67/100

100%
67%

(D,E) (If D then E)
I(f E then D)

67/67
67/100

100%
67%

(B,C,E) (If B and C then
E)
(If B and E then
C)
(If C and E then
B)

67/67
67/100
67/67

100%
67%
100%

(B,D,E) (If B and D then
E)
(If B and E then
D)
(If D and E then
B)

67/67
67/100
67/67

100%
67%
100%

If the minimum confidence is 70%, ten rules are generated for these frequent itemsets.
If the minimum confidence is 60%, sixteen rules are generated.

Tip:

Increase the minimum confidence if you want to decrease the build time for
the model and generate fewer rules.

Related Topics

• Association
Learn how to discover Association Rules through Association - an unsupervised
mining function.

10.4.4 Aggregates
Aggregates refer to the quantities associated with each item that the user opts for
Association Rules Model to aggregate.

Chapter 10
Calculating Association Rules

10-7

There can be more than one aggregate. For example, the user can specify the model
to aggregate both profit and quantity.

10.4.5 Example: Calculating Aggregates
The following example shows the concept of Aggregates.

Calculating Aggregates for Grocery Store Data

Assume a grocery store has the following data:

Table 10-6 Grocery Store Data

Customer Item A Item B Item C Item D

Customer 1 Buys
(Profit $5.00)

Buys
(Profit $3.20)

Buys
(Profit $12.00)

NA

Customer 2 Buys
(Profit $4.00)

NA Buys
(Profit $4.20)

NA

Customer 3 Buys
(Profit $3.00)

Buys
(Profit $10.00)

Buys
(Profit $14.00)

Buys
(Profit $8.00)

Customer 4 Buys
(Profit $2.00)

NA NA Buys
(Profit $1.00)

The basket of each customer can be viewed as a transaction. The manager of the
store is interested in not only the existence of certain association rules, but also in the
aggregated profit if such rules exist.

In this example, one of the association rules can be (A, B)=>C for customer 1 and
customer 3. Together with this rule, the store manager may want to know the following:

• The total profit of item A appearing in this rule

• The total profit of item B appearing in this rule

• The total profit for consequent C appearing in this rule

• The total profit of all items appearing in the rule

For this rule, the profit for item A is $5.00 + $3.00 = $8.00, for item B the profit is $3.20
+ $10.00 = $13.20, for consequent C, the profit is $12.00 + $14.00 = $26.00, for the
antecedent itemset (A, B) is $8.00 + $13.20 = $21.20. For the whole rule, the profit
is $21.20 + $26.00 = $47.40.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

10.4.6 Including and Excluding Rules
Explains including rules and excluding rules used in Association.

Including rules enables a user to provide a list of items such that at least one item from
the list must appear in the rules that are returned. Excluding rules enables a user to
provide a list of items such that no item from the list can appear in the rules that are
returned.

Chapter 10
Calculating Association Rules

10-8

Note:

Since each association rule includes both antecedent and consequent, a set
of including or excluding rules can be specified for antecedent while another
set of including or excluding rules can be specified for consequent. Including
or excluding rules can also be defined for the association rule.

Related Topics

• Oracle Data Mining User’s Guide

• Oracle Database PL/SQL Packages and Types Reference

10.4.7 Performance Impact for Aggregates
Aggregate function requires more memory usage and longer execution time.

For each item, the user may supply several columns to aggregate. It requires more
memory to buffer the extra data and more time to compute the aggregate values.

10.5 Evaluating Association Rules
Minimum support and confidence are used to influence the build of an association
model. Support and confidence are also the primary metrics for evaluating the quality
of the rules generated by the model. Additionally, Oracle Data Mining supports lift for
association rules. These statistical measures can be used to rank the rules and hence
the usefulness of the predictions.

10.5.1 Support
The support of a rule indicates how frequently the items in the rule occur together. For
example, cereal and milk might appear together in 40% of the transactions. If so, the
following rules each have a support of 40%:

cereal implies milk
milk implies cereal

Support is the ratio of transactions that include all the items in the antecedent and
consequent to the number of total transactions.

Support can be expressed in probability notation as follows:

support(A implies B) = P(A, B)

10.5.2 Minimum Support Count
Minimum support Count defines minimum threshold in transactions that each rule must
satisfy.

When the number of transactions is unknown, the support percentage threshold
parameter can be tricky to set appropriately. For this reason, support can also be
expressed as a count of transactions, with the greater of the two thresholds being
used to filter out infrequent itemsets. The default is 1 indicating that this criterion is not
applied.

Chapter 10
Evaluating Association Rules

10-9

Related Topics

• Association Rules

• Oracle Data Mining User’s Guide

• Frequent Itemsets
Learn about Frequent Itemsets and Support.

10.5.3 Confidence
The confidence of a rule indicates the probability of both the antecedent and the
consequent appearing in the same transaction.

Confidence is the conditional probability of the consequent given the antecedent. For
example, cereal appears in 50 transactions; 40 of the 50 might also include milk. The
rule confidence is:

cereal implies milk with 80% confidence

Confidence is the ratio of the rule support to the number of transactions that include
the antecedent.

Confidence can be expressed in probability notation as follows.

confidence (A implies B) = P (B/A), which is equal to P(A, B) / P(A)

Related Topics

• Confidence

• Frequent Itemsets
Learn about Frequent Itemsets and Support.

10.5.4 Reverse Confidence
The Reverse Confidence of a rule is defined as the number of transactions in which
the rule occurs divided by the number of transactions in which the consequent occurs.

Reverse Confidence eliminates rules that occur because the consequent is frequent.
The default is 0.

Related Topics

• Confidence

• Example: Calculating Rules from Frequent Itemsets
Example to calculating rules from Frequent itemsets.

• Oracle Data Mining User’s Guide

• Oracle Database PL/SQL Packages and Types Reference

10.5.5 Lift
Both support and confidence must be used to determine if a rule is valid. However,
there are times when both of these measures may be high, and yet still produce a rule
that is not useful. For example:

Chapter 10
Evaluating Association Rules

10-10

Convenience store customers who buy orange juice also buy milk with
a 75% confidence.
The combination of milk and orange juice has a support of 30%.

This at first sounds like an excellent rule, and in most cases, it would be. It has
high confidence and high support. However, what if convenience store customers in
general buy milk 90% of the time? In that case, orange juice customers are actually
less likely to buy milk than customers in general.

A third measure is needed to evaluate the quality of the rule. Lift indicates the strength
of a rule over the random co-occurrence of the antecedent and the consequent, given
their individual support. It provides information about the improvement, the increase in
probability of the consequent given the antecedent. Lift is defined as follows.

(Rule Support) /(Support(Antecedent) * Support(Consequent))

This can also be defined as the confidence of the combination of items divided by
the support of the consequent. So in our milk example, assuming that 40% of the
customers buy orange juice, the improvement would be:

30% / (40% * 90%)

which is 0.83 – an improvement of less than 1.

Any rule with an improvement of less than 1 does not indicate a real cross-selling
opportunity, no matter how high its support and confidence, because it actually offers
less ability to predict a purchase than does random chance.

Tip:

Decrease the maximum rule length if you want to decrease the build time for
the model and generate simpler rules.

Tip:

Increase the minimum support if you want to decrease the build time for the
model and generate fewer rules.

Chapter 10
Evaluating Association Rules

10-11

11
CUR Matrix Decomposition

Learn how to use CUR decomposition based algorithm for attribute importance.

• About CUR Matrix Decomposition

• Singular Vectors

• Statistical Leverage Score

• Column (Attribute) Selection and Row Selection

• CUR Matrix Decomposition Algorithm Configuration

11.1 About CUR Matrix Decomposition
CUR matrix decomposition is a low-rank matrix decomposition algorithm that is
explicitly expressed in a small number of actual columns and/or actual rows of data
matrix.

CUR matrix decomposition was developed as an alternative to Singular Value
Decomposition (SVD) and Principal Component Analysis (PCA). CUR matrix
decomposition selects columns and rows that exhibit high statistical leverage or
large influence from the data matrix. By implementing the CUR matrix decomposition
algorithm, a small number of most important attributes and/or rows can be identified
from the original data matrix. Therefore, CUR matrix decomposition is an important
tool for exploratory data analysis. CUR matrix decomposition can be applied to a
variety of areas and facilitates Regression, Classification, and Clustering.

Related Topics

• Data Preparation for SVD
Learn about preparing the data for Singular Value Decomposition (SVD).

11.2 Singular Vectors
Singular Value Decomposition (SVD) is the first step in CUR matrix decomposition.

SVD returns left and right singular vectors for calculating column and row leverage
scores. Perform SVD on the following matrix:

A ε Rmxn

The matrix is factorized as follows:

A=UΣVT

where U = [u1 u2...um] and V = [v1 v2...vn] are orthogonal matrices.

Σ is a diagonal m × n matrix with non-negative real numbers σ1,...,σρ on the
diagonal, where ρ = min {m,n} and σξ is the ξth singular value of A.

11-1

Let uξ and vξ be the ξth left and right singular vector of A, the jth column of A can thus
be approximated by the top k singular vectors and corresponding singular values as:

where vξ
j is the jth coordinate of the ξth right singular vector.

11.3 Statistical Leverage Score
The statistical leverage scores represent the column (or attribute) and row importance.

The normalized statistical leverage scores for all columns are computed from the top k
right singular vectors as follows:

where k is called rank parameter and j = 1,...,n. Given that πj>=0 and

, these scores form a probability distribution over the n columns.

Similarly, the normalized statistical leverage scores for all rows are computed from the
top k left singular vectors as:

where i = 1,...,m.

11.4 Column (Attribute) Selection and Row Selection
Column (Attribute) selection and Row selection is the final stage in CUR matrix
decomposition.

Attribute selection: Selects attributes with high leverage scores and reports their
names, scores (as importance) and ranks (by importance).

Row selection: Selects rows with high leverage scores and reports their names, scores
(as importance) and ranks (by importance).

Chapter 11
Statistical Leverage Score

11-2

1. CUR matrix decomposition first selects the jth column (or attribute) of A with
probability pj= min {1,cπj} for all j ε {1,...,n}

2. If users enable row selection, select ith row of A with probability p�i = min {1,rπ�i}
for all i ε {1,...,m}

3. Report the name (or ID) and leverage score (as importance) for all selected
attributes (if row importance is disabled) or for all selected attributes and rows
(if row importance is enabled).

c is the approximated (or expected) number of columns that users want to select, and r
is the approximated (or expected) number of rows that users want to select.

To realize column and row selections, you need to calculate the probability to select
each column and row.

Calculate the probability for each column as follows:

pj = min {1,cπj}

Calculate the probability for each row as follows:

p�i = min{1, cπ�i}.

A column or row is selected if the probability is greater than some threshold.

11.5 CUR Matrix Decomposition Algorithm Configuration
Learn about configuring CUR Matrix Decomposition algorithm.

Example 11-1 Example

In this example you will understand how to build a CUR Matrix Decomposition
algorithm. When the settings table is created and populated with CUR Matrix
Decomposition related settings, insert a row in the settings table to specify the
algorithm.

INSERT INTO SETTINGS_TABLE (setting_name, setting_value) VALUES
('ALGO_NAME', 'ALGO_CUR_DECOMPOSITION');

Build the model as follows:

BEGIN
DBMS_DATA_MINING.CREATE_MODEL(
model_name => 'model-name',
mining_function => dbms_data_mining.attribute_importance,
data_table_name => 'test_table',
case_id_column_name => 'id',
settings_table_name => 'settings_table');
END;
/

Chapter 11
CUR Matrix Decomposition Algorithm Configuration

11-3

Row Selection

To use this feature, insert a row in the settings table to specify that the row importance
is enabled:

INSERT INTO SETTINGS_TABLE (setting_name, setting_value) VALUES
('CURS_ROW_IMPORTANCE', 'CURS_ROW_IMP_ENABLE');

Note:

The row selection is performed only when users specify that row importance
is enabled and the CASE_ID column is present.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 11
CUR Matrix Decomposition Algorithm Configuration

11-4

12
Decision Tree

Learn how to use Decision Tree algorithm. Decision Tree is one of the Classification
algorithms that the Oracle Data Mining supports.

• About Decision Tree

• Growing a Decision Tree

• Tuning the Decision Tree Algorithm

• Data Preparation for Decision Tree

Related Topics

• Classification
Learn how to predict a categorical target through Classification - the supervised
mining function.

12.1 About Decision Tree
The Decision Tree algorithm, like Naive Bayes, is based on conditional probabilities.
Unlike Naive Bayes, decision trees generate rules. A rule is a conditional statement
that can be understood by humans and used within a database to identify a set of
records.

In some applications of data mining, the reason for predicting one outcome or
another may not be important in evaluating the overall quality of a model. In others,
the ability to explain the reason for a decision can be crucial. For example, a
Marketing professional requires complete descriptions of customer segments to launch
a successful marketing campaign. The Decision Tree algorithm is ideal for this type of
application.

Use Decision Tree rules to validate models. If the rules make sense to a subject matter
expert, then this validates the model.

12.1.1 Decision Tree Rules
Introduces Decision Tree rules.

Oracle Data Mining supports several algorithms that provide rules. In addition to
decision trees, clustering algorithms provide rules that describe the conditions shared
by the members of a cluster, and association rules provide rules that describe
associations between attributes.

Rules provide model transparency, a window on the inner workings of the model.
Rules show the basis for the model's predictions. Oracle Data Mining supports a
high level of model transparency. While some algorithms provide rules, all algorithms
provide model details. You can examine model details to determine how the
algorithm handles the attributes internally, including transformations and reverse

12-1

transformations. Transparency is discussed in the context of data preparation and in
the context of model building in Oracle Data Mining User’s Guide.

The following figure shows a rule generated by a Decision Tree model. This rule
comes from a decision tree that predicts the probability that customers increase
spending if given a loyalty card. A target value of 0 means not likely to increase
spending; 1 means likely to increase spending.

Figure 12-1 Sample Decision Tree Rule

The rule shown in the figure represents the conditional statement:

IF
 (current residence > 3.5 and has college degree and is single)
THEN
 predicted target value = 0

This rule is a full rule. A surrogate rule is a related attribute that can be used at apply
time if the attribute needed for the split is missing.

Related Topics

• Understanding Reverse Transformations

• Model Detail Views for Decision Tree

• Clustering
Learn how to discover natural groupings in the data through Clustering - the
unsupervised mining function.

• Association
Learn how to discover Association Rules through Association - an unsupervised
mining function.

12.1.1.1 Confidence and Support
Confidence and support are properties of rules. These statistical measures can be
used to rank the rules and hence the predictions.

Support: The number of records in the training data set that satisfy the rule.

Confidence: The likelihood of the predicted outcome, given that the rule has been
satisfied.

For example, consider a list of 1000 customers (1000 cases). Out of all the customers,
100 satisfy a given rule. Of these 100, 75 are likely to increase spending, and 25

Chapter 12
About Decision Tree

12-2

are not likely to increase spending. The support of the rule is 100/1000 (10%). The
confidence of the prediction (likely to increase spending) for the cases that satisfy
the rule is 75/100 (75%).

12.1.2 Advantages of Decision Trees
Learn about the advantages of Decision Tree.

The Decision Tree algorithm produces accurate and interpretable models with
relatively little user intervention. The algorithm can be used for both binary and
multiclass classification problems.

The algorithm is fast, both at build time and apply time. The build process for Decision
Tree supports parallel execution. (Scoring supports parallel execution irrespective of
the algorithm.)

Decision Tree scoring is especially fast. The tree structure, created in the model build,
is used for a series of simple tests, (typically 2-7). Each test is based on a single
predictor. It is a membership test: either IN or NOT IN a list of values (categorical
predictor); or LESS THAN or EQUAL TO some value (numeric predictor).

Related Topics

• Oracle Database VLDB and Partitioning Guide

12.1.3 XML for Decision Tree Models
Learn about generating XML representation of Decision Tree models.

You can generate XML representing a Decision Tree model; the generated XML
satisfies the definition specified in the Data Mining Group Predictive Model Markup
Language (PMML) version 2.1 specification.

Related Topics

• http://www.dmg.org

12.2 Growing a Decision Tree
Predicting a target value by a sequence of questions to form or grow a Decision Tree.

A Decision Tree predicts a target value by asking a sequence of questions. At a given
stage in the sequence, the question that is asked depends upon the answers to the
previous questions. The goal is to ask questions that, taken together, uniquely identify
specific target values. Graphically, this process forms a tree structure.

Chapter 12
Growing a Decision Tree

12-3

unilink:dmg

Figure 12-2 Sample Decision Tree

0: 1120

1: 380

0: 143

1: 31

0: 595

1: 19

0: 738

1: 50

0: 382

1: 330

0: 315

1: 151

0: 67

1: 179

0: 118

1: 119

0: 197

1: 32

Marital status

Education Education

Residence Score = 0;

prob = 8218

Score = 0;

prob = 9690

Score = 1;

prob = 7276

Score = 0;

prob = 8613

Score = 0;

prob = 5988

0

3

874

65

2

1

The figure is a Decision Tree with nine nodes (and nine corresponding rules). The
target attribute is binary: 1 if the customer increases spending, 0 if the customer does
not increase spending. The first split in the tree is based on the CUST_MARITAL_STATUS
attribute. The root of the tree (node 0) is split into nodes 1 and 3. Married customers
are in node 1; single customers are in node 3.

The rule associated with node 1 is:

Node 1 recordCount=712,0 Count=382, 1 Count=330
CUST_MARITAL_STATUS isIN "Married",surrogate:HOUSEHOLD_SIZE isIn "3""4-5"

Node 1 has 712 records (cases). In all 712 cases, the CUST_MARITAL_STATUS attribute
indicates that the customer is married. Of these, 382 have a target of 0 (not likely to
increase spending), and 330 have a target of 1 (likely to increase spending).

12.2.1 Splitting
During the training process, the Decision Tree algorithm must repeatedly find the
most efficient way to split a set of cases (records) into two child nodes. Oracle Data
Mining offers two homogeneity metrics, gini and entropy, for calculating the splits.
The default metric is gini.

Homogeneity metrics asses the quality of alternative split conditions and select the
one that results in the most homogeneous child nodes. Homogeneity is also called
purity; it refers to the degree to which the resulting child nodes are made up of
cases with the same target value. The objective is to maximize the purity in the child
nodes. For example, if the target can be either yes or no (does or does not increase
spending), the objective is to produce nodes where most of the cases either increase
spending or most of the cases do not increase spending.

Chapter 12
Growing a Decision Tree

12-4

12.2.2 Cost Matrix
Learn about Cost Matrix for Decision Tree.

All classification algorithms, including Decision Tree, support a cost-benefit matrix at
apply time. You can use the same cost matrix for building and scoring a Decision Tree
model, or you can specify a different cost/benefit matrix for scoring.

Related Topics

• Costs

• Priors and Class Weights
Learn about Priors and Class Weights in a Classification model to produce a
useful result.

12.2.3 Preventing Over-Fitting
In principle, Decision Tree algorithms can grow each branch of the tree just deeply
enough to perfectly classify the training examples. While this is sometimes a
reasonable strategy, in fact it can lead to difficulties when there is noise in the data, or
when the number of training examples is too small to produce a representative sample
of the true target function. In either of these cases, this simple algorithm can produce
trees that over-fit the training examples. Over-fit is a condition where a model is able
to accurately predict the data used to create the model, but does poorly on new data
presented to it.

To prevent over-fitting, Oracle Data Mining supports automatic pruning and
configurable limit conditions that control tree growth. Limit conditions prevent further
splits once the conditions have been satisfied. Pruning removes branches that have
insignificant predictive power.

12.3 Tuning the Decision Tree Algorithm
Fine tune the Decision Tree algorithm with various parameters.

The Decision Tree algorithm is implemented with reasonable defaults for splitting and
termination criteria. However several build settings are available for fine tuning.

You can specify a homogeneity metric for finding the optimal split condition for a tree.
The default metric is gini. The entropy metric is also available.

Settings for controlling the growth of the tree are also available. You can specify the
maximum depth of the tree, the minimum number of cases required in a child node,
the minimum number of cases required in a node in order for a further split to be
possible, the minimum number of cases in a child node, and the minimum number of
cases required in a node in order for a further split to be possible.

The training data attributes are binned as part of the algorithm's data preparation. You
can alter the number of bins used by the binning step. There is a trade-off between the
number of bins used and the time required for the build.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 12
Tuning the Decision Tree Algorithm

12-5

12.4 Data Preparation for Decision Tree
Learn how to prepare data for Decision Tree.

The Decision Tree algorithm manages its own data preparation internally. It does not
require pretreatment of the data. Decision Tree is not affected by Automatic Data
Preparation.

Related Topics

• Preparing the Data

• Transforming the Data

Chapter 12
Data Preparation for Decision Tree

12-6

13
Expectation Maximization

Learn how to use Expectation Maximization Clustering algorithm.

• About Expectation Maximization

• Algorithm Enhancements

• Configuring the Algorithm

• Data Preparation for Expectation Maximization

Related Topics

• Clustering
Learn how to discover natural groupings in the data through Clustering - the
unsupervised mining function.

13.1 About Expectation Maximization
Expectation Maximization (EM) estimation of mixture models is a popular probability
density estimation technique that is used in a variety of applications. Oracle
Data Mining uses EM to implement a distribution-based clustering algorithm (EM-
clustering).

13.1.1 Expectation Step and Maximization Step
Expectation Maximization is an iterative method. It starts with an initial parameter
guess. The parameter values are used to compute the likelihood of the current model.
This is the Expectation step. The parameter values are then recomputed to maximize
the likelihood. This is the Maximization step. The new parameter estimates are used
to compute a new expectation and then they are optimized again to maximize the
likelihood. This iterative process continues until model convergence.

13.1.2 Probability Density Estimation
In density estimation, the goal is to construct a density function that captures how a
given population is distributed. In probability density estimation, the density estimate is
based on observed data that represents a sample of the population. Areas of high data
density in the model correspond to the peaks of the underlying distribution.

Density-based clustering is conceptually different from distance-based clustering
(for example k-Means) where emphasis is placed on minimizing inter-cluster and
maximizing the intra-cluster distances. Due to its probabilistic nature, density-based
clustering can compute reliable probabilities in cluster assignment. It can also handle
missing values automatically.

13-1

13.2 Algorithm Enhancements
Although Expectation Maximization (EM) is well established as a distribution-based
clustering algorithm, it presents some challenges in its standard form. The Oracle
Data Mining implementation includes significant enhancements, such as scalable
processing of large volumes of data and automatic parameter initialization. The
strategies that Oracle Data Mining uses to address the inherent limitations of EM
clustering are described further in this section.

Note:

The EM abbreviation is used here to refer to EM-clustering.

Limitations of Standard Expectation Maximization:

• Scalability: EM has linear scalability with the number of records and attributes. The
number of iterations to convergence tends to increase with growing data size (both
rows and columns). EM convergence can be slow for complex problems and can
place a significant load on computational resources.

• High dimensionality: EM has limited capacity for modeling high dimensional (wide)
data. The presence of many attributes slows down model convergence, and the
algorithm becomes less able to distinguish between meaningful attributes and
noise. The algorithm is thus compromised in its ability to find correlations.

• Number of components: EM typically requires the user to specify the number of
components. In most cases, this is not information that the user can know in
advance.

• Parameter initialization: The choice of appropriate initial parameter values can
have a significant effect on the quality of the model. Initialization strategies that
have been used for EM have generally been computationally expensive.

• From components to clusters: EM model components are often treated as
clusters. This approach can be misleading since cohesive clusters are often
modeled by multiple components. Clusters that have a complex shape need to
be modeled by multiple components.

13.2.1 Scalability
Expectation Maximization (EM) in Oracle Data Mining, uses database parallel
processing to achieve excellent scalability.

The Oracle Data Mining implementation of Expectation Maximization (EM) uses
database parallel processing to achieve excellent scalability. EM computations
naturally lend themselves to row parallel processing, and the partial results are easily
aggregated. The parallel implementation efficiently distributes the computationally
intensive work across slave processes and then combines the partial results to
produce the final solution.

Related Topics

• Oracle Database VLDB and Partitioning Guide

Chapter 13
Algorithm Enhancements

13-2

13.2.2 High Dimensionality
The Oracle Data Mining implementation of Expectation Maximization (EM) can
efficiently process high-dimensional data with thousands of attributes. This is achieved
through a two-fold process:

• The data space of single-column (not nested) attributes is analyzed for pair-wise
correlations. Only attributes that are significantly correlated with other attributes
are included in the EM mixture model. The algorithm can also be configured to
restrict the dimensionality to the M most correlated attributes.

• High-dimensional (nested) numerical data that measures events of similar type is
projected into a set of low-dimensional features that are modeled by EM. Some
examples of high-dimensional, numerical data are: text, recommendations, gene
expressions, and market basket data.

13.2.3 Number of Components
Typical implementations of Expectation Maximization (EM) require the user to specify
the number of model components. This is problematic because users do not generally
know the correct number of components. Choosing too many or too few components
can lead to over-fitting or under-fitting, respectively.

When model search is enabled, the number of EM components is automatically
determined. The algorithm uses a held-aside sample to determine the correct number
of components, except in the cases of very small data sets when Bayesian Information
Criterion (BIC) regularization is used.

13.2.4 Parameter Initialization
Choosing appropriate initial parameter values can have a significant effect on the
quality of the solution. Expectation Maximization (EM) is not guaranteed to converge
to the global maximum of the likelihood function but may instead converge to a local
maximum. Therefore different initial parameter values can lead to different model
parameters and different model quality.

In the process of model search, the EM model is grown independently. As new
components are added, their parameters are initialized to areas with poor distribution
fit.

13.2.5 From Components to Clusters
Expectation Maximization (EM) model components are often treated as clusters.
However, this approach can be misleading. Cohesive clusters are often modeled
by multiple components. The shape of the probability density function used in EM
effectively predetermines the shape of the identified clusters. For example, Gaussian
density functions can identify single peak symmetric clusters. Clusters of more
complex shape need to be modeled by multiple components.

Ideally, high density areas of arbitrary shape must be interpreted as single clusters.
To accomplish this, the Oracle Data Mining implementation of EM builds a component
hierarchy that is based on the overlap of the individual components' distributions.
Oracle Data Mining EM uses agglomerative hierarchical clustering. Component
distribution overlap is measured using the Bhattacharyya distance function. Choosing

Chapter 13
Algorithm Enhancements

13-3

an appropriate cutoff level in the hierarchy automatically determines the number of
high-level clusters.

The Oracle Data Mining implementation of EM produces an assignment of the
model components to high-level clusters. Statistics like means, variances, modes,
histograms, and rules additionally describe the high-level clusters. The algorithm can
be configured to either produce clustering assignments at the component level or at
the cluster level.

13.3 Configuring the Algorithm
Configure Expectation Maximization (EM).

In Oracle Data Mining, Expectation Maximization (EM) can effectively model very large
data sets (both rows and columns) without requiring the user to supply initialization
parameters or specify the number of model components. While the algorithm offers
reasonable defaults, it also offers flexibility.

The following list describes some of the configurable aspects of EM:

• Whether or not independent non-nested column attributes are included in the
model. The choice is system-determined by default.

• Whether to use Bernoulli or Gaussian distribution for numerical attributes. By
default, the algorithm chooses the most appropriate distribution, and individual
attributes may use different distributions. When the distribution is user-specified, it
is used for all numerical attributes.

• Whether the convergence criterion is based on a held-aside data set or
on Bayesian Information Criterion (BIC). The convergence criterion is system-
determined by default.

• The percentage improvement in the value of the log likelihood function that is
required to add a new component to the model. The default percentage is 0.001.

• Whether to define clusters as individual components or groups of components.
Clusters are associated to groups of components by default.

• The maximum number of components in the model. If model search is enabled,
the algorithm determines the number of components based on improvements
in the likelihood function or based on regularization (BIC), up to the specified
maximum.

• Whether the linkage function for the agglomerative clustering step uses the
nearest distance within the branch (single linkage), the average distance within the
branch (average linkage), or the maximum distance within the branch (complete
linkage). By default the algorithm uses single linkage.

Related Topics

• DBMS_DATA_MINING - Global Settings

• DBMS_DATA_MINING - Algorithm Settings: Expectation Maximization

13.4 Data Preparation for Expectation Maximization
Learn how to prepare data for Expectation Maximization (EM).

If you use Automatic Data Preparation (ADP), you do not need to specify additional
data preparation for Expectation Maximization. ADP normalizes numerical attributes

Chapter 13
Configuring the Algorithm

13-4

(in non-nested columns) when they are modeled with Gaussian distributions. ADP
applies a topN binning transformation to categorical attributes.

Missing value treatment is not needed since Oracle Data Mining algorithms handle
missing values automatically. The Expectation Maximization algorithm replaces
missing values with the mean in single-column numerical attributes that are modeled
with Gaussian distributions. In other single-column attributes (categoricals and
numericals modeled with Bernoulli distributions), NULLs are not replaced; they are
treated as a distinct value with its own frequency count. In nested columns, missing
values are treated as zeros.

Related Topics

• Oracle Data Mining User’s Guide

Chapter 13
Data Preparation for Expectation Maximization

13-5

14
Explicit Semantic Analysis

Learn how to use Explicit Semantic Analysis (ESA) as an unsupervised algorithm for
Feature Extraction function and as a supervised algorithm for Classification.

• About Explicit Semantic Analysis

• ESA for Text Mining

• Data Preparation for ESA

Related Topics

• Feature Selection and Extraction
Learn how to perform Feature Selection, Feature Extraction, and Attribute
Importance.

14.1 About Explicit Semantic Analysis
In Oracle database 12c Release 2, Explicit Semantic Analysis (ESA) was introduced
as an unsupervised algorithm used by Oracle Data Mining for Feature Extraction.
Starting from Oracle Database 18c, ESA is enhanced as a supervised algorithm for
Classification.

As a Feature Extraction algorithm, ESA does not discover latent features but instead
uses explicit features represented in an existing knowledge base. As a Feature
Extraction algorithm, ESA is mainly used for calculating semantic similarity of text
documents and for explicit topic modeling. As a Classification algorithm, ESA is
primarily used for categorizing text documents. Both the Feature Extraction and
Classification versions of ESA can be applied to numeric and categorical input data
as well.

The input to ESA is a set of attributes vectors. Every attribute vector is associated with
a concept. The concept is a feature in the case of Feature Extraction or a target class
in the case of Classification. For Feature Extraction, only one attribute vector may be
associated with any feature. For Classification, the training set may contain multiple
attribute vectors associated with any given target class. These rows related to one
target class are aggregated into one by the ESA algorithm.

The output of ESA is a sparse attribute-concept matrix that contains the most
important attribute-concept associations. The strength of the association is captured
by the weight value of each attribute-concept pair. The attribute-concept matrix is
stored as a reverse index that lists the most important concepts for each attribute.

Note:

For Feature Extraction the ESA algorithm does not project the original
feature space and does not reduce its dimensionality. ESA algorithm filters
out features with limited or uninformative set of attributes.

14-1

The scope of Classification tasks that ESA handles is different than the Classification
algorithms such as Naive Bayes and Support Vector Machines. ESA can perform
large scale Classification with the number of distinct classes up to hundreds of
thousands. The large scale classification requires gigantic training data sets with some
classes having significant number of training samples whereas others are sparsely
represented in the training data set.

14.1.1 Scoring with ESA
Learn to score with Explicit Semantic Analysis (ESA).

A typical Feature Extraction application of ESA is to identify the most relevant
features of a given input and score their relevance. Scoring an ESA model produces
data projections in the concept feature space. If an ESA model is built from an
arbitrary collection of documents, then each one is treated as a feature. It is
then easy to identify the most relevant documents in the collection. The feature
extraction functions are: FEATURE_DETAILS, FEATURE_ID, FEATURE_SET, FEATURE_VALUE,
and FEATURE_COMPARE.

A typical Classification application of ESA is to predict classes of a given document
and estimate the probabilities of the predictions. As a Classification algorithm, ESA
implements the following scoring functions: PREDICTION, PREDICTION_PROBABILITY,
PREDICTION_SET, PREDICTION_DETAILS, PREDICTION_COST.

Related Topics

• Oracle Data Mining User’s Guide

• Oracle Database SQL Language Reference

14.1.2 Scoring Large ESA Models
Building an Explicit Semantic Analysis (ESA) model on a large collection of text
documents can result in a model with many features or titles. The model information
for scoring is loaded into System Global Area (SGA) as a shared (shared pool size)
library cache object. Different SQL predictive queries can reference this object. When
the model size is large, it is necessary to set the SGA parameter in the database to a
sufficient size that accommodates large objects.

If the SGA is too small, the model may need to be re-loaded every time it is referenced
which is likely to lead to performance degradation.

14.2 ESA for Text Mining
Learn how Explicit Semantic Analysis (ESA) can be used for Text mining.

Explicit knowledge often exists in text form. Multiple knowledge bases are available
as collections of text documents. These knowledge bases can be generic, for
example, Wikipedia, or domain-specific. Data preparation transforms the text into
vectors that capture attribute-concept associations. ESA is able to quantify semantic
relatedness of documents even if they do not have any words in common. The
function FEATURE_COMPARE can be used to compute semantic relatedness.

Related Topics

• Oracle Database SQL Language Reference

Chapter 14
ESA for Text Mining

14-2

14.3 Data Preparation for ESA
Automatic Data Preparation normalizes input vectors to a unit length for Explicit
Semantic Analysis (ESA).

When there are missing values in columns with simple data types (not nested), ESA
replaces missing categorical values with the mode and missing numerical values with
the mean. When there are missing values in nested columns, ESA interprets them as
sparse. The algorithm replaces sparse numeric data with zeros and sparse categorical
data with zero vectors. The Oracle Data Mining data preparation transforms the input
text into a vector of real numbers. These numbers represent the importance of the
respective words in the text.

14.4 Terminologies in Explicit Semantic Analysis
Discusses the terms associated with Explicit Semantic Analysis (ESA).

Multi-target Classification

The training items in these large scale classifications belong to several classes. The
goal of classification in such case is to detect possible multiple target classes for
one item. This kind of classification is called multi-target classification. The target
column for ESA-based classification is extended. Collections are allowed as target
column values. The collection type for the target in ESA-based classification is
ORA_MINING_VARCHAR2_NT.

Large-scale classification

Large-scale classification applies to ontologies that contain gigantic numbers of
categories, usually ranging in tens or hundreds of thousands. This large-scale
classification also requires gigantic training datasets which are usually unbalanced,
that is, some classes may have significant number of training samples whereas
others may be sparsely represented in the training dataset. Large-scale classification
normally results in multiple target class assignments for a given test case.

Topic modeling

Topic modelling refers to derivation of the most important topics of a document. Topic
modeling can be explicit or latent. Explicit topic modeling results in the selection of
the most relevant topics from a pre-defined set, for a given document. Explicit topics
have names and can be verbalized. Latent topic modeling identifies a set of latent
topics characteristic for a collection of documents. A subset of these latent topics is
associated with every document under examination. Latent topics do not have verbal
descriptions or meaningful interpretation.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 14
Data Preparation for ESA

14-3

15
Exponential Smoothing

Learn about Exponential Smoothing.

• About Exponential Smoothing

• Data Preparation for Exponential Smoothing Models

15.1 About Exponential Smoothing
Exponential Smoothing methods are widely used for forecasting.

Exponential Smoothing methods have been widely used in forecasting for over half a
century. It has applications at the strategic, tactical, and operation level. For example,
at a strategic level, forecasting is used for projecting return on investment, growth and
the effect of innovations. At a tactical level, forecasting is used for projecting costs,
inventory requirements, and customer satisfaction. At an operational level, forecasting
is used for setting targets and predicting quality and conformance with standards.

In its simplest form, Exponential Smoothing is a moving average method with a single
parameter which models an exponentially decreasing effect of past levels on future
values. With a variety of extensions, Exponential Smoothing covers a broader class of
models than competitors, such as the Box-Jenkins auto-regressive integrated moving
average (ARIMA) approach. Oracle Data Mining implements Exponential Smoothing
using a state of the art state space method that incorporates a single source of error
(SSOE) assumption which provides theoretical and performance advantages.

Exponential Smoothing is extended to the following:

• A matrix of models that mix and match error type (additive or multiplicative), trend
(additive, multiplicative, or none), and seasonality (additive, multiplicative, or none)

• Models with damped trends.

• Models that directly handle irregular time series and time series with missing
values.

Note:

For more information, see Ord, J.K., et al, Time Series Forecasting: The
Case for the Single Source of Error State Space Approach, Working Paper,
Department of Econometrics and Business Statistics, Monash University,
VIC 3800, Australia, April 2, 2005.

15.1.1 Exponential Smoothing Models
Exponential Smoothing models are a broad class of forecasting models that are
intuitive, flexible, and extensible.

15-1

Members of this class include simple, single parameter models that predict the future
as a linear combination of a previous level and a current shock. Extensions can
include parameters for linear or non-linear trend, trend damping, simple or complex
seasonality, related series, various forms of non-linearity in the forecasting equations,
and handling of irregular time series.

Exponential Smoothing assumes that a series extends infinitely into the past, but
that influence of past on future, decays smoothly and exponentially fast. The smooth
rate of decay is expressed by one or more smoothing constants. The smoothing
constants are parameters that the model estimates. The assumption is made
practical for modeling real world data by using an equivalent recursive formulation that
is only expressed in terms of an estimate of the current level based on prior history
and a shock to that estimate dependent on current conditions only.The procedure
requires an estimate for the time period just prior to the first observation, that
encapsulates all prior history. This initial observation is an additional model parameter
whose value is estimated by the modeling procedure.

Components of ESM such as trend and seasonality extensions, can have an additive
or multiplicative form. The simpler additive models assume that shock, trend, and
seasonality are linear effects within the recursive formulation.

15.1.2 Simple Exponential Smoothing
Simple Exponential Smoothing assumes the data fluctuates around a stationary mean,
with no trend or seasonal pattern.

In simple exponential smoothing model, each forecast (smoothed value) is computed
as the weighted average of the previous observations, where the weights decrease
exponentially depending on the value of smoothing constant α. Values of the
smoothing constant, α, near one, put almost all weight on the most recent
observations. Values of α near zero allows the distant past observations to have a
large influence.

15.1.3 Models with Trend but No Seasonality
The preferred form of additive (linear) trend is sometimes called Holt’s method or
double exponential smoothing.

Models with trend add a smoothing parameter γ and optionally a damping parameter
φ. The damping parameter smoothly dampens the influence of past linear trend on
future estimates of level, often improving accuracy.

15.1.4 Models with Seasonality but No Trend
When the time series average does not change over time (stationary), but is subject to
seasonal fluctuations, the appropriate model has seasonal parameters but no trend.

Seasonal fluctuations are assumed to balance out over periods of length m, where m
is the number of seasons, For example, m=4 might be used when the input data are
aggregated quarterly. For models with additive errors, the seasonal parameters must
sum to zero. For models with multiplicative errors, the product of seasonal parameters
must be one.

Chapter 15
About Exponential Smoothing

15-2

15.1.5 Models with Trend and Seasonality
Holt and Winters introduced both trend and seasonality in Exponential Smoothing
Model(ESM). The original model, also known as Holt-Winters or triple exponential
smoothing, considered an additive trend and multiplicative seasonality. Extensions
include models with various combinations of additive and multiplicative trend,
seasonality and error, with and without trend damping.

15.1.6 Prediction Intervals
To compute prediction intervals, Exponential Smoothing Model (ESM) is divided into
three classes.

The simplest class is the class of linear models, which include, among others, simple
ESM, Holt’s method, and additive Holt-Winters. Class 2 models (multiplicative error,
additive components) make an approximate correction for violations of the Normality
assumption. Class 3 modes use a simple simulation approach to calculate prediction
intervals.

15.2 Data Preparation for Exponential Smoothing Models
Learn about preparing the data for Exponential Smoothing Model.

To build an ESM model, you must supply the following :

• Input data

• An aggregation level and method, if the case id is a date type

• Partitioning column, if the data are partitioned

In addition, for a greater control over the build process, the user may optionally specify
model build parameters, all of which have defaults:

• Model

• Error type

• Optimization criterion

• Forecast Window

• Confidence level for forecast bounds

• Missing value handling

• Whether the input series is evenly spaced

Related Topics

• Oracle Data Mining User’s Guide

See Also:

The Exponential Smoothing Model settings are described in Oracle
Database PL/SQL Packages and Types Reference.

Chapter 15
Data Preparation for Exponential Smoothing Models

15-3

15.2.1 Input Data
Time Series analysis, requires ordered input data. Hence, each data row must consist
of an [index, value] pair, where the index specifies the ordering.

When the CREATE_MODEL procedure is used to initiate an Exponential Smoothing
(ESM) model build, the CASE_ID_COLUMN_NAME specifies the column used to compute
the indices of the input and the TARGET_COLUMN_NAME specifies the column used to
compute the observed time series values. The time column bears Oracle number, or
Oracle date, timestamp, timestamp with time zone, or timestamp with local time zone.
The input time series are sorted according to the values of CASE_ID (time label). The
case id column cannot contain missing values. The value column can contain missing
values indicated as NULL. ESM also supports partitioned models and in such cases,
the input table contains an extra column specifying the partition. All [index, value]
pairs with the same partition ID form one complete time series. Exponential Smoothing
constructs models for each partition independently, although all models use the same
model settings.

Properties of the data can result in a warning message or settings are ignored.
Settings are ignored when If the user specifies a model with either multiplicative
trend, multiplicative seasonality or both and the data contains values Yt<= 0, then the
model type is set to the default. If the series contain fewer values than the number of
user-specified seasons, then the seasonality specifications are ignored with a warning.

15.2.2 Accumulation
For Exponential Smoothing algorithms, the accumulation procedure is applied when
the column is a date type (date, datetime, timestamp, timestamp with timezone, or
timestamp with local timezone).

The case id can be a NUMBER column whose sort index represents the position of the
value in the time series sequence of values. The case id column can also be a date
type. A date type is accumulated in accordance with a user specified accumulation
window. Regardless of type, the case id is used to transform the column into an
equally spaced time series. No accumulation is applied for a case id of type NUMBER. As
an example, consider a time series about promotion events. The time column contains
the date of each event, and the dates can be unequally spaced. The user must specify
the spacing interval, which is the spacing of the accumulated or transformed equally
spaced time series. In the example, if the user specifies the interval to be month, then
an equally spaced time series with profit for each calendar month is generated from
the original time series. Setting EXSM_INTERVAL is used to specify the spacing interval.
The user must also specify a value for EXSM_ACCUMULATE, for example, EXSM_ACCU_MAX,
in which case the equally spaced monthly series would contain the maximum profit
over all events that month as the observed time series value.

15.2.3 Missing Value
Input time series can contain missing values. A NULL entry in the target column
indicates a missing value. When the time column is of the type datetime,
the accumulation procedure can also introduce missing values. The setting
EXSM_SETMISSING can be used to specify how to handle missing values. The special
value EXSM_MISS_AUTO indicates that, if the series contains missing values it is to be
treated as an irregular time series.

Chapter 15
Data Preparation for Exponential Smoothing Models

15-4

Note:

Missing value handling setting must be compatible with model setting,
otherwise an error is thrown.

15.2.4 Prediction
Exponential Smoothing Model (ESM) can be applied to make predictions by specifying
the prediction window.

Setting EXSM_PREDICTION_STEP can be used to specify the prediction window.
The prediction window is expressed in terms of number of intervals (setting
EXSM_INTERVAL), when the time column is of the type datetime. If the time column
is a number then the prediction window is the number of steps to forecast. Regardless
of whether the time series is regular or irregular, EXSM_PREDICTION_STEP specifies the
prediction window.

15.2.5 Parallellism by Partition
Oracle Advanced Analytics supports parallellism by partition.

For example, a user can choose PRODUCT_ID as one partition column and can generate
forecasts for different products in a model build. Although a distinct smoothing
model is built for each partition, all partitions share the same model settings. For
example, if setting EXSM_MODEL is set to EXSM_SIMPLE, all partition models will be simple
exponential smoothing models. Time series from different partitions can be distributed
to different processes and processed in parallel. The model for each time series is built
serially.

Chapter 15
Data Preparation for Exponential Smoothing Models

15-5

16
Generalized Linear Models

Learn how to use Generalized Linear Models (GLM) statistical technique for Linear
modeling.

Oracle Data Mining supports GLM for Regression and Binary Classification.

• About Generalized Linear Models

• GLM in Oracle Data Mining

• Scalable Feature Selection

• Tuning and Diagnostics for GLM

• GLM Solvers

• Data Preparation for GLM

• Linear Regression

• Logistic Regression

Related Topics

• Regression
Learn how to predict a continuous numerical target through Regression - the
supervised mining function.

• Classification
Learn how to predict a categorical target through Classification - the supervised
mining function.

16.1 About Generalized Linear Models
Introduces Generalized Linear Models (GLM).

GLM include and extend the class of linear models.

Linear models make a set of restrictive assumptions, most importantly, that the target
(dependent variable y) is normally distributed conditioned on the value of predictors
with a constant variance regardless of the predicted response value. The advantage
of linear models and their restrictions include computational simplicity, an interpretable
model form, and the ability to compute certain diagnostic information about the quality
of the fit.

Generalized linear models relax these restrictions, which are often violated in practice.
For example, binary (yes/no or 0/1) responses do not have same variance across
classes. Furthermore, the sum of terms in a linear model typically can have very large
ranges encompassing very negative and very positive values. For the binary response
example, we would like the response to be a probability in the range [0,1].

Generalized linear models accommodate responses that violate the linear model
assumptions through two mechanisms: a link function and a variance function. The
link function transforms the target range to potentially -infinity to +infinity so that the
simple form of linear models can be maintained. The variance function expresses the

16-1

variance as a function of the predicted response, thereby accommodating responses
with non-constant variances (such as the binary responses).

Oracle Data Mining includes two of the most popular members of the GLM family of
models with their most popular link and variance functions:

• Linear regression with the identity link and variance function equal to the
constant 1 (constant variance over the range of response values).

• Logistic regression with the logit link and binomial variance functions.

Related Topics

• Linear Regression

• Linear Regression

• Logistic Regression

16.2 GLM in Oracle Data Mining
Generalized Linear Models (GLM) is a parametric modeling technique. Parametric
models make assumptions about the distribution of the data. When the assumptions
are met, parametric models can be more efficient than non-parametric models.

The challenge in developing models of this type involves assessing the extent to which
the assumptions are met. For this reason, quality diagnostics are key to developing
quality parametric models.

16.2.1 Interpretability and Transparency
Learn how to interpret, and understand data transparency through model details and
global details.

Oracle Data Mining Generalized Linear Models (GLM) are easy to interpret. Each
model build generates many statistics and diagnostics. Transparency is also a key
feature: model details describe key characteristics of the coefficients, and global
details provide high-level statistics.

Related Topics

• Tuning and Diagnostics for GLM

16.2.2 Wide Data
Oracle Data Mining Generalized Linear Model (GLM) is uniquely suited for handling
wide data. The algorithm can build and score quality models that use a virtually
limitless number of predictors (attributes). The only constraints are those imposed by
system resources.

16.2.3 Confidence Bounds
Predict confidence bounds through Generalized Linear Models (GLM).

GLM have the ability to predict confidence bounds. In addition to predicting a best
estimate and a probability (Classification only) for each row, GLM identifies an interval
wherein the prediction (Regression) or probability (Classification) lies. The width of

Chapter 16
GLM in Oracle Data Mining

16-2

the interval depends upon the precision of the model and a user-specified confidence
level.

The confidence level is a measure of how sure the model is that the true value lies
within a confidence interval computed by the model. A popular choice for confidence
level is 95%. For example, a model might predict that an employee's income is $125K,
and that you can be 95% sure that it lies between $90K and $160K. Oracle Data
Mining supports 95% confidence by default, but that value can be configured.

Note:

Confidence bounds are returned with the coefficient statistics. You can also
use the PREDICTION_BOUNDS SQL function to obtain the confidence bounds of
a model prediction.

Related Topics

• Oracle Database SQL Language Reference

16.2.4 Ridge Regression
Understand the use of Ridge regression for singularity (exact multicollinearity) in data.

The best regression models are those in which the predictors correlate highly with
the target, but there is very little correlation between the predictors themselves.
Multicollinearity is the term used to describe multivariate regression with correlated
predictors.

Ridge regression is a technique that compensates for multicollinearity. Oracle Data
Mining supports ridge regression for both Regression and Classification mining
functions. The algorithm automatically uses ridge if it detects singularity (exact
multicollinearity) in the data.

Information about singularity is returned in the global model details.

Related Topics

• Global Model Statistics for Linear Regression

• Global Model Statistics for Logistic Regression

16.2.4.1 Configuring Ridge Regression
Configure Ridge Regression through build settings.

You can choose to explicitly enable ridge regression by specifying a build setting for
the model. If you explicitly enable ridge, you can use the system-generated ridge
parameter or you can supply your own. If ridge is used automatically, the ridge
parameter is also calculated automatically.

The configuration choices are summarized as follows:

• Whether or not to override the automatic choice made by the algorithm regarding
ridge regression

Chapter 16
GLM in Oracle Data Mining

16-3

• The value of the ridge parameter, used only if you specifically enable ridge
regression.

Related Topics

• Oracle Database SQL Language Reference

16.2.4.2 Ridge and Confidence Bounds
Models built with Ridge Regression do not support confidence bounds.

Related Topics

• Confidence Bounds
Predict confidence bounds through Generalized Linear Models (GLM).

16.2.4.3 Ridge and Data Preparation
Learn about preparing data for Ridge Regression.

When Ridge Regression is enabled, different data preparation is likely to produce
different results in terms of model coefficients and diagnostics. Oracle recommends
that you enable Automatic Data Preparation for Generalized Linear Models, especially
when Ridge Regression is used.

Related Topics

• Data Preparation for GLM
Learn about preparing data for Generalized Linear Models (GLM).

16.3 Scalable Feature Selection
Oracle Data Mining supports a highly scalable and automated version of feature
selection and generation for Generalized Linear Models. This capability can enhance
the performance of the algorithm and improve accuracy and interpretability. Feature
selection and generation are available for both Linear Regression and binary Logistic
Regression.

16.3.1 Feature Selection
Feature selection is the process of choosing the terms to be included in the model.
The fewer terms in the model, the easier it is for human beings to interpret its
meaning. In addition, some columns may not be relevant to the value that the model is
trying to predict. Removing such columns can enhance model accuracy.

16.3.1.1 Configuring Feature Selection
Feature selection is a build setting for Generalized Linear Models. It is not enabled by
default. When configured for feature selection, the algorithm automatically determines
appropriate default behavior, but the following configuration options are available:

• The feature selection criteria can be AIC, SBIC, RIC, or α-investing. When the
feature selection criteria is α-investing, feature acceptance can be either strict or
relaxed.

• The maximum number of features can be specified.

Chapter 16
Scalable Feature Selection

16-4

• Features can be pruned in the final model. Pruning is based on t-statistics for
linear regression or wald statistics for logistic regression.

16.3.1.2 Feature Selection and Ridge Regression
Feature selection and ridge regression are mutually exclusive. When feature selection
is enabled, the algorithm can not use ridge.

Note:

If you configure the model to use both feature selection and ridge regression,
then you get an error.

16.3.2 Feature Generation
Feature generation is the process of adding transformations of terms into the model.
Feature generation enhances the power of models to fit more complex relationships
between target and predictors.

16.3.2.1 Configuring Feature Generation
Learn about configuring Feature Generation.

Feature generation is only possible when feature selection is enabled. Feature
generation is a build setting. By default, feature generation is not enabled.

The feature generation method can be either quadratic or cubic. By default, the
algorithm chooses the appropriate method. You can also explicitly specify the feature
generation method.

The following options for feature selection also affect feature generation:

• Maximum number of features

• Model pruning

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

16.4 Tuning and Diagnostics for GLM
The process of developing a Generalized Linear Model typically involves a number of
model builds. Each build generates many statistics that you can evaluate to determine
the quality of your model. Depending on these diagnostics, you may want to try
changing the model settings or making other modifications.

16.4.1 Build Settings
Specify the build settings for Generalized Linear Model (GLM).

You can use specify build settings.

Additional build settings are available to:

Chapter 16
Tuning and Diagnostics for GLM

16-5

• Control the use of ridge regression.

• Specify the handling of missing values in the training data.

• Specify the target value to be used as a reference in a logistic regression model.

Related Topics

• Ridge Regression
Understand the use of Ridge regression for singularity (exact multicollinearity) in
data.

• Data Preparation for GLM
Learn about preparing data for Generalized Linear Models (GLM).

• Logistic Regression

• Oracle Database PL/SQL Packages and Types Reference

16.4.2 Diagnostics
Generalized Linear Models generate many metrics to help you evaluate the quality of
the model.

16.4.2.1 Coefficient Statistics
Learn about coeffficient statistics for Linear and Logistic Regression.

The same set of statistics is returned for both linear and logistic regression, but
statistics that do not apply to the mining function are returned as NULL.

Coefficient statistics are returned by the Model Detail Views for Generalized Linear
Model.

Related Topics

• Coefficient Statistics for Linear Regression

• Coefficient Statistics for Logistic Regression

• Oracle Data Mining User’s Guide

16.4.2.2 Global Model Statistics
Learn about high-level statistics describing the model.

Separate high-level statistics describing the model as a whole, are returned for linear
and logistic regression. When ridge regression is enabled, fewer global details are
returned.

Global statistics are returned by the Model Detail Views for Generalized Linear Model.

Related Topics

• Global Model Statistics for Linear Regression

• Global Model Statistics for Logistic Regression

• Ridge Regression
Understand the use of Ridge regression for singularity (exact multicollinearity) in
data.

• Oracle Data Mining User’s Guide

Chapter 16
Tuning and Diagnostics for GLM

16-6

16.4.2.3 Row Diagnostics
Generate row-statistics by configuring Generalized Linear Models (GLM).

GLM to generate per-row statistics by specifying the name of a diagnostics table in the
build setting GLMS_DIAGNOSTICS_TABLE_NAME.

GLM requires a case ID to generate row diagnostics. If you provide the name of a
diagnostic table but the data does not include a case ID column, an exception is
raised.

Related Topics

• Row Diagnostics for Linear Regression

• Row Diagnostics for Logistic Regression

16.5 GLM Solvers
Learn about the different solvers for Generalized Liner Models (GLM).

The GLM algorithm supports four different solvers: Cholesky, QR, Stochastic
Gradient Descent (SGD),and Alternating Direction Method of Multipliers (ADMM)
(on top of L-BFGS). The Cholesky and QR solvers employ classical decomposition
approaches. The Cholesky solver is faster compared to the QR solver but less stable
numerically. The QR solver handles better rank deficient problems without the help of
regularization.

The SGD and ADMM (on top of L-BFGS) solvers are best suited for large scale data.
The SGD solver employs the stochastic gradient descent optimization algorithm while
ADMM (on top of L-BFGS) uses the Broyden-Fletcher-Goldfarb-Shanno optimization
algorithm within an Alternating Direction Method of Multipliers framework. The SGD
solver is fast but is sensitive to parameters and requires suitable scaled data to
achieve good convergence. The L-BFGS algorithm solves unconstrained optimization
problems and is more stable and robust than SGD. Also, L-BFGS uses ADMM in
conjunction, which, results in an efficient distributed optimization approach with low
communication cost.

Related Topics

• DBMS_DATA_MINING - Algorithm Settings: Neural Network

• DBMS_DATA_MINING — Algorithm Settings: Generalized Linear Models

• DBMS_DATA_MINING — Algorithm Settings: ADMM

• DBMS_DATA_MINING — Algorithm Settings: LBFGS

16.6 Data Preparation for GLM
Learn about preparing data for Generalized Linear Models (GLM).

Automatic Data Preparation (ADP) implements suitable data transformations for both
linear and logistic regression.

Chapter 16
GLM Solvers

16-7

Note:

Oracle recommends that you use Automatic Data Preparation with GLM.

Related Topics

• Oracle Data Mining User’s Guide

16.6.1 Data Preparation for Linear Regression
Learn about Automatic Data Preparation (ADP) for Generalized Linear Model (GLM).

When Automatic Data Preparation (ADP) is enabled, the algorithm chooses a
transformation based on input data properties and other settings. The transformation
can include one or more of the following for numerical data: subtracting the mean,
scaling by the standard deviation, or performing a correlation transformation (Neter, et.
al, 1990). If the correlation transformation is applied to numeric data, it is also applied
to categorical attributes.

Prior to standardization, categorical attributes are exploded into N-1 columns where
N is the attribute cardinality. The most frequent value (mode) is omitted during the
explosion transformation. In the case of highest frequency ties, the attribute values are
sorted alpha-numerically in ascending order, and the first value on the list is omitted
during the explosion. This explosion transformation occurs whether or not ADP is
enabled.

In the case of high cardinality categorical attributes, the described transformations
(explosion followed by standardization) can increase the build data size because the
resulting data representation is dense. To reduce memory, disk space, and processing
requirements, use an alternative approach. Under these circumstances, the VIF
statistic must be used with caution.

Related Topics

• Ridge and Data Preparation
Learn about preparing data for Ridge Regression.

• Oracle Data Mining User’s Guide

See Also:

• Neter, J., Wasserman, W., and Kutner, M.H., "Applied Statistical Models",
Richard D. Irwin, Inc., Burr Ridge, IL, 1990.

16.6.2 Data Preparation for Logistic Regression
Categorical attributes are exploded into N-1 columns where N is the attribute
cardinality. The most frequent value (mode) is omitted during the explosion
transformation. In the case of highest frequency ties, the attribute values are sorted
alpha-numerically in ascending order and the first value on the list is omitted during

Chapter 16
Data Preparation for GLM

16-8

the explosion. This explosion transformation occurs whether or not Automatic Data
Preparation (ADP) is enabled.

When ADP is enabled, numerical attributes are scaled by the standard deviation. This
measure of variability is computed as the standard deviation per attribute with respect
to the origin (not the mean) (Marquardt, 1980).

See Also:

Marquardt, D.W., "A Critique of Some Ridge Regression Methods:
Comment", Journal of the American Statistical Association, Vol. 75, No. 369 ,
1980, pp. 87-91.

16.6.3 Missing Values
When building or applying a model, Oracle Data Mining automatically replaces missing
values of numerical attributes with the mean and missing values of categorical
attributes with the mode.

You can configure a Generalized Linear Models to override the default treatment
of missing values. With the ODMS_MISSING_VALUE_TREATMENT setting, you can cause
the algorithm to delete rows in the training data that have missing values instead
of replacing them with the mean or the mode. However, when the model is applied,
Oracle Data Mining performs the usual mean/mode missing value replacement. As
a result, it is possible that the statistics generated from scoring does not match the
statistics generated from building the model.

If you want to delete rows with missing values in the scoring the model, you must
perform the transformation explicitly. To make build and apply statistics match, you
must remove the rows with NULLs from the scoring data before performing the apply
operation. You can do this by creating a view.

CREATE VIEW viewname AS SELECT * from tablename
 WHERE column_name1 is NOT NULL
 AND column_name2 is NOT NULL
 AND column_name3 is NOT NULL

Note:

In Oracle Data Mining, missing values in nested data indicate sparsity, not
values missing at random.

The value ODMS_MISSING_VALUE_DELETE_ROW is only valid for tables without
nested columns. If this value is used with nested data, an exception is raised.

16.7 Linear Regression
Linear regression is the Generalized Linear Models’ Regression algorithm supported
by Oracle Data Mining. The algorithm assumes no target transformation and constant
variance over the range of target values.

Chapter 16
Linear Regression

16-9

16.7.1 Coefficient Statistics for Linear Regression
Generalized Linear Model Regression models generate the following coefficient
statistics:

• Linear coefficient estimate

• Standard error of the coefficient estimate

• t-value of the coefficient estimate

• Probability of the t-value

• Variance Inflation Factor (VIF)

• Standardized estimate of the coefficient

• Lower and upper confidence bounds of the coefficient

16.7.2 Global Model Statistics for Linear Regression
Generalized Linear Model Regression models generate the following statistics that
describe the model as a whole:

• Model degrees of freedom

• Model sum of squares

• Model mean square

• Model F statistic

• Model F value probability

• Error degrees of freedom

• Error sum of squares

• Error mean square

• Corrected total degrees of freedom

• Corrected total sum of squares

• Root mean square error

• Dependent mean

• Coefficient of variation

• R-Square

• Adjusted R-Square

• Akaike's information criterion

• Schwarz's Baysian information criterion

• Estimated mean square error of the prediction

• Hocking Sp statistic

• JP statistic (the final prediction error)

• Number of parameters (the number of coefficients, including the intercept)

• Number of rows

Chapter 16
Linear Regression

16-10

• Whether or not the model converged

• Whether or not a covariance matrix was computed

16.7.3 Row Diagnostics for Linear Regression
For Linear Regression, the diagnostics table has the columns described in the
following table. All the columns are NUMBER, except the CASE_ID column, which
preserves the type from the training data.

Table 16-1 Diagnostics Table for GLM Regression Models

Column Description

CASE_ID Value of the case ID column

TARGET_VALUE Value of the target column

PREDICTED_VALUE Value predicted by the model for the target

HAT Value of the diagonal element of the hat matrix

RESIDUAL Measure of error

STD_ERR_RESIDUAL Standard error of the residual

STUDENTIZED_RESIDUAL Studentized residual

PRED_RES Predicted residual

COOKS_D Cook's D influence statistic

16.8 Logistic Regression
Binary Logistic Regression is the Generalized Linear Model Classification algorithm
supported by Oracle Data Mining. The algorithm uses the logit link function and the
binomial variance function.

16.8.1 Reference Class
You can use the build setting GLMS_REFERENCE_CLASS_NAME to specify the target value
to be used as a reference in a binary logistic regression model. Probabilities are
produced for the other (non-reference) class. By default, the algorithm chooses the
value with the highest prevalence. If there are ties, the attributes are sorted alpha-
numerically in an ascending order.

16.8.2 Class Weights
You can use the build setting CLAS_WEIGHTS_TABLE_NAME to specify the name of a class
weights table. Class weights influence the weighting of target classes during the model
build.

16.8.3 Coefficient Statistics for Logistic Regression
Generalized Linear Model Classification models generate the following coefficient
statistics:

Chapter 16
Logistic Regression

16-11

• Name of the predictor

• Coefficient estimate

• Standard error of the coefficient estimate

• Wald chi-square value of the coefficient estimate

• Probability of the Wald chi-square value

• Standardized estimate of the coefficient

• Lower and upper confidence bounds of the coefficient

• Exponentiated coefficient

• Exponentiated coefficient for the upper and lower confidence bounds of the
coefficient

16.8.4 Global Model Statistics for Logistic Regression
Generalized Linear Model Classification models generate the following statistics that
describe the model as a whole:

• Akaike's criterion for the fit of the intercept only model

• Akaike's criterion for the fit of the intercept and the covariates (predictors) model

• Schwarz's criterion for the fit of the intercept only model

• Schwarz's criterion for the fit of the intercept and the covariates (predictors) model

• -2 log likelihood of the intercept only model

• -2 log likelihood of the model

• Likelihood ratio degrees of freedom

• Likelihood ratio chi-square probability value

• Pseudo R-square Cox an Snell

• Pseudo R-square Nagelkerke

• Dependent mean

• Percent of correct predictions

• Percent of incorrect predictions

• Percent of ties (probability for two cases is the same)

• Number of parameters (the number of coefficients, including the intercept)

• Number of rows

• Whether or not the model converged

• Whether or not a covariance matrix was computed.

16.8.5 Row Diagnostics for Logistic Regression
For Logistic Regression, the diagnostics table has the columns described in the
following table. All the columns are NUMBER, except the CASE_ID and TARGET_VALUE
columns, which preserve the type from the training data.

Chapter 16
Logistic Regression

16-12

Table 16-2 Row Diagnostics Table for Logistic Regression

Column Description

CASE_ID Value of the case ID column

TARGET_VALUE Value of the target value

TARGET_VALUE_PROB Probability associated with the target value

HAT Value of the diagonal element of the hat matrix

WORKING_RESIDUAL Residual with respect to the adjusted dependent variable

PEARSON_RESIDUAL The raw residual scaled by the estimated standard deviation of
the target

DEVIANCE_RESIDUAL Contribution to the overall goodness of fit of the model

C Confidence interval displacement diagnostic

CBAR Confidence interval displacement diagnostic

DIFDEV Change in the deviance due to deleting an individual
observation

DIFCHISQ Change in the Pearson chi-square

Chapter 16
Logistic Regression

16-13

17
k-Means

Learn how to use enhanced k-Means Clustering algorithm that the Oracle Data Mining
supports.

• About k-Means

• k-Means Algorithm Configuration

• Data Preparation for k-Means

Related Topics

• Clustering
Learn how to discover natural groupings in the data through Clustering - the
unsupervised mining function.

17.1 About k-Means
The k-Means algorithm is a distance-based clustering algorithm that partitions the data
into a specified number of clusters.

Distance-based algorithms rely on a distance function to measure the similarity
between cases. Cases are assigned to the nearest cluster according to the distance
function used.

17.1.1 Oracle Data Mining Enhanced k-Means
Oracle Data Mining implements an enhanced version of the k-Means algorithm with
the following features:

• Distance function: The algorithm supports Euclidean and Cosine distance
functions. The default is Euclidean.

• Scalable Parallel Model build: The algorithm uses a very efficient method
of initialization based on Bahmani, Bahman, et al. "Scalable k-means++."
Proceedings of the VLDB Endowment 5.7 (2012): 622-633.

• Cluster properties: For each cluster, the algorithm returns the centroid, a
histogram for each attribute, and a rule describing the hyperbox that encloses
the majority of the data assigned to the cluster. The centroid reports the mode for
categorical attributes and the mean and variance for numerical attributes.

This approach to k-Means avoids the need for building multiple k-Means models and
provides clustering results that are consistently superior to the traditional k-Means.

17.1.2 Centroid
The centroid represents the most typical case in a cluster. For example, in a data set
of customer ages and incomes, the centroid of each cluster would be a customer of

17-1

average age and average income in that cluster. The centroid is a prototype. It does
not necessarily describe any given case assigned to the cluster.

The attribute values for the centroid are the mean of the numerical attributes and the
mode of the categorical attributes.

17.2 k-Means Algorithm Configuration
Learn about configuring k-means algorithm.

The Oracle Data Mining enhanced k-Means algorithm supports several build-time
settings. All the settings have default values. There is no reason to override the
defaults unless you want to influence the behavior of the algorithm in some specific
way.

You can configure k-Means by specifying the following considerations:

• Number of clusters

• Distance Function. The default distance function is Euclidean.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

17.3 Data Preparation for k-Means
Learn about preparing data for k-means algorithm.

Normalization is typically required by the k-Means algorithm. Automatic Data
Preparation performs normalization for k-Means. If you do not use ADP, you must
normalize numeric attributes before creating or applying the model.

When there are missing values in columns with simple data types (not nested),
k-Means interprets them as missing at random. The algorithm replaces missing
categorical values with the mode and missing numerical values with the mean.

When there are missing values in nested columns, k-Means interprets them as sparse.
The algorithm replaces sparse numerical data with zeros and sparse categorical data
with zero vectors.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

• Preparing the Data

• Transforming the Data

Chapter 17
k-Means Algorithm Configuration

17-2

18
Minimum Description Length

Learn how to use Minimum Description Length, the supervised technique for
calculating Attribute Importance.

• About MDL

• Data Preparation for MDL

Related Topics

• About Feature Selection and Attribute Importance

18.1 About MDL
Introduces Minimum Description Length (MDL) algorithm.

MDL is an information theoretic model selection principle. It is an important concept in
information theory (the study of the quantification of information) and in learning theory
(the study of the capacity for generalization based on empirical data).

MDL assumes that the simplest, most compact representation of the data is the best
and most probable explanation of the data. The MDL principle is used to build Oracle
Data Mining attribute importance models.

The build process for attribute importance supports parallel execution.

Related Topics

• Oracle Database VLDB and Partitioning Guide

18.1.1 Compression and Entropy
Data compression is the process of encoding information using fewer bits than what
the original representation uses. The MDL Principle is based on the notion that the
shortest description of the data is the most probable. In typical instantiations of this
principle, a model is used to compress the data by reducing the uncertainty (entropy)
as discussed below. The description of the data includes a description of the model
and the data as described by the model.

Entropy is a measure of uncertainty. It quantifies the uncertainty in a random variable
as the information required to specify its value. Information in this sense is defined
as the number of yes/no questions known as bits (encoded as 0 or 1) that must
be answered for a complete specification. Thus, the information depends upon the
number of values that variable can assume.

For example, if the variable represents the sex of an individual, then the number
of possible values is two: female and male. If the variable represents the salary
of individuals expressed in whole dollar amounts, then the values can be in the
range $0-$10B, or billions of unique values. Clearly it takes more information to specify
an exact salary than to specify an individual's sex.

18-1

18.1.1.1 Values of a Random Variable: Statistical Distribution
Information (the number of bits) depends on the statistical distribution of the values
of the variable as well as the number of values of the variable. If we are judicious in
the choice of Yes/No questions, then the amount of information for salary specification
cannot be as much as it first appears. Most people do not have billion dollar salaries.
If most people have salaries in the range $32000-$64000, then most of the time,
it requires only 15 questions to discover their salary, rather than the 30 required, if
every salary from $0-$1000000000 were equally likely. In the former example, if the
persons were known to be pregnant, then their sex is known to be female. There is no
uncertainty, no Yes/No questions need be asked. The entropy is 0.

18.1.1.2 Values of a Random Variable: Significant Predictors
Suppose that for some random variable there is a predictor that when its values are
known reduces the uncertainty of the random variable. For example, knowing whether
a person is pregnant or not, reduces the uncertainty of the random variable sex-of-
individual. This predictor seems like a valuable feature to include in a model. How
about name? Imagine that if you knew the name of the person, you would also know
the person's sex. If so, the name predictor would seemingly reduce the uncertainty
to zero. However, if names are unique, then what was gained? Is the person named
Sally? Is the person named George?... We would have as many Yes/No predictors
in the name model as there are people. Therefore, specifying the name model would
require as many bits as specifying the sex of each person.

18.1.1.3 Total Entropy
For a random variable, X, the total entropy is defined as minus the Probability(X)
multiplied by the log to the base 2 of the Probability(X). This can be shown to be the
variable's most efficient encoding.

18.1.2 Model Size
Minimum Description Length (MDL) takes into consideration the size of the model
as well as the reduction in uncertainty due to using the model. Both model size
and entropy are measured in bits. For our purposes, both numeric and categorical
predictors are binned. Thus the size of each single predictor model is the number of
predictor bins. The uncertainty is reduced to the within-bin target distribution.

18.1.3 Model Selection
Minimum Description Length (MDL) considers each attribute as a simple predictive
model of the target class. Model selection refers to the process of comparing and
ranking the single-predictor models.

MDL uses a communication model for solving the model selection problem. In the
communication model there is a sender, a receiver, and data to be transmitted.

These single predictor models are compared and ranked with respect to the MDL
metric, which is the relative compression in bits. MDL penalizes model complexity to
avoid over-fit. It is a principled approach that takes into account the complexity of the
predictors (as models) to make the comparisons fair.

Chapter 18
About MDL

18-2

18.1.4 The MDL Metric
Attribute importance uses a two-part code as the metric for transmitting each unit of
data. The first part (preamble) transmits the model. The parameters of the model are
the target probabilities associated with each value of the prediction.

For a target with j values and a predictor with k values, ni (i= 1,..., k) rows per value,
there are Ci, the combination of j-1 things taken ni-1 at a time possible conditional
probabilities. The size of the preamble in bits can be shown to be Sum(log2(Ci)), where
the sum is taken over k. Computations like this represent the penalties associated with
each single prediction model. The second part of the code transmits the target values
using the model.

It is well known that the most compact encoding of a sequence is the encoding that
best matches the probability of the symbols (target class values). Thus, the model that
assigns the highest probability to the sequence has the smallest target class value
transmission cost. In bits, this is the Sum(log2(pi)), where the pi are the predicted
probabilities for row i associated with the model.

The predictor rank is the position in the list of associated description lengths, smallest
first.

18.2 Data Preparation for MDL
Learn about preparing data for Minimum Description Length (MDL).

Automatic Data Preparation performs supervised binning for MDL. Supervised binning
uses decision trees to create the optimal bin boundaries. Both categorical and
numerical attributes are binned.

MDL handles missing values naturally as missing at random. The algorithm replaces
sparse numerical data with zeros and sparse categorical data with zero vectors.
Missing values in nested columns are interpreted as sparse. Missing values in
columns with simple data types are interpreted as missing at random.

If you choose to manage your own data preparation, keep in mind that MDL usually
benefits from binning. However, the discriminating power of an attribute importance
model can be significantly reduced when there are outliers in the data and external
equal-width binning is used. This technique can cause most of the data to concentrate
in a few bins (a single bin in extreme cases). In this case, quantile binning is a better
solution.

Related Topics

• Preparing the Data

• Transforming the Data

Chapter 18
Data Preparation for MDL

18-3

19
Naive Bayes

Learn how to use Naive Bayes Classification algorithm that the Oracle Data Mining
supports.

• About Naive Bayes

• Tuning a Naive Bayes Model

• Data Preparation for Naive Bayes

Related Topics

• Classification
Learn how to predict a categorical target through Classification - the supervised
mining function.

19.1 About Naive Bayes
Learn about Naive Bayes algorithm.

The Naive Bayes algorithm is based on conditional probabilities. It uses Bayes'
theorem, a formula that calculates a probability by counting the frequency of values
and combinations of values in the historical data.

Bayes' theorem finds the probability of an event occurring given the probability of
another event that has already occurred. If B represents the dependent event and A
represents the prior event, Bayes' theorem can be stated as follows.

Note:

Prob(B given A) = Prob(A and B)/Prob(A)

To calculate the probability of B given A, the algorithm counts the number of cases
where A and B occur together and divides it by the number of cases where A occurs
alone.

Example 19-1 Use Bayes' Theorem to Predict an Increase in Spending

Suppose you want to determine the likelihood that a customer under 21 increases
spending. In this case, the prior condition (A) is "under 21," and the dependent
condition (B) is "increase spending."

If there are 100 customers in the training data and 25 of them are customers under 21
who have increased spending, then:

Prob(A and B) = 25%

If 75 of the 100 customers are under 21, then:

19-1

Prob(A) = 75%

Bayes' theorem predicts that 33% of customers under 21 are likely to increase
spending (25/75).

The cases where both conditions occur together are referred to as pairwise. In
Example 19-1, 25% of all cases are pairwise.

The cases where only the prior event occurs are referred to as singleton. In
Example 19-1, 75% of all cases are singleton.

A visual representation of the conditional relationships used in Bayes' theorem is
shown in the following figure.

Figure 19-1 Conditional Probabilities in Bayes' Theorem

A and B

B

A

P(A) = 3/4

P(B) = 2/4

P(A and B) = P(AB) = 1/4

P(A B) = P(AB) / P(B) = (1/4) / (2/4) = 1/2

P(B A) = P(AB) / P(A) = (1/4) / (3/4) = 1/3

For purposes of illustration, Example 19-1 and Figure 19-1 show a dependent event
based on a single independent event. In reality, the Naive Bayes algorithm must
usually take many independent events into account. In Example 19-1, factors such as
income, education, gender, and store location might be considered in addition to age.

Naive Bayes makes the assumption that each predictor is conditionally independent of
the others. For a given target value, the distribution of each predictor is independent
of the other predictors. In practice, this assumption of independence, even when
violated, does not degrade the model's predictive accuracy significantly, and makes
the difference between a fast, computationally feasible algorithm and an intractable
one.

Sometimes the distribution of a given predictor is clearly not representative of the
larger population. For example, there might be only a few customers under 21 in the
training data, but in fact there are many customers in this age group in the wider
customer base. To compensate for this, you can specify prior probabilities when
training the model.

Related Topics

• Priors and Class Weights
Learn about Priors and Class Weights in a Classification model to produce a
useful result.

Chapter 19
About Naive Bayes

19-2

19.1.1 Advantages of Naive Bayes
Learn about the advantages of Naive Bayes.

The Naive Bayes algorithm affords fast, highly scalable model building and scoring. It
scales linearly with the number of predictors and rows.

The build process for Naive Bayes supports parallel execution. (Scoring supports
parallel execution irrespective of the algorithm.)

Naive Bayes can be used for both binary and multiclass classification problems.

Related Topics

• Oracle Database VLDB and Partitioning Guide

19.2 Tuning a Naive Bayes Model
Introduces about probability calculation of pairwise occurrences and percentage of
singleton occurrences.

Naive Bayes calculates a probability by dividing the percentage of pairwise
occurrences by the percentage of singleton occurrences. If these percentages are
very small for a given predictor, they probably do not contribute to the effectiveness of
the model. Occurrences below a certain threshold can usually be ignored.

The following build settings are available for adjusting the probability thresholds. You
can specify:

• The minimum percentage of pairwise occurrences required for including a
predictor in the model.

• The minimum percentage of singleton occurrences required for including a
predictor in the model .

The default thresholds work well for most models, so you need not adjust these
settings.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

19.3 Data Preparation for Naive Bayes
Learn about preparing the data for Naive Bayes.

Automatic Data Preparation performs supervised binning for Naive Bayes. Supervised
binning uses decision trees to create the optimal bin boundaries. Both categorical and
numeric attributes are binned.

Naive Bayes handles missing values naturally as missing at random. The algorithm
replaces sparse numerical data with zeros and sparse categorical data with zero
vectors. Missing values in nested columns are interpreted as sparse. Missing values in
columns with simple data types are interpreted as missing at random.

If you choose to manage your own data preparation, keep in mind that Naive Bayes
usually requires binning. Naive Bayes relies on counting techniques to calculate
probabilities. Columns must be binned to reduce the cardinality as appropriate.

Chapter 19
Tuning a Naive Bayes Model

19-3

Numerical data can be binned into ranges of values (for example, low, medium, and
high), and categorical data can be binned into meta-classes (for example, regions
instead of cities). Equi-width binning is not recommended, since outliers cause most
of the data to concentrate in a few bins, sometimes a single bin. As a result, the
discriminating power of the algorithms is significantly reduced

Related Topics

• Preparing the Data

• Transforming the Data

Chapter 19
Data Preparation for Naive Bayes

19-4

20
Neural Network

Learn about Neural Network for Regression and Classification mining functions.

• About Neural Network

• Data Preparation for Neural Network

• Neural Network Algorithm Configuration

• Scoring with Neural Network

20.1 About Neural Network
Neural Network in Oracle Data Mining is designed for mining functions like
Classification and Regression.

In machine learning, an artificial neural network is an algorithm inspired from biological
neural network and is used to estimate or approximate functions that depend on a
large number of generally unknown inputs. An artificial neural network is composed of
a large number of interconnected neurons which exchange messages between each
other to solve specific problems. They learn by examples and tune the weights of
the connections among the neurons during the learning process. Neural Network is
capable of solving a wide variety of tasks such as computer vision, speech recognition,
and various complex business problems.

Related Topics

• Regression
Learn how to predict a continuous numerical target through Regression - the
supervised mining function.

• Classification
Learn how to predict a categorical target through Classification - the supervised
mining function.

20.1.1 Neuron and activation function
Neurons are the building blocks of a Neural Network.

A neuron takes one or more inputs having different weights and has an output which
depends on the inputs. The output is achieved by adding up inputs of each neuron
with weights and feeding the sum into the activation function.

A Sigmoid function is usually the most common choice for activation function but other
non-linear functions, piecewise linear functions or step functions are also used. The
following are some examples of activation functions:

• Logistic Sigmoid function

• Linear function

• Tanh function

20-1

• Arctan function

• Bipolar sigmoid function

20.1.2 Loss or Cost function
A loss function or cost function is a function that maps an event or values of one or
more variables onto a real number intuitively representing some "cost" associated with
the event.

An optimization problem seeks to minimize a loss function. The form of loss function is
chosen based on the nature of the problem and mathematical needs.

The following are the different loss functions for different scenarios:

• Binary classification: cross entropy function.

• Multi-class classification: softmax function.

• Regression: squared error function.

20.1.3 Forward-Backward Propagation
Understand forward-backward propagation.

Forward propagation computes the loss function value by weighted summing the
previous layer neuron values and applying activation functions. Backward propagation
calculates the gradient of a loss function with respect to all the weights in the network.
The weights are initialized with a set of random numbers uniformly distributed within
a region specified by user (by setting weights boundaries), or region defined by the
number of nodes in the adjacent layers (data driven). The gradients are fed to an
optimization method which in turn uses them to update the weights, in an attempt to
minimize the loss function.

20.1.4 Optimization Solver
Understand optimization solver.

An optimization solver is used to search for the optimal solution of the loss function to
find the extreme value (maximum or minimum) of the loss (cost) function.

Oracle Data Mining implements Limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) together with line search. L-BFGS is a Quasi-Newton method. This method
uses rank-one updates specified by gradient evaluations to approximate Hessian
matrix. This method only needs limited amount of memory. L-BFGS is used to find
the descent direction and line search is used to find the appropriate step size. The
number of historical copies kept in L-BFGS solver is defined by LBFGS_HISTORY_DEPTH.
When the number of iterations is smaller than the history depth, the Hessian computed
by L-BFGS is accurate. When the number of iterations is larger than the history depth,
the Hessian computed by L-BFGS is an approximation. Therefore, the history depth
cannot be too small or too large as the computation can be too slow. Typically, the
value is between 3 and 10.

20.1.5 Regularization
Understand regularization.

Chapter 20
About Neural Network

20-2

Regularization refers to a process of introducing additional information to solve
an ill-posed problem or to prevent over-fitting. Ill-posed or over-fitting can occur
when a statistical model describes random error or noise instead of the underlying
relationship. Typical regularization techniques include L1-norm regularization, L2-norm
regularization, and held-aside.

Held-aside is usually used for large training date set whereas L1-norm regularization
and L2-norm regularization are mostly used for small training date set.

20.1.6 Convergence Check
This checks if the optimal solution has been reached and if the iterations of the
optimization has come to an end.

In L-BFGS solver, the convergence criteria includes maximum number of iterations,
infinity norm of gradient, and relative error tolerance. For held-aside regularization, the
convergence criteria checks the loss function value of the test data set, as well as the
best model learned so far. The training is terminated when the model becomes worse
for a specific number of iterations (specified by NNET_HELDASIDE_MAX_FAIL), or the loss
function is close to zero, or the relative error on test data is less than the tolerance.

20.1.7 LBFGS_SCALE_HESSIAN
Defines LBFGS_SCALE_HESSIAN.

It specifies how to set the initial approximation of the inverse Hessian at the beginning
of each iteration. If the value is set to be LBFGS_SCALE_HESSIAN_ENABLE, then we
approximate the initial inverse Hessian with Oren-Luenberger scaling. If it is set to
be LBFGS_SCALE_HESSIAN_DISABLE, then we use identity as the approximation of the
inverse Hessian at the beginning of each iteration.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

20.1.8 NNET_HELDASIDE_MAX_FAIL
Defines NNET_HELDASIDE_MAX_FAIL.

Validation data (held-aside) is used to stop training early if the network performance on
the validation data fails to improve or remains the same for NNET_HELDASIDE_MAX_FAIL
epochs in a row.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

20.2 Data Preparation for Neural Network
Learn about preparing data for Neural Network.

The algorithm automatically "explodes" categorical data into a set of binary attributes,
one per category value. Oracle Data Mining algorithms automatically handle missing
values and therefore, missing value treatment is not necessary.

Chapter 20
Data Preparation for Neural Network

20-3

The algorithm automatically replaces missing categorical values with the mode and
missing numerical values with the mean. Neural Network requires the normalization of
numeric input. The algorithm uses z-score normalization. The normalization occurs
only for two-dimensional numeric columns (not nested). Normalization places the
values of numeric attributes on the same scale and prevents attributes with a large
original scale from biasing the solution. Neural Network scales the numeric values in
nested columns by the maximum absolute value seen in the corresponding columns.

Related Topics

• Preparing the Data

• Transforming the Data

20.3 Neural Network Algorithm Configuration
Learn about configuring Neural Network algorithm.

Specify Nodes Per Layer

INSERT INTO SETTINGS_TABLE (setting_name, setting_value) VALUES
 ('NNET_NODES_PER_LAYER', '2,3');

Specify Activation Functions Per Layer

INSERT INTO SETTINGS_TABLE (setting_name, setting_value) VALUES
 ('NNET_ACTIVATIONS', ' ' ' NNET_ACTIVATIONS_TANH
' ', ' ' NNET_ACTIVATIONS_LOG_SIG ' ' ');

Example 20-1 Example

In this example you will understand how to build a Neural Network. When the settings
table is created and populated, insert a row in the settings table to specify the
algorithm.

INSERT INTO SETTINGS_TABLE (setting_name, setting_value) VALUES
 ('ALGO_NAME', 'ALGO_NEURAL_NETWORK');

Build the model as follows:

BEGIN
DBMS_DATA_MINING.CREATE_MODEL(
model_name => 'model-name',
mining_function => dbms_data_mining.classification/regression,
data_table_name => 'test_table',
case_id_column_name => 'case_id',
target_column_name => 'test_target',
settings_table_name => 'settings_table');
END;
/

Chapter 20
Neural Network Algorithm Configuration

20-4

20.4 Scoring with Neural Network
Learn to score with Neural Network.

Scoring with Neural Network is the same as any other Classification
or Regression algorithm. The following functions are supported:
PREDICTION, PREDICTION_PROBABILITY, PREDICTION_COST, PREDICTION_SET, and
PREDICTION_DETAILS.

Related Topics

• Oracle Database SQL Language Reference

Chapter 20
Scoring with Neural Network

20-5

21
Non-Negative Matrix Factorization

Learn how to use Non-Negative Matrix Factorization (NMF), the unsupervised
algorithm, that the Oracle Data Mining uses for Feature Extraction.

• About NMF

• Tuning the NMF Algorithm

• Data Preparation for NMF

Related Topics

• Feature Selection and Extraction
Learn how to perform Feature Selection, Feature Extraction, and Attribute
Importance.

See Also:

Paper "Learning the Parts of Objects by Non-Negative Matrix Factorization"
by D. D. Lee and H. S. Seung in Nature (401, pages 788-791, 1999)

21.1 About NMF
Non-Negative Matrix Factorization is a state of the art feature extraction algorithm.
NMF is useful when there are many attributes and the attributes are ambiguous
or have weak predictability. By combining attributes, NMF can produce meaningful
patterns, topics, or themes.

Each feature created by NMF is a linear combination of the original attribute set. Each
feature has a set of coefficients, which are a measure of the weight of each attribute
on the feature. There is a separate coefficient for each numerical attribute and for each
distinct value of each categorical attribute. The coefficients are all non-negative.

21.1.1 Matrix Factorization
Non-Negative Matrix Factorization uses techniques from multivariate analysis and
linear algebra. It decomposes the data as a matrix M into the product of two lower
ranking matrices W and H. The sub-matrix W contains the NMF basis; the sub-matrix
H contains the associated coefficients (weights).

The algorithm iteratively modifies of the values of W and H so that their product
approaches M. The technique preserves much of the structure of the original data and
guarantees that both basis and weights are non-negative. The algorithm terminates
when the approximation error converges or a specified number of iterations is
reached.

21-1

The NMF algorithm must be initialized with a seed to indicate the starting point for the
iterations. Because of the high dimensionality of the processing space and the fact that
there is no global minimization algorithm, the appropriate initialization can be critical in
obtaining meaningful results. Oracle Data Mining uses a random seed that initializes
the values of W and H based on a uniform distribution. This approach works well in
most cases.

21.1.2 Scoring with NMF
Learn about scoring with Non-Negative Matrix Factorization (NMF).

NMF can be used as a pre-processing step for dimensionality reduction in
Classification, Regression, Clustering, and other mining tasks. Scoring an NMF model
produces data projections in the new feature space. The magnitude of a projection
indicates how strongly a record maps to a feature.

The SQL scoring functions for feature extraction support NMF models. When the
functions are invoked with the analytical syntax, the functions build and apply
a transient NMF model. The feature extraction functions are: FEATURE_DETAILS,
FEATURE_ID, FEATURE_SET, and FEATURE_VALUE.

Related Topics

• Oracle Data Mining User’s Guide

21.1.3 Text Mining with NMF
Learn about mining text with Non-Negative Matrix Factorization (NMF).

NMF is especially well-suited for text mining. In a text document, the same word can
occur in different places with different meanings. For example, "hike" can be applied
to the outdoors or to interest rates. By combining attributes, NMF introduces context,
which is essential for explanatory power:

• "hike" + "mountain" -> "outdoor sports"

• "hike" + "interest" -> "interest rates"

Related Topics

• Oracle Data Mining User’s Guide

21.2 Tuning the NMF Algorithm
Learn about configuring parameters for Non-Negative Matrix Factorization (NMF).

Oracle Data Mining supports five configurable parameters for NMF. All of them have
default values which are appropriate for most applications of the algorithm. The NMF
settings are:

• Number of features. By default, the number of features is determined by the
algorithm.

• Convergence tolerance. The default is .05.

• Number of iterations. The default is 50.

• Random seed. The default is -1.

Chapter 21
Tuning the NMF Algorithm

21-2

• Non-negative scoring. You can specify whether negative numbers must be allowed
in scoring results. By default they are allowed.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

21.3 Data Preparation for NMF
Learn about preparing the date for Non-Negative Matrix Factorization (NMF).

Automatic Data Preparation normalizes numerical attributes for NMF.

When there are missing values in columns with simple data types (not nested), NMF
interprets them as missing at random. The algorithm replaces missing categorical
values with the mode and missing numerical values with the mean.

When there are missing values in nested columns, NMF interprets them as sparse.
The algorithm replaces sparse numerical data with zeros and sparse categorical data
with zero vectors.

If you choose to manage your own data preparation, keep in mind that outliers
can significantly impact NMF. Use a clipping transformation before binning or
normalizing. NMF typically benefits from normalization. However, outliers with min-max
normalization cause poor matrix factorization. To improve the matrix factorization, you
need to decrease the error tolerance. This in turn leads to longer build times.

Related Topics

• Preparing the Data

• Transforming the Data

Chapter 21
Data Preparation for NMF

21-3

22
O-Cluster

Learn how to use Orthogonal Partitioning Clustering (O-Cluster), an Oracle-proprietary
Clustering algorithm.

• About O-Cluster

• Tuning the O-Cluster Algorithm

• Data Preparation for O-Cluster

Related Topics

• Clustering
Learn how to discover natural groupings in the data through Clustering - the
unsupervised mining function.

See Also:

Campos, M.M., Milenova, B.L., "Clustering Large Databases with Numeric
and Nominal Values Using Orthogonal Projections", Oracle Data Mining
Technologies, Oracle Corporation.

Oracle Data Mining

22.1 About O-Cluster
O-Cluster is a fast, scalable grid-based clustering algorithm well-suited for mining
large, high-dimensional data sets. The algorithm can produce high quality clusters
without relying on user-defined parameters.

The objective of O-Cluster is to identify areas of high density in the data and separate
the dense areas into clusters. It uses axis-parallel uni-dimensional (orthogonal) data
projections to identify the areas of density. The algorithm looks for splitting points that
result in distinct clusters that do not overlap and are balanced in size.

O-Cluster operates recursively by creating a binary tree hierarchy. The number of
leaf clusters is determined automatically. The algorithm can be configured to limit the
maximum number of clusters.

22.1.1 Partitioning Strategy
Partitioning strategy refers to the process of discovering areas of density in the
attribute histograms. The process differs for numerical and categorical data. When
both are present in the data, the algorithm performs the searches separately and then
compares the results.

22-1

In choosing a partition, the algorithm balances two objectives: finding well separated
clusters, and creating clusters that are balanced in size. The following paragraphs
detail how partitions for numerical and categorical attributes are identified.

22.1.1.1 Partitioning Numerical Attributes
To find the best valid cutting plane, O-Cluster searches the attribute histograms for
bins of low density (valleys) between bins of high density (peaks). O-Cluster attempts
to find a pair of peaks with a valley between them where the difference between the
peak and valley histogram counts is statistically significant.

A sensitivity level parameter specifies the lowest density that may be considered a
peak. Sensitivity is an optional parameter for numeric data. It may be used to filter the
splitting point candidates.

22.1.1.2 Partitioning Categorical Attributes
Categorical values do not have an intrinsic order associated with them. Therefore it is
impossible to apply the notion of histogram peaks and valleys that is used to partition
numerical values.

Instead the counts of individual values form a histogram. Bins with large counts are
interpreted as regions with high density. The clustering objective is to separate these
high-density areas and effectively decrease the entropy (randomness) of the data.

O-Cluster identifies the histogram with highest entropy along the individual projections.
Entropy is measured as the number of bins above sensitivity level. O-Cluster places
the two largest bins into separate partitions, thereby creating a splitting predicate. The
remainder of the bins are assigned randomly to the two resulting partitions.

22.1.2 Active Sampling
The O-Cluster algorithm operates on a data buffer of a limited size. It uses an active
sampling mechanism to handle data sets that do not fit into memory.

After processing an initial random sample, O-Cluster identifies cases that are of no
further interest. Such cases belong to frozen partitions where further splitting is highly
unlikely. These cases are replaced with examples from ambiguous regions where
further information (additional cases) is needed to find good splitting planes and
continue partitioning. A partition is considered ambiguous if a valid split can only be
found at a lower confidence level.

Cases associated with frozen partitions are marked for deletion from the buffer. They
are replaced with cases belonging to ambiguous partitions. The histograms of the
ambiguous partitions are updated and splitting points are reevaluated.

22.1.3 Process Flow
The O-Cluster algorithm evaluates possible splitting points for all projections in a
partition, selects the best one, and splits the data into two new partitions. The
algorithm proceeds by searching for good cutting planes inside the newly created
partitions. Thus, O-Cluster creates a binary tree structure that divides the input space
into rectangular regions with no overlaps or gaps.

The main processing stages are:

Chapter 22
About O-Cluster

22-2

1. Load the buffer. Assign all cases from the initial buffer to a single active root
partition.

2. Compute histograms along the orthogonal uni-dimensional projections for each
active partition.

3. Find the best splitting points for active partitions.

4. Flag ambiguous and frozen partitions.

5. When a valid separator exists, split the active partition into two new active
partitions and start over at step 2.

6. Reload the buffer after all recursive partitioning on the current buffer is completed.
Continue loading the buffer until either the buffer is filled again, or the end of the
data set is reached, or until the number of cases is equal to the data buffer size.

Note:

O-Cluster requires at most one pass through the data

22.1.4 Scoring
The clusters discovered by O-Cluster are used to generate a Bayesian probability
model that can be used to score new data. The generated probability model is
a mixture model where the mixture components are represented by a product of
independent normal distributions for numerical attributes and multinomial distributions
for categorical attributes.

22.2 Tuning the O-Cluster Algorithm
Learn about configuring build settings for O-Cluster.

The O-Cluster algorithm supports two build-time settings. Both settings have default
values. There is no reason to override the defaults unless you want to influence the
behavior of the algorithm in some specific way.

You can configure O-Cluster by specifying any of the following:

• Buffer size — Size of the processing buffer.

• Sensitivity factor — A fraction that specifies the peak density required for
separating a new cluster.

Related Topics

• Active Sampling

• Partitioning Strategy

• Oracle Database PL/SQL Packages and Types Reference

22.3 Data Preparation for O-Cluster
Learn about preparing the data for O-Cluster.

Chapter 22
Tuning the O-Cluster Algorithm

22-3

Automatic Data Preparation bins numerical attributes for O-Cluster. It uses a
specialized form of equi-width binning that computes the number of bins per attribute
automatically. Numerical columns with all nulls or a single value are removed. O-
Cluster handles missing values naturally as missing at random.

Note:

O-Cluster does not support nested columns, sparse data, or unstructured
text.

Related Topics

• Preparing the Data

• Transforming the Data

22.3.1 User-Specified Data Preparation for O-Cluster
Learn about preparing the user-specified data for O-Cluster.

Keep the following in mind if you choose to prepare the data for O-Cluster:

• O-Cluster does not necessarily use all the input data when it builds a model. It
reads the data in batches (the default batch size is 50000). It only reads another
batch if it believes, based on statistical tests, that uncovered clusters can still exist.

• Binary attributes must be declared as categorical.

• Automatic equi-width binning is highly recommended. The bin identifiers are
expected to be positive consecutive integers starting at 1.

• The presence of outliers can significantly impact clustering algorithms. Use a
clipping transformation before binning or normalizing. Outliers with equi-width
binning can prevent O-Cluster from detecting clusters. As a result, the whole
population appears to fall within a single cluster.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 22
Data Preparation for O-Cluster

22-4

23
R Extensibility

Learn how to built analytics model and scored in R with ease. R extensible algorithms
are enhanced to support and register additional algorithms for SQL users and
graphical user interface users.

• Oracle Data Mining with R Extensibility

• Scoring with R

• About Algorithm Meta Data Registration

23.1 Oracle Data Mining with R Extensibility
Learn how you can use Oracle Data Mining to build, score, and view Oracle Data
Mining models as well as R models.

The Oracle Data Mining framework is enhanced extending the data mining algorithm
set with algorithms from the open source R ecosystem. Oracle Data Mining is
implemented in the Oracle Database kernel. The mining models are Database schema
objects. With the extensibility enhancement, the data mining framework can build,
score, and view both Oracle Data Mining models and R models.

Registration of R scripts

The R engine on the database server executes the R scripts to build, score, and view
R models. These R scripts must be registered with the database beforehand by a
privileged user with rqAdmin role. You must first install Oracle R Enterprise to register
the R scripts.

Functions of Oracle Data Mining with R Model

The following functions are supported for an R model:

• Oracle Data Mining DBMS_DATA_MINING package is enhanced to support R model.
For example, CREATE_MODEL and DROP_MODEL.

• MODEL VIEW to get the R model details about a single model and a partitioned
model.

• Oracle Data Mining SQL functions are enhanced to operate with the R model
functions. For example, PREDICTION and CLUSTER_ID.

R model extensibility supports the following data mining functions:

• Association

• Attribute Importance

• Regression

• Classification

• Clustering

• Feature Extraction

23-1

23.2 Scoring with R
Learn how to build and score with R Mining model.

For more information, see Oracle Data Mining User’s Guide

23.3 About Algorithm Meta Data Registration
Algorithm Meta Data Registration allows for a uniform and consistent approach of
registering new algorithm functions and their settings.

Users have the ability to add new R-based algorithms through the registration process.
The new algorithms appear as available within Oracle R Enterprise and within the
appropriate mining functions. Based on the registration meta data, the settings page is
dynamically rendered. The advantages are as follows:

• Manage R-based algorithms more easily

• Easy to specify R-based algorithm for model build

• Clean individual properties in JSON structure

• Share R-based algorithm across user

Algorithm meta data registration extends the mining model capability of Oracle Data
Mining.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

• FETCH_JSON_SCHEMA Procedure

• REGISTER_ALGORITHM Procedure

• JSON Schema for R Extensible Algorithm

23.3.1 Algorithm Meta Data Registration
Algorithm Meta Data Registration allows for a uniform and consistent approach of
registering new algorithm functions and their settings.

User have the ability to add new algorithms through the registration process. The
new algorithms can appear as available within Oracle Data Mining R within their
appropriate mining functions. Based on the registration meta data, the settings page
is dynamically rendered. Algorithm meta data registration extends the mining model
capability of Oracle Data Mining.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

• FETCH_JSON_SCHEMA Procedure

• REGISTER_ALGORITHM Procedure

• JSON Schema for R Extensible Algorithm

Chapter 23
Scoring with R

23-2

24
Random Forest

Learn how to use Random Forest as a classification algorithm.

• About Random Forest

• Building a Random Forest

• Scoring with Random Forest

Related Topics

• Feature Selection and Extraction
Learn how to perform Feature Selection, Feature Extraction, and Attribute
Importance.

24.1 About Random Forest
Random Forest is a classification algorithm used by Oracle Data Mining. The algorithm
builds an ensemble (also called forest) of trees.

The algorithm builds a number of decision tree models and predicts using the
ensemble. An individual decision tree is built by choosing a random sample from the
training data set as the input. At each node of the tree, only a random sample of
predictors is chosen for computing the split point. This introduces variation in the data
used by the different trees in the forest. The parameters RFOR_SAMPLING_RATIO and
RFOR_MTRY are used to specify the sample size and number of predictors chosen at
each node. Users can use ODMS_RANDOM_SEED to set the random seed value before
running the algorithm.

Related Topics

• Decision Tree
Learn how to use Decision Tree algorithm. Decision Tree is one of the
Classification algorithms that the Oracle Data Mining supports.

• Splitting

• Data Preparation for Decision Tree
Learn how to prepare data for Decision Tree.

24.2 Building a Random Forest
The Random Forest is built upon existing infrastructure and Application Programming
Interfaces (APIs) of Oracle Data Mining.

The model is built by specifying parameters in the existing APIs. The scoring is
performed using the same SQL queries and APIs as the existing Classification
algorithms. Oracle Data Mining implements a variant of Classical Random Forest
algorithm. This implementation supports big data sets. The implementation of the
algorithm differs in the following ways:

24-1

• Oracle Data Mining does not support bagging and instead provides sampling
without replacement

• Users have the ability to specify the depth of the tree. Trees are not built to
maximum depth.

Example 24-1 Example

In this example you will understand how to build a Random Forest. When the settings
table is created and populated, insert a row in the settings table to specify the
algorithm and the variant.

INSERT INTO SETTINGS_TABLE (setting_name, setting_value) VALUES
('ALGO_NAME', 'ALGO_RANDOM_FOREST');

Build the model as follows:

BEGIN DBMS_DATA_MINING.CREATE_MODEL(
model_name => ‘model-name',
mining_function => dbms_data_mining.classification,
data_table_name => 'test_table',
case_id_column_name => '',
target_column_name => 'test_target',
settings_table_name => 'settings_table');
END;
/

24.3 Scoring with Random Forest
Learn to score with Random Forest.

Scoring with Random Forest is the same as any other Classification algorithm.
The following functions are supported: PREDICTION, PREDICTION_PROBABILITY,
PREDICTION_COST, PREDICTION_SET, and PREDICTION_DETAILS.

Related Topics

• Oracle Database SQL Language Reference

Chapter 24
Scoring with Random Forest

24-2

25
Singular Value Decomposition

Learn how to use Singular Value Decomposition, an unsupervised algorithm for
Feature Extraction.

• About Singular Value Decomposition

• Configuring the Algorithm

• Data Preparation for SVD

Related Topics

• Feature Selection and Extraction
Learn how to perform Feature Selection, Feature Extraction, and Attribute
Importance.

25.1 About Singular Value Decomposition
Singular Value Decomposition (SVD) and the closely-related Principal Component
Analysis (PCA) are well established feature extraction methods that have a wide range
of applications. Oracle Data Mining implements SVD as a feature extraction algorithm
and PCA as a special scoring method for SVD models.

SVD and PCA are orthogonal linear transformations that are optimal at capturing
the underlying variance of the data. This property is very useful for reducing
the dimensionality of high-dimensional data and for supporting meaningful data
visualization.

SVD and PCA have a number of important applications in addition to dimensionality
reduction. These include matrix inversion, data compression, and the imputation of
unknown data values.

25.1.1 Matrix Manipulation
Singular Value Decomposition (SVD) is a factorization method that decomposes a
rectangular matrix X into the product of three matrices:

Figure 25-1 Matrix Manipulation

X = USV'

The U matrix consists of a set of 'left' orthonormal bases
The S matrix is a diagonal matrix
The V matrix consists of set of 'right' orthonormal bases

25-1

The values in S are called singular values. They are non-negative, and their
magnitudes indicate the importance of the corresponding bases (components). The
singular values reflect the amount of data variance captured by the bases. The first
basis (the one with largest singular value) lies in the direction of the greatest data
variance. The second basis captures the orthogonal direction with the second greatest
variance, and so on.

SVD essentially performs a coordinate rotation that aligns the transformed axes with
the directions of maximum variance in the data. This is a useful procedure under the
assumption that the observed data has a high signal-to-noise ratio and that a large
variance corresponds to interesting data content while a lower variance corresponds to
noise.

SVD makes the assumption that the underlying data is Gaussian distributed and can
be well described in terms of means and covariances.

25.1.2 Low Rank Decomposition
To reduce dimensionality, Singular Value Decomposition (SVD) keeps lower-order
bases (the ones with the largest singular values) and ignores higher-order bases
(the ones with the smallest singular values). The rationale behind this strategy is that
the low-order bases retain the characteristics of the data that contribute most to its
variance and are likely to capture the most important aspects of the data.

Given a data set X (nxm), where n is the number of rows and m is the number
of attributes, a low-rank SVD uses only k components (k <= min(m, n)). In typical
implementations of SVD, the value of k requires a visual inspection of the ranked
singular values associated with the individual components. In Oracle Data Mining,
SVD automatically estimates the cutoff point, which corresponds to a significant drop
in the explained variance.

SVD produces two sets of orthonormal bases (U and V). Either of these bases can be
used as a new coordinate system. In Oracle Data Mining SVD, V is the new coordinate
system, and U represents the projection of X in this coordinate system. The algorithm
computes the projection of new data as follows:

Figure 25-2 Computing Projection of New Data

X = XV
k
S

k

-1
~

where X (nxk) is the projected data in the reduced data space, defined by the first k
components, and Vk and Sk define the reduced component set.

25.1.3 Scalability
In Oracle Data Mining, Singular Value Decomposition (SVD) can process data sets
with millions of rows and thousands of attributes. Oracle Data Mining automatically
recommends an appropriate number of features, based on the data, for dimensionality
reduction.

SVD has linear scalability with the number of rows and cubic scalability with the
number of attributes when a full decomposition is computed. A low-rank decomposition
is typically linear with the number of rows and linear with the number of columns. The

Chapter 25
About Singular Value Decomposition

25-2

scalability with the reduced rank depends on how the rank compares to the number of
rows and columns. It can be linear when the rank is significantly smaller or cubic when
it is on the same scale.

25.2 Configuring the Algorithm
Learn about configuring Singular Value Decomposition (SVD).

Several options are available for configuring the SVD algorithm. Among them are
settings to control model size and performance, and whether to score with SVD
projections or Principal Component Analysis (PCA) projections.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

25.2.1 Model Size
The U matrix in Singular Value Decomposition has as many rows as the number of
rows in the build data. To avoid creating a large model, the U matrix persists only when
an algorithm-specific setting is enabled. By default the U matrix does not persist.

25.2.2 Performance
Singular Value Decomposition can use approximate computations to improve
performance. Approximation may be appropriate for data sets with many columns.
An approximate low-rank decomposition provides good solutions at a reasonable
computational cost. The quality of the approximation is dependent on the
characteristics of the data.

25.2.3 PCA scoring
Learn about configuring Singular Value Decomposition (SVD) to perform Principal
Component Analysis (PCA) projections.

SVD models can be configured to perform PCA projections. PCA is closely related
to SVD. PCA computes a set of orthonormal bases (principal components) that are
ranked by their corresponding explained variance. The main difference between SVD
and PCA is that the PCA projection is not scaled by the singular values. The PCA
projection to the new coordinate system is given by:

Figure 25-3 PCA Projection Calculation

X = XV
k

~

where

X

(nxk) is the projected data in the reduced data space, defined by the first k
components, and Vk defines the reduced component set.

Chapter 25
Configuring the Algorithm

25-3

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

25.3 Data Preparation for SVD
Learn about preparing the data for Singular Value Decomposition (SVD).

Oracle Data Mining implements SVD for numerical data and categorical data.

When the build data is scored with SVD, Automatic Data Preparation does nothing.
When the build data is scored with Principal Component Analysis (PCA), Automatic
Data Preparation shifts the numerical data by mean.

Missing value treatment is not needed, because Oracle Data Mining algorithms handle
missing values automatically. SVD replaces numerical missing values with the mean
and categorical missing values with the mode. For sparse data (missing values in
nested columns), SVD replaces missing values with zeros.

Related Topics

• Preparing the Data

• Transforming the Data

Chapter 25
Data Preparation for SVD

25-4

26
Support Vector Machines

Learn how to use Support Vector Machines, a powerful algorithm based on statistical
learning theory.

Oracle Data Mining implements Support Vector Machines for Classification,
Regression, and Anomaly Detection.

• About Support Vector Machines

• Tuning an SVM Model

• Data Preparation for SVM

• SVM Classification

• One-Class SVM

• SVM Regression

Related Topics

• Regression
Learn how to predict a continuous numerical target through Regression - the
supervised mining function.

• Anomaly Detection
Learn how to detect rare cases in the data through Anomaly Detection - an
unsupervised function.

• Oracle Data Mining

See Also:

Milenova, B.L., Yarmus, J.S., Campos, M.M., "Support Vector Machines
in Oracle Database 10g: Removing the Barriers to Widespread Adoption
of Support Vector Machines", Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005.

26.1 About Support Vector Machines
Support Vector Machine (SVM) is a powerful, state-of-the-art algorithm with strong
theoretical foundations based on the Vapnik-Chervonenkis theory. SVM has strong
regularization properties. Regularization refers to the generalization of the model to
new data.

26.1.1 Advantages of SVM
Oracle Data Mining SVM implementation includes two types of solvers, an Interior
Point Method (IPM) solver and a Sub-Gradient Descent (SGD) solver. The IPM solver

26-1

unilink:datamining_index

provides stable and accurate solutions, however, it may not be able to handle data of
high dimensionality. For high-dimensional and/or large data, for example, text, ratings,
and so on, the SGD solver is a better choice. Both solvers have highly scalable
parallel implementations and can handle large volumes of data.

26.1.2 Advantages of SVM in Oracle Data Mining
Oracle Data Mining has its own proprietary implementation of Support Vector
Machines (SVM), which exploits the many benefits of the algorithm while
compensating for some of the limitations inherent in the SVM framework. Oracle Data
Mining SVM provides the scalability and usability that are needed in a production
quality data mining system.

26.1.2.1 Usability
Explains usability for Support Vector Machines (SVM) in Oracle Data Mining.

Usability is a major enhancement, because SVM has often been viewed as a tool for
experts. The algorithm typically requires data preparation, tuning, and optimization.
Oracle Data Mining minimizes these requirements. You do not need to be an expert to
build a quality SVM model in Oracle Data Mining. For example:

• Data preparation is not required in most cases.

• Default tuning parameters are generally adequate.

Related Topics

• Data Preparation for SVM

• Tuning an SVM Model
Learn about configuring settings for Support Vector Machines (SVM).

26.1.2.2 Scalability
Learn how to scale the data for Support Vector Machines (SVM).

When dealing with very large data sets, sampling is often required. However, sampling
is not required with Oracle Data Mining SVM, because the algorithm itself uses
stratified sampling to reduce the size of the training data as needed.

Oracle Data Mining SVM is highly optimized. It builds a model incrementally by
optimizing small working sets toward a global solution. The model is trained until
convergence on the current working set, then the model adapts to the new data. The
process continues iteratively until the convergence conditions are met. The Gaussian
kernel uses caching techniques to manage the working sets.

Related Topics

• Kernel-Based Learning
Learn about kernal-based functions to transform the input data for Support Vector
Machines (SVM).

26.1.3 Kernel-Based Learning
Learn about kernal-based functions to transform the input data for Support Vector
Machines (SVM).

Chapter 26
About Support Vector Machines

26-2

SVM is a kernel-based algorithm. A kernel is a function that transforms the input data
to a high-dimensional space where the problem is solved. Kernel functions can be
linear or nonlinear.

Oracle Data Mining supports linear and Gaussian (nonlinear) kernels.

In Oracle Data Mining, the linear kernel function reduces to a linear equation on the
original attributes in the training data. A linear kernel works well when there are many
attributes in the training data.

The Gaussian kernel transforms each case in the training data to a point in an
n-dimensional space, where n is the number of cases. The algorithm attempts to
separate the points into subsets with homogeneous target values. The Gaussian
kernel uses nonlinear separators, but within the kernel space it constructs a linear
equation.

Note:

Active Learning is not relevant in Oracle Database 12c Release 2 and later.
A setting similar to Active Learning is ODMS_SAMPLING.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

26.2 Tuning an SVM Model
Learn about configuring settings for Support Vector Machines (SVM).

SVM have built-in mechanisms that automatically choose appropriate settings based
on the data. You may need to override the system-determined settings for some
domains.

Settings pertain to regression, classification, and anomaly detection unless otherwise
specified.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

26.3 Data Preparation for SVM
The SVM algorithm operates natively on numeric attributes. SVM uses z-score
normalization on numeric attributes. The normalization occurs only for two-dimensional
numeric columns (not nested). The algorithm automatically "explodes" categorical
data into a set of binary attributes, typically one per category value. For example,
a character column for marital status with values married or single is transformed to
two numeric attributes: married and single. The new attributes can have the value 1
(true) or 0 (false).

When there are missing values in columns with simple data types (not nested), SVM
interprets them as missing at random. The algorithm automatically replaces missing
categorical values with the mode and missing numerical values with the mean.

Chapter 26
Tuning an SVM Model

26-3

When there are missing values in the nested columns, SVM interprets them as sparse.
The algorithm automatically replaces sparse numerical data with zeros and sparse
categorical data with zero vectors.

26.3.1 Normalization
Support Vector Machines require the normalization of numeric input. Normalization
places the values of numeric attributes on the same scale and prevents attributes
with a large original scale from biasing the solution. Normalization also minimizes the
likelihood of overflows and underflows.

26.3.2 SVM and Automatic Data Preparation
Learn about treating and transforming data manually or through Automatic Data
Preparation (ADP) for Support Vector Machines (SVM).

The SVM algorithm automatically handles missing value treatment and the
transformation of categorical data, but normalization and outlier detection must be
handled by Automatic Data Preparation (ADP) or prepared manually. ADP performs
min-max normalization for SVM.

Note:

Oracle recommends that you use Automatic Data Preparation with SVM. The
transformations performed by ADP are appropriate for most models.

Related Topics

• Oracle Data Mining User’s Guide

26.4 SVM Classification
Support Vector Machines (SVM) Classification is based on the concept of decision
planes that define decision boundaries. A decision plane is one that separates
between a set of objects having different class memberships. SVM finds the vectors
("support vectors") that define the separators giving the widest separation of classes.

SVM classification supports both binary, multiclass, and multitarget Classification.
Multitarget alllows multiple class labels to be associated with a single row. The target
type is a collection of type ORA_MINING_VARCHAR2_NT.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

26.4.1 Class Weights
Learn when to implement class weights to a data in Support Vector Machines (SVM).

In SVM classification, weights are a biasing mechanism for specifying the relative
importance of target values (classes).

Chapter 26
SVM Classification

26-4

SVM models are automatically initialized to achieve the best average prediction across
all classes. However, if the training data does not represent a realistic distribution, you
can bias the model to compensate for class values that are under-represented. If you
increase the weight for a class, then the percent of correct predictions for that class
must increase.

Related Topics

• Priors and Class Weights
Learn about Priors and Class Weights in a Classification model to produce a
useful result.

26.5 One-Class SVM
Oracle Data Mining uses Support Vector Machines (SVM) as the one-class classifier
for anomaly detection. When SVM is used for anomaly detection, it has the
classification mining function but no target.

One-class SVM models, when applied, produce a prediction and a probability for each
case in the scoring data. If the prediction is 1, the case is considered typical. If the
prediction is 0, the case is considered anomalous. This behavior reflects the fact that
the model is trained with normal data.

You can specify the percentage of the data that you expect to be anomalous with
the SVMS_OUTLIER_RATE build setting. If you have some knowledge that the number of
"suspicious" cases is a certain percentage of your population, then you can set the
outlier rate to that percentage. The model approximately identifies that many "rare"
cases when applied to the general population.

26.6 SVM Regression
Learn how to use epsilon-insensitivity loss function to solve regression problems in
Support Vector Machines (SVM).

SVM uses an epsilon-insensitive loss function to solve regression problems.

SVM regression tries to find a continuous function such that the maximum number
of data points lie within the epsilon-wide insensitivity tube. Predictions falling within
epsilon distance of the true target value are not interpreted as errors.

The epsilon factor is a regularization setting for SVM regression. It balances the
margin of error with model robustness to achieve the best generalization to new data.

Related Topics

• Tuning an SVM Model
Learn about configuring settings for Support Vector Machines (SVM).

Chapter 26
One-Class SVM

26-5

Part IV
Using the Data Mining API

Learn how to use Oracle Data Mining application programming interface.

• Data Mining With SQL

• About the Data Mining API

• Preparing the Data

• Transforming the Data

• Creating a Model

• Scoring and Deployment

• Mining Unstructured Text

• Administrative Tasks for Oracle Data Mining

• The Data Mining Sample Programs

27
Data Mining With SQL

Learn how to solve business problems using the Oracle Data Mining application
programming interface (API).

• Highlights of the Data Mining API

• Example: Targeting Likely Candidates for a Sales Promotion

• Example: Analyzing Preferred Customers

• Example: Segmenting Customer Data

• Example : Building an ESA Model with a Wiki Dataset

27.1 Highlights of the Data Mining API
Learn about the advantages of Data Mining application programming interface (API).

Data mining is a valuable technology in many application domains. It has become
increasingly indispensable in the private sector as a tool for optimizing operations and
maintaining a competitive edge. Data mining also has critical applications in the public
sector and in scientific research. However, the complexities of data mining application
development and the complexities inherent in managing and securing large stores of
data can limit the adoption of data mining technology.

Oracle Data Mining is uniquely suited to addressing these challenges. The data
mining engine is implemented in the Database kernel, and the robust administrative
features of Oracle Database are available for managing and securing the data. While
supporting a full range of data mining algorithms and procedures, the API also has
features that simplify the development of data mining applications.

The Oracle Data Mining API consists of extensions to Oracle SQL, the native
language of the Database. The API offers the following advantages:

• Scoring in the context of SQL queries. Scoring can be performed dynamically or
by applying data mining models.

• Automatic Data Preparation (ADP) and embedded transformations.

• Model transparency. Algorithm-specific queries return details about the attributes
that were used to create the model.

• Scoring transparency. Details about the prediction, clustering, or feature extraction
operation can be returned with the score.

• Simple routines for predictive analytics.

• A workflow-based graphical user interface (GUI) within Oracle SQL Developer.
You can download SQL Developer free of charge from the following site:

Oracle Data Miner

27-1

Note:

A set of sample data mining programs ship with Oracle Database. The
examples in this manual are taken from these samples.

Related Topics

• The Data Mining Sample Programs
Describes the data mining sample programs that ship with Oracle Database.

• Oracle Data Mining Concepts

27.2 Example: Targeting Likely Candidates for a Sales
Promotion

This example targets customers in Brazil for a special promotion that offers coupons
and an affinity card.

The query uses data on marital status, education, and income to predict the customers
who are most likely to take advantage of the incentives. The query applies a decision
tree model called dt_sh_clas_sample to score the customer data.

Example 27-1 Predict Best Candidates for an Affinity Card

SELECT cust_id
 FROM mining_data_apply_v
 WHERE
 PREDICTION(dt_sh_clas_sample
 USING cust_marital_status, education, cust_income_level) = 1
 AND country_name IN 'Brazil';

 CUST_ID

 100404
 100607
 101113

The same query, but with a bias to favor false positives over false negatives, is shown
here.

SELECT cust_id
 FROM mining_data_apply_v
 WHERE
 PREDICTION(dt_sh_clas_sample COST MODEL
 USING cust_marital_status, education, cust_income_level) = 1
 AND country_name IN 'Brazil';

 CUST_ID

 100139
 100163
 100275
 100404
 100607
 101113

Chapter 27
Example: Targeting Likely Candidates for a Sales Promotion

27-2

 101170
 101463

The COST MODEL keywords cause the cost matrix associated with the model to be used
in making the prediction. The cost matrix, stored in a table called dt_sh_sample_costs,
specifies that a false negative is eight times more costly than a false positive.
Overlooking a likely candidate for the promotion is far more costly than including an
unlikely candidate.

SELECT * FROM dt_sh_sample_cost;

ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST
------------------- ---------------------- ----------
 0 0 0
 0 1 1
 1 0 8
 1 1 0

27.3 Example: Analyzing Preferred Customers
The examples in this section reveal information about customers who use affinity cards
or are likely to use affinity cards.

Example 27-2 Find Demographic Information About Preferred Customers

This query returns the gender, age, and length of residence of typical affinity card
holders. The anomaly detection model, SVMO_SH_Clas_sample, returns 1 for typical
cases and 0 for anomalies. The demographics are predicted for typical customers
only; outliers are not included in the sample.

SELECT cust_gender, round(avg(age)) age,
 round(avg(yrs_residence)) yrs_residence,
 count(*) cnt
FROM mining_data_one_class_v
WHERE PREDICTION(SVMO_SH_Clas_sample using *) = 1
GROUP BY cust_gender
ORDER BY cust_gender;

CUST_GENDER AGE YRS_RESIDENCE CNT
------------ ---------- ------------- ----------
F 40 4 36
M 45 5 304

Example 27-3 Dynamically Identify Customers Who Resemble Preferred
Customers

This query identifies customers who do not currently have an affinity card, but
who share many of the characteristics of affinity card holders. The PREDICTION and
PREDICTION_PROBABILITY functions use an OVER clause instead of a predefined model
to classify the customers. The predictions and probabilities are computed dynamically.

SELECT cust_id, pred_prob
 FROM
 (SELECT cust_id, affinity_card,
 PREDICTION(FOR TO_CHAR(affinity_card) USING *) OVER () pred_card,
 PREDICTION_PROBABILITY(FOR TO_CHAR(affinity_card),1 USING *) OVER ()
pred_prob
 FROM mining_data_build_v)
 WHERE affinity_card = 0

Chapter 27
Example: Analyzing Preferred Customers

27-3

 AND pred_card = 1
 ORDER BY pred_prob DESC;

 CUST_ID PRED_PROB
---------- ---------
 102434 .96
 102365 .96
 102330 .96
 101733 .95
 102615 .94
 102686 .94
 102749 .93
.
.
.
.
 102580 .52
 102269 .52
 102533 .51
 101604 .51
 101656 .51

226 rows selected.

Example 27-4 Predict the Likelihood that a New Customer Becomes a
Preferred Customer

This query computes the probability of a first-time customer becoming a preferred
customer (an affinity card holder). This query can be executed in real time at the point
of sale.

The new customer is a 44-year-old American executive who has a bachelors degree
and earns more than $300,000/year. He is married, lives in a household of 3, and
has lived in the same residence for the past 6 years. The probability of this customer
becoming a typical affinity card holder is only 5.8%.

SELECT PREDICTION_PROBABILITY(SVMO_SH_Clas_sample, 1 USING
 44 AS age,
 6 AS yrs_residence,
 'Bach.' AS education,
 'Married' AS cust_marital_status,
 'Exec.' AS occupation,
 'United States of America' AS country_name,
 'M' AS cust_gender,
 'L: 300,000 and above' AS cust_income_level,
 '3' AS houshold_size
) prob_typical
FROM DUAL;

PROB_TYPICAL

 5.8

Example 27-5 Use Predictive Analytics to Find Top Predictors

The DBMS_PREDICTIVE_ANALYTICS PL/SQL package contains routines that perform
simple data mining operations without a predefined model. In this example, the
EXPLAIN routine computes the top predictors for affinity card ownership. The results
show that household size, marital status, and age are the top three predictors.

Chapter 27
Example: Analyzing Preferred Customers

27-4

BEGIN
 DBMS_PREDICTIVE_ANALYTICS.EXPLAIN(
 data_table_name => 'mining_data_test_v',
 explain_column_name => 'affinity_card',
 result_table_name => 'cust_explain_result');
END;
/

SELECT * FROM cust_explain_result
 WHERE rank < 4;

ATTRIBUTE_NAME ATTRIBUTE_SUBNAME EXPLANATORY_VALUE RANK
------------------------ -------------------- ----------------- ----------
HOUSEHOLD_SIZE .209628541 1
CUST_MARITAL_STATUS .199794636 2
AGE .111683067 3

27.4 Example: Segmenting Customer Data
The examples in this section use an Expectation Maximization clustering model to
segment the customer data based on common characteristics.

Example 27-6 Compute Customer Segments

This query computes natural groupings of customers and returns the number of
customers in each group.

SELECT CLUSTER_ID(em_sh_clus_sample USING *) AS clus, COUNT(*) AS cnt
 FROM mining_data_apply_v
GROUP BY CLUSTER_ID(em_sh_clus_sample USING *)
ORDER BY cnt DESC;

 CLUS CNT
---------- ----------
 9 311
 3 294
 7 215
 12 201
 17 123
 16 114
 14 86
 19 64
 15 56
 18 36

Example 27-7 Find the Customers Who Are Most Likely To Be in the Largest
Segment

The query in Example 27-6 shows that segment 9 has the most members. The
following query lists the five customers who are most likely to be in segment 9.

SELECT cust_id
FROM (SELECT cust_id, RANK() over (ORDER BY prob DESC, cust_id) rnk_clus2
 FROM (SELECT cust_id,
 ROUND(CLUSTER_PROBABILITY(em_sh_clus_sample, 9 USING *),3) prob
 FROM mining_data_apply_v))
WHERE rnk_clus2 <= 5
ORDER BY rnk_clus2;

 CUST_ID

Chapter 27
Example: Segmenting Customer Data

27-5

 100002
 100012
 100016
 100019
 100021

Example 27-8 Find Key Characteristics of the Most Representative Customer in the Largest
Cluster

The query in Example 27-7 lists customer 100002 first in the list of likely customers for
segment 9. The following query returns the five characteristics that are most significant
in determining the assignment of customer 100002 to segments with probability > 20%
(only segment 9 for this customer).

SELECT S.cluster_id, probability prob,
 CLUSTER_DETAILS(em_sh_clus_sample, S.cluster_id, 5 using T.*) det
 FROM
 (SELECT v.*, CLUSTER_SET(em_sh_clus_sample, NULL, 0.2 USING *) pset
 FROM mining_data_apply_v v
 WHERE cust_id = 100002) T,
 TABLE(T.pset) S
 ORDER BY 2 desc;

CLUSTER_ID PROB DET
---------- -------
--
 9 1.0000 <Details algorithm="Expectation Maximization" cluster="9">
 <Attribute name="YRS_RESIDENCE" actualValue="4" weight="1" rank="1"/>
 <Attribute name="EDUCATION" actualValue="Bach." weight="0" rank="2"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight="0" rank="3"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight="0"
rank="4"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight="0" rank="5"/>
 </Details>

27.5 Example : Building an ESA Model with a Wiki Dataset
The examples shows FEATURE_COMPARE function with Explicit Semantic Analysis (ESA)
model, which compares a similar set of texts and then a dissimilar set of texts.

The example shows an ESA model built against a 2005 Wiki dataset rendering over
200,000 features. The documents are mined as text and the document titles are given
as the feature IDs.

Similar Texts

SELECT 1-FEATURE_COMPARE(esa_wiki_mod USING 'There are several PGA tour
golfers from South Africa' text AND USING 'Nick Price won the 2002
Mastercard Colonial Open' text) similarity FROM DUAL;

SIMILARITY

 .258

The output metric shows distance calculation. Therefore, smaller number represent
more similar texts. So, 1 minus the distance in the queries result in similarity.

Chapter 27
Example : Building an ESA Model with a Wiki Dataset

27-6

Dissimilar Texts

SELECT 1-FEATURE_COMPARE(esa_wiki_mod USING 'There are several PGA
tour golfers from South Africa' text AND USING 'John Elway played
quarterback for the Denver Broncos' text) similarity FROM DUAL;

SIMILARITY

 .007

Chapter 27
Example : Building an ESA Model with a Wiki Dataset

27-7

28
About the Data Mining API

Overview of the Oracle Data Mining application programming interface (API)
components.

• About Mining Models

• Data Mining Data Dictionary Views

• Data Mining PL/SQL Packages

• Data Mining SQL Scoring Functions

28.1 About Mining Models
Mining models are database schema objects that perform data mining.

As with all schema objects, access to mining models is controlled by database
privileges. Models can be exported and imported. They support comments, and they
can be tracked in the Database auditing system.

Mining models are created by the CREATE_MODEL procedure in the DBMS_DATA_MINING
PL/SQL package. Models are created for a specific mining function, and they use
a specific algorithm to perform that function. Mining function is a data mining term
that refers to a class of mining problems to be solved. Examples of mining functions
are: regression, classification, attribute importance, clustering, anomaly detection, and
feature extraction. Oracle Data Mining supports one or more algorithms for each
mining function.

Note:

Most types of mining models can be used to score data. However, it is
possible to score data without applying a model. Dynamic scoring and
predictive analytics return scoring results without a user-supplied model.
They create and apply transient models that are not visible to you.

Related Topics

• Dynamic Scoring

• DBMS_PREDICTIVE_ANALYTICS
Understand the routines of DBMS_PREDICTIVE_ANALYTICS package.

• Creating a Model
Explains how to create data mining models and query model details.

• Administrative Tasks for Oracle Data Mining
Explains how to perform administrative tasks related to Oracle Data Mining.

28-1

28.2 Data Mining Data Dictionary Views
Lists Oracle Data Mining data dictionary views.

The data dictionary views for Oracle Data Mining are listed in the following table. A
database administrator (DBA) and USER versions of the views are also available.

Table 28-1 Data Dictionary Views for Oracle Data Mining

View Name Description

ALL_MINING_MODELS Provides information about all accessible mining models

ALL_MINING_MODEL_ATTRIBU
TES

Provides information about the attributes of all
accessible mining models

ALL_MINING_MODEL_PARTITI
ONS

Provides information about the partitions of all
accessible partitioned mining models

ALL_MINING_MODEL_SETTING
S

Provides information about the configuration settings for
all accessible mining models

ALL_MINING_MODEL_VIEWS Provides information about the model views for all
accessible mining models

ALL_MINING_MODEL_XFORMS Provides the user-specified transformations embedded in
all accessible mining models.

28.2.1 ALL_MINING_MODELS
Describes an example of ALL_MINING_MODELS and shows a sample query.

The following example describes ALL_MINING_MODELS and shows a sample query.

Example 28-1 ALL_MINING_MODELS

 describe ALL_MINING_MODELS
 Name Null? Type
 --- --------

 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 MINING_FUNCTION VARCHAR2(30)
 ALGORITHM VARCHAR2(30)
 CREATION_DATE NOT NULL DATE
 BUILD_DURATION NUMBER
 MODEL_SIZE NUMBER
 PARTITIONED VARCHAR2(3)
 COMMENTS VARCHAR2(4000)

The following query returns the models accessible to you that use the Support Vector
Machine algorithm.

SELECT mining_function, model_name
 FROM all_mining_models
 WHERE algorithm = 'SUPPORT_VECTOR_MACHINES'
 ORDER BY mining_function, model_name;

Chapter 28
Data Mining Data Dictionary Views

28-2

MINING_FUNCTION MODEL_NAME
------------------------- --------------------
CLASSIFICATION PART2_CLAS_SAMPLE
CLASSIFICATION PART_CLAS_SAMPLE
CLASSIFICATION SVMC_SH_CLAS_SAMPLE
CLASSIFICATION SVMO_SH_CLAS_SAMPLE
CLASSIFICATION T_SVM_CLAS_SAMPLE
REGRESSION SVMR_SH_REGR_SAMPLE

Related Topics

• Creating a Model
Explains how to create data mining models and query model details.

• Oracle Database Reference

28.2.2 ALL_MINING_MODEL_ATTRIBUTES
Describes an example of ALL_MINING_MODEL_ATTRIBUTES and shows a sample query.

The following example describes ALL_MINING_MODEL_ATTRIBUTES and shows a sample
query. Attributes are the predictors or conditions that are used to create models and
score data.

Example 28-2 ALL_MINING_MODEL_ATTRIBUTES

describe ALL_MINING_MODEL_ATTRIBUTES
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 ATTRIBUTE_NAME NOT NULL VARCHAR2(128)
 ATTRIBUTE_TYPE VARCHAR2(11)
 DATA_TYPE VARCHAR2(106)
 DATA_LENGTH NUMBER
 DATA_PRECISION NUMBER
 DATA_SCALE NUMBER
 USAGE_TYPE VARCHAR2(8)
 TARGET VARCHAR2(3)
 ATTRIBUTE_SPEC VARCHAR2(4000)

The following query returns the attributes of an SVM classification model named
T_SVM_CLAS_SAMPLE. The model has both categorical and numerical attributes and
includes one attribute that is unstructured text.

SELECT attribute_name, attribute_type, target
 FROM all_mining_model_attributes
 WHERE model_name = 'T_SVM_CLAS_SAMPLE'
 ORDER BY attribute_name;

ATTRIBUTE_NAME ATTRIBUTE_TYPE TAR
------------------------- -------------------- ---
AFFINITY_CARD CATEGORICAL YES
AGE NUMERICAL NO
BOOKKEEPING_APPLICATION NUMERICAL NO
BULK_PACK_DISKETTES NUMERICAL NO
COMMENTS TEXT NO
COUNTRY_NAME CATEGORICAL NO
CUST_GENDER CATEGORICAL NO
CUST_INCOME_LEVEL CATEGORICAL NO

Chapter 28
Data Mining Data Dictionary Views

28-3

CUST_MARITAL_STATUS CATEGORICAL NO
EDUCATION CATEGORICAL NO
FLAT_PANEL_MONITOR NUMERICAL NO
HOME_THEATER_PACKAGE NUMERICAL NO
HOUSEHOLD_SIZE CATEGORICAL NO
OCCUPATION CATEGORICAL NO
OS_DOC_SET_KANJI NUMERICAL NO
PRINTER_SUPPLIES NUMERICAL NO
YRS_RESIDENCE NUMERICAL NO
Y_BOX_GAMES NUMERICAL NO

Related Topics

• About the Data Mining API
Overview of the Oracle Data Mining application programming interface (API)
components.

• Oracle Database Reference

28.2.3 ALL_MINING_MODEL_PARTITIONS
Describes an example of ALL_MINING_MODEL_PARTITIONS and shows a sample query.

The following example describes ALL_MINING_MODEL_PARTITIONS and shows a sample
query.

Example 28-3 ALL_MINING_MODEL_PARTITIONS

describe ALL_MINING_MODEL_PARTITIONS
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 PARTITION_NAME VARCHAR2(128)
 POSITION NUMBER
 COLUMN_NAME NOT NULL VARCHAR2(128)
 COLUMN_VALUE VARCHAR2(4000)

The following query returns the partition names and partition key values for two
partitioned models. Model PART2_CLAS_SAMPLE has a two column partition key with
system-generated partition names.

SELECT model_name, partition_name, position, column_name, column_value
 FROM all_mining_model_partitions
 ORDER BY model_name, partition_name, position;

MODEL_NAME PARTITION_ POSITION COLUMN_NAME
COLUMN_VALUE
-------------------- ---------- -------- --------------------

PART2_CLAS_SAMPLE DM$$_P0 1 CUST_GENDER
F
PART2_CLAS_SAMPLE DM$$_P0 2 CUST_INCOME_LEVEL
HIGH
PART2_CLAS_SAMPLE DM$$_P1 1 CUST_GENDER
F
PART2_CLAS_SAMPLE DM$$_P1 2 CUST_INCOME_LEVEL
LOW

Chapter 28
Data Mining Data Dictionary Views

28-4

PART2_CLAS_SAMPLE DM$$_P2 1 CUST_GENDER
F
PART2_CLAS_SAMPLE DM$$_P2 2 CUST_INCOME_LEVEL
MEDIUM
PART2_CLAS_SAMPLE DM$$_P3 1 CUST_GENDER
M
PART2_CLAS_SAMPLE DM$$_P3 2 CUST_INCOME_LEVEL
HIGH
PART2_CLAS_SAMPLE DM$$_P4 1 CUST_GENDER
M
PART2_CLAS_SAMPLE DM$$_P4 2 CUST_INCOME_LEVEL
LOW
PART2_CLAS_SAMPLE DM$$_P5 1 CUST_GENDER
M
PART2_CLAS_SAMPLE DM$$_P5 2 CUST_INCOME_LEVEL
MEDIUM
PART_CLAS_SAMPLE F 1 CUST_GENDER
F
PART_CLAS_SAMPLE M 1 CUST_GENDER
M
PART_CLAS_SAMPLE U 1 CUST_GENDER U

Related Topics

• Oracle Database Reference

28.2.4 ALL_MINING_MODEL_SETTINGS
Describes an example of ALL_MINING_MODEL_SETTINGS and shows a sample query.

The following example describes ALL_MINING_MODEL_SETTINGS and shows a sample
query. Settings influence model behavior. Settings may be specific to an algorithm or
to a mining function, or they may be general.

Example 28-4 ALL_MINING_MODEL_SETTINGS

 describe ALL_MINING_MODEL_SETTINGS
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 SETTING_NAME NOT NULL VARCHAR2(30)
 SETTING_VALUE VARCHAR2(4000)
 SETTING_TYPE VARCHAR2(7)

The following query returns the settings for a model named SVD_SH_SAMPLE. The model
uses the Singular Value Decomposition algorithm for feature extraction.

SELECT setting_name, setting_value, setting_type
 FROM all_mining_model_settings
 WHERE model_name = 'SVD_SH_SAMPLE'
 ORDER BY setting_name;

SETTING_NAME SETTING_VALUE SETTING
------------------------------ ------------------------------ -------
ALGO_NAME ALGO_SINGULAR_VALUE_DECOMP INPUT
ODMS_MISSING_VALUE_TREATMENT ODMS_MISSING_VALUE_AUTO DEFAULT
ODMS_SAMPLING ODMS_SAMPLING_DISABLE DEFAULT

Chapter 28
Data Mining Data Dictionary Views

28-5

PREP_AUTO OFF INPUT
SVDS_SCORING_MODE SVDS_SCORING_SVD DEFAULT
SVDS_U_MATRIX_OUTPUT SVDS_U_MATRIX_ENABLE INPUT

Related Topics

• Specifying Model Settings
Understand how to configure data mining models at build time.

• Oracle Database Reference

28.2.5 ALL_MINING_MODEL_VIEWS
Describes an example of ALL_MINING_MODEL_VIEWS and shows a sample query.

The following example describes ALL_MINING_MODEL_VIEWS and shows a sample
query. Model views provide details on the models.

Example 28-5 ALL_MINING_MODEL_VIEWS

describe ALL_MINING_MODEL_VIEWS
 Name Null? Type
 --- --------

 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 VIEW_NAME NOT NULL VARCHAR2(128)
 VIEW_TYPE VARCHAR2(128)

The following query returns the model views for a model SVD_SH_SAMPLE. The model
uses the Singular Value Decomposition algorithm for feature extraction.

SELECT view_name, view_type
 FROM all_mining_model_views
 WHERE model_name = 'SVD_SH_SAMPLE'
 ORDER BY view_name;

VIEW_NAME
VIEW_TYPE

--
DM$VESVD_SH_SAMPLE Singular Value Decomposition S
Matrix
DM$VGSVD_SH_SAMPLE Global Name-Value
Pairs
DM$VNSVD_SH_SAMPLE Normalization and Missing Value
Handling
DM$VSSVD_SH_SAMPLE Computed
Settings
DM$VUSVD_SH_SAMPLE Singular Value Decomposition U
Matrix
DM$VVSVD_SH_SAMPLE Singular Value Decomposition V
Matrix
DM$VWSVD_SH_SAMPLE Model Build Alerts

Chapter 28
Data Mining Data Dictionary Views

28-6

Related Topics

• Oracle Database Reference

28.2.6 ALL_MINING_MODEL_XFORMS
Describes an example of ALL_MINING_MODEL_XFORMS and provides a sample query.

The following example describes ALL_MINING_MODEL_XFORMS and provides a sample
query.

Example 28-6 ALL_MINING_MODEL_XFORMS

describe ALL_MINING_MODEL_XFORMS
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_SPEC VARCHAR2(4000)
 EXPRESSION CLOB
 REVERSE VARCHAR2(3)

The following query returns the embedded transformations for a model
PART2_CLAS_SAMPLE.

SELECT attribute_name, expression
 FROM all_mining_model_xforms
 WHERE model_name = 'PART2_CLAS_SAMPLE'
 ORDER BY attribute_name;

ATTRIBUTE_NAME

EXPRESSION

--

CUST_INCOME_LEVEL

CASE CUST_INCOME_LEVEL WHEN 'A: Below 30,000' THEN
'LOW'
 WHEN 'L: 300,000 and above' THEN
'HIGH'
 ELSE 'MEDIUM' END

Related Topics

• Oracle Database Reference

28.3 Data Mining PL/SQL Packages
The PL/SQL interface to Oracle Data Mining is implemented in three packages.

The following table displays the PL/SQL packages.

Chapter 28
Data Mining PL/SQL Packages

28-7

Table 28-2 Data Mining PL/SQL Packages

Package Name Description

DBMS_DATA_MINING Routines for creating and managing mining models

DBMS_DATA_MINING_TRANSFORM Routines for transforming the data for mining

DBMS_PREDICTIVE_ANALYTICS Routines that perform predictive analytics

Related Topics

• DBMS_DATA_MINING

• DBMS_DATA_MINING_TRANSFORM

• DBMS_PREDICTIVE_ANALYTICS

28.3.1 DBMS_DATA_MINING
Understand the routines of DBMS_DATA_MINING package.

The DBMS_DATA_MINING package contains routines for creating mining models, for
performing operations on mining models, and for querying mining models. The
package includes routines for:

• Creating, dropping, and performing other DDL operations on mining models

• Obtaining detailed information about model attributes, rules, and other information
internal to the model (model details)

• Computing test metrics for classification models

• Specifying costs for classification models

• Exporting and importing models

• Building models using Oracle's native algorithms as well as algorithms written in R

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

28.3.2 DBMS_DATA_MINING_TRANSFORM
Understand the routines of DBMS_DATA_MINING_TRANSFORM package.

The DBMS_DATA_MINING_TRANSFORM package contains routines that perform data
transformations such as binning, normalization, and outlier treatment. The package
includes routines for:

• Specifying transformations in a format that can be embedded in a mining model.

• Specifying transformations as relational views (external to mining model objects).

• Specifying distinct properties for columns in the build data. For example, you
can specify that the column must be interpreted as unstructured text, or that the
column must be excluded from Automatic Data Preparation.

Chapter 28
Data Mining PL/SQL Packages

28-8

Related Topics

• Transforming the Data
Understand how to transform data for building a model or for scoring.

• Oracle Database PL/SQL Packages and Types Reference

28.3.2.1 Transformation Methods in DBMS_DATA_MINING_TRANSFORM
Summarizes the methods for transforming data in
DBMS_DATA_MINING_TRANSFORM package.

Table 28-3 DBMS_DATA_MINING_TRANSFORM Transformation Methods

Transformation Method Description

XFORM interface CREATE, INSERT, and XFORM routines specify transformations
in external views

STACK interface CREATE, INSERT, and XFORM routines specify transformations
for embedding in a model

SET_TRANSFORM Specifies transformations for embedding in a model

The statements in the following example create an Support Vector Machine (SVM)
Classification model called T_SVM_Clas_sample with an embedded transformation that
causes the comments attribute to be treated as unstructured text data.

Example 28-7 Sample Embedded Transformation

DECLARE
 xformlist dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.SET_TRANSFORM(
 xformlist, 'comments', null, 'comments', null, 'TEXT');
 DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'T_SVM_Clas_sample',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_build_text',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 settings_table_name => 't_svmc_sample_settings',
 xform_list => xformlist);
END;
/

28.3.3 DBMS_PREDICTIVE_ANALYTICS
Understand the routines of DBMS_PREDICTIVE_ANALYTICS package.

The DBMS_PREDICTIVE_ANALYTICS package contains routines that perform an
automated form of data mining known as predictive analytics. With predictive analytics,
you do not need to be aware of model building or scoring. All mining activities
are handled internally by the procedure. The DBMS_PREDICTIVE_ANALYTICS package
includes these routines:

• EXPLAIN ranks attributes in order of influence in explaining a target column.

• PREDICT predicts the value of a target column based on values in the input data.

Chapter 28
Data Mining PL/SQL Packages

28-9

• PROFILE generates rules that describe the cases from the input data.

The EXPLAIN statement in the following example lists attributes in the view
mining_data_build_v in order of their importance in predicting affinity_card.

Example 28-8 Sample EXPLAIN Statement

BEGIN
 DBMS_PREDICTIVE_ANALYTICS.EXPLAIN(
 data_table_name => 'mining_data_build_v',
 explain_column_name => 'affinity_card',
 result_table_name => 'explain_results');
END;
/

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

28.4 Data Mining SQL Scoring Functions
Understand the different data mining SQL scoring functions.

The Data Mining SQL language functions use Oracle Data Mining to score data. The
functions can apply a mining model schema object to the data, or they can dynamically
mine the data by executing an analytic clause. SQL functions are available for all
the data mining algorithms that support the scoring operation. All Data Mining SQL
functions, as listed in the following table can operate on R Mining Model with the
corresponding mining function. However, the functions are not limited to the ones
listed here.

Table 28-4 Data Mining SQL Functions

Function Description

CLUSTER_ID Returns the ID of the predicted cluster

CLUSTER_DETAILS Returns detailed information about the predicted cluster

CLUSTER_DISTANCE Returns the distance from the centroid of the predicted cluster

CLUSTER_PROBABIL
ITY

Returns the probability of a case belonging to a given cluster

CLUSTER_SET Returns a list of all possible clusters to which a given case belongs
along with the associated probability of inclusion

FEATURE_COMPARE Compares two similar and dissimilar set of texts from two different
documents or keyword phrases or a combination of both

FEATURE_ID Returns the ID of the feature with the highest coefficient value

FEATURE_DETAILS Returns detailed information about the predicted feature

FEATURE_SET Returns a list of objects containing all possible features along with
the associated coefficients

FEATURE_VALUE Returns the value of the predicted feature

ORA_DM_PARTITION
_NAME

Returns the partition names for a partitioned model

PREDICTION Returns the best prediction for the target

Chapter 28
Data Mining SQL Scoring Functions

28-10

Table 28-4 (Cont.) Data Mining SQL Functions

Function Description

PREDICTION_BOUND
S

(GLM only) Returns the upper and lower bounds of the interval
wherein the predicted values (linear regression) or probabilities
(logistic regression) lie.

PREDICTION_COST Returns a measure of the cost of incorrect predictions

PREDICTION_DETAI
LS

Returns detailed information about the prediction

PREDICTION_PROBA
BILITY

Returns the probability of the prediction

PREDICTION_SET Returns the results of a classification model, including the
predictions and associated probabilities for each case

The following example shows a query that returns the results of the CLUSTER_ID
function. The query applies the model em_sh_clus_sample, which finds groups of
customers that share certain characteristics. The query returns the identifiers of the
clusters and the number of customers in each cluster.

Example 28-9 CLUSTER_ID Function

-- -List the clusters into which the customers in this
-- -data set have been grouped.
--
SELECT CLUSTER_ID(em_sh_clus_sample USING *) AS clus, COUNT(*) AS cnt
 FROM mining_data_apply_v
GROUP BY CLUSTER_ID(em_sh_clus_sample USING *)
ORDER BY cnt DESC;

SQL> -- List the clusters into which the customers in this
SQL> -- data set have been grouped.
SQL> --
SQL> SELECT CLUSTER_ID(em_sh_clus_sample USING *) AS clus, COUNT(*) AS cnt
 2 FROM mining_data_apply_v
 3 GROUP BY CLUSTER_ID(em_sh_clus_sample USING *)
 4 ORDER BY cnt DESC;

 CLUS CNT
---------- ----------
 9 311
 3 294
 7 215
 12 201
 17 123
 16 114
 14 86
 19 64
 15 56
 18 36

Related Topics

• Scoring and Deployment
Explains the scoring and deployment features of Oracle Data Mining.

Chapter 28
Data Mining SQL Scoring Functions

28-11

• Oracle Database SQL Language Reference

Chapter 28
Data Mining SQL Scoring Functions

28-12

29
Preparing the Data

Learn how to create a table or view that can be used to build a model.

• Data Requirements

• About Attributes

• Using Nested Data

• Using Market Basket Data

• Using Retail Analysis Data

• Handling Missing Values

29.1 Data Requirements
Understand how data is stored and viewed for data mining.

Data mining activities require data that is defined within a single table or view. The
information for each record must be stored in a separate row. The data records are
commonly called cases. Each case can optionally be identified by a unique case ID.
The table or view itself can be referred to as a case table.

The CUSTOMERS table in the SH schema is an example of a table that could be used for
mining. All the information for each customer is contained in a single row. The case
ID is the CUST_ID column. The rows listed in the following example are selected from
SH.CUSTOMERS.

Note:

Oracle Data Mining requires single-record case data for all types of models
except association models, which can be built on native transactional data.

Example 29-1 Sample Case Table

SQL> select cust_id, cust_gender, cust_year_of_birth,
 cust_main_phone_number from sh.customers where cust_id < 11;

CUST_ID CUST_GENDER CUST_YEAR_OF_BIRTH CUST_MAIN_PHONE_NUMBER
------- ----------- ---- ------------- -------------------------
1 M 1946 127-379-8954
2 F 1957 680-327-1419
3 M 1939 115-509-3391
4 M 1934 577-104-2792
5 M 1969 563-667-7731
6 F 1925 682-732-7260
7 F 1986 648-272-6181
8 F 1964 234-693-8728

29-1

9 F 1936 697-702-2618
10 F 1947 601-207-4099

Related Topics

• Using Market Basket Data

29.1.1 Column Data Types
Understand the different types of column data in a case table.

The columns of the case table hold the attributes that describe each case.
In Example 29-1, the attributes are: CUST_GENDER, CUST_YEAR_OF_BIRTH, and
CUST_MAIN_PHONE_NUMBER. The attributes are the predictors in a supervised model or
the descriptors in an unsupervised model. The case ID, CUST_ID, can be viewed as a
special attribute; it is not a predictor or a descriptor.

Oracle Data Mining supports standard Oracle data types as well as the following
collection types:

DM_NESTED_CATEGORICALS

DM_NESTED_NUMERICALS

DM_NESTED_BINARY_DOUBLES

DM_NESTED_BINARY_FLOATS

Related Topics

• Using Nested Data
A join between the tables for one-to-many relationship is represented through
nested columns.

• Mining Unstructured Text
Explains how to use Oracle Data Mining to mine unstructured text.

• Oracle Database SQL Language Reference

29.1.2 Data Sets for Classification and Regression
Understand how data sets are used for training and testing the model.

You need two case tables to build and validate classification and regression models.
One set of rows is used for training the model, another set of rows is used for testing
the model. It is often convenient to derive the build data and test data from the same
data set. For example, you could randomly select 60% of the rows for training the
model; the remaining 40% could be used for testing the model.

Models that implement other mining functions, such as attribute importance, clustering,
association, or feature extraction, do not use separate test data.

29.1.3 Scoring Requirements
Most data mining models can be applied to separate data in a process known
as scoring. Oracle Data Mining supports the scoring operation for classification,
regression, anomaly detection, clustering, and feature extraction.

The scoring process matches column names in the scoring data with the names of
the columns that were used to build the model. The scoring process does not require
all the columns to be present in the scoring data. If the data types do not match,

Chapter 29
Data Requirements

29-2

Oracle Data Mining attempts to perform type coercion. For example, if a column called
PRODUCT_RATING is VARCHAR2 in the training data but NUMBER in the scoring data, Oracle
Data Mining effectively applies a TO_CHAR() function to convert it.

The column in the test or scoring data must undergo the same transformations as the
corresponding column in the build data. For example, if the AGE column in the build
data was transformed from numbers to the values CHILD, ADULT, and SENIOR, then
the AGE column in the scoring data must undergo the same transformation so that the
model can properly evaluate it.

Note:

Oracle Data Mining can embed user-specified transformation instructions
in the model and reapply them whenever the model is applied. When the
transformation instructions are embedded in the model, you do not need to
specify them for the test or scoring data sets.

Oracle Data Mining also supports Automatic Data Preparation (ADP). When
ADP is enabled, the transformations required by the algorithm are performed
automatically and embedded in the model along with any user-specified
transformations.

See Also:

Transforming the Data for more information on automatic and embedded
data transformations

29.2 About Attributes
Attributes are the items of data that are used in data mining. In predictive models,
attributes are the predictors that affect a given outcome. In descriptive models,
attributes are the items of information being analyzed for natural groupings or
associations. For example, a table of employee data that contains attributes such as
job title, date of hire, salary, age, gender, and so on.

29.2.1 Data Attributes and Model Attributes
Data attributes are columns in the data set used to build, test, or score a model.
Model attributes are the data representations used internally by the model.

Data attributes and model attributes can be the same. For example, a column called
SIZE, with values S, M, and L, are attributes used by an algorithm to build a model.
Internally, the model attribute SIZE is most likely be the same as the data attribute from
which it was derived.

On the other hand, a nested column SALES_PROD, containing the sales figures for a
group of products, does not correspond to a model attribute. The data attribute can
be SALES_PROD, but each product with its corresponding sales figure (each row in the
nested column) is a model attribute.

Chapter 29
About Attributes

29-3

Transformations also cause a discrepancy between data attributes and model
attributes. For example, a transformation can apply a calculation to two data attributes
and store the result in a new attribute. The new attribute is a model attribute that has
no corresponding data attribute. Other transformations such as binning, normalization,
and outlier treatment, cause the model's representation of an attribute to be different
from the data attribute in the case table.

Related Topics

• Using Nested Data
A join between the tables for one-to-many relationship is represented through
nested columns.

• Transforming the Data
Understand how to transform data for building a model or for scoring.

See Also:

29.2.2 Target Attribute
Understand what a target means in data mining and understand the different target
data types.

The target of a supervised model is a special kind of attribute. The target column
in the training data contains the historical values used to train the model. The target
column in the test data contains the historical values to which the predictions are
compared. The act of scoring produces a prediction for the target.

Clustering, Feature Extraction, Association, and Anomaly Detection models do not use
a target.

Nested columns and columns of unstructured data (such as BFILE, CLOB, or BLOB)
cannot be used as targets.

Table 29-1 Target Data Types

Mining Function Target Data Types

Classification VARCHAR2, CHAR

NUMBER, FLOAT

BINARY_DOUBLE, BINARY_FLOAT, ORA_MINING_VARCHAR2_NT

Regression NUMBER, FLOAT

BINARY_DOUBLE, BINARY_FLOAT

You can query the *_MINING_MODEL_ATTRIBUTES view to find the target for a given
model.

Related Topics

• ALL_MINING_MODEL_ATTRIBUTES
Describes an example of ALL_MINING_MODEL_ATTRIBUTES and shows a sample
query.

Chapter 29
About Attributes

29-4

• Oracle Database PL/SQL Packages and Types Reference

29.2.3 Numericals, Categoricals, and Unstructured Text
Explains numeric, categorical, and unstructured text attributes.

Model attributes are numerical, categorical, or unstructured (text). Data attributes,
which are columns in a case table, have Oracle data types, as described in "Column
Data Types".

Numerical attributes can theoretically have an infinite number of values. The
values have an implicit order, and the differences between them are also
ordered. Oracle Data Mining interprets NUMBER, FLOAT, BINARY_DOUBLE, BINARY_FLOAT,
DM_NESTED_NUMERICALS, DM_NESTED_BINARY_DOUBLES, and DM_NESTED_BINARY_FLOATS
as numerical.

Categorical attributes have values that identify a finite number of discrete categories
or classes. There is no implicit order associated with the values. Some categoricals
are binary: they have only two possible values, such as yes or no, or male or female.
Other categoricals are multi-class: they have more than two values, such as small,
medium, and large.

Oracle Data Mining interprets CHAR and VARCHAR2 as categorical by default, however
these columns may also be identified as columns of unstructured data (text). Oracle
Data Mining interprets columns of DM_NESTED_CATEGORICALS as categorical. Columns
of CLOB, BLOB, and BFILE always contain unstructured data.

The target of a classification model is categorical. (If the target of a classification
model is numeric, it is interpreted as categorical.) The target of a regression model
is numerical. The target of an attribute importance model is either categorical or
numerical.

Related Topics

• Column Data Types
Understand the different types of column data in a case table.

• Mining Unstructured Text
Explains how to use Oracle Data Mining to mine unstructured text.

29.2.4 Model Signature
The model signature is the set of data attributes that are used to build a model.
Some or all of the attributes in the signature must be present for scoring. The model
accounts for any missing columns on a best-effort basis. If columns with the same
names but different data types are present, the model attempts to convert the data
type. If extra, unused columns are present, they are disregarded.

The model signature does not necessarily include all the columns in the build data.
Algorithm-specific criteria can cause the model to ignore certain columns. Other
columns can be eliminated by transformations. Only the data attributes actually used
to build the model are included in the signature.

The target and case ID columns are not included in the signature.

Chapter 29
About Attributes

29-5

29.2.5 Scoping of Model Attribute Name
The model attribute name consists of two parts: a column name, and a subcolumn
name.

column_name[.subcolumn_name]

The column_name component is the name of the data attribute. It is present in all model
attribute names. Nested attributes and text attributes also have a subcolumn_name
component as shown in the following example.

Example 29-2 Model Attributes Derived from a Nested Column

The nested column SALESPROD has three rows.

SALESPROD(ATTRIBUTE_NAME, VALUE)

((PROD1, 300),
 (PROD2, 245),
 (PROD3, 679))

The name of the data attribute is SALESPROD. Its associated model attributes are:

SALESPROD.PROD1
SALESPROD.PROD2
SALESPROD.PROD3

29.2.6 Model Details
Model details reveal information about model attributes and their treatment by the
algorithm. Oracle recommends that users leverage the model detail views for the
respective algorithm.

Transformation and reverse transformation expressions are associated with model
attributes. Transformations are applied to the data attributes before the algorithmic
processing that creates the model. Reverse transformations are applied to the model
attributes after the model has been built, so that the model details are expressed in the
form of the original data attributes, or as close to it as possible.

Reverse transformations support model transparency. They provide a view of the data
that the algorithm is working with internally but in a format that is meaningful to a user.

Deprecated GET_MODEL_DETAILS

There is a separate GET_MODEL_DETAILS routine for each algorithm. Starting from
Oracle Database 12c Release 2, the GET_MODEL_DETAILS are deprecated. Oracle
recommends to use Model Detail Views for the respective algorithms.

Related Topics

• Model Detail Views
The GET_* interfaces are replaced by model views, and Oracle recommends that
users leverage the views instead.

Chapter 29
About Attributes

29-6

29.3 Using Nested Data
A join between the tables for one-to-many relationship is represented through nested
columns.

Oracle Data Mining requires a case table in single-record case format, with each
record in a separate row. What if some or all of your data is in multi-record case
format, with each record in several rows? What if you want one attribute to represent
a series or collection of values, such as a student's test scores or the products
purchased by a customer?

This kind of one-to-many relationship is usually implemented as a join between tables.
For example, you can join your customer table to a sales table and thus associate a
list of products purchased with each customer.

Oracle Data Mining supports dimensioned data through nested columns. To include
dimensioned data in your case table, create a view and cast the joined data to one
of the Data Mining nested table types. Each row in the nested column consists of an
attribute name/value pair. Oracle Data Mining internally processes each nested row as
a separate attribute.

Note:

O-Cluster is the only algorithm that does not support nested data.

Related Topics

• Example: Creating a Nested Column for Market Basket Analysis
The example shows how to define a nested column for market basket analysis.

29.3.1 Nested Object Types
Nested tables are object data types that can be used in place of other data types.

Oracle Database supports user-defined data types that make it possible to model
real-world entities as objects in the database. Collection types are object data types
for modeling multi-valued attributes. Nested tables are collection types. Nested tables
can be used anywhere that other data types can be used.

Oracle Data Mining supports the following nested object types:

DM_NESTED_BINARY_DOUBLES

DM_NESTED_BINARY_FLOATS

DM_NESTED_NUMERICALS

DM_NESTED_CATEGORICALS

Descriptions of the nested types are provided in this example.

Example 29-3 Oracle Data Mining Nested Data Types

describe dm_nested_binary_double
 Name Null? Type
 --- -------- ----------------------------

Chapter 29
Using Nested Data

29-7

 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE BINARY_DOUBLE

describe dm_nested_binary_doubles
 DM_NESTED_BINARY_DOUBLES TABLE OF SYS.DM_NESTED_BINARY_DOUBLE
 Name Null? Type
 -- -------- ---------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE BINARY_DOUBLE

describe dm_nested_binary_float
 Name Null? Type
 --- -------- ---------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE BINARY_FLOAT

describe dm_nested_binary_floats
 DM_NESTED_BINARY_FLOATS TABLE OF SYS.DM_NESTED_BINARY_FLOAT
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE BINARY_FLOAT

describe dm_nested_numerical
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE NUMBER

describe dm_nested_numericals
 DM_NESTED_NUMERICALS TABLE OF SYS.DM_NESTED_NUMERICAL
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE NUMBER

describe dm_nested_categorical
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE VARCHAR2(4000)

describe dm_nested_categoricals
 DM_NESTED_CATEGORICALS TABLE OF SYS.DM_NESTED_CATEGORICAL
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE VARCHAR2(4000)

Related Topics

• Oracle Database Object-Relational Developer's Guide

29.3.2 Example: Transforming Transactional Data for Mining
Example 29-4 shows data from a view of a sales table. It includes sales for three of the
many products sold in four regions. This data is not suitable for mining at the product
level because sales for each case (product), is stored in several rows.

Chapter 29
Using Nested Data

29-8

Example 29-5 shows how this data can be transformed for mining. The
case ID column is PRODUCT. SALES_PER_REGION, a nested column of type
DM_NESTED_NUMERICALS, is a data attribute. This table is suitable for mining at the
product case level, because the information for each case is stored in a single row.

Oracle Data Mining treats each nested row as a separate model attribute, as shown in
Example 29-6.

Note:

The presentation in this example is conceptual only. The data is not actually
pivoted before being processed.

Example 29-4 Product Sales per Region in Multi-Record Case Format

PRODUCT REGION SALES
------- -------- ----------
Prod1 NE 556432
Prod2 NE 670155
Prod3 NE 3111
.
.
Prod1 NW 90887
Prod2 NW 100999
Prod3 NW 750437
.
.
Prod1 SE 82153
Prod2 SE 57322
Prod3 SE 28938
.
.
Prod1 SW 3297551
Prod2 SW 4972019
Prod3 SW 884923
.
.

Example 29-5 Product Sales per Region in Single-Record Case Format

PRODUCT SALES_PER_REGION
 (ATTRIBUTE_NAME, VALUE)
------ --------------------------
Prod1 ('NE' , 556432)
 ('NW' , 90887)
 ('SE' , 82153)
 ('SW' , 3297551)
Prod2 ('NE' , 670155)
 ('NW' , 100999)
 ('SE' , 57322)
 ('SW' , 4972019)
Prod3 ('NE' , 3111)
 ('NW' , 750437)
 ('SE' , 28938)
 ('SW' , 884923)
.
.

Chapter 29
Using Nested Data

29-9

Example 29-6 Model Attributes Derived From SALES_PER_REGION

PRODUCT SALES_PER_REGION.NE SALES_PER_REGION.NW SALES_PER_REGION.SE
SALES_PER_REGION.SW
------- ------------------ ------------------- ------------------ -------------------
Prod1 556432 90887 82153 3297551
Prod2 670155 100999 57322 4972019
Prod3 3111 750437 28938 884923
.
.

29.4 Using Market Basket Data
Market basket data identifies the items sold in a set of baskets or transactions. Oracle
Data Mining provides the association mining function for market basket analysis.

Association models use the Apriori algorithm to generate association rules that
describe how items tend to be purchased in groups. For example, an association rule
can assert that people who buy peanut butter are 80% likely to also buy jelly.

Market basket data is usually transactional. In transactional data, a case is a
transaction and the data for a transaction is stored in multiple rows. Oracle Data
Mining association models can be built on transactional data or on single-record case
data. The ODMS_ITEM_ID_COLUMN_NAME and ODMS_ITEM_VALUE_COLUMN_NAME settings
specify whether the data for association rules is in transactional format.

Note:

Association models are the only type of model that can be built on native
transactional data. For all other types of models, Oracle Data Mining requires
that the data be presented in single-record case format.

The Apriori algorithm assumes that the data is transactional and that it has many
missing values. Apriori interprets all missing values as sparse data, and it has its own
native mechanisms for handling sparse data.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
on the ODMS_ITEM_ID_COLUMN_NAME and ODMS_ITEM_VALUE_COLUMN_NAME
settings.

29.4.1 Example: Creating a Nested Column for Market Basket
Analysis

The example shows how to define a nested column for market basket analysis.

Association models can be built on native transactional data or on nested data. The
following example shows how to define a nested column for market basket analysis.

Chapter 29
Using Market Basket Data

29-10

The following SQL statement transforms this data to a column of type
DM_NESTED_NUMERICALS in a view called SALES_TRANS_CUST_NESTED. This view can be
used as a case table for mining.

CREATE VIEW sales_trans_cust_nested AS
 SELECT trans_id,
 CAST(COLLECT(DM_NESTED_NUMERICAL(
 prod_name, 1))
 AS DM_NESTED_NUMERICALS) custprods
 FROM sales_trans_cust
 GROUP BY trans_id;

This query returns two rows from the transformed data.

SELECT * FROM sales_trans_cust_nested
 WHERE trans_id < 101000
 AND trans_id > 100997;

TRANS_ID CUSTPRODS(ATTRIBUTE_NAME, VALUE)
------- --
100998 DM_NESTED_NUMERICALS
 (DM_NESTED_NUMERICAL('O/S Documentation Set - English', 1)
100999 DM_NESTED_NUMERICALS
 (DM_NESTED_NUMERICAL('CD-RW, High Speed Pack of 5', 1),
 DM_NESTED_NUMERICAL('External 8X CD-ROM', 1),
 DM_NESTED_NUMERICAL('SIMM- 16MB PCMCIAII card', 1))

Example 29-7 Convert to a Nested Column

The view SALES_TRANS_CUST provides a list of transaction IDs to identify each market
basket and a list of the products in each basket.

describe sales_trans_cust
 Name Null? Type
 --- -------- ----------------
 TRANS_ID NOT NULL NUMBER
 PROD_NAME NOT NULL VARCHAR2(50)
 QUANTITY NUMBER

Related Topics

• Handling Missing Values

29.5 Using Retail Analysis Data
Retail analysis often makes use of Association Rules and Association models.

The Association Rules are enhanced to calculate aggregates along with rules or
itemsets.

Related Topics

• Oracle Data Mining Concepts

Chapter 29
Using Retail Analysis Data

29-11

29.5.1 Example: Calculating Aggregates
The following example shows the concept of Aggregates.

Calculating Aggregates for Grocery Store Data

Assume a grocery store has the following data:

Table 29-2 Grocery Store Data

Customer Item A Item B Item C Item D

Customer 1 Buys
(Profit $5.00)

Buys
(Profit $3.20)

Buys
(Profit $12.00)

NA

Customer 2 Buys
(Profit $4.00)

NA Buys
(Profit $4.20)

NA

Customer 3 Buys
(Profit $3.00)

Buys
(Profit $10.00)

Buys
(Profit $14.00)

Buys
(Profit $8.00)

Customer 4 Buys
(Profit $2.00)

NA NA Buys
(Profit $1.00)

The basket of each customer can be viewed as a transaction. The manager of the
store is interested in not only the existence of certain association rules, but also in the
aggregated profit if such rules exist.

In this example, one of the association rules can be (A, B)=>C for customer 1 and
customer 3. Together with this rule, the store manager may want to know the following:

• The total profit of item A appearing in this rule

• The total profit of item B appearing in this rule

• The total profit for consequent C appearing in this rule

• The total profit of all items appearing in the rule

For this rule, the profit for item A is $5.00 + $3.00 = $8.00, for item B the profit is $3.20
+ $10.00 = $13.20, for consequent C, the profit is $12.00 + $14.00 = $26.00, for the
antecedent itemset (A, B) is $8.00 + $13.20 = $21.20. For the whole rule, the profit
is $21.20 + $26.00 = $47.40.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

29.6 Handling Missing Values
Oracle Data Mining distinguishes between sparse data and data that contains
random missing values. The latter means that some attribute values are unknown.
Sparse data, on the other hand, contains values that are assumed to be known,
although they are not represented in the data.

A typical example of sparse data is market basket data. Out of hundreds or thousands
of available items, only a few are present in an individual case (the basket or
transaction). All the item values are known, but they are not all included in the basket.
Present values have a quantity, while the items that are not represented are sparse
(with a known quantity of zero).

Chapter 29
Handling Missing Values

29-12

Oracle Data Mining interprets missing data as follows:

• Missing at random: Missing values in columns with a simple data type (not nested)
are assumed to be missing at random.

• Sparse: Missing values in nested columns indicate sparsity.

29.6.1 Examples: Missing Values or Sparse Data?
The examples in this section illustrate how Oracle Data Mining identifies data as either
sparse or missing at random.

29.6.1.1 Sparsity in a Sales Table
A sales table contains point-of-sale data for a group of products that are sold in
several stores to different customers over a period of time. A particular customer buys
only a few of the products. The products that the customer does not buy do not appear
as rows in the sales table.

If you were to figure out the amount of money a customer has spent for each product,
the unpurchased products have an inferred amount of zero. The value is not random
or unknown; it is zero, even though no row appears in the table.

Note that the sales data is dimensioned (by product, stores, customers, and time) and
are often represented as nested data for mining.

Since missing values in a nested column always indicate sparsity, you must ensure
that this interpretation is appropriate for the data that you want to mine. For example,
when trying to mine a multi-record case data set containing movie ratings from users
of a large movie database, the missing ratings are unknown (missing at random), but
Oracle Data Mining treats the data as sparse and infer a rating of zero for the missing
value.

29.6.1.2 Missing Values in a Table of Customer Data
A table of customer data contains demographic data about customers. The case ID
column is the customer ID. The attributes are age, education, profession, gender,
house-hold size, and so on. Not all the data is available for each customer. Any
missing values are considered to be missing at random. For example, if the age
of customer 1 and the profession of customer 2 are not present in the data, that
information is simply unknown. It does not indicate sparsity.

Note that the customer data is not dimensioned. There is a one-to-one mapping
between the case and each of its attributes. None of the attributes are nested.

29.6.2 Missing Value Treatment in Oracle Data Mining
Missing value treatment depends on the algorithm and on the nature of the data
(categorical or numerical, sparse or missing at random). Missing value treatment is
summarized in the following table.

Chapter 29
Handling Missing Values

29-13

Note:

Oracle Data Mining performs the same missing value treatment whether or
not Automatic Data Preparation is being used.

Table 29-3 Missing Value Treatment by Algorithm

Missing
Data

EM, GLM, NMF, k-Means, SVD,
SVM

DT, MDL, NB, OC Apriori

NUMERICAL
missing at
random

The algorithm replaces
missing numerical values with
the mean.
For Expectation Maximization
(EM), the replacement only
occurs in columns that
are modeled with Gaussian
distributions.

The algorithm handles
missing values
naturally as missing at
random.

The algorithm
interprets all
missing data as
sparse.

CATEGORIC
AL missing
at random

Genelized Linear Models
(GLM), Non-Negative Matrix
Factorization (NMF), k-Means,
and Support Vector Machine
(SVM) replaces missing
categorical values with the
mode.
Singular Value Decomposition
(SVD) does not support
categorical data.
EM does not replace missing
categorical values. EM treats
NULLs as a distinct value with
its own frequency count.

The algorithm handles
missing values
naturally as missing
random.

The algorithm
interprets all
missing data as
sparse.

NUMERICAL
sparse

The algorithm replaces sparse
numerical data with zeros.

O-Cluster does not
support nested data
and therefore does not
support sparse data.
Decision Tree (DT),
Minimum Description
Length (MDL), and
Naive Bayes (NB)
and replace sparse
numerical data with
zeros.

The algorithm
handles sparse
data.

CATEGORIC
AL sparse

All algorithms except SVD
replace sparse categorical data
with zero vectors. SVD does
not support categorical data.

O-Cluster does not
support nested data
and therefore does not
support sparse data. DT,
MDL, and NB replace
sparse categorical data
with the special value
DM$SPARSE.

The algorithm
handles sparse
data.

Chapter 29
Handling Missing Values

29-14

29.6.3 Changing the Missing Value Treatment
Transform the missing data as sparse or missing at random.

If you want Oracle Data Mining to treat missing data as sparse instead of missing at
random or missing at random instead of sparse, transform it before building the model.

If you want missing values to be treated as sparse, but Oracle Data Mining interprets
them as missing at random, you can use a SQL function like NVL to replace the
nulls with a value such as "NA". Oracle Data Mining does not perform missing value
treatment when there is a specified value.

If you want missing nested attributes to be treated as missing at random, you can
transform the nested rows into physical attributes in separate columns — as long as
the case table stays within the 1000 column limitation imposed by the Database. Fill in
all of the possible attribute names, and specify them as null. Alternatively, insert rows
in the nested column for all the items that are not present and assign a value such as
the mean or mode to each one.

Related Topics

• Oracle Database SQL Language Reference

Chapter 29
Handling Missing Values

29-15

30
Transforming the Data

Understand how to transform data for building a model or for scoring.

• About Transformations

• Preparing the Case Table

• Understanding Automatic Data Preparation

• Embedding Transformations in a Model

• Understanding Reverse Transformations

30.1 About Transformations
Understand how you can transform data by using Automatic Data Preparation (ADP)
and embedded data transformation.

A transformation is a SQL expression that modifies the data in one or more columns.
Data must typically undergo certain transformations before it can be used to build
a model. Many data mining algorithms have specific transformation requirements.
Before data can be scored, it must be transformed in the same way that the training
data was transformed.

Oracle Data Mining supports Automatic Data Preparation (ADP), which automatically
implements the transformations required by the algorithm. The transformations are
embedded in the model and automatically executed whenever the model is applied.

If additional transformations are required, you can specify them as SQL expressions
and supply them as input when you create the model. These transformations are
embedded in the model just as they are with ADP.

With automatic and embedded data transformation, most of the work of data
preparation is handled for you. You can create a model and score multiple data sets in
just a few steps:

1. Identify the columns to include in the case table.

2. Create nested columns if you want to include transactional data.

3. Write SQL expressions for any transformations not handled by ADP.

4. Create the model, supplying the SQL expressions (if specified) and identifying any
columns that contain text data.

5. Ensure that some or all of the columns in the scoring data have the same name
and type as the columns used to train the model.

Related Topics

• Scoring Requirements

30-1

30.2 Preparing the Case Table
Understand why you have to prepare a case table.

The first step in preparing data for mining is the creation of a case table. If all the
data resides in a single table and all the information for each case (record) is included
in a single row (single-record case), this process is already taken care of. If the data
resides in several tables, creating the data source involves the creation of a view. For
the sake of simplicity, the term "case table" is used here to refer to either a table or a
view.

Related Topics

• Preparing the Data
Learn how to create a table or view that can be used to build a model.

30.2.1 Creating Nested Columns
Learn when to create nested columns.

When the data source includes transactional data (multi-record case), the transactions
must be aggregated to the case level in nested columns. In transactional data, the
information for each case is contained in multiple rows. An example is sales data in
a star schema when mining at the product level. Sales is stored in many rows for a
single product (the case) since the product is sold in many stores to many customers
over a period of time.

See Also:

Using Nested Data for information about converting transactional data to
nested columns

30.2.2 Converting Column Data Types
You must convert the data type of a column if its type causes Oracle Data Mining to
interpret it incorrectly. For example, zip codes identify different postal zones; they do
not imply order. If the zip codes are stored in a numeric column, they are interpreted
as a numeric attribute. You must convert the data type so that the column data can
be used as a categorical attribute by the model. You can do this using the TO_CHAR
function to convert the digits 1-9 and the LPAD function to retain the leading 0, if there
is one.

LPAD(TO_CHAR(ZIPCODE),5,'0')

30.2.3 Text Transformation
You can use Oracle Data Mining to mine text. Columns of text in the case table can be
mined once they have undergone the proper transformation.

The text column must be in a table, not a view. The transformation process uses
several features of Oracle Text; it treats the text in each row of the table as a separate

Chapter 30
Preparing the Case Table

30-2

document. Each document is transformed to a set of text tokens known as terms,
which have a numeric value and a text label. The text column is transformed to a
nested column of DM_NESTED_NUMERICALS.

30.2.4 About Business and Domain-Sensitive Transformations
Understand why you need to transform data according to business problems.

Some transformations are dictated by the definition of the business problem. For
example, you want to build a model to predict high-revenue customers. Since your
revenue data for current customers is in dollars you need to define what "high-
revenue" means. Using some formula that you have developed from past experience,
you can recode the revenue attribute into ranges Low, Medium, and High before
building the model.

Another common business transformation is the conversion of date information into
elapsed time. For example, date of birth can be converted to age.

Domain knowledge can be very important in deciding how to prepare the data. For
example, some algorithms produce unreliable results if the data contains values that
fall far outside of the normal range. In some cases, these values represent errors or
abnormalities. In others, they provide meaningful information.

Related Topics

• Outlier Treatment

30.3 Understanding Automatic Data Preparation
Understand data transformation using Automatic Data Preparation (ADP).

Most algorithms require some form of data transformation. During the model build
process, Oracle Data Mining can automatically perform the transformations required
by the algorithm. You can choose to supplement the automatic transformations
with additional transformations of your own, or you can choose to manage all the
transformations yourself.

In calculating automatic transformations, Oracle Data Mining uses heuristics that
address the common requirements of a given algorithm. This process results in
reasonable model quality in most cases.

Binning and normalization are transformations that are commonly needed by data
mining algorithms.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

30.3.1 Binning
Binning, also called discretization, is a technique for reducing the cardinality of
continuous and discrete data. Binning groups related values together in bins to reduce
the number of distinct values.

Binning can improve resource utilization and model build response time dramatically
without significant loss in model quality. Binning can improve model quality by
strengthening the relationship between attributes.

Chapter 30
Understanding Automatic Data Preparation

30-3

Supervised binning is a form of intelligent binning in which important characteristics
of the data are used to determine the bin boundaries. In supervised binning, the bin
boundaries are identified by a single-predictor decision tree that takes into account the
joint distribution with the target. Supervised binning can be used for both numerical
and categorical attributes.

30.3.2 Normalization
Normalization is the most common technique for reducing the range of numerical data.
Most normalization methods map the range of a single variable to another range (often
0,1).

30.3.3 How ADP Transforms the Data
The following table shows how ADP prepares the data for each algorithm.

Table 30-1 Oracle Data Mining Algorithms With ADP

Algorithm Mining Function Treatment by ADP

Apriori Association Rules ADP has no effect on association rules.

Decision
Tree

Classification ADP has no effect on Decision Tree. Data preparation is handled by
the algorithm.

Expectatio
n
Maximizati
on

Clustering Single-column (not nested) numerical columns that are modeled
with Gaussian distributions are normalized. ADP has no effect on
the other types of columns.

GLM Classification and
Regression

Numerical attributes are normalized.

k-Means Clustering Numerical attributes are normalized.

MDL Attribute Importance All attributes are binned with supervised binning.

Naive
Bayes

Classification All attributes are binned with supervised binning.

NMF Feature Extraction Numerical attributes are normalized.

O-Cluster Clustering Numerical attributes are binned with a specialized form of equi-
width binning, which computes the number of bins per attribute
automatically. Numerical columns with all nulls or a single value
are removed.

SVD Feature Extraction Numerical attributes are normalized.

SVM Classification, Anomaly
Detection, and
Regression

Numerical attributes are normalized.

See Also:

• Oracle Database PL/SQL Packages and Types Reference

• Part III of Oracle Data Mining Concepts for more information about
algorithm-specific data preparation

Chapter 30
Understanding Automatic Data Preparation

30-4

30.4 Embedding Transformations in a Model
You can specify your own transformations and embed them in a model by creating a
transformation list and passing it to DBMS_DATA_MINING.CREATE_MODEL.

PROCEDURE create_model(
 model_name IN VARCHAR2,
 mining_function IN VARCHAR2,
 data_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2 DEFAULT NULL,
 settings_table_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 settings_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_list IN TRANSFORM_LIST DEFAULT NULL);

30.4.1 Specifying Transformation Instructions for an Attribute
Learn what is a transformation instruction for an attribute and learn about the fields in
a transformation record.

A transformation list is defined as a table of transformation records. Each record
(transform_rec) specifies the transformation instructions for an attribute.

TYPE transform_rec IS RECORD (
 attribute_name VARCHAR2(30),
 attribute_subname VARCHAR2(4000),
 expression EXPRESSION_REC,
 reverse_expression EXPRESSION_REC,
 attribute_spec VARCHAR2(4000));

The fields in a transformation record are described in this table.

Table 30-2 Fields in a Transformation Record for an Attribute

Field Description

attribute_name and
attribute_subname

These fields identify the attribute, as described in "Scoping of
Model Attribute Name"

expression A SQL expression for transforming the attribute. For example,
this expression transforms the age attribute into two categories:
child and adult:[0,19) for 'child' and [19,) for adult

CASE WHEN age < 19 THEN 'child' ELSE 'adult'

Expression and reverse expressions are stored in
expression_rec objects. See "Expression Records" for details.

reverse_expression A SQL expression for reversing the transformation. For example,
this expression reverses the transformation of the age attribute:

DECODE(age,'child','(-Inf,19)','[19,Inf)')

Chapter 30
Embedding Transformations in a Model

30-5

Table 30-2 (Cont.) Fields in a Transformation Record for an Attribute

Field Description

attribute_spec Specifies special treatment for the attribute. The
attribute_spec field can be null or it can have one or more
of these values:
• FORCE_IN — For GLM, forces the inclusion of the attribute

in the model build when the ftr_selection_enable setting
is enabled. (ftr_selection_enable is disabled by default.)
If the model is not using GLM, this value has no effect.
FORCE_IN cannot be specified for nested attributes or text.

• NOPREP — When ADP is on, prevents automatic
transformation of the attribute. If ADP is not on, this value
has no effect. You can specify NOPREP for a nested attribute,
but not for an individual subname (row) in the nested
attribute.

• TEXT — Indicates that the attribute contains unstructured
text. ADP has no effect on this setting. TEXT may
optionally include subsettings POLICY_NAME, TOKEN_TYPE,
and MAX_FEATURES.

See Example 30-1 and Example 30-2.

Related Topics

• Scoping of Model Attribute Name

• Expression Records

30.4.1.1 Expression Records
The transformation expressions in a transformation record are expression_rec
objects.

TYPE expression_rec IS RECORD (
 lstmt DBMS_SQL.VARCHAR2A,
 lb BINARY_INTEGER DEFAULT 1,
 ub BINARY_INTEGER DEFAULT 0);

TYPE varchar2a IS TABLE OF VARCHAR2(32767)
INDEX BY BINARY_INTEGER;

The lstmt field stores a VARCHAR2A, which allows transformation expressions to
be very long, as they can be broken up across multiple rows of VARCHAR2.
Use the DBMS_DATA_MINING_TRANSFORM.SET_EXPRESSION procedure to create an
expression_rec.

30.4.1.2 Attribute Specifications
Learn how to define the characteristics specific to an attribute through attribute
specification.

The attribute specification in a transformation record defines characteristics that are
specific to this attribute. If not null, the attribute specification can include values
FORCE_IN, NOPREP, or TEXT, as described in Table 30-2.

Chapter 30
Embedding Transformations in a Model

30-6

Example 30-1 An Attribute Specification with Multiple Keywords

If more than one attribute specification keyword is applicable, you can provide them
in a comma-delimited list. The following expression is the specification for an attribute
in a GLM model. Assuming that the ftr_selection_enable setting is enabled, this
expression forces the attribute to be included in the model. If ADP is on, automatic
transformation of the attribute is not performed.

"FORCE_IN,NOPREP"

Example 30-2 A Text Attribute Specification

For text attributes, you can optionally specify subsettings POLICY_NAME, TOKEN_TYPE,
and MAX_FEATURES. The subsettings provide configuration information that is specific to
text transformation. In this example, the transformation instructions for the text content
are defined in a text policy named my_policy with token type is THEME. The maximum
number of extracted features is 3000.

"TEXT(POLICY_NAME:my_policy)(TOKEN_TYPE:THEME)(MAX_FEATURES:3000)"

Related Topics

• Configuring a Text Attribute
Learn how to identify a column as a text attribute and provide transformation
instructions for any text attribute.

30.4.2 Building a Transformation List
A transformation list is a collection of transformation records. When a new
transformation record is added, it is appended to the top of the transformation list.
You can use any of the following methods to build a transformation list:

• The SET_TRANFORM procedure in DBMS_DATA_MINING_TRANSFORM

• The STACK interface in DBMS_DATA_MINING_TRANSFORM

• The GET_MODEL_TRANSFORMATIONS and GET_TRANSFORM_LIST functions in
DBMS_DATA_MINING

30.4.2.1 SET_TRANSFORM
The SET_TRANSFORM procedure adds a single transformation record to a transformation
list.

DBMS_DATA_MINING_TRANSFORM.SET_TRANSFORM (
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 attribute_name VARCHAR2,
 attribute_subname VARCHAR2,
 expression VARCHAR2,
 reverse_expression VARCHAR2,
 attribute_spec VARCHAR2 DEFAULT NULL);

SQL expressions that you specify with SET_TRANSFORM must fit within a VARCHAR2. To
specify a longer expression, you can use the SET_EXPRESSION procedure, which builds
an expression by appending rows to a VARCHAR2 array.

Chapter 30
Embedding Transformations in a Model

30-7

30.4.2.2 The STACK Interface
The STACK interface creates transformation records from a table of transformation
instructions and adds them to a transformation list.

The STACK interface specifies that all or some of the attributes of a given type must
be transformed in the same way. For example, STACK_BIN_CAT appends binning
instructions for categorical attributes to a transformation list. The STACK interface
consists of three steps:

1. A CREATE procedure creates a transformation definition table. For example,
CREATE_BIN_CAT creates a table to hold categorical binning instructions. The table
has columns for storing the name of the attribute, the value of the attribute, and
the bin assignment for the value.

2. An INSERT procedure computes the bin boundaries for one or more attributes
and populates the definition table. For example, INSERT_BIN_CAT_FREQ performs
frequency-based binning on some or all of the categorical attributes in the data
source and populates a table created by CREATE_BIN_CAT.

3. A STACK procedure creates transformation records from the information in the
definition table and appends the transformation records to a transformation list.
For example, STACK_BIN_CAT creates transformation records for the information
stored in a categorical binning definition table and appends the transformation
records to a transformation list.

30.4.2.3 GET_MODEL_TRANSFORMATIONS and GET_TRANSFORM_LIST
Use the functions to create a new transformation list.

These two functions can be used to create a new transformation list from the
transformations embedded in an existing model.

The GET_MODEL_TRANSFORMATIONS function returns a list of embedded transformations.

DBMS_DATA_MINING.GET_MODEL_TRANSFORMATIONS (
 model_name IN VARCHAR2)
RETURN DM_TRANSFORMS PIPELINED;

GET_MODEL_TRANSFORMATIONS returns a table of dm_transform objects. Each
dm_transform has these fields

attribute_name VARCHAR2(4000)
attribute_subname VARCHAR2(4000)
expression CLOB
reverse_expression CLOB

The components of a transformation list are transform_rec, not dm_transform.
The fields of a transform_rec are described in Table 30-2. You can call
GET_MODEL_TRANSFORMATIONS to convert a list of dm_transform objects to
transform_rec objects and append each transform_rec to a transformation list.

DBMS_DATA_MINING.GET_TRANSFORM_LIST (
 xform_list OUT NOCOPY TRANSFORM_LIST,
 model_xforms IN DM_TRANSFORMS);

Chapter 30
Embedding Transformations in a Model

30-8

See Also:

"DBMS_DATA_MINING_TRANSFORM Operational Notes",
"SET_TRANSFORM Procedure", "CREATE_MODEL Procedure", and
"GET_MODEL_TRANSFORMATIONS Function" in Oracle Database
PL/SQL Packages and Types Reference

30.4.3 Transformation Lists and Automatic Data Preparation
If you enable ADP and you specify a transformation list, the transformation list is
embedded with the automatic, system-generated transformations. The transformation
list is executed before the automatic transformations.

If you enable ADP and do not specify a transformation list, only the automatic
transformations are embedded in the model.

If ADP is disabled (the default) and you specify a transformation list, your custom
transformations are embedded in the model. No automatic transformations are
performed.

If ADP is disabled (the default) and you do not specify a transformation list, no
transformations is embedded in the model. You have to transform the training, test,
and scoring data sets yourself if necessary. You must take care to apply the same
transformations to each data set.

30.4.4 Oracle Data Mining Transformation Routines
Learn about transformation routines.

Oracle Data Mining provides routines that implement various transformation
techniques in the DBMS_DATA_MINING_TRANSFORM package.

Related Topics

• Oracle Database SQL Language Reference

30.4.4.1 Binning Routines
Explains Binning techniques in Oracle Data Mining.

A number of factors go into deciding a binning strategy. Having fewer values typically
leads to a more compact model and one that builds faster, but it can also lead to some
loss in accuracy.

Model quality can improve significantly with well-chosen bin boundaries. For example,
an appropriate way to bin ages is to separate them into groups of interest, such as
children 0-13, teenagers 13-19, youth 19-24, working adults 24-35, and so on.

The following table lists the binning techniques provided by Oracle Data Mining:

Chapter 30
Embedding Transformations in a Model

30-9

Table 30-3 Binning Methods in DBMS_DATA_MINING_TRANSFORM

Binning Method Description

Top-N Most Frequent
Items

You can use this technique to bin categorical attributes.
You specify the number of bins. The value that occurs most
frequently is labeled as the first bin, the value that appears
with the next frequency is labeled as the second bin, and so
on. All remaining values are in an additional bin.

Supervised Binning Supervised binning is a form of intelligent binning, where
bin boundaries are derived from important characteristics
of the data. Supervised binning builds a single-predictor
decision tree to find the interesting bin boundaries with
respect to a target. It can be used for numerical or
categorical attributes.

Equi-Width Binning You can use equi-width binning for numerical attributes.
The range of values is computed by subtracting the
minimum value from the maximum value, then the range
of values is divided into equal intervals. You can specify the
number of bins or it can be calculated automatically. Equi-
width binning must usually be used with outlier treatment.

Quantile Binning Quantile binning is a numerical binning technique.
Quantiles are computed using the SQL analytic function
NTILE. The bin boundaries are based on the minimum
values for each quantile. Bins with equal left and right
boundaries are collapsed, possibly resulting in fewer bins
than requested.

Related Topics

• Routines for Outlier Treatment

30.4.4.2 Normalization Routines
Learn about Normalization routines in Oracle Data Mining.

Most normalization methods map the range of a single attribute to another range,
typically 0 to 1 or -1 to +1.

Normalization is very sensitive to outliers. Without outlier treatment, most values are
mapped to a tiny range, resulting in a significant loss of information.

Table 30-4 Normalization Methods in DBMS_DATA_MINING_TRANSFORM

Transformation Description

Min-Max Normalization This technique computes the normalization of an attribute
using the minimum and maximum values. The shift is the
minimum value, and the scale is the difference between the
maximum and minimum values.

Scale Normalization This normalization technique also uses the minimum and
maximum values. For scale normalization, shift = 0, and
scale = max{abs(max), abs(min)}.

Chapter 30
Embedding Transformations in a Model

30-10

Table 30-4 (Cont.) Normalization Methods in
DBMS_DATA_MINING_TRANSFORM

Transformation Description

Z-Score Normalization This technique computes the normalization of an attribute
using the mean and the standard deviation. Shift is the
mean, and scale is the standard deviation.

Related Topics

• Routines for Outlier Treatment

30.4.4.3 Outlier Treatment
A value is considered an outlier if it deviates significantly from most other values in
the column. The presence of outliers can have a skewing effect on the data and can
interfere with the effectiveness of transformations such as normalization or binning.

Outlier treatment methods such as trimming or clipping can be implemented to
minimize the effect of outliers.

Outliers represent problematic data, for example, a bad reading due to the abnormal
condition of an instrument. However, in some cases, especially in the business arena,
outliers are perfectly valid. For example, in census data, the earnings for some of the
richest individuals can vary significantly from the general population. Do not treat this
information as an outlier, since it is an important part of the data. You need domain
knowledge to determine outlier handling.

30.4.4.4 Routines for Outlier Treatment
Outliers are extreme values, typically several standard deviations from the mean. To
minimize the effect of outliers, you can Winsorize or trim the data.

Winsorizing involves setting the tail values of an attribute to some specified value.
For example, for a 90% Winsorization, the bottom 5% of values are set equal to the
minimum value in the 5th percentile, while the upper 5% of values are set equal to the
maximum value in the 95th percentile.

Trimming sets the tail values to NULL. The algorithm treats them as missing values.

Outliers affect the different algorithms in different ways. In general, outliers cause
distortion with equi-width binning and min-max normalization.

Table 30-5 Outlier Treatment Methods in DBMS_DATA_MINING_TRANSFORM

Transformation Description

Trimming This technique trims the outliers in numeric columns by
sorting the non-null values, computing the tail values based
on some fraction, and replacing the tail values with nulls.

Windsorizing This technique trims the outliers in numeric columns by
sorting the non-null values, computing the tail values based
on some fraction, and replacing the tail values with some
specified value.

Chapter 30
Embedding Transformations in a Model

30-11

30.5 Understanding Reverse Transformations
Understand why you need reverse transformations.

Reverse transformations ensure that information returned by the model is expressed in
a format that is similar to or the same as the format of the data that was used to train
the model. Internal transformation are reversed in the model details and in the results
of scoring.

Some of the attributes used by the model correspond to columns in the build data.
However, because of logic specific to the algorithm, nested data, and transformations,
some attributes donot correspond to columns.

For example, a nested column in the training data is not interpreted as an attribute by
the model. During the model build, Oracle Data Mining explodes nested columns, and
each row (an attribute name/value pair) becomes an attribute.

Some algorithms, for example Support Vector Machines (SVM) and Generalized
Linear Models (GLM), only operate on numeric attributes. Any non-numeric column
in the build data is exploded into binary attributes, one for each distinct value in the
column (SVM). GLM does not generate a new attribute for the most frequent value in
the original column. These binary attributes are set to one only if the column value for
the case is equal to the value associated with the binary attribute.

Algorithms that generate coefficients present challenges in regards to interpretability
of results. Examples are SVM and Non-Negative Matrix Factorization (NMF). These
algorithms produce coefficients that are used in combination with the transformed
attributes. The coefficients are relevant to the data on the transformed scale, not the
original data scale.

For all these reasons, the attributes listed in the model details donot resemble the
columns of data used to train the model. However, attributes that undergo embedded
transformations, whether initiated by Automatic Data Preparation (ADP) or by a user-
specified transformation list, appear in the model details in their pre-transformed
state, as close as possible to the original column values. Although the attributes are
transformed when they are used by the model, they are visible in the model details in a
form that can be interpreted by a user.

Related Topics

• ALTER_REVERSE_EXPRESSION Procedure

• GET_MODEL_TRANSFORMATIONS Function

• Model Detail Views
The GET_* interfaces are replaced by model views, and Oracle recommends that
users leverage the views instead.

Chapter 30
Understanding Reverse Transformations

30-12

31
Creating a Model

Explains how to create data mining models and query model details.

• Before Creating a Model

• The CREATE_MODEL Procedure

• Specifying Model Settings

• Model Detail Views

31.1 Before Creating a Model
Explains the preparation steps before creating a model.

Models are database schema objects that perform data mining. The
DBMS_DATA_MINING PL/SQL package is the API for creating, configuring, evaluating,
and querying mining models (model details).

Before you create a model, you must decide what you want the model to do. You
must identify the training data and determine if transformations are required. You
can specify model settings to influence the behavior of the model behavior. The
preparation steps are summarized in the following table.

Table 31-1 Preparation for Creating a Mining Model

Preparation Step Description

Choose the mining function See "Choosing the Mining Function"

Choose the algorithm See "Choosing the Algorithm"

Identify the build (training) data See "Preparing the Data"

For classification models, identify the test data See "Data Sets for Classification and Regression"

Determine your data transformation strategy See " Transforming the Data"

Create and populate a settings tables (if needed) See "Specifying Model Settings"

Related Topics

• About Mining Models
Mining models are database schema objects that perform data mining.

• DBMS_DATA_MINING
Understand the routines of DBMS_DATA_MINING package.

31.2 The CREATE_MODEL Procedure
The CREATE_MODEL procedure in the DBMS_DATA_MINING package uses the specified
data to create a mining model with the specified name and mining function. The model
can be created with configuration settings and user-specified transformations.

31-1

PROCEDURE CREATE_MODEL(
 model_name IN VARCHAR2,
 mining_function IN VARCHAR2,
 data_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2 DEFAULT NULL,
 settings_table_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 settings_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_list IN TRANSFORM_LIST DEFAULT NULL);

31.2.1 Choosing the Mining Function
Explains about providing mining function to CREATE_MODEL.

The mining function is a required argument to the CREATE_MODEL procedure. A data
mining function specifies a class of problems that can be modeled and solved.

Data mining functions implement either supervised or unsupervised learning.
Supervised learning uses a set of independent attributes to predict the value
of a dependent attribute or target. Unsupervised learning does not distinguish
between dependent and independent attributes. Supervised functions are predictive.
Unsupervised functions are descriptive.

Note:

In data mining terminology, a function is a general type of problem to be
solved by a given approach to data mining. In SQL language terminology, a
function is an operator that returns a value.

In Oracle Data Mining documentation, the term function, or mining
function refers to a data mining function; the term SQL function or SQL
Data Mining function refers to a SQL function for scoring (applying data
mining models).

You can specify any of the values in the following table for the mining_function
parameter to CREATE_MODEL.

Table 31-2 Mining Model Functions

Mining_Function Value Description

ASSOCIATION Association is a descriptive mining function. An association
model identifies relationships and the probability of their
occurrence within a data set. (association rules)
Association models use the Apriori algorithm.

ATTRIBUTE_IMPORTANCE Attribute Importance is a predictive mining function.
An attribute importance model identifies the relative
importance of attributes in predicting a given outcome.
Attribute Importance models use the Minimum Description
Length algorithm and CUR Matrix Decomposition.

Chapter 31
The CREATE_MODEL Procedure

31-2

Table 31-2 (Cont.) Mining Model Functions

Mining_Function Value Description

CLASSIFICATION Classification is a predictive mining function. A
classification model uses historical data to predict a
categorical target.
Classification models can use Naive Bayes, Neural Network,
Decision Tree, Logistic Regression, Random Forest, Support
Vector Machines, or Explicit Semantic Analysis. The default
is Naive Bayes.
The classification function can also be used for anomaly
detection. In this case, the SVM algorithm with a null target
is used (One-Class SVM).

CLUSTERING Clustering is a descriptive mining function. A clustering
model identifies natural groupings within a data set.
Clustering models can use k-Means, O-Cluster, or
Expectation Maximization. The default is k-Means.

FEATURE_EXTRACTION Feature Extraction is a descriptive mining function. A
feature extraction model creates a set of optimized
attributes.
Feature extraction models can use Non-Negative Matrix
Factorization, Singular Value Decomposition (which can
also be used for Principal Component Analysis) or Explicit
Semantic Analysis. The default is Non-Negative Matrix
Factorization.

REGRESSION Regression is a predictive mining function. A regression
model uses historical data to predict a numerical target.
Regression models can use Support Vector Machines or
Linear Regression. The default is Support Vector Machine.

TIME_SERIES Time series is a predictive mining function. A time series
model forecasts the future values of a time-ordered series
of historical numeric data over a user-specified time
window. Time series models use the Exponential Smoothing
algorithm. The default is Exponential Smoothing.

Related Topics

• Oracle Data Mining Concepts

31.2.2 Choosing the Algorithm
Learn about providing the algorithm settings for a model.

The ALGO_NAME setting specifies the algorithm for a model. If you use the default
algorithm for the mining function, or if there is only one algorithm available for the
mining function, you do not need to specify the ALGO_NAME setting. Instructions for
specifying model settings are in "Specifying Model Settings".

Table 31-3 Data Mining Algorithms

ALGO_NAME Value Algorithm Default? Mining Model Function

ALGO_AI_MDL Minimum Description Length — attribute importance

Chapter 31
The CREATE_MODEL Procedure

31-3

Table 31-3 (Cont.) Data Mining Algorithms

ALGO_NAME Value Algorithm Default? Mining Model Function

ALGO_APRIORI_ASSOCIATION_RU
LES

Apriori — association

ALGO_CUR_DECOMPOSITION CUR Decomposition Attribute Importance

ALGO_DECISION_TREE Decision Tree — classification

ALGO_EXPECTATION_MAXIMIZATI
ON

Expectation Maximization

ALGO_EXPLICIT_SEMANTIC_ANAL
YS

Explicit Semantic Analysis — feature extraction
classification

ALGO_EXPONENTIAL_SMOOTHING Exponential Smoothing — time series

ALGO_EXTENSIBLE_LANG Language used for extensible
algorithm

— All mining functions are
supported

ALGO_GENERALIZED_LINEAR_MOD
EL

Generalized Linear Model — classification and
regression

ALGO_KMEANS k-Means yes clustering

ALGO_NAIVE_BAYES Naive Bayes yes classification

ALGO_NEURAL_NETWORK Neural Network — classification

ALGO_NONNEGATIVE_MATRIX_FAC
TOR

Non-Negative Matrix Factorization yes feature extraction

ALGO_O_CLUSTER O-Cluster — clustering

ALGO_RANDOM_FOREST Random Forest — classification

ALGO_SINGULAR_VALUE_DECOMP Singular Value Decomposition
(can also be used for Principal
Component Analysis)

— feature extraction

ALGO_SUPPORT_VECTOR_MACHINE
S

Support Vector Machine yes default regression
algorithm
regression, classification,
and anomaly detection
(classification with no
target)

Related Topics

• Specifying Model Settings
Understand how to configure data mining models at build time.

• Oracle Data Mining Concepts

31.2.3 Supplying Transformations
You can optionally specify transformations for the build data in the xform_list
parameter to CREATE_MODEL. The transformation instructions are embedded in the
model and reapplied whenever the model is applied to new data.

Chapter 31
The CREATE_MODEL Procedure

31-4

31.2.3.1 Creating a Transformation List
The following are the ways to create a transformation list:

• The STACK interface in DBMS_DATA_MINING_TRANSFORM.

The STACK interface offers a set of pre-defined transformations that you can apply
to an attribute or to a group of attributes. For example, you can specify supervised
binning for all categorical attributes.

• The SET_TRANSFORM procedure in DBMS_DATA_MINING_TRANSFORM.

The SET_TRANSFORM procedure applies a specified SQL expression to a specified
attribute. For example, the following statement appends a transformation
instruction for country_id to a list of transformations called my_xforms. The
transformation instruction divides country_id by 10 before algorithmic processing
begins. The reverse transformation multiplies country_id by 10.

 dbms_data_mining_transform.SET_TRANSFORM (my_xforms,
 'country_id', NULL, 'country_id/10', 'country_id*10');

The reverse transformation is applied in the model details. If country_id is the
target of a supervised model, the reverse transformation is also applied to the
scored target.

31.2.3.2 Transformation List and Automatic Data Preparation
Understand the interaction between transformation list and Automatic Data
Preparation (ADP).

The transformation list argument to CREATE_MODEL interacts with the PREP_AUTO setting,
which controls ADP:

• When ADP is on and you specify a transformation list, your transformations
are applied with the automatic transformations and embedded in the model.
The transformations that you specify are executed before the automatic
transformations.

• When ADP is off and you specify a transformation list, your transformations are
applied and embedded in the model, but no system-generated transformations are
performed.

• When ADP is on and you do not specify a transformation list, the system-
generated transformations are applied and embedded in the model.

• When ADP is off and you do not specify a transformation list, no transformations
are embedded in the model; you must separately prepare the data sets you use
for building, testing, and scoring the model.

Related Topics

• Embedding Transformations in a Model

• Oracle Database PL/SQL Packages and Types Reference

31.2.4 About Partitioned Model
Introduces partitioned model to organise and represent multiple models.

Chapter 31
The CREATE_MODEL Procedure

31-5

Oracle Data Mining supports building of a persistent Oracle Data Mining partitioned
model. A partitioned model organizes and represents multiple models as partitions in
a single model entity, enabling a user to easily build and manage models tailored to
independent slices of data. Persistent means that the partitioned model has an on-disk
representation. The product manages the organization of the partitioned model and
simplifies the process of scoring the partitioned model. You must include the partition
columns as part of the USING clause when scoring.

The partition names, key values, and the structure of the partitioned model are visible
in the ALL_MINING_MODEL_PARTITIONS view.

Related Topics

• Oracle Database Reference

• Oracle Data Mining User’s Guide

31.2.4.1 Partitioned Model Build Process
To build a Partitioned Model, Oracle Data Mining requires a partitioning key. The
partition key is set through a build setting in the settings table.

The partitioning key is a comma-separated list of one or more columns (up to 16)
from the input data set. The partitioning key horizontally slices the input data based
on discrete values of the partitioning key. That is, partitioning is performed as list
values as opposed to range partitioning against a continuous value. The partitioning
key supports only columns of the data type NUMBER and VARCHAR2.

During the build process the input data set is partitioned based on the distinct values
of the specified key. Each data slice (unique key value) results in its own model
partition. This resultant model partition is not separate and is not visible to you as
a standalone model. The default value of the maximum number of partitions for
partitioned models is 1000 partitions. You can also set a different maximum partitions
value. If the number of partitions in the input data set exceed the defined maximum,
Oracle Data Mining throws an exception.

The Partitioned Model organizes features common to all partitions and the partition
specific features. The common features consist of the following metadata:

• The model name

• The mining function

• The mining algorithm

• A super set of all mining model attributes referenced by all partitions (signature)

• A common set of user-defined column transformations

• Any user-specified or default build settings that are interpreted as global. For
example, the Auto Data Preparation (ADP) setting

31.2.4.2 DDL in Partitioned model
Partitioned models are maintained through the following DDL operations:

• Drop model or drop partition

• Add partition

Chapter 31
The CREATE_MODEL Procedure

31-6

31.2.4.2.1 Drop Model or Drop Partition
Oracle Data Mining supports dropping a single model partition for a given partition
name.

If only a single partition remains, you cannot explicitly drop that partition. Instead,
you must either add additional partitions prior to dropping the partition or you may
choose to drop the model itself. When dropping a partitioned model, all partitions
are dropped in a single atomic operation. From a performance perspective, Oracle
recommends DROP_PARTITION followed by an ADD_PARTITION instead of leveraging the
REPLACE option due to the efficient behavior of the DROP_PARTITION option.

31.2.4.2.2 Add Partition
Oracle Data Mining supports adding a single partition or multiple partitions to an
existing partitioned model.

The addition occurs based on the input data set and the name of the existing
partitioned model. The operation takes the input data set and the existing partitioned
model as parameters. The partition keys are extracted from the input data set and the
model partitions are built against the input data set. These partitions are added to the
partitioned model. In the case where partition keys for new partitions conflict with the
existing partitions in the model, you can select from the following three approaches to
resolve the conflicts:

• ERROR: Terminates the ADD operation without adding any partitions.

• REPLACE: Replaces the existing partition for which the conflicting keys are found.

• IGNORE: Eliminates the rows having the conflicting keys.

If the input data set contains multiple keys, then the operation creates multiple
partitions. If the total number of partitions in the model increases to more than the
user-defined maximum specified when the model was created, then you get an error.
The default threshold value for the number of partitions is 1000.

31.2.4.3 Partitioned Model scoring
Learn about scoring of a partitioned model.

The scoring of the partitioned model is the same as that of the non-partitioned model.
The syntax of the data mining function remains the same but is extended to provide
an optional hint to you. The optional hint can impact the performance of a query which
involves scoring a partitioned model.

For scoring a partitioned model, the signature columns used during the build for the
partitioning key must be present in the scoring data set. These columns are combined
to form a unique partition key. The unique key is then mapped to a specific underlying
model partition, and the identified model partition is used to score that row.

The partitioned objects that are necessary for scoring are loaded on demand during
the query execution and are aged out depending on the System Global Area (SGA)
memory.

Related Topics

• Oracle Database SQL Language Reference

Chapter 31
The CREATE_MODEL Procedure

31-7

31.3 Specifying Model Settings
Understand how to configure data mining models at build time.

Numerous configuration settings are available for configuring data mining models at
build time. To specify settings, create a settings table with the columns shown in the
following table and pass the table to CREATE_MODEL.

Table 31-4 Settings Table Required Columns

Column Name Data Type

setting_name VARCHAR2(30)

setting_value VARCHAR2(4000)

Example 31-1 creates a settings table for an Support Vector Machine (SVM)
Classification model. Since SVM is not the default classifier, the ALGO_NAME setting
is used to specify the algorithm. Setting the SVMS_KERNEL_FUNCTION to SVMS_LINEAR
causes the model to be built with a linear kernel. If you do not specify the kernel
function, the algorithm chooses the kernel based on the number of attributes in the
data.

Some settings apply generally to the model, others are specific to an algorithm. Model
settings are referenced in Table 31-5 and Table 31-6.

Table 31-5 General Model Settings

Settings Description

Mining function settings See "Mining Function Settings" in Oracle Database PL/SQL Packages and
Types Reference

Algorithm names See "Algorithm Names" in Oracle Database PL/SQL Packages and Types
Reference

Global model
characteristics

See "Global Settings" in Oracle Database PL/SQL Packages and Types
Reference

Automatic Data
Preparation

See "Automatic Data Preparation" in Oracle Database PL/SQL Packages and
Types Reference

Table 31-6 Algorithm-Specific Model Settings

Algorithm Description

CUR Matrix Decomposition See "DBMS_DATA_MINING —Algorithm Settings: CUR Matrix
Decomposition"in Oracle Database PL/SQL Packages and Types Reference

Decision Tree See "DBMS_DATA_MINING —Algorithm Settings: Decision Tree" in Oracle
Database PL/SQL Packages and Types Reference

Expectation Maximization See "DBMS_DATA_MINING —Algorithm Settings: Expectation Maximization"
in Oracle Database PL/SQL Packages and Types Reference

Explicit Semantic Analysis See “DBMS_DATA_MINING —Algorithm Settings: Explicit Semantic Analysis”
in Oracle Database PL/SQL Packages and Types Reference

Chapter 31
Specifying Model Settings

31-8

Table 31-6 (Cont.) Algorithm-Specific Model Settings

Algorithm Description

Exponential Smoothing See "DBMS_DATA_MINING —Algorithm Settings: Exponential Smoothing
Models" in Oracle Database PL/SQL Packages and Types Reference

Generalized Linear Models See "DBMS_DATA_MINING —Algorithm Settings: Generalized Linear Models"
in Oracle Database PL/SQL Packages and Types Reference

k-Means See "DBMS_DATA_MINING —Algorithm Settings: k-Means" in Oracle
Database PL/SQL Packages and Types Reference

Naive Bayes See "Algorithm Settings: Naive Bayes" in Oracle Database PL/SQL Packages
and Types Reference

Neural Network See "DBMS_DATA_MINING —Algorithm Settings: Neural Network" in Oracle
Database PL/SQL Packages and Types Reference

Non-Negative Matrix
Factorization

See "DBMS_DATA_MINING —Algorithm Settings: Non-Negative Matrix
Factorization" in Oracle Database PL/SQL Packages and Types Reference

O-Cluster See "Algorithm Settings: O-Cluster" in Oracle Database PL/SQL Packages and
Types Reference

Random Forest See "DBMS_DATA_MINING — Algorithm Settings: Random Forest" in Oracle
Database PL/SQL Packages and Types Reference

Singular Value
Decomposition

See "DBMS_DATA_MINING —Algorithm Settings: Singular Value
Decomposition" in Oracle Database PL/SQL Packages and Types Reference

Support Vector Machine See "DBMS_DATA_MINING —Algorithm Settings: Support Vector Machine" in
Oracle Database PL/SQL Packages and Types Reference

Example 31-1 Creating a Settings Table for an SVM Classification Model

CREATE TABLE svmc_sh_sample_settings (
 setting_name VARCHAR2(30),
 setting_value VARCHAR2(4000));

BEGIN
 INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.algo_name, dbms_data_mining.algo_support_vector_machines);
 INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.svms_kernel_function, dbms_data_mining.svms_linear);
 COMMIT;
END;
/

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

31.3.1 Specifying Costs
Specify a cost matrix table to build a Decision Tree model.

The CLAS_COST_TABLE_NAME setting specifies the name of a cost matrix table to be
used in building a Decision Tree model. A cost matrix biases a classification model to
minimize costly misclassifications. The cost matrix table must have the columns shown
in the following table:

Chapter 31
Specifying Model Settings

31-9

Table 31-7 Cost Matrix Table Required Columns

Column Name Data Type

actual_target_value valid target data type

predicted_target_value valid target data type

cost NUMBER

Decision Tree is the only algorithm that supports a cost matrix at build time. However,
you can create a cost matrix and associate it with any classification model for scoring.

If you want to use costs for scoring, create a table with the columns shown in
Table 31-7, and use the DBMS_DATA_MINING.ADD_COST_MATRIX procedure to add the
cost matrix table to the model. You can also specify a cost matrix inline when invoking
a PREDICTION function. Table 29-1 has details for valid target data types.

Related Topics

• Oracle Data Mining Concepts

31.3.2 Specifying Prior Probabilities
Prior probabilities can be used to offset differences in distribution between the build
data and the actual population.

The CLAS_PRIORS_TABLE_NAME setting specifies the name of a table of prior
probabilities to be used in building a Naive Bayes model. The priors table must have
the columns shown in the following table.

Table 31-8 Priors Table Required Columns

Column Name Data Type

target_value valid target data type

prior_probability NUMBER

Related Topics

• Target Attribute
Understand what a target means in data mining and understand the different
target data types.

• Oracle Data Mining Concepts

31.3.3 Specifying Class Weights
Specify class weights table settings in Logistic Regression or Support Vector Machine
(SVM) Classification to favour higher weighted classes.

The CLAS_WEIGHTS_TABLE_NAME setting specifies the name of a table of class weights
to be used to bias a logistic regression (Generalized Linear Model Classification) or
SVM Classification model to favor higher weighted classes. The weights table must
have the columns shown in the following table.

Chapter 31
Specifying Model Settings

31-10

Table 31-9 Class Weights Table Required Columns

Column Name Data Type

target_value valid target data type

class_weight NUMBER

Related Topics

• Target Attribute
Understand what a target means in data mining and understand the different
target data types.

• Oracle Data Mining Concepts

31.3.4 Model Settings in the Data Dictionary
Explains about ALL/USER/DBA_MINING_MODEL_SETTINGS in data dictionary view.

Information about mining model settings can be obtained from the data dictionary
view ALL/USER/DBA_MINING_MODEL_SETTINGS. When used with the ALL prefix, this view
returns information about the settings for the models accessible to the current user.
When used with the USER prefix, it returns information about the settings for the models
in the user's schema. The DBA prefix is only available for DBAs.

The columns of ALL_MINING_MODEL_SETTINGS are described as follows and explained
in the following table.

SQL> describe all_mining_model_settings
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(30)
 MODEL_NAME NOT NULL VARCHAR2(30)
 SETTING_NAME NOT NULL VARCHAR2(30)
 SETTING_VALUE VARCHAR2(4000)
 SETTING_TYPE VARCHAR2(7)

Table 31-10 ALL_MINING_MODEL_SETTINGS

Column Description

owner Owner of the mining model.

model_name Name of the mining model.

setting_name Name of the setting.

setting_value Value of the setting.

setting_type INPUT if the value is specified by a user. DEFAULT if the value is
system-generated.

The following query lists the settings for the Support Vector
Machine (SVM) Classification model SVMC_SH_CLAS_SAMPLE. The ALGO_NAME,
CLAS_WEIGHTS_TABLE_NAME, and SVMS_KERNEL_FUNCTION settings are user-specified.
These settings have been specified in a settings table for the model.

Chapter 31
Specifying Model Settings

31-11

Example 31-2 ALL_MINING_MODEL_SETTINGS

SQL> COLUMN setting_value FORMAT A35
SQL> SELECT setting_name, setting_value, setting_type
 FROM all_mining_model_settings
 WHERE model_name in 'SVMC_SH_CLAS_SAMPLE';

SETTING_NAME SETTING_VALUE SETTING
------------------------------ ----------------------------------- -------
SVMS_ACTIVE_LEARNING SVMS_AL_ENABLE DEFAULT
PREP_AUTO OFF DEFAULT
SVMS_COMPLEXITY_FACTOR 0.244212 DEFAULT
SVMS_KERNEL_FUNCTION SVMS_LINEAR INPUT
CLAS_WEIGHTS_TABLE_NAME svmc_sh_sample_class_wt INPUT
SVMS_CONV_TOLERANCE .001 DEFAULT
ALGO_NAME ALGO_SUPPORT_VECTOR_MACHINES INPUT

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

31.3.5 Specifying Mining Model Settings for R Model
The mining model settings for R model determine the characteristics of the model. You
can specify the mining model settings in the mining_model_table.

You can build R models with the mining model settings by combining together generic
settings that do not require an algorithm, such as ODMS_PARTITION_COLUMNS and
ODMS_SAMPLING. The following settings are exclusive to R mining model, and they allow
you to specify the R Mining model:

• ALGO_EXTENSIBLE_LANG

• RALG_BUILD_FUNCTION

• RALG_BUILD_PARAMETER

• RALG_DETAILS_FORMAT

• RALG_DETAILS_FUNCTION

• RALG_SCORE_FUNCTION

• RALG_WEIGHT_FUNCTION

Related Topics

• Registered R Scripts
The RALG_*_FUNCTION must specify R scripts that exist in the R script repository.
You can register the R scripts using Oracle R Enterprise.

31.3.5.1 ALGO_EXTENSIBLE_LANG
Use the ALGO_EXTENSIBLE_LANG setting to specify the Oracle Data Mining framework
with extensible algorithms.

Currently, R is the only valid value for ALGO_EXTENSIBLE_LANG. When the value for
ALGO_EXTENSIBLE_LANG is set to R, the mining models are built using the R language.
You can use the following settings in the model_setting_table to specify the build,
score, and view of the R model.

• RALG_BUILD_FUNCTION

Chapter 31
Specifying Model Settings

31-12

• RALG_BUILD_PARAMETER

• RALG_DETAILS_FUNCTION

• RALG_DETAILS_FORMAT

• RALG_SCORE_FUNCTION

• RALG_WEIGHT_FUNCTION

Related Topics

• Registered R Scripts
The RALG_*_FUNCTION must specify R scripts that exist in the R script repository.
You can register the R scripts using Oracle R Enterprise.

31.3.5.2 RALG_BUILD_FUNCTION
Use the RALG_BUILD_FUNCTION to specify the name of an existing registered R script
for R algorithm mining model build.

You must specify both RALG_BUILD_FUNCTION and ALGO_EXTENSIBLE_LANG in the
model_setting_table. The R script defines an R function that has the first input
argument of data.frame for training data, and it returns an R model object. The first
data argument is mandatory. The RALG_BUILD_FUNCTION can accept additional model
build parameters.

Note:

The valid inputs for input parameters are numeric and string scalar data
types.

Example 31-3 Example of RALG_BUILD_FUNCTION

This example shows how to specify the name of the R script MY_LM_BUILD_SCRIPT that
is used to build the model in the model_setting_table.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_build_function,'MY_LM_BUILD_SCRIPT');
End;
/

The R script MY_LM_BUILD_SCRIPT defines an R function that builds the LM model.
You must register the script MY_LM_BUILD_SCRIPT in the R script repository which
uses the existing ORE security restrictions. You can use Oracle R Enterprise API
sys.rqScriptCreate to register the script. Oracle R Enterprise requires the RQADMIN
role to register R scripts.

For example:

Begin
sys.rqScriptCreate('MY_LM_BUILD_SCRIPT', 'function(data, formula,
model.frame) {lm(formula = formula, data=data, model =
as.logical(model.frame)}');

Chapter 31
Specifying Model Settings

31-13

End;
/

For Clustering and Feature Extraction mining function model build, the R attributes
dm$nclus and dm$nfeat must be set on the return R model to indicate the number of
clusters and features respectively.

The R script MY_KM_BUILD_SCRIPT defines an R function that builds the k-Means model
for Clustering. R attribute dm$nclus is set with the number of clusters for the return
Clustering model.

'function(dat) {dat.scaled <- scale(dat)
 set.seed(6543); mod <- list()
 fit <- kmeans(dat.scaled, centers = 3L)
 mod[[1L]] <- fit
 mod[[2L]] <- attr(dat.scaled, "scaled:center")
 mod[[3L]] <- attr(dat.scaled, "scaled:scale")
 attr(mod, "dm$nclus") <- nrow(fit$centers)
 mod}'

The R script MY_PCA_BUILD_SCRIPT defines an R function that builds the PCA model.
R attribute dm$nfeat is set with the number of features for the return feature extraction
model.

'function(dat) {
 mod <- prcomp(dat, retx = FALSE)
 attr(mod, "dm$nfeat") <- ncol(mod$rotation)
 mod}'

Related Topics

• RALG_BUILD_PARAMETER
The RALG_BUILD_FUNCTION input parameter specifies a list of numeric and string
scalar values in SQL SELECT query statement format.

• Registered R Scripts
The RALG_*_FUNCTION must specify R scripts that exist in the R script repository.
You can register the R scripts using Oracle R Enterprise.

31.3.5.2.1 RALG_BUILD_PARAMETER
The RALG_BUILD_FUNCTION input parameter specifies a list of numeric and string scalar
values in SQL SELECT query statement format.

Example 31-4 Example of RALG_BUILD_PARAMETER

The RALG_BUILD_FUNCTION input parameters must be a list of numeric and string scalar
values. The input parameters are optional.

The syntax of the parameter is:

'SELECT value parameter name ...FROM dual'

Chapter 31
Specifying Model Settings

31-14

This example shows how to specify a formula for the input argument
'formula' and a numeric value zero for input argument 'model.frame' using
the RALG_BUILD_PARAMETER. These input arguments must match with the function
signature of the R script used in RALG_BUILD_FUNCTION Parameter.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_build_parameter, 'select ''AGE ~ .'' as
"formula", 0 as "model.frame" from dual');
End;
/

Related Topics

• RALG_BUILD_FUNCTION
Use the RALG_BUILD_FUNCTION to specify the name of an existing registered R
script for R algorithm mining model build.

31.3.5.3 RALG_DETAILS_FUNCTION
The RALG_DETAILS_FUNCTION specifies the R model metadata that is returned in the
data.frame.

Use the RALG_DETAILS_FUNCTION to specify an existing registered R script that
generates model information. The specified R script defines an R function that
contains the first input argument for the R model object. The output of the R
function must be a data.frame. The columns of the data.frame are defined by
RALG_DETAILS_FORMAT, and can contain only numeric or string scalar types.

Example 31-5 Example of RALG_DETAILS_FUNCTION

This example shows how to specify the name of the R script MY_LM_DETAILS_SCRIPT in
the model_setting_table. This script defines the R function that is used to provide the
model information.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_details_function, 'MY_LM_DETAILS_SCRIPT');
End;
/

In the R script repository, the script MY_LM_DETAILS_SCRIPT is registered as:

 'function(mod) data.frame(name=names(mod$coefficients),
 coef=mod$coefficients)'

Related Topics

• Registered R Scripts
The RALG_*_FUNCTION must specify R scripts that exist in the R script repository.
You can register the R scripts using Oracle R Enterprise.

• RALG_DETAILS_FORMAT
Use the RALG_DETAILS_FORMAT parameter to specify the names and column types
in the model view. It is a string that contains a SELECT query to specify a list of

Chapter 31
Specifying Model Settings

31-15

numeric and string scalar data types for the name and type of the model view
columns.

31.3.5.3.1 RALG_DETAILS_FORMAT
Use the RALG_DETAILS_FORMAT parameter to specify the names and column types in
the model view. It is a string that contains a SELECT query to specify a list of numeric
and string scalar data types for the name and type of the model view columns.

When RALG_DETAILS_FORMAT and RALG_DETAILS_FUNCTION are both specified, a model
view by the name DM$VD <model_name> is created along with an R model in the current
schema. The first column of the model view is PARTITION_NAME. It has NULL value
for non-partitioned models. The other columns of the model view are defined by
RALG_DETATLS_FORMAT.

Example 31-6 Example of RALG_DETAILS_FORMAT

This example shows how to specify the name and type of the columns for the
generated model view. The model view contains varchar2 column attr_name and
number column coef_value after the first column partition_name.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_details_format, 'select cast(''a'' as
varchar2(20)) as attr_name, 0 as coef_value from dual');
End;
/

Related Topics

• RALG_DETAILS_FUNCTION
The RALG_DETAILS_FUNCTION specifies the R model metadata that is returned in
the data.frame.

31.3.5.4 RALG_SCORE_FUNCTION
Use the RALG_SCORE_FUNCTION to specify an existing registered R script for R algorithm
mining model score in the mining_model_table.

The specified R script defines an R function. The first input argument defines the
model object. The second input argument defines the data.frame that is used for
scoring data.

Example 31-7 Example of RALG_SCORE_FUNCTION

This example shows how the function takes the R model and scores the data in
the data.frame. The argument object is the R Linear Model. The argument newdata
contains scoring data in the data.frame.

function(object, newdata) {res <- predict.lm(object, newdata =
newdata, se.fit = TRUE); data.frame(fit=res$fit, se=res$se.fit,
df=summary(object)$df[1L])}

In this example,

• object indicates the LM model

Chapter 31
Specifying Model Settings

31-16

• newdata indicates the scoring data.frame

The output of the specified R function must be a data.frame. Each row represents the
prediction for the corresponding scoring data from the input data.frame. The columns
of the data.frame are specific to mining functions, such as:

Regression: A single numeric column for predicted target value, with two optional
columns containing standard error of model fit, and the degrees of freedom number.
The optional columns are needed for query function PREDICTION_BOUNDS to work.

Example 31-8 Example of RALG_SCORE_FUNCTION for Regression

This example shows how to specify the name of the R script MY_LM_PREDICT_SCRIPT
that is used to score the model in the model_setting_table.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_score_function, 'MY_LM_PREDICT_SCRIPT');
End;
/

In the R script repository, the script MY_LM_PREDICT_SCRIPT is registered as:

function(object, newdata) {data.frame(pre = predict(object, newdata =
newdata))}

Classification: Each column represents the predicted probability of one target class.
The column name is the target class name.

Example 31-9 Example of RALG_SCORE_FUNCTION for Classification

This example shows how to specify the name of the R script
MY_LOGITGLM_PREDICT_SCRIPT that is used to score the logit Classification model in
the model_setting_table.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_score_function, 'MY_LOGITGLM_PREDICT_SCRIPT');
End;
/

In the R script repository, MY_LOGITGLM_PREDICT_SCRIPT is registered as follows. It is a
logit Classification with two target class "0" and "1".

'function(object, newdata) {
 pred <- predict(object, newdata = newdata, type="response");
 res <- data.frame(1-pred, pred);
 names(res) <- c("0", "1");
 res}'

Clustering: Each column represents the predicted probability of one cluster. The
columns are arranged in order of cluster ID. Each cluster is assigned a cluster ID,
and they are consecutive values starting from 1. To support CLUSTER_DISTANCE in the
R model, the output of R score function returns extra column containing the value of

Chapter 31
Specifying Model Settings

31-17

the distance to each cluster in order of cluster ID after the columns for the predicted
probability.

Example 31-10 Example of RALG_SCORE_FUNCTION for Clustering

This example shows how to specify the name of the R script
MY_CLUSTER_PREDICT_SCRIPT that is used to score the model in the
model_setting_table.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_score_function, 'MY_CLUSTER_PREDICT_SCRIPT');
End;
/

In the R script repository, the script MY_CLUSTER_PREDICT_SCRIPT is registered as:

'function(object, dat){
 mod <- object[[1L]]; ce <- object[[2L]]; sc <- object[[3L]];
 newdata = scale(dat, center = ce, scale = sc);
 centers <- mod$centers;
 ss <- sapply(as.data.frame(t(centers)),
 function(v) rowSums(scale(newdata, center=v, scale=FALSE)^2));
 if (!is.matrix(ss)) ss <- matrix(ss, ncol=length(ss));
 disp <- -1 / (2* mod$tot.withinss/length(mod$cluster));
 distr <- exp(disp*ss);
 prob <- distr / rowSums(distr);
 as.data.frame(cbind(prob, sqrt(ss)))}'

Feature Extraction: Each column represents the coefficient value of one feature. The
columns are arranged in order of feature ID. Each feature is assigned a feature ID,
and they are consecutive values starting from 1.

Example 31-11 Example of RALG_SCORE_FUNCTION for Feature Extraction

This example shows how to specify the name of the R script
MY_FEATURE_EXTRACTION_SCRIPT that is used to score the model in the
model_setting_table.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_score_function, 'MY_FEATURE_EXTRACTION_SCRIPT');
End;
/

In the R script repository, the script MY_FEATURE_EXTRACTION_SCRIPT is registered as:

 'function(object, dat) { as.data.frame(predict(object, dat)) }'

The function fetches the centers of the features from the R model, and computes
the feature coefficient based on the distance of the score data to the corresponding
feature center.

Chapter 31
Specifying Model Settings

31-18

Related Topics

• Registered R Scripts
The RALG_*_FUNCTION must specify R scripts that exist in the R script repository.
You can register the R scripts using Oracle R Enterprise.

31.3.5.5 RALG_WEIGHT_FUNCTION
Use the RALG_WEIGHT_FUNCTION to specify the name of an existing registered R script
that computes weight or contribution for each attribute in scoring. The specified
R script is used in the query function PREDICTION_DETAILS to evaluate attribute
contribution.

The specified R script defines an R function containing the first input argument for
model object, and the second input argument of data.frame for scoring data. When
the mining function is Classification, Clustering, or Feature Extraction, the target class
name or cluster ID or feature ID is passed by the third input argument to compute the
weight for that particular class or cluster or feature. The script returns a data.frame
containing the contributing weight for each attribute in a row. Each row corresponds to
that input scoring data.frame.

Example 31-12 Example of RALG_WEIGHT_FUNCTION

This example shows how to specify the name of the R script
MY_PREDICT_WEIGHT_SCRIPT that computes weight or contribution of R model attributes
in the model_setting_table.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_weight_function, 'MY_PREDICT_WEIGHT_SCRIPT');
End;
/

In the R script repository, the script MY_PREDICT_WEIGHT_SCRIPT for Regression is
registered as:

'function(mod, data) { coef(mod)[-1L]*data }'

In the R script repository, the script MY_PREDICT_WEIGHT_SCRIPT for logit Classification
is registered as:

'function(mod, dat, clas) {
 v <- predict(mod, newdata=dat, type = "response");
 v0 <- data.frame(v, 1-v); names(v0) <- c("0", "1");
 res <- data.frame(lapply(seq_along(dat),
 function(x, dat) {
 if(is.numeric(dat[[x]])) dat[,x] <- as.numeric(0)
 else dat[,x] <- as.factor(NA);
 vv <- predict(mod, newdata = dat, type = "response");
 vv = data.frame(vv, 1-vv); names(vv) <- c("0", "1");
 v0[[clas]] / vv[[clas]]}, dat = dat));
 names(res) <- names(dat);
 res}'

Chapter 31
Specifying Model Settings

31-19

Related Topics

• Registered R Scripts
The RALG_*_FUNCTION must specify R scripts that exist in the R script repository.
You can register the R scripts using Oracle R Enterprise.

31.3.5.6 Registered R Scripts
The RALG_*_FUNCTION must specify R scripts that exist in the R script repository. You
can register the R scripts using Oracle R Enterprise.

The RALG_*_FUNCTION includes the following functions:

• RALG_BUILD_FUNCTION

• RALG_DETAILS_FUNCTION

• RALG_SCORE_FUNCTION

• RALG_WEIGHT_FUNCTION

Note:

The R scripts must exist in the R script repository for an R model to function.

You can register the R scripts through Oracle Enterprise R (ORE). To register R
scripts, you must have the RQADMIN role. After an R model is built, the names of these
specified R scripts become model settings. These R scripts must exist in the R script
repository for an R model to remain functional.

You can manage the R memory that is used to build, score, and view the R models
through Oracle Enterprise R as well.

31.3.5.7 R Model Demonstration Scripts
You can access R model demonstration scripts under rdbms/demo

dmraidemo.sql dmrglmdemo.sql dmrpcademo.sql
dmrardemo.sql dmrkmdemo.sql dmrrfdemo.sql
dmrdtdemo.sql dmrnndemo.sql

31.4 Model Detail Views
The GET_* interfaces are replaced by model views, and Oracle recommends that users
leverage the views instead.

The following are the new model views:

Association:

• Model Detail Views for Association Rules

• Model Detail View for Frequent Itemsets

• Model Detail View for Transactional Itemsets

Chapter 31
Model Detail Views

31-20

• Model Detail View for Transactional Rule

Classification, Regression, and Anomaly Detection:

• Model Detail Views for Classification Algorithms

• Model Detail Views for CUR Matrix Decomposition

• Model Detail Views for Decision Tree

• Model Detail Views for Generalized Linear Model

• Model Detail Views for Naive Bayes

• Model Detail Views for Neural Network

• Model Detail Views for Random Forest

• Model Detail View for Support Vector Machine

Clustering:

• Model Detail Views for Clustering Algorithms

• Model Detail Views for Expectation Maximization

• Model Detail Views for k-Means

• Model Detail Views for O-Cluster

Feature Extraction:

• Model Detail Views for Explicit Semantic Analysis

• Model Detail Views for Non-Negative Matrix Factorization

• Model Detail Views for Singular Value Decomposition

Feature Selection:

• Model Detail View for Minimum Description Length

Data Preparation and Other:

• Model Detail View for Binning

• Model Detail Views for Global Information

• Model Detail View for Normalization and Missing Value Handling

Time Series:

Model Detail Views for Exponential Smoothing Models

31.4.1 Model Detail Views for Association Rules
Model detail views for Association Rules describe the rule view for Association Rules.
Oracle recommends that users leverage the model details views instead of the
GET_ASSOCIATION_RULES function.

The rule view DM$VRmodel_name describes the generated rules for Association Rules.
Depending on the settings of the model, the rule view has different set of columns.
Settings ODMS_ITEM_ID_COLUMN_NAME and ODMS_ITEM_VALUE_COLUMN_NAME determine
how each item is defined. If ODMS_ITEM_ID_COLUMN_NAME is set, the input format
is called transactional input, otherwise, the input format is called 2-Dimensional
input. With transactional input, if setting ODMS_ITEM_VALUE_COLUMN_NAME is not set,
each item is defined by ITEM_NAME, otherwise, each item is defined by ITEM_NAME

Chapter 31
Model Detail Views

31-21

and ITEM_VALUE. With 2-Dimensional input, each item is defined by ITEM_NAME,
ITEM_SUBNAME and ITEM_VALUE. Setting ASSO_AGGREGATES specifies the columns to
aggregate, which is displayed in the view.

Note:

Setting ASSO_AGGREGATES is not allowed for 2-dimensional input.

The following shows the views with different settings.

Transactional Input Without ASSO_AGGREGATES Setting

When setting ITEM_NAME (ODMS_ITEM_ID_COLUMN_NAME) is set and ITEM_VALUE
(ODMS_ITEM_VALUE_COLUMN_NAME) is not set, the following is the view. Here the
consequent item is defined with only name field. If ITEM_VALUE setting is also set,
the view will have one extra column CONSEQUENT_VALUE to specify the value field.

Name Type
 --- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 RULE_ID NUMBER
 RULE_SUPPORT NUMBER
 RULE_CONFIDENCE NUMBER
 RULE_LIFT NUMBER
 RULE_REVCONFIDENCE NUMBER
 ANTECEDENT_SUPPORT NUMBER
 NUMBER_OF_ITEMS NUMBER
 CONSEQUENT_SUPPORT NUMBER
 CONSEQUENT_NAME VARCHAR2(4000)
 ANTECEDENT SYS.XMLTYPE

Table 31-11 Rule View Columns for Transactional Inputs

Column Name Description

PARTITION_NAME A partition in a partitioned model to retrieve details

RULE_ID Identifier of the rule

RULE_SUPPORT The number of transactions that satisfy the rule.

RULE_CONFIDENCE The likelihood of a transaction satisfying the rule.

RULE_LIFT The degree of improvement in the prediction over random chance when
the rule is satisfied.

RULE_REVCONFIDENCE The number of transactions in which the rule occurs divided by the
number of transactions in which the consequent occurs.

ANTECEDENT_SUPPORT The ratio of the number of transactions that satisfy the antecedent to the
total number of transactions.

NUMBER_OF_ITEMS The total number of attributes referenced in the antecedent and
consequent of the rule.

CONSEQUENT_SUPPORT The ratio of the number of transactions that satisfy the consequent to
the total number of transactions.

Chapter 31
Model Detail Views

31-22

Table 31-11 (Cont.) Rule View Columns for Transactional Inputs

Column Name Description

CONSEQUENT_NAME Name of the consequent

CONSEQUENT_VALUE Value of the consequent when setting Item_value
(ODMS_ITEM_VALUE_COLUMN_NAME) is set with TYPE as numerical, the
view has a CONSEQUENT_VALUE column.

When setting Item_value (ODMS_ITEM_VALUE_COLUMN_NAME) is set with
TYPE as categorical, the view has a CONSEQUENT_VALUE column.

ANTECEDENT The antecedent is described as an itemset. At the itemset level, it
specifies the number of aggregates, and if not zero, the names of the
columns to be aggregated (as well as the mapping to ASSO_AGG*). The
itemset contains >= 1 items.

• When setting ODMS_ITEM_VALUE_COLUMN_NAME is not set, each item
is defined by item_name. As an example, assume the antecedent
contains one item B, it is represented as follows:

<itemset NUMAGGR="0"><item><item_name>B</item_name></
item></itemset>

As another example, assume the antecedent contains two items, A
and C, it is represented as follows:

<itemset NUMAGGR="0"><item><item_name>A</item_name></
item><item><item_name>C</item_name></item></itemset>

• When setting ODMS_ITEM_VALUE_COLUMN_NAME is set, each item is
defined by item_name and item_value. As an example, assume the
antecedent contains two items, (name A, value 1) and (name C,
value 1), then it is represented as follows:

<itemset NUMAGGR="0"><item><item_name>A</
item_name><item_value>1</item_value></
item><item><item_name>C</item_name><item_value>1</
item_value></item></itemset>

Transactional Input With ASSO_AGGREGATES Setting

Similar to the view without aggregates setting, there are three cases:

• Rule view when ODMS_ITEM_ID_COLUMN_NAME is set and Item_value
(ODMS_ITEM_VALUE_COLUMN_NAME) is not set.

• Rule view when ODMS_ITEM_ID_COLUMN_NAME is set and Item_value
(ODMS_ITEM_VALUE_COLUMN_NAME) is set with TYPE as numerical, the view has a
CONSEQUENT_VALUE column.

• Rule view when ODMS_ITEM_ID_COLUMN_NAME is set and Item_value
(ODMS_ITEM_VALUE_COLUMN_NAME) is set with TYPE as categorical, the view has a
CONSEQUENT_VALUE column.

For example, refer “Example: Calculating Aggregates” in Oracle Data Mining
Concepts.

Chapter 31
Model Detail Views

31-23

The view reports two sets of aggregates results:

1. ANT_RULE_PROFIT refers to the total profit for the antecedent itemset with respect
to the rule, the profit for each individual item of the antecedent itemset is shown
in the ANTECEDENT(XMLtype) column, CON_RULE_PROFIT refers to the total profit for
the consequent item with respect to the rule.

In the example, for rule (A, B) => C, the rule itemset (A, B, C) occurs in the
transactions of customer 1 and customer 3. The ANT_RULE_PROFIT is $21.20,
The ANTECEDENT is shown as follow, which tells that item A has profit 5.00 +
3.00 = $8.00 and item B has profit 3.20 + 10.00 = $13.20, which sum up to
ANT_RULE_PROFIT.

<itemset NUMAGGR="1" ASSO_AGG0="profit"><item><item_name>A</
item_name><ASSO_AGG0>8.0E+000</ASSO_AGG0></item><item><item_name>B</
item_name><ASSO_AGG0>1.32E+001</ASSO_AGG0></item></itemset>
The CON_RULE_PROFIT is 12.00 + 14.00 = $26.00

2. ANT_PROFIT refers to the total profit for the antecedent itemset, while CON_PROFIT
refers to the total profit for the consequent item. The difference between
CON_PROFIT and CON_RULE_PROFIT (the same applies to ANT_PROFIT and
ANT_RULE_PROFIT) is that CON_PROFIT counts all profit for the consequent item
across all transactions where the consequent occurs, while CON_RULE_PROFIT only
counts across transactions where the rule itemset occurs.

For example, item C occurs in transactions for customer 1, 2 and 3, CON_PROFIT
is 12.00 + 4.20 + 14.00 = $30.20, while CON_RULE_PROFIT only counts transactions
for customer 1 and 3 where the rule itemset (A, B, C) occurs.

Similarly, ANT_PROFIT counts all transactions where itemset (A, B) occurs, while
ANT_RULE_PROFIT counts only transactions where the rule itemset (A, B, C) occurs.
In this example, by coincidence, both count transactions for customer 1 and 3, and
have the same value.

Example 31-13 Examples

The following example shows the view when setting ASSO_AGGREGATES specifies
column profit and column sales to be aggregated. In this example, ITEM_VALUE column
is not specified.

Name Type
 --- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 RULE_ID NUMBER
 RULE_SUPPORT NUMBER
 RULE_CONFIDENCE NUMBER
 RULE_LIFT NUMBER
 RULE_REVCONFIDENCE NUMBER
 ANTECEDENT_SUPPORT NUMBER
 NUMBER_OF_ITEMS NUMBER
 CONSEQUENT_SUPPORT NUMBER
 CONSEQUENT_NAME VARCHAR2(4000)
 ANTECEDENT SYS.XMLTYPE
 ANT_RULE_PROFIT BINARY_DOUBLE
 CON_RULE_PROFIT BINARY_DOUBLE
 ANT_PROFIT BINARY_DOUBLE
 CON_PROFIT BINARY_DOUBLE

Chapter 31
Model Detail Views

31-24

 ANT_RULE_SALES BINARY_DOUBLE
 CON_RULE_SALES BINARY_DOUBLE
 ANT_SALES BINARY_DOUBLE
 CON_SALES BINARY_DOUBLE

Rule view when ODMS_ITEM_ID_COLUMN_NAME is set and Item_value
(ODMS_ITEM_VALUE_COLUMN_NAME) is set with TYPE as numerical, the view has a
CONSEQUENT_VALUE column.

Rule view when ODMS_ITEM_ID_COLUMN_NAME is set and Item_value
(ODMS_ITEM_VALUE_COLUMN_NAME) is set with TYPE as categorical, the view has a
CONSEQUENT_VALUE column.

2-Dimensional Inputs

In Oracle Data Mining, association models can be built using either transactional or
two-dimensional data formats. For two-dimensional input, each item is defined by
three fields: NAME, VALUE and SUBNAME. The NAME field is the name of the column.
The VALUE field is the content of the column. The SUBNAME field is used when input
data table contains nested table. In such case, the SUBNAME is the name of the
nested table's column. See, Example: Creating a Nested Column for Market Basket
Analysis. In this example, there is a nested column. The CONSEQUENT_SUBNAME is
the ATTRIBUTE_NAME part of the nested column. That is, 'O/S Documentation Set -
English' and CONSEQUENT_VALUE is the value part of the nested column, which is, 1.

The view uses three columns for consequent. The rule view has the following columns:

Name Type
 ----------------------- ---------------------
 PARTITION_NAME VARCHAR2(128)
 RULE_ID NUMBER
 RULE_SUPPORT NUMBER
 RULE_CONFIDENCE NUMBER
 RULE_LIFT NUMBER
 RULE_REVCONFIDENCE NUMBER
 ANTECEDENT_SUPPORT NUMBER
 NUMBER_OF_ITEMS NUMBER
 CONSEQUENT_SUPPORT NUMBER
 CONSEQUENT_NAME VARCHAR2(4000)
 CONSEQUENT_SUBNAME VARCHAR2(4000)
 CONSEQUENT_VALUE VARCHAR2(4000)
 ANTECEDENT SYS.XMLTYPE

Note:

All the types for three parts are VARCHAR2. ASSO_AGGREGATES is not applicable
for 2-Dimensional input format.

The following table displays rule view columns for 2-Dimensional input with the
descriptions of only the fields which are specific to 2-D inputs.

Chapter 31
Model Detail Views

31-25

Table 31-12 Rule View for 2-Dimensional Input

Column Name Description

CONSEQUENT_SUBNAME For two-dimensional inputs, CONSEQUENT_SUBNAME is used for
nested column in the input data table.

CONSEQUENT_VALUE Value of the consequent when setting Item_value is set with
TYPE as numerical, the view has a CONSEQUENT_VALUE column.

When setting Item_value is set with TYPE as categorical, the
view has a CONSEQUENT_VALUE column.

ANTECEDENT The antecedent is described as an itemset. The itemset
contains >= 1 items. Each item is defined using ITEM_NAME,
ITEM_SUBNAME, and ITEM_VALUE:

As an example, assuming that this is not a nested table input,
and the antecedent contains one item: (name ADDR, value MA).
The antecedent (XMLtype) is as follows:

<itemset NUMAGGR="0"><item><item_name>ADDR</
item_name><item_subname></item_subna
me><item_value>MA</item_value></item></itemset>

For 2-Dimensional input with nested table, the subname field
is filled.

Global Detail for Association Rules

A single global detail is produced by an Association model. The following table
describes a global detail returned for Association Rules model.

Table 31-13 Global Detail for Association Rules

Name Description

ITEMSET_COUNT The number of itemsets generated

MAX_SUPPORT The maximum support

NUM_ROWS The total number of rows used in the build

RULE_COUNT The number of association rules in the model generated

TRANSACTION_COUNT The number of the transactions in input data

31.4.2 Model Detail View for Frequent Itemsets
Model detail view for Frequent Itemsets describes the frequent itemsets view.
Oracle recommends that you leverage model details view instead of the
GET_FREQUENT_ITEMSETS function.

The frequent itemsets view DM$VImodel_name has the following schema:

Name Type
 ------------- ------------------
 PARTITION_NAME VARCHAR2 (128)

Chapter 31
Model Detail Views

31-26

 ITEMSET_ID NUMBER
 SUPPORT NUMBER
 NUMBER_OF_ITEMS NUMBER
 ITEMSET SYS.XMLTYPE

Table 31-14 Frequent Itemsets View

Column Name Description

PARTITION_NAME A partition in a partitioned model

ITEMSET_ID Itemset identifier

SUPPORT Support of the itemset

NUMBER_OF_ITEMS Number of items in the itemset

ITEMSET Frequent itemset
The structure of the SYS.XMLTYPE column itemset is
the same as the corresponding Antecedent column of
the rule view.

31.4.3 Model Detail View for Transactional Itemsets
Model detail view for Transactional Itemsets describes the transactional itemsets view.
Oracle recommends that users leverage the model details views.

For the very common case of transactional data without aggregates,
DM$VTmodel_name view provides the itemsets information in transactional format. This
view can help improve performance for some queries as compared to the view with the
XML column. The transactional itemsets view has the following schema:

Name Type
 ----------------- -----------------
 PARTITION_NAME VARCHAR2(128)
 ITEMSET_ID NUMBER
 ITEM_ID NUMBER
 SUPPORT NUMBER
 NUMBER_OF_ITEMS NUMBER
 ITEM_NAME VARCHAR2(4000)

Table 31-15 Transactional Itemsets View

Column Name Description

PARTITION_NAME A partition in a partitioned model

ITEMSET_ID Itemset identifier

ITEM_ID Item identifier

SUPPORT Support of the itemset

NUMBER_OF_ITEMS Number of items in the itemset

ITEM_NAME The name of the item

Chapter 31
Model Detail Views

31-27

31.4.4 Model Detail View for Transactional Rule
Model detail view for Transactional Rule describes the transactional rule view and
transactional itemsets view. Oracle recommends that you leverage model details
views.

Transactional data without aggregates also has a transactional rule view
DM$VAmodel_name. This view can improve performance for some queries as
compared to the view with the XML column. The transactional rule view has the
following schema:

Name Type
 --- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 RULE_ID NUMBER
 ANTECEDENT_PREDICATE VARCHAR2(4000)
 CONSEQUENT_PREDICATE VARCHAR2(4000)
 RULE_SUPPORT NUMBER
 RULE_CONFIDENCE NUMBER
 RULE_LIFT NUMBER
 RULE_REVCONFIDENCE NUMBER
 RULE_ITEMSET_ID NUMBER
 ANTECEDENT_SUPPORT NUMBER
 CONSEQUENT_SUPPORT NUMBER
 NUMBER_OF_ITEMS NUMBER

Table 31-16 Transactional Rule View

Column Name Description

PARTITION_NAME A partition in a partitioned model

RULE_ID Rule identifier

ANTECEDENT_PREDICATE Name of the Antecedent item.

CONSEQUENT_PREDICATE Name of the Consequent item

RULE_SUPPORT Support of the rule

RULE_CONFIDENCE The likelihood a transaction satisfies the rule when it
contains the Antecedent.

RULE_LIFT The degree of improvement in the prediction over
random chance when the rule is satisfied

RULE_REVCONFIDENCE The number of transactions in which the rule occurs
divided by the number of transactions in which the
consequent occurs

RULE_ITEMSET_ID Itemset identifier

ANTECEDENT_SUPPORT The ratio of the number of transactions that satisfy
the antecedent to the total number of transactions

CONSEQUENT_SUPPORT The ratio of the number of transactions that satisfy
the consequent to the total number of transactions

NUMBER_OF_ITEMS Number of items in the rule

Chapter 31
Model Detail Views

31-28

31.4.5 Model Detail Views for Classification Algorithms
Model detail view for Classification algorithms describe target map view and scoring
cost view which are applicable to all Classification algorithms. Oracle recommends
that users leverage the model details views instead of the GET_* function.

The target map view DM$VTmodel_name describes the target distribution for
Classification models. The view has the following schema:

Name Type
 --- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 TARGET_VALUE NUMBER/VARCHAR2
 TARGET_COUNT NUMBER
 TARGET_WEIGHT NUMBER

Table 31-17 Target Map View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

TARGET_VALUE Target value, numerical or categorical

TARGET_COUNT Number of rows for a given TARGET_VALUE

TARGET_WEIGHT Weight for a given TARGET_VALUE

The scoring cost view DM$VCmodel_name describes the scoring cost matrix for
Classification models. The view has the following schema:

Name Type

 PARTITION_NAME VARCHAR2(128)
 ACTUAL_TARGET_VALUE NUMBER/VARCHAR2
 PREDICTED_TARGET_VALUE NUMBER/VARCHAR2
 COST NUMBER

Table 31-18 Scoring Cost View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ACTUAL_TARGET_VALUE A valid target value

PREDICTED_TARGET_VALUE Predicted target value

COST Associated cost for the actual and predicted target
value pair

Chapter 31
Model Detail Views

31-29

31.4.6 Model Detail Views for Decision Tree
Model detail view for Decision Tree describes the split information view, node statistics
view, node description view, and the cost matrix view. Oracle recommends that users
leverage the model details views instead of GET_MODEL_DETAILS_XML function.

The split information view DM$VPmodel_name describes the decision tree hierarchy
and the split information for each level in the Decision Tree. The view has the following
schema:

Name Type
 ---------------------------------- ---------------------------
 PARTITION_NAME VARCHAR2(128)
 PARENT NUMBER
 SPLIT_TYPE VARCHAR2
 NODE NUMBER
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 OPERATOR VARCHAR2
 VALUE SYS.XMLTYPE

Table 31-19 Split Information View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

PARENT Node ID of the parent

SPLIT_TYPE The main or surrogate split

NODE The node ID

ATTRIBUTE_NAME The attribute used as the splitting criterion at the
parent node to produce this node.

ATTRIBUTE_SUBNAME Split attribute subname. The value is null for non-
nested columns.

OPERATOR Split operator

VALUE Value used as the splitting criterion. This is an XML
element described using the <Element> tag.

For example, <Element>Windy</
Element><Element>Hot</Element>.

The node statistics view DM$VImodel_name describes the statistics associated with
individual tree nodes. The statistics include a target histogram for the data in the node.
The view has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 NODE NUMBER
 NODE_SUPPORT NUMBER
 PREDICTED_TARGET_VALUE NUMBER/VARCHAR2

Chapter 31
Model Detail Views

31-30

 TARGET_VALUE NUMBER/VARCHAR2
 TARGET_SUPPORT NUMBER

Table 31-20 Node Statistics View

Parameter Description

PARTITION_NAME Partition name in a partitioned model

NODE The node ID

NODE_SUPPORT Number of records in the training set that belong to
the node

PREDICTED_TARGET_VALUE Predicted Target value

TARGET_VALUE A target value seen in the training data

TARGET_SUPPORT The number of records that belong to the node and
have the value specified in the TARGET_VALUE column

Higher level node description can be found in DM$VOmodel_name view. The
DM$VOmodel_name has the following schema:

ame Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 NODE NUMBER
 NODE_SUPPORT NUMBER
 PREDICTED_TARGET_VALUE NUMBER/VARCHAR2
 PARENT NUMBER
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 OPERATOR VARCHAR2
 VALUE SYS.XMLTYPE

Table 31-21 Node Description View

Parameter Description

PARTITION_NAME Partition name in a partitioned model

NODE The node ID

NODE_SUPPORT Number of records in the training set that belong to
the node

PREDICTED_TARGET_VALUE Predicted Target value

PARENT The ID of the parent

ATTRIBUTE_NAME Specifies the attribute name

ATTRIBUTE_SUBNAME Specifies the attribute subname

OPERATOR Attribute predicate operator - a conditional operator
taking the following values:
IN, = , <>, < , >, <=, and >=

Chapter 31
Model Detail Views

31-31

Table 31-21 (Cont.) Node Description View

Parameter Description

VALUE Value used as the description criterion. This is an
XML element described using the <Element> tag.

For example, <Element>Windy</
Element><Element>Hot</Element>.

The DM$VMmodel_name view describes the cost matrix used by the Decision Tree
build. The DM$VMmodel_name view has the following schema:

Name Type

 PARTITION_NAME VARCHAR2(128)
 ACTUAL_TARGET_VALUE NUMBER/VARCHAR2
 PREDICTED_TARGET_VALUE NUMBER/VARCHAR2
 COST NUMBER

Table 31-22 Cost Matrix View

Parameter Description

PARTITION_NAME Partition name in a partitioned model

ACTUAL_TARGET_VALUE Valid target value

PREDICTED_TARGET_VALUE Predicted Target value

COST Associated cost for the actual and predicted target
value pair

The following table describes the global view for Decision Tree.

Table 31-23 Decision Tree Statistics Information In Model Global View

Name Description

NUM_ROWS The total number of rows used in the build

31.4.7 Model Detail Views for Generalized Linear Model
Model details views for Generalized Linear Model (GLM) describes the model details
view and row diagnostic view for Linear and Logistic Regression. Oracle recommends
that users leverage model details views than the GET_MODEL_DETAILS_GLM function.

The model details view DM$VDmodel_name describes the final model information for
both Linear Regression models and Logistic Regression models.

For Linear Regression, the view DM$VDmodel_name has the following schema:

Name Type
 ---------------------------------- ----------------------------

Chapter 31
Model Detail Views

31-32

 PARTITION_NAME VARCHAR2(128)
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 FEATURE_EXPRESSION VARCHAR2(4000)
 COEFFICIENT BINARY_DOUBLE
 STD_ERROR BINARY_DOUBLE
 TEST_STATISTIC BINARY_DOUBLE
 P_VALUE BINARY_DOUBLE
 VIF BINARY_DOUBLE
 STD_COEFFICIENT BINARY_DOUBLE
 LOWER_COEFF_LIMIT BINARY_DOUBLE
 UPPER_COEFF_LIMIT BINARY_DOUBLE

For Logistic Regression, the view DM$VDmodel_name has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 TARGET_VALUE NUMBER/VARCHAR2
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 FEATURE_EXPRESSION VARCHAR2(4000)
 COEFFICIENT BINARY_DOUBLE
 STD_ERROR BINARY_DOUBLE
 TEST_STATISTIC BINARY_DOUBLE
 P_VALUE BINARY_DOUBLE
 STD_COEFFICIENT BINARY_DOUBLE
 LOWER_COEFF_LIMIT BINARY_DOUBLE
 UPPER_COEFF_LIMIT BINARY_DOUBLE
 EXP_COEFFICIENT BINARY_DOUBLE
 EXP_LOWER_COEFF_LIMIT BINARY_DOUBLE
 EXP_UPPER_COEFF_LIMIT BINARY_DOUBLE

Table 31-24 Model View for Linear and Logistic Regression Models

Column Name Description

PARTITION_NAME The name of a feature in the model

TARGET_VALUE Valid target value

ATTRIBUTE_NAME The attribute name when there is no subname, or first part of
the attribute name when there is a subname. ATTRIBUTE_NAME
is the name of a column in the source table or view. If the
column is a non-nested, numeric column, then ATTRIBUTE_NAME
is the name of the mining attribute. For the intercept,
ATTRIBUTE_NAME is null. Intercepts are equivalent to the bias
term in SVM models.

Chapter 31
Model Detail Views

31-33

Table 31-24 (Cont.) Model View for Linear and Logistic Regression Models

Column Name Description

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-nested
columns.
When the nested column is numeric, the mining
attribute is identified by the combination ATTRIBUTE_NAME
- ATTRIBUTE_SUBNAME. If the column is not nested,
ATTRIBUTE_SUBNAME is null. If the attribute is an intercept, both
the ATTRIBUTE_NAME and the ATTRIBUTE_SUBNAME are null.

ATTRIBUTE_VALUE A unique value that can be assumed by a categorical
column or nested categorical column. For categorical
columns, a mining attribute is identified by a unique
ATTRIBUTE_NAME.ATTRIBUTE_VALUE pair. For nested categorical
columns, a mining attribute is identified by the combination:
ATTRIBUTE_NAME.ATTRIBUTE_SUBNAME.ATTRIBUTE_VALUE. For
numerical attributes, ATTRIBUTE_VALUE is null.

FEATURE_EXPRESSION The feature name constructed by the algorithm when feature
selection is enabled. If feature selection is not enabled, the
feature name is simply the fully-qualified attribute name
(attribute_name.attribute_subname if the attribute is in a nested
column). For categorical attributes, the algorithm constructs a
feature name that has the following form:
fully-qualified_attribute_name.attribute_value
When feature generation is enabled, a term in the model
can be a single mining attribute or the product of up to
3 mining attributes. Component mining attributes can be
repeated within a single term. If feature generation is not
enabled or, if feature generation is enabled, but no multiple
component terms are discovered by the CREATE model process,
then FEATURE_EXPRESSION is null.

Note:

In 12c Release 2, the algorithm
does not subtract the mean from
numerical components.

COEFFICIENT The estimated coefficient.

STD_ERROR Standard error of the coefficient estimate.

TEST_STATISTIC For Linear Regression, the t-value of the coefficient estimate.
For Logistic Regression, the Wald chi-square value of the
coefficient estimate.

P_VALUE Probability of the TEST_STATISTIC under the (NULL) hypothesis
that the term in the model is not statistically significant. A low
probability indicates that the term is significant, while a high
probability indicates that the term can be better discarded. Used
to analyze the significance of specific attributes in the model.

VIF Variance Inflation Factor. The value is zero for the intercept. For
Logistic Regression, VIF is null.

Chapter 31
Model Detail Views

31-34

Table 31-24 (Cont.) Model View for Linear and Logistic Regression Models

Column Name Description

STD_COEFFICIENT Standardized estimate of the coefficient.

LOWER_COEFF_LIMIT Lower confidence bound of the coefficient.

UPPER_COEFF_LIMIT Upper confidence bound of the coefficient.

EXP_COEFFICIENT Exponentiated coefficient for Logistic Regression. For linear
regression, EXP_COEFFICIENT is null.

EXP_LOWER_COEFF_LIMIT Exponentiated coefficient for lower confidence bound of the
coefficient for Logistic Regression. For Linear Regression,
EXP_LOWER_COEFF_LIMIT is null.

EXP_UPPER_COEFF_LIMIT Exponentiated coefficient for upper confidence bound of the
coefficient for Logistic Regression. For Linear Regression,
EXP_UPPER_COEFF_LIMIT is null.

The row diagnostic view DM$VAmodel_name describes row level information for both
Linear Regression models and Logistic Regression models. For Linear Regression,
the view DM$VAmodel_name has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 CASE_ID NUMBER/VARHCAR2, DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE
 TARGET_VALUE BINARY_DOUBLE
 PREDICTED_TARGET_VALUE BINARY_DOUBLE
 Hat BINARY_DOUBLE
 RESIDUAL BINARY_DOUBLE
 STD_ERR_RESIDUAL BINARY_DOUBLE
 STUDENTIZED_RESIDUAL BINARY_DOUBLE
 PRED_RES BINARY_DOUBLE
 COOKS_D BINARY_DOUBLE

Table 31-25 Row Diagnostic View for Linear Regression

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CASE_ID Name of the case identifier

TARGET_VALUE The actual target value as taken from the input row

PREDICTED_TARGET_VALUE The model predicted target value for the row

HAT The diagonal element of the n*n (n=number of rows) that the
Hat matrix identifies with a specific input row. The model
predictions for the input data are the product of the Hat matrix
and vector of input target values. The diagonal elements (Hat
values) represent the influence of the ith row on the ith fitted
value. Large Hat values are indicators that the ith row is a point
of high leverage, a potential outlier.

Chapter 31
Model Detail Views

31-35

Table 31-25 (Cont.) Row Diagnostic View for Linear Regression

Column Name Description

RESIDUAL The difference between the predicted and actual target value for
a specific input row.

STD_ERR_RESIDUAL The standard error residual, sometimes called the Studentized
residual, re-scales the residual to have constant variance across
all input rows in an effort to make the input row residuals
comparable. The process multiplies the residual by square root
of the row weight divided by the product of the model mean
square error and 1 minus the Hat value.

STUDENTIZED_RESIDUAL Studentized deletion residual adjusts the standard error
residual for the influence of the current row.

PRED_RES The predictive residual is the weighted square of the deletion
residuals, computed as the row weight multiplied by the square
of the residual divided by 1 minus the Hat value.

COOKS_D Cook's distance is a measure of the combined impact of the ith

case on all of the estimated regression coefficients.

For Logistic Regression, the view DM$VAmodel_name has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 CASE_ID NUMBER/VARHCAR2, DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE
 TARGET_VALUE NUMBER/VARCHAR2
 TARGET_VALUE_PROB BINARY_DOUBLE
 Hat BINARY_DOUBLE
 WORKING_RESIDUAL BINARY_DOUBLE
 PEARSON_RESIDUAL BINARY_DOUBLE
 DEVIANCE_RESIDUAL BINARY_DOUBLE
 C BINARY_DOUBLE
 CBAR BINARY_DOUBLE
 DIFDEV BINARY_DOUBLE
 DIFCHISQ BINARY_DOUBLE

Table 31-26 Row Diagnostic View for Logistic Regression

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CASE_ID Name of the case identifier

TARGET_VALUE The actual target value as taken from the input row

TARGET_VALUE_PROB Model estimate of the probability of the predicted target value.

Chapter 31
Model Detail Views

31-36

Table 31-26 (Cont.) Row Diagnostic View for Logistic Regression

Column Name Description

Hat The Hat value concept from Linear Regression is extended
to Logistic Regression by multiplying the Linear Regression
Hat value by the variance function for Logistic Regression,
the predicted probability multiplied by 1 minus the predicted
probability.

WORKING_RESIDUAL The working residual is the residual of the working response.
The working response is the response on the linearized scale.
For Logistic Regression it has the form: the ith row residual
divided by the variance of the ith row prediction. The variance
of the prediction is the predicted probability multiplied by 1
minus the predicted probability.
WORKING_RESIDUAL is the difference between the working
response and the linear predictor at convergence.

PEARSON_RESIDUAL The Pearson residual is a re-scaled version of the working
residual, accounting for the weight. For Logistic Regression,
the Pearson residual multiplies the residual by a factor that is
computed as square root of the weight divided by the variance
of the predicted probability for the ith row.
RESIDUAL is 1 minus the predicted probability of the actual
target value for the row.

DEVIANCE_RESIDUAL The DEVIANCE_RESIDUAL is the contribution to the model
deviance of the ith observation. For Logistic Regression it has the
form the square root of 2 times the log(1 + e^eta) - eta for
the non-reference class and -square root of 2 time the log (1 +
eta) for the reference class, where eta is the linear prediction
(the prediction as if the model were a Linear Regression).

C Measures the overall change in the fitted logits due to the
deletion of the ith observation for all points including the one
deleted (the ith point). It is computed as the square of the
Pearson residual multiplied by the Hat value divided by the
square of 1 minus the Hat value.
Confidence interval displacement diagnostics that provides
scalar measure of the influence of individual observations.

CBAR C and CBAR are extensions of Cooks’ distance for Logistic
Regression. CBAR measures the overall change in the fitted logits
due to the deletion of the ith observation for all points excluding
the one deleted (the ith point). It is computed as the square of
the Pearson residual multiplied by the Hat value divided by (1
minus the Hat value)
Confidence interval displacement diagnostic which measures
the influence of deleting an individual observation.

DIFDEV A statistic that measures the change in deviance that occurs
when an observation is deleted from the input. It is computed as
the square of the deviance residual plus CBAR.

DIFCHISQ A statistic that measures the change in the Pearson chi-square
statistic that occurs when an observation is deleted from the
input. It is computed as CBAR divided by the Hat value.

Chapter 31
Model Detail Views

31-37

Global Details for GLM: Linear Regression

The following table describes global details returned by a Linear Regression model.

Table 31-27 Global Details for Linear Regression

Name Description

ADJUSTED_R_SQUARE Adjusted R-Square

AIC Akaike's information criterion

COEFF_VAR Coefficient of variation

CONVERGED Indicates whether the model build process has
converged to specified tolerance. The following are the
possible values:
• YES

• NO

CORRECTED_TOTAL_DF Corrected total degrees of freedom

CORRECTED_TOT_SS Corrected total sum of squares

DEPENDENT_MEAN Dependent mean

ERROR_DF Error degrees of freedom

ERROR_MEAN_SQUARE Error mean square

ERROR_SUM_SQUARES Error sum of squares

F_VALUE Model F value statistic

GMSEP Estimated mean square error of the prediction,
assuming multivariate normality

HOCKING_SP Hocking Sp statistic

ITERATIONS Tracks the number of SGD iterations. Applicable only
when the solver is SGD.

J_P JP statistic (the final prediction error)

MODEL_DF Model degrees of freedom

MODEL_F_P_VALUE Model F value probability

MODEL_MEAN_SQUARE Model mean square error

MODEL_SUM_SQUARES Model sum of square errors

NUM_PARAMS Number of parameters (the number of coefficients,
including the intercept)

NUM_ROWS Number of rows

R_SQ R-Square

RANK_DEFICIENCY The number of predictors excluded from the model due
to multi-collinearity

ROOT_MEAN_SQ Root mean square error

SBIC Schwarz's Bayesian information criterion

Global Details for GLM: Logistic Regression

The following table returns global details returned by a Logistic Regression model.

Chapter 31
Model Detail Views

31-38

Table 31-28 Global Details for Logistic Regression

Name Description

AIC_INTERCEPT Akaike's criterion for the fit of the baseline, intercept-
only, model

AIC_MODEL Akaike's criterion for the fit of the intercept and the
covariates (predictors) mode

CONVERGED Indicates whether the model build process has
converged to specified tolerance. The following are the
possible values:
• YES

• NO

DEPENDENT_MEAN Dependent mean

ITERATIONS Tracks the number of SGD iterations (number of IRLS
iterations). Applicable only when the solver is SGD.

LR_DF Likelihood ratio degrees of freedom

LR_CHI_SQ Likelihood ratio chi-square value

LR_CHI_SQ_P_VALUE Likelihood ratio chi-square probability value

NEG2_LL_INTERCEPT -2 log likelihood of the baseline, intercept-only, model

NEG2_LL_MODEL -2 log likelihood of the model

NUM_PARAMS Number of parameters (the number of coefficients,
including the intercept)

NUM_ROWS Number of rows

PCT_CORRECT Percent of correct predictions

PCT_INCORRECT Percent of incorrectly predicted rows

PCT_TIED Percent of cases where the estimated probabilities are
equal for both target classes

PSEUDO_R_SQ_CS Pseudo R-square Cox and Snell

PSEUDO_R_SQ_N Pseudo R-square Nagelkerke

RANK_DEFICIENCY The number of predictors excluded from the model due
to multi-collinearity

SC_INTERCEPT Schwarz's Criterion for the fit of the baseline, intercept-
only, model

SC_MODEL Schwarz's Criterion for the fit of the intercept and the
covariates (predictors) model

Note:

• When Ridge Regression is enabled, fewer global details are returned.
For information about ridge, see Oracle Data Mining Concepts.

• When the value is NULL for a partitioned model, an exception is thrown.
When the value is not null, it must contain the desired partition name.

Chapter 31
Model Detail Views

31-39

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

• Model Detail Views for Global Information
Model detail views for Global Information describes global statistics view, alert
view, and computed settings view. Oracle recommends that users leverage the
model details views instead of GET_MODEL_DETAILS_GLOBAL function.

31.4.8 Model Detail Views for Naive Bayes
Model Detail Views for Naive Bayes describes prior view and result view.
Oracle recommends that users leverage the model details views instead of the
GET_MODEL_DETAILS_NB function.

The prior view DM$VPmodel_name describes the priors of the targets for Naïve Bayes.
The view has the following schema:

Name Type
 --- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 TARGET_NAME VARCHAR2(128)
 TARGET_VALUE NUMBER/VARCHAR2
 PRIOR_PROBABILITY BINARY_DOUBLE
 COUNT NUMBER

Table 31-29 Prior View for Naive Bayes

Column Name Description

PARTITION_NAME The name of a feature in the model

TARGET_NAME Name of the target column

TARGET_VALUE Target value, numerical or categorical

PRIOR_PROBABILITY Prior probability for a given TARGET_VALUE

COUNT Number of rows for a given TARGET_VALUE

The Naïve Bayes result view DM$VVmodel_view describes the conditional probabilities
of the Naïve Bayes model. The view has the following schema:

Name Type
 --- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 TARGET_NAME VARCHAR2(128)
 TARGET_VALUE NUMBER/VARCHAR2
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 CONDITIONAL_PROBABILITY BINARY_DOUBLE
 COUNT NUMBER

Chapter 31
Model Detail Views

31-40

Table 31-30 Result View for Naive Bayes

Column Name Description

PARTITION_NAME The name of a feature in the model

TARGET_NAME Name of the target column

TARGET_VALUE Target value, numerical or categorical

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Mining attribute value for the column
ATTRIBUTE_NAME or the nested column
ATTRIBUTE_SUBNAME (if any).

CONDITIONAL_PROBABILITY Conditional probability of a mining attribute for a
given target

COUNT Number of rows for a given mining attribute and a
given target

The following table describes the global view for Naive Bayes.

Table 31-31 Naive Bayes Statistics Information In Model Global View

Name Description

NUM_ROWS The total number of rows used in the build

31.4.9 Model Detail Views for Neural Network
Model Detail Views for Neural Network describes the weights of the neurons: input
layer and hidden layers. Oracle recommends that users leverage the model details
views.

Neural Network algorithm has the following views:

Weights: DM$VAmodel_name

The view DM$VAmodel_name has the following schema:

Name
Type
---------------------- -----------------------
PARTITION_NAME VARCHAR2(128)
LAYER NUMBER
IDX_FROM NUMBER
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
IDX_TO NUMBER
TARGET_VALUE NUMBER/VARCHAR2
WEIGHT BINARY_DOUBLE

Chapter 31
Model Detail Views

31-41

Table 31-32 Weights View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

LAYER Layer ID, 0 as an input layer

IDX_FROM Node index that the weight connects from (attribute
id for input layer)

ATTRIBUTE_NAME Attribute name (only for the input layer)

ATTRIBUTE_SUBNAME Attribute subname. The value is null for non-nested
columns.

ATTRIBUTE_VALUE Categorical attribute value

IDX_TO Node index that the weights connects to

TARGET_VALUE Target value. The value is null for regression.

WEIGHT Value of the weight

The view DM$VGmodel_name is a pre-existing view. The following name-value pairs are
added to the view.

Table 31-33 Neural Networks Statistics Information In Model Global View

Name Description

CONVERGED Indicates whether the model build process has
converged to specified tolerance. The following are
the possible values:
• YES

• NO

ITERATIONS Number of iterations

LOSS_VALUE Loss function value (if it is with
NNET_REGULARIZER_HELDASIDE regularization, it is
the loss function value on test data)

NUM_ROWS Number of rows in the model (or partitioned model)

31.4.10 Model Detail Views for Random Forest
Model Detail Views for Random Forest describes variable importance measures and
statistics in global view. Oracle recommends that users leverage the model details
views.

Random Forest algorithm has the following statistics views:

• Variable importance statistics DM$VAmodel_name

• Random Forest statistics in model global view DM$VGmodel_name

Chapter 31
Model Detail Views

31-42

One of the important outputs from the Random Forest model build is a ranking of
attributes based on their relative importance. This is measured using Mean Decrease
Gini. The view DM$VAmodel_name has the following schema:

Name Type
------------------------ ---------------
PARTITION_NAME VARCHAR2(128)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(128)
ATTRIBUTE_IMPORTANCE BINARY_DOUBLE

Table 31-34 Variable Importance Model View

Column Name Description

PARTITION_NAME Partition name. The value is null for models which
are not partitioned.

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_IMPORTANCE Measure of importance for an attribute in the forest
(mean Decrease Gini value)

The view DM$VGmodel_name is a pre-existing view. The following name-value pairs are
added to the view.

Table 31-35 Random Forest Statistics Information In Model Global View

Name Description

AVG_DEPTH Average depth of the trees in the forest

AVG_NODECOUNT Average number of nodes per tree

MAX_DEPTH Maximum depth of the trees in the forest

MAX_NODECOUNT Maximum number of nodes per tree

MIN_DEPTH Minimum depth of the trees in the forest

MIN_NODECOUNT Minimum number of nodes per tree

NUM_ROWS The total number of rows used in the build

31.4.11 Model Detail View for Support Vector Machine
Model Detail View for Support Vector Machine describes linear coefficient view.
Oracle recommends that users leverage the model details views instead of the
GET_MODEL_DETAILS_SVM function.

The linear coefficient view DM$VLmodel_name describes the coefficients of a linear
SVM algorithm. The target_value field in the view is present only for Classification and
has the type of the target. Regression models do not have a target_value field.

The reversed_coefficient field shows the value of the coefficient after reversing the
automatic data preparation transformations. If data preparation is disabled, then

Chapter 31
Model Detail Views

31-43

coefficient and reversed_coefficient have the same value. The view has the following
schema:

Name Type

 PARTITION_NAME VARCHAR2(128)
 TARGET_VALUE NUMBER/VARCHAR2
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 COEFFICIENT BINARY_DOUBLE
 REVERSED_COEFFICIENT BINARY_DOUBLE

Table 31-36 Linear Coefficient View for Support Vector Machine

Column Name Description

PARTITION_NAME Partition name in a partitioned model

TARGET_VALUE Target value, numerical or categorical

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Value of a categorical attribute

COEFFICIENT Projection coefficient value

REVERSED_COEFFICIENT Coefficient transformed on the original scale

The following table describes the Support Vector statistics global view.

Table 31-37 Support Vector Statistics Information In Model Global View

Name Description

CONVERGED Indicates whether the model build process
has converged to specified tolerance:
• YES

• NO

ITERATIONS Number of iterations performed during
build

NUM_ROWS Number of rows used for the build

REMOVED_ROWS_ZERO_NORM Number of rows removed due to 0 norm.
This applies to one-class linear models
only.

31.4.12 Model Detail Views for Clustering Algorithms
Oracle Data Mining supports these clustering algorithms: Expectation Maximization,
k-Means, and Orthogonal Partitioning Clustering (O-Cluster).

All clustering algorithms share the following views:

Chapter 31
Model Detail Views

31-44

• Cluster description DM$VDmodel_name

• Attribute statistics DM$VAmodel_name

• Histogram statistics DM$VHmodel_name

• Rule statistics DM$VRmodel_name

The cluster description view DM$VDmodel_name describes cluster level information
about a clustering model. The view has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 CLUSTER_ID NUMBER
 CLUSTER_NAME NUMBER/VARCHAR2
 RECORD_COUNT NUMBER
 PARENT NUMBER
 TREE_LEVEL NUMBER
 LEFT_CHILD_ID NUMBER
 RIGHT_CHILD_ID NUMBER

Table 31-38 Cluster Description View for Clustering Algorithm

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CLUSTER_ID The ID of a cluster in the model

CLUSTER_NAME Specifies the label of the cluster

RECORD_COUNT Specifies the number of records

PARENT The ID of the parent

TREE_LEVEL Specifies the number of splits from the root

LEFT_CHILD_ID The ID of the child cluster on the left side of the split

RIGHT_CHILD_ID The ID of the child cluster on the right side of the
split

The attribute view DM$VAmodel_name describes attribute level information about a
Clustering model. The values of the mean, variance, and mode for a particular cluster
can be obtained from this view. The view has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 CLUSTER_ID NUMBER
 CLUSTER_NAME NUMBER/VARCHAR2
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 MEAN BINARY_DOUBLE
 VARIANCE BINARY_DOUBLE
 MODE_VALUE VARCHAR2(4000)

Chapter 31
Model Detail Views

31-45

Table 31-39 Attribute View for Clustering Algorithm

Column Name Description

PARTITION_NAME A partition in a partitioned model

CLUSTER_ID The ID of a cluster in the model

CLUSTER_NAME Specifies the label of the cluster

ATTRIBUTE_NAME Specifies the attribute name

ATTRIBUTE_SUBNAME Specifies the attribute subname

MEAN The field returns the average value of a numeric
attribute

VARIANCE The variance of a numeric attribute

MODE_VALUE The mode is the most frequent value of a categorical
attribute

The histogram view DM$VHmodel_name describes histogram level information about a
Clustering model. The bin information as well as bin counts can be obtained from this
view. The view has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 CLUSTER_ID NUMBER
 CLUSTER_NAME NUMBER/VARCHAR2
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 BIN_ID NUMBER
 LOWER_BIN_BOUNDARY BINARY_DOUBLE
 UPPER_BIN_BOUNDARY BINARY_DOUBLE
 ATTRIBUTE_VALUE VARCHAR2(4000)
 COUNT NUMBER

Table 31-40 Histogram View for Clustering Algorithm

Column Name Description

PARTITION_NAME A partition in a partitioned model

CLUSTER_ID The ID of a cluster in the model

CLUSTER_NAME Specifies the label of the cluster

ATTRIBUTE_NAME Specifies the attribute name

ATTRIBUTE_SUBNAME Specifies the attribute subname

BIN_ID Bin ID

LOWER_BIN_BOUNDARY Numeric lower bin boundary

UPPER_BIN_BOUNDARY Numeric upper bin boundary

ATTRIBUTE_VALUE Categorical attribute value

COUNT Histogram count

Chapter 31
Model Detail Views

31-46

The rule view DM$VRmodel_name describes the rule level information about a
Clustering model. The information is provided at attribute predicate level. The view
has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 CLUSTER_ID NUMBER
 CLUSTER_NAME NUMBER/VARCHAR2
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 OPERATOR VARCHAR2(2)
 NUMERIC_VALUE NUMBER
 ATTRIBUTE_VALUE VARCHAR2(4000)
 SUPPORT NUMBER
 CONFIDENCE BINARY_DOUBLE
 RULE_SUPPORT NUMBER
 RULE_CONFIDENCE BINARY_DOUBLE

Table 31-41 Rule View for Clustering Algorithm

Column Name Description

PARTITION_NAME A partition in a partitioned model

CLUSTER_ID The ID of a cluster in the model

CLUSTER_NAME Specifies the label of the cluster

ATTRIBUTE_NAME Specifies the attribute name

ATTRIBUTE_SUBNAME Specifies the attribute subname

OPERATOR Attribute predicate operator - a conditional operator
taking the following values: IN, = , <>, < , >, <=, and >=

NUMERIC_VALUE Numeric lower bin boundary

ATTRIBUTE_VALUE Categorical attribute value

SUPPORT Attribute predicate support

CONFIDENCE Attribute predicate confidence

RULE_SUPPORT Rule level support

RULE_CONFIDENCE Rule level confidence

31.4.13 Model Detail Views for Expectation Maximization
Model detail views for Expectation Maximization (EM) describes the differences in
the views for EM against those of Clustering views. Oracle recommends that user
leverage the model details views instead of the GET_MODEL_DETAILS_EM function.

The following views are the differences in the views for Expectation Maximization
against Clustering views. For an overview of the different Clustering views, refer to
"Model Detail Views for Clustering Algorithms".

Chapter 31
Model Detail Views

31-47

The component view DM$VOmodel_name describes the EM components. The
component view contains information about their prior probabilities and what cluster
they map to. The view has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 COMPONENT_ID NUMBER
 CLUSTER_ID NUMBER
 PRIOR_PROBABILITY BINARY_DOUBLE

Table 31-42 Component View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

COMPONENT_ID Unique identifier of a component

CLUSTER_ID The ID of a cluster in the model

PRIOR_PROBABILITY Component prior probability

The mean and variance component view DM$VMmodel_name provides information
about the mean and variance parameters for the attributes by Gaussian distribution
models. The view has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 COMPONENT_ID NUMBER
 ATTRIBUTE_NAME VARCHAR2(4000)
 MEAN BINARY_DOUBLE
 VARIANCE BINARY_DOUBLE

The frequency component view DM$VFmodel_name provides information about the
parameters of the multi-valued Bernoulli distributions used by the EM model. The view
has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 COMPONENT_ID NUMBER
 ATTRIBUTE_NAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 FREQUENCY BINARY_DOUBLE

Table 31-43 Frequency Component View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

COMPONENT_ID Unique identifier of a component

Chapter 31
Model Detail Views

31-48

Table 31-43 (Cont.) Frequency Component View

Column Name Description

ATTRIBUTE_NAME Column name

ATTRIBUTE_VALUE Categorical attribute value

FREQUENCY The frequency of the multivalued Bernoulli
distribution for the attribute/value combination
specified by ATTRIBUTE_NAME and ATTRIBUTE_VALUE.

For 2-Dimensional columns, EM provides an attribute ranking similar to that of
Attribute Importance. This ranking is based on a rank-weighted average over
Kullback–Leibler divergence computed for pairs of columns. This unsupervised
Attribute Importance is shown in the DM$VImodel_name view and has the following
schema:

Name Type
 --- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_IMPORTANCE_VALUE BINARY_DOUBLE
 ATTRIBUTE_RANK NUMBER

Table 31-44 2–Dimensional Attribute Ranking for Expectation Maximization

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ATTRIBUTE_NAME Column name

ATTRIBUTE_IMPORTANCE_VALUE Importance value

ATTRIBUTE_RANK An attribute rank based on the importance value

The pairwise Kullback–Leibler divergence is reported in the DM$VBmodel_name
view. This metric evaluates how much the observed joint distribution of two attributes
diverges from the expected distribution under the assumption of independence. That
is, the higher the value, the more dependent the two attributes are. The dependency
value is scaled based on the size of the grid used for each pairwise computation. That
ensures that all values fall within the [0; 1] range and are comparable. The view has
the following schema:

Name Type
 --- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 ATTRIBUTE_NAME_1 VARCHAR2(128)
 ATTRIBUTE_NAME_2 VARCHAR2(128)
 DEPENDENCY BINARY_DOUBLE

Chapter 31
Model Detail Views

31-49

Table 31-45 Kullback-Leibler Divergence for Expectation Maximization

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ATTRIBUTE_NAME_1 Name of an attribute 1

ATTRIBUTE_NAME_2 Name of an attribute 2

DEPENDENCY Scaled pairwise Kullback-Leibler divergence

The projection table DM$VPmodel_name shows the coefficients used by random
projections to map nested columns to a lower dimensional space. The view has rows
only when nested or text data is present in the build data. The view has the following
schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 FEATURE_NAME VARCHAR2(4000)
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 COEFFICIENT NUMBER

Table 31-46 Projection table for Expectation Maximization

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_NAME Name of feature

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Categorical attribute value

COEFFICIENT Projection coefficient. The representation is sparse;
only the non-zero coefficients are returned.

Global Details for Expectation Maximization

The following table describes global details for Expectation Maximization.

Table 31-47 Global Details for Expectation Maximization

Name Description

CONVERGED Indicates whether the model build process has converged to
specified tolerance. The possible values are:
• YES

• NO

LOGLIKELIHOOD Loglikelihood on the build data

Chapter 31
Model Detail Views

31-50

Table 31-47 (Cont.) Global Details for Expectation Maximization

Name Description

NUM_COMPONENTS Number of components produced by the model

NUM_CLUSTERS Number of clusters produced by the model

NUM_ROWS Number of rows used in the build

RANDOM_SEED The random seed value used for the model build

REMOVED_COMPONENTS The number of empty components excluded from the model

Related Topics

• Model Detail Views for Clustering Algorithms
Oracle Data Mining supports these clustering algorithms: Expectation
Maximization, k-Means, and Orthogonal Partitioning Clustering (O-Cluster).

31.4.14 Model Detail Views for k-Means
Model detail views for k-Means (KM) describes cluster description view and
scoring view. Oracle recommends that you leverage model details view instead of
GET_MODEL_DETAILS_KM function.

This section describes the differences in the views for k-Means against the Clustering
views. For an overview of the different views, refer to "Model Detail Views for
Clustering Algorithms". For k-Means, the cluster description view DM$VDmodel_name
has an additional column:

Name Type
 ---------------------------------- ----------------------------
 DISPERSION BINARY_DOUBLE

Table 31-48 Cluster Description for k-Means

Column Name Description

DISPERSION A measure used to quantify whether a set of
observed occurrences are dispersed compared to a
standard statistical model.

The scoring view DM$VCmodel_name describes the centroid of each leaf clusters:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 CLUSTER_ID NUMBER
 CLUSTER_NAME NUMBER/VARCHAR2
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 VALUE BINARY_DOUBLE

Chapter 31
Model Detail Views

31-51

Table 31-49 Scoring View for k-Means

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CLUSTER_ID The ID of a cluster in the model

CLUSTER_NAME Specifies the label of the cluster

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Categorical attribute value

VALUE Specifies the centroid value

The following table describes global view for k–Means.

Table 31-50 k–Means Statistics Information In Model Global View

Name Description

CONVERGED Indicates whether the model build process
has converged to specified tolerance. The
following are the possible values:
• YES

• NO

NUM_ROWS Number of rows used in the build

REMOVED_ROWS_ZERO_NORM Number of rows removed due to 0 norm.
This applies only to models using cosine
distance.

Related Topics

• Model Detail Views for Clustering Algorithms
Oracle Data Mining supports these clustering algorithms: Expectation
Maximization, k-Means, and Orthogonal Partitioning Clustering (O-Cluster).

31.4.15 Model Detail Views for O-Cluster
Model Detail Views for O-Cluster describes the statistics views. Oracle recommends
that user leverage the model details views instead of the GET_MODEL_DETAILS_OC
function.

The following are the differences in the views for O-Cluster against Clustering views.
For an overview of the different clustering views, refer to "Model Detail Views for
Clustering Algorithms". The OC algorithm uses the same descriptive statistics views
as Expectation Maximization (EM) and k-Means (KM). The following are the statistics
views:

• Cluster description DM$VDmodel_name

• Attribute statistics DM$VAmodel_name

• Rule statistics DM$VRmodel_name

Chapter 31
Model Detail Views

31-52

• Histogram statistics DM$VHmodel_name

The Cluster description view DM$VDmodel_name describes the O-Cluster components.
The cluster description view has additional fields that specify the split predicate. The
view has the following schema:

Name Type
 ---------------------------------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 OPERATOR VARCHAR2(2)
 VALUE SYS.XMLTYPE

Table 31-51 Description View

Column Name Description

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

OPERATOR Split operator

VALUE List of split values

The structure of the SYS.XMLTYPE is as follows:

<Element>splitval1</Element>

The OC algorithm uses a histogram view DM$VHmodel_name with a different schema
than EM and k-Means (KM). The view has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITON_NAME VARCHAR2(128)
 CLUSTER_ID NUMBER
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 BIN_ID NUMBER
 LABEL VARCHAR2(4000)
 COUNT NUMBER

Table 31-52 Histogram Component View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CLUSTER_ID Unique identifier of a component

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

BIN_ID Unique identifier

Chapter 31
Model Detail Views

31-53

Table 31-52 (Cont.) Histogram Component View

Column Name Description

LABEL Bin label

COUNT Bin histogram count

The following table describes the global view for O-Cluster.

Table 31-53 O-Cluster Statistics Information In Model Global View

Name Description

NUM_ROWS The total number of rows used in the build

Related Topics

• Model Detail Views for Clustering Algorithms
Oracle Data Mining supports these clustering algorithms: Expectation
Maximization, k-Means, and Orthogonal Partitioning Clustering (O-Cluster).

31.4.16 Model Detail Views for CUR Matrix Decomposition
Model Detail Views for CUR matrix decomposition describe scores and ranks of
attributes and rows.

CUR matrix decomposition algorithm has the following views:

Attribute importance and rank: DM$VCmodel_name

Row importance and rank: DM$VRmodel_name

Global statistics: DM$VG

The Attribute Importance and Rank view DM$VCmodel_name has the following schema:

Name Type
----------------- -----------------
PARTITION_NAME VARCHAR2(128)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
ATTRIBUTE_IMPORTANCE NUMBER
ATTRIBUTE_RANK NUMBER

Table 31-54 Attribute Importance and Rank View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ATTRIBUTE_NAME Attribute name

ATTRIBUTE_SUBNAME Attribute subname. The value is null for non-nested
columns.

Chapter 31
Model Detail Views

31-54

Table 31-54 (Cont.) Attribute Importance and Rank View

Column Name Description

ATTRIBUTE_VALUE Value of the attribute

ATTRIBUTE_IMPORTANCE Attribute leverage score

ATTRIBUTE_RANK Attribute rank based on leverage score

The view DM$VRmodel_name exposes the leverage scores and ranks of all selected
rows through a view. This view is created when users decide to perform row
importance and the CASE_ID column is present. The view has the following schema:

Name Type
--------------------- ------------------------
PARTITION_NAME VARCHAR2(128)
CASE_ID Original cid data types,
 including NUMBER, VARCHAR2,
 DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE
ROW_IMPORTANCE NUMBER
ROW_RANK NUMBER

Table 31-55 Row Importance and Rank View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CASE_ID Case ID. The supported case ID types are the same as
that supported for GLM, SVD, and ESA algorithms.

ROW_IMPORTANCE Row leverage score

ROW_RANK Row rank based on leverage score

The following table describes global statistics for CUR Matrix Decomposition.

Table 31-56 CUR Matrix Decomposition Statistics Information In Model Global
View.

Name Description

NUM_COMPONENTS Number of SVD components (SVD rank)

NUM_ROWS Number of rows used in the model build

31.4.17 Model Detail Views for Explicit Semantic Analysis
Model Detail Views for Explicit Semantic Analysis (ESA) describes attribute statistics
view and feature view. Oracle recommends that users leverage the model details view.

ESA algorithm has the following views:

Chapter 31
Model Detail Views

31-55

• Explicit Semantic Analysis Matrix DM$VAmodel_name: This view has different
schemas for Feature Extraction and Classification. For Feature Extraction, this
view contains model attribute coefficients per feature. For Classification, this view
contains model attribute coefficients per target class.

• Explicit Semantic Analysis Features DM$VFmodel_name: This view is applicable for
only Feature Extraction.

The view DM$VAmodel_name has the following schema for Feature Extraction:

 PARTITION_NAME VARCHAR2(128)
 FEATURE_ID NUMBER/VARHCAR2, DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 COEFFICIENT BINARY_DOUBLE

Table 31-57 Explicit Semantic Analysis Matrix for Feature Extraction

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID Unique identifier of a feature as it appears in the
training data

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Categorical attribute value

COEFFICIENT A measure of the weight of the attribute with respect
to the feature

The DM$VAmodel_name view comprises attribute coefficients for all target classes.

The view DM$VAmodel_name has the following schema for Classification:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
TARGET_VALUE NUMBER/VARCHAR2
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
COEFFICIENT BINARY_DOUBLE

Table 31-58 Explicit Semantic Analysis Matrix for Classification

Column Name Description

PARTITION_NAME Partition name in a partitioned model

TARGET_VALUE Value of the target

Chapter 31
Model Detail Views

31-56

Table 31-58 (Cont.) Explicit Semantic Analysis Matrix for Classification

Column Name Description

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null
for non-nested columns.

ATTRIBUTE_VALUE Categorical attribute value

COEFFICIENT A measure of the weight of the attribute
with respect to the feature

The view DM$VFmodel_name has a unique row for every feature in one view. This
feature is helpful if the model was pre-built and the source training data are not
available. The view has the following schema:

 Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 FEATURE_ID NUMBER/VARHCAR2, DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE

Table 31-59 Explicit Semantic Analysis Features for Explicit Semantic Analysis

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID Unique identifier of a feature as it appears in the
training data

The following table describes the global view for Explicit Semantic Analysis.

Table 31-60 Explicit Semantic Analysis Statistics Information In Model Global
View

Name Description

NUM_ROWS The total number of input rows

REMOVED_ROWS_BY_FILTERS Number of rows removed by filters

31.4.18 Model Detail Views for Exponential Smoothing Models
Model Detail Views for Exponential Smoothing Model (ESM) describes the views for
model output and global information. Oracle recommends that users leverage the
model details views.

Exponential Smoothing Model algorithm has the following views:

Model output: DM$VPmodel_name

Model global information: DM$VGmodel_name

Chapter 31
Model Detail Views

31-57

Model output: This view gives the result of ESM model. The output has a set of
records such as partition, CASE_ID, value, prediction, lower, upper, and so on and
ordered by partition and CASE_ID (time). Each partition has a separate smoothing
model. For a given partition, for each time (CASE_ID) point that the input time series
covers, the value is the observed or accumulated value at the time point, and the
prediction is the one-step-ahead forecast at that time point. For each time point (future
prediction) beyond the range of input time series, the value is NULL, and the prediction
is the model forecast for that time point. Lower and upper are the lower bound and
upper bound of the user specified confidence interval for the prediction.

Model global Information: This view gives the global information of the model
along with the estimated smoothing constants, the estimated initial state, and global
diagnostic measures.

Depending on the type of model, the global diagnostics include some or all of the
following for Exponential Smoothing.

Table 31-61 Exponential Smoothing Model Statistics Information In Model
Global View

Name Description

–2 LOG-LIKELIHOOD Negative log-likelihood of model

ALPHA Smoothing constant

AIC Akaike information criterion

AICC Corrected Akaike information criterion

AMSE Average mean square error over user-
specified time window

BETA Trend smoothing constant

BIC Bayesian information criterion

GAMMA Seasonal smoothing constant

INITIAL LEVEL Model estimate of value one time interval
prior to start of observed series

INITIAL SEASON i Model estimate of seasonal effect for
season i one time interval prior to start of
observed series

INITIAL TREND Model estimate of trend one time interval
prior to start of observed series

MAE Model mean absolute error

MSE Model mean square error

PHI Damping parameter

STD Model standard error

SIGMA Model standard deviation of residuals

Chapter 31
Model Detail Views

31-58

31.4.19 Model Detail Views for Non-Negative Matrix Factorization
Model detail views for Non-Negative Matrix Factorization (NMF) describes encoding H
matrix view and H inverse matrix view. Oracle recommends that users leverage the
model details views instead of the GET_MODEL_DETAILS_NMF function.

The NMF algorithm has two matrix content views:

• Encoding (H) matrix DM$VEmodel_name

• H inverse matrix DM$VImodel_name

The view DM$VEmodel_name describes the encoding (H) matrix of an NMF model.
The FEATURE_NAME column type may be either NUMBER or VARCHAR2. The view has the
following schema definition.

 Name Type
 ------------------- --------------------------
 PARTITION_NAME VARCHAR2(128)
 FEATURE_ID NUMBER
 FEATURE_NAME NUMBER/VARCHAR2
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 COEFFICIENT BINARY_DOUBLE

Table 31-62 Encoding H Matrix View for Non-Negative Matrix Factorization

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Specifies the value of attribute

COEFFICIENT The attribute encoding that represents its
contribution to the feature

The view DM$VImodel_view describes the inverse H matrix of an NMF model. The
FEATURE_NAME column type may be either NUMBER or VARCHAR2. The view has the
following schema:

 Name Type
 ----------------- ------------------------
 PARTITION_NAME VARCHAR2(128)
 FEATURE_ID NUMBER
 FEATURE_NAME NUMBER/VARCHAR2
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)

Chapter 31
Model Detail Views

31-59

 ATTRIBUTE_VALUE VARCHAR2(4000)
 COEFFICIENT BINARY_DOUBLE

Table 31-63 Inverse H Matrix View for Non-Negative Matrix Factorization

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Specifies the value of attribute

COEFFICIENT The attribute encoding that represents its
contribution to the feature

The following table describes the global statistics for Non-Negative Matrix
Factorization.

Table 31-64 Non-Negative Matrix Factorization Statistics Information In Model
Global View

Name Description

CONV_ERROR Convergence error

CONVERGED Indicates whether the model build process
has converged to specified tolerance. The
following are the possible values:
• YES

• NO

ITERATIONS Number of iterations performed during
build

NUM_ROWS Number of rows used in the build input
dataset

SAMPLE_SIZE Number of rows used by the build

31.4.20 Model Detail Views for Singular Value Decomposition
Model detail views for Singular Value Decomposition (SVD) describes S Matrix
view, right-singular vectors view, and left-singular vector view. Oracle recommends
that users leverage the model details views instead of the GET_MODEL_DETAILS_SVD
function.

The DM$VEmodel_name view leverages the fact that each singular value in the
SVD model has a corresponding principal component in the associated Principal
Components Analysis (PCA) model to relate a common set of information for both
classes of models. For a SVD model, it describes the content of the S matrix. When
PCA scoring is selected as a build setting, the variance and percentage cumulative

Chapter 31
Model Detail Views

31-60

variance for the corresponding principal components are shown as well. The view has
the following schema:

 Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 FEATURE_ID NUMBER
 FEATURE_NAME NUMBER/VARCHAR2
 VALUE BINARY_DOUBLE
 VARIANCE BINARY_DOUBLE
 PCT_CUM_VARIANCE BINARY_DOUBLE

Table 31-65 S Matrix View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

VALUE The matrix entry value

VARIANCE The variance explained by a component. This
column is only present for SVD models with
setting dbms_data_mining.svds_scoring_mode set
to dbms_data_mining.svds_scoring_pca

This column is non-null only if the build data
is centered, either manually or because of the
following setting:dbms_data_mining.prep_auto is
set to dbms_data_mining.prep_auto_on.

PCT_CUM_VARIANCE The percent cumulative variance explained by the
components thus far. The components are ranked by
the explained variance in descending order.
This column is only present for SVD models with
setting dbms_data_mining.svds_scoring_mode set
to dbms_data_mining.svds_scoring_pca

This column is non-null only if the build data
is centered, either manually or because of the
following setting:dbms_data_mining.prep_auto is
set to dbms_data_mining.prep_auto_on.

The SVD DM$VVmodel_view describes the right-singular vectors of SVD model. For a
PCA model it describes the principal components (eigenvectors). The view has the
following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 FEATURE_ID NUMBER
 FEATURE_NAME NUMBER/VARCHAR2
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)

Chapter 31
Model Detail Views

31-61

 ATTRIBUTE_VALUE VARCHAR2(4000)
 VALUE BINARY_DOUBLE

Table 31-66 Right-singular Vectors of Singular Value Decomposition

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Categorical attribute value. For numerical attributes,
ATTRIBUTE_VALUE is null.

VALUE The matrix entry value

The view DM$VUmodel_name describes the left-singular vectors of a SVD model. For
a PCA model, it describes the projection of the data in the principal components. This
view does not exist unless the settings dbms_data_mining.svds_u_matrix_output is
set to dbms_data_mining.svds_u_matrix_enable. The view has the following schema:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 CASE_ID NUMBER/VARHCAR2, DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE
 FEATURE_ID NUMBER
 FEATURE_NAME NUMBER/VARCHAR2
 VALUE BINARY_DOUBLE

Table 31-67 Left-singular Vectors of Singular Value Decomposition or
Projection Data in Principal Components

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CASE_ID Unique identifier of the row in the build data
described by the U matrix projection.

FEATURE_ID The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

VALUE The matrix entry value

Global Details for Singular Value Decomposition

The following table describes a global detail for Singular Value Decomposition.

Chapter 31
Model Detail Views

31-62

Table 31-68 Global Details for Singular Value Decomposition

Name Description

NUM_COMPONENTS Number of features (components) produced by the model

NUM_ROWS The total number of rows used in the build

SUGGESTED_CUTOFF Suggested cutoff that indicates how many of the top
computed features capture most of the variance in the
model. Using only the features below this cutoff would be
a reasonable strategy for dimensionality reduction.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

31.4.21 Model Detail View for Minimum Description Length
Model detail view for Minimum Description Length (for calculating Attribute
Importance) describes Attribute Importance view. Oracle recommends that users
leverage the model details views instead of the GET_MODEL_DETAILS_AI function.

The Attribute Importance view DM$VAmodel_name describes the Attribute Importance
as well as the Attribute Importance rank. The view has the following schema:

Name Type
 --- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_IMPORTANCE_VALUE BINARY_DOUBLE
 ATTRIBUTE_RANK NUMBER

Table 31-69 Attribute Importance View for Minimum Description Length

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_IMPORTANCE_VALUE Importance value

ATTRIBUTE_RANK Rank based on importance

The following table describes the global view for Minimum Description Length.

Table 31-70 Minimum Description Length Statistics Information In Model
Global View

Name Description

NUM_ROWS The total number of rows used in the build

Chapter 31
Model Detail Views

31-63

31.4.22 Model Detail View for Binning
The binning view DM$VB describes the bin boundaries used in the automatic data
preparation.

The view has the following schema:

Name Type
 -------------------- --------------------
 PARTITION_NAME VARCHAR2(128)
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 BIN_ID NUMBER
 LOWER_BIN_BOUNDARY BINARY_DOUBLE
 UPPER_BIN_BOUNDARY BINARY_DOUBLE
 ATTRIBUTE_VALUE VARCHAR2(4000)

Table 31-71 Model Details View for Binning

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ATTRIBUTE_NAME Specifies the attribute name

ATTRIBUTE_SUBNAME Specifies the attribute subname

BIN_ID Bin ID (or bin identifier)

LOWER_BIN_BOUNDARY Numeric lower bin boundary

UPPER_BIN_BOUNDARY Numeric upper bin boundary

ATTRIBUTE_VALUE Categorical value

31.4.23 Model Detail Views for Global Information
Model detail views for Global Information describes global statistics view, alert view,
and computed settings view. Oracle recommends that users leverage the model
details views instead of GET_MODEL_DETAILS_GLOBAL function.

The global statistics view DM$VGmodel_name describes global statistics related to the
model build. Examples include the number of rows used in the build, the convergence
status, and the model quality metrics. The view has the following schema:

Name Type
 ------------------- --------------------
 PARTITION_NAME VARCHAR2(128)
 NAME VARCHAR2(30)
 NUMERIC_VALUE NUMBER
 STRING_VALUE VARCHAR2(4000)

Chapter 31
Model Detail Views

31-64

Table 31-72 Global Statistics View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

NAME Name of the statistic

NUMERIC_VALUE Numeric value of the statistic

STRING_VALUE Categorical value of the statistic

The alert view DM$VWmodel_name lists alerts issued during the model build. The view
has the following schema:

Name Type
 ------------------- ----------------------
 PARTITION_NAME VARCHAR2(128)
 ERROR_NUMBER BINARY_DOUBLE
 ERROR_TEXT VARCHAR2(4000)

Table 31-73 Alert View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ERROR_NUMBER Error number (valid when event is Error)

ERROR_TEXT Error message

The computed settings view DM$VSmodel_name lists the algorithm computed settings.
The view has the following schema:

Name Type
 ----------------- --------------------
 PARTITION_NAME VARCHAR2(128)
 SETTING_NAME VARCHAR2(30)
 SETTING_VALUE VARCHAR2(4000)

Table 31-74 Computed Settings View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

SETTING_NAME Name of the setting

SETTING_VALUE Value of the setting

Chapter 31
Model Detail Views

31-65

31.4.24 Model Detail View for Normalization and Missing Value
Handling

The Normalization and Missing Value Handling View DM$VN describes the
normalization parameters used in Automatic Data Preparation (ADP) and the missing
value replacement when a NULL value is encountered. Missing value replacement
applies only to the twodimensional columns and does not apply to the nested columns.

The view has the following schema:

Name Type
 ---------------------- -----------------------
 PARTITION_NAME VARCHAR2(128)
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 NUMERIC_MISSING_VALUE BINARY_DOUBLE
 CATEGORICAL_MISSING_VALUE VARCHAR2(4000)
 NORMALIZATION_SHIFT BINARY_DOUBLE
 NORMALIZATION_SCALE BINARY_DOUBLE

Table 31-75 Normalization and Missing Value Handling View

Column Name Description

PARTITION_NAME A partition in a partitioned model

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

NUMERIC_MISSING_VALUE Numeric missing value replacement

CATEGORICAL_MISSING_VALUE Categorical missing value replacement

NORMALIZATION_SHIFT Normalization shift value

NORMALIZATION_SCALE Normalization scale value

Chapter 31
Model Detail Views

31-66

32
Scoring and Deployment

Explains the scoring and deployment features of Oracle Data Mining.

• About Scoring and Deployment

• Using the Data Mining SQL Functions

• Prediction Details

• Real-Time Scoring

• Dynamic Scoring

• Cost-Sensitive Decision Making

• DBMS_DATA_MINING.Apply

32.1 About Scoring and Deployment
Scoring is the application of models to new data. In Oracle Data Mining, scoring is
performed by SQL language functions.

Predictive functions perform Classification, Regression, or Anomaly detection.
Clustering functions assign rows to clusters. Feature Extraction functions transform
the input data to a set of higher order predictors. A scoring procedure is also available
in the DBMS_DATA_MINING PL/SQL package.

Deployment refers to the use of models in a target environment. Once the models
have been built, the challenges come in deploying them to obtain the best results, and
in maintaining them within a production environment. Deployment can be any of the
following:

• Scoring data either for batch or real-time results. Scores can include predictions,
probabilities, rules, and other statistics.

• Extracting model details to produce reports. For example: clustering rules,
decision tree rules, or attribute rankings from an Attribute Importance model.

• Extending the business intelligence infrastructure of a data warehouse by
incorporating mining results in applications or operational systems.

• Moving a model from the database where it was built to the database where it
used for scoring (export/import)

Oracle Data Mining supports all of these deployment scenarios.

32-1

Note:

Oracle Data Mining scoring operations support parallel execution. When
parallel execution is enabled, multiple CPU and I/O resources are applied
to the execution of a single database operation.

Parallel execution offers significant performance improvements, especially
for operations that involve complex queries and large databases typically
associated with decision support systems (DSS) and data warehouses.

Related Topics

• Oracle Database VLDB and Partitioning Guide

• Oracle Data Mining Concepts

• Exporting and Importing Mining Models
You can export data mining models to flat files to back up work in progress or to
move models to a different instance of Oracle Database Enterprise Edition (such
as from a development database to a test database).

32.2 Using the Data Mining SQL Functions
Learn about the benefits of SQL functions in data mining.

The data mining SQL functions provide the following benefits:

• Models can be easily deployed within the context of existing SQL applications.

• Scoring operations take advantage of existing query execution functionality. This
provides performance benefits.

• Scoring results are pipelined, enabling the rows to be processed without requiring
materialization.

The data mining functions produce a score for each row in the selection. The functions
can apply a mining model schema object to compute the score, or they can score
dynamically without a pre-defined model, as described in "Dynamic Scoring".

Related Topics

• Dynamic Scoring

• Scoring Requirements

• Table 28-4

• Oracle Database SQL Language Reference

32.2.1 Choosing the Predictors
The data mining functions support a USING clause that specifies which attributes to use
for scoring. You can specify some or all of the attributes in the selection and you can
specify expressions. The following examples all use the PREDICTION function to find
the customers who are likely to use an affinity card, but each example uses a different
set of predictors.

The query in Example 32-1 uses all the predictors.

Chapter 32
Using the Data Mining SQL Functions

32-2

The query in Example 32-2 uses only gender, marital status, occupation, and income
as predictors.

The query in Example 32-3 uses three attributes and an expression as predictors. The
prediction is based on gender, marital status, occupation, and the assumption that all
customers are in the highest income bracket.

Example 32-1 Using All Predictors

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION(dt_sh_clas_sample USING *) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 25 38
M 213 43

Example 32-2 Using Some Predictors

 SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION(dt_sh_clas_sample USING
 cust_gender,cust_marital_status,
 occupation, cust_income_level) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 30 38
M 186 43

Example 32-3 Using Some Predictors and an Expression

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION(dt_sh_clas_sample USING
 cust_gender, cust_marital_status, occupation,
 'L: 300,000 and above' AS cust_income_level) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 30 38
M 186 43

32.2.2 Single-Record Scoring
The data mining functions can produce a score for a single record, as shown in
Example 32-4 and Example 32-5.

Example 32-4 returns a prediction for customer 102001 by applying the classification
model NB_SH_Clas_sample. The resulting score is 0, meaning that this customer is
unlikely to use an affinity card.

Chapter 32
Using the Data Mining SQL Functions

32-3

Example 32-5 returns a prediction for 'Affinity card is great' as the comments attribute
by applying the text mining model T_SVM_Clas_sample. The resulting score is 1,
meaning that this customer is likely to use an affinity card.

Example 32-4 Scoring a Single Customer or a Single Text Expression

SELECT PREDICTION (NB_SH_Clas_Sample USING *)
 FROM sh.customers where cust_id = 102001;

PREDICTION(NB_SH_CLAS_SAMPLEUSING*)

 0

Example 32-5 Scoring a Single Text Expression

SELECT
 PREDICTION(T_SVM_Clas_sample USING 'Affinity card is great' AS comments)
FROM DUAL;

PREDICTION(T_SVM_CLAS_SAMPLEUSING'AFFINITYCARDISGREAT'ASCOMMENTS)

 1

32.3 Prediction Details
Prediction details are XML strings that provide information about the score. Details
are available for all types of scoring: clustering, feature extraction, classification,
regression, and anomaly detection. Details are available whether scoring is dynamic or
the result of model apply.

The details functions, CLUSTER_DETAILS, FEATURE_DETAILS, and PREDICTION_DETAILS
return the actual value of attributes used for scoring and the relative importance of
the attributes in determining the score. By default, the functions return the five most
important attributes in descending order of importance.

32.3.1 Cluster Details
For the most likely cluster assignments of customer 100955 (probability of assignment
> 20%), the query in the following example produces the five attributes that have
the most impact for each of the likely clusters. The clustering functions apply an
Expectation Maximization model named em_sh_clus_sample to the data selected from
mining_data_apply_v. The "5" specified in CLUSTER_DETAILS is not required, because
five attributes are returned by default.

Example 32-6 Cluster Details

SELECT S.cluster_id, probability prob,
 CLUSTER_DETAILS(em_sh_clus_sample, S.cluster_id, 5 USING T.*) det
 FROM
 (SELECT v.*, CLUSTER_SET(em_sh_clus_sample, NULL, 0.2 USING *) pset
 FROM mining_data_apply_v v
 WHERE cust_id = 100955) T,
 TABLE(T.pset) S
 ORDER BY 2 DESC;

CLUSTER_ID PROB DET
---------- ----- --
 14 .6761 <Details algorithm="Expectation Maximization" cluster="14">

Chapter 32
Prediction Details

32-4

 <Attribute name="AGE" actualValue="51" weight=".676" rank="1"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".557" rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".412" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".171" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION"actualValue="1" weight="-.003"
 rank="5"/>
 </Details>

 3 .3227 <Details algorithm="Expectation Maximization" cluster="3">
 <Attribute name="YRS_RESIDENCE" actualValue="3" weight=".323" rank="1"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".265" rank="2"/>
 <Attribute name="EDUCATION" actualValue="HS-grad" weight=".172" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".125" rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Crafts" weight=".055" rank="5"/>
 </Details>

32.3.2 Feature Details
The query in the following example returns the three attributes that have the greatest
impact on the top Principal Components Analysis (PCA) projection for customer
101501. The FEATURE_DETAILS function applies a Singular Value Decomposition model
named svd_sh_sample to the data selected from svd_sh_sample_build_num.

Example 32-7 Feature Details

SELECT FEATURE_DETAILS(svd_sh_sample, 1, 3 USING *) proj1det
 FROM svd_sh_sample_build_num
 WHERE CUST_ID = 101501;

PROJ1DET
--
<Details algorithm="Singular Value Decomposition" feature="1">
<Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".352" rank="1"/>
<Attribute name="Y_BOX_GAMES" actualValue="0" weight=".249" rank="2"/>
<Attribute name="AGE" actualValue="41" weight=".063" rank="3"/>
</Details>

32.3.3 Prediction Details
The query in the following example returns the attributes that are most important in
predicting the age of customer 100010. The prediction functions apply a Generalized
Linear Model Regression model named GLMR_SH_Regr_sample to the data selected
from mining_data_apply_v.

Example 32-8 Prediction Details for Regression

SELECT cust_id,
 PREDICTION(GLMR_SH_Regr_sample USING *) pr,
 PREDICTION_DETAILS(GLMR_SH_Regr_sample USING *) pd
 FROM mining_data_apply_v
 WHERE CUST_ID = 100010;

CUST_ID PR PD
------- ----- -----------
 100010 25.45 <Details algorithm="Generalized Linear Model">
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".025" rank="1"/>
 <Attribute name="OCCUPATION" actualValue="Crafts" weight=".019" rank="2"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".01" rank="3"/>
 <Attribute name="OS_DOC_SET_KANJI" actualValue="0" weight="0" rank="4"/>

Chapter 32
Prediction Details

32-5

 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight="-.004" rank="5"/>
 </Details>

The query in the following example returns the customers who work in Tech Support
and are likely to use an affinity card (with more than 85% probability). The prediction
functions apply an Support Vector Machine (SVM) Classification model named
svmc_sh_clas_sample. to the data selected from mining_data_apply_v. The query
includes the prediction details, which show that education is the most important
predictor.

Example 32-9 Prediction Details for Classification

SELECT cust_id, PREDICTION_DETAILS(svmc_sh_clas_sample, 1 USING *) PD
 FROM mining_data_apply_v
 WHERE PREDICTION_PROBABILITY(svmc_sh_clas_sample, 1 USING *) > 0.85
 AND occupation = 'TechSup'
 ORDER BY cust_id;

CUST_ID PD
------- ---
 100029 <Details algorithm="Support Vector Machines" class="1">
 <Attribute name="EDUCATION" actualValue="Assoc-A" weight=".199" rank="1"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="I: 170\,000 - 189\,999" weight=".044"
 rank="2"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".028" rank="3"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".024" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight=".022" rank="5"/>
 </Details>

 100378 <Details algorithm="Support Vector Machines" class="1">
 <Attribute name="EDUCATION" actualValue="Assoc-A" weight=".21" rank="1"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="B: 30\,000 - 49\,999" weight=".047"
 rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".043" rank="3"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".03" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight=".023" rank="5"/>
 </Details>

 100508 <Details algorithm="Support Vector Machines" class="1">
 <Attribute name="EDUCATION" actualValue="Bach." weight=".19" rank="1"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="L: 300\,000 and above" weight=".046"
 rank="2"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".031" rank="3"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".026" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight=".024" rank="5"/>
 </Details>

 100980 <Details algorithm="Support Vector Machines" class="1">
 <Attribute name="EDUCATION" actualValue="Assoc-A" weight=".19" rank="1"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".038" rank="2"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".026" rank="3"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".022" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight=".02" rank="5"/>
 </Details>

The query in the following example returns the two customers that differ the most
from the rest of the customers. The prediction functions apply an anomaly detection
model named SVMO_SH_Clas_sample to the data selected from mining_data_apply_v.
Anomaly Detection uses a one-class SVM classifier.

Chapter 32
Prediction Details

32-6

Example 32-10 Prediction Details for Anomaly Detection

SELECT cust_id, pd FROM
 (SELECT cust_id,
 PREDICTION_DETAILS(SVMO_SH_Clas_sample, 0 USING *) pd,
 RANK() OVER (ORDER BY prediction_probability(
 SVMO_SH_Clas_sample, 0 USING *) DESC, cust_id) rnk
 FROM mining_data_one_class_v)
 WHERE rnk <= 2
 ORDER BY rnk;

 CUST_ID PD
---------- ---
 102366 <Details algorithm="Support Vector Machines" class="0">
 <Attribute name="COUNTRY_NAME" actualValue="United Kingdom" weight=".078" rank="1"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="Divorc." weight=".027" rank="2"/>
 <Attribute name="CUST_GENDER" actualValue="F" weight=".01" rank="3"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="9+" weight=".009" rank="4"/>
 <Attribute name="AGE" actualValue="28" weight=".006" rank="5"/>
 </Details>

 101790 <Details algorithm="Support Vector Machines" class="0">
 <Attribute name="COUNTRY_NAME" actualValue="Canada" weight=".068" rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="4-5" weight=".018" rank="2"/>
 <Attribute name="EDUCATION" actualValue="7th-8th" weight=".015" rank="3"/>
 <Attribute name="CUST_GENDER" actualValue="F" weight=".013" rank="4"/>
 <Attribute name="AGE" actualValue="38" weight=".001" rank="5"/>
 </Details>

32.3.4 GROUPING Hint
Data mining functions consist of SQL functions such as PREDICTION*, CLUSTER*,
FEATURE*, and ORA_DM_*. The GROUPING hint is an optional hint which applies to data
mining scoring functions when scoring partitioned models.

This hint results in partitioning the input data set into distinct data slices so that
each partition is scored in its entirety before advancing to the next partition. However,
parallelism by partition is still available. Data slices are determined by the partitioning
key columns used when the model was built. This method can be used with any data
mining function against a partitioned model. The hint may yield a query performance
gain when scoring large data that is associated with many partitions but may
negatively impact performance when scoring large data with few partitions on large
systems. Typically, there is no performance gain if you use the hint for single row
queries.

Enhanced PREDICTION Function Command Format

<prediction function> ::=
 PREDICTION <left paren> /*+ GROUPING */ <prediction model>
 [<comma> <class value> [<comma> <top N>]]
 USING <mining attribute list> <right paren>

The syntax for only the PREDICTION function is given but it is applicable to any Data
mining function where PREDICTION, CLUSTERING, and FEATURE_EXTRACTION scoring
functions occur.

Chapter 32
Prediction Details

32-7

Example 32-11 Example

SELECT PREDICTION(/*+ GROUPING */my_model USING *) pred FROM <input
table>;

Related Topics

• Oracle Database SQL Language Reference

32.4 Real-Time Scoring
Oracle Data Mining SQL functions enable prediction, clustering, and feature extraction
analysis to be easily integrated into live production and operational systems. Because
mining results are returned within SQL queries, mining can occur in real time.

With real-time scoring, point-of-sales database transactions can be mined. Predictions
and rule sets can be generated to help front-line workers make better analytical
decisions. Real-time scoring enables fraud detection, identification of potential
liabilities, and recognition of better marketing and selling opportunities.

The query in the following example uses a Decision Tree model named
dt_sh_clas_sample to predict the probability that customer 101488 uses an affinity
card. A customer representative can retrieve this information in real time when talking
to this customer on the phone. Based on the query result, the representative can offer
an extra-value card, since there is a 73% chance that the customer uses a card.

Example 32-12 Real-Time Query with Prediction Probability

SELECT PREDICTION_PROBABILITY(dt_sh_clas_sample, 1 USING *) cust_card_prob
 FROM mining_data_apply_v
 WHERE cust_id = 101488;

CUST_CARD_PROB

 .72764

32.5 Dynamic Scoring
The Data Mining SQL functions operate in two modes: by applying a pre-defined
model, or by executing an analytic clause. If you supply an analytic clause instead of a
model name, the function builds one or more transient models and uses them to score
the data.

The ability to score data dynamically without a pre-defined model extends the
application of basic embedded data mining techniques into environments where
models are not available. Dynamic scoring, however, has limitations. The transient
models created during dynamic scoring are not available for inspection or fine tuning.
Applications that require model inspection, the correlation of scoring results with the
model, special algorithm settings, or multiple scoring queries that use the same model,
require a predefined model.

The following example shows a dynamic scoring query. The example identifies the
rows in the input data that contain unusual customer age values.

Chapter 32
Real-Time Scoring

32-8

Example 32-13 Dynamic Prediction

SELECT cust_id, age, pred_age, age-pred_age age_diff, pred_det FROM
 (SELECT cust_id, age, pred_age, pred_det,
 RANK() OVER (ORDER BY ABS(age-pred_age) DESC) rnk FROM
 (SELECT cust_id, age,
 PREDICTION(FOR age USING *) OVER () pred_age,
 PREDICTION_DETAILS(FOR age ABS USING *) OVER () pred_det
 FROM mining_data_apply_v))
WHERE rnk <= 5;

CUST_ID AGE PRED_AGE AGE_DIFF PRED_DET
------- ---- ---------- -------- --
 100910 80 40.6686505 39.33 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="1"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0"
 weight=".059" rank="2"/>
 <Attribute name="AFFINITY_CARD" actualValue="0"
 weight=".059" rank="3"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1"
 weight=".059" rank="4"/>
 <Attribute name="YRS_RESIDENCE" actualValue="4"
 weight=".059" rank="5"/>
 </Details>

 101285 79 42.1753571 36.82 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".059"
 rank="2"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="Mabsent"
 weight=".059" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Prof." weight=".059"
 rank="5"/>
 </Details>

 100694 77 41.0396722 35.96 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="1"/>
 <Attribute name="EDUCATION" actualValue="< Bach."
 weight=".059" rank="2"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="3"/>
 <Attribute name="CUST_ID" actualValue="100694" weight=".059"
 rank="4"/>
 <Attribute name="COUNTRY_NAME" actualValue="United States of
 America" weight=".059" rank="5"/>
 </Details>

 100308 81 45.3252491 35.67 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="1"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="2"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".059"
 rank="3"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1"
 weight=".059" rank="4"/>

Chapter 32
Dynamic Scoring

32-9

 <Attribute name="CUST_GENDER" actualValue="F" weight=".059"
 rank="5"/>
 </Details>

 101256 90 54.3862214 35.61 <Details algorithm="Support Vector Machines">
 <Attribute name="YRS_RESIDENCE" actualValue="9" weight=".059"
 rank="1"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="2"/>
 <Attribute name="EDUCATION" actualValue="< Bach."
 weight=".059" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="4"/>
 <Attribute name="COUNTRY_NAME" actualValue="United States of
 America" weight=".059" rank="5"/>
 </Details>

32.6 Cost-Sensitive Decision Making
Costs are user-specified numbers that bias Classification. The algorithm uses positive
numbers to penalize more expensive outcomes over less expensive outcomes. Higher
numbers indicate higher costs.

The algorithm uses negative numbers to favor more beneficial outcomes over less
beneficial outcomes. Lower negative numbers indicate higher benefits.

All classification algorithms can use costs for scoring. You can specify the costs in a
cost matrix table, or you can specify the costs inline when scoring. If you specify costs
inline and the model also has an associated cost matrix, only the inline costs are used.
The PREDICTION, PREDICTION_SET, and PREDICTION_COST functions support costs.

Only the Decision Tree algorithm can use costs to bias the model build. If you want
to create a Decision Tree model with costs, create a cost matrix table and provide its
name in the CLAS_COST_TABLE_NAME setting for the model. If you specify costs when
building the model, the cost matrix used to create the model is used when scoring. If
you want to use a different cost matrix table for scoring, first remove the existing cost
matrix table then add the new one.

A sample cost matrix table is shown in the following table. The cost matrix specifies
costs for a binary target. The matrix indicates that the algorithm must treat a
misclassified 0 as twice as costly as a misclassified 1.

Table 32-1 Sample Cost Matrix

ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST

0 0 0

0 1 2

1 0 1

1 1 0

Example 32-14 Sample Queries With Costs

The table nbmodel_costs contains the cost matrix described in Table 32-1.

SELECT * from nbmodel_costs;

Chapter 32
Cost-Sensitive Decision Making

32-10

ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST
------------------- ---------------------- ----------
 0 0 0
 0 1 2
 1 0 1
 1 1 0

The following statement associates the cost matrix with a Naive Bayes model called
nbmodel.

BEGIN
 dbms_data_mining.add_cost_matrix('nbmodel', 'nbmodel_costs');
END;
/

The following query takes the cost matrix into account when scoring
mining_data_apply_v. The output is restricted to those rows where a prediction of
1 is less costly then a prediction of 0.

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION (nbmodel COST MODEL
 USING cust_marital_status, education, household_size) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 25 38
M 208 43

You can specify costs inline when you invoke the scoring function. If you specify costs
inline and the model also has an associated cost matrix, only the inline costs are used.
The same query is shown below with different costs specified inline. Instead of the "2"
shown in the cost matrix table (Table 32-1), "10" is specified in the inline costs.

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION (nbmodel
 COST (0,1) values ((0, 10),
 (1, 0))
 USING cust_marital_status, education, household_size) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 74 39
M 581 43

The same query based on probability instead of costs is shown below.

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION (nbmodel
 USING cust_marital_status, education, household_size) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------

Chapter 32
Cost-Sensitive Decision Making

32-11

F 73 39
M 577 44

Related Topics

• Example 27-1

32.7 DBMS_DATA_MINING.Apply
The APPLY procedure in DBMS_DATA_MINING is a batch apply operation that writes the
results of scoring directly to a table.

The columns in the table are mining function-dependent.

Scoring with APPLY generates the same results as scoring with the SQL scoring
functions. Classification produces a prediction and a probability for each case;
clustering produces a cluster ID and a probability for each case, and so on. The
difference lies in the way that scoring results are captured and the mechanisms that
can be used for retrieving them.

APPLY creates an output table with the columns shown in the following table:

Table 32-2 APPLY Output Table

Mining Function Output Columns

classification CASE_ID

PREDICTION

PROBABILITY

regression CASE_ID

PREDICTION

anomaly detection CASE_ID

PREDICTION

PROBABILITY

clustering CASE_ID

CLUSTER_ID

PROBABILITY

feature extraction CASE_ID

FEATURE_ID

MATCH_QUALITY

Since APPLY output is stored separately from the scoring data, it must be joined to the
scoring data to support queries that include the scored rows. Thus any model that is
used with APPLY must have a case ID.

A case ID is not required for models that is applied with SQL scoring functions.
Likewise, storage and joins are not required, since scoring results are generated and
consumed in real time within a SQL query.

The following example illustrates Anomaly Detection with APPLY. The query of the
APPLY output table returns the ten first customers in the table. Each has a a probability
for being typical (1) and a probability for being anomalous (0).

Chapter 32
DBMS_DATA_MINING.Apply

32-12

Example 32-15 Anomaly Detection with DBMS_DATA_MINING.APPLY

EXEC dbms_data_mining.apply
 ('SVMO_SH_Clas_sample','svmo_sh_sample_prepared',
 'cust_id', 'one_class_output');

SELECT * from one_class_output where rownum < 11;

 CUST_ID PREDICTION PROBABILITY
---------- ---------- -----------
 101798 1 .567389309
 101798 0 .432610691
 102276 1 .564922469
 102276 0 .435077531
 102404 1 .51213544
 102404 0 .48786456
 101891 1 .563474346
 101891 0 .436525654
 102815 0 .500663683
 102815 1 .499336317

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 32
DBMS_DATA_MINING.Apply

32-13

33
Mining Unstructured Text

Explains how to use Oracle Data Mining to mine unstructured text.

• About Unstructured Text

• About Text Mining and Oracle Text

• Data Preparation for Text Features

• Creating a Model that Includes Text Mining

• Creating a Text Policy

• Configuring a Text Attribute

33.1 About Unstructured Text
Data mining algorithms act on data that is numerical or categorical. Numerical data
is ordered. It is stored in columns that have a numeric data type, such as NUMBER
or FLOAT. Categorical data is identified by category or classification. It is stored in
columns that have a character data type, such as VARCHAR2 or CHAR.

Unstructured text data is neither numerical nor categorical. Unstructured text includes
items such as web pages, document libraries, Power Point presentations, product
specifications, emails, comment fields in reports, and call center notes. It has been
said that unstructured text accounts for more than three quarters of all enterprise data.
Extracting meaningful information from unstructured text can be critical to the success
of a business.

33.2 About Text Mining and Oracle Text
Understand what is text mining and oracle text.

Text mining is the process of applying data mining techniques to text terms, also
called text features or tokens. Text terms are words or groups of words that have
been extracted from text documents and assigned numeric weights. Text terms are the
fundamental unit of text that can be manipulated and analyzed.

Oracle Text is a Database technology that provides term extraction, word and theme
searching, and other utilities for querying text. When columns of text are present in
the training data, Oracle Data Mining uses Oracle Text utilities and term weighting
strategies to transform the text for mining. Oracle Data Mining passes configuration
information supplied by you to Oracle Text and uses the results in the model creation
process.

Related Topics

• Oracle Text Application Developer's Guide

33-1

33.3 Data Preparation for Text Features
The model details view for text features is DM$VXmodel_name.

The text feature view DM$VXmodel_name describes the extracted text features if there
are text attributes present. The view has the following schema:

Name Type
 -------------- ---------------------
 PARTITION_NAME VARCHAR2(128)
 COLUMN_NAME VARCHAR2(128)
 TOKEN VARCHAR2(4000)
 DOCUMENT_FREQUENCY NUMBER

Table 33-1 Text Feature View for Extracted Text Features

Column Name Description

PARTITION_NAME A partition in a partitioned model to retrieve details

COLUMN_NAME Name of the identifier column

TOKEN Text token which is usually a word or stemmed word

DOCUMENT_FREQUENCY A measure of token frequency in the entire training
set

33.4 Creating a Model that Includes Text Mining
Learn how to create a model that includes text mining.

Oracle Data Mining supports unstructured text within columns of VARCHAR2, CHAR, CLOB,
BLOB, and BFILE, as described in the following table:

Table 33-2 Column Data Types That May Contain Unstructured Text

Data Type Description

BFILE and
BLOB

Oracle Data Mining interprets BLOB and BFILE as text only if you identify
the columns as text when you create the model. If you do not identify the
columns as text, then CREATE_MODEL returns an error.

CLOB Oracle Data Mining interprets CLOB as text.

CHAR Oracle Data Mining interprets CHAR as categorical by default. You can
identify columns of CHAR as text when you create the model.

VARCHAR2 Oracle Data Mining interprets VARCHAR2 with data length > 4000 as text.

Oracle Data Mining interprets VARCHAR2 with data length <= 4000 as
categorical by default. You can identify these columns as text when you
create the model.

Chapter 33
Data Preparation for Text Features

33-2

Note:

Text is not supported in nested columns or as a target in supervised data
mining.

The settings described in the following table control the term extraction process for
text attributes in a model. Instructions for specifying model settings are in "Specifying
Model Settings".

Table 33-3 Model Settings for Text

Setting Name Data Type Setting Value Description

ODMS_TEXT_POLICY_NAM
E

VARCHAR2(40
00)

Name of an
Oracle Text policy
object created with
CTX_DDL.CREATE_POLICY

Affects how individual tokens are
extracted from unstructured text. See
"Creating a Text Policy".

ODMS_TEXT_MAX_FEATUR
ES

INTEGER 1 <= value <= 100000 Maximum number of features to
use from the document set (across
all documents of each text column)
passed to CREATE_MODEL.

Default is 3000.

A model can include one or more text attributes. A model with text attributes can also
include categorical and numerical attributes.

To create a model that includes text attributes:

1. Create an Oracle Text policy object..

2. Specify the model configuration settings that are described in "Table 33-3".

3. Specify which columns must be treated as text and, optionally, provide text
transformation instructions for individual attributes.

4. Pass the model settings and text transformation instructions to
DBMS_DATA_MINING.CREATE_MODEL.

Note:

All algorithms except O-Cluster can support columns of unstructured
text.

The use of unstructured text is not recommended for association rules
(Apriori).

Related Topics

• Specifying Model Settings
Understand how to configure data mining models at build time.

Chapter 33
Creating a Model that Includes Text Mining

33-3

• Creating a Text Policy
An Oracle Text policy specifies how text content must be interpreted. You can
provide a text policy to govern a model, an attribute, or both the model and
individual attributes.

• Configuring a Text Attribute
Learn how to identify a column as a text attribute and provide transformation
instructions for any text attribute.

• Embedding Transformations in a Model

33.5 Creating a Text Policy
An Oracle Text policy specifies how text content must be interpreted. You can provide
a text policy to govern a model, an attribute, or both the model and individual
attributes.

If a model-specific policy is present and one or more attributes have their own policies,
Oracle Data Mining uses the attribute policies for the specified attributes and the
model-specific policy for the other attributes.

The CTX_DDL.CREATE_POLICY procedure creates a text policy.

CTX_DDL.CREATE_POLICY(
 policy_name IN VARCHAR2,
 filter IN VARCHAR2 DEFAULT NULL,
 section_group IN VARCHAR2 DEFAULT NULL,
 lexer IN VARCHAR2 DEFAULT NULL,
 stoplist IN VARCHAR2 DEFAULT NULL,
 wordlist IN VARCHAR2 DEFAULT NULL);

The parameters of CTX_DDL.CREATE_POLICY are described in the following table.

Table 33-4 CTX_DDL.CREATE_POLICY Procedure Parameters

Parameter Name Description

policy_name Name of the new policy object. Oracle Text policies and text indexes
share the same namespace.

filter Specifies how the documents must be converted to plain text for
indexing. Examples are: CHARSET_FILTER for character sets and
NULL_FILTER for plain text, HTML and XML.

For filter values, see "Filter Types" in Oracle Text Reference.

section_group Identifies sections within the documents. For example,
HTML_SECTION_GROUP defines sections in HTML documents.

For section_group values, see "Section Group Types" in Oracle Text
Reference.
Note: You can specify any section group that is supported by CONTEXT
indexes.

lexer Identifies the language that is being indexed. For example,
BASIC_LEXER is the lexer for extracting terms from text in languages
that use white space delimited words (such as English and most
western European languages).
For lexer values, see "Lexer Types" in Oracle Text Reference.

Chapter 33
Creating a Text Policy

33-4

Table 33-4 (Cont.) CTX_DDL.CREATE_POLICY Procedure Parameters

Parameter Name Description

stoplist Specifies words and themes to exclude from term extraction. For
example, the word "the" is typically in the stoplist for English
language documents.
The system-supplied stoplist is used by default.
See "Stoplists" in Oracle Text Reference.

wordlist Specifies how stems and fuzzy queries must be expanded. A stem
defines a root form of a word so that different grammatical forms
have a single representation. A fuzzy query includes common
misspellings in the representation of a word.
See "BASIC_WORDLIST" in Oracle Text Reference.

Related Topics

• Oracle Text Reference

33.6 Configuring a Text Attribute
Learn how to identify a column as a text attribute and provide transformation
instructions for any text attribute.

As shown in Table 33-2, you can identify columns of CHAR,shorter VARCHAR2 (<=4000),
BFILE, and BLOB as text attributes. If CHAR and shorter VARCHAR2 columns are
not explicitly identified as unstructured text, then CREATE_MODEL processes them as
categorical attributes. If BFILE and BLOB columns are not explicitly identified as
unstructured text, then CREATE_MODEL returns an error.

To identify a column as a text attribute, supply the keyword TEXT in an
Attribute specification. The attribute specification is a field (attribute_spec) in a
transformation record (transform_rec). Transformation records are components of
transformation lists (xform_list) that can be passed to CREATE_MODEL.

Note:

An attribute specification can also include information that is not related to
text. Instructions for constructing an attribute specification are in "Embedding
Transformations in a Model".

You can provide transformation instructions for any text attribute by qualifying the TEXT
keyword in the attribute specification with the subsettings described in the following
table.

Chapter 33
Configuring a Text Attribute

33-5

Table 33-5 Attribute-Specific Text Transformation Instructions

Subsetting
Name

Description Example

BIGRAM A sequence of two adjacent elements from
a string of tokens, which are typically
letters, syllables, or words.
Here, NORMAL tokens are mixed with their
bigrams.

(TOKEN_TYPE:BIGRAM)

POLICY_NAME Name of an Oracle Text policy object
created with CTX_DDL.CREATE_POLICY

(POLICY_NAME:my_polic
y)

STEM_BIGRAM Here, STEM tokens are extracted first and
then stem bigrams are formed.

(TOKEN_TYPE:STEM_BIGR
AM)

SYNONYM Oracle Data Mining supports synonyms.
The following is an optional parameter:
<thesaurus> where <thesaurus> is the
name of the thesaurus defining synonyms.
If SYNONYM is used without this parameter,
then the default thesaurus is used.

(TOKEN_TYPE:SYNONYM)

(TOKEN_TYPE:SYNONYM[N
AMES])

TOKEN_TYPE The following values are supported:

NORMAL (the default)
STEM

THEME

See "Token Types in an Attribute Specification"

(TOKEN_TYPE:THEME)

MAX_FEATURES Maximum number of features to use from
the attribute.

(MAX_FEATURES:3000)

Note:

The TEXT keyword is only required for CLOB and longer VARCHAR2 (>4000)
when you specify transformation instructions. The TEXT keyword is always
required for CHAR, shorter VARCHAR2, BFILE, and BLOB — whether or not you
specify transformation instructions.

Tip:

You can view attribute specifications in the data dictionary view
ALL_MINING_MODEL_ATTRIBUTES, as shown in Oracle Database Reference.

Token Types in an Attribute Specification

When stems or themes are specified as the token type, the lexer preference for the
text policy must support these types of tokens.

The following example adds themes and English stems to BASIC_LEXER.

Chapter 33
Configuring a Text Attribute

33-6

BEGIN
 CTX_DDL.CREATE_PREFERENCE('my_lexer', 'BASIC_LEXER');
 CTX_DDL.SET_ATTRIBUTE('my_lexer', 'index_stems', 'ENGLISH');
 CTX_DDL.SET_ATTRIBUTE('my_lexer', 'index_themes', 'YES');
END;

Example 33-1 A Sample Attribute Specification for Text

This expression specifies that text transformation for the attribute must use the text
policy named my_policy. The token type is THEME, and the maximum number of
features is 3000.

"TEXT(POLICY_NAME:my_policy)(TOKEN_TYPE:THEME)(MAX_FEATURES:3000)"

Related Topics

• Embedding Transformations in a Model

• Specifying Transformation Instructions for an Attribute
Learn what is a transformation instruction for an attribute and learn about the fields
in a transformation record.

• Oracle Database PL/SQL Packages and Types Reference

• ALL_MINING_MODEL_ATTRIBUTES

Chapter 33
Configuring a Text Attribute

33-7

34
Administrative Tasks for Oracle Data
Mining

Explains how to perform administrative tasks related to Oracle Data Mining.

• Installing and Configuring a Database for Data Mining

• Upgrading or Downgrading Oracle Data Mining

• Exporting and Importing Mining Models

• Controlling Access to Mining Models and Data

• Auditing and Adding Comments to Mining Models

34.1 Installing and Configuring a Database for Data Mining
Learn how to install and configure a database for Data Mining.

• About Installation

• Enabling or Disabling a Database Option

• Database Tuning Considerations for Data Mining

34.1.1 About Installation
Oracle Data Mining is a component of the Oracle Advanced Analytics option to Oracle
Database Enterprise Edition.

To install Oracle Database, follow the installation instructions for your platform. Choose
a Data Warehousing configuration during the installation.

Oracle Data Miner, the graphical user interface to Oracle Data Mining, is an extension
to Oracle SQL Developer. Instructions for downloading SQL Developer and installing
the Data Miner repository are available on the Oracle Technology Network.

To perform data mining activities, you must be able to log on to the Oracle database,
and your user ID must have the database privileges described in Example 34-7.

Related Topics

• Oracle Data Miner

See Also:

Install and Upgrade page of the Oracle Database online documentation
library for your platform-specific installation instructions: Oracle Database
18c Release

34-1

unilink:dataminer_wf

34.1.2 Enabling or Disabling a Database Option
Learn how you can enable or disable Oracle Advanced Analytics option after the
installation.

The Oracle Advanced Analytics option is enabled by default during installation of
Oracle Database Enterprise Edition. After installation, you can use the command-line
utility chopt to enable or disable a database option. For instructions, see "Enabling
and Disabling Database Options After Installation" in the installation guide for your
platform.

Related Topics

• Oracle Database Installation Guide for Linux

• Oracle Database Installation Guide for Microsoft Windows

34.1.3 Database Tuning Considerations for Data Mining
Understand the Database tuning considerations for Data Mining.

DBAs managing production databases that support Oracle Data Mining must follow
standard administrative practices as described in Oracle Database Administrator’s
Guide.

Building data mining models and batch scoring of mining models tend to put a DSS-
like workload on the system. Single-row scoring tends to put an OLTP-like workload on
the system.

Database memory management can have a major impact on data mining. The
correct sizing of Program Global Area (PGA) memory is very important for model
building, complex queries, and batch scoring. From a data mining perspective, the
System Global Area (SGA) is generally less of a concern. However, the SGA must
be sized to accommodate real-time scoring, which loads models into the shared
cursor in the SGA. In most cases, you can configure the database to manage
memory automatically. To do so, specify the total maximum memory size in the tuning
parameter MEMORY_TARGET. With automatic memory management, Oracle Database
dynamically exchanges memory between the SGA and the instance PGA as needed
to meet processing demands.

Most data mining algorithms can take advantage of parallel execution when it is
enabled in the database. Parameters in INIT.ORA control the behavior of parallel
execution.

Related Topics

• Oracle Database Administrator’s Guide

• Scoring and Deployment
Explains the scoring and deployment features of Oracle Data Mining.

• Oracle Database Administrator’s Guide

• Part I Database Performance Fundamentals

• Tuning Database Memory

• Oracle Database VLDB and Partitioning Guide

Chapter 34
Installing and Configuring a Database for Data Mining

34-2

34.2 Upgrading or Downgrading Oracle Data Mining
Understand how to upgrade and downgrade Oracle Data Mining.

• Pre-Upgrade Steps

• Upgrading Oracle Data Mining

• Post Upgrade Steps

• Downgrading Oracle Data Mining

34.2.1 Pre-Upgrade Steps
Before upgrading, you must drop any data mining models that were created in Java
and any mining activities that were created in Oracle Data Miner Classic (the earlier
version of Oracle Data Miner).

Caution:

In Oracle Database 12c, Oracle Data Mining does not support a Java API,
and Oracle Data Miner Classic cannot run against Oracle Database 12c .

34.2.1.1 Dropping Models Created in Java
If your 10g or 11g database contains models created in Java, use the
DBMS_DATA_MINING.DROP_MODEL routine to drop the models before upgrading the
database.

34.2.1.2 Dropping Mining Activities Created in Oracle Data Miner Classic
If your database contains mining activities from Oracle Data Miner Classic, delete the
mining activities and drop the repository before upgrading the database. Follow these
steps:

1. Use the Data Miner Classic user interface to delete the mining activities.

2. In SQL*Plus or SQL Developer, drop these tables:

DM4J$ACTIVITIES
DM4J$RESULTS
DM4J$TRANSFORMS

and these views:

DM4J$MODEL_RESULTS_V
DM4J$RESULTS_STATE_V

There must be no tables or views with the prefix DM4J$ in any schema in the database
after you complete these steps.

Chapter 34
Upgrading or Downgrading Oracle Data Mining

34-3

34.2.2 Upgrading Oracle Data Mining
Learn how to upgrade Oracle Data Mining.

After you complete the "Pre-Upgrade Steps", all models and mining metadata are fully
integrated with the Oracle Database upgrade process whether you are upgrading
from 11g or from 10g releases.

Upgraded models continue to work as they did in prior releases. Both upgraded
models and new models that you create in the upgraded environment can make use of
the new mining functionality introduced in the new release.

To upgrade a database, you can use Database Upgrade Assistant (DBUA) or you can
perform a manual upgrade using export/import utilities.

Related Topics

• Pre-Upgrade Steps

• Oracle Database Upgrade Guide

34.2.2.1 Using Database Upgrade Assistant to Upgrade Oracle Data Mining
Oracle Database Upgrade Assistant provides a graphical user interface that guides
you interactively through the upgrade process.

On Windows platforms, follow these steps to start the Upgrade Assistant:

1. Go to the Windows Start menu and choose the Oracle home directory.

2. Choose the Configuration and Migration Tools menu.

3. Launch the Upgrade Assistant.

On Linux platforms, run the DBUA utility to upgrade Oracle Database.

34.2.2.1.1 Upgrading from Release 10g
In Oracle Data Mining 10g, data mining metadata and PL/SQL packages are stored in
the DMSYS schema. In Oracle Data Mining 11g and 12c, DMSYS no longer exists; data
mining metadata objects are stored in SYS.

When Oracle Database 10g is upgraded to 12c, all data mining metadata objects
and PL/SQL packages are migrated from DMSYS to SYS. The DMSYS schema and its
associated objects are removed after a successful migration. When DMSYS is removed,
the SYS.DBA_REGISTRY view no longer lists Oracle Data Mining as a component.

After upgrading to Oracle Database 12c, you can no longer switch to the Data Mining
Scoring Engine (DMSE). The Scoring Engine does not exist in Oracle Database 11g or
12c.

34.2.2.1.2 Upgrading from Release 11g
If you upgrade Oracle Database 11g to Oracle Database 12c, and the database was
previously upgraded from Oracle Database 10g, then theDMSYS schema may still be
present. If the upgrade process detects DMSYS, it displays a warning message and
drops DMSYS during the upgrade.

Chapter 34
Upgrading or Downgrading Oracle Data Mining

34-4

34.2.2.2 Using Export/Import to Upgrade Data Mining Models
If required, you can you can use a less automated approach to upgrading data mining
models. You can export the models created in a previous version of Oracle Database
and import them into an instance of Oracle Database 12c.

Caution:

Do not import data mining models that were created in Java. They are not
supported in Oracle Database 12c.

34.2.2.2.1 Export/Import Release 10g Data Mining Models
Follow the instructions for exporting and importing Data Mining models.

To export models from an instance of Oracle Database 10g to a dump file, follow the
instructions in "Exporting and Importing Mining Models". Before importing the models
from the dump file, run the DMEIDMSYS script to create the DMSYS schema in Oracle
Database 12c.

SQL>CONNECT / as sysdba;
SQL>@ORACLE_HOME\RDBMS\admin\dmeidmsys.sql
SQL>EXIT;

Note:

The TEMP tablespace must already exist in the Oracle Database 12g
database. The DMEIDMSYS script uses the TEMP and SYSAUX tablespaces to
create the DMSYS schema.

To import the dump file into the Oracle Database 12c database:

%ORACLE_HOME\bin\impdp system\<password>
 dumpfile=<dumpfile_name>
 directory=<directory_name>
 logfile=<logfile_name>
SQL>CONNECT / as sysdba;
SQL>EXECUTE dmp_sys.upgrade_models();
SQL>ALTER SYSTEM FLUSH SHARED_POOL;
SQL>ALTER SYSTEM FLUSH BUFFER_CACHE;
SQL>EXIT;

The upgrade_models script migrates all data mining metadata objects and PL/SQL
packages from DMSYS to SYS and then drops DMSYS before upgrading the models.

ALTER SYSTEM Statement

You can flush the Database Smart Flash Cache by issuing an ALTER SYSTEM FLUSH
FLASH_CACHE statement. Flushing the Database Smart Flash Cache can be useful if
you need to measure the performance of rewritten queries or a suite of queries from
identical starting points.

Chapter 34
Upgrading or Downgrading Oracle Data Mining

34-5

Related Topics

• Exporting and Importing Mining Models
You can export data mining models to flat files to back up work in progress or to
move models to a different instance of Oracle Database Enterprise Edition (such
as from a development database to a test database).

34.2.2.2.2 Export/Import Release 11g Data Mining Models
To export models from an instance of Oracle Database 11g to a dump file, follow the
instructions in Exporting and Importing Mining Models.

Caution:

Do not import data mining models that were created in Java. They are not
supported in Oracle Database 12c.

To import the dump file into the Oracle Database 12c database:

%ORACLE_HOME\bin\impdp system\<password>
 dumpfile=<dumpfile_name>
 directory=<directory_name>
 logfile=<logfile_name>
SQL>CONNECT / as sysdba;
SQL>EXECUTE dmp_sys.upgrade_models();
SQL>ALTER SYSTEM flush shared_pool;
SQL>ALTER SYSTEM flush buffer_cache;
SQL>EXIT;

ALTER SYSTEM Statement

You can flush the Database Smart Flash Cache by issuing an ALTER SYSTEM FLUSH
FLASH_CACHE statement. Flushing the Database Smart Flash Cache can be useful if
you need to measure the performance of rewritten queries or a suite of queries from
identical starting points.

34.2.3 Post Upgrade Steps
Perform steps to view the upgraded database.

After upgrading the database, check the DBA_MINING_MODELS view in the upgraded
database. The newly upgraded mining models must be listed in this view.

After you have verified the upgrade and confirmed that there is no need to downgrade,
you must set the initialization parameter COMPATIBLE to 12.1.

Note:

The CREATE MINING MODEL privilege must be granted to Data Mining user
accounts that are used to create mining models.

Chapter 34
Upgrading or Downgrading Oracle Data Mining

34-6

Related Topics

• Creating a Data Mining User
Explains how to create a Data Mining user.

• Controlling Access to Mining Models and Data
Understand how to create a Data Mining user and grant necessary privileges.

34.2.4 Downgrading Oracle Data Mining
Before downgrading the Oracle Database 12c database back to the previous version,
ensure that no Singular Value Decomposition models or Expectation Maximization
models are present. These algorithms are only available in Oracle Database 12c. Use
the DBMS_DATA_MINING.DROP_MODEL routine to drop these models before downgrading.
If you do not do this, the database downgrade process terminates.

Issue the following SQL statement in SYS to verify the downgrade:

SQL>SELECT o.name FROM sys.model$ m, sys.obj$ o
 WHERE m.obj#=o.obj# AND m.version=2;

34.3 Exporting and Importing Mining Models
You can export data mining models to flat files to back up work in progress or to move
models to a different instance of Oracle Database Enterprise Edition (such as from a
development database to a test database).

All methods for exporting and importing models are based on Oracle Data Pump
technology.

The DBMS_DATA_MINING package includes the EXPORT_MODEL and IMPORT_MODEL
procedures for exporting and importing individual mining models. EXPORT_MODEL and
IMPORT_MODEL use the export and import facilities of Oracle Data Pump.

• About Oracle Data Pump

• Options for Exporting and Importing Mining Models

• Directory Objects for EXPORT_MODEL and IMPORT_MODEL

• Using EXPORT_MODEL and IMPORT_MODEL

• EXPORT and IMPORT Serialized Models

• Importing From PMML

Related Topics

• EXPORT_MODEL

• IMPORT_MODEL

34.3.1 About Oracle Data Pump
Oracle Data Pump consists of two command-line clients and two PL/SQL packages.
The command-line clients, expdp and impdp, provide an easy-to-use interface to the
Data Pump export and import utilities. You can use expdp and impdp to export and
import entire schemas or databases.

Chapter 34
Exporting and Importing Mining Models

34-7

The Data Pump export utility writes the schema objects, including the tables and
metadata that constitute mining models, to a dump file set. The Data Pump import
utility retrieves the schema objects, including the model tables and metadata, from the
dump file set and restores them in the target database.

expdp and impdp cannot be used to export/import individual mining models.

See Also:

Oracle Database Utilities for information about Oracle Data Pump and the
expdp and impdp utilities

34.3.2 Options for Exporting and Importing Mining Models
Lists options for exporting and importing mining models.

Options for exporting and importing mining models are described in the following table.

Table 34-1 Export and Import Options for Oracle Data Mining

Task Description

Export or
import a full
database

(DBA only) Use expdp to export a full database and impdp to import a full database. All
mining models in the database are included.

Export or
import a
schema

Use expdp to export a schema and impdp to import a schema. All mining models in the
schema are included.

Export or
import
individual
models within a
database

Use DBMS_DATA_MINING.EXPORT_MODEL to export individual models and
DBMS_DATA_MINING.IMPORT_MODEL to import individual models. These procedures can
export and import a single mining model, all mining models, or mining models that
match specific criteria.
By default, IMPORT_MODEL imports models back into the schema from which they were
exported. You can specify the schema_remap parameter to import models into a different
schema. You can specify tablespace_remap with schema_remap to import models into a
schema that uses a different tablespace.
You may need special privileges in the database to import models into a
different schema. These privileges are granted by the EXP_FULL_DATABASE and
IMP_FULL_DATABASE roles, which are only available to privileged users (such as SYS or a
user with the DBA role). You do not need these roles to export or import models within
your own schema.
To import models, you must have the same database privileges as the user who created
the dump file set. Otherwise, a DBA with full system privileges must import the models.

Chapter 34
Exporting and Importing Mining Models

34-8

Table 34-1 (Cont.) Export and Import Options for Oracle Data Mining

Task Description

Export or
import
individual
models to or
from a remote
database

Use a database link to export individual models to a remote database or import
individual models from a remote database. A database link is a schema object in one
database that enables access to objects in a different database. The link must be created
before you execute EXPORT_MODEL or IMPORT_MODEL.

To create a private database link, you must have the CREATE DATABASE LINK system
privilege. To create a public database link, you must have the CREATE PUBLIC DATABASE
LINK system privilege. Also, you must have the CREATE SESSION system privilege on
the remote Oracle Database. Oracle Net must be installed on both the local and remote
Oracle Databases.

Related Topics

• IMPORT_MODEL Procedure

• EXPORT_MODEL Procedure

• Oracle Database SQL Language Reference

34.3.3 Directory Objects for EXPORT_MODEL and IMPORT_MODEL
Learn how to use directory objects to identify the location of the dump file set.

EXPORT_MODEL and IMPORT_MODEL use a directory object to identify the location of the
dump file set. A directory object is a logical name in the database for a physical
directory on the host computer.

To export data mining models, you must have write access to the directory object and
to the file system directory that it represents. To import data mining models, you must
have read access to the directory object and to the file system directory. Also, the
database itself must have access to file system directory. You must have the CREATE
ANY DIRECTORY privilege to create directory objects.

The following SQL command creates a directory object named dmuser_dir. The file
system directory that it represents must already exist and have shared read/write
access rights granted by the operating system.

CREATE OR REPLACE DIRECTORY dmuser_dir AS '/dm_path/dm_mining';

The following SQL command gives user dmuser both read and write access to
dmuser_dir.

GRANT READ,WRITE ON DIRECTORY dmuser_dir TO dmuser;

Related Topics

• Oracle Database SQL Language Reference

Chapter 34
Exporting and Importing Mining Models

34-9

34.3.4 Using EXPORT_MODEL and IMPORT_MODEL
The examples illustrate various export and import scenarios with EXPORT_MODEL and
IMPORT_MODEL.

The examples use the directory object dmdir shown in Example 34-1 and two
schemas, dm1 and dm2. Both schemas have data mining privileges. dm1 has two
models. dm2 has one model.

SELECT owner, model_name, mining_function, algorithm FROM all_mining_models;

OWNER MODEL_NAME MINING_FUNCTION ALGORITHM
---------- -------------------- -------------------- --------------------------
DM1 EM_SH_CLUS_SAMPLE CLUSTERING EXPECTATION_MAXIMIZATION
DM1 DT_SH_CLAS_SAMPLE CLASSIFICATION DECISION_TREE
DM2 SVD_SH_SAMPLE FEATURE_EXTRACTION SINGULAR_VALUE_DECOMP

Example 34-1 Creating the Directory Object

-- connect as system user
CREATE OR REPLACE DIRECTORY dmdir AS '/scratch/dmuser/expimp';
GRANT READ,WRITE ON DIRECTORY dmdir TO dm1;
GRANT READ,WRITE ON DIRECTORY dmdir TO dm2;
SELECT * FROM all_directories WHERE directory_name IN 'DMDIR';

OWNER DIRECTORY_NAME DIRECTORY_PATH
---------- -------------------------- --
SYS DMDIR /scratch/dmuser/expimp

Example 34-2 Exporting All Models From DM1

-- connect as dm1
BEGIN
 dbms_data_mining.export_model (
 filename => 'all_dm1',
 directory => 'dmdir');
END;
/

A log file and a dump file are created in /scratch/dmuser/expimp, the physical
directory associated with dmdir. The name of the log file is dm1_exp_11.log. The name
of the dump file is all_dm101.dmp.

Example 34-3 Importing the Models Back Into DM1

The models that were exported in Example 34-2 still exist in dm1. Since an import does
not overwrite models with the same name, you must drop the models before importing
them back into the same schema.

BEGIN
 dbms_data_mining.drop_model('EM_SH_CLUS_SAMPLE');
 dbms_data_mining.drop_model('DT_SH_CLAS_SAMPLE');
 dbms_data_mining.import_model(
 filename => 'all_dm101.dmp',
 directory => 'DMDIR');
END;
/
SELECT model_name FROM user_mining_models;

Chapter 34
Exporting and Importing Mining Models

34-10

MODEL_NAME

DT_SH_CLAS_SAMPLE
EM_SH_CLUS_SAMPLE

Example 34-4 Importing Models Into a Different Schema

In this example, the models that were exported from dm1 in Example 34-2 are imported
into dm2. The dm1 schema uses the example tablespace; the dm2 schema uses the
sysaux tablespace.

-- CONNECT as sysdba
BEGIN
 dbms_data_mining.import_model (
 filename => 'all_d101.dmp',
 directory => 'DMDIR',
 schema_remap => 'DM1:DM2',
 tablespace_remap => 'EXAMPLE:SYSAUX');
END;
/
-- CONNECT as dm2
SELECT model_name from user_mining_models;

MODEL_NAME
--
SVD_SH_SAMPLE
EM_SH_CLUS_SAMPLE
DT_SH_CLAS_SAMPLE

Example 34-5 Exporting Specific Models

You can export a single model, a list of models, or a group of models that share certain
characteristics.

-- Export the model named dt_sh_clas_sample
EXECUTE dbms_data_mining.export_model (
 filename => 'one_model',
 directory =>'DMDIR',
 model_filter => 'name in (''DT_SH_CLAS_SAMPLE'')');
-- one_model01.dmp and dm1_exp_37.log are created in /scratch/dmuser/expimp

-- Export Decision Tree models
EXECUTE dbms_data_mining.export_model(
 filename => 'algo_models',
 directory => 'DMDIR',
 model_filter => 'ALGORITHM_NAME IN (''DECISION_TREE'')');
-- algo_model01.dmp and dm1_exp_410.log are created in /scratch/dmuser/expimp

-- Export clustering models
EXECUTE dbms_data_mining.export_model(
 filename =>'func_models',
 directory => 'DMDIR',
 model_filter => 'FUNCTION_NAME = ''CLUSTERING''');
-- func_model01.dmp and dm1_exp_513.log are created in /scratch/dmuser/expimp

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 34
Exporting and Importing Mining Models

34-11

34.3.5 EXPORT and IMPORT Serialized Models
From Oracle Database Release 18c onwards, EXPORT_SERMODEL and IMPORT_SERMODEL
procedures are available to export and import serialized models.

The serialized format allows the models to be moved to another platform (outside the
database) for scoring. The model is exported in a BLOB that can be saved in a BFILE.
The import routine takes the serialized content in the BLOB and the name of the model
to be created with the content.

Related Topics

• EXPORT_SERMODEL Procedure

• IMPORT_SERMODEL Procedure

34.3.6 Importing From PMML
You can import Regression models represented in Predictive Model Markup Language
(PMML).

PMML is an XML-based standard specified by the Data Mining Group (http://
www.dmg.org). Applications that are PMML-compliant can deploy PMML-compliant
models that were created by any vendor. Oracle Data Mining supports the core
features of PMML 3.1 for regression models.

You can import regression models represented in PMML. The models must be of type
RegressionModel, either linear regression or binary logistic regression.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

34.4 Controlling Access to Mining Models and Data
Understand how to create a Data Mining user and grant necessary privileges.

• Creating a Data Mining User

• System Privileges for Data Mining

• Object Privileges for Mining Models

34.4.1 Creating a Data Mining User
Explains how to create a Data Mining user.

A Data Mining user is a database user account that has privileges for performing data
mining activities. Example 34-6 shows how to create a database user. Example 34-7
shows how to assign data mining privileges to the user.

Chapter 34
Controlling Access to Mining Models and Data

34-12

Note:

To create a user for the Data Mining sample programs, you must run two
configuration scripts as described in "The Data Mining Sample Programs".

Example 34-6 Creating a Database User in SQL*Plus

1. Log in to SQL*Plus with system privileges.

 Enter user-name: sys as sysdba
 Enter password: password

2. To create a user named dmuser, type these commands. Specify a password of
your choosing.

CREATE USER dmuser IDENTIFIED BY password
 DEFAULT TABLESPACE USERS
 TEMPORARY TABLESPACE TEMP
 QUOTA UNLIMITED ON USERS;
Commit;

The USERS and TEMP tablespace are included in the pre-configured database that
Oracle ships with the database media. USERS is used mostly by demo users; it
is appropriate for running the sample programs described in "The Data Mining
Sample Programs". TEMP is the temporary tablespace that is shared by most
database users.

Note:

Tablespaces for Data Mining users must be assigned according to
standard DBA practices, depending on system load and system
resources.

3. To login as dmuser, type the following.

CONNECT dmuser
Enter password: password

Related Topics

• The Data Mining Sample Programs
Describes the data mining sample programs that ship with Oracle Database.

See Also:

Oracle Database SQL Language Reference for the complete syntax of the
CREATE USER statement

Chapter 34
Controlling Access to Mining Models and Data

34-13

34.4.1.1 Granting Privileges for Data Mining
You must have the CREATE MINING MODEL privilege to create models in your own
schema. You can perform any operation on models that you own. This includes
applying the model, adding a cost matrix, renaming the model, and dropping the
model.

The GRANT statements in the following example assign a set of basic data mining
privileges to the dmuser account. Some of these privileges are not required for all
mining activities, however it is prudent to grant them all as a group.

Additional system and object privileges are required for enabling or restricting specific
mining activities.

Example 34-7 Privileges Required for Data Mining

GRANT CREATE MINING MODEL TO dmuser;
GRANT CREATE SESSION TO dmuser;
GRANT CREATE TABLE TO dmuser;
GRANT CREATE VIEW TO dmuser;
GRANT EXECUTE ON CTXSYS.CTX_DDL TO dmuser;

READ or SELECT privileges are required for data that is not in your schema. For
example, the following statement grants SELECT access to the sh.customers table.

GRANT SELECT ON sh.customers TO dmuser;

34.4.2 System Privileges for Data Mining
Learn different privileges to control operations on mining models.

A system privilege confers the right to perform a particular action in the database or to
perform an action on a type of schema objects. For example, the privileges to create
tablespaces and to delete the rows of any table in a database are system privileges.

You can perform specific operations on mining models in other schemas if you have
the appropriate system privileges. For example, CREATE ANY MINING MODEL enables
you to create models in other schemas. SELECT ANY MINING MODEL enables you to
apply models that reside in other schemas. You can add comments to models if you
have the COMMENT ANY MINING MODEL privilege.

To grant a system privilege, you must either have been granted the system privilege
with the ADMIN OPTION or have been granted the GRANT ANY PRIVILEGE system
privilege.

The system privileges listed in the following table control operations on mining models.

Table 34-2 System Privileges for Data Mining

System Privilege Allows you to....

CREATE MINING MODEL Create mining models in your own schema.

CREATE ANY MINING MODEL Create mining models in any schema.

ALTER ANY MINING MODEL Change the name or cost matrix of any mining model
in any schema.

Chapter 34
Controlling Access to Mining Models and Data

34-14

Table 34-2 (Cont.) System Privileges for Data Mining

System Privilege Allows you to....

DROP ANY MINING MODEL Drop any mining model in any schema.

SELECT ANY MINING MODEL Apply a mining model in any schema, also view model
details in any schema.

COMMENT ANY MINING MODEL Add a comment to any mining model in any schema.)

AUDIT_ADMIN role Generate an audit trail for any mining model in
any schema. (See Oracle Database Security Guide for
details.)

Example 34-8 Grant System Privileges for Data Mining

The following statements allow dmuser to score data and view model details in any
schema as long as SELECT access has been granted to the data. However, dmuser can
only create models in the dmuser schema.

GRANT CREATE MINING MODEL TO dmuser;
GRANT SELECT ANY MINING MODEL TO dmuser;

The following statement revokes the privilege of scoring or viewing model details in
other schemas. When this statement is executed, dmuser can only perform data mining
activities in the dmuser schema.

REVOKE SELECT ANY MINING MODEL FROM dmuser;

Related Topics

• Adding a Comment to a Mining Model

• Oracle Database Security Guide

34.4.3 Object Privileges for Mining Models
An object privilege confers the right to perform a particular action on a specific schema
object. For example, the privilege to delete rows from the SH.PRODUCTS table is an
example of an object privilege.

You automatically have all object privileges for schema objects in your own schema.
You can grant object privilege on objects in your own schema to other users or roles.

The object privileges listed in the following table control operations on specific mining
models.

Table 34-3 Object Privileges for Mining Models

Object Privilege Allows you to....

ALTER MINING MODEL Change the name or cost matrix of the specified mining model
object.

SELECT MINING
MODEL

Apply the specified mining model object and view its model
details.

Chapter 34
Controlling Access to Mining Models and Data

34-15

Example 34-9 Grant Object Privileges on Mining Models

The following statements allow dmuser to apply the model testmodel to the sales
table, specifying different cost matrixes with each apply. The user dmuser can also
rename the model testmodel. The testmodel model and sales table are in the sh
schema, not in the dmuser schema.

GRANT SELECT ON MINING MODEL sh.testmodel TO dmuser;
GRANT ALTER ON MINING MODEL sh.testmodel TO dmuser;
GRANT SELECT ON sh.sales TO dmuser;

The following statement prevents dmuser from renaming or changing the cost matrix of
testmodel. However, dmuser can still apply testmodel to the sales table.

REVOKE ALTER ON MINING MODEL sh.testmodel FROM dmuser;

34.5 Auditing and Adding Comments to Mining Models
Mining model objects support SQL COMMENT and AUDIT statements.

34.5.1 Adding a Comment to a Mining Model
Comments can be used to associate descriptive information with a database object.
You can associate a comment with a mining model using a SQL COMMENT statement.

COMMENT ON MINING MODEL schema_name.model_name IS string;

Note:

To add a comment to a model in another schema, you must have the
COMMENT ANY MINING MODEL system privilege.

To drop a comment, set it to the empty '' string.

The following statement adds a comment to the model DT_SH_CLAS_SAMPLE in your
own schema.

COMMENT ON MINING MODEL dt_sh_clas_sample IS
 'Decision Tree model predicts promotion response';

You can view the comment by querying the catalog view USER_MINING_MODELS.

SELECT model_name, mining_function, algorithm, comments FROM user_mining_models;

MODEL_NAME MINING_FUNCTION ALGORITHM COMMENTS
----------------- ---------------- -------------- ---
DT_SH_CLAS_SAMPLE CLASSIFICATION DECISION_TREE Decision Tree model predicts promotion
response

To drop this comment from the database, issue the following statement:

COMMENT ON MINING MODEL dt_sh_clas_sample '';

Chapter 34
Auditing and Adding Comments to Mining Models

34-16

See Also:

• Table 34-2

• Oracle Database SQL Language Reference for details about SQL
COMMENT statements

34.5.2 Auditing Mining Models
The Oracle Database auditing system is a powerful, highly configurable tool for
tracking operations on schema objects in a production environment. The auditing
system can be used to track operations on data mining models.

Note:

To audit mining models, you must have the AUDIT_ADMIN role.

Unified auditing is documented in Oracle Database Security Guide. However, the full
unified auditing system is not enabled by default. Instructions for migrating to unified
auditing are provided in Oracle Database Upgrade Guide.

See Also:

• "Auditing Oracle Data Mining Events" in Oracle Database Security Guide
for details about auditing mining models

• "Monitoring Database Activity with Auditing" in Oracle Database Security
Guide for a comprehensive discussion of unified auditing in Oracle
Database

• "About the Unified Auditing Migration Process for Oracle Database"
in Oracle Database Upgrade Guide for information about migrating to
unified auditing

• Oracle Database Upgrade Guide

Chapter 34
Auditing and Adding Comments to Mining Models

34-17

35
The Data Mining Sample Programs

Describes the data mining sample programs that ship with Oracle Database.

• About the Data Mining Sample Programs

• Installing the Data Mining Sample Programs

• The Data Mining Sample Data

35.1 About the Data Mining Sample Programs
You can learn a great deal about the Oracle Data Mining application programming
interface (API) from the data mining sample programs. The programs illustrate typical
approaches to data preparation, algorithm selection, algorithm tuning, testing, and
scoring.

The programs are easy to use. They include extensive inline comments to help you
understand the code. They delete all temporary objects on exit; you can run the
programs repeatedly without setup or cleanup.

The data mining sample programs are installed with Oracle Database Examples in the
demo directory under Oracle Home. The demo directory contains sample programs
that illustrate many features of Oracle Database. You can locate the data mining files
by doing a directory listing of dm*.sql. The following example shows this directory
listing on a Linux system.

Note that the directory listing in the following example includes one file, dmhpdemo.sql,
that is not a data mining program.

Example 35-1 Directory Listing of the Data Mining Sample Programs

> cd $ORACLE_HOME/rdbms/demo
> ls dm*.sql
dmaidemo.sql dmkmdemo.sql dmsvddemo.sql
dmardemo.sql dmnbdemo.sql dmsvodem.sql
dmdtdemo.sql dmnmdemo.sql dmsvrdem.sql
dmdtxvlddemo.sql dmocdemo.sql dmtxtnmf.sql
dmemdemo.sql dmsh.sql dmtxtsvm.sql
dmglcdem.sql dmshgrants.sql
dmglrdem.sql dmstardemo.sql
dmhpdemo.sql dmsvcdem.sql

The data mining sample programs create a set of mining models in the user's schema.
After executing the programs, you can list the models with a query like the one in the
following example.

Example 35-2 Models Created by the Sample Programs

SELECT mining_function, algorithm, model_name FROM user_mining_models
 ORDER BY mining_function;

35-1

MINING_FUNCTION ALGORITHM MODEL_NAME
------------------------------ ------------------------------ -------------------
ASSOCIATION_RULES APRIORI_ASSOCIATION_RULES AR_SH_SAMPLE
CLASSIFICATION GENERALIZED_LINEAR_MODEL GLMC_SH_CLAS_SAMPLE
CLASSIFICATION SUPPORT_VECTOR_MACHINES T_SVM_CLAS_SAMPLE
CLASSIFICATION SUPPORT_VECTOR_MACHINES SVMC_SH_CLAS_SAMPLE
CLASSIFICATION SUPPORT_VECTOR_MACHINES SVMO_SH_CLAS_SAMPLE
CLASSIFICATION NAIVE_BAYES NB_SH_CLAS_SAMPLE
CLASSIFICATION DECISION_TREE DT_SH_CLAS_SAMPLE
CLUSTERING EXPECTATION_MAXIMIZATION EM_SH_CLUS_SAMPLE
CLUSTERING O_CLUSTER OC_SH_CLUS_SAMPLE
CLUSTERING KMEANS KM_SH_CLUS_SAMPLE
CLUSTERING KMEANS DM_STAR_CLUSTER
FEATURE_EXTRACTION SINGULAR_VALUE_DECOMP SVD_SH_SAMPLE
FEATURE_EXTRACTION NONNEGATIVE_MATRIX_FACTOR NMF_SH_SAMPLE
FEATURE_EXTRACTION NONNEGATIVE_MATRIX_FACTOR T_NMF_SAMPLE
REGRESSION SUPPORT_VECTOR_MACHINES SVMR_SH_REGR_SAMPLE
REGRESSION GENERALIZED_LINEAR_MODEL GLMR_SH_REGR_SAMPLE

35.2 Installing the Data Mining Sample Programs
Learn how to install Data Mining sample programs.

The data mining sample programs require:

• Oracle Database Enterprise Edition with the Advanced Analytics option

• Oracle Database sample schemas

• Oracle Database Examples

• A data mining user account

• Execution of dmshgrants.sql by a system administrator

• Execution of dmsh.sql by the data mining user

Follow these steps to install the data mining sample programs:

1. Install or obtain access to Oracle Database 12c Enterprise Edition with the
Advanced Analytics option. To install the Database, see the installation instructions
for your platform at Oracle Database 18c Release.

2. Ensure that the sample schemas are installed in the database. The sample
schemas are installed by default with Oracle Database. See Oracle Database
Sample Schemasfor details about the sample schemas.

3. Verify that Oracle Database Examples has been installed with the database, or
install it locally. Oracle Database Examples loads the Database sample programs
into the rdbms/demo directory under Oracle home. See Oracle Database Examples
Installation Guide for installation instructions.

4. Verify that a data mining user account has been created, or create it yourself if you
have administrative privileges. See "Creating a Data Mining User".

5. Ask your system administrator to run dmshgrants.sql, or run it yourself if you
have administrative privileges. dmshgrants grants the privileges that are required
for running the sample programs. These include SELECT access to tables in the SH
schema as described in "The Data Mining Sample Data" and the system privileges
listed in the following table.

Pass the name of the data mining user to dmshgrants.

Chapter 35
Installing the Data Mining Sample Programs

35-2

SQL> CONNECT sys / as sysdba
Enter password: sys_password
Connected.
SQL> @ $ORACLE_HOME/rdbms/demo/dmshgrants dmuser

Table 35-1 System Privileges Granted by dmshgrants.sql to the Data
Mining User

Privilege Allows the data mining user to

CREATE SESSION log in to a database session

CREATE TABLE create tables, such as the settings tables for
CREATE_MODEL

CREATE VIEW create views, such as the views of tables in the SH
schema

CREATE MINING MODEL create data mining models

EXECUTE ON
ctxsys.ctx_ddl

execute procedures in the ctxsys.ctx_ddl PL/SQL
package; required for text mining

6. Connect to the database as the data mining user and run dmsh.sql. This script
creates views of the sample data in the schema of the data mining user.

SQL> CONNECT dmuser
Enter password: dmuser_password
Connected.
SQL> @ $ORACLE_HOME/rdbms/demo/dmsh

Related Topics

• Oracle Database Sample Schemas

• Oracle Database Examples Installation Guide

• Creating a Data Mining User
Explains how to create a Data Mining user.

35.3 The Data Mining Sample Data
The data used by the sample data mining programs is based on these tables in the SH
schema:

SH.CUSTOMERS
SH.SALES
SH.PRODUCTS
SH.SUPPLEMENTARY_DEMOGRAPHICS
SH.COUNTRIES

The dmshgrants script grants SELECT access to the tables in SH. The dmsh.sql script
creates views of the SH tables in the schema of the data mining user. The views are
described in the following table:

Table 35-2 The Data Mining Sample Data

View Name Description

MINING_DATA Joins and filters data

Chapter 35
The Data Mining Sample Data

35-3

Table 35-2 (Cont.) The Data Mining Sample Data

View Name Description

MINING_DATA_BUILD_V Data for building models

MINING_DATA_TEST_V Data for testing models

MINING_DATA_APPLY_V Data to be scored

MINING_BUILD_TEXT Data for building models that include text

MINING_TEST_TEXT Data for testing models that include text

MINING_APPLY_TEXT Data, including text columns, to be scored

MINING_DATA_ONE_CLASS_
V

Data for anomaly detection

The association rules program creates its own transactional data.

Chapter 35
The Data Mining Sample Data

35-4

Part V
Oracle Data Mining API Reference

Learn about Oracle Data Mining PL/SQL packages, data dictionary views, and data
mining SQL scoring functions.

• PL/SQL Packages

• Data Dictionary Views

• SQL Scoring Functions

36
PL/SQL Packages

Learn how to create, evaluate, and query data mining models through Data Mining
PL/SQL packages.

• DBMS_DATA_MINING

• DBMS_DATA_MINING_TRANSFORM

• DBMS_PREDICTIVE_ANALYTICS

36.1 DBMS_DATA_MINING
The DBMS_DATA_MINING package is the application programming interface for creating,
evaluating, and querying data mining models.

This chapter contains the following topics:

• Overview

• Security Model

• Mining Functions

• Model Settings

• Solver Settings

• Datatypes

• Summary of DBMS_DATA_MINING Subprograms

See Also:

• Oracle Data Mining Concepts

• Oracle Data Mining User’s Guide

• DBMS_DATA_MINING_TRANSFORM

• DBMS_PREDICTIVE_ANALYTICS

36.1.1 Using DBMS_DATA_MINING
This section contains topics that relate to using the DBMS_DATA_MINING package.

• Overview

• Security Model

• Mining Functions

• Model Settings

36-1

• Datatypes

36.1.1.1 DBMS_DATA_MINING Overview
Oracle Data Mining supports both supervised and unsupervised data mining.
Supervised data mining predicts a target value based on historical data. Unsupervised
data mining discovers natural groupings and does not use a target. You can use
Oracle Data Mining to mine structured data and unstructured text.

Supervised data mining functions include:

• Classification

• Regression

• Feature Selection (Attribute Importance)

Unsupervised data mining functions include:

• Clustering

• Association

• Feature Extraction

• Anomaly Detection

The steps you use to build and apply a mining model depend on the data mining
function and the algorithm being used. The algorithms supported by Oracle Data
Mining are listed in Table 36-1.

Table 36-1 Oracle Data Mining Algorithms

Algorithm Abbreviation Function

Apriori AR Association

CUR Matrix Decomposition CUR Attribute Importance

Decision Tree DT Classification

Expectation Maximization EM Clustering

Explicit Semantic Analysis ESA Feature Extraction, Classification

Exponential Smoothing ESM Time Series

Generalized Linear Model GLM Classification, Regression

k-Means KM Clustering

Minimum Descriptor Length MDL Attribute Importance

Naive Bayes NB Classification

Neural Networks NN Classification, Regression

Non-Negative Matrix
Factorization

NMF Feature Extraction

Orthogonal Partitioning
Clustering

O-Cluster Clustering

Random Forest RF Classification

Singular Value Decomposition
and Principal Component
Analysis

SVD and PCA Feature Extraction

Chapter 36
DBMS_DATA_MINING

36-2

Table 36-1 (Cont.) Oracle Data Mining Algorithms

Algorithm Abbreviation Function

Support Vector Machine SVM Classification, Regression, Anomaly
Detection

Oracle Data Mining supports more than one algorithm for the classification, regression,
clustering, and feature extraction mining functions. Each of these mining functions has
a default algorithm, as shown in Table 36-2.

Table 36-2 Oracle Data Mining Default Algorithms

Mining Function Default Algorithm

Classification Naive Bayes

Clustering k-Means

Feature Extraction Non-Negative Matrix Factorization

Feature Selection Minimum Descriptor Length

Regression Support Vector Machine

36.1.1.2 DBMS_DATA_MINING Security Model
The DBMS_DATA_MINING package is owned by user SYS and is installed as part of
database installation. Execution privilege on the package is granted to public. The
routines in the package are run with invokers' rights (run with the privileges of the
current user).

The DBMS_DATA_MINING package exposes APIs that are leveraged by the Oracle Data
Mining component of the Advanced Analytics Option. Users who wish to create mining
models in their own schema require the CREATE MINING MODEL system privilege. Users
who wish to create mining models in other schemas require the CREATE ANY MINING
MODEL system privilege.

Users have full control over managing models that exist within their own schema.
Additional system privileges necessary for managing data mining models in other
schemas include ALTER ANY MINING MODEL, DROP ANY MINING MODEL, SELECT ANY
MINING MODEL, COMMENT ANY MINING MODEL, and AUDIT ANY.

Individual object privileges on mining models, ALTER MINING MODEL and SELET
MINING MODEL, can be used to selectively grant privileges on a model to a different
user.

See Also:

Oracle Data Mining User's Guide for more information about the security
features of Oracle Data Mining

Chapter 36
DBMS_DATA_MINING

36-3

36.1.1.3 DBMS_DATA_MINING — Mining Functions
A data mining function refers to the methods for solving a given class of data mining
problems.

The mining function must be specified when a model is created. (See
CREATE_MODEL Procedure.)

Table 36-3 Mining Functions

Value Description

ASSOCIATION Association is a descriptive mining function. An association
model identifies relationships and the probability of their
occurrence within a data set.
Association models use the Apriori algorithm.

ATTRIBUTE_IMPORTANCE Attribute importance is a predictive mining function,
also known as feature selection. An attribute importance
model identifies the relative importance of an attribute in
predicting a given outcome.
Attribute importance models can use Minimum Description
Length, or CUR Matrix Decomposition. Minimum Description
Length is the default.

CLASSIFICATION Classification is a predictive mining function. A classification
model uses historical data to predict a categorical target.
Classification models can use: Naive Bayes, Decision Tree,
Logistic Regression, or Support Vector Machine. The default
is Naive Bayes.
The classification function can also be used for anomaly
detection. In this case, the SVM algorithm with a null target
is used (One-Class SVM).

CLUSTERING Clustering is a descriptive mining function. A clustering
model identifies natural groupings within a data set.
Clustering models can use k-Means, O-Cluster, or Expectation
Maximization. The default is k-Means.

FEATURE_EXTRACTION Feature Extraction is a descriptive mining function. A feature
extraction model creates an optimized data set on which to
base a model.
Feature extraction models can use Explicit Semantic
Analysis, Non-Negative Matrix Factorization, Singular Value
Decomposition, or Principal Component Analysis. Non-
Negative Matrix Factorization is the default.

REGRESSION Regression is a predictive mining function. A regression
model uses historical data to predict a numerical target.
Regression models can use Support Vector Machine or Linear
Regression. The default is Support Vector Machine.

TIME_SERIES Time series is a predictive mining function. A time series
model forecasts the future values of a time-ordered series
of historical numeric data over a user-specified time
window. Time series models use the Exponential Smoothing
algorithm.

Chapter 36
DBMS_DATA_MINING

36-4

See Also:

Oracle Data Mining Concepts for more information about mining functions

36.1.2 DBMS_DATA_MINING — Model Settings
Oracle Data Mining uses settings to specify the algorithm and other characteristics of
a model. Some settings are general, some are specific to a mining function, and some
are specific to an algorithm.

All settings have default values. If you want to override one or more of the settings for
a model, you must create a settings table. The settings table must have the column
names and datatypes shown in the following table.

Table 36-4 Required Columns in the Model Settings Table

Column Name Datatype

SETTING_NAME VARCHAR2(30)

SETTING_VALUE VARCHAR2(4000)

The information you provide in the settings table is used by the model at build time.
The name of the settings table is an optional argument to the CREATE_MODEL
Procedure.

You can find the settings used by a model by querying the data dictionary view
ALL_MINING_MODEL_SETTINGS. This view lists the model settings used by the mining
models to which you have access. All the setting values are included in the view,
whether default or user-specified.

See Also:

• ALL_MINING_MODEL_SETTINGS in Oracle Database Reference

• Oracle Data Mining User's Guide for information about specifying model
settings

36.1.2.1 DBMS_DATA_MINING — Algorithm Names
The ALGO_NAME setting specifies the model algorithm.

The values for the ALGO_NAME setting are listed in the following table.

Table 36-5 Algorithm Names

ALGO_NAME Value Description Mining Function

ALGO_AI_MDL Minimum Description
Length

Attribute Importance

Chapter 36
DBMS_DATA_MINING

36-5

Table 36-5 (Cont.) Algorithm Names

ALGO_NAME Value Description Mining Function

ALGO_APRIORI_ASSOCIATION_RULE
S

Apriori Association Rules

ALGO_CUR_DECOMPOSITION CUR Decomposition Attribute Importance

ALGO_DECISION_TREE Decision Tree Classification

ALGO_EXPECTATION_MAXIMIZATION Expectation Maximization Clustering

ALGO_EXPLICIT_SEMANTIC_ANALYS Explicit Semantic Analysis Feature Extraction
Classification

ALGO_EXPONENTIAL_SMOOTHING Exponential Smoothing Time Series

ALGO_EXTENSIBLE_LANG Language used for extensible
algorithm

All mining functions supported

ALGO_GENERALIZED_LINEAR_MODEL Generalized Linear Model Classification, Regression; also Feature
Selection and Generation

ALGO_KMEANS Enhanced k_Means Clustering

ALGO_NAIVE_BAYES Naive Bayes Classification

ALGO_NEURAL_NETWORK Neural Network Classification

ALGO_NONNEGATIVE_MATRIX_FACTO
R

Non-Negative Matrix
Factorization

Feature Extraction

ALGO_O_CLUSTER O-Cluster Clustering

ALGO_RANDOM_FOREST Random Forest Classification

ALGO_SINGULAR_VALUE_DECOMP Singular Value
Decomposition

Feature Extraction

ALGO_SUPPORT_VECTOR_MACHINES Support Vector Machine Classification and Regression

See Also:

Oracle Data Mining Concepts for information about algorithms

36.1.2.2 DBMS_DATA_MINING — Automatic Data Preparation
Oracle Data Mining supports fully Automatic Data Preparation (ADP), user-directed
general data preparation, and user-specified embedded data preparation. The PREP_*
settings enable the user to request fully automated or user-directed general data
preparation. By default, fully Automatic Data Preparation (PREP_AUTO_ON) is enabled.

When you enable Automatic Data Preparation, the model uses heuristics to
transform the build data according to the requirements of the algorithm. Instead
of fully Automatic Data Preparation, the user can request that the data be shifted
and/or scaled with the PREP_SCALE* and PREP_SHIFT* settings. The transformation
instructions are stored with the model and reused whenever the model is applied.
Refer to Model Detail Views, Oracle Data Mining User’s Guide.

Chapter 36
DBMS_DATA_MINING

36-6

You can choose to supplement Automatic Data Preparations by specifying additional
transformations in the xform_list parameter when you build the model. (See
"CREATE_MODEL Procedure".)

If you do not use Automatic Data Preparation and do not specify transformations
in the xform_list parameter to CREATE_MODEL, you must implement your own
transformations separately in the build, test, and scoring data. You must take special
care to implement the exact same transformations in each data set.

If you do not use Automatic Data Preparation, but you do specify transformations
in the xform_list parameter to CREATE_MODEL, Oracle Data Mining embeds the
transformation definitions in the model and prepares the test and scoring data to
match the build data.

The values for the PREP_* setting are described in the following table.

Table 36-6 PREP_* Setting

Setting Name Setting Value Description

PREP_AUTO • PREP_AUTO_ON

• PREP_AUTO_OFF

This setting enables fully automated data
preparation.
The default is PREP_AUTO_ON.

PREP_SCALE_2DNU
M

• PREP_SCALE_STDDEV

• PREP_SCALE_RANGE

This setting enables scaling data
preparation for two-dimensional
numeric columns. PREP_AUTO must be
OFF for this setting to take effect. The
following are the possible values:
• PREP_SCALE_STDDEV: A request to

divide the column values by the
standard deviation of the column
and is often provided together with
PREP_SHIFT_MEAN to yield z-score
normalization.

• PREP_SCALE_RANGE: A request to
divide the column values by the
range of values and is often provided
together with PREP_SHIFT_MIN to
yield a range of [0,1].

PREP_SCALE_NNUM PREP_SCALE_MAXABS This setting enables scaling data
preparation for nested numeric columns.
PREP_AUTO must be OFF for this
setting to take effect. If specified, then
the valid value for this setting is
PREP_SCALE_MAXABS, which yields data in
the range of [-1,1].

Chapter 36
DBMS_DATA_MINING

36-7

Table 36-6 (Cont.) PREP_* Setting

Setting Name Setting Value Description

PREP_SHIFT_2DNU
M

• PREP_SHIFT_MEAN

• PREP_SHIFT_MIN

This setting enables centering data
preparation for two-dimensional
numeric columns. PREP_AUTO must be
OFF for this setting to take effect. The
following are the possible values:
• PREP_SHIFT_MEAN: Results in

subtracting the average of the
column from each value.

• PREP_SHIFT_MIN: Results in
subtracting the minimum of the
column from each value.

.

See Also:

Oracle Data Mining User's Guide for information about data transformations

36.1.2.3 DBMS_DATA_MINING — Mining Function Settings
The settings described in this table apply to a mining function.

Table 36-7 Mining Function Settings

Mining Function Setting Name Setting Value Description

Association ASSO_MAX_RULE_LENGTH TO_CHAR(2<
=
numeric_exp
r <=20)

Maximum rule length for Association Rules.
Default is 4.

Association ASSO_MIN_CONFIDENCE TO_CHAR(0<
=
numeric_exp
r <=1)

Minimum confidence for Association Rules.
Default is 0.1.

Association ASSO_MIN_SUPPORT TO_CHAR(0<
=
numeric_exp
r <=1)

Minimum support for Association Rules
Default is 0.1.

Association ASSO_MIN_SUPPORT_INT a positive
integer

Minimum absolute support that each rule
must satisfy. The value must be an integer.
Default is 1.

Chapter 36
DBMS_DATA_MINING

36-8

Table 36-7 (Cont.) Mining Function Settings

Mining Function Setting Name Setting Value Description

Association ASSO_MIN_REV_CONFIDEN
CE

TO_CHAR(0<
=
numeric_exp
r <=1)

Sets the Minimum Reverse Confidence that
each rule should satisfy.
The Reverse Confidence of a rule is defined as
the number of transactions in which the rule
occurs divided by the number of transactions
in which the consequent occurs.
The value is real number between 0 and 1.
The default is 0.

Association ASSO_IN_RULES NULL Sets Including Rules applied for each
association rule: it specifies the list of items
that at least one of them must appear in each
reported association rule, either as antecedent
or as consequent. It is a comma separated
string containing the list of including items.
If not set, the default behavior is, the filtering
is not applied.

Association ASSO_EX_RULES NULL Sets Excluding Rules applied for each
association rule: it specifies the list of
items that none of them can appear in
each reported Association Rules. It is a
comma separated string containing the list of
excluding items. No rule can contain any item
in the list.
The default is NULL.

Association ASSO_ANT_IN_RULES NULL Sets Including Rules for the antecedent: it
specifies the list of items that at least one
of them must appear in the antecedent part
of each reported association rule. It is a
comma separated string containing the list of
including items. The antecedent part of each
rule must contain at least one item in the list.
The default is NULL.

Association ASSO_ANT_EX_RULES NULL Sets Excluding Rules for the antecedent:
it specifies the list of items that none of
them can appear in the antecedent part
of each reported association rule. It is a
comma separated string containing the list of
excluding items. No rule can contain any item
in the list in its antecedent part.
The default is NULL.

Association ASSO_CONS_IN_RULES NULL Sets Including Rules for the consequent: it
specifies the list of items that at least one
of them must appear in the consequent part
of each reported association rule. It is a
comma separated string containing the list of
including items. The consequent of each rule
must be an item in the list.
The default is NULL.

Chapter 36
DBMS_DATA_MINING

36-9

Table 36-7 (Cont.) Mining Function Settings

Mining Function Setting Name Setting Value Description

Association ASSO_CONS_EX_RULES NULL Sets Excluding Rules for the consequent:
it specifies the list of items that none of
them can appear in the consequent part
of each reported association rule. It is a
comma separated string containing the list of
excluding items. No rule can have any item in
the list as its consequent.
The excluding rule can be used to reduce the
data that must be stored, but the user may be
required to build extra model for executing
different including or Excluding Rules.
The default is NULL.

Association ASSO_AGGREGATES NULL Specifies the columns to be aggregated. It is a
comma separated string containing the names
of the columns for aggregation. Number of
columns in the list must be <= 10.
You can set ASSO_AGGREGATES if
ODMS_ITEM_ID_COLUMN_NAME is set
indicating transactional input data. See
DBMS_DATA_MINING - Global Settings. The
data table must have valid column names
such as ITEM_ID and CASE_ID which are
derived from ODMS_ITEM_ID_COLUMN_NAME
and case_id_column_name respectively.

ITEM_VALUE is not a mandatory value.

The default is NULL.

For each item, the user may supply several
columns to aggregate. It requires more
memory to buffer the extra data. Also, the
performance impact can be seen because of
the larger input data set and more operation.

Association ASSO_ABS_ERROR 0<ASSO_ABS_
ERROR≤MAX(A
SSO_MIN_SUP
PORT,
ASSO_MIN_CO
NFIDENCE).

Specifies the absolute error for the
Association Rules sampling.
A smaller value of ASSO_ABS_ERROR
obtains a larger sample size which
gives accurate results but takes longer
computational time. "Set a reasonable value
for ASSO_ABS_ERROR, such as its default value,
to avoid large sample size. The default
value is 0.5 * MAX(ASSO_MIN_SUPPORT,
ASSO_MIN_CONFIDENCE).

Association ASSO_CONF_LEVEL 0≤
ASSO_CONF_L
EVEL ≤ 1

Specifies the confidence level for an
Association Rules sample.
A larger value of ASSO_CONF_LEVEL obtains
a larger sample size. Any value between 0.9
and 1 is suitable. The default value is 0.95.

Chapter 36
DBMS_DATA_MINING

36-10

Table 36-7 (Cont.) Mining Function Settings

Mining Function Setting Name Setting Value Description

Classification CLAS_COST_TABLE_NAME table_name (Decision Tree only) Name of a table that
stores a cost matrix to be used by the
algorithm in building the model. The cost
matrix specifies the costs associated with
misclassifications.
Only Decision Tree models can use a
cost matrix at build time. All classification
algorithms can use a cost matrix at apply
time.
The cost matrix table is user-created.
See "ADD_COST_MATRIX Procedure" for the
column requirements.
See Oracle Data Mining Concepts for
information about costs.

Classification CLAS_PRIORS_TABLE_NAM
E

table_name (Naive Bayes) Name of a table that stores
prior probabilities to offset differences in
distribution between the build data and the
scoring data.
The priors table is user-created. See Oracle
Data Mining User's Guide for the column
requirements. See Oracle Data Mining
Concepts for additional information about
priors.

Classification CLAS_WEIGHTS_TABLE_NA
ME

table_name (GLM and SVM only) Name of a table that
stores weighting information for individual
target values in SVM classification and GLM
logistic regression models. The weights are
used by the algorithm to bias the model in
favor of higher weighted classes.
The class weights table is user-created. See
Oracle Data Mining User's Guide for the
column requirements. See Oracle Data Mining
Concepts for additional information about
class weights.

Classification CLAS_WEIGHTS_BALANCED ON

OFF

This setting indicates that the algorithm must
create a model that balances the target
distribution. This setting is most relevant in
the presence of rare targets, as balancing
the distribution may enable better average
accuracy (average of per-class accuracy)
instead of overall accuracy (which favors the
dominant class). The default value is OFF.

Chapter 36
DBMS_DATA_MINING

36-11

Table 36-7 (Cont.) Mining Function Settings

Mining Function Setting Name Setting Value Description

Classification CLAS_MAX_SUP_BINS For Decision
Tree:
2 <= a
number
<=214748364
7

For Random
Forest:
2 <= a
number
<=254

This parameter specifies the maximum
number of bins for each attribute.
Default value is 32.

See, DBMS_DATA_MINING — Automatic Data
Preparation

Clustering CLUS_NUM_CLUSTERS TO_CHAR(nu
meric_expr
>=1)

Maximum number of leaf clusters generated
by a clustering algorithm. The algorithm may
return fewer clusters, depending on the data.
Enhanced k-Means usually produces the
exact number of clusters specified by
CLUS_NUM_CLUSTERS, unless there are fewer
distinct data points.
Expectation Maximization (EM) may return
fewer clusters than the number specified
by CLUS_NUM_CLUSTERS depending on the
data. The number of clusters returned by
EM cannot be greater than the number
of components, which is governed by
algorithm-specific settings. (See Expectation
Maximization Settings for Learning table)
Depending on these settings, there may be
fewer clusters than components. If component
clustering is disabled, the number of clusters
equals the number of components.
For EM, the default value of
CLUS_NUM_CLUSTERS is system-determined.
For k-Means and O-Cluster, the default is 10.

Feature
Extraction

FEAT_NUM_FEATURES TO_CHAR(nu
meric_expr
>=1)

Number of features to be extracted by a
feature extraction model.
The default is estimated from the data by the
algorithm. If the matrix rank is smaller than
this number, fewer features will be returned.
For CUR Matrix Decomposition, the
FEAT_NUM_FEATURES value is same as the
CURS_SVD_RANK value.

See Also:

Oracle Data Mining Concepts for information about mining functions

Chapter 36
DBMS_DATA_MINING

36-12

36.1.2.4 DBMS_DATA_MINING — Global Settings
The configuration settings in this table are applicable to any type of model, but are
currently only implemented for specific algorithms.

Table 36-8 Global Settings

Setting Name Setting Value Description

ODMS_ITEM_ID_COLUMN_NAM
E

column_name (Association Rules only) Name of a column that
contains the items in a transaction. When this
setting is specified, the algorithm expects the data
to be presented in native transactional format,
consisting of two columns:
• Case ID, either categorical or numeric
• Item ID, either categorical or numeric
A typical example of transactional data is market
basket data, wherein a case represents a basket
that may contain many items. Each item is stored
in a separate row, and many rows may be needed
to represent a case. The case ID values do not
uniquely identify each row. Transactional data is
also called multi-record case data.
Association Rules is normally used with
transactional data, but it can also be applied
to single-record case data (similar to other
algorithms).
For more information about single-record and
multi-record case data, see Oracle Data Mining
User's Guide.

ODMS_ITEM_VALUE_COLUMN_
NAME

column_name (Association Rules only) Name of a column
that contains a value associated with each
item in a transaction. This setting is only
used when a value has been specified for
ODMS_ITEM_ID_COLUMN_NAME indicating that the
data is presented in native transactional format.
If ASSO_AGGREGATES is used, then the build data
must include the following three columns and the
columns specified in the AGGREGATES setting.
• Case ID, either categorical or numeric
• Item ID, either categorical or numeric,

specified by ODMS_ITEM_ID_COLUMN_NAME
• Item value, either categorical or numeric,

specified by ODMS_ITEM_VALUE_COLUMN_NAME
If ASSO_AGGREGATES, Case ID, and Item ID column
are present, then the Item Value column may or
may not appear.
The Item Value column may specify information
such as the number of items (for example, three
apples) or the type of the item (for example,
macintosh apples).
For details on ASSO_AGGREGATES, see
DBMS_DATA_MINING - Mining Function Settings.

Chapter 36
DBMS_DATA_MINING

36-13

Table 36-8 (Cont.) Global Settings

Setting Name Setting Value Description

ODMS_MISSING_VALUE_TREA
TMENT

ODMS_MISSING_VALUE_M
EAN_MODE

ODMS_MISSING_VALUE_D
ELETE_ROW

ODMS_MISSING_VALUE_A
UTO

Indicates how to treat missing values in
the training data. This setting does not
affect the scoring data. The default value is
ODMS_MISSING_VALUE_AUTO.

ODMS_MISSING_VALUE_MEAN_MODE replaces
missing values with the mean (numeric attributes)
or the mode (categorical attributes) both at
build time and apply time where appropriate.
ODMS_MISSING_VALUE_AUTO performs different
strategies for different algorithms.
When ODMS_MISSING_VALUE_TREATMENT is set to
ODMS_MISSING_VALUE_DELETE_ROW, the rows in
the training data that contain missing values are
deleted. However, if you want to replicate this
missing value treatment in the scoring data, then
you must perform the transformation explicitly.
The value ODMS_MISSING_VALUE_DELETE_ROW is
applicable to all algorithms.

ODMS_ROW_WEIGHT_COLUMN_
NAME

column_name (GLM only) Name of a column in the training data
that contains a weighting factor for the rows. The
column datatype must be NUMBER.
Row weights can be used as a compact
representation of repeated rows, as in the design
of experiments where a specific configuration is
repeated several times. Row weights can also be
used to emphasize certain rows during model
construction. For example, to bias the model
towards rows that are more recent and away
from potentially obsolete data.

ODMS_TEXT_POLICY_NAME The name of an Oracle
Text POLICY created
using
CTX_DDL.CREATE_POLIC
Y.

Affects how individual tokens are extracted from
unstructured text.
For details about CTX_DDL.CREATE_POLICY, see
Oracle Text Reference.

ODMS_TEXT_MAX_FEATURES 1 <= value Maximum number of distinct features, across all
text attributes, to use from a document set passed
to CREATE_MODEL. The default is 3000. ESA has the
default value of 300000.

ODMS_TEXT_MIN_DOCUMENTS Non-negative value This is a text processing setting the controls how
in how many documents a token needs to appear
to be used as a feature.
The default is 1. ESA has default of 3.

Chapter 36
DBMS_DATA_MINING

36-14

Table 36-8 (Cont.) Global Settings

Setting Name Setting Value Description

ODMS_PARTITION_COLUMNS Comma separated list of
mining attributes

This setting indicates a request to build a
partitioned model. The setting value is a comma-
separated list of the mining attributes to be
used to determine the in-list partition key values.
These mining attributes are taken from the
input columns, unless an XFORM_LIST parameter
is passed to CREATE_MODEL. If XFORM_LIST
parameter is passed to CREATE_MODEL, then the
mining attributes are taken from the attributes
produced by these transformations.

ODMS_MAX_PARTITIONS 1 < value <= 1000000 This setting indicates the maximum number of
partitions allowed for the model. The default is
1000.

ODMS_SAMPLING ODMS_SAMPLING_ENABLE

ODMS_SAMPLING_DISABL
E

This setting allows the user to request
sampling of the build data. The default is
ODMS_SAMPLING_DISABLE.

ODMS_SAMPLE_SIZE 0 < Value This setting determines how many rows will be
sampled (approximately). It can be set only if
ODMS_SAMPLING is enabled. The default value is
system determined.

ODMS_PARTITION_BUILD_TY
PE

ODMS_PARTITION_BUILD
_INTRA

ODMS_PARTITION_BUILD
_INTER

ODMS_PARTITION_BUILD
_HYBRID

This setting controls the parallel build of
partitioned models.
ODMS_PARTITION_BUILD_INTRA — Each partition
is built in parallel using all slaves.
ODMS_PARTITION_BUILD_INTER — Each partition
is built entirely in a single slave, but multiple
partitions may be built at the same time since
multiple slaves are active.
ODMS_PARTITION_BUILD_HYBRID — It is a
combination of the other two types and is
recommended for most situations to adapt to
dynamic environments.
The default mode is
ODMS_PARTITION_BUILD_HYBRID

ODMS_TABLESPACE_NAME tablespace_name This setting controls the storage specifications.
If you explicitly set this to the name of a
tablespace (for which you have sufficient quota),
then the specified tablespace storage creates the
resulting model content. If you do not provide
this setting, then the default tablespace of the user
creates the resulting model content.

ODMS_RANDOM_SEED The value must be a
non-negative integer

The hash function with a random number
seed generates a random number with uniform
distribution. Users can control the random
number seed by this setting. The default is 0.

This setting is used by Random Forest, Neural
Networks and CUR.

Chapter 36
DBMS_DATA_MINING

36-15

Table 36-8 (Cont.) Global Settings

Setting Name Setting Value Description

ODMS_DETAILS • ODMS_ENABLE

• ODMS_DISABLE

This setting reduces the space that is used while
creating a model, especially a partitioned model.
The default value is ODMS_ENABLE.

When the setting is ODMS_ENABLE, it creates model
tables and views when the model is created. You
can query the model with SQL. When the setting
is ODMS_DISABLE, model views are not created and
tables relevant to model details are not created
either.
The reduction in the space depends on the model.
Reduction on the order of 10x can be achieved.

See Also:

Oracle Data Mining Concepts for information about GLM

Oracle Data Mining Concepts for information about Association Rules

Oracle Data Mining User's Guide for information about mining unstructured
text

36.1.2.5 DBMS_DATA_MINING — Algorithm Settings:
ALGO_EXTENSIBLE_LANG

The settings listed in the following table configure the behavior of the mining model
with an Extensible algorithm. The mining model is built in R language.

The RALG_*_FUNCTION specifies the R script that is used to build, score, and view
an R model and must be registered in the Oracle R Enterprise script repository. The
R scripts are registered through Oracle R Enterprise with special privileges. When
ALGO_EXTENSIBLE_LANG is set to R in the MINING_MODEL_SETTING table, the mining
model is built in the R language. After the R model is built, the names of the R scripts
are recorded in MINING_MODEL_SETTING table in the SYS schema. The scripts must
exist in the script repository for the R model to function. The amount of R memory
used to build, score, and view the R model through these R scripts can be controlled
by Oracle R Enterprise.

All algorithm-independent DBMS_DATA_MINING subprograms can operate on an R
model for mining functions such as Association, Attribute Importance, Classification,
Clustering, Feature Extraction, and Regression.

The supported DBMS_DATA_MINING subprograms include, but are not limited, to the
following:

• ADD_COST_MATRIX Procedure

• COMPUTE_CONFUSION_MATRIX Procedure

• COMPUTE_LIFT Procedure

Chapter 36
DBMS_DATA_MINING

36-16

• COMPUTE_ROC Procedure

• CREATE_MODEL Procedure

• DROP_MODEL Procedure

• EXPORT_MODEL Procedure

• GET_MODEL_COST_MATRIX Function

• IMPORT_MODEL Procedure

• REMOVE_COST_MATRIX Procedure

• RENAME_MODEL Procedure

Table 36-9 ALGO_EXTENSIBLE_LANG Settings

Setting Name Setting Value Description

RALG_BUILD_FUNCTION R_BUILD_FUNCTION_SCRIPT_
NAME

Specifies the name of an existing
registered R script for R algorithm
mining model build function. The R
script defines an R function for the
first input argument for training data
and returns an R model object. For
Clustering and Feature Extraction mining
function model build, the R attributes
dm$nclus and dm$nfeat must be set
on the R model to indicate the number
of clusters and features respectively.
The RALG_BUILD_FUNCTION must be set
along with ALGO_EXTENSIBLE_LANG in the
model_setting_table.

RALG_BUILD_PARAMETER SELECT value
param_name, ...FROM DUAL

Specifies a list of numeric and string scalar
for optional input parameters of the model
build function.

RALG_SCORE_FUNCTION R_SCORE_FUNCTION_SCRIPT_
NAME

Specifies the name of an existing registered
R script to score data. The script returns a
data.frame containing the corresponding
prediction results. The setting is used
to score data for mining functions such
as Regression, Classification, Clustering,
and Feature Extraction. This setting does
not apply to Association and Attribute
Importance functions

RALG_WEIGHT_FUNCTION R_WEIGHT_FUNCTION_SCRIPT
_NAME

Specifies the name of an existing registered
R script for R algorithm that computes the
weight (contribution) for each attribute in
scoring. The script returns a data.frame
containing the contributing weight for
each attribute in a row. This function
setting is needed for PREDICTION_DETAILS
SQL function.

RALG_DETAILS_FUNCTION R_DETAILS_FUNCTION_SCRIP
T_NAME

Specifies the name of an existing registered
R script for R algorithm that produces the
model information. This setting is required
to generate a model view.

Chapter 36
DBMS_DATA_MINING

36-17

Table 36-9 (Cont.) ALGO_EXTENSIBLE_LANG Settings

Setting Name Setting Value Description

RALG_DETAILS_FORMAT SELECT type_value
column_name, ... FROM
DUAL

Specifies the SELECT query for the list of
numeric and string scalars for the output
column type and the column name of
the generated model view. This setting is
required to generate a model view.

See Also:

Oracle Data Mining User’s Guide

36.1.2.6 DBMS_DATA_MINING — Algorithm Settings: CUR Matrix
Decomposition

The following settings affects the behavior of the CUR Matrix Decomposition algorithm.

The following settings configure the behavior of the CUR Matrix Decomposition
algorithm.

Table 36-10 CUR Matrix Decomposition Settings

Setting Name Setting Value Description

CURS_APPROX_ATTR_N
UM

The value must be a
positive integer

Defines the approximate number of attributes to be selected.
The default value is the number of attributes.

CURS_ROW_IMPORTANC
E

CURS_ROW_IMP_ENAB
LE

CURS_ROW_IMP_DISA
BLE

Defines the flag indicating whether or not to perform row
selection.
The default value is CURS_ROW_IMP_DISABLE.

CURS_APPROX_ROW_NU
M

The value must be a
positive integer

Defines the approximate number of rows to be selected. This
parameter is only used when users decide to perform row
selection (CURS_ROW_IMP_ENABLE).

The default value is the total number of rows.

CURS_SVD_RANK The value must be a
positive integer

Defines the rank parameter used in the column/row
leverage score calculation.
If users do not provide an input value, the value is
determined by the system.

See Also:

Oracle Data Mining Concepts

Chapter 36
DBMS_DATA_MINING

36-18

36.1.2.7 DBMS_DATA_MINING — Algorithm Settings: Decision Tree
These settings configure the behavior of the Decision Tree algorithm. Note that the
Decision Tree settings are also used to configure the behavior of Random Forest as it
constructs each individual Decision Tree.

Table 36-11 Decision Tree Settings

Setting Name Setting Value Description

TREE_IMPURITY_METRIC TREE_IMPURITY_ENTROPY

TREE_IMPURITY_GINI

Tree impurity metric for Decision Tree.
Tree algorithms seek the best test question for
splitting data at each node. The best splitter and
split value are those that result in the largest
increase in target value homogeneity (purity) for
the entities in the node. Purity is measured in
accordance with a metric. Decision trees can
use either gini (TREE_IMPURITY_GINI) or entropy
(TREE_IMPURITY_ENTROPY) as the purity metric. By
default, the algorithm uses TREE_IMPURITY_GINI.

TREE_TERM_MAX_DEPTH For Decision Tree:
2<= a number <=20

For Random Forest:
2<= a number <=100

Criteria for splits: maximum tree depth (the
maximum number of nodes between the root and
any leaf node, including the leaf node).
For Decision Tree the default is 7.

For Random Forest the default is 16.

TREE_TERM_MINPCT_NODE 0<= a number<=10 The minimum number of training rows in a node
expressed as a percentage of the rows in the
training data.
Default is 0.05, indicating 0.05%.

TREE_TERM_MINPCT_SPLI
T

0 < a number <=20 Minimum number of rows required to consider
splitting a node expressed as a percentage of the
training rows.
Default is 0.1, indicating 0.1%.

TREE_TERM_MINREC_NODE a number>=0 Minimum number of rows in a node.
Default is 10.

TREE_TERM_MINREC_SPLI
T

a number > 1 Criteria for splits: minimum number of records in
a parent node expressed as a value. No split is
attempted if number of records is below this value.
Default is 20.

See Also:

Oracle Data Mining Concepts for information about Decision Tree

Chapter 36
DBMS_DATA_MINING

36-19

36.1.2.8 DBMS_DATA_MINING — Algorithm Settings: Expectation
Maximization

These algorithm settings configure the behavior of the Expectation Maximization
algorithm.

• Table 36-12

• Table 36-13

• Table 36-14

• Table 36-15

See Also:

Oracle Data Mining Concepts for information about Expectation Maximization

Table 36-12 Expectation Maximization Settings for Data Preparation and Analysis

Setting Name Setting Value Description

EMCS_ATTRIBUTE_FILTER EMCS_ATTR_FILTER_ENA
BLE

EMCS_ATTR_FILTER_DIS
ABLE

Whether or not to include uncorrelated attributes
in the model. When EMCS_ATTRIBUTE_FILTER is
enabled, uncorrelated attributes are not included.

Note:

This setting applies
only to attributes that
are not nested.

Default is system-determined.

EMCS_MAX_NUM_ATTR_2D TO_CHAR(numeric_expr
>=1)

Maximum number of correlated attributes to
include in the model.
Note: This setting applies only to attributes that are
not nested (2D).
Default is 50.

EMCS_NUM_DISTRIBUTION EMCS_NUM_DISTR_BERNO
ULLI

EMCS_NUM_DISTR_GAUSS
IAN

EMCS_NUM_DISTR_SYSTE
M

The distribution for modeling numeric attributes.
Applies to the input table or view as a whole and
does not allow per-attribute specifications.
The options include Bernoulli, Gaussian, or
system-determined distribution. When Bernoulli
or Gaussian distribution is chosen, all numeric
attributes are modeled using the same type
of distribution. When the distribution is
system-determined, individual attributes may
use different distributions (either Bernoulli or
Gaussian), depending on the data.
Default is EMCS_NUM_DISTR_SYSTEM.

Chapter 36
DBMS_DATA_MINING

36-20

Table 36-12 (Cont.) Expectation Maximization Settings for Data Preparation and Analysis

Setting Name Setting Value Description

EMCS_NUM_EQUIWIDTH_BIN
S

TO_CHAR(1
<numeric_expr <=255)

Number of equi-width bins that will be used for
gathering cluster statistics for numeric columns.
Default is 11.

EMCS_NUM_PROJECTIONS TO_CHAR(numeric_expr
>=1)

Specifies the number of projections that will be
used for each nested column. If a column has
fewer distinct attributes than the specified number
of projections, the data will not be projected. The
setting applies to all nested columns.
Default is 50.

EMCS_NUM_QUANTILE_BINS TO_CHAR(1
<numeric_expr <=255)

Specifies the number of quantile bins that will
be used for modeling numeric columns with
multivalued Bernoulli distributions.
Default is system-determined.

EMCS_NUM_TOPN_BINS TO_CHAR(1
<numeric_expr <=255)

Specifies the number of top-N bins that will
be used for modeling categorical columns with
multivalued Bernoulli distributions.
Default is system-determined.

Table 36-13 Expectation Maximization Settings for Learning

Setting Name Setting Value Description

EMCS_CONVERGENCE_CRITE
RION

EMCS_CONV_CRIT_HELDAS
IDE

EMCS_CONV_CRIT_BIC

The convergence criterion for EM. The
convergence criterion may be based on a held-
aside data set, or it may be Bayesian Information
Criterion.
Default is system determined.

EMCS_LOGLIKE_IMPROVEME
NT

TO_CHAR(0 <
numeric_expr < 1)

When the convergence criterion
is based on a held-aside data
set (EMCS_CONVERGENCE_CRITERION =
EMCS_CONV_CRIT_HELDASIDE), this setting specifies
the percentage improvement in the value of the
log likelihood function that is required for adding
a new component to the model.
Default value is 0.001.

EMCS_NUM_COMPONENTS TO_CHAR(numeric_expr
>=1)

Maximum number of components in the
model. If model search is enabled, the
algorithm automatically determines the number
of components based on improvements in the
likelihood function or based on regularization, up
to the specified maximum.
The number of components must be greater than
or equal to the number of clusters.
Default is 20.

EMCS_NUM_ITERATIONS TO_CHAR(numeric_expr
>=1)

Specifies the maximum number of iterations in
the EM algorithm.
Default is 100.

Chapter 36
DBMS_DATA_MINING

36-21

Table 36-13 (Cont.) Expectation Maximization Settings for Learning

Setting Name Setting Value Description

EMCS_MODEL_SEARCH EMCS_MODEL_SEARCH_ENA
BLE

EMCS_MODEL_SEARCH_DIS
ABLE (default).

This setting enables model search in EM where
different model sizes are explored and a best size
is selected.
The default is EMCS_MODEL_SEARCH_DISABLE.

EMCS_REMOVE_COMPONENTS EMCS_REMOVE_COMPS_ENA
BLE (default)

EMCS_REMOVE_COMPS_DIS
ABLE

This setting allows the EM algorithm to remove a
small component from the solution.
The default is EMCS_REMOVE_COMPS_ENABLE.

EMCS_RANDOM_SEED Non-negative integer This setting controls the seed of the random
generator used in EM. The default is 0.

Table 36-14 Expectation Maximization Settings for Component Clustering

Setting Name Setting Value Description

EMCS_CLUSTER_COMPONENTS EMCS_CLUSTER_COMP_E
NABLE

EMCS_CLUSTER_COMP_D
ISABLE

Enables or disables the grouping of EM
components into high-level clusters. When
disabled, the components themselves are treated
as clusters.
When component clustering is enabled, model
scoring through the SQL CLUSTER function
will produce assignments to the higher level
clusters. When clustering is disabled, the CLUSTER
function will produce assignments to the original
components.
Default is EMCS_CLUSTER_COMP_ENABLE.

EMCS_CLUSTER_THRESH TO_CHAR(numeric_ex
pr >=1)

Dissimilarity threshold that controls the clustering
of EM components. When the dissimilarity
measure is less than the threshold, the
components are combined into a single cluster.
A lower threshold may produce more clusters
that are more compact. A higher threshold may
produce fewer clusters that are more spread out.
Default is 2.

EMCS_LINKAGE_FUNCTION EMCS_LINKAGE_SINGLE

EMCS_LINKAGE_AVERAG
E

EMCS_LINKAGE_COMPLE
TE

Allows the specification of a linkage function for
the agglomerative clustering step.
EMCS_LINKAGE_SINGLE uses the nearest distance
within the branch. The clusters tend to be larger
and have arbitrary shapes.
EMCS_LINKAGE_AVERAGE uses the average distance
within the branch. There is less chaining effect
and the clusters are more compact.
EMCS_LINKAGE_COMPLETE uses the maximum
distance within the branch. The clusters are
smaller and require strong component overlap.
Default is EMCS_LINKAGE_SINGLE.

Chapter 36
DBMS_DATA_MINING

36-22

Table 36-15 Expectation Maximization Settings for Cluster Statistics

Setting Name Setting Value Description

EMCS_CLUSTER_STATISTICS EMCS_CLUS_STATS_EN
ABLE

EMCS_CLUS_STATS_DI
SABLE

Enables or disables the gathering of descriptive
statistics for clusters (centroids, histograms, and
rules). When statistics are disabled, model size is
reduced, and GET_MODEL_DETAILS_EM only returns
taxonomy (hierarchy) and cluster counts.
Default is EMCS_CLUS_STATS_ENABLE.

EMCS_MIN_PCT_ATTR_SUPPORT TO_CHAR(0 <
numeric_expr < 1)

Minimum support required for including an
attribute in the cluster rule. The support is the
percentage of the data rows assigned to a cluster
that must have non-null values for the attribute.
Default is 0.1.

36.1.2.9 DBMS_DATA_MINING — Algorithm Settings: Explicit Semantic
Analysis

Explicit Semantic Analysis (ESA) is a useful technique for extracting meaningful and
interpretable features.

The settings listed in the following table configure the ESA values.

Table 36-16 Explicit Semantic Analysis Settings

Setting Name Setting Value Description

ESAS_VALUE_THRESHOLD Non-negative number This setting thresholds a small value
for attribute weights in the transformed
build data. The default is 1e-8.

ESAS_MIN_ITEMS Text input 100

Non-text input is 0

This setting determines the minimum
number of non-zero entries that need to
be present in an input row. The default
is 100 for text input and 0 for non-text
input.

ESAS_TOPN_FEATURES A positive integer This setting controls the maximum
number of features per attribute. The
default is 1000.

See Also:

Oracle Data Mining Concepts for information about Explicit Semantic
Analysis.

Chapter 36
DBMS_DATA_MINING

36-23

36.1.2.10 DBMS_DATA_MINING — Algorithm Settings: Exponential Smoothing
Exponential Smoothing (ESM) is a useful technique for extracting meaningful and
interpretable features.

The settings listed in the following table configure Exponential Smoothing values.

Chapter 36
DBMS_DATA_MINING

36-24

Table 36-17 Exponential Smoothing Settings

Setting Name Setting Value Description

EXSM_MODEL It can take value
in set {EXSM_SIMPLE,
EXSM_SIMPLE_MULT,
EXSM_HOLT,
EXSM_HOLT_DMP,
EXSM_MUL_TRND,
EXSM_MULTRD_DMP,
EXSM_SEAS_ADD,
EXSM_SEAS_MUL,
EXSM_HW, EXSM_HW_DMP,
EXSM_HW_ADDSEA,
EXSM_DHW_ADDSEA,
EXSM_HWMT,
EXSM_HWMT_DMP}

This setting specifies the model.
EXSM_SIMPLE: Simple exponential
smoothing model is applied.
EXSM_SIMPLE_MULT: Simple exponential
smoothing model with multiplicative
error is applied.
EXSM_HOLT: Holt linear exponential
smoothing model is applied.
EXSM_HOLT_DMP: Holt linear exponential
smoothing model with damped trend is
applied.
EXSM_MUL_TRND: Exponential smoothing
model with multiplicative trend is
applied.
EXSM_MULTRD_DMP: Exponential
smoothing model with multiplicative
damped trend is applied.
EXSM_SEAS_ADD: Exponential smoothing
with additive seasonality, but no trend,
is applied.
EXSM_SEAS_MUL: Exponential smoothing
with multiplicative seasonality, but no
trend, is applied.
EXSM_HW: Holt-Winters triple exponential
smoothing model, additive trend,
multiplicative seasonality is applied.
EXSM_HW_DMP: Holt-Winters
multiplicative exponential smoothing
model with damped trend, additive
trend, multiplicative seasonality is
applied.
EXSM_HW_ADDSEA: Holt-Winters additive
exponential smoothing model, additive
trend, additive seasonality is applied.
EXSM_DHW_ADDSEA: Holt-Winters additive
exponential smoothing model with
damped trend, additive trend, additive
seasonality is applied.
EXSM_HWMT: Holt-Winters multiplicative
exponential smoothing model with
multiplicative trend, multiplicative
trend, multiplicative seasonality is
applied.
EXSM_HWMT_DMP: Holt-Winters
multiplicative exponential smoothing
model with damped multiplicative
trend, multiplicative trend,
multiplicative seasonality is applied.
The default value is EXSM_SIMPLE.

Chapter 36
DBMS_DATA_MINING

36-25

Table 36-17 (Cont.) Exponential Smoothing Settings

Setting Name Setting Value Description

EXSM_SEASONALITY positive integer > 1 This setting specifies a positive integer
value as the length of seasonal cycle.
The value it takes must be larger than 1.
For example, setting value 4 means that
every group of four observations forms
a seasonal cycle.
This setting is only applicable and must
be provided for models with seasonality,
otherwise the model throws an error.
When EXSM_INTERVAL is not set, this
setting applies to the original input time
series. When EXSM_INTERVAL is set, this
setting applies to the accumulated time
series.

EXSM_INTERVAL It can take value in set
{EXSM_INTERVAL_YEAR,
EXSM_INTERVAL_QTR,
EXSM_INTERVAL_MONTH,EXS
M_INTERVAL_WEEK,
EXSM_INTERVAL_DAY,
EXSM_INTERVAL_HOUR,
EXSM_INTERVAL_MIN,EXSM_I
NTERVAL_SEC}

This setting only applies and must
be provided when the time column
(case_id column) has datetime type.
It specifies the spacing interval of the
accumulated equally spaced time series.
The model throws an error if the time
column of input table is of datetime
type and setting EXSM_INTERVAL is not
provided.
The model throws an error if the time
column of input table is of oracle
number type and setting EXSM_INTERVAL
is provided.

EXSM_ACCUMULATE It can take value in
set {EXSM_ACCU_TOTAL,
EXSM_ACCU_STD,
EXSM_ACCU_MAX,
EXSM_ACCU_MIN,
EXSM_ACCU_AVG,
EXSM_ACCU_MEDIAN,
EXSM_ACCU_COUNT}.

This setting only applies and must
be provided when the time column
has datetime type. It specifies how to
generate the value of the accumulated
time series from the input time series.

Chapter 36
DBMS_DATA_MINING

36-26

Table 36-17 (Cont.) Exponential Smoothing Settings

Setting Name Setting Value Description

EXSM_SETMISSING It can also specify
an option taking value
in set {EXSM_MISS_MIN,
EXSM_MISS_MAX,
EXSM_MISS_AVG,
EXSM_MISS_MEDIAN,
EXSM_MISS_LAST,
EXSM_MISS_FIRST,
EXSM_MISS_PREV,
EXSM_MISS_NEXT,
EXSM_MISS_AUTO}.

This setting specifies how to handle
missing values, which may come from
input data and/or the accumulation
process of time series. You can specify
either a number or an option. If a
number is specified, all the missing
values are set to that number.
EXSM_MISS_MIN: Replaces missing value
with minimum of the accumulated time
series.
EXSM_MISS_MAX: Replaces missing value
with maximum of the accumulated time
series.
EXSM_MISS_AVG: Replaces missing value
with average of the accumulated time
series.
EXSM_MISS_MEDIAN: Replaces missing
value with median of the accumulated
time series.
EXSM_MISS_LAST: Replaces missing
value with last non-missing value of the
accumulated time series.
EXSM_MISS_FIRST: Replaces missing
value with first non-missing value of the
accumulated time series.
EXSM_MISS_PREV: Replaces missing
value with the previous non-missing
value of the accumulated time series.
EXSM_MISS_NEXT: Replaces missing
value with the next non-missing value of
the accumulated time series.
EXSM_MISS_AUTO: EXSM model treats
the input data as an irregular (non-
uniformly spaced) time series.
If this setting is not provided,
EXSM_MISS_AUTO is the default value. In
such a case, the model treats the input
time series as irregular time series,
viewing missing values as gaps.

EXSM_PREDICTION_STEP It must be set to a number
between 1-30.

This setting specifies how many steps
ahead the predictions are to be made.
If it is not set, the default value is 1: the
model gives one-step-ahead prediction.
A value greater than 30 results in an
error.

Chapter 36
DBMS_DATA_MINING

36-27

Table 36-17 (Cont.) Exponential Smoothing Settings

Setting Name Setting Value Description

EXSM_CONFIDENCE_LEVEL It must be a number between
0 and 1, exclusive.

This setting specifies the desired
confidence level for prediction.
The lower and upper bounds of the
specified confidence interval is reported.
If this setting is not specified, the default
confidence level is 95%.

EXSM_OPT_CRITERION It takes value in
set {EXSM_OPT_CRIT_LIK,
EXSM_OPT_CRIT_MSE,
EXSM_OPT_CRIT_AMSE,
EXSM_OPT_CRIT_SIG,
EXSM_OPT_CRIT_MAE}.

This setting specifies the desired
optimization criterion. The optimization
criterion is useful as a diagnostic for
comparing models' fit to the same data.
EXSM_OPT_CRIT_LIK: Minus twice the
log-likelihood of a model.
EXSM_OPT_CRIT_MSE: Mean square error
of a model.
EXSM_OPT_CRIT_AMSE: Average mean
square error over user-specified time
window.
EXSM_OPT_CRIT_SIG: Model's standard
deviation of residuals.
EXSM_OPT_CRIT_MAE: Mean absolute
error of a model.
The default value is
EXSM_OPT_CRIT_LIK.

EXSM_NMSE positive integer This setting specifies the length of
the window used in computing the
error metric average mean square error
(AMSE).

See Also:

Oracle Data Mining Concepts for information about ESM.

36.1.2.11 DBMS_DATA_MINING — Algorithm Settings: Generalized Linear
Models

The settings listed in the following table configure the behavior of Generalized Linear
Models

Table 36-18 DBMS_DATA_MINING GLM Settings

Setting Name Setting Value Description

GLMS_CONF_LEVEL TO_CHAR(0<
numeric_expr <1)

The confidence level for coefficient confidence
intervals.
The default confidence level is 0.95.

Chapter 36
DBMS_DATA_MINING

36-28

Table 36-18 (Cont.) DBMS_DATA_MINING GLM Settings

Setting Name Setting Value Description

GLMS_FTR_GEN_METHOD GLMS_FTR_GEN_QUADRATI
C

GLMS_FTR_GEN_CUBIC

Whether feature generation is quadratic or cubic.
When feature generation is enabled, the algorithm
automatically chooses the most appropriate
feature generation method based on the data.

GLMS_FTR_GENERATION GLMS_FTR_GENERATION_E
NABLE

GLMS_FTR_GENERATION_D
ISABLE

Whether or not feature generation is enabled for
GLM. By default, feature generation is not enabled.
Note: Feature generation can only be enabled
when feature selection is also enabled.

GLMS_FTR_SEL_CRIT GLMS_FTR_SEL_AIC

GLMS_FTR_SEL_SBIC

GLMS_FTR_SEL_RIC

GLMS_FTR_SEL_ALPHA_IN
V

Feature selection penalty criterion for adding a
feature to the model.
When feature selection is enabled, the algorithm
automatically chooses the penalty criterion based
on the data.

GLMS_FTR_SELECTION GLMS_FTR_SELECTION_EN
ABLE

GLMS_FTR_SELECTION_DI
SABLE

Whether or not feature selection is enabled for
GLM.
By default, feature selection is not enabled.

GLMS_MAX_FEATURES TO_CHAR(0 <
numeric_expr <= 2000)

When feature selection is enabled, this setting
specifies the maximum number of features that
can be selected for the final model.
By default, the algorithm limits the number of
features to ensure sufficient memory.

GLMS_PRUNE_MODEL GLMS_PRUNE_MODEL_ENAB
LE

GLMS_PRUNE_MODEL_DISA
BLE

Prune enable or disable for features in the final
model. Pruning is based on T-Test statistics for
linear regression, or Wald Test statistics for logistic
regression. Features are pruned in a loop until all
features are statistically significant with respect to
the full data.
When feature selection is enabled, the algorithm
automatically performs pruning based on the data.

GLMS_REFERENCE_CLASS_N
AME

target_value The target value used as the reference class in a
binary logistic regression model. Probabilities are
produced for the other class.
By default, the algorithm chooses the value with
the highest prevalence (the most cases) for the
reference class.

GLMS_RIDGE_REGRESSION GLMS_RIDGE_REG_ENABLE

GLMS_RIDGE_REG_DISABL
E

Enable or disable Ridge Regression. Ridge applies
to both regression and Classification mining
functions.
When ridge is enabled, prediction bounds are
not produced by the PREDICTION_BOUNDS SQL
function.
Note: Ridge may only be enabled when feature
selection is not specified, or has been explicitly
disabled. If Ridge Regression and feature selection
are both explicitly enabled, then an exception is
raised.

Chapter 36
DBMS_DATA_MINING

36-29

Table 36-18 (Cont.) DBMS_DATA_MINING GLM Settings

Setting Name Setting Value Description

GLMS_RIDGE_VALUE TO_CHAR (numeric_expr
> 0)

The value of the ridge parameter. This setting is
only used when the algorithm is configured to use
Ridge Regression.
If Ridge Regression is enabled internally by the
algorithm, then the ridge parameter is determined
by the algorithm.

GLMS_ROW_DIAGNOSTICS GLMS_ROW_DIAG_ENABLE

GLMS_ROW_DIAG_DISABLE
(default).

Enable or disable row diagnostics.

GLMS_CONV_TOLERANCE The range is (0, 1) non-
inclusive.

Convergence Tolerance setting of the GLM
algorithm
The default value is system-determined.

GLMS_NUM_ITERATIONS Positive integer Maximum number of iterations for the GLM
algorithm. The default value is system-determined.

GLMS_BATCH_ROWS 0 or Positive integer Number of rows in a batch used by the SGD solver.
The value of this parameter sets the size of the
batch for the SGD solver. An input of 0 triggers a
data driven batch size estimate.
The default is 2000

GLMS_SOLVER GLMS_SOLVER_SGD
(StochasticGradient
Descent)

GLMS_SOLVER_CHOL
(Cholesky)

GLMS_SOLVER_QR

GLMS_SOLVER_LBFGS_ADM
M

This setting allows the user to choose the
GLM solver. The solver cannot be selected
if GLMS_FTR_SELECTION setting is enabled. The
default value is system determined.

GLMS_SPARSE_SOLVER GLMS_SPARSE_SOLVER_EN
ABLE

GLMS_SPARSE_SOLVER_DI
SABLE (default).

This setting allows the user to use sparse
solver if it is available. The default value is
GLMS_SPARSE_SOLVER_DISABLE.

Related Topics

• DBMS_DATA_MINING — Algorithm Settings: Neural Network
The settings listed in the following table configure the behavior of the Neural
Network algorithm.

• DBMS_DATA_MINING — Solver Settings: LBFGS
The settings listed in the following table configure the behavior of L-BFGS. Neural
Network and Generalized Linear Models (GLM) use these settings.

• DBMS_DATA_MINING — Solver Settings: ADMM
The settings listed in the following table configure the behavior of Alternating
Direction Method of Multipliers (ADMM). Generalized Linear Models (GLM) use
these settings.

• Oracle Data Mining Concepts

Chapter 36
DBMS_DATA_MINING

36-30

See Also:

Oracle Data Mining Concepts for information about GLM.

36.1.2.12 DBMS_DATA_MINING — Algorithm Settings: k-Means
The settings listed in the following table configure the behavior of the k-Means
algorithm.

Table 36-19 k-Means Settings

Setting Name Setting Value Description

KMNS_CONV_TOLERANCE TO_CHAR(0<numeric_expr<1) Minimum Convergence Tolerance for k-Means.
The algorithm iterates until the minimum
Convergence Tolerance is satisfied or until the
maximum number of iterations, specified in
KMNS_ITERATIONS, is reached.

Decreasing the Convergence Tolerance
produces a more accurate solution but may
result in longer run times.
The default Convergence Tolerance is 0.001.

KMNS_DISTANCE KMNS_COSINE

KMNS_EUCLIDEAN

Distance function for k-Means.
The default distance function is
KMNS_EUCLIDEAN.

KMNS_ITERATIONS TO_CHAR(positive_numeric_e
xpr)

Maximum number of iterations for k-Means.
The algorithm iterates until either the
maximum number of iterations is reached or
the minimum Convergence Tolerance, specified
in KMNS_CONV_TOLERANCE, is satisfied.

The default number of iterations is 20.

KMNS_MIN_PCT_ATTR_SU
PPORT

TO_CHAR(0<=numeric_expr<=1
)

Minimum percentage of attribute values that
must be non-null in order for the attribute
to be included in the rule description for the
cluster.
If the data is sparse or includes many missing
values, a minimum support that is too high can
cause very short rules or even empty rules.
The default minimum support is 0.1.

KMNS_NUM_BINS TO_CHAR(numeric_expr>0) Number of bins in the attribute histogram
produced by k-Means. The bin boundaries for
each attribute are computed globally on the
entire training data set. The binning method
is equi-width. All attributes have the same
number of bins with the exception of attributes
with a single value that have only one bin.
The default number of histogram bins is 11.

Chapter 36
DBMS_DATA_MINING

36-31

Table 36-19 (Cont.) k-Means Settings

Setting Name Setting Value Description

KMNS_SPLIT_CRITERION KMNS_SIZE

KMNS_VARIANCE

Split criterion for k-Means. The split criterion
controls the initialization of new k-Means
clusters. The algorithm builds a binary tree and
adds one new cluster at a time.
When the split criterion is based on size, the
new cluster is placed in the area where the
largest current cluster is located. When the split
criterion is based on the variance, the new
cluster is placed in the area of the most spread-
out cluster.
The default split criterion is the
KMNS_VARIANCE.

KMNS_RANDOM_SEED Non-negative integer This setting controls the seed of the
random generator used during the k-Means
initialization. It must be a non-negative integer
value.
The default is 0.

KMNS_DETAILS KMNS_DETAILS_NONE

KMNS_DETAILS_HIERARCHY

KMNS_DETAILS_ALL

This setting determines the level of cluster
detail that are computed during the build.
KMNS_DETAILS_NONE: No cluster details are
computed. Only the scoring information is
persisted.
KMNS_DETAILS_HIERARCHY: Cluster hierarchy
and cluster record counts are computed. This
is the default value.
KMNS_DETAILS_ALL: Cluster hierarchy, record
counts, descriptive statistics (means, variances,
modes, histograms, and rules) are computed.

See Also:

Oracle Data Mining Concepts for information about k-Means

36.1.2.13 DBMS_DATA_MINING — Algorithm Settings: Naive Bayes
The settings listed in the following table configure the behavior of the Naive Bayes
Algorithm.

Table 36-20 Naive Bayes Settings

Setting Name Setting Value Description

NABS_PAIRWISE_THRESHO
LD

TO_CHAR(0<=
numeric_expr <=1)

Value of pairwise threshold for NB algorithm
Default is 0.

Chapter 36
DBMS_DATA_MINING

36-32

Table 36-20 (Cont.) Naive Bayes Settings

Setting Name Setting Value Description

NABS_SINGLETON_THRESH
OLD

TO_CHAR(0<=
numeric_expr <=1)

Value of singleton threshold for NB algorithm
Default value is 0.

See Also:

Oracle Data Mining Concepts for information about Naive Bayes

36.1.2.14 DBMS_DATA_MINING — Algorithm Settings: Neural Network
The settings listed in the following table configure the behavior of the Neural Network
algorithm.

Table 36-21 DBMS_DATA_MINING Neural Network Settings

Setting Name Setting Value Description

NNET_SOLVER One of the following
strings:
• NNET_SOLVER_ADAM

• NNET_SOLVER_LBFGS

Specifies the method of optimization.
The default value is system determined.

Chapter 36
DBMS_DATA_MINING

36-33

Table 36-21 (Cont.) DBMS_DATA_MINING Neural Network Settings

Setting Name Setting Value Description

NNET_ACTIVATIONS One or more of the
following strings:
• NNET_ACTIVATIONS_A

RCTAN

• NNET_ACTIVATIONS_B
IPOLAR_SIG

• NNET_ACTIVATIONS_L
INEAR

• NNET_ACTIVATIONS_L
OG_SIG

• NNET_ACTIVATIONS_R
ELU

• NNET_ACTIVATIONS_T
ANH

Specifies the activation functions for the hidden
layers. You can specify a single activation function,
which is then applied to each hidden layer, or you
can specify an activation function for each layer
individually. Different layers can have different
activation functions.
To apply a different activation function to one or
more of the layers, you must specify an activation
function for each layer. The number of activation
functions you specify must be consistent with the
NNET_HIDDEN_LAYERS and NNET_NODES_PER_LAYER
values.
For example, if you have three hidden layers,
you could specify the use of the same activation
function for all three layers with the following
settings value:

('NNET_ACTIVATIONS',
'NNET_ACTIVATIONS_TANH')

The following settings value specifies a different
activation function for each layer:

('NNET_ACTIVATIONS',
'''NNET_ACTIVATIONS_TANH'',
''NNET_ACTIVATIONS_LOG_SIG'',
''NNET_ACTIVATIONS_ARCTAN''')

Note:

You specify the
different activation
functions as strings
within a single string.
All quotes are single
and two single quotes
are used to escape a
single quote in SQL
statements and PL/SQL
blocks.

The default value is NNET_ACTIVATIONS_LOG_SIG.

NNET_HELDASIDE_MAX_FAI
L

A positive integer With NNET_REGULARIZER_HELDASIDE, the training
process is stopped early if the network
performance on the validation data fails
to improve or remains the same for
NNET_HELDASIDE_MAX_FAIL epochs in a row.

The default value is 6.

Chapter 36
DBMS_DATA_MINING

36-34

Table 36-21 (Cont.) DBMS_DATA_MINING Neural Network Settings

Setting Name Setting Value Description

NNET_HELDASIDE_RATIO 0 <= numeric_expr <=1 Define the held ratio for the held-aside method.
The default value is 0.25.

NNET_HIDDEN_LAYERS A positive integer Defines the topology by the number of hidden
layers.
The default value is 1.

NNET_ITERATIONS A positive integer Specifies the maximum number of iterations in the
Neural Network algorithm.
For the DMSSET_NN_SOLVER_LBFGS solver, the
default value is 200.

For the DMSSET_NN_SOLVER_ADAM solver, the
default value is 10000.

NNET_NODES_PER_LAYER A positive integer or a list
of positive integers

Defines the topology by the number of nodes per
layer. Different layers can have different numbers
of nodes.
To specify the same number of nodes for each
layer, you can provide a single value, which is then
applied to each layer.
To specify a different number of nodes for one
or more layers, provide a list of comma-separated
positive integers, one for each layer. For example,
'10, 20, 5' for three layers. The setting values
must be consistent with the NNET_HIDDEN_LAYERS
value.
The default number of nodes per layer is the
number of attributes or 50 (if the number of
attributes > 50).

NNET_REG_LAMBDA TO_CHAR(numeric_expr
>=0)

Defines the L2 regularization parameter
lambda. This can not be set together with
NNET_REGULARIZER_HELDASIDE.

The default value is 1.

NNET_REGULARIZER One of the following
strings:
• NNET_REGULARIZER_H

ELDASIDE

• NNET_REGULARIZER_L
2

• NNET_REGULARIZER_N
ONE

Regularization setting for Neural Network
algorithm. If the total number of training
rows is greater than 50000, the default
is NNET_REGULARIZER_HELDASIDE. If the total
number of training rows is less than or equal to
50000, the default is NNET_REGULARIZER_NONE.

NNET_TOLERANCE TO_CHAR(0<
numeric_expr <1)

Defines the convergence tolerance setting of the
Neural Network algorithm.
The default value is 0.000001.

Chapter 36
DBMS_DATA_MINING

36-35

Table 36-21 (Cont.) DBMS_DATA_MINING Neural Network Settings

Setting Name Setting Value Description

NNET_WEIGHT_LOWER_BOUN
D

A real number The setting specifies the lower bound of
the region where weights are randomly
initialized. NNET_WEIGHT_LOWER_BOUND and
NNET_WEIGHT_UPPER_BOUND must be set together.
Setting one and not setting the other raises
an error. NNET_WEIGHT_LOWER_BOUND must not
be greater than NNET_WEIGHT_UPPER_BOUND. The
default value is –sqrt(6/(l_nodes+r_nodes)).
The value of l_nodes for:
• input layer dense attributes is (1+number of

dense attributes)
• input layer sparse attributes is number of

sparse attributes

• each hidden layer is (1+number of nodes in
that hidden layer)

The value of r_nodes is the number of nodes in the
layer that the weight is connecting to.

NNET_WEIGHT_UPPER_BOUN
D

A real number This setting specifies the upper bound of the
region where weights are initialized. It should
be set in pairs with NNET_WEIGHT_LOWER_BOUND
and its value must not be smaller than
the value of NNET_WEIGHT_LOWER_BOUND. If not
specified, the values of NNET_WEIGHT_LOWER_BOUND
and NNET_WEIGHT_UPPER_BOUND are system
determined.
The default value is sqrt(6/(l_nodes+r_nodes)).
See NNET_WEIGHT_LOWER_BOUND.

Related Topics

• DBMS_DATA_MINING — Solver Settings: LBFGS
The settings listed in the following table configure the behavior of L-BFGS. Neural
Network and Generalized Linear Models (GLM) use these settings.

See Also:

Oracle Data Mining Concepts for information about Neural Network.

Chapter 36
DBMS_DATA_MINING

36-36

36.1.2.15 DBMS_DATA_MINING — Algorithm Settings: Non-Negative Matrix
Factorization

The settings listed in the following table configure the behavior of the Non-Negative
Matrix Factorization algorithm.

You can query the data dictionary view *_MINING_MODEL_SETTINGS (using the ALL,
USER, or DBA prefix) to find the setting values for a model. See Oracle Database
Reference for information about *_MINING_MODEL_SETTINGS.

Table 36-22 NMF Settings

Setting Name Setting Value Description

NMFS_CONV_TOLERANCE TO_CHAR(0< numeric_expr
<=0.5)

Convergence tolerance for NMF
algorithm
Default is 0.05

NMFS_NONNEGATIVE_SCORING NMFS_NONNEG_SCORING_ENABLE

NMFS_NONNEG_SCORING_DISABLE

Whether negative numbers
should be allowed in
scoring results. When set
to NMFS_NONNEG_SCORING_ENABLE,
negative feature values will be
replaced with zeros. When set to
NMFS_NONNEG_SCORING_DISABLE,
negative feature values will be
allowed.
Default is
NMFS_NONNEG_SCORING_ENABLE

NMFS_NUM_ITERATIONS TO_CHAR(1 <= numeric_expr
<=500)

Number of iterations for NMF
algorithm
Default is 50

NMFS_RANDOM_SEED TO_CHAR(numeric_expr) Random seed for NMF algorithm.
Default is –1.

See Also:

Oracle Data Mining Concepts for information about NMF

36.1.2.16 DBMS_DATA_MINING — Algorithm Settings: O-Cluster
The settings in the table configure the behavior of the O-Cluster algorithm.

Chapter 36
DBMS_DATA_MINING

36-37

Table 36-23 O-CLuster Settings

Setting Name Setting Value Description

OCLT_SENSITIVITY TO_CHAR(0
<=numeric_expr <=1)

A fraction that specifies the peak density required for
separating a new cluster. The fraction is related to the
global uniform density.
Default is 0.5.

See Also:

Oracle Data Mining Concepts for information about O-Cluster

36.1.2.17 DBMS_DATA_MINING — Algorithm Settings: Random Forest
These settings configure the behavior of the Random Forest algorithm. Random forest
makes use of the Decision Tree settings to configure the construction of individual
trees.

Table 36-24 Random Forest Settings

Setting Name Setting Value Description

RFOR_MTRY a number >= 0 Size of the random subset of columns to be
considered when choosing a split at a node. For
each node, the size of the pool remains the
same, but the specific candidate columns change.
The default is half of the columns in the model
signature. The special value 0 indicates that the
candidate pool includes all columns.

RFOR_NUM_TREES 1<= a number <=65535 Number of trees in the forest
Default is 20.

RFOR_SAMPLING_RATIO 0< a fraction<=1 Fraction of the training data to be randomly
sampled for use in the construction of an
individual tree. The default is half of the number
of rows in the training data.

Related Topics

• DBMS_DATA_MINING — Algorithm Settings: Decision Tree
These settings configure the behavior of the Decision Tree algorithm. Note that the
Decision Tree settings are also used to configure the behavior of Random Forest
as it constructs each individual Decision Tree.

See Also:

Oracle Data Mining Concepts for information about Random Forest

Chapter 36
DBMS_DATA_MINING

36-38

36.1.2.18 DBMS_DATA_MINING — Algorithm Constants and Settings: Singular
Value Decomposition

The following constant affects the behavior of the Singular Value Decomposition
algorithm.

Table 36-25 Singular Value Decomposition Constant

Constant Name Constant Value Description

SVDS_MAX_NUM_FEATURES 2500 The maximum number of features supported by
SVD.

The following settings configure the behavior of the Singular Value Decomposition
algorithm.

Table 36-26 Singular Value Decomposition Settings

Setting Name Setting Value Description

SVDS_U_MATRIX_OUTP
UT

SVDS_U_MATRIX_ENA
BLE

SVDS_U_MATRIX_DIS
ABLE

Indicates whether or not to persist the U Matrix produced by
SVD.
The U matrix in SVD has as many rows as the number of
rows in the build data. To avoid creating a large model, the
U matrix is persisted only when SVDS_U_MATRIX_OUTPUT is
enabled.
When SVDS_U_MATRIX_OUTPUT is enabled, the build data
must include a case ID. If no case ID is present and the U
matrix is requested, then an exception is raised.
Default is SVDS_U_MATRIX_DISABLE.

SVDS_SCORING_MODE SVDS_SCORING_SVD

SVDS_SCORING_PCA

Whether to use SVD or PCA scoring for the model.
When the build data is scored with SVD, the projections will
be the same as the U matrix. When the build data is scored
with PCA, the projections will be the product of the U and S
matrices.
Default is SVDS_SCORING_SVD.

Chapter 36
DBMS_DATA_MINING

36-39

Table 36-26 (Cont.) Singular Value Decomposition Settings

Setting Name Setting Value Description

SVDS_SOLVER SVDS_SOLVER_TSSVD

SVDS_SOLVER_TSEIG
EN

SVDS_SOLVER_SSVD

SVDS_SOLVER_STEIG
EN

This setting indicates the solver to be used for computing
SVD of the data. In the case of PCA, the solver setting
indicates the type of SVD solver used to compute the PCA
for the data. When this setting is not specified the solver
type selection is data driven. If the number of attributes
is greater than 3240, then the default wide solver is used.
Otherwise, the default narrow solver is selected.
The following are the group of solvers:
• Narrow data solvers: for matrices with up to 11500

attributes (TSEIGEN) or up to 8100 attributes (TSSVD).
• Wide data solvers: for matrices up to 1 million

attributes.
For narrow data solvers:
• Tall-Skinny SVD uses QR computation TSVD

(SVDS_SOLVER_TSSVD)
• Tall-Skinny SVD uses eigenvalue computation, TSEIGEN

(SVDS_SOLVER_TSEIGEN), is the default solver for narrow
data.

For wide data solvers:
• Stochastic SVD uses QR computation SSVD

(SVDS_SOLVER_SSVD), is the default solver for wide data
solvers.

• Stochastic SVD uses eigenvalue computations, STEIGEN
(SVDS_SOLVER_STEIGEN).

SVDS_TOLERANCE Range [0, 1] This setting is used to prune features. Define the minimum
value the eigenvalue of a feature as a share of the first
eigenvalue to not to prune. Default value is data driven.

SVDS_RANDOM_SEED Range [0 -
4,294,967,296]

The random seed value is used for initializing the sampling
matrix used by the Stochastic SVD solver. The default is 0.
The SVD Solver must be set to SSVD or STEIGEN.

SVDS_OVER_SAMPLING Range [1, 5000]. This setting is configures the number of columns in the
sampling matrix used by the Stochastic SVD solver. The
number of columns in this matrix is equal to the requested
number of features plus the oversampling setting. The SVD
Solver must be set to SSVD or STEIGEN.

SVDS_POWER_ITERATI
ONS

Range [0, 20]. The power iteration setting improves the accuracy of the
SSVD solver. The default is 2. The SVD Solver must be set to
SSVD or STEIGEN.

See Also:

Oracle Data Mining Concepts

Chapter 36
DBMS_DATA_MINING

36-40

36.1.2.19 DBMS_DATA_MINING — Algorithm Settings: Support Vector
Machine

The settings listed in the following table configure the behavior of the Support Vector
Machine algorithm.

Table 36-27 SVM Settings

Setting Name Setting Value Description

SVMS_COMPLEXITY_FACTO
R

TO_CHAR(numeric_ex
pr >0)

Regularization setting that balances the complexity of
the model against model robustness to achieve good
generalization on new data. SVM uses a data-driven
approach to finding the complexity factor.
Value of complexity factor for SVM algorithm (both
Classification and Regression).
Default value estimated from the data by the algorithm.

SVMS_CONV_TOLERANCE TO_CHAR(numeric_ex
pr >0)

Convergence tolerance for SVM algorithm.
Default is 0.0001.

SVMS_EPSILON TO_CHAR(numeric_ex
pr >0)

Regularization setting for regression, similar to
complexity factor. Epsilon specifies the allowable
residuals, or noise, in the data.
Value of epsilon factor for SVM regression.
Default is 0.1.

SVMS_KERNEL_FUNCTION SVMS_GAUSSIAN

SVMS_LINEAR

Kernel for Support Vector Machine. Linear or Gaussian.
The default value is SVMS_LINEAR.

SVMS_OUTLIER_RATE TO_CHAR(0<
numeric_expr <1)

The desired rate of outliers in the training data. Valid for
One-Class SVM models only (Anomaly Detection).
Default is 0.01.

SVMS_STD_DEV TO_CHAR(numeric_ex
pr >0)

Controls the spread of the Gaussian kernel function. SVM
uses a data-driven approach to find a standard deviation
value that is on the same scale as distances between
typical cases.
Value of standard deviation for SVM algorithm.
This is applicable only for Gaussian kernel.
Default value estimated from the data by the algorithm.

SVMS_NUM_ITERATIONS Positive integer This setting sets an upper limit on the number of SVM
iterations. The default is system determined because it
depends on the SVM solver.

SVMS_NUM_PIVOTS Range [1; 10000] This setting sets an upper limit on the number of pivots
used in the Incomplete Cholesky decomposition. It can
be set only for non-linear kernels. The default value is
200.

SVMS_BATCH_ROWS Positive integer This setting applies to SVM models with linear kernel.
This setting sets the size of the batch for the SGD solver.
An input of 0 triggers a data driven batch size estimate.
The default is 20000.

Chapter 36
DBMS_DATA_MINING

36-41

Table 36-27 (Cont.) SVM Settings

Setting Name Setting Value Description

SVMS_REGULARIZER SVMS_REGULARIZER_L
1

SVMS_REGULARIZER_L
2

This setting controls the type of regularization that the
SGD SVM solver uses. The setting can be used only for
linear SVM models. The default is system determined
because it depends on the potential model size.

SVMS_SOLVER SVMS_SOLVER_SGD
(Sub-Gradient
Descend)
SVMS_SOLVER_IPM
(Interior Point
Method)

This setting allows the user to choose the SVM solver.
The SGD solver cannot be selected if the kernel is non-
linear. The default value is system determined.

See Also:

Oracle Data Mining Concepts for information about SVM

36.1.3 DBMS_DATA_MINING — Solver Settings
Oracle Data Mining algorithms can use different solvers. Solver settings can be
provided at build time in the setting table.

Related Topics

• DBMS_DATA_MINING — Solver Settings: ADMM
The settings listed in the following table configure the behavior of Alternating
Direction Method of Multipliers (ADMM). Generalized Linear Models (GLM) use
these settings.

• DBMS_DATA_MINING — Solver Settings: LBFGS
The settings listed in the following table configure the behavior of L-BFGS. Neural
Network and Generalized Linear Models (GLM) use these settings.

36.1.3.1 DBMS_DATA_MINING — Solver Settings: ADMM
The settings listed in the following table configure the behavior of Alternating Direction
Method of Multipliers (ADMM). Generalized Linear Models (GLM) use these settings.

Table 36-28 DBMS_DATA_MINING ADMM Settings

Settings Name Setting Value Description

ADMM_CONSENSUS A positive integer It is a ADMM’s consensus
parameter. The value must be
a positive number. The default
value is 0.1.

ADMM_ITERATIONS A positive integer The number of ADMM iterations.
The value must be a positive
integer. The default value is 50.

Chapter 36
DBMS_DATA_MINING

36-42

Table 36-28 (Cont.) DBMS_DATA_MINING ADMM Settings

Settings Name Setting Value Description

ADMM_TOLERANCE A positive integer It is a tolerance parameter. The
value must be a positive number.
The default value is 0.0001

Related Topics

• Oracle Data Mining Concepts

See Also:

Oracle Data Mining Concepts for information about Neural Network

36.1.3.2 DBMS_DATA_MINING — Solver Settings: LBFGS
The settings listed in the following table configure the behavior of L-BFGS. Neural
Network and Generalized Linear Models (GLM) use these settings.

Table 36-29 DBMS_DATA_MINING L-BFGS Settings

Setting Name Setting Value Description

LBFGS_GRADIENT_TOLERANCE TO_CHAR (numeric_expr >0) Defines gradient infinity norm
tolerance for L-BFGS. Default
value is 1E-9.

LBFGS_HISTORY_DEPTH The value must be a positive
integer.

Defines the number of historical
copies kept in L-BFGS solver.
The default value is 20.

LBFGS_SCALE_HESSIAN LBFGS_SCALE_HESSIAN_ENABLE

LBFGS_SCALE_HESSIAN_DISABLE

Defines whether to scale Hessian
in L-BFGS or not.
Default value is
LBFGS_SCALE_HESSIAN_ENABLE.

See Also:

Oracle Data Mining Concepts for information about Neural Network

36.1.4 DBMS_DATA_MINING Datatypes
The DBMS_DATA_MINING package defines object datatypes for mining transactional
data. The package also defines a type for user-specified transformations. These types
are called DM_NESTED_n, where n identifies the Oracle datatype of the nested attributes.

The Data Mining object datatypes are described in the following table:

Chapter 36
DBMS_DATA_MINING

36-43

Table 36-30 DBMS_DATA_MINING Summary of Datatypes

Datatype Description

DM_NESTED_BINARY_DOUBLE The name and value of a numerical attribute of type
BINARY_DOUBLE.

DM_NESTED_BINARY_DOUBLES A collection of DM_NESTED_BINARY_DOUBLE.

DM_NESTED_BINARY_FLOAT The name and value of a numerical attribute of type
BINARY_FLOAT.

DM_NESTED_BINARY_FLOATS A collection of DM_NESTED_BINARY_FLOAT.

DM_NESTED_CATEGORICAL The name and value of a categorical attribute of type
CHAR, VARCHAR, or VARCHAR2.

DM_NESTED_CATEGORICALS A collection of DM_NESTED_CATEGORICAL.

DM_NESTED_NUMERICAL The name and value of a numerical attribute of type
NUMBER or FLOAT.

DM_NESTED_NUMERICALS A collection of DM_NESTED_NUMERICAL.

ORA_MINING_VARCHAR2_NT A table of VARCHAR2(4000).

TRANSFORM_LIST A list of user-specified transformations for a model.
Accepted as a parameter by the CREATE_MODEL
Procedure.

This collection type is defined in the
DBMS_DATA_MINING_TRANSFORM package.

For more information about mining nested data, see Oracle Data Mining User's Guide.

Note:

Starting from Oracle Database 12c Release 2, *GET_MODEL_DETAILS are
deprecated and are replaced with Model Detail Views. See Oracle Data
Mining User’s Guide.

36.1.4.1 Deprecated Types
This topic contains tables listing deprecated types.

The DBMS_DATA_MINING package defines object datatypes for storing information about
model attributes. Most of these types are returned by the table functions GET_n, where
n identifies the type of information to return. These functions take a model name as
input and return the requested information as a collection of rows.

For a list of the GET functions, see "Summary of DBMS_DATA_MINING Subprograms".

All the table functions use pipelining, which causes each row of output to be
materialized as it is read from model storage, without waiting for the generation of
the complete table object. For more information on pipelined, parallel table functions,
consult the Oracle Database PL/SQL Language Reference.

Chapter 36
DBMS_DATA_MINING

36-44

Table 36-31 DBMS_DATA_MINING Summary of Deprecated Datatypes

Datatype Description

DM_CENTROID The centroid of a cluster.

DM_CENTROIDS A collection of DM_CENTROID. A member of DM_CLUSTER.

DM_CHILD A child node of a cluster.

DM_CHILDREN A collection of DM_CHILD. A member of DM_CLUSTER.

DM_CLUSTER A cluster. A cluster includes DM_PREDICATES,
DM_CHILDREN, DM_CENTROIDS, and DM_HISTOGRAMS. It
also includes a DM_RULE.

See also, DM_CLUSTER Fields.

DM_CLUSTERS A collection of DM_CLUSTER. Returned
by GET_MODEL_DETAILS_KM Function,
GET_MODEL_DETAILS_OC Function, and
GET_MODEL_DETAILS_EM Function.

See also, DM_CLUSTER Fields.

DM_CONDITIONAL The conditional probability of an attribute in a Naive
Bayes model.

DM_CONDITIONALS A collection of DM_CONDITIONAL. Returned by
GET_MODEL_DETAILS_NB Function.

DM_COST_ELEMENT The actual and predicted values in a cost matrix.

DM_COST_MATRIX A collection of DM_COST_ELEMENT. Returned by
GET_MODEL_COST_MATRIX Function.

DM_EM_COMPONENT A component of an Expectation Maximization model.

DM_EM_COMPONENT_SET A collection of DM_EM_COMPONENT. Returned by
GET_MODEL_DETAILS_EM_COMP Function.

DM_EM_PROJECTION A projection of an Expectation Maximization model.

DM_EM_PROJECTION_SET A collection of DM_EM_PROJECTION. Returned by
GET_MODEL_DETAILS_EM_PROJ Function.

DM_GLM_COEFF The coefficient and associated statistics of an attribute
in a Generalized Linear Model.

DM_GLM_COEFF_SET A collection of DM_GLM_COEFF. Returned by
GET_MODEL_DETAILS_GLM Function.

DM_HISTOGRAM_BIN A histogram associated with a cluster.

DM_HISTOGRAMS A collection of DM_HISTOGRAM_BIN. A member of
DM_CLUSTER.

See also, DM_CLUSTER Fields.

DM_ITEM An item in an association rule.

DM_ITEMS A collection of DM_ITEM.

DM_ITEMSET A collection of DM_ITEMS.

DM_ITEMSETS A collection of DM_ITEMSET. Returned by
GET_FREQUENT_ITEMSETS Function.

DM_MODEL_GLOBAL_DETAIL High-level statistics about a model.

Chapter 36
DBMS_DATA_MINING

36-45

Table 36-31 (Cont.) DBMS_DATA_MINING Summary of Deprecated Datatypes

Datatype Description

DM_MODEL_GLOBAL_DETAILS A collection of DM_MODEL_GLOBAL_DETAIL. Returned by
GET_MODEL_DETAILS_GLOBAL Function.

DM_NB_DETAIL Information about an attribute in a Naive Bayes model.

DM_NB_DETAILS A collection of DM_DB_DETAIL. Returned by
GET_MODEL_DETAILS_NB Function.

DM_NMF_ATTRIBUTE An attribute in a feature of a Non-Negative Matrix
Factorization model.

DM_NMF_ATTRIBUTE_SET A collection of DM_NMF_ATTRIBUTE. A member of
DM_NMF_FEATURE.

DM_NMF_FEATURE A feature in a Non-Negative Matrix Factorization model.

DM_NMF_FEATURE_SET A collection of DM_NMF_FEATURE. Returned by
GET_MODEL_DETAILS_NMF Function.

DM_PREDICATE Antecedent and consequent in a rule.

DM_PREDICATES A collection of DM_PREDICATE. A member
of DM_RULE and DM_CLUSTER. Predicates
are returned by GET_ASSOCIATION_RULES
Function, GET_MODEL_DETAILS_EM Function,
GET_MODEL_DETAILS_KM Function, and
GET_MODEL_DETAILS_OC Function.

See also, DM_CLUSTER Fields.

DM_RANKED_ATTRIBUTE An attribute ranked by its importance in an Attribute
Importance model.

DM_RANKED_ATTRIBUTES A collection of DM_RANKED_ATTRIBUTE. Returned by
GET_MODEL_DETAILS_AI Function.

DM_RULE A rule that defines a conditional relationship.
The rule can be one of the association rules returned by
GET_ASSOCIATION_RULES Function, or it can be a rule
associated with a cluster in the collection of clusters
returned by GET_MODEL_DETAILS_KM Function and
GET_MODEL_DETAILS_OC Function.

See also, DM_CLUSTER Fields.

DM_RULES A collection of DM_RULE. Returned by
GET_ASSOCIATION_RULES Function.

See also, DM_CLUSTER Fields.

DM_SVD_MATRIX A factorized matrix S, V, or U returned by a Singular
Value Decomposition model.

DM_SVD_MATRIX_SET A collection of DM_SVD_MATRIX. Returned by
GET_MODEL_DETAILS_SVD Function.

DM_SVM_ATTRIBUTE The name, value, and coefficient of an attribute in a
Support Vector Machine model.

DM_SVM_ATTRIBUTE_SET A collection of DM_SVM_ATTRIBUTE. Returned by
GET_MODEL_DETAILS_SVM Function. Also a member of
DM_SVM_LINEAR_COEFF.

Chapter 36
DBMS_DATA_MINING

36-46

Table 36-31 (Cont.) DBMS_DATA_MINING Summary of Deprecated Datatypes

Datatype Description

DM_SVM_LINEAR_COEFF The linear coefficient of each attribute in a Support
Vector Machine model.

DM_SVM_LINEAR_COEFF_SET A collection of DM_SVM_LINEAR_COEFF. Returned by
GET_MODEL_DETAILS_SVM Function for an SVM model
built using the linear kernel.

DM_TRANSFORM The transformation and reverse transformation
expressions for an attribute.

DM_TRANSFORMS A collection of DM_TRANSFORM. Returned by
GET_MODEL_TRANSFORMATIONS Function.

Return Values for Clustering Algorithms

The table contains description of DM_CLUSTER return value columns, nested table
columns, and rows.

Table 36-32 DM_CLUSTER Return Values for Clustering Algorithms

Return Value Description

DM_CLUSTERS A set of rows of type DM_CLUSTER. The rows have the following
columns:

(id NUMBER,
 cluster_id VARCHAR2(4000),
 record_count NUMBER,
 parent NUMBER,
 tree_level NUMBER,
 dispersion NUMBER,
 split_predicate DM_PREDICATES,
 child DM_CHILDREN,
 centroid DM_CENTROIDS,
 histogram DM_HISTOGRAMS,
 rule DM_RULE)

DM_PREDICATE The antecedent and consequent columns each return nested tables
of type DM_PREDICATES. The rows, of type DM_PREDICATE, have the
following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 conditional_operator CHAR(2)/*=,<>,<,>,<=,>=*/,
 attribute_num_value NUMBER,
 attribute_str_value VARCHAR2(4000),
 attribute_support NUMBER,
 attribute_confidence NUMBER)

DM_CLUSTER Fields

The following table describes DM_CLUSTER fields.

Chapter 36
DBMS_DATA_MINING

36-47

Table 36-33 DM_CLUSTER Fields

Column Name Description

id Cluster identifier

cluster_id The ID of a cluster in the model

record_count Specifies the number of records

parent Parent ID

tree_level Specifies the number of splits from the root

dispersion A measure used to quantify whether a set of observed
occurrences are dispersed compared to a standard
statistical model.

split_predicate The split_predicate column of DM_CLUSTER returns a
nested table of type DM_PREDICATES. Each row, of type
DM_PREDICATE, has the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 conditional_operator CHAR(2) /
=,<>,<,>,<=,>=/,
 attribute_num_value NUMBER,
 attribute_str_value VARCHAR2(4000),
 attribute_support NUMBER,
 attribute_confidence NUMBER)

Note: The Expectation Maximization algorithm uses all
the fields except dispersion and split_predicate.

child The child column of DM_CLUSTER returns a nested
table of type DM_CHILDREN. The rows, of type DM_CHILD,
have a single column of type NUMBER, which contains
the identifiers of each child.

centroid The centroid column of DM_CLUSTER returns a nested
table of type DM_CENTROIDS. The rows, of type
DM_CENTROID, have the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 mean NUMBER,
 mode_value VARCHAR2(4000),
 variance NUMBER)

histogram The histogram column of DM_CLUSTER returns a
nested table of type DM_HISTOGRAMS. The rows, of type
DM_HISTOGRAM_BIN, have the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 bin_id NUMBER,
 lower_bound NUMBER,
 upper_bound NUMBER,
 label VARCHAR2(4000),
 count NUMBER)

Chapter 36
DBMS_DATA_MINING

36-48

Table 36-33 (Cont.) DM_CLUSTER Fields

Column Name Description

rule The rule column of DM_CLUSTER returns a single row of
type DM_RULE. The columns are:

 (rule_id INTEGER,
 antecedent DM_PREDICATES,
 consequent DM_PREDICATES,
 rule_support NUMBER,
 rule_confidence NUMBER,
 rule_lift NUMBER,
 antecedent_support NUMBER,
 consequent_support NUMBER,
 number_of_items INTEGER)

Usage Notes

• The table function pipes out rows of type DM_CLUSTER. For information on Data
Mining datatypes and piped output from table functions, see "Datatypes".

• For descriptions of predicates (DM_PREDICATE) and rules (DM_RULE), see
GET_ASSOCIATION_RULES Function.

36.1.5 Summary of DBMS_DATA_MINING Subprograms
This table summarizes the subprograms included in the DBMS_DATA_MINING package.

The GET_* interfaces are replaced by model views. Oracle recommends that users
leverage model detail views instead. For more information, refer to “Model Detail
Views” in Oracle Data Mining User’s Guide and "Static Data Dictionary Views:
ALL_ALL_TABLES to ALL_OUTLINES" in Oracle Database Reference.

Table 36-34 DBMS_DATA_MINING Package Subprograms

Subprogram Purpose

ADD_COST_MATRIX Procedure Adds a cost matrix to a classification model

ADD_PARTITION Procedure Adds single or multiple partitions in an existing
partition model

ALTER_REVERSE_EXPRESSION
Procedure

Changes the reverse transformation expression to
an expression that you specify

APPLY Procedure Applies a model to a data set (scores the data)

COMPUTE_CONFUSION_MATRIX
Procedure

Computes the confusion matrix for a classification
model

COMPUTE_CONFUSION_MATRIX
_PART Procedure

Computes the evaluation matrix for partitioned
models

COMPUTE_LIFT Procedure Computes lift for a classification model

COMPUTE_LIFT_PART Procedure Computers lift for partitioned models

COMPUTE_ROC Procedure Computes Receiver Operating Characteristic (ROC)
for a classification model

Chapter 36
DBMS_DATA_MINING

36-49

Table 36-34 (Cont.) DBMS_DATA_MINING Package Subprograms

Subprogram Purpose

COMPUTE_ROC_PART Procedure Computes Receiver Operating Characteristic (ROC)
for a partitioned model

CREATE_MODEL Procedure Creates a model

CREATE_MODEL2 Procedure Creates a model without extra persistent stages

Create Model Using Registration
Information

Fetches setting information from JSON object

DROP_ALGORITHM Procedure Drops the registered algorithm information.

DROP_PARTITION Procedure Drops a single partition

DROP_MODEL Procedure Drops a model

EXPORT_MODEL Procedure Exports a model to a dump file

EXPORT_SERMODEL Procedure Exports a model in a serialized format

FETCH_JSON_SCHEMA Procedure Fetches and reads JSON schema from
all_mining_algorithms view

GET_MODEL_COST_MATRIX
Function

Returns the cost matrix for a model

IMPORT_MODEL Procedure Imports a model into a user schema

IMPORT_SERMODEL Procedure Imports a serialized model back into the database

JSON Schema for R Extensible
Algorithm

Displays flexibility in creating JSON schema for R
Extensible

REGISTER_ALGORITHM
Procedure

Registers a new algorithm

RANK_APPLY Procedure Ranks the predictions from the APPLY results for a
classification model

REMOVE_COST_MATRIX
Procedure

Removes a cost matrix from a model

RENAME_MODEL Procedure Renames a model

Deprecated GET_MODEL_DETAILS

Starting from Oracle Database 12c Release 2, the following GET_MODEL_DETAILS are
deprecated:

Table 36-35 Deprecated GET_MODEL_DETAILS Functions

Subprogram Purpose

GET_ASSOCIATION_RULES Function Returns the rules from an association
model

GET_FREQUENT_ITEMSETS Function Returns the frequent itemsets for an
association model

GET_MODEL_DETAILS_AI Function Returns details about an Attribute
Importance model

GET_MODEL_DETAILS_EM Function Returns details about an Expectation
Maximization model

Chapter 36
DBMS_DATA_MINING

36-50

Table 36-35 (Cont.) Deprecated GET_MODEL_DETAILS Functions

Subprogram Purpose

GET_MODEL_DETAILS_EM_COMP Function Returns details about the parameters of an
Expectation Maximization model

GET_MODEL_DETAILS_EM_PROJ Function Returns details about the projects of an
Expectation Maximization model

GET_MODEL_DETAILS_GLM Function Returns details about a Generalized Linear
Model

GET_MODEL_DETAILS_GLOBAL Function Returns high-level statistics about a model

GET_MODEL_DETAILS_KM Function Returns details about a k-Means model

GET_MODEL_DETAILS_NB Function Returns details about a Naive Bayes model

GET_MODEL_DETAILS_NMF Function Returns details about a Non-Negative
Matrix Factorization model

GET_MODEL_DETAILS_OC Function Returns details about an O-Cluster model

GET_MODEL_SETTINGS Function Returns the settings used to build the given
model
This function is replaced with USER/ALL/
DBA_MINING_MODEL_SETTINGS

GET_MODEL_SIGNATURE Function Returns the list of columns from the build
input table
This function is replaced with USER/ALL/
DBA_MINING_MODEL_ATTRIBUTES

GET_MODEL_DETAILS_SVD Function Returns details about a Singular Value
Decomposition model

GET_MODEL_DETAILS_SVM Function Returns details about a Support Vector
Machine model with a linear kernel

GET_MODEL_TRANSFORMATIONS
Function

Returns the transformations embedded in
a model
This function is replaced with USER/ALL/
DBA_MINING_MODEL_XFORMS

GET_MODEL_DETAILS_XML Function Returns details about a Decision Tree
model

GET_TRANSFORM_LIST Procedure Converts between two different
transformation specification formats

Related Topics

• Oracle Data Mining User’s Guide

• Oracle Database Reference

Chapter 36
DBMS_DATA_MINING

36-51

36.1.5.1 ADD_COST_MATRIX Procedure
The ADD_COST_MATRIX procedure associates a cost matrix table with a Classification
model. The cost matrix biases the model by assigning costs or benefits to specific
model outcomes.

The cost matrix is stored with the model and taken into account when the model is
scored.

You can also specify a cost matrix inline when you invoke a Data Mining SQL function
for scoring. To view the scoring matrix for a model, query the DM$VC prefixed model
view. Refer to Model Detail View for Classification Algorithm.

To obtain the default scoring matrix for a model, query the DM$VC prefixed
model view. To remove the default scoring matrix from a model, use the
REMOVE_COST_MATRIX procedure. See "GET_MODEL_COST_MATRIX Function" and
"REMOVE_COST_MATRIX Procedure".

See Also:

• "Biasing a Classification Model" in Oracle Data Mining Concepts for
more information about costs

• Oracle Database SQL Language Reference for syntax of inline cost
matrix

• Oracle Data Mining User’s Guide

Syntax

DBMS_DATA_MINING.ADD_COST_MATRIX (
 model_name IN VARCHAR2,
 cost_matrix_table_name IN VARCHAR2,
 cost_matrix_schema_name IN VARCHAR2 DEFAULT NULL);
 partition_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-36 ADD_COST_MATRIX Procedure Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name.
If you do not specify a schema, then your own schema is
assumed.

cost_matrix_table_nam
e

Name of the cost matrix table (described in Table 36-37).

cost_matrix_schema_na
me

Schema of the cost matrix table. If no schema is specified,
then the current schema is used.

partition_name Name of the partition in a partitioned model

Chapter 36
DBMS_DATA_MINING

36-52

Usage Notes

1. If the model is not in your schema, then ADD_COST_MATRIX requires the ALTER ANY
MINING MODEL system privilege or the ALTER object privilege for the mining model.

2. The cost matrix table must have the columns shown in Table 36-37.

Table 36-37 Required Columns in a Cost Matrix Table

Column Name Datatype

ACTUAL_TARGET_VALUE Valid target data type

PREDICTED_TARGET_VALUE Valid target data type

COST NUMBER,FLOAT, BINARY_DOUBLE, or BINARY_FLOAT

See Also:

Oracle Data Mining User's Guide for valid target datatypes

3. The types of the actual and predicted target values must be the same as the type
of the model target. For example, if the target of the model is BINARY_DOUBLE,
then the actual and predicted values must be BINARY_DOUBLE. If the actual and
predicted values are CHAR or VARCHAR, then ADD_COST_MATRIX treats them as
VARCHAR2 internally.

If the types do not match, or if the actual or predicted value is not a valid target
value, then the ADD_COST_MATRIX procedure raises an error.

Note:

If a reverse transformation is associated with the target, then the actual
and predicted values must be consistent with the target after the reverse
transformation has been applied.

See “Reverse Transformations and Model Transparency”
under the “About Transformation Lists” section in
DBMS_DATA_MINING_TRANSFORM Operational Notes for more
information.

4. Since a benefit can be viewed as a negative cost, you can specify a benefit for
a given outcome by providing a negative number in the costs column of the cost
matrix table.

5. All Classification algorithms can use a cost matrix for scoring. The Decision
Tree algorithm can also use a cost matrix at build time. If you want to build a
Decision Tree model with a cost matrix, specify the cost matrix table name in the
CLAS_COST_TABLE_NAME setting in the settings table for the model. See Table 36-7.

The cost matrix used to create a Decision Tree model becomes the default
scoring matrix for the model. If you want to specify different costs for scoring,
use the REMOVE_COST_MATRIX procedure to remove the cost matrix and the
ADD_COST_MATRIX procedure to add a new one.

Chapter 36
DBMS_DATA_MINING

36-53

6. Scoring on a partitioned model is partition-specific. Scoring cost matrices can
be added to or removed from an individual partition in a partitioned model. If
PARTITION_NAME is NOT NULL, then the model must be a partitioned model. The
COST_MATRIX is added to that partition of the partitioned model.

If the PARTITION_NAME is NULL, but the model is a partitioned model, then the
COST_MATRIX table is added to every partition in the model.

Example

This example creates a cost matrix table called COSTS_NB and adds it to a Naive
Bayes model called NB_SH_CLAS_SAMPLE. The model has a binary target: 1 means
that the customer responds to a promotion; 0 means that the customer does not
respond. The cost matrix assigns a cost of .25 to misclassifications of customers who
do not respond and a cost of .75 to misclassifications of customers who do respond.
This means that it is three times more costly to misclassify responders than it is to
misclassify non-responders.

CREATE TABLE costs_nb (
 actual_target_value NUMBER,
 predicted_target_value NUMBER,
 cost NUMBER);
INSERT INTO costs_nb values (0, 0, 0);
INSERT INTO costs_nb values (0, 1, .25);
INSERT INTO costs_nb values (1, 0, .75);
INSERT INTO costs_nb values (1, 1, 0);
COMMIT;

EXEC dbms_data_mining.add_cost_matrix('nb_sh_clas_sample', 'costs_nb');

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION(nb_sh_clas_sample COST MODEL
 USING cust_marital_status, education, household_size) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 72 39
M 555 44

36.1.5.2 ADD_PARTITION Procedure
ADD_PARTITION procedure supports a single or multiple partition addition to an existing
partitioned model.

The ADD_PARTITION procedure derives build settings and user-defined expressions
from the existing model. The target column must exist in the input data query when
adding partitions to a supervised model.

Syntax

DBMS_DATA_MINING.ADD_PARTITION (
 model_name IN VARCHAR2,
 data_query IN CLOB,
 add_options IN VARCHAR2 DEFAULT ERROR);

Chapter 36
DBMS_DATA_MINING

36-54

Parameters

Table 36-38 ADD_PARTITION Procedure Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If you do not
specify a schema, then your own schema is used.

data_query An arbitrary SQL statement that provides data to the model build. The user
must have privilege to evaluate this query.

add_options Allows users to control the conditional behavior of ADD for cases where
rows in the input dataset conflict with existing partitions in the model. The
following are the possible values:
• REPLACE: Replaces the existing partition for which the conflicting keys

are found.
• ERROR: Terminates the ADD operation without adding any partitions.
• IGNORE: Eliminates the rows having the conflicting keys.

Note:

For better performance, Oracle recommends
using DROP_PARTITION followed by the
ADD_PARTITION instead of using the REPLACE
option.

36.1.5.3 ALTER_REVERSE_EXPRESSION Procedure
This procedure replaces a reverse transformation expression with an expression that
you specify. If the attribute does not have a reverse expression, the procedure creates
one from the specified expression.

You can also use this procedure to customize the output of clustering, feature
extraction, and anomaly detection models.

Syntax

DBMS_DATA_MINING.ALTER_REVERSE_EXPRESSION (
 model_name VARCHAR2,
 expression CLOB,
 attribute_name VARCHAR2 DEFAULT NULL,
 attribute_subname VARCHAR2 DEFAULT NULL);

Parameters

Table 36-39 ALTER_REVERSE_EXPRESSION Procedure Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If
you do not specify a schema, your own schema is used.

Chapter 36
DBMS_DATA_MINING

36-55

Table 36-39 (Cont.) ALTER_REVERSE_EXPRESSION Procedure Parameters

Parameter Description

expression An expression to replace the reverse transformation associated
with the attribute.

attribute_name Name of the attribute. Specify NULL if you wish to apply
expression to a cluster, feature, or One-Class SVM prediction.

attribute_subname Name of the nested attribute if attribute_name is a nested
column, otherwise NULL.

Usage Notes

1. For purposes of model transparency, Oracle Data Mining provides reverse
transformations for transformations that are embedded in a model. Reverse
transformations are applied to the attributes returned in model details
(GET_MODEL_DETAILS_* functions) and to the scored target of predictive models.

See Also:

“About Transformation Lists” under
DBMS_DATA_MINING_TRANSFORM Operational Notes

2. If you alter the reverse transformation for the target of a model that has a cost
matrix, you must specify a transformation expression that has the same type as
the actual and predicted values in the cost matrix. Also, the reverse transformation
that you specify must result in values that are present in the cost matrix.

See Also:

"ADD_COST_MATRIX Procedure" and Oracle Data Mining Concepts for
information about cost matrixes.

3. To prevent reverse transformation of an attribute, you can specify NULL for
expression.

4. The reverse transformation expression can contain a reference to a PL/SQL
function that returns a valid Oracle datatype. For example, you could define a
function like the following for a categorical attribute named blood_pressure that
has values 'Low', 'Medium' and 'High'.

CREATE OR REPLACE FUNCTION numx(c char) RETURN NUMBER IS
 BEGIN
 CASE c WHEN ''Low'' THEN RETURN 1;
 WHEN ''Medium'' THEN RETURN 2;
 WHEN ''High'' THEN RETURN 3;
 ELSE RETURN null;
 END CASE;
 END numx;

Then you could invoke ALTER_REVERSE_EXPRESION for blood_pressure as follows.

Chapter 36
DBMS_DATA_MINING

36-56

EXEC dbms_data_mining.alter_reverse_expression(
 '<model_name>', 'NUMX(blood_pressure)', 'blood_pressure');

5. You can use ALTER_REVERSE_EXPRESSION to label clusters produced by clustering
models and features produced by feature extraction.

You can use ALTER_REVERSE_EXPRESSION to replace the zeros and ones returned
by anomaly-detection models. By default, anomaly-detection models label
anomalous records with 0 and all other records with 1.

See Also:

Oracle Data Mining Concepts for information about anomaly detection

Examples

1. In this example, the target (affinity_card) of the model CLASS_MODEL is
manipulated internally as yes or no instead of 1 or 0 but returned as 1s and 0s
when scored. The ALTER_REVERSE_EXPRESSION procedure causes the target values
to be returned as TRUE or FALSE.

The data sets MINING_DATA_BUILD and MINING_DATA_TEST are included with the
Oracle Data Mining sample programs. See Oracle Data Mining User's Guide for
information about the sample programs.

DECLARE
 v_xlst dbms_data_mining_transform.TRANSFORM_LIST;
 BEGIN
 dbms_data_mining_transform.SET_TRANSFORM(v_xlst,
 'affinity_card', NULL,
 'decode(affinity_card, 1, ''yes'', ''no'')',
 'decode(affinity_card, ''yes'', 1, 0)');
 dbms_data_mining.CREATE_MODEL(
 model_name => 'CLASS_MODEL',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data_build',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 settings_table_name => NULL,
 data_schema_name => 'dmuser',
 settings_schema_name => NULL,
 xform_list => v_xlst);
 END;
/
SELECT cust_income_level, occupation,
 PREDICTION(CLASS_MODEL USING *) predict_response
 FROM mining_data_test WHERE age = 60 AND cust_gender IN 'M'
 ORDER BY cust_income_level;

CUST_INCOME_LEVEL OCCUPATION PREDICT_RESPONSE
------------------------------ --------------------- --------------------
A: Below 30,000 Transp. 1
E: 90,000 - 109,999 Transp. 1
E: 90,000 - 109,999 Sales 1
G: 130,000 - 149,999 Handler 0
G: 130,000 - 149,999 Crafts 0
H: 150,000 - 169,999 Prof. 1
J: 190,000 - 249,999 Prof. 1

Chapter 36
DBMS_DATA_MINING

36-57

J: 190,000 - 249,999 Sales 1

BEGIN
 dbms_data_mining.ALTER_REVERSE_EXPRESSION (
 model_name => 'CLASS_MODEL',
 expression => 'decode(affinity_card, ''yes'', ''TRUE'',
''FALSE'')',
 attribute_name => 'affinity_card');
END;
/
column predict_response on
column predict_response format a20
SELECT cust_income_level, occupation,
 PREDICTION(CLASS_MODEL USING *) predict_response
 FROM mining_data_test WHERE age = 60 AND cust_gender IN 'M'
 ORDER BY cust_income_level;

CUST_INCOME_LEVEL OCCUPATION PREDICT_RESPONSE
------------------------------ --------------------- --------------------
A: Below 30,000 Transp. TRUE
E: 90,000 - 109,999 Transp. TRUE
E: 90,000 - 109,999 Sales TRUE
G: 130,000 - 149,999 Handler FALSE
G: 130,000 - 149,999 Crafts FALSE
H: 150,000 - 169,999 Prof. TRUE
J: 190,000 - 249,999 Prof. TRUE
J: 190,000 - 249,999 Sales TRUE

2. This example specifies labels for the clusters that result from the sh_clus model.
The labels consist of the word "Cluster" and the internal numeric identifier for the
cluster.

BEGIN
 dbms_data_mining.ALTER_REVERSE_EXPRESSION('sh_clus', '''Cluster ''||
value');
END;
/

SELECT cust_id, cluster_id(sh_clus using *) cluster_id
 FROM sh_aprep_num
 WHERE cust_id < 100011
 ORDER by cust_id;

CUST_ID CLUSTER_ID
------- --
 100001 Cluster 18
 100002 Cluster 14
 100003 Cluster 14
 100004 Cluster 18
 100005 Cluster 19
 100006 Cluster 7
 100007 Cluster 18
 100008 Cluster 14
 100009 Cluster 8
 100010 Cluster 8

Chapter 36
DBMS_DATA_MINING

36-58

36.1.5.4 APPLY Procedure
The APPLY procedure applies a mining model to the data of interest, and generates the
results in a table. The APPLY procedure is also referred to as scoring.

For predictive mining functions, the APPLY procedure generates predictions in a target
column. For descriptive mining functions such as Clustering, the APPLY process
assigns each case to a cluster with a probability.

In Oracle Data Mining, the APPLY procedure is not applicable to Association models
and Attribute Importance models.

Note:

Scoring can also be performed directly in SQL using the Data Mining
functions. See

• "Data Mining Functions" in Oracle Database SQL Language Reference

• "Scoring and Deployment" in Oracle Data Mining User's Guide

Syntax

DBMS_DATA_MINING.APPLY (
 model_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 result_table_name IN VARCHAR2,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-40 APPLY Procedure Parameters

Parameter Description

model_name Name of the model in the form
[schema_name.]model_name. If you do not specify a
schema, then your own schema is used.

data_table_name Name of table or view containing the data to be scored

case_id_column_name Name of the case identifier column

result_table_name Name of the table in which to store apply results

data_schema_name Name of the schema containing the data to be scored

Usage Notes

1. The data provided for APPLY must undergo the same preprocessing as the data
used to create and test the model. When you use Automatic Data Preparation, the
preprocessing required by the algorithm is handled for you by the model: both at
build time and apply time. (See "Automatic Data Preparation".)

2. APPLY creates a table in the user's schema to hold the results. The columns are
algorithm-specific.

Chapter 36
DBMS_DATA_MINING

36-59

The columns in the results table are listed in Table 36-41 through Table 36-45. The
case ID column name in the results table will match the case ID column name
provided by you. The type of the incoming case ID column is also preserved in
APPLY output.

Note:

Make sure that the case ID column does not have the same name as
one of the columns that will be created by APPLY. For example, when
applying a Classification model, the case ID in the scoring data must not
be PREDICTION or PROBABILITY (See Table 36-41).

3. The datatype for the PREDICTION, CLUSTER_ID, and FEATURE_ID output columns is
influenced by any reverse expression that is embedded in the model by the user.
If the user does not provide a reverse expression that alters the scored value
type, then the types will conform to the descriptions in the following tables. See
"ALTER_REVERSE_EXPRESSION Procedure".

4. If the model is partitioned, the result_table_name can contain results from
different partitions depending on the data from the input data table. An additional
column called PARTITION_NAME is added to the result table indicating the partition
name that is associated with each row.

For a non-partitioned model, the behavior does not change.

Classification

The results table for Classification has the columns described in Table 36-41. If
the target of the model is categorical, the PREDICTION column will have a VARCHAR2
datatype. If the target has a binary type, the PREDICTION column will have the binary
type of the target.

Table 36-41 APPLY Results Table for Classification

Column Name Datatype

Case ID column name Type of the case ID

PREDICTION Type of the target

PROBABILITY BINARY_DOUBLE

Anomaly Detection

The results table for Anomaly Detection has the columns described in Table 36-42.

Table 36-42 APPLY Results Table for Anomaly Detection

Column Name Datatype

Case ID column name Type of the case ID

PREDICTION NUMBER

PROBABILITY BINARY_DOUBLE

Regression

Chapter 36
DBMS_DATA_MINING

36-60

The results table for Regression has the columns described in APPLY Procedure.

Table 36-43 APPLY Results Table for Regression

Column Name Datatype

Case ID column name Type of the case ID

PREDICTION Type of the target

Clustering

Clustering is an unsupervised mining function, and hence there are no targets. The
results of an APPLY procedure will contain simply the cluster identifier corresponding to
a case, and the associated probability. The results table has the columns described in
Table 36-44.

Table 36-44 APPLY Results Table for Clustering

Column Name Datatype

Case ID column name Type of the case ID

CLUSTER_ID NUMBER

PROBABILITY BINARY_DOUBLE

Feature Extraction

Feature Extraction is also an unsupervised mining function, and hence there are no
targets. The results of an APPLY procedure will contain simply the feature identifier
corresponding to a case, and the associated match quality. The results table has the
columns described in Table 36-45.

Table 36-45 APPLY Results Table for Feature Extraction

Column Name Datatype

Case ID column name Type of the case ID

FEATURE_ID NUMBER

MATCH_QUALITY BINARY_DOUBLE

Examples

This example applies the GLM Regression model GLMR_SH_REGR_SAMPLE to the
data in the MINING_DATA_APPLY_V view. The APPLY results are output of the table
REGRESSION_APPLY_RESULT.

SQL> BEGIN
 DBMS_DATA_MINING.APPLY (
 model_name => 'glmr_sh_regr_sample',
 data_table_name => 'mining_data_apply_v',
 case_id_column_name => 'cust_id',
 result_table_name => 'regression_apply_result');
 END;
 /

Chapter 36
DBMS_DATA_MINING

36-61

SQL> SELECT * FROM regression_apply_result WHERE cust_id > 101485;

 CUST_ID PREDICTION
---------- ----------
 101486 22.8048824
 101487 25.0261101
 101488 48.6146619
 101489 51.82595
 101490 22.6220714
 101491 61.3856816
 101492 24.1400748
 101493 58.034631
 101494 45.7253149
 101495 26.9763318
 101496 48.1433425
 101497 32.0573434
 101498 49.8965531
 101499 56.270656
 101500 21.1153047

36.1.5.5 COMPUTE_CONFUSION_MATRIX Procedure
This procedure computes a confusion matrix, stores it in a table in the user's schema,
and returns the model accuracy.

A confusion matrix is a test metric for classification models. It compares the predictions
generated by the model with the actual target values in a set of test data. The
confusion matrix lists the number of times each class was correctly predicted and
the number of times it was predicted to be one of the other classes.

COMPUTE_CONFUSION_MATRIX accepts three input streams:

• The predictions generated on the test data. The information is passed in three
columns:

– Case ID column

– Prediction column

– Scoring criterion column containing either probabilities or costs

• The known target values in the test data. The information is passed in two
columns:

– Case ID column

– Target column containing the known target values

• (Optional) A cost matrix table with predefined columns. See the Usage Notes for
the column requirements.

See Also:

Oracle Data Mining Concepts for more details about confusion matrixes and
other test metrics for classification

"COMPUTE_LIFT Procedure"

"COMPUTE_ROC Procedure"

Chapter 36
DBMS_DATA_MINING

36-62

Syntax

DBMS_DATA_MINING.COMPUTE_CONFUSION_MATRIX (
 accuracy OUT NUMBER,
 apply_result_table_name IN VARCHAR2,
 target_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 confusion_matrix_table_name IN VARCHAR2,
 score_column_name IN VARCHAR2 DEFAULT 'PREDICTION',
 score_criterion_column_name IN VARCHAR2 DEFAULT 'PROBABILITY',
 cost_matrix_table_name IN VARCHAR2 DEFAULT NULL,
 apply_result_schema_name IN VARCHAR2 DEFAULT NULL,
 target_schema_name IN VARCHAR2 DEFAULT NULL,
 cost_matrix_schema_name IN VARCHAR2 DEFAULT NULL,
 score_criterion_type IN VARCHAR2 DEFAULT 'PROBABILITY');

Parameters

Table 36-46 COMPUTE_CONFUSION_MATRIX Procedure Parameters

Parameter Description

accuracy Output parameter containing the overall
percentage accuracy of the predictions.

apply_result_table_name Table containing the predictions.

target_table_name Table containing the known target values from the
test data.

case_id_column_name Case ID column in the apply results table. Must
match the case identifier in the targets table.

target_column_name Target column in the targets table. Contains the
known target values from the test data.

confusion_matrix_table_name Table containing the confusion matrix. The table
will be created by the procedure in the user's
schema.
The columns in the confusion matrix table are
described in the Usage Notes.

score_column_name Column containing the predictions in the apply
results table.
The default column name is PREDICTION, which is
the default name created by the APPLY procedure
(See "APPLY Procedure").

Chapter 36
DBMS_DATA_MINING

36-63

Table 36-46 (Cont.) COMPUTE_CONFUSION_MATRIX Procedure Parameters

Parameter Description

score_criterion_column_name Column containing the scoring criterion in the
apply results table. Contains either the probabilities
or the costs that determine the predictions.
By default, scoring is based on probability; the class
with the highest probability is predicted for each
case. If scoring is based on cost, the class with the
lowest cost is predicted.
The score_criterion_type parameter indicates
whether probabilities or costs will be used for
scoring.
The default column name is 'PROBABILITY', which
is the default name created by the APPLY procedure
(See "APPLY Procedure").

See the Usage Notes for additional information.

cost_matrix_table_name (Optional) Table that defines the costs associated
with misclassifications. If a cost matrix table
is provided and the score_criterion_type
parameter is set to 'COSTS', the costs in this table
will be used as the scoring criteria.
The columns in a cost matrix table are described in
the Usage Notes.

apply_result_schema_name Schema of the apply results table.
If null, the user's schema is assumed.

target_schema_name Schema of the table containing the known targets.
If null, the user's schema is assumed.

cost_matrix_schema_name Schema of the cost matrix table, if one is provided.
If null, the user's schema is assumed.

score_criterion_type Whether to use probabilities or costs as
the scoring criterion. Probabilities or costs
are passed in the column identified in the
score_criterion_column_name parameter.

The default value of score_criterion_type is
'PROBABILITY'. To use costs as the scoring
criterion, specify 'COST'.

If score_criterion_type is set to 'COST' but no
cost matrix is provided and if there is a scoring
cost matrix associated with the model, then the
associated costs are used for scoring.
See the Usage Notes and the Examples.

Usage Notes

• The predictive information you pass to COMPUTE_CONFUSION_MATRIX may be
generated using SQL PREDICTION functions, the DBMS_DATA_MINING.APPLY
procedure, or some other mechanism. As long as you pass the appropriate data,
the procedure can compute the confusion matrix.

Chapter 36
DBMS_DATA_MINING

36-64

• Instead of passing a cost matrix to COMPUTE_CONFUSION_MATRIX, you can use a
scoring cost matrix associated with the model. A scoring cost matrix can be
embedded in the model or it can be defined dynamically when the model is
applied. To use a scoring cost matrix, invoke the SQL PREDICTION_COST function to
populate the score criterion column.

• The predictions that you pass to COMPUTE_CONFUSION_MATRIX are in a table or view
specified in apply_result_table_name.

CREATE TABLE apply_result_table_name AS (
 case_id_column_name VARCHAR2,
 score_column_name VARCHAR2,
 score_criterion_column_name VARCHAR2);

• A cost matrix must have the columns described in Table 36-47.

Table 36-47 Columns in a Cost Matrix

Column Name Datatype

actual_target_value Type of the target column in the build data

predicted_target_va
lue

Type of the predicted target in the test data. The type of the
predicted target must be the same as the type of the actual
target unless the predicted target has an associated reverse
transformation.

cost BINARY_DOUBLE

See Also:

Oracle Data Mining User's Guide for valid target datatypes

Oracle Data Mining Concepts for more information about cost matrixes

• The confusion matrix created by COMPUTE_CONFUSION_MATRIX has the columns
described in Table 36-48.

Table 36-48 Columns in a Confusion Matrix

Column Name Datatype

actual_target_value Type of the target column in the build data

predicted_target_va
lue

Type of the predicted target in the test data. The type of
the predicted target is the same as the type of the actual
target unless the predicted target has an associated reverse
transformation.

value BINARY_DOUBLE

See Also:

Oracle Data Mining Concepts for more information about confusion
matrixes

Chapter 36
DBMS_DATA_MINING

36-65

Examples

These examples use the Naive Bayes model nb_sh_clas_sample, which is created by
one of the Oracle Data Mining sample programs.

Compute a Confusion Matrix Based on Probabilities

The following statement applies the model to the test data and stores the predictions
and probabilities in a table.

CREATE TABLE nb_apply_results AS
 SELECT cust_id,
 PREDICTION(nb_sh_clas_sample USING *) prediction,
 PREDICTION_PROBABILITY(nb_sh_clas_sample USING *) probability
 FROM mining_data_test_v;

Using probabilities as the scoring criterion, you can compute the confusion matrix as
follows.

DECLARE
 v_accuracy NUMBER;
 BEGIN
 DBMS_DATA_MINING.COMPUTE_CONFUSION_MATRIX (
 accuracy => v_accuracy,
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 confusion_matrix_table_name => 'nb_confusion_matrix',
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'PROBABILITY'
 cost_matrix_table_name => null,
 apply_result_schema_name => null,
 target_schema_name => null,
 cost_matrix_schema_name => null,
 score_criterion_type => 'PROBABILITY');
 DBMS_OUTPUT.PUT_LINE('**** MODEL ACCURACY ****: ' ||
ROUND(v_accuracy,4));
 END;
 /

The confusion matrix and model accuracy are shown as follows.

 **** MODEL ACCURACY ****: .7847

SQL>SELECT * from nb_confusion_matrix;
ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE VALUE
------------------- ---------------------- ----------
 1 0 60
 0 0 891
 1 1 286
 0 1 263

Compute a Confusion Matrix Based on a Cost Matrix Table

The confusion matrix in the previous example shows a high rate of false positives. For
263 cases, the model predicted 1 when the actual value was 0. You could use a cost
matrix to minimize this type of error.

Chapter 36
DBMS_DATA_MINING

36-66

The cost matrix table nb_cost_matrix specifies that a false positive is 3 times more
costly than a false negative.

SQL> SELECT * from nb_cost_matrix;
ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST
------------------- ---------------------- ----------
 0 0 0
 0 1 .75
 1 0 .25
 1 1 0

This statement shows how to generate the predictions using APPLY.

BEGIN
 DBMS_DATA_MINING.APPLY(
 model_name => 'nb_sh_clas_sample',
 data_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 result_table_name => 'nb_apply_results');
 END;
/

This statement computes the confusion matrix using the cost matrix table. The score
criterion column is named 'PROBABILITY', which is the name generated by APPLY.

DECLARE
 v_accuracy NUMBER;
 BEGIN
 DBMS_DATA_MINING.COMPUTE_CONFUSION_MATRIX (
 accuracy => v_accuracy,
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 confusion_matrix_table_name => 'nb_confusion_matrix',
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'PROBABILITY',
 cost_matrix_table_name => 'nb_cost_matrix',
 apply_result_schema_name => null,
 target_schema_name => null,
 cost_matrix_schema_name => null,
 score_criterion_type => 'COST');
 DBMS_OUTPUT.PUT_LINE('**** MODEL ACCURACY ****: ' || ROUND(v_accuracy,4));
 END;
 /

The resulting confusion matrix shows a decrease in false positives (212 instead of
263).

**** MODEL ACCURACY ****: .798

SQL> SELECT * FROM nb_confusion_matrix;
ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE VALUE
------------------- ---------------------- ----------
 1 0 91
 0 0 942
 1 1 255
 0 1 212

Compute a Confusion Matrix Based on Embedded Costs

Chapter 36
DBMS_DATA_MINING

36-67

You can use the ADD_COST_MATRIX procedure to embed a cost matrix in a model. The
embedded costs can be used instead of probabilities for scoring. This statement adds
the previously-defined cost matrix to the model.

BEGIN DBMS_DATA_MINING.ADD_COST_MATRIX ('nb_sh_clas_sample',
'nb_cost_matrix');END;/

The following statement applies the model to the test data using the embedded costs
and stores the results in a table.

CREATE TABLE nb_apply_results AS
 SELECT cust_id,
 PREDICTION(nb_sh_clas_sample COST MODEL USING *) prediction,
 PREDICTION_COST(nb_sh_clas_sample COST MODEL USING *) cost
 FROM mining_data_test_v;

You can compute the confusion matrix using the embedded costs.

DECLARE
 v_accuracy NUMBER;
 BEGIN
 DBMS_DATA_MINING.COMPUTE_CONFUSION_MATRIX (
 accuracy => v_accuracy,
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 confusion_matrix_table_name => 'nb_confusion_matrix',
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'COST',
 cost_matrix_table_name => null,
 apply_result_schema_name => null,
 target_schema_name => null,
 cost_matrix_schema_name => null,
 score_criterion_type => 'COST');
 END;
 /

The results are:

**** MODEL ACCURACY ****: .798

SQL> SELECT * FROM nb_confusion_matrix;
ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE VALUE
------------------- ---------------------- ----------
 1 0 91
 0 0 942
 1 1 255
 0 1 212

36.1.5.6 COMPUTE_CONFUSION_MATRIX_PART Procedure
The COMPUTE_CONFUSION_MATRIX_PART procedure computes a confusion matrix, stores
it in a table in the user's schema, and returns the model accuracy.

COMPUTE_CONFUSION_MATRIX_PART provides support to computation of evaluation
metrics per-partition for partitioned models. For non-partitioned models, refer to
COMPUTE_CONFUSION_MATRIX Procedure.

Chapter 36
DBMS_DATA_MINING

36-68

A confusion matrix is a test metric for Classification models. It compares the
predictions generated by the model with the actual target values in a set of test data.
The confusion matrix lists the number of times each class was correctly predicted and
the number of times it was predicted to be one of the other classes.

COMPUTE_CONFUSION_MATRIX_PART accepts three input streams:

• The predictions generated on the test data. The information is passed in three
columns:

– Case ID column

– Prediction column

– Scoring criterion column containing either probabilities or costs

• The known target values in the test data. The information is passed in two
columns:

– Case ID column

– Target column containing the known target values

• (Optional) A cost matrix table with predefined columns. See the Usage Notes for
the column requirements.

See Also:

Oracle Data Mining Concepts for more details about confusion matrixes and
other test metrics for classification

"COMPUTE_LIFT_PART Procedure"

"COMPUTE_ROC_PART Procedure"

Syntax

DBMS_DATA_MINING.compute_confusion_matrix_part(
 accuracy OUT DM_NESTED_NUMERICALS,
 apply_result_table_name IN VARCHAR2,
 target_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 confusion_matrix_table_name IN VARCHAR2,
 score_column_name IN VARCHAR2 DEFAULT 'PREDICTION',
 score_criterion_column_name IN VARCHAR2 DEFAULT 'PROBABILITY',
 score_partition_column_name IN VARCHAR2 DEFAULT 'PARTITION_NAME',
 cost_matrix_table_name IN VARCHAR2 DEFAULT NULL,
 apply_result_schema_name IN VARCHAR2 DEFAULT NULL,
 target_schema_name IN VARCHAR2 DEFAULT NULL,
 cost_matrix_schema_name IN VARCHAR2 DEFAULT NULL,
 score_criterion_type IN VARCHAR2 DEFAULT NULL);

Chapter 36
DBMS_DATA_MINING

36-69

Parameters

Table 36-49 COMPUTE_CONFUSION_MATRIX_PART Procedure Parameters

Parameter Description

accuracy Output parameter containing the overall
percentage accuracy of the predictions
The output argument is changed from NUMBER to
DM_NESTED_NUMERICALS

apply_result_table_name Table containing the predictions

target_table_name Table containing the known target values from the
test data

case_id_column_name Case ID column in the apply results table. Must
match the case identifier in the targets table.

target_column_name Target column in the targets table. Contains the
known target values from the test data.

confusion_matrix_table_name Table containing the confusion matrix. The table
will be created by the procedure in the user's
schema.
The columns in the confusion matrix table are
described in the Usage Notes.

score_column_name Column containing the predictions in the apply
results table.
The default column name is PREDICTION, which is
the default name created by the APPLY procedure
(See "APPLY Procedure").

score_criterion_column_name Column containing the scoring criterion in the
apply results table. Contains either the probabilities
or the costs that determine the predictions.
By default, scoring is based on probability; the class
with the highest probability is predicted for each
case. If scoring is based on cost, then the class with
the lowest cost is predicted.
The score_criterion_type parameter indicates
whether probabilities or costs will be used for
scoring.
The default column name is PROBABILITY, which is
the default name created by the APPLY procedure
(See "APPLY Procedure").

See the Usage Notes for additional information.

score_partition_column_name (Optional) Parameter indicating the column which
contains the name of the partition. This column
slices the input test results such that each partition
has independent evaluation matrices computed.

Chapter 36
DBMS_DATA_MINING

36-70

Table 36-49 (Cont.) COMPUTE_CONFUSION_MATRIX_PART Procedure
Parameters

Parameter Description

cost_matrix_table_name (Optional) Table that defines the costs associated
with misclassifications. If a cost matrix table
is provided and the score_criterion_type
parameter is set to COSTS, the costs in this table will
be used as the scoring criteria.
The columns in a cost matrix table are described in
the Usage Notes.

apply_result_schema_name Schema of the apply results table.
If null, then the user's schema is assumed.

target_schema_name Schema of the table containing the known targets.
If null, then the user's schema is assumed.

cost_matrix_schema_name Schema of the cost matrix table, if one is provided.
If null, then the user's schema is assumed.

score_criterion_type Whether to use probabilities or costs as
the scoring criterion. Probabilities or costs
are passed in the column identified in the
score_criterion_column_name parameter.

The default value of score_criterion_type is
PROBABILITY. To use costs as the scoring criterion,
specify COST.

If score_criterion_type is set to COST but no
cost matrix is provided and if there is a scoring
cost matrix associated with the model, then the
associated costs are used for scoring.
See the Usage Notes and the Examples.

Usage Notes

• The predictive information you pass to COMPUTE_CONFUSION_MATRIX_PART may
be generated using SQL PREDICTION functions, the DBMS_DATA_MINING.APPLY
procedure, or some other mechanism. As long as you pass the appropriate data,
the procedure can compute the confusion matrix.

• Instead of passing a cost matrix to COMPUTE_CONFUSION_MATRIX_PART, you can
use a scoring cost matrix associated with the model. A scoring cost matrix can
be embedded in the model or it can be defined dynamically when the model is
applied. To use a scoring cost matrix, invoke the SQL PREDICTION_COST function to
populate the score criterion column.

• The predictions that you pass to COMPUTE_CONFUSION_MATRIX_PART are in a table
or view specified in apply_result_table_name.

CREATE TABLE apply_result_table_name AS (
 case_id_column_name VARCHAR2,
 score_column_name VARCHAR2,
 score_criterion_column_name VARCHAR2);

• A cost matrix must have the columns described in Table 36-47.

Chapter 36
DBMS_DATA_MINING

36-71

Table 36-50 Columns in a Cost Matrix

Column Name Datatype

actual_target_value Type of the target column in the test data

predicted_target_va
lue

Type of the predicted target in the test data. The type of the
predicted target must be the same as the type of the actual
target unless the predicted target has an associated reverse
transformation.

cost BINARY_DOUBLE

See Also:

Oracle Data Mining User's Guide for valid target datatypes

Oracle Data Mining Concepts for more information about cost matrixes

• The confusion matrix created by COMPUTE_CONFUSION_MATRIX_PART has the
columns described in Table 36-48.

Table 36-51 Columns in a Confusion Matrix Part

Column Name Datatype

actual_target_value Type of the target column in the test data

predicted_target_va
lue

Type of the predicted target in the test data. The type of
the predicted target is the same as the type of the actual
target unless the predicted target has an associated reverse
transformation.

value BINARY_DOUBLE

See Also:

Oracle Data Mining Concepts for more information about confusion
matrixes

Examples

These examples use the Naive Bayes model nb_sh_clas_sample, which is created by
one of the Oracle Data Mining sample programs.

Compute a Confusion Matrix Based on Probabilities

The following statement applies the model to the test data and stores the predictions
and probabilities in a table.

CREATE TABLE nb_apply_results AS
 SELECT cust_id,
 PREDICTION(nb_sh_clas_sample USING *) prediction,
 PREDICTION_PROBABILITY(nb_sh_clas_sample USING *) probability
 FROM mining_data_test_v;

Chapter 36
DBMS_DATA_MINING

36-72

Using probabilities as the scoring criterion, you can compute the confusion matrix as
follows.

DECLARE
 v_accuracy NUMBER;
 BEGIN
 DBMS_DATA_MINING.COMPUTE_CONFUSION_MATRIX_PART (
 accuracy => v_accuracy,
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 confusion_matrix_table_name => 'nb_confusion_matrix',
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'PROBABILITY'
 score_partition_column_name => 'PARTITION_NAME'
 cost_matrix_table_name => null,
 apply_result_schema_name => null,
 target_schema_name => null,
 cost_matrix_schema_name => null,
 score_criterion_type => 'PROBABILITY');
 DBMS_OUTPUT.PUT_LINE('**** MODEL ACCURACY ****: ' ||
ROUND(v_accuracy,4));
 END;
 /

The confusion matrix and model accuracy are shown as follows.

 **** MODEL ACCURACY ****: .7847

SELECT * FROM NB_CONFUSION_MATRIX;
ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE VALUE
------------------- ---------------------- ----------
 1 0 60
 0 0 891
 1 1 286
 0 1 263

Compute a Confusion Matrix Based on a Cost Matrix Table

The confusion matrix in the previous example shows a high rate of false positives. For
263 cases, the model predicted 1 when the actual value was 0. You could use a cost
matrix to minimize this type of error.

The cost matrix table nb_cost_matrix specifies that a false positive is 3 times more
costly than a false negative.

 SELECT * from NB_COST_MATRIX;
ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST
------------------- ---------------------- ----------
 0 0 0
 0 1 .75
 1 0 .25
 1 1 0

This statement shows how to generate the predictions using APPLY.

BEGIN
 DBMS_DATA_MINING.APPLY(
 model_name => 'nb_sh_clas_sample',
 data_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',

Chapter 36
DBMS_DATA_MINING

36-73

 result_table_name => 'nb_apply_results');
 END;
/

This statement computes the confusion matrix using the cost matrix table. The score
criterion column is named 'PROBABILITY', which is the name generated by APPLY.

DECLARE
 v_accuracy NUMBER;
 BEGIN
 DBMS_DATA_MINING.COMPUTE_CONFUSION_MATRIX_PART (
 accuracy => v_accuracy,
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 confusion_matrix_table_name => 'nb_confusion_matrix',
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'PROBABILITY',
 score_partition_column_name => 'PARTITION_NAME'
 cost_matrix_table_name => 'nb_cost_matrix',
 apply_result_schema_name => null,
 target_schema_name => null,
 cost_matrix_schema_name => null,
 score_criterion_type => 'COST');
 DBMS_OUTPUT.PUT_LINE('**** MODEL ACCURACY ****: ' || ROUND(v_accuracy,4));
 END;
 /

The resulting confusion matrix shows a decrease in false positives (212 instead of
263).

**** MODEL ACCURACY ****: .798

 SELECT * FROM NB_CONFUSION_MATRIX;
ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE VALUE
------------------- ---------------------- ----------
 1 0 91
 0 0 942
 1 1 255
 0 1 212

Compute a Confusion Matrix Based on Embedded Costs

You can use the ADD_COST_MATRIX procedure to embed a cost matrix in a model. The
embedded costs can be used instead of probabilities for scoring. This statement adds
the previously-defined cost matrix to the model.

BEGIN
DBMS_DATA_MINING.ADD_COST_MATRIX ('nb_sh_clas_sample', 'nb_cost_matrix');
END;/

The following statement applies the model to the test data using the embedded costs
and stores the results in a table.

CREATE TABLE nb_apply_results AS
 SELECT cust_id,
 PREDICTION(nb_sh_clas_sample COST MODEL USING *) prediction,
 PREDICTION_COST(nb_sh_clas_sample COST MODEL USING *) cost
 FROM mining_data_test_v;

Chapter 36
DBMS_DATA_MINING

36-74

You can compute the confusion matrix using the embedded costs.

DECLARE
 v_accuracy NUMBER;
 BEGIN
 DBMS_DATA_MINING.COMPUTE_CONFUSION_MATRIX_PART (
 accuracy => v_accuracy,
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 confusion_matrix_table_name => 'nb_confusion_matrix',
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'COST',
 score_partition_column_name => 'PARTITION_NAME'
 cost_matrix_table_name => null,
 apply_result_schema_name => null,
 target_schema_name => null,
 cost_matrix_schema_name => null,
 score_criterion_type => 'COST');
 END;
 /

The results are:

**** MODEL ACCURACY ****: .798

 SELECT * FROM NB_CONFUSION_MATRIX;
ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE VALUE
------------------- ---------------------- ----------
 1 0 91
 0 0 942
 1 1 255
 0 1 212

36.1.5.7 COMPUTE_LIFT Procedure
This procedure computes lift and stores the results in a table in the user's schema.

Lift is a test metric for binary classification models. To compute lift, one of the
target values must be designated as the positive class. COMPUTE_LIFT compares the
predictions generated by the model with the actual target values in a set of test data.
Lift measures the degree to which the model's predictions of the positive class are an
improvement over random chance.

Lift is computed on scoring results that have been ranked by probability (or cost)
and divided into quantiles. Each quantile includes the scores for the same number of
cases.

COMPUTE_LIFT calculates quantile-based and cumulative statistics. The number of
quantiles and the positive class are user-specified. Additionally, COMPUTE_LIFT accepts
three input streams:

• The predictions generated on the test data. The information is passed in three
columns:

– Case ID column

– Prediction column

Chapter 36
DBMS_DATA_MINING

36-75

– Scoring criterion column containing either probabilities or costs associated
with the predictions

• The known target values in the test data. The information is passed in two
columns:

– Case ID column

– Target column containing the known target values

• (Optional) A cost matrix table with predefined columns. See the Usage Notes for
the column requirements.

See Also:

Oracle Data Mining Concepts for more details about lift and test metrics for
classification

"COMPUTE_CONFUSION_MATRIX Procedure"

"COMPUTE_ROC Procedure"

Syntax

DBMS_DATA_MINING.COMPUTE_LIFT (
 apply_result_table_name IN VARCHAR2,
 target_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 lift_table_name IN VARCHAR2,
 positive_target_value IN VARCHAR2,
 score_column_name IN VARCHAR2 DEFAULT 'PREDICTION',
 score_criterion_column_name IN VARCHAR2 DEFAULT 'PROBABILITY',
 num_quantiles IN NUMBER DEFAULT 10,
 cost_matrix_table_name IN VARCHAR2 DEFAULT NULL,
 apply_result_schema_name IN VARCHAR2 DEFAULT NULL,
 target_schema_name IN VARCHAR2 DEFAULT NULL,
 cost_matrix_schema_name IN VARCHAR2 DEFAULT NULL
 score_criterion_type IN VARCHAR2 DEFAULT 'PROBABILITY');

Parameters

Table 36-52 COMPUTE_LIFT Procedure Parameters

Parameter Description

apply_result_table_name Table containing the predictions.

target_table_name Table containing the known target values from the
test data.

case_id_column_name Case ID column in the apply results table. Must
match the case identifier in the targets table.

target_column_name Target column in the targets table. Contains the
known target values from the test data.

Chapter 36
DBMS_DATA_MINING

36-76

Table 36-52 (Cont.) COMPUTE_LIFT Procedure Parameters

Parameter Description

lift_table_name Table containing the lift statistics. The table will be
created by the procedure in the user's schema.
The columns in the lift table are described in the
Usage Notes.

positive_target_value The positive class. This should be the class of
interest, for which you want to calculate lift.
If the target column is a NUMBER, you can use
the TO_CHAR() operator to provide the value as a
string.

score_column_name Column containing the predictions in the apply
results table.
The default column name is 'PREDICTION', which is
the default name created by the APPLY procedure
(See "APPLY Procedure").

score_criterion_column_name Column containing the scoring criterion in the
apply results table. Contains either the probabilities
or the costs that determine the predictions.
By default, scoring is based on probability; the class
with the highest probability is predicted for each
case. If scoring is based on cost, the class with the
lowest cost is predicted.
The score_criterion_type parameter indicates
whether probabilities or costs will be used for
scoring.
The default column name is 'PROBABILITY', which
is the default name created by the APPLY procedure
(See "APPLY Procedure").

See the Usage Notes for additional information.

num_quantiles Number of quantiles to be used in calculating lift.
The default is 10.

cost_matrix_table_name (Optional) Table that defines the costs associated
with misclassifications. If a cost matrix table
is provided and the score_criterion_type
parameter is set to 'COST', the costs will be used as
the scoring criteria.
The columns in a cost matrix table are described in
the Usage Notes.

apply_result_schema_name Schema of the apply results table.
If null, the user's schema is assumed.

target_schema_name Schema of the table containing the known targets.
If null, the user's schema is assumed.

cost_matrix_schema_name Schema of the cost matrix table, if one is provided.
If null, the user's schema is assumed.

Chapter 36
DBMS_DATA_MINING

36-77

Table 36-52 (Cont.) COMPUTE_LIFT Procedure Parameters

Parameter Description

score_criterion_type Whether to use probabilities or costs as
the scoring criterion. Probabilities or costs
are passed in the column identified in the
score_criterion_column_name parameter.

The default value of score_criterion_type is
'PROBABILITY'. To use costs as the scoring criterion,
specify 'COST'.

If score_criterion_type is set to 'COST' but no
cost matrix is provided and if there is a scoring
cost matrix associated with the model, then the
associated costs are used for scoring.
See the Usage Notes and the Examples.

Usage Notes

• The predictive information you pass to COMPUTE_LIFT may be generated using
SQL PREDICTION functions, the DBMS_DATA_MINING.APPLY procedure, or some
other mechanism. As long as you pass the appropriate data, the procedure can
compute the lift.

• Instead of passing a cost matrix to COMPUTE_LIFT, you can use a scoring cost
matrix associated with the model. A scoring cost matrix can be embedded in
the model or it can be defined dynamically when the model is applied. To use
a scoring cost matrix, invoke the SQL PREDICTION_COST function to populate the
score criterion column.

• The predictions that you pass to COMPUTE_LIFT are in a table or view specified in
apply_results_table_name.

CREATE TABLE apply_result_table_name AS (
 case_id_column_name VARCHAR2,
 score_column_name VARCHAR2,
 score_criterion_column_name VARCHAR2);

• A cost matrix must have the columns described in Table 36-53.

Table 36-53 Columns in a Cost Matrix

Column Name Datatype

actual_target_value Type of the target column in the build data

predicted_target_va
lue

Type of the predicted target in the test data. The type of the
predicted target must be the same as the type of the actual
target unless the predicted target has an associated reverse
transformation.

cost NUMBER

Chapter 36
DBMS_DATA_MINING

36-78

See Also:

Oracle Data Mining Concepts for more information about cost matrixes

• The table created by COMPUTE_LIFT has the columns described in Table 36-54

Table 36-54 Columns in a Lift Table

Column Name Datatype

quantile_number NUMBER

probability_threshold NUMBER

gain_cumulative NUMBER

quantile_total_count NUMBER

quantile_target_count NUMBER

percent_records_cumulative NUMBER

lift_cumulative NUMBER

target_density_cumulative NUMBER

targets_cumulative NUMBER

non_targets_cumulative NUMBER

lift_quantile NUMBER

target_density NUMBER

See Also:

Oracle Data Mining Concepts for details about the information in the lift
table

• When a cost matrix is passed to COMPUTE_LIFT, the cost threshold is returned in
the probability_threshold column of the lift table.

Examples

This example uses the Naive Bayes model nb_sh_clas_sample, which is created by
one of the Oracle Data Mining sample programs.

The example illustrates lift based on probabilities. For examples that show
computation based on costs, see "COMPUTE_CONFUSION_MATRIX Procedure".

The following statement applies the model to the test data and stores the predictions
and probabilities in a table.

CREATE TABLE nb_apply_results AS
 SELECT cust_id, t.prediction, t.probability
 FROM mining_data_test_v, TABLE(PREDICTION_SET(nb_sh_clas_sample USING *)) t;

Using probabilities as the scoring criterion, you can compute lift as follows.

Chapter 36
DBMS_DATA_MINING

36-79

BEGIN
 DBMS_DATA_MINING.COMPUTE_LIFT (
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 lift_table_name => 'nb_lift',
 positive_target_value => to_char(1),
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'PROBABILITY',
 num_quantiles => 10,
 cost_matrix_table_name => null,
 apply_result_schema_name => null,
 target_schema_name => null,
 cost_matrix_schema_name => null,
 score_criterion_type => 'PROBABILITY');
 END;
 /

This query displays some of the statistics from the resulting lift table.

SQL>SELECT quantile_number, probability_threshold, gain_cumulative,
 quantile_total_count
 FROM nb_lift;

QUANTILE_NUMBER PROBABILITY_THRESHOLD GAIN_CUMULATIVE QUANTILE_TOTAL_COUNT
--------------- --------------------- --------------- --------------------
 1 .989335775 .15034965 55
 2 .980534911 .26048951 55
 3 .968506098 .374125874 55
 4 .958975196 .493006993 55
 5 .946705997 .587412587 55
 6 .927454174 .66958042 55
 7 .904403627 .748251748 55
 8 .836482525 .839160839 55
 10 .500184953 1 54

36.1.5.8 COMPUTE_LIFT_PART Procedure
The COMPUTE_LIFT_PART procedure computes Lift and stores the results in a table in
the user's schema. This procedure provides support to the computation of evaluation
metrics per-partition for partitioned models.

Lift is a test metric for binary Classification models. To compute Lift, one of the target
values must be designated as the positive class. COMPUTE_LIFT_PART compares the
predictions generated by the model with the actual target values in a set of test data.
Lift measures the degree to which the model's predictions of the positive class are an
improvement over random chance.

Lift is computed on scoring results that have been ranked by probability (or cost)
and divided into quantiles. Each quantile includes the scores for the same number of
cases.

COMPUTE_LIFT_PART calculates quantile-based and cumulative statistics. The number
of quantiles and the positive class are user-specified. Additionally, COMPUTE_LIFT_PART
accepts three input streams:

• The predictions generated on the test data. The information is passed in three
columns:

Chapter 36
DBMS_DATA_MINING

36-80

– Case ID column

– Prediction column

– Scoring criterion column containing either probabilities or costs associated
with the predictions

• The known target values in the test data. The information is passed in two
columns:

– Case ID column

– Target column containing the known target values

• (Optional) A cost matrix table with predefined columns. See the Usage Notes for
the column requirements.

See Also:

Oracle Data Mining Concepts for more details about Lift and test metrics for
classification

"COMPUTE_LIFT Procedure"

"COMPUTE_CONFUSION_MATRIX Procedure"

"COMPUTE_CONFUSION_MATRIX_PART Procedure"

"COMPUTE_ROC Procedure"

"COMPUTE_ROC_PART Procedure"

Syntax

DBMS_DATA_MINING.COMPUTE_LIFT_PART (
 apply_result_table_name IN VARCHAR2,
 target_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 lift_table_name IN VARCHAR2,
 positive_target_value IN VARCHAR2,
 score_column_name IN VARCHAR2 DEFAULT 'PREDICTION',
 score_criterion_column_name IN VARCHAR2 DEFAULT 'PROBABILITY',
 score_partition_column_name IN VARCHAR2 DEFAULT 'PARTITION_NAME',
 num_quantiles IN NUMBER DEFAULT 10,
 cost_matrix_table_name IN VARCHAR2 DEFAULT NULL,
 apply_result_schema_name IN VARCHAR2 DEFAULT NULL,
 target_schema_name IN VARCHAR2 DEFAULT NULL,
 cost_matrix_schema_name IN VARCHAR2 DEFAULT NULL,
 score_criterion_type IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-55 COMPUTE_LIFT_PART Procedure Parameters

Parameter Description

apply_result_table_name Table containing the predictions

Chapter 36
DBMS_DATA_MINING

36-81

Table 36-55 (Cont.) COMPUTE_LIFT_PART Procedure Parameters

Parameter Description

target_table_name Table containing the known target values from the
test data

case_id_column_name Case ID column in the apply results table. Must
match the case identifier in the targets table.

target_column_name Target column in the targets table. Contains the
known target values from the test data.

lift_table_name Table containing the Lift statistics. The table will be
created by the procedure in the user's schema.
The columns in the Lift table are described in the
Usage Notes.

positive_target_value The positive class. This should be the class of
interest, for which you want to calculate Lift.
If the target column is a NUMBER, then you can use
the TO_CHAR() operator to provide the value as a
string.

score_column_name Column containing the predictions in the apply
results table.
The default column name is PREDICTION, which is
the default name created by the APPLY procedure
(See "APPLY Procedure").

score_criterion_column_name Column containing the scoring criterion in the
apply results table. Contains either the probabilities
or the costs that determine the predictions.
By default, scoring is based on probability; the class
with the highest probability is predicted for each
case. If scoring is based on cost, then the class with
the lowest cost is predicted.
The score_criterion_type parameter indicates
whether probabilities or costs will be used for
scoring.
The default column name is PROBABILITY, which is
the default name created by the APPLY procedure
(See "APPLY Procedure").

See the Usage Notes for additional information.

score_partition_column_name Optional parameter indicating the column
containing the name of the partition. This column
slices the input test results such that each partition
has independent evaluation matrices computed.

num_quantiles Number of quantiles to be used in calculating Lift.
The default is 10.

cost_matrix_table_name (Optional) Table that defines the costs associated
with misclassifications. If a cost matrix table
is provided and the score_criterion_type
parameter is set to COST, then the costs will be used
as the scoring criteria.
The columns in a cost matrix table are described in
the Usage Notes.

Chapter 36
DBMS_DATA_MINING

36-82

Table 36-55 (Cont.) COMPUTE_LIFT_PART Procedure Parameters

Parameter Description

apply_result_schema_name Schema of the apply results table
If null, then the user's schema is assumed.

target_schema_name Schema of the table containing the known targets
If null, then the user's schema is assumed.

cost_matrix_schema_name Schema of the cost matrix table, if one is provided
If null, then the user's schema is assumed.

score_criterion_type Whether to use probabilities or costs as
the scoring criterion. Probabilities or costs
are passed in the column identified in the
score_criterion_column_name parameter.

The default value of score_criterion_type is
PROBABILITY. To use costs as the scoring criterion,
specify COST.

If score_criterion_type is set to COST but no
cost matrix is provided and if there is a scoring
cost matrix associated with the model, then the
associated costs are used for scoring.
See the Usage Notes and the Examples.

Usage Notes

• The predictive information you pass to COMPUTE_LIFT_PART may be generated
using SQL PREDICTION functions, the DBMS_DATA_MINING.APPLY procedure, or
some other mechanism. As long as you pass the appropriate data, the procedure
can compute the Lift.

• Instead of passing a cost matrix to COMPUTE_LIFT_PART, you can use a scoring
cost matrix associated with the model. A scoring cost matrix can be embedded
in the model or it can be defined dynamically when the model is applied. To use
a scoring cost matrix, invoke the SQL PREDICTION_COST function to populate the
score criterion column.

• The predictions that you pass to COMPUTE_LIFT_PART are in a table or view
specified in apply_results_table_name.

CREATE TABLE apply_result_table_name AS (
 case_id_column_name VARCHAR2,
 score_column_name VARCHAR2,
 score_criterion_column_name VARCHAR2);

• A cost matrix must have the columns described in Table 36-53.

Table 36-56 Columns in a Cost Matrix

Column Name Datatype

actual_target_value Type of the target column in the test data

Chapter 36
DBMS_DATA_MINING

36-83

Table 36-56 (Cont.) Columns in a Cost Matrix

Column Name Datatype

predicted_target_va
lue

Type of the predicted target in the test data. The type of the
predicted target must be the same as the type of the actual
target unless the predicted target has an associated reverse
transformation.

cost NUMBER

See Also:

Oracle Data Mining Concepts for more information about cost matrixes

• The table created by COMPUTE_LIFT_PART has the columns described in
Table 36-54

Table 36-57 Columns in a COMPUTE_LIFT_PART Table

Column Name Datatype

quantile_number NUMBER

probability_threshold NUMBER

gain_cumulative NUMBER

quantile_total_count NUMBER

quantile_target_count NUMBER

percent_records_cumulative NUMBER

lift_cumulative NUMBER

target_density_cumulative NUMBER

targets_cumulative NUMBER

non_targets_cumulative NUMBER

lift_quantile NUMBER

target_density NUMBER

See Also:

Oracle Data Mining Concepts for details about the information in the Lift
table

• When a cost matrix is passed to COMPUTE_LIFT_PART, the cost threshold is
returned in the probability_threshold column of the Lift table.

Examples

This example uses the Naive Bayes model nb_sh_clas_sample, which is created by
one of the Oracle Data Mining sample programs.

Chapter 36
DBMS_DATA_MINING

36-84

The example illustrates Lift based on probabilities. For examples that show
computation based on costs, see "COMPUTE_CONFUSION_MATRIX Procedure".

For a partitioned model example, see "COMPUTE_CONFUSION_MATRIX_PART
Procedure".

The following statement applies the model to the test data and stores the predictions
and probabilities in a table.

CREATE TABLE nb_apply_results AS
 SELECT cust_id, t.prediction, t.probability
 FROM mining_data_test_v, TABLE(PREDICTION_SET(nb_sh_clas_sample USING *)) t;

Using probabilities as the scoring criterion, you can compute Lift as follows.

BEGIN
 DBMS_DATA_MINING.COMPUTE_LIFT_PART (
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 lift_table_name => 'nb_lift',
 positive_target_value => to_char(1),
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'PROBABILITY',
 score_partition_column_name => 'PARTITITON_NAME',
 num_quantiles => 10,
 cost_matrix_table_name => null,
 apply_result_schema_name => null,
 target_schema_name => null,
 cost_matrix_schema_name => null,
 score_criterion_type => 'PROBABILITY');
END;
/

This query displays some of the statistics from the resulting Lift table.

SELECT quantile_number, probability_threshold, gain_cumulative,
 quantile_total_count
 FROM nb_lift;

QUANTILE_NUMBER PROBABILITY_THRESHOLD GAIN_CUMULATIVE QUANTILE_TOTAL_COUNT
--------------- --------------------- --------------- --------------------
 1 .989335775 .15034965 55
 2 .980534911 .26048951 55
 3 .968506098 .374125874 55
 4 .958975196 .493006993 55
 5 .946705997 .587412587 55
 6 .927454174 .66958042 55
 7 .904403627 .748251748 55
 8 .836482525 .839160839 55
 10 .500184953 1 54

Chapter 36
DBMS_DATA_MINING

36-85

36.1.5.9 COMPUTE_ROC Procedure
This procedure computes the receiver operating characteristic (ROC), stores the
results in a table in the user's schema, and returns a measure of the model accuracy.

ROC is a test metric for binary classification models. To compute ROC, one of the
target values must be designated as the positive class. COMPUTE_ROC compares the
predictions generated by the model with the actual target values in a set of test data.

ROC measures the impact of changes in the probability threshold. The probability
threshold is the decision point used by the model for predictions. In binary
classification, the default probability threshold is 0.5. The value predicted for each
case is the one with a probability greater than 50%.

ROC can be plotted as a curve on an X-Y axis. The false positive rate is placed on
the X axis. The true positive rate is placed on the Y axis. A false positive is a positive
prediction for a case that is negative in the test data. A true positive is a positive
prediction for a case that is positive in the test data.

COMPUTE_ROC accepts two input streams:

• The predictions generated on the test data. The information is passed in three
columns:

– Case ID column

– Prediction column

– Scoring criterion column containing probabilities

• The known target values in the test data. The information is passed in two
columns:

– Case ID column

– Target column containing the known target values

See Also:

Oracle Data Mining Concepts for more details about ROC and test metrics
for classification

"COMPUTE_CONFUSION_MATRIX Procedure"

"COMPUTE_LIFT Procedure"

Syntax

DBMS_DATA_MINING.COMPUTE_ROC (
 roc_area_under_curve OUT NUMBER,
 apply_result_table_name IN VARCHAR2,
 target_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 roc_table_name IN VARCHAR2,
 positive_target_value IN VARCHAR2,
 score_column_name IN VARCHAR2 DEFAULT 'PREDICTION',

Chapter 36
DBMS_DATA_MINING

36-86

 score_criterion_column_name IN VARCHAR2 DEFAULT 'PROBABILITY',
 apply_result_schema_name IN VARCHAR2 DEFAULT NULL,
 target_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-58 COMPUTE_ROC Procedure Parameters

Parameter Description

roc_area_under_the_curve Output parameter containing the area under the
ROC curve (AUC). The AUC measures the likelihood
that an actual positive will be predicted as positive.
The greater the AUC, the greater the flexibility of
the model in accommodating trade-offs between
positive and negative class predictions. AUC can be
especially important when one target class is rarer
or more important to identify than another.

apply_result_table_name Table containing the predictions.

target_table_name Table containing the known target values from the
test data.

case_id_column_name Case ID column in the apply results table. Must
match the case identifier in the targets table.

target_column_name Target column in the targets table. Contains the
known target values from the test data.

roc_table_name Table containing the ROC output. The table will be
created by the procedure in the user's schema.
The columns in the ROC table are described in the
Usage Notes.

positive_target_value The positive class. This should be the class of
interest, for which you want to calculate ROC.
If the target column is a NUMBER, you can use the
TO_CHAR() operator to provide the value as a string.

score_column_name Column containing the predictions in the apply
results table.
The default column name is 'PREDICTION', which is
the default name created by the APPLY procedure
(See "APPLY Procedure").

score_criterion_column_name Column containing the scoring criterion in the
apply results table. Contains the probabilities that
determine the predictions.
The default column name is 'PROBABILITY', which
is the default name created by the APPLY procedure
(See "APPLY Procedure").

apply_result_schema_name Schema of the apply results table.
If null, the user's schema is assumed.

target_schema_name Schema of the table containing the known targets.
If null, the user's schema is assumed.

Chapter 36
DBMS_DATA_MINING

36-87

Usage Notes

• The predictive information you pass to COMPUTE_ROC may be generated using SQL
PREDICTION functions, the DBMS_DATA_MINING.APPLY procedure, or some other
mechanism. As long as you pass the appropriate data, the procedure can compute
the receiver operating characteristic.

• The predictions that you pass to COMPUTE_ROC are in a table or view specified in
apply_results_table_name.

CREATE TABLE apply_result_table_name AS (
 case_id_column_name VARCHAR2,
 score_column_name VARCHAR2,
 score_criterion_column_name VARCHAR2);

• The table created by COMPUTE_ROC has the columns shown in Table 36-59.

Table 36-59 COMPUTE_ROC Output

Column Datatype

probability BINARY_DOUBLE

true_positives NUMBER

false_negatives NUMBER

false_positives NUMBER

true_negatives NUMBER

true_positive_fraction NUMBER

false_positive_fraction NUMBER

See Also:

Oracle Data Mining Concepts for details about the output of COMPUTE_ROC

• ROC is typically used to determine the most desirable probability threshold. This
can be done by examining the true positive fraction and the false positive fraction.
The true positive fraction is the percentage of all positive cases in the test
data that were correctly predicted as positive. The false positive fraction is the
percentage of all negative cases in the test data that were incorrectly predicted as
positive.

Given a probability threshold, the following statement returns the positive
predictions in an apply result table ordered by probability.

SELECT case_id_column_name
 FROM apply_result_table_name
 WHERE probability > probability_threshold
 ORDER BY probability DESC;

• There are two approaches to identifying the most desirable probability threshold.
Which approach you use depends on whether or not you know the relative cost of
positive versus negative class prediction errors.

Chapter 36
DBMS_DATA_MINING

36-88

If the costs are known, you can apply the relative costs to the ROC table to
compute the minimum cost probability threshold. Suppose the relative cost ratio is:
Positive Class Error Cost / Negative Class Error Cost = 20. Then execute a query
like this.

WITH cost AS (
 SELECT probability_threshold, 20 * false_negatives + false_positives
cost
 FROM ROC_table
 GROUP BY probability_threshold),
 minCost AS (
 SELECT min(cost) minCost
 FROM cost)
 SELECT max(probability_threshold)probability_threshold
 FROM cost, minCost
 WHERE cost = minCost;

If relative costs are not well known, you can simply scan the values in the
ROC table (in sorted order) and make a determination about which of the
displayed trade-offs (misclassified positives versus misclassified negatives) is
most desirable.

SELECT * FROM ROC_table
 ORDER BY probability_threshold;

Examples

This example uses the Naive Bayes model nb_sh_clas_sample, which is created by
one of the Oracle Data Mining sample programs.

The following statement applies the model to the test data and stores the predictions
and probabilities in a table.

CREATE TABLE nb_apply_results AS
 SELECT cust_id, t.prediction, t.probability
 FROM mining_data_test_v, TABLE(PREDICTION_SET(nb_sh_clas_sample USING *)) t;

Using the predictions and the target values from the test data, you can compute ROC
as follows.

DECLARE
 v_area_under_curve NUMBER;
BEGIN
 DBMS_DATA_MINING.COMPUTE_ROC (
 roc_area_under_curve => v_area_under_curve,
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'mining_data_test_v',
 roc_table_name => 'nb_roc',
 positive_target_value => '1',
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'PROBABILITY');
 DBMS_OUTPUT.PUT_LINE('**** AREA UNDER ROC CURVE ****: ' ||
 ROUND(v_area_under_curve,4));
END;
/

Chapter 36
DBMS_DATA_MINING

36-89

The resulting AUC and a selection of columns from the ROC table are shown as
follows.

**** AREA UNDER ROC CURVE ****: .8212

 SELECT PROBABILITY, TRUE_POSITIVE_FRACTION, FALSE_POSITIVE_FRACTION
 FROM NB_ROC;

PROBABILITY TRUE_POSITIVE_FRACTION FALSE_POSITIVE_FRACTION
----------- ---------------------- -----------------------
 .00000 1 1
 .50018 .826589595 .227902946
 .53851 .823699422 .221837088
 .54991 .820809249 .217504333
 .55628 .815028902 .215771231
 .55628 .817919075 .215771231
 .57563 .800578035 .214904679
 .57563 .812138728 .214904679
 . . .
 . . .
 . . .

36.1.5.10 COMPUTE_ROC_PART Procedure
The COMPUTE_ROC_PART procedure computes Receiver Operating Characteristic (ROC),
stores the results in a table in the user's schema, and returns a measure of the
model accuracy. This procedure provides support to computation of evaluation metrics
per-partition for partitioned models.

ROC is a test metric for binary classification models. To compute ROC, one of the
target values must be designated as the positive class. COMPUTE_ROC_PART compares
the predictions generated by the model with the actual target values in a set of test
data.

ROC measures the impact of changes in the probability threshold. The probability
threshold is the decision point used by the model for predictions. In binary
classification, the default probability threshold is 0.5. The value predicted for each
case is the one with a probability greater than 50%.

ROC can be plotted as a curve on an x-y axis. The false positive rate is placed on
the x-axis. The true positive rate is placed on the y-axis. A false positive is a positive
prediction for a case that is negative in the test data. A true positive is a positive
prediction for a case that is positive in the test data.

COMPUTE_ROC_PART accepts two input streams:

• The predictions generated on the test data. The information is passed in three
columns:

– Case ID column

– Prediction column

– Scoring criterion column containing probabilities

• The known target values in the test data. The information is passed in two
columns:

– Case ID column

– Target column containing the known target values

Chapter 36
DBMS_DATA_MINING

36-90

See Also:

Oracle Data Mining Concepts for more details about ROC and test metrics
for Classification

"COMPUTE_ROC Procedure"

"COMPUTE_CONFUSION_MATRIX Procedure"

"COMPUTE_LIFT_PART Procedure"

"COMPUTE_LIFT Procedure"

Syntax

DBMS_DATA_MINING.compute_roc_part(
 roc_area_under_curve OUT DM_NESTED_NUMERICALS,
 apply_result_table_name IN VARCHAR2,
 target_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 roc_table_name IN VARCHAR2,
 positive_target_value IN VARCHAR2,
 score_column_name IN VARCHAR2 DEFAULT 'PREDICTION',
 score_criterion_column_name IN VARCHAR2 DEFAULT 'PROBABILITY',
 score_partition_column_name IN VARCHAR2 DEFAULT 'PARTITION_NAME',
 apply_result_schema_name IN VARCHAR2 DEFAULT NULL,
 target_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-60 COMPUTE_ROC_PART Procedure Parameters

Parameter Description

roc_area_under_the_curve Output parameter containing the area under the
ROC curve (AUC). The AUC measures the likelihood
that an actual positive will be predicted as positive.
The greater the AUC, the greater the flexibility of
the model in accommodating trade-offs between
positive and negative class predictions. AUC can be
especially important when one target class is rarer
or more important to identify than another.
The output argument is changed from NUMBER to
DM_NESTED_NUMERICALS.

apply_result_table_name Table containing the predictions.

target_table_name Table containing the known target values from the
test data.

case_id_column_name Case ID column in the apply results table. Must
match the case identifier in the targets table.

target_column_name Target column in the targets table. Contains the
known target values from the test data.

Chapter 36
DBMS_DATA_MINING

36-91

Table 36-60 (Cont.) COMPUTE_ROC_PART Procedure Parameters

Parameter Description

roc_table_name Table containing the ROC output. The table will be
created by the procedure in the user's schema.
The columns in the ROC table are described in the
Usage Notes.

positive_target_value The positive class. This should be the class of
interest, for which you want to calculate ROC.
If the target column is a NUMBER, then you can use
the TO_CHAR() operator to provide the value as a
string.

score_column_name Column containing the predictions in the apply
results table.
The default column name is PREDICTION, which is
the default name created by the APPLY procedure
(See "APPLY Procedure").

score_criterion_column_name Column containing the scoring criterion in the
apply results table. Contains the probabilities that
determine the predictions.
The default column name is PROBABILITY, which is
the default name created by the APPLY procedure
(See "APPLY Procedure").

score_partition_column_name Optional parameter indicating the column which
contains the name of the partition. This column
slices the input test results such that each partition
has independent evaluation matrices computed.

apply_result_schema_name Schema of the apply results table.
If null, then the user's schema is assumed.

target_schema_name Schema of the table containing the known targets.
If null, then the user's schema is assumed.

Usage Notes

• The predictive information you pass to COMPUTE_ROC_PART may be generated using
SQL PREDICTION functions, the DBMS_DATA_MINING.APPLY procedure, or some
other mechanism. As long as you pass the appropriate data, the procedure can
compute the receiver operating characteristic.

• The predictions that you pass to COMPUTE_ROC_PART are in a table or view specified
in apply_results_table_name.

CREATE TABLE apply_result_table_name AS (
 case_id_column_name VARCHAR2,
 score_column_name VARCHAR2,
 score_criterion_column_name VARCHAR2);

• The COMPUTE_ROC_PART table has the following columns:

Chapter 36
DBMS_DATA_MINING

36-92

Table 36-61 COMPUTE_ROC_PART Output

Column Datatype

probability BINARY_DOUBLE

true_positives NUMBER

false_negatives NUMBER

false_positives NUMBER

true_negatives NUMBER

true_positive_fraction NUMBER

false_positive_fraction NUMBER

See Also:

Oracle Data Mining Concepts for details about the output of
COMPUTE_ROC_PART

• ROC is typically used to determine the most desirable probability threshold. This
can be done by examining the true positive fraction and the false positive fraction.
The true positive fraction is the percentage of all positive cases in the test
data that were correctly predicted as positive. The false positive fraction is the
percentage of all negative cases in the test data that were incorrectly predicted as
positive.

Given a probability threshold, the following statement returns the positive
predictions in an apply result table ordered by probability.

SELECT case_id_column_name
 FROM apply_result_table_name
 WHERE probability > probability_threshold
 ORDER BY probability DESC;

• There are two approaches to identify the most desirable probability threshold. The
approach you use depends on whether you know the relative cost of positive
versus negative class prediction errors.

If the costs are known, then you can apply the relative costs to the ROC table to
compute the minimum cost probability threshold. Suppose the relative cost ratio is:
Positive Class Error Cost / Negative Class Error Cost = 20. Then execute a query
as follows:

WITH cost AS (
 SELECT probability_threshold, 20 * false_negatives + false_positives
cost
 FROM ROC_table
 GROUP BY probability_threshold),
 minCost AS (
 SELECT min(cost) minCost
 FROM cost)
 SELECT max(probability_threshold)probability_threshold
 FROM cost, minCost
 WHERE cost = minCost;

Chapter 36
DBMS_DATA_MINING

36-93

If relative costs are not well known, then you can simply scan the values in
the ROC table (in sorted order) and make a determination about which of the
displayed trade-offs (misclassified positives versus misclassified negatives) is
most desirable.

SELECT * FROM ROC_table
 ORDER BY probability_threshold;

Examples

This example uses the Naive Bayes model nb_sh_clas_sample, which is created by
one of the Oracle Data Mining sample programs.

The following statement applies the model to the test data and stores the predictions
and probabilities in a table.

CREATE TABLE nb_apply_results AS
 SELECT cust_id, t.prediction, t.probability
 FROM mining_data_test_v, TABLE(PREDICTION_SET(nb_sh_clas_sample USING *)) t;

Using the predictions and the target values from the test data, you can compute ROC
as follows.

DECLARE
 v_area_under_curve NUMBER;
BEGIN
 DBMS_DATA_MINING.COMPUTE_ROC_PART (
 roc_area_under_curve => v_area_under_curve,
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 roc_table_name => 'nb_roc',
 positive_target_value => '1',
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'PROBABILITY');
 score_partition_column_name => 'PARTITION_NAME'
 DBMS_OUTPUT.PUT_LINE('**** AREA UNDER ROC CURVE ****: ' ||
 ROUND(v_area_under_curve,4));
END;
/

The resulting AUC and a selection of columns from the ROC table are shown as
follows.

**** AREA UNDER ROC CURVE ****: .8212

 SELECT PROBABILITY, TRUE_POSITIVE_FRACTION, FALSE_POSITIVE_FRACTION
 FROM NB_ROC;

PROBABILITY TRUE_POSITIVE_FRACTION FALSE_POSITIVE_FRACTION
----------- ---------------------- -----------------------
 .00000 1 1
 .50018 .826589595 .227902946
 .53851 .823699422 .221837088
 .54991 .820809249 .217504333
 .55628 .815028902 .215771231
 .55628 .817919075 .215771231

Chapter 36
DBMS_DATA_MINING

36-94

 .57563 .800578035 .214904679
 .57563 .812138728 .214904679
 . . .
 . . .
 . . .

36.1.5.11 CREATE_MODEL Procedure
This procedure creates a mining model with a given mining function.

Syntax

DBMS_DATA_MINING.CREATE_MODEL (
 model_name IN VARCHAR2,
 mining_function IN VARCHAR2,
 data_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2 DEFAULT NULL,
 settings_table_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 settings_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_list IN TRANSFORM_LIST DEFAULT NULL);

Parameters

Table 36-62 CREATE_MODEL Procedure Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name.
If you do not specify a schema, then your own schema is
used.
See the Usage Notes for model naming restrictions.

mining_function The mining function. Values are listed in Table 36-3.

data_table_name Table or view containing the build data

case_id_column_name Case identifier column in the build data.

target_column_name For supervised models, the target column in the build data.
NULL for unsupervised models.

settings_table_name Table containing build settings for the model. NULL if there is
no settings table (only default settings are used).

data_schema_name Schema hosting the build data. If NULL, then the user's
schema is assumed.

settings_schema_name Schema hosting the settings table. If NULLthen the user's
schema is assumed.

Chapter 36
DBMS_DATA_MINING

36-95

Table 36-62 (Cont.) CREATE_MODEL Procedure Parameters

Parameter Description

xform_list A list of transformations to be used in addition to or instead
of automatic transformations, depending on the value of the
PREP_AUTO setting. (See "Automatic Data Preparation".)

The datatype of xform_list is TRANSFORM_LIST, which
consists of records of type TRANSFORM_REC. Each
TRANSFORM_REC specifies the transformation information for
a single attribute.

TYPE
 TRANFORM_REC IS RECORD (
 attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 expression EXPRESSION_REC,
 reverse_expression EXPRESSION_REC,
 attribute_spec VARCHAR2(4000));

The expression field stores a SQL expression for
transforming the attribute. The reverse_expression field
stores a SQL expression for reversing the transformation in
model details and, if the attribute is a target, in the results of
scoring. The SQL expressions are manipulated by routines in
the DBMS_DATA_MINING_TRANSFORM package:

• SET_EXPRESSION Procedure
• GET_EXPRESSION Function
• SET_TRANSFORM Procedure
The attribute_spec field identifies individualized treatment
for the attribute. See the Usage Notes for details.
See Table 36-114for details about the TRANSFORM_REC type.

Usage Notes

1. You can use the attribute_spec field of the xform_list argument to identify an
attribute as unstructured text or to disable Automatic Data Preparation for the
attribute. The attribute_spec can have the following values:

• TEXT: Indicates that the attribute contains unstructured text. The TEXT value
may optionally be followed by POLICY_NAME, TOKEN_TYPE, MAX_FEATURES, and
MIN_DOCUMENTS parameters.

TOKEN_TYPE has the following possible values: NORMAL, STEM, THEME, SYNONYM,
BIGRAM, STEM_BIGRAM. SYNONYM may be optionally followed by a thesaurus
name in square brackets.

MAX_FEATURES specifies the maximum number of tokens extracted from the
text.

MIN_DOCUMENTS specifies the minimal number of documents in which every
selected token shall occur. (For information about creating a text policy, see
CTX_DDL.CREATE_POLICY in Oracle Text Reference).

Oracle Data Mining can process columns of VARCHAR2/CHAR, CLOB, BLOB, and
BFILE as text. If the column is VARCHAR2 or CHAR and you do not specify TEXT,
Oracle Data Mining will process the column as categorical data. If the column

Chapter 36
DBMS_DATA_MINING

36-96

is CLOB, then Oracle Data Mining will process it as text by default (You do not
need to specify it as TEXT. However, you do need to provide an Oracle Text
Policy in the settings). If the column is BLOB or BFILE, you must specify it as
TEXT, otherwise CREATE_MODEL will return an error.

If you specify TEXT for a nested column or for an attribute in a nested column,
CREATE_MODEL will return an error.

• NOPREP: Disables ADP for the attribute. When ADP is OFF, the NOPREP value is
ignored.

You can specify NOPREP for a nested column, but not for an attribute in a
nested column. If you specify NOPREP for an attribute in a nested column when
ADP is on, CREATE_MODEL will return an error.

2. You can obtain information about a model by querying the Data Dictionary views.

ALL/USER/DBA_MINING_MODELS
ALL/USER/DBA_MINING_MODEL_ATTRIBUTES
ALL/USER/DBA_MINING_MODEL_SETTINGS
ALL/USER/DBA_MINING_MODEL_VIEWS
ALL/USER/DBA_MINING_MODEL_PARTITIONS
ALL/USER/DBA_MINING_MODEL_XFORMS

You can obtain information about model attributes by querying the model details
through model views. Refer to Oracle Data Mining User’s Guide.

3. The naming rules for models are more restrictive than the naming rules for most
database schema objects. A model name must satisfy the following additional
requirements:

• It must be 123 or fewer characters long.

• It must be a nonquoted identifier. Oracle requires that nonquoted identifiers
contain only alphanumeric characters, the underscore (_), dollar sign ($),
and pound sign (#); the initial character must be alphabetic. Oracle strongly
discourages the use of the dollar sign and pound sign in nonquoted literals.

Naming requirements for schema objects are fully documented in Oracle
Database SQL Language Reference.

4. To build a partitioned model, you must provide additional settings.

The setting for partitioning columns are as follows:

INSERT INTO settings_table VALUES (‘ODMS_PARTITION_COLUMNS’,
‘GENDER, AGE’);

To set user-defined partition number for a model, the setting is as follows:

INSERT INTO settings_table VALUES ('ODMS_MAX_PARTITIONS’, '10’);

The default value for maximum number of partitions is 1000.

5. By passing an xform_list to CREATE_MODEL, you can specify a list of
transformations to be performed on the input data. If the PREP_AUTO setting is
ON, the transformations are used in addition to the automatic transformations.
If the PREP_AUTO setting is OFF, the specified transformations are the only
ones implemented by the model. In both cases, transformation definitions are
embedded in the model and executed automatically whenever the model is

Chapter 36
DBMS_DATA_MINING

36-97

applied. See "Automatic Data Preparation". Other transforms that can be specified
with xform_list include FORCE_IN. Refer to Oracle Data Mining User’s Guide.

Examples

The first example builds a Classification model using the Support Vector Machine
algorithm.

-- Create the settings table
CREATE TABLE svm_model_settings (
 setting_name VARCHAR2(30),
 setting_value VARCHAR2(30));

-- Populate the settings table
-- Specify SVM. By default, Naive Bayes is used for classification.
-- Specify ADP. By default, ADP is not used.
BEGIN
 INSERT INTO svm_model_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.algo_name, dbms_data_mining.algo_support_vector_machines);
 INSERT INTO svm_model_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.prep_auto,dbms_data_mining.prep_auto_on);
 COMMIT;
END;
/
-- Create the model using the specified settings
BEGIN
 DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'svm_model',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data_build_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 settings_table_name => 'svm_model_settings');
END;
/

You can display the model settings with the following query:

SELECT * FROM user_mining_model_settings
 WHERE model_name IN 'SVM_MODEL';

MODEL_NAME SETTING_NAME SETTING_VALUE SETTING
------------- ---------------------- ----------------------------- -------
SVM_MODEL ALGO_NAME ALGO_SUPPORT_VECTOR_MACHINES INPUT

SVM_MODEL SVMS_STD_DEV 3.004524 DEFAULT
SVM_MODEL PREP_AUTO ON INPUT
SVM_MODEL SVMS_COMPLEXITY_FACTOR 1.887389 DEFAULT
SVM_MODEL SVMS_KERNEL_FUNCTION SVMS_LINEAR DEFAULT
SVM_MODEL SVMS_CONV_TOLERANCE .001 DEFAULT

The following is an example of querying a model view instead of the older
GEL_MODEL_DETAILS_SVM routine.

SELECT target_value, attribute_name, attribute_value, coefficient
FROM DM$VLSVM_MODEL;

Chapter 36
DBMS_DATA_MINING

36-98

The second example creates an Anomaly Detection model. Anomaly Detection uses
SVM Classification without a target. This example uses the same settings table
created for the SVM Classification model in the first example.

BEGIN
 DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'anomaly_detect_model',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data_build_v',
 case_id_column_name => 'cust_id',
 target_column_name => null,
 settings_table_name => 'svm_model_settings');
END;
/

This query shows that the models created in these examples are the only ones in your
schema.

SELECT model_name, mining_function, algorithm FROM user_mining_models;

MODEL_NAME MINING_FUNCTION ALGORITHM
---------------------- -------------------- ------------------------------
SVM_MODEL CLASSIFICATION SUPPORT_VECTOR_MACHINES
ANOMALY_DETECT_MODEL CLASSIFICATION SUPPORT_VECTOR_MACHINES

This query shows that only the SVM Classification model has a target.

SELECT model_name, attribute_name, attribute_type, target
 FROM user_mining_model_attributes
 WHERE target = 'YES';

MODEL_NAME ATTRIBUTE_NAME ATTRIBUTE_TYPE TARGET
------------------ --------------- ----------------- ------
SVM_MODEL AFFINITY_CARD CATEGORICAL YES

36.1.5.12 CREATE_MODEL2 Procedure
The CREATE_MODEL2 procedure is an alternate procedure to the CREATE_MODEL
procedure, which enables creating a model without extra persistence stages. In the
CREATE_MODEL procedure, the input is a table or a view and if such an object is not
already present, the user must create it. By using the CREATE_MODEL2 procedure, the
user does not need to create such transient database objects.

Syntax

DBMS_DATA_MINING.CREATE_MODEL2 (
 model_name IN VARCHAR2,
 mining_function IN VARCHAR2,
 data_query IN CLOB,
 set_list IN SETTING_LIST,
 case_id_column_name IN VARCHAR2 DEFAULT NULL,
 target_column_name IN VARCHAR2 DEFAULT NULL,
 xform_list IN TRANSFORM_LIST DEFAULT NULL);

Chapter 36
DBMS_DATA_MINING

36-99

Parameters

Table 36-63 CREATE_MODEL2 Procedure Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name.
If you do not specify a schema, then the current schema is
used.
See the Usage Notes, CREATE_MODEL Procedure for model
naming restrictions.

mining_function The mining function. Values are listed in
DBMS_DATA_MINING — Mining Function Settings.

data_query A query which provides training data for building the model.

set_list Specifies the SETTING_LIST

SETTING_LIST is a table of CLOB index by VARCHAR2(30);
Where the index is the setting name and the CLOB is the
setting value for that name.

case_id_column_name Case identifier column in the build data.

target_column_name For supervised models, the target column in the build data.
NULL for unsupervised models.

xform_list Refer to CREATE_MODEL Procedure.

Usage Notes

Refer to CREATE_MODEL Procedure for Usage Notes.

Examples

The following example uses the Support Vector Machine algorithm.

declare
 v_setlst DBMS_DATA_MINING.SETTING_LIST;

BEGIN
 v_setlst(dbms_data_mining.algo_name) :=
dbms_data_mining.algo_support_vector_machines;
 v_setlst(dbms_data_mining.prep_auto) := dbms_data_mining.prep_auto_on;

DBMS_DATA_MINING.CREATE_MODEL2(
 model_name => 'svm_model',
 mining_function => dbms_data_mining.classification,
 data_query => 'select * from mining_data_build_v',
 data_table_name => 'mining_data_build_v',
 case_id_column_name=> 'cust_id',
 target_column_name => 'affinity_card',
 set_list => v_setlst,
 case_id_column_name=> 'cust_id',
 target_column_name => 'affinity_card');
END;
/

Chapter 36
DBMS_DATA_MINING

36-100

36.1.5.13 Create Model Using Registration Information
Create model function fetches the setting information from JSON object.

Usage Notes

If an algorithm is registered, user can create model using the registered algorithm
name. Since all R scripts and default setting values are already registered, providing
the value through the setting table is not necessary. This makes the use of this
algorithm easier.

Examples

The first example builds a Classification model using the GLM algorithm.

CREATE TABLE GLM_RDEMO_SETTINGS_CL (

 setting_name VARCHAR2(30),
 setting_value VARCHAR2(4000));
 BEGIN
 INSERT INTO GLM_RDEMO_SETTINGS_CL VALUES
 ('ALGO_EXTENSIBLE_LANG', 'R');
 INSERT INTO GLM_RDEMO_SETTINGS_CL VALUES
 (dbms_data_mining.ralg_registration_algo_name, 't1');
 INSERT INTO GLM_RDEMO_SETTINGS_CL VALUES
 (dbms_data_mining.odms_formula,
 'AGE + EDUCATION + HOUSEHOLD_SIZE + OCCUPATION');
 INSERT INTO GLM_RDEMO_SETTINGS_CL VALUES
 ('RALG_PARAMETER_FAMILY', 'binomial(logit)');
 END;
 /
 BEGIN
 DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'GLM_RDEMO_CLASSIFICATION',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data_build_v',
 case_id_column_name => 'CUST_ID',
 target_column_name => 'AFFINITY_CARD',
 settings_table_name => 'GLM_RDEMO_SETTINGS_CL');
 END;
 /

36.1.5.14 DROP_ALGORITHM Procedure
This function is used to drop the registered algorithm information.

Syntax

DBMS_DATA_MINING.DROP_ALGORITHM (algorithm_name IN VARCHAR2(30),
 cascade IN BOOLEAN default FALSE)

Chapter 36
DBMS_DATA_MINING

36-101

Parameters

Table 36-64 DROP_ALGORITHM Procedure Parameters

Parameter Description

algorithm_n
ame

Name of the algorithm.

cascade If the cascade option is TRUE, all the models with this algorithms are
forced to drop. There after, the algorithm is dropped. The default value is
FALSE.

Usage Note

• To drop a mining model, you must be the owner or you must have the RQADMIN
privilege. See Oracle Data Mining User's Guide for information about privileges for
data mining.

• Make sure a model is not built on the algorithm, then drop the algorithm from the
system table.

• If you try to drop an algorithm with a model built on it, then an error is displayed.

36.1.5.15 DROP_PARTITION Procedure
The DROP_PARTITION procedure drops a single partition that is specified in the
parameter partition_name.

Syntax

DBMS_DATA_MINING.DROP_PARTITION (
 model_name IN VARCHAR2,
 partition_name IN VARCHAR2);

Parameters

Table 36-65 DROP_PARTITION Procedure Parameters

Parameters Description

model_name Name of the mining model in the form [schema_name.]model_name. If
you do not specify a schema, then your own schema is used.

partition_name Name of the partition that must be dropped.

36.1.5.16 DROP_MODEL Procedure
This procedure deletes the specified mining model.

Syntax

DBMS_DATA_MINING.DROP_MODEL (model_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Chapter 36
DBMS_DATA_MINING

36-102

Parameters

Table 36-66 DROP_MODEL Procedure Parameters

Parameter Description

model_name Name of the mining model in the form [schema_name.]model_name. If
you do not specify a schema, your own schema is used.

force Forces the mining model to be dropped even if it is invalid. A mining
model may be invalid if a serious system error interrupted the model
build process.

Usage Note

To drop a mining model, you must be the owner or you must have the DROP ANY
MINING MODEL privilege. See Oracle Data Mining User's Guide for information about
privileges for data mining.

Example

You can use the following command to delete a valid mining model named
nb_sh_clas_sample that exists in your schema.

BEGIN
 DBMS_DATA_MINING.DROP_MODEL(model_name => 'nb_sh_clas_sample');
END;
/

36.1.5.17 EXPORT_MODEL Procedure
This procedure exports the specified data mining models to a dump file set.

To import the models from the dump file set, use the IMPORT_MODEL Procedure.
EXPORT_MODEL and IMPORT_MODEL use Oracle Data Pump technology.

When Oracle Data Pump is used to export/import an entire schema or database, the
mining models in the schema or database are included. However, EXPORT_MODEL and
IMPORT_MODEL are the only utilities that support the export/import of individual models.

See Also:

Oracle Database Utilities for information about Oracle Data Pump

Oracle Data Mining User's Guide for more information about exporting and
importing mining models

Syntax

DBMS_DATA_MINING.EXPORT_MODEL (
 filename IN VARCHAR2,
 directory IN VARCHAR2,
 model_filter IN VARCHAR2 DEFAULT NULL,
 filesize IN VARCHAR2 DEFAULT NULL,
 operation IN VARCHAR2 DEFAULT NULL,

Chapter 36
DBMS_DATA_MINING

36-103

 remote_link IN VARCHAR2 DEFAULT NULL,
 jobname IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-67 EXPORT_MODEL Procedure Parameters

Parameter Description

filename Name of the dump file set to which the models should be exported. The
name must be unique within the schema.
The dump file set can contain one or more files. The number of files in
a dump file set is determined by the size of the models being exported
(both metadata and data) and a specified or estimated maximum file
size. You can specify the file size in the filesize parameter, or you can
use the operation parameter to cause Oracle Data Pump to estimate
the file size. If the size of the models to export is greater than the
maximum file size, one or more additional files are created.
When the export operation completes successfully, the name of the
dump file set is automatically expanded to filename01.dmp, even if
there is only one file in the dump set. If there are additional files, they
are named sequentially as filename02.dmp, filename03.dmp, and so
forth.

directory Name of a pre-defined directory object that specifies where the dump
file set should be created.
The exporting user must have read/write privileges on the directory
object and on the file system directory that it identifies.
See Oracle Database SQL Language Reference for information about
directory objects.

model_filter Optional parameter that specifies which model or models to export. If
you do not specify a value for model_filter, all models in the schema
are exported. You can also specify NULL (the default) or 'ALL' to export
all models.
You can export individual models by name and groups of models based
on mining function or algorithm. For instance, you could export all
regression models or all Naive Bayes models. Examples are provided in
Table 36-68.

filesize Optional parameter that specifies the maximum size of a file in
the dump file set. The size may be specified in bytes, kilobytes (K),
megabytes (M), or gigabytes (G). The default size is 50 MB.
If the size of the models to export is larger than filesize, one or more
additional files are created within the dump set. See the description of
the filename parameter for more information.

operation Optional parameter that specifies whether or not to estimate the size of
the files in the dump set. By default the size is not estimated and the
value of the filesize parameter determines the size of the files.

You can specify either of the following values for operation:

• 'EXPORT' — Export all or the specified models. (Default)
• 'ESTIMATE' — Estimate the size of the exporting models.

Chapter 36
DBMS_DATA_MINING

36-104

Table 36-67 (Cont.) EXPORT_MODEL Procedure Parameters

Parameter Description

remote_link Optional parameter that specifies the name of a database link to a
remote system. The default value is NULL. A database link is a schema
object in a local database that enables access to objects in a remote
database. When you specify a value for remote_link, you can export
the models in the remote database. The EXP_FULL_DATABASE role is
required for exporting the remote models. The EXP_FULL_DATABASE
privilege, the CREATE DATABASE LINK privilege, and other privileges
may also be required.

jobname Optional parameter that specifies the name of the export job. By
default, the name has the form username_exp_nnnn, where nnnn is
a number. For example, a job name in the SCOTT schema might be
SCOTT_exp_134.

If you specify a job name, it must be unique within the schema. The
maximum length of the job name is 30 characters.
A log file for the export job, named jobname.log, is created in the same
directory as the dump file set.

Usage Notes

The model_filter parameter specifies which models to export. You can list the
models by name, or you can specify all models that have the same mining function
or algorithm. You can query the USER_MINING_MODELS view to list the models in your
schema.

SQL> describe user_mining_models
 Name Null? Type
 --- -------- ----------------------------
 MODEL_NAME NOT NULL VARCHAR2(30)
 MINING_FUNCTION VARCHAR2(30)
 ALGORITHM VARCHAR2(30)
 CREATION_DATE NOT NULL DATE
 BUILD_DURATION NUMBER
 MODEL_SIZE NUMBER
 COMMENTS VARCHAR2(4000)

Examples of model filters are provided in Table 36-68.

Table 36-68 Sample Values for the Model Filter Parameter

Sample Value Meaning

'mymodel' Export the model named mymodel

'name= ''mymodel''' Export the model named mymodel

'name IN (''mymodel2'',''mymodel3'')' Export the models named mymodel2
and mymodel3

'ALGORITHM_NAME = ''NAIVE_BAYES''' Export all Naive Bayes models. See
Table 36-5 for a list of algorithm names.

'FUNCTION_NAME =''CLASSIFICATION''' Export all classification models. See
Table 36-3 for a list of mining functions.

Chapter 36
DBMS_DATA_MINING

36-105

Examples

1. The following statement exports all the models in the DMUSER3 schema to a dump
file set called models_out in the directory $ORACLE_HOME/rdbms/log. This directory
is mapped to a directory object called DATA_PUMP_DIR. The DMUSER3 user has read/
write access to the directory and to the directory object.

SQL>execute dbms_data_mining.export_model ('models_out', 'DATA_PUMP_DIR');

You can exit SQL*Plus and list the resulting dump file and log file.

SQL>EXIT
>cd $ORACLE_HOME/rdbms/log
>ls
>DMUSER3_exp_1027.log models_out01.dmp

2. The following example uses the same directory object and is executed by
the same user.This example exports the models called NMF_SH_SAMPLE and
SVMR_SH_REGR_SAMPLE to a different dump file set in the same directory.

SQL>EXECUTE DBMS_DATA_MINING.EXPORT_MODEL ('models2_out', 'DATA_PUMP_DIR',
 'name in (''NMF_SH_SAMPLE'', ''SVMR_SH_REGR_SAMPLE'')');
SQL>EXIT
>cd $ORACLE_HOME/rdbms/log
>ls
>DMUSER3_exp_1027.log models_out01.dmp
 DMUSER3_exp_924.log models2_out01.dmp

3. The following examples show how to export models with specific algorithm and
mining function names.

SQL>EXECUTE DBMS_DATA_MINING.EXPORT_MODEL('algo.dmp','DM_DUMP',
 'ALGORITHM_NAME IN (''O_CLUSTER'',''GENERALIZED_LINEAR_MODEL'',
 ''SUPPORT_VECTOR_MACHINES'',''NAIVE_BAYES'')');

SQL>EXECUTE DBMS_DATA_MINING.EXPORT_MODEL('func.dmp', 'DM_DUMP',
 'FUNCTION_NAME IN (CLASSIFICATION,CLUSTERING,FEATURE_EXTRACTION)');

36.1.5.18 EXPORT_SERMODEL Procedure
This procedure exports the model in a serialized format so that they can be moved to
another platform for scoring.

When exporting a model in serialized format, the user must pass in an empty BLOB
locator and specify the model name to be exported. If the model is partitioned, the
user can optionally select an individual partition to export, otherwise all partitions are
exported. The returned BLOB contains the content that can be deployed.

Syntax

DBMS_DATA_MINING.EXPORT_SERMODEL (
 model_data IN OUT NOCOPY BLOB,
 model_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL);

Chapter 36
DBMS_DATA_MINING

36-106

Parameters

Table 36-69 EXPORT_SERMODEL Procedure Parameters

Parameter Description

model_data Provides serialized model data.

model_name Name of the mining model in the form [schema_name.]model_name. If
you do not specify a schema, then your own schema is used.

partition_na
me

Name of the partition that must be exported.

Examples

The following statement exports all the models in a serialized format.

DECLARE
 v_blob blob;
BEGIN
 dbms_lob.createtemporary(v_blob, FALSE);
 dbms_data_mining.export_sermodel(v_blob, 'MY_MODEL');
-- save v_blob somewhere (e.g., bfile, etc.)
 dbms_lob.freetemporary(v_blob);
END;
/

See Also:

Oracle Data Mining User's Guide for more information about exporting and
importing mining models

36.1.5.19 FETCH_JSON_SCHEMA Procedure
User can fetch and read JSON schema from the ALL_MINING_ALGORITHMS view. This
function returns the pre-registered JSON schema for R extensible algorithms.

Syntax

DBMS_DATA_MINING.FETCH_JSON_SCHEMA RETURN CLOB;

Parameters

Table 36-70 FETCH_JSON_SCHEMA Procedure Parameters

Parameter Description

RETURN This function returns the pre-registered JSON schema for R extensibility.
The default value is CLOB.

Chapter 36
DBMS_DATA_MINING

36-107

Usage Note

If a user wants to register a new algorithm using the algorithm registration function,
they must fetch and follow the pre-registered JSON schema using this function, when
they create the required JSON object metadata, and then pass it to the registration
function.

36.1.5.20 GET_ASSOCIATION_RULES Function
The GET_ASSOCIATION_RULES function returns the rules produced by an Association
model. Starting from Oracle Database 12c Release 2, this function is deprecated. See
"Model Detail Views" in Oracle Data Mining User’s Guide

You can specify filtering criteria to GET_ASSOCIATION_RULES to return a subset of the
rules. Filtering criteria can improve the performance of the table function. If the number
of rules is large, then the greatest performance improvement will result from specifying
the topn parameter.

Syntax

DBMS_DATA_MINING.get_association_rules(
 model_name IN VARCHAR2,
 topn IN NUMBER DEFAULT NULL,
 rule_id IN INTEGER DEFAULT NULL,
 min_confidence IN NUMBER DEFAULT NULL,
 min_support IN NUMBER DEFAULT NULL,
 max_rule_length IN INTEGER DEFAULT NULL,
 min_rule_length IN INTEGER DEFAULT NULL,
 sort_order IN ORA_MINING_VARCHAR2_NT DEFAULT NULL,
 antecedent_items IN DM_ITEMS DEFAULT NULL,
 consequent_items IN DM_ITEMS DEFAULT NULL,
 min_lift IN NUMBER DEFAULT NULL,
 partition_name IN VARCHAR2 DEFAULT NULL)
 RETURN DM_Rules PIPELINED;

Parameters

Table 36-71 GET_ASSOCIATION_RULES Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If you
do not specify a schema, then your own schema is used.
This is the only required parameter of GET_ASSOCIATION_RULES.
All other parameters specify optional filters on the rules to return.

topn Returns the n top rules ordered by confidence and then support,
both descending. If you specify a sort order, then the top n rules
are derived after the sort is performed.
If topn is specified and no maximum or minimum rule length
is specified, then the only columns allowed in the sort order
are RULE_CONFIDENCE and RULE_SUPPORT. If topn is specified
and a maximum or minimum rule length is specified, then
RULE_CONFIDENCE, RULE_SUPPORT, and NUMBER_OF_ITEMS are
allowed in the sort order.

Chapter 36
DBMS_DATA_MINING

36-108

Table 36-71 (Cont.) GET_ASSOCIATION_RULES Function Parameters

Parameter Description

rule_id Identifier of the rule to return. If you specify a value for rule_id,
do not specify values for the other filtering parameters.

min_confidence Returns the rules with confidence greater than or equal to this
number.

min_support Returns the rules with support greater than or equal to this
number.

max_rule_length Returns the rules with a length less than or equal to this number.
Rule length refers to the number of items in the rule (See
NUMBER_OF_ITEMS in Table 36-72). For example, in the rule A=>B
(if A, then B), the number of items is 2.
If max_rule_length is specified, then the NUMBER_OF_ITEMS
column is permitted in the sort order.

min_rule_length Returns the rules with a length greater than or equal to this
number. See max_rule_length for a description of rule length.

If min_rule_length is specified, then the NUMBER_OF_ITEMS
column is permitted in the sort order.

sort_order Sorts the rules by the values in one or more of the returned
columns. Specify one or more column names, each followed by ASC
for ascending order or DESC for descending order. (See Table 36-72
for the column names.)
For example, to sort the result set in descending order first by the
NUMBER_OF_ITEMS column, then by the RULE_CONFIDENCE column,
you must specify:
ORA_MINING_VARCHAR2_NT('NUMBER_OF_ITEMS DESC',
'RULE_CONFIDENCE DESC')

If you specify topn, the results will vary depending on the sort
order.
By default, the results are sorted by Confidence in descending
order, then by Support in descending order.

antecedent_items Returns the rules with these items in the antecedent.

consequent_items Returns the rules with this item in the consequent.

min_lift Returns the rules with lift greater than or equal to this number.

partition_name Specifies a partition in a partitioned model.

Return Values

The object type returned by GET_ASSOCIATION_RULES is described in Table 36-72. For
descriptions of each field, see the Usage Notes.

Chapter 36
DBMS_DATA_MINING

36-109

Table 36-72 GET_ASSOCIATION RULES Function Return Values

Return Value Description

DM_RULES A set of rows of type DM_RULE. The rows have the following columns:

(rule_id INTEGER,
 antecedent DM_PREDICATES,
 consequent DM_PREDICATES,
 rule_support NUMBER,
 rule_confidence NUMBER,
 rule_lift NUMBER,
 antecedent_support NUMBER,
 consequent_support NUMBER,
 number_of_items INTEGER)

DM_PREDICATE
S

The antecedent and consequent columns each return nested tables
of type DM_PREDICATES. The rows, of type DM_PREDICATE, have the
following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 conditional_operator CHAR(2)/*=,<>,<,>,<=,>=*/,
 attribute_num_value NUMBER,
 attribute_str_value VARCHAR2(4000),
 attribute_support NUMBER,
 attribute_confidence NUMBER)

Usage Notes

1. This table function pipes out rows of type DM_RULES. For information on Data
Mining data types and piped output from table functions, see "Datatypes".

2. The columns returned by GET_ASSOCIATION_RULES are described as follows:

Column in
DM_RULES

Description

rule_id Unique identifier of the rule

Chapter 36
DBMS_DATA_MINING

36-110

Column in
DM_RULES

Description

antecedent The independent condition in the rule. When this condition
exists, the dependent condition in the consequent also exists.
The condition is a combination of attribute values called
a predicate (DM_PREDICATE). The predicate specifies a
condition for each attribute. The condition may specify
equality (=), inequality (<>), greater than (>), less than (<),
greater than or equal to (>=), or less than or equal to (<=) a
given value.
Support and Confidence for each attribute condition
in the antecedent is returned in the predicate. Support
is the number of transactions that satisfy the antecedent.
Confidence is the likelihood that a transaction will satisfy the
antecedent.
Note: The occurence of the attribute as a DM_PREDICATE
indicates the presence of the item in the transaction.
The actual value for attribute_num_value or
attribute_str_value is meaningless. For example, the
following predicate indicates that 'Mouse Pad' is present in
the transaction even though the attribute value is NULL.

DM_PREDICATE('PROD_NAME',
 'Mouse Pad', '= ', NULL, NULL, NULL,
NULL))

consequent The dependent condition in the rule. This condition exists
when the antecedent exists.
The consequent, like the antecedent, is a predicate
(DM_PREDICATE).

Support and confidence for each attribute condition in
the consequent is returned in the predicate. Support is
the number of transactions that satisfy the consequent.
Confidence is the likelihood that a transaction will satisfy the
consequent.

rule_support The number of transactions that satisfy the rule.

rule_confidence The likelihood of a transaction satisfying the rule.

rule_lift The degree of improvement in the prediction over random
chance when the rule is satisfied.

antecedent_support The ratio of the number of transactions that satisfy the
antecedent to the total number of transactions.

consequent_support The ratio of the number of transactions that satisfy the
consequent to the total number of transactions.

number_of_items The total number of attributes referenced in the antecedent
and consequent of the rule.

Examples

The following example demonstrates an Association model build followed by several
invocations of the GET_ASSOCIATION_RULES table function:

-- prepare a settings table to override default settings
CREATE TABLE market_settings AS
SELECT *
 FROM TABLE(DBMS_DATA_MINING.GET_DEFAULT_SETTINGS)

Chapter 36
DBMS_DATA_MINING

36-111

 WHERE setting_name LIKE 'ASSO_%';
BEGIN
-- update the value of the minimum confidence
UPDATE market_settings
 SET setting_value = TO_CHAR(0.081)
 WHERE setting_name = DBMS_DATA_MINING.asso_min_confidence;

-- build an AR model
DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'market_model',
 function => DBMS_DATA_MINING.ASSOCIATION,
 data_table_name => 'market_build',
 case_id_column_name => 'item_id',
 target_column_name => NULL,
 settings_table_name => 'market_settings');
END;
/
-- View the (unformatted) rules
SELECT rule_id, antecedent, consequent, rule_support,
 rule_confidence
 FROM TABLE(DBMS_DATA_MINING.GET_ASSOCIATION_RULES('market_model'));

In the previous example, you view all rules. To view just the top 20 rules, use the
following statement.

-- View the top 20 (unformatted) rules
SELECT rule_id, antecedent, consequent, rule_support,
 rule_confidence
 FROM TABLE(DBMS_DATA_MINING.GET_ASSOCIATION_RULES('market_model', 20));

The following query uses the Association model AR_SH_SAMPLE, which is created from
one of the Oracle Data Mining sample programs:

SELECT * FROM TABLE (
 DBMS_DATA_MINING.GET_ASSOCIATION_RULES (
 'AR_SH_SAMPLE', 10, NULL, 0.5, 0.01, 2, 1,
 ORA_MINING_VARCHAR2_NT (
 'NUMBER_OF_ITEMS DESC', 'RULE_CONFIDENCE DESC', 'RULE_SUPPORT DESC'),
 DM_ITEMS(DM_ITEM('CUSTPRODS', 'Mouse Pad', 1, NULL),
 DM_ITEM('CUSTPRODS', 'Standard Mouse', 1, NULL)),
 DM_ITEMS(DM_ITEM('CUSTPRODS', 'Extension Cable', 1, NULL))));

The query returns three rules, shown as follows:

13 DM_PREDICATES(
 DM_PREDICATE('CUSTPRODS', 'Mouse Pad', '= ', 1, NULL, NULL, NULL),
 DM_PREDICATE('CUSTPRODS', 'Standard Mouse', '= ', 1, NULL, NULL, NULL))
 DM_PREDICATES(
 DM_PREDICATE('CUSTPRODS', 'Extension Cable', '= ', 1, NULL, NULL, NULL))
 .15532 .84393 2.7075 .18404 .3117 2

11 DM_PREDICATES(
 DM_PREDICATE('CUSTPRODS', 'Standard Mouse', '= ', 1, NULL, NULL, NULL))
 DM_PREDICATES(
 DM_PREDICATE('CUSTPRODS', 'Extension Cable', '= ', 1, NULL, NULL, NULL))
 .18085 .56291 1.8059 .32128 .3117 1

9 DM_PREDICATES(
 DM_PREDICATE('CUSTPRODS', 'Mouse Pad', '= ', 1, NULL, NULL, NULL))
 DM_PREDICATES(
 DM_PREDICATE('CUSTPRODS', 'Extension Cable', '= ', 1, NULL, NULL, NULL))

Chapter 36
DBMS_DATA_MINING

36-112

 .17766 .55116 1.7682 .32234 .3117 1

See Also:

Table 36-72 for the DM_RULE column data types.

Oracle Data Mining User's Guide for information about the sample programs.

Oracle Data Mining User’s Guide for Model Detail Views.

36.1.5.21 GET_FREQUENT_ITEMSETS Function
The GET_FREQUENT_ITEMSETS function returns a set of rows that represent the frequent
itemsets from an Association model. Starting from Oracle Database 12c Release 2,
this function is deprecated. See "Model Detail Views" in Oracle Data Mining User’s
Guide.

For a detailed description of frequent itemsets, consult Oracle Data Mining Concepts.

Syntax

DBMS_DATA_MINING.get_frequent_itemsets(
 model_name IN VARCHAR2,
 topn IN NUMBER DEFAULT NULL,
 max_itemset_length IN NUMBER DEFAULT NULL,
 partition_name IN VARCHAR2 DEFAULT NULL)
 RETURN DM_ItemSets PIPELINED;

Parameters

Table 36-73 GET_FREQUENT_ITEMSETS Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If
you do not specify a schema, then your own schema is used.

topn When not NULL, return the top n rows ordered by support in
descending order

max_itemset_length Maximum length of an item set.

partition_name Specifies a partition in a partitioned model.

Note:

The partition_name columns
applies only when the model is
partitioned.

Chapter 36
DBMS_DATA_MINING

36-113

Return Values

Table 36-74 GET_FREQUENT_ITEMSETS Function Return Values

Return Value Description

DM_ITEMSETS A set of rows of type DM_ITEMSET. The rows have the following columns:

(partition_name VARCHAR2(128)
itemsets_id NUMBER,
items DM_ITEMS,
support NUMBER,
number_of_items NUMBER)

Note:

The partition_name columns applies only
when the model is partitioned.

The items column returns a nested table of type DM_ITEMS. The rows
have type DM_ITEM:

(attribute_name VARCHAR2(4000),
attribute_subname VARCHAR2(4000),
attribute_num_value NUMBER,
attribute_str_value VARCHAR2(4000))

Usage Notes

This table function pipes out rows of type DM_ITEMSETS. For information on Data Mining
datatypes and piped output from table functions, see "Datatypes".

Examples

The following example demonstrates an Association model build followed by an
invocation of GET_FREQUENT_ITEMSETS table function from Oracle SQL.

-- prepare a settings table to override default settings
CREATE TABLE market_settings AS

 SELECT *

 FROM TABLE(DBMS_DATA_MINING.GET_DEFAULT_SETTINGS)
 WHERE setting_name LIKE 'ASSO_%';
BEGIN
-- update the value of the minimum confidence
UPDATE market_settings
 SET setting_value = TO_CHAR(0.081)
 WHERE setting_name = DBMS_DATA_MINING.asso_min_confidence;

/* build a AR model */
DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'market_model',
 function => DBMS_DATA_MINING.ASSOCIATION,
 data_table_name => 'market_build',
 case_id_column_name => 'item_id',

Chapter 36
DBMS_DATA_MINING

36-114

 target_column_name => NULL,
 settings_table_name => 'market_settings');
END;
/

-- View the (unformatted) Itemsets from SQL*Plus
SELECT itemset_id, items, support, number_of_items
 FROM TABLE(DBMS_DATA_MINING.GET_FREQUENT_ITEMSETS('market_model'));

In the example above, you view all itemsets. To view just the top 20 itemsets, use the
following statement:

-- View the top 20 (unformatted) Itemsets from SQL*Plus
SELECT itemset_id, items, support, number_of_items
 FROM TABLE(DBMS_DATA_MINING.GET_FREQUENT_ITEMSETS('market_model', 20));

See Also:

Oracle Data Mining User’s Guide

36.1.5.22 GET_MODEL_COST_MATRIX Function
The GET_* interfaces are replaced by model views, and Oracle recommends that users
leverage the views instead. The GET_MODEL_COST_MATRIX function is replaced by
the DM$VC prefixed view, Scoring Cost Matrix. The cost matrix used when building a
Decision Tree is made available by the DM$VM prefixed view, Decision Tree Build Cost
Matrix.

Refer to Model Detail View for Classification Algorithm.

The GET_MODEL_COST_MATRIX function returns the rows of a cost matrix associated with
the specified model.

By default, this function returns the scoring cost matrix that was added to the
model with the ADD_COST_MATRIX procedure. If you wish to obtain the cost matrix
used to create a model, specify cost_matrix_type_create as the matrix_type. See
Table 36-75.

See also ADD_COST_MATRIX Procedure.

Syntax

DBMS_DATA_MINING.GET_MODEL_COST_MATRIX (
 model_name IN VARCHAR2,
 matrix_type IN VARCHAR2 DEFAULT cost_matrix_type_score)
 partition_name IN VARCHAR2 DEFAULT NULL);
RETURN DM_COST_MATRIX PIPELINED;

Chapter 36
DBMS_DATA_MINING

36-115

Parameters

Table 36-75 GET_MODEL_COST_MATRIX Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name.
If you do not specify a schema, then your own schema is
used.

matrix_type The type of cost matrix.
COST_MATRIX_TYPE_SCORE — cost matrix used for scoring.
(Default.)
COST_MATRIX_TYPE_CREATE — cost matrix used to create the
model (Decision Tree only).

partition_name Name of the partition in a partitioned model

Return Values

Table 36-76 GET_MODEL_COST_MATRIX Function Return Values

Return Value Description

DM_COST_MATRIX A set of rows of type DM_COST_ELEMENT. The rows have the
following columns:

actual VARCHAR2(4000), NUMBER,
predicted VARCHAR2(4000), cost
NUMBER)

Usage Notes

Only Decision Tree models can be built with a cost matrix. If you want to build a
Decision Tree model with a cost matrix, specify the cost matrix table name in the
CLAS_COST_TABLE_NAME setting in the settings table for the model. See Table 36-7.

The cost matrix used to create a Decision Tree model becomes the default scoring
matrix for the model. If you want to specify different costs for scoring, you can use the
REMOVE_COST_MATRIX procedure to remove the cost matrix and the ADD_COST_MATRIX
procedure to add a new one.

The GET_MODEL_COST_MATRIX may return either the build or scoring cost matrix defined
for a model or model partition.

If you do not specify a partitioned model name, then an error is displayed.

Example

This example returns the scoring cost matrix associated with the Naive Bayes model
NB_SH_CLAS_SAMPLE.

column actual format a10
column predicted format a10
SELECT *
 FROM TABLE(dbms_data_mining.get_model_cost_matrix('nb_sh_clas_sample'))
 ORDER BY predicted, actual;

Chapter 36
DBMS_DATA_MINING

36-116

ACTUAL PREDICTED COST
---------- ---------- -----
0 0 .00
1 0 .75
0 1 .25
1 1 .00

36.1.5.23 GET_MODEL_DETAILS_AI Function
The GET_MODEL_DETAILS_AI function returns a set of rows that provide the details of
an Attribute Importance model. Starting from Oracle Database 12c Release 2, this
function is deprecated. See "Model Detail Views" in Oracle Data Mining User’s Guide.

Syntax

DBMS_DATA_MINING.get_model_details_ai(
 model_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL)
 RETURN dm_ranked_attributes pipelined;

Parameters

Table 36-77 GET_MODEL_DETAILS_AI Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name.
If you do not specify a schema, then your own schema is
used.

partition_name Specifies a partition in a partitioned model.

Return Values

Table 36-78 GET_MODEL_DETAILS_AI Function Return Values

Return Value Description

DM_RANKED_ATTRIBUTES A set of rows of type DM_RANKED_ATTRIBUTE. The rows have
the following columns:

(attribute_name VARCHAR2(4000,
 attribute_subname VARCHAR2(4000),
 importance_value NUMBER,
 rank NUMBER(38))

Examples

The following example returns model details for the Attribute Importance model
AI_SH_sample, which was created by the sample program dmaidemo.sql. For
information about the sample programs, see Oracle Data Mining User's Guide.

SELECT attribute_name, importance_value, rank
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_AI('AI_SH_sample'))
 ORDER BY RANK;

ATTRIBUTE_NAME IMPORTANCE_VALUE RANK

Chapter 36
DBMS_DATA_MINING

36-117

-- ---------------- ----------
HOUSEHOLD_SIZE .151685183 1
CUST_MARITAL_STATUS .145294546 2
YRS_RESIDENCE .07838928 3
AGE .075027496 4
Y_BOX_GAMES .063039952 5
EDUCATION .059605314 6
HOME_THEATER_PACKAGE .056458722 7
OCCUPATION .054652937 8
CUST_GENDER .035264741 9
BOOKKEEPING_APPLICATION .019204751 10
PRINTER_SUPPLIES 0 11
OS_DOC_SET_KANJI -.00050013 12
FLAT_PANEL_MONITOR -.00509564 13
BULK_PACK_DISKETTES -.00540822 14
COUNTRY_NAME -.01201116 15
CUST_INCOME_LEVEL -.03951311 16

36.1.5.24 GET_MODEL_DETAILS_EM Function
The GET_MODEL_DETAILS_EM function returns a set of rows that provide statistics about
the clusters produced by an Expectation Maximization model. Starting from Oracle
Database 12c Release 2, this function is deprecated. See "Model Detail Views" in
Oracle Data Mining User’s Guide.

By default, the EM algorithm groups components into high-level clusters, and
GET_MODEL_DETAILS_EM returns only the high-level clusters with their hierarchies.
Alternatively, you can configure EM model to disable the grouping of components
into high-level clusters. In this case, GET_MODEL_DETAILS_EM returns the components
themselves as clusters with their hierarchies. See Table 36-12.

Syntax

DBMS_DATA_MINING.get_model_details_em(
 model_name VARCHAR2,
 cluster_id NUMBER DEFAULT NULL,
 attribute VARCHAR2 DEFAULT NULL,
 centroid NUMBER DEFAULT 1,
 histogram NUMBER DEFAULT 1,
 rules NUMBER DEFAULT 2,
 attribute_subname VARCHAR2 DEFAULT NULL,
 topn_attributes NUMBER DEFAULT NULL,
 partition_name IN VARCHAR2 DEFAULT NULL)
 RETURN dm_clusters PIPELINED;

Parameters

Table 36-79 GET_MODEL_DETAILS_EM Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name.
If you do not specify a schema, then your own schema is
used.

cluster_id The ID of a cluster in the model. When a valid cluster ID
is specified, only the details of this cluster are returned.
Otherwise, the details for all clusters are returned.

Chapter 36
DBMS_DATA_MINING

36-118

Table 36-79 (Cont.) GET_MODEL_DETAILS_EM Function Parameters

Parameter Description

attribute The name of an attribute. When a valid attribute name
is specified, only the details of this attribute are returned.
Otherwise, the details for all attributes are returned

centroid This parameter accepts the following values:
• 1: Details about centroids are returned (default)
• 0: Details about centroids are not returned

histogram This parameter accepts the following values:
• 1: Details about histograms are returned (default)
• 0: Details about histograms are not returned

rules This parameter accepts the following values:
• 2: Details about rules are returned (default)
• 1: Rule summaries are returned
• 0: No information about rules is returned

attribute_subname The name of a nested attribute. The full name of a nested
attribute has the form:
attribute_name.attribute_subname

where attribute_name is the name of the column and
attribute_subname is the name of the nested attribute
in that column. If the attribute is not nested, then
attribute_subname is null.

topn_attributes Restricts the number of attributes returned in the centroid,
histogram, and rules objects. Only the n attributes with the
highest confidence values in the rules are returned.
If the number of attributes included in the rules is less than
topn, then, up to n additional attributes in alphabetical order
are returned.
If both the attribute and topn_attributes parameters are
specified, then topn_attributes is ignored.

partition_name Specifies a partition in a partitioned model.

Usage Notes

1. For information on Data Mining datatypes and Return Values for Clustering
Algorithms piped output from table functions, see "Datatypes".

2. GET_MODEL_DETAILS functions preserve model transparency by automatically
reversing the transformations applied during the build process. Thus the attributes
returned in the model details are the original attributes (or a close approximation of
the original attributes) used to build the model.

3. When cluster statistics are disabled (EMCS_CLUSTER_STATISTICS is set to
EMCS_CLUS_STATS_DISABLE), GET_MODEL_DETAILS_EM does not return centroids,
histograms, or rules. Only taxonomy (hierarchy) and cluster counts are returned.

4. When the partition_name is NULL for a partitioned model, an exception is thrown.
When the value is not null, it must contain the desired partition name.

Related Topics

• Oracle Data Mining User’s Guide

Chapter 36
DBMS_DATA_MINING

36-119

36.1.5.25 GET_MODEL_DETAILS_EM_COMP Function
he GET_MODEL_DETAILS_EM_COMP table function returns a set of rows that provide
details about the parameters of an Expectation Maximization model. Starting from
Oracle Database 12c Release 2, this function is deprecated. See "Model Detail Views"
in Oracle Data Mining User’s Guide.

Syntax

DBMS_DATA_MINING.get_model_details_em_comp(
 model_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL)
 RETURN DM_EM_COMPONENT_SET PIPELINED;

Parameters

Table 36-80 GET_MODEL_DETAILS_EM_COMP Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name.
If you do not specify a schema, your own schema is used.

partition_name Specifies a partition in a partitioned model to retrieve details
for.

Return Values

Table 36-81 GET_MODEL_DETAILS_EM_COMP Function Return Values

Return Value Description

DM_EM_COMPONENT_SET A set of rows of type DM_EM_COMPONENT. The rows
have the following columns:

(info_type VARCHAR2(30),
 component_id NUMBER,
 cluster_id NUMBER,
 attribute_name VARCHAR2(4000),
 covariate_name VARCHAR2(4000),
 attribute_value VARCHAR2(4000),
 value NUMBER)

Usage Notes

1. This table function pipes out rows of type DM_EM_COMPONENT. For information on
Data Mining datatypes and piped output from table functions, see "Datatypes".

The columns in each row returned by GET_MODEL_DETAILS_EM_COMP are described
as follows:

Chapter 36
DBMS_DATA_MINING

36-120

Column in
DM_EM_COMPONENT

Description

info_type The type of information in the row. The following
information types are supported:
• cluster

• prior

• mean

• covariance

• frequency

component_id Unique identifier of a component

cluster_id Unique identifier of the high-level leaf cluster for
each component

attribute_name Name of an original attribute or a derived feature
ID. The derived feature ID is used in models
built on data with nested columns. The derived
feature definitions can be obtained from the
GET_MODEL_DETAILS_EM_PROJ Function.

covariate_name Name of an original attribute or a derived feature
ID used in variance/covariance definition

attribute_value Categorical value or bin interval for binned
numerical attributes

value Encodes different information depending on the
value of info_type, as follows:

• cluster — The value field is NULL
• prior — The value field returns the

component prior
• mean — The value field returns the mean of

the attribute specified in attribute_name
• covariance — The value field returns the

covariance of the attributes specified in
attribute_name and covariate_name. Using
the same attribute in attribute_name and
covariate_name, returns the variance.

• frequency— The value field returns the
multivalued Bernoulli frequency parameter
for the attribute/value combination specified
by attribute_name and attribute_value

See Usage Note 2 for details.

2. The following table shows which fields are used for each info_type. The blank
cells represent NULLs.

info_type component_
id

cluster_i
d

attribute
_name

covariate_
name

attribute_v
alue

value

cluster X X

prior X X X

mean X X X X

covarianc
e

X X X X X

frequency X X X X X

Chapter 36
DBMS_DATA_MINING

36-121

3. GET_MODEL_DETAILS functions preserve model transparency by automatically
reversing the transformations applied during the build process. Thus the attributes
returned in the model details are the original attributes (or a close approximation of
the original attributes) used to build the model.

4. When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

Related Topics

• Oracle Data Mining User’s Guide

36.1.5.26 GET_MODEL_DETAILS_EM_PROJ Function
The GET_MODEL_DETAILS_EM_PROJ function returns a set of rows that provide statistics
about the projections produced by an Expectation Maximization model. Starting from
Oracle Database 12c Release 2, this function is deprecated. See "Model Detail Views"
in Oracle Data Mining User’s Guide.

Syntax

DBMS_DATA_MINING.get_model_details_em_proj(
 model_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL)
 RETURN DM_EM_PROJECTION_SET PIPELINED;

Parameters

Table 36-82 GET_MODEL_DETAILS_EM_PROJ Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name.
If you do not specify a schema, then your own schema is
used.

partition_name Specifies a partition in a partitioned model

Return Values

Table 36-83 GET_MODEL_DETAILS_EM_PROJ Function Return Values

Return Value Description

DM_EM_PROJECTION_SET A set of rows of type DM_EM_PROJECTION. The rows have the
following columns:

(feature_name VARCHAR2(4000),
 attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 attribute_value VARCHAR2(4000),
 coefficient NUMBER)

See Usage Notes for details.

Chapter 36
DBMS_DATA_MINING

36-122

Usage Notes

1. This table function pipes out rows of type DM_EM_PROJECTION. For information on
Data Mining datatypes and piped output from table functions, see "Datatypes".

The columns in each row returned by GET_MODEL_DETAILS_EM_PROJ are described
as follows:

Column in DM_EM_PROJECTION Description

feature_name Name of a derived feature. The feature
maps to the attribute_name returned by the
GET_MODEL_DETAILS_EM Function.

attribute_name Name of a column in the build data

attribute_subname Subname in a nested column

attribute_value Categorical value

coefficient Projection coefficient. The representation is
sparse; only the non-zero coefficients are
returned.

2. GET_MODEL_DETAILS functions preserve model transparency by automatically
reversing the transformations applied during the build process. Thus the attributes
returned in the model details are the original attributes (or a close approximation of
the original attributes) used to build the model.

The coefficients are related to the transformed, not the original, attributes.
When returned directly with the model details, the coefficients may not provide
meaningful information.

3. When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

Related Topics

• Oracle Data Mining User’s Guide

36.1.5.27 GET_MODEL_DETAILS_GLM Function
The GET_MODEL_DETAILS_GLM function returns the coefficient statistics for a
Generalized Linear Model. Starting from Oracle Database 12c Release 2, this function
is deprecated. See "Model Detail Views" in Oracle Data Mining User’s Guide.

The same set of statistics is returned for both linear and Logistic Regression, but
statistics that do not apply to the mining function are returned as NULL. For more
details, see the Usage Notes.

Syntax

DBMS_DATA_MINING.get_model_details_glm(
 model_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL)
 RETURN DM_GLM_Coeff_Set PIPELINED;

Chapter 36
DBMS_DATA_MINING

36-123

Parameters

Table 36-84 GET_MODEL_DETAILS_GLM Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name.
If you do not specify a schema, then your own schema is
used.

partition_name Specifies a partition in a partitioned model

Return Values

Table 36-85 GET_MODEL_DETAILS_GLM Return Values

Return Value Description

DM_GLM_COEFF_SET A set of rows of type DM_GLM_COEFF. The rows have the
following columns:

(class VARCHAR2(4000),
 attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 attribute_value VARCHAR2(4000),
 feature_expression VARCHAR2(4000),
 coefficient NUMBER,
 std_error NUMBER,
 test_statistic NUMBER,
 p_value NUMBER,
 VIF NUMBER,
 std_coefficient NUMBER,
 lower_coeff_limit NUMBER,
 upper_coeff_limit NUMBER,
 exp_coefficient BINARY_DOUBLE,
 exp_lower_coeff_limit BINARY_DOUBLE,
 exp_upper_coeff_limit BINARY_DOUBLE)

GET_MODEL_DETAILS_GLM returns a row of statistics for each attribute and one extra row
for the intercept, which is identified by a null value in the attribute name. Each row has
the DM_GLM_COEFF datatype. The statistics are described in Table 36-86.

Table 36-86 DM_GLM_COEFF Datatype Description

Column Description

class The non-reference target class for Logistic Regression. The
model is built to predict the probability of this class.
The other class (the reference class) is specified in
the model setting GLMS_REFERENCE_CLASS_NAME. See
Table 36-18.

For Linear Regression, class is null.

Chapter 36
DBMS_DATA_MINING

36-124

Table 36-86 (Cont.) DM_GLM_COEFF Datatype Description

Column Description

attribute_name The attribute name when there is no subname, or first part
of the attribute name when there is a subname. The value of
attribute_name is also the name of the column in the case
table that is the source for this attribute.
For the intercept, attribute_name is null. Intercepts are
equivalent to the bias term in SVM models.

attribute_subname The name of an attribute in a nested table. The full name of
a nested attribute has the form:
attribute_name.attribute_subname

where attribute_name is the name of the nested column in
the case table that is the source for this attribute.
If the attribute is not nested, then attribute_subname
is null. If the attribute is an intercept, then both the
attribute_name and the attribute_subname are null.

attribute_value The value of the attribute (categorical attribute only).
For numeric attributes, attribute_value is null.

feature_expression The feature name constructed by the algorithm when
feature generation is enabled and higher-order features
are found. If feature selection is not enabled, then the
feature name is simply the fully-qualified attribute name
(attribute_name.attribute_subname if the attribute is in
a nested column).
For categorical attributes, the algorithm constructs a feature
name that has the following form:
fully-qualified_attribute_name.attribute_value

For numeric attributes, the algorithm constructs a name
for the higher-order feature by taking the product of the
resulting values:
(attrib1)*(attrib2))*......

where attrib1 and attrib2 are fully-qualified attribute
names.

coefficient The linear coefficient estimate.

std_error Standard error of the coefficient estimate.

test_statistic For Linear Regression, the t-value of the coefficient
estimate.
For Logistic Regression, the Wald chi-square value of the
coefficient estimate.

p-value Probability of the test_statistic. Used to analyze the
significance of specific attributes in the model.

VIF Variance Inflation Factor. The value is zero for the intercept.
For Logistic Regression, VIF is null. VIF is not computed if
the solver is Cholesky.

std_coefficient Standardized estimate of the coefficient.

lower_coeff_limit Lower confidence bound of the coefficient.

upper_coeff_limit Upper confidence bound of the coefficient.

Chapter 36
DBMS_DATA_MINING

36-125

Table 36-86 (Cont.) DM_GLM_COEFF Datatype Description

Column Description

exp_coefficient Exponentiated coefficient for Logistic Regression. For Linear
Regression, exp_coefficient is null.

exp_lower_coeff_limit Exponentiated coefficient for lower confidence bound of the
coefficient for Logistic Regression. For Linear Regression,
exp_lower_coeff_limit is null.

exp_upper_coeff_limit Exponentiated coefficient for upper confidence bound
of the coefficient for Logistic Regression. For Linear
Regression, exp_lower_coeff_limit is null.

Usage Notes

Not all statistics are necessarily returned for each coefficient. Statistics will be null if:

• They do not apply to the mining function. For example, exp_coefficient does not
apply to Linear Regression.

• They cannot be computed from a theoretical standpoint. For information on ridge
regression, see Table 36-18.

• They cannot be computed because of limitations in system resources.

• Their values would be infinity.

• When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

Examples

The following example returns some of the model details for the GLM
Regression model GLMR_SH_Regr_sample, which was created by the sample program
dmglrdem.sql. For information about the sample programs, see Oracle Data Mining
User's Guide.

SET line 120
SET pages 99
column attribute_name format a30
column attribute_subname format a20
column attribute_value format a20
col coefficient format 990.9999
col std_error format 990.9999
SQL> SELECT * FROM
(SELECT attribute_name, attribute_value, coefficient, std_error
 FROM DM$VDGLMR_SH_REGR_SAMPLE order by 1,2)
WHERE rownum < 11;

ATTRIBUTE_NAME ATTRIBUTE_VALUE COEFFICIENT STD_ERROR
------------------------------ -------------------- ----------- ---------
AFFINITY_CARD -0.5797 0.5283
BOOKKEEPING_APPLICATION -0.4689 3.8872
BULK_PACK_DISKETTES -0.9819 2.5430
COUNTRY_NAME Argentina -1.2020 1.1876
COUNTRY_NAME Australia -0.0071 5.1146
COUNTRY_NAME Brazil 5.2931 1.9233
COUNTRY_NAME Canada 4.0191 2.4108
COUNTRY_NAME China 0.8706 3.5889

Chapter 36
DBMS_DATA_MINING

36-126

COUNTRY_NAME Denmark -2.9822 3.1803
COUNTRY_NAME France -1.1044 7.1811

Related Topics

• Oracle Data Mining User’s Guide

36.1.5.28 GET_MODEL_DETAILS_GLOBAL Function
The GET_MODEL_DETAILS_GLOBAL function returns statistics about the model as a
whole. Starting from Oracle Database 12c Release 2, this function is deprecated. See
"Model Detail Views" in Oracle Data Mining User’s Guide.

Global details are available for Generalized Linear Models, Association Rules,
Singular Value Decomposition, and Expectation Maximization. There are new Global
model views which show global information for all algorithms. Oracle recommends that
users leverage the views instead. Refer to Model Details View Global.

Syntax

DBMS_DATA_MINING.get_model_details_global(
 model_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL)
 RETURN DM_model_global_details PIPELINED;

Parameters

Table 36-87 GET_MODEL_DETAILS_GLOBAL Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name.
If you do not specify a schema, then your own schema is
used.

partition_name Specifies a partition in a partitioned model.

Return Values

Table 36-88 GET_MODEL_DETAILS_GLOBAL Function Return Values

Return Value Description

DM_MODEL_GLOBAL_DETAILS A collection of rows of type
DM_MODEL_GLOBAL_DETAIL. The rows have the
following columns:

(global_detail_name VARCHAR2(30),
 global_detail_value NUMBER)

Examples

The following example returns the global model details for the GLM Regression model
GLMR_SH_Regr_sample, which was created by the sample program dmglrdem.sql. For
information about the sample programs, see Oracle Data Mining User's Guide.

SELECT *
 FROM TABLE(dbms_data_mining.get_model_details_global(

Chapter 36
DBMS_DATA_MINING

36-127

 'GLMR_SH_Regr_sample'))
ORDER BY global_detail_name;
GLOBAL_DETAIL_NAME GLOBAL_DETAIL_VALUE
------------------------------ -------------------
ADJUSTED_R_SQUARE .731412557
AIC 5931.814
COEFF_VAR 18.1711243
CORRECTED_TOTAL_DF 1499
CORRECTED_TOT_SS 278740.504
DEPENDENT_MEAN 38.892
ERROR_DF 1433
ERROR_MEAN_SQUARE 49.9440956
ERROR_SUM_SQUARES 71569.8891
F_VALUE 62.8492452
GMSEP 52.280819
HOCKING_SP .034877162
J_P 52.1749319
MODEL_CONVERGED 1
MODEL_DF 66
MODEL_F_P_VALUE 0
MODEL_MEAN_SQUARE 3138.94871
MODEL_SUM_SQUARES 207170.615
NUM_PARAMS 67
NUM_ROWS 1500
ROOT_MEAN_SQ 7.06711367
R_SQ .743238288
SBIC 6287.79977
VALID_COVARIANCE_MATRIX 1

Related Topics

• Oracle Data Mining User’s Guide

36.1.5.29 GET_MODEL_DETAILS_KM Function
The GET_MODEL_DETAILS_KM function returns a set of rows that provide the details of a
k-Means clustering model. Starting from Oracle Database 12c Release 2, this function
is deprecated. See "Model Detail Views" in Oracle Data Mining User’s Guide.

You can provide input to GET_MODEL_DETAILS_KM to request specific information about
the model, thus improving the performance of the query. If you do not specify filtering
parameters, then GET_MODEL_DETAILS_KM returns all the information about the model.

Syntax

DBMS_DATA_MINING.get_model_details_km(
 model_name VARCHAR2,
 cluster_id NUMBER DEFAULT NULL,
 attribute VARCHAR2 DEFAULT NULL,
 centroid NUMBER DEFAULT 1,
 histogram NUMBER DEFAULT 1,
 rules NUMBER DEFAULT 2,
 attribute_subname VARCHAR2 DEFAULT NULL,
 topn_attributes NUMBER DEFAULT NULL,
 partition_name VARCHAR2 DEFAULT NULL)
 RETURN dm_clusters PIPELINED;

Chapter 36
DBMS_DATA_MINING

36-128

Parameters

Table 36-89 GET_MODEL_DETAILS_KM Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If you
do not specify a schema, then your own schema is used.

cluster_id The ID of a cluster in the model. When a valid cluster ID is
specified, only the details of this cluster are returned. Otherwise
the details for all clusters are returned.

attribute The name of an attribute. When a valid attribute name is
specified, only the details of this attribute are returned. Otherwise,
the details for all attributes are returned

centroid This parameter accepts the following values:
• 1: Details about centroids are returned (default)
• 0: Details about centroids are not returned

histogram This parameter accepts the following values:
• 1: Details about histograms are returned (default)
• 0: Details about histograms are not returned

rules This parameter accepts the following values:
• 2: Details about rules are returned (default)
• 1: Rule summaries are returned
• 0: No information about rules is returned

attribute_subnam
e

The name of a nested attribute. The full name of a nested attribute
has the form:
attribute_name.attribute_subname

where attribute_name is the name of the column and
attribute_subname is the name of the nested attribute in that
column.
If the attribute is not nested, attribute_subname is null.

topn_attributes Restricts the number of attributes returned in the centroid,
histogram, and rules objects. Only the n attributes with the highest
confidence values in the rules are returned.
If the number of attributes included in the rules is less than
topn, then up to n additional attributes in alphabetical order are
returned.
If both the attribute and topn_attributes parameters are
specified, then topn_attributes is ignored.

partition_name Specifies a partition in a partitioned model.

Usage Notes

1. The table function pipes out rows of type DM_CLUSTERS. For information on Data
Mining datatypes and Return Value for Clustering Algorithms piped output from
table functions, see "Datatypes".

2. When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

Chapter 36
DBMS_DATA_MINING

36-129

Examples

The following example returns model details for the k-Means clustering model
KM_SH_Clus_sample, which was created by the sample program dmkmdemo.sql. For
information about the sample programs, see Oracle Data Mining User's Guide.

SELECT T.id clu_id,
 T.record_count rec_cnt,
 T.parent parent,
 T.tree_level tree_level,
 T.dispersion dispersion
 FROM (SELECT *
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_KM(
 'KM_SH_Clus_sample'))
 ORDER BY id) T
 WHERE ROWNUM < 6;

 CLU_ID REC_CNT PARENT TREE_LEVEL DISPERSION
---------- ---------- ---------- ---------- ----------
 1 1500 1 5.9152211
 2 638 1 2 3.98458982
 3 862 1 2 5.83732097
 4 376 3 3 5.05192137
 5 486 3 3 5.42901522

Related Topics

• Oracle Data Mining User’s Guide

36.1.5.30 GET_MODEL_DETAILS_NB Function
The GET_MODEL_DETAILS_NB function returns a set of rows that provide the details of
a Naive Bayes model. Starting from Oracle Database 12c Release 2, this function is
deprecated. See "Model Detail Views" in Oracle Data Mining User’s Guide.

Syntax

DBMS_DATA_MINING.get_model_details_nb(
 model_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL)
 RETURN DM_NB_Details PIPELINED;

Parameters

Table 36-90 GET_MODEL_DETAILS_NB Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name.
If you do not specify a schema, then your own schema is
used.

partition_name Specifies a partition in a partitioned model

Chapter 36
DBMS_DATA_MINING

36-130

Return Values

Table 36-91 GET_MODEL_DETAILS_NB Function Return Values

Return Value Description

DM_NB_DETAILS A set of rows of type DM_NB_DETAIL. The rows have the following
columns:

(target_attribute_name VARCHAR2(30),
 target_attribute_str_value VARCHAR2(4000),
 target_attribute_num_value NUMBER,
 prior_probability NUMBER,
 conditionals DM_CONDITIONALS)

The conditionals column of DM_NB_DETAIL returns a nested table
of type DM_CONDITIONALS. The rows, of type DM_CONDITIONAL, have
the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 attribute_str_value VARCHAR2(4000),
 attribute_num_value NUMBER,
 conditional_probability NUMBER)

Usage Notes

• The table function pipes out rows of type DM_NB_DETAILS. For information on Data
Mining datatypes and piped output from table functions, see "Datatypes".

• When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

Examples

The following query is from the sample program dmnbdemo.sql. It returns model details
about the model NB_SH_Clas_sample. For information about the sample programs, see
Oracle Data Mining User's Guide.

The query creates labels from the bin boundary tables that were used to bin the
training data. It replaces the attribute values with the labels. For numeric bins, the
labels are (lower_boundary,upper_boundary]; for categorical bins, the label matches
the value it represents. (This method of categorical label representation will only work
for cases where one value corresponds to one bin.) The target was not binned.

WITH
 bin_label_view AS (
 SELECT col, bin, (DECODE(bin,'1','[','(') || lv || ',' || val || ']') label
 FROM (SELECT col,
 bin,
 LAST_VALUE(val) OVER (
 PARTITION BY col ORDER BY val
 ROWS BETWEEN UNBOUNDED PRECEDING AND 1 PRECEDING) lv,
 val
 FROM nb_sh_sample_num)
 UNION ALL
 SELECT col, bin, val label
 FROM nb_sh_sample_cat

Chapter 36
DBMS_DATA_MINING

36-131

),
 model_details AS (
 SELECT T.target_attribute_name tname,

NVL(TO_CHAR(T.target_attribute_num_value,T.target_attribute_str_value)) tval,
 C.attribute_name pname,
 NVL(L.label, NVL(C.attribute_str_value, C.attribute_num_value)) pval,
 T.prior_probability priorp,
 C.conditional_probability condp
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_NB('NB_SH_Clas_sample')) T,
 TABLE(T.conditionals) C,
 bin_label_view L
 WHERE C.attribute_name = L.col (+) AND
 (NVL(C.attribute_str_value,C.attribute_num_value) = L.bin(+))
 ORDER BY 1,2,3,4,5,6
)
 SELECT tname, tval, pname, pval, priorp, condp
 FROM model_details
 WHERE ROWNUM < 11;

TNAME TVAL PNAME PVAL PRIORP CONDP
-------------- ---- ------------------------- ------------- ------- -------
AFFINITY_CARD 0 AGE (24,30] .6500 .1714
AFFINITY_CARD 0 AGE (30,35] .6500 .1509
AFFINITY_CARD 0 AGE (35,40] .6500 .1125
AFFINITY_CARD 0 AGE (40,46] .6500 .1134
AFFINITY_CARD 0 AGE (46,53] .6500 .1071
AFFINITY_CARD 0 AGE (53,90] .6500 .1312
AFFINITY_CARD 0 AGE [17,24] .6500 .2134
AFFINITY_CARD 0 BOOKKEEPING_APPLICATION 0 .6500 .1500
AFFINITY_CARD 0 BOOKKEEPING_APPLICATION 1 .6500 .8500
AFFINITY_CARD 0 BULK_PACK_DISKETTES 0 .6500 .3670

Related Topics

• Oracle Data Mining User’s Guide

36.1.5.31 GET_MODEL_DETAILS_NMF Function
The GET_MODEL_DETAILS_NMF function returns a set of rows that provide the details of a
Non-Negative Matrix Factorization model. Starting from Oracle Database 12c Release
2, this function is deprecated. See "Model Detail Views" in Oracle Data Mining User’s
Guide.

Syntax

DBMS_DATA_MINING.get_model_details_nmf(
 model_name IN VARCHAR2,
 partition_name VARCHAR2 DEFAULT NULL)
 RETURN DM_NMF_Feature_Set PIPELINED;

Parameters

Table 36-92 GET_MODEL_DETAILS_NMF Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If you
do not specify a schema, then your own schema is used.

Chapter 36
DBMS_DATA_MINING

36-132

Table 36-92 (Cont.) GET_MODEL_DETAILS_NMF Function Parameters

Parameter Description

partition_name Specifies a partition in a partitioned model

Return Values

Table 36-93 GET_MODEL_DETAILS_NMF Function Return Values

Return Value Description

DM_NMF_FEATURE_SE
T

A set of rows of DM_NMF_FEATURE. The rows have the following
columns:

(feature_id NUMBER,
 mapped_feature_id VARCHAR2(4000),
 attribute_set DM_NMF_ATTRIBUTE_SET)

The attribute_set column of DM_NMF_FEATURE returns a
nested table of type DM_NMF_ATTRIBUTE_SET. The rows, of type
DM_NMF_ATTRIBUTE, have the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 attribute_value VARCHAR2(4000),
 coefficient NUMBER)

Usage Notes

• The table function pipes out rows of type DM_NMF_FEATURE_SET. For information on
Data Mining datatypes and piped output from table functions, see "Datatypes".

• When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

Examples

The following example returns model details for the feature extraction model
NMF_SH_Sample, which was created by the sample program dmnmdemo.sql. For
information about the sample programs, see Oracle Data Mining User's Guide.

SELECT * FROM (
SELECT F.feature_id,
 A.attribute_name,
 A.attribute_value,
 A.coefficient
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_NMF('NMF_SH_Sample')) F,
 TABLE(F.attribute_set) A
ORDER BY feature_id,attribute_name,attribute_value
) WHERE ROWNUM < 11;

FEATURE_ID ATTRIBUTE_NAME ATTRIBUTE_VALUE COEFFICIENT
--------- ----------------------- ---------------- -------------------
 1 AFFINITY_CARD .051208078859308
 1 AGE .0390513260041573
 1 BOOKKEEPING_APPLICATION .0512734004239326

Chapter 36
DBMS_DATA_MINING

36-133

 1 BULK_PACK_DISKETTES .232471260895683
 1 COUNTRY_NAME Argentina .00766817464479959
 1 COUNTRY_NAME Australia .000157637881096675
 1 COUNTRY_NAME Brazil .0031409632415604
 1 COUNTRY_NAME Canada .00144213099311427
 1 COUNTRY_NAME China .000102279310968754
 1 COUNTRY_NAME Denmark .000242424084307513

Related Topics

• Oracle Data Mining User’s Guide

36.1.5.32 GET_MODEL_DETAILS_OC Function
The GET_MODEL_DETAILS_OC function returns a set of rows that provide the details
of an O-Cluster clustering model. The rows are an enumeration of the Clustering
patterns generated during the creation of the model. Starting from Oracle Database
12c Release 2, this function is deprecated. See "Model Detail Views" in Oracle Data
Mining User’s Guide.

You can provide input to GET_MODEL_DETAILS_OC to request specific information about
the model, thus improving the performance of the query. If you do not specify filtering
parameters, then GET_MODEL_DETAILS_OC returns all the information about the model.

Syntax

DBMS_DATA_MINING.get_model_details_oc(
 model_name VARCHAR2,
 cluster_id NUMBER DEFAULT NULL,
 attribute VARCHAR2 DEFAULT NULL,
 centroid NUMBER DEFAULT 1,
 histogram NUMBER DEFAULT 1,
 rules NUMBER DEFAULT 2,
 topn_attributes NUMBER DEFAULT NULL,
 partition_name VARCHAR2 DEFAULT NULL)
 RETURN dm_clusters PIPELINED;

Parameters

Table 36-94 GET_MODEL_DETAILS_OC Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name.
If you do not specify a schema, then your own schema is
used.

cluster_id The ID of a cluster in the model. When a valid cluster ID
is specified, only the details of this cluster are returned.
Otherwise the details for all clusters are returned.

attribute The name of an attribute. When a valid attribute name
is specified, only the details of this attribute are returned.
Otherwise, the details for all attributes are returned

centroid This parameter accepts the following values:
• 1: Details about centroids are returned (default)
• 0: Details about centroids are not returned

Chapter 36
DBMS_DATA_MINING

36-134

Table 36-94 (Cont.) GET_MODEL_DETAILS_OC Function Parameters

Parameter Description

histogram This parameter accepts the following values:
• 1: Details about histograms are returned (default)
• 0: Details about histograms are not returned

rules This parameter accepts the following values:
• 2: Details about rules are returned (default)
• 1: Rule summaries are returned
• 0: No information about rules is returned

topn_attributes Restricts the number of attributes returned in the centroid,
histogram, and rules objects. Only the n attributes with the
highest confidence values in the rules are returned.
If the number of attributes included in the rules is less than
topn, then up to n additional attributes in alphabetical order
are returned.
If both the attribute and topn_attributes parameters are
specified, then topn_attributes is ignored.

partition_name Specifies a partition in a partitioned model.

Usage Notes

1. For information about Data Mining datatypes and Return Values for Clustering
Algorithms piped output from table functions, see "Datatypes".

2. When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

Examples

The following example returns model details for the clustering model
OC_SH_Clus_sample, which was created by the sample program dmocdemo.sql. For
information about the sample programs, see Oracle Data Mining User's Guide.

For each cluster in this example, the split predicate indicates the attribute and the
condition used to assign records to the cluster's children during model build. It
provides an important piece of information on how the population within a cluster can
be divided up into two smaller clusters.

SELECT clu_id, attribute_name, op, s_value
 FROM (SELECT a.id clu_id, sp.attribute_name, sp.conditional_operator op,
 sp.attribute_str_value s_value
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_OC(
 'OC_SH_Clus_sample')) a,
 TABLE(a.split_predicate) sp
 ORDER BY a.id, op, s_value)
 WHERE ROWNUM < 11;

 CLU_ID ATTRIBUTE_NAME OP S_VALUE
----------- -------------------- ---------------------------------
 1 OCCUPATION IN ?
 1 OCCUPATION IN Armed-F
 1 OCCUPATION IN Cleric.
 1 OCCUPATION IN Crafts
 2 OCCUPATION IN ?

Chapter 36
DBMS_DATA_MINING

36-135

 2 OCCUPATION IN Armed-F
 2 OCCUPATION IN Cleric.
 3 OCCUPATION IN Exec.
 3 OCCUPATION IN Farming
 3 OCCUPATION IN Handler

Related Topics

• Oracle Data Mining User’s Guide

36.1.5.33 GET_MODEL_SETTINGS Function
The GET_MODEL_SETTINGS function returns the settings used to build the given model.
Starting from Oracle Database 12c Release 2, this function is deprecated. See
"Static Data Dictionary Views: ALL_ALL_TABLES to ALL_OUTLINES" in Oracle Database
Reference.

Syntax

FUNCTION get_model_settings(model_name IN VARCHAR2)
 RETURN DM_Model_Settings PIPELINED;

Parameters

Table 36-95 GET_MODEL_SETTINGS Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name.
If you do not specify a schema, then your own schema is
used.

Return Values

Table 36-96 GET_MODEL_SETTINGS Function Return Values

Return Value Description

DM_MODEL_SETTINGS A set of rows of type DM_MODEL_SETTINGS. The rows have the
following columns:

DM_MODEL_SETTINGS TABLE OF SYS.DM_MODEL_SETTING
 Name Type
 ---------------------- --------------------
 SETTING_NAME VARCHAR2(30)
 SETTING_VALUE VARCHAR2(4000)

Usage Notes

1. This table function pipes out rows of type DM_MODEL_SETTINGS. For information
on Data Mining datatypes and piped output from table functions, see
"DBMS_DATA_MINING Datatypes".

2. The setting names/values include both those specified by the user and any
defaults assigned by the build process.

Chapter 36
DBMS_DATA_MINING

36-136

Examples

The following example returns model model settings for an example Naive Bayes
model.

SETTING_NAME SETTING_VALUE
------------------------------ ------------------------------
ALGO_NAME ALGO_NAIVE_BAYES
PREP_AUTO ON
ODMS_MAX_PARTITIONS 1000
NABS_SINGLETON_THRESHOLD 0
CLAS_WEIGHTS_BALANCED OFF
NABS_PAIRWISE_THRESHOLD 0
ODMS_PARTITION_COLUMNS GENDER,Y_BOX_GAMES
ODMS_MISSING_VALUE_TREATMENT ODMS_MISSING_VALUE_AUTO
ODMS_SAMPLING ODMS_SAMPLING_DISABLE

9 rows selected.

Related Topics

• Oracle Database Reference

36.1.5.34 GET_MODEL_SIGNATURE Function
The GET_MODEL_SIGNATURE function returns the list of columns from the build input
table that were used by the build process to train the model. Starting from Oracle
Database 12c Release 2, this function is deprecated. See "Static Data Dictionary
Views: ALL_ALL_TABLES to ALL_OUTLINES" in Oracle Database Reference.

Syntax

FUNCTION get_model_signature (model_name IN VARCHAR2)
RETURN DM_Model_Signature PIPELINED;

Parameters

Table 36-97 GET_MODEL_SIGNATURE Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name.
If you do not specify a schema, then your own schema is
used.

Chapter 36
DBMS_DATA_MINING

36-137

Return Values

Table 36-98 GET_MODEL_SIGNATURE Function Return Values

Return Value Description

DM_MODEL_SIGNATURE A set of rows of type DM_MODEL_SIGNATURE. The rows have
the following columns:

 DM_MODEL_SIGNATURE TABLE OF
SYS.DM_MODEL_SIGNATURE_ATTRIBUTE
 Name Type
 ------------------ -------------------
 ATTRIBUTE_NAME VARCHAR2(130)
 ATTRIBUTE_TYPE VARCHAR2(106)

Usage Notes

1. This table function pipes out rows of type DM_MODEL_SIGNATURE. For information
on Data Mining datatypes and piped output from table functions, see
"DBMS_DATA_MINING Datatypes".

2. The signature names or types include only those attributes used by the build
process.

Examples

The following example returns model settings for an example Naive Bayes model.

ATTRIBUTE_NAME ATTRIBUTE_TYPE
------------------------------ ------------------
AGE NUMBER
ANNUAL_INCOME NUMBER
AVERAGE___ITEMS_PURCHASED NUMBER
BOOKKEEPING_APPLICATION NUMBER
BULK_PACK_DISKETTES NUMBER
BULK_PURCH_AVE_AMT NUMBER
DISABLE_COOKIES NUMBER
EDUCATION VARCHAR2
FLAT_PANEL_MONITOR NUMBER
GENDER VARCHAR2
HOME_THEATER_PACKAGE NUMBER
HOUSEHOLD_SIZE VARCHAR2
MAILING_LIST NUMBER
MARITAL_STATUS VARCHAR2
NO_DIFFERENT_KIND_ITEMS NUMBER
OCCUPATION VARCHAR2
OS_DOC_SET_KANJI NUMBER
PETS NUMBER
PRINTER_SUPPLIES NUMBER
PROMO_RESPOND NUMBER
SHIPPING_ADDRESS_COUNTRY VARCHAR2
SR_CITIZEN NUMBER
TOP_REASON_FOR_SHOPPING VARCHAR2
WKS_SINCE_LAST_PURCH NUMBER
WORKCLASS VARCHAR2
YRS_RESIDENCE NUMBER
Y_BOX_GAMES NUMBER

Chapter 36
DBMS_DATA_MINING

36-138

27 rows selected.

Related Topics

• Oracle Database Reference

36.1.5.35 GET_MODEL_DETAILS_SVD Function
The GET_MODEL_DETAILS_SVD function returns a set of rows that provide the details of
a Singular Value Decomposition model. Oracle recommends to use model details view
settings. Starting from Oracle Database 12c Release 2, this function is deprecated.
See "Model Detail Views" in Oracle Data Mining User’s Guide.

Refer to Model Details View for Singular Value Decomposition.

Syntax

DBMS_DATA_MINING.get_model_details_svd(
 model_name IN VARCHAR2,
 matrix_type IN VARCHAR2 DEFAULT NULL,
 partition_name VARCHAR2 DEFAULT NULL)
 RETURN DM_SVD_MATRIX_Set PIPELINED;

Parameters

Table 36-99 GET_MODEL_DETAILS_SVD Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If you
do not specify a schema, then your own schema is used.

matrix_type Specifies which of the three SVD matrix types to return. Values are:
U, S, V, and NULL. When matrix_type is null (default), all matrices
are returned.
The U matrix is only computed when the SVDS_U_MATRIX_OUTPUT
setting is enabled. It is not computed by default. If the model does
not contain U matrices and you set matrix_type to U, an empty set
of rows is returned. See Table 36-26.

partition_name A partition in a partitioned model.

Chapter 36
DBMS_DATA_MINING

36-139

Return Values

Table 36-100 GET_MODEL_DETAILS_SVD Function Return Values

Return Value Description

DM_SVD_MATRIX_SET A set of rows of type DM_SVD_MATRIX. The rows have the
following columns:

(matrix_type CHAR(1),
 feature_id NUMBER,
 mapped_feature_id VARCHAR2(4000),
 attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 case_id VARCHAR2(4000),
 value NUMBER,
 variance NUMBER,
 pct_cum_variance NUMBER)

See Usage Notes for details.

Usage Notes

1. This table function pipes out rows of type DM_SVD_MATRIX. For information on Data
Mining datatypes and piped output from table functions, see "Datatypes".

The columns in each row returned by GET_MODEL_DETAILS_SVD are described as
follows:

Column in
DM_SVD_MATRIX_SET

Description

matrix_type The type of matrix. Possible values are S, V, and
U. This field is never null.

feature_id The feature that the matrix entry refers to.

mapped_feature_id A descriptive name for the feature.

attribute_name Column name in the V matrix component bases.
This field is null for the S and U matrices.

attribute_subname Subname in the V matrix component bases. This
is relevant only in the case of a nested column.
This field is null for the S and U matrices.

case_id Unique identifier of the row in the build data
described by the U matrix projection. This field is
null for the S and V matrices.

value The matrix entry value.

Chapter 36
DBMS_DATA_MINING

36-140

Column in
DM_SVD_MATRIX_SET

Description

variance The variance explained by a component.
It is non-null only for S matrix entries.
This column is non-null only for S
matrix entries and for SVD models with
setting dbms_data_mining.svds_scoring_mode
set to dbms_data_mining.svds_scoring_pca
and the build data is centered,
either manually or because the setting
dbms_data_mining.prep_auto is set to
dbms_data_mining.prep_auto_on.

pct_cum_variance The percent cumulative variance explained by
the components thus far. The components are
ranked by the explained variance in descending
order.
This column is non-null only for S
matrix entries and for SVD models with
setting dbms_data_mining.svds_scoring_mode
set to dbms_data_mining.svds_scoring_pca
and the build data is centered,
either manually or because the setting
dbms_data_mining.prep_auto is set to
dbms_data_mining.prep_auto_on.

2. The output of GET_MODEL_DETAILS is in sparse format. Zero values are not
returned. Only the diagonal elements of the S matrix, the non-zero coefficients
in the V matrix bases, and the non-zero U matrix projections are returned.

There is one exception: If the data row does not produce non-zero U Matrix
projections, the case ID for that row is returned with NULL for the feature_id and
value. This is done to avoid losing any records from the original data.

3. GET_MODEL_DETAILS functions preserve model transparency by automatically
reversing the transformations applied during the build process. Thus the attributes
returned in the model details are the original attributes (or a close approximation of
the original attributes) used to build the model.

4. When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the preferred partition name.

Related Topics

• Oracle Data Mining User’s Guide

36.1.5.36 GET_MODEL_DETAILS_SVM Function
The GET_MODEL_DETAILS_SVM function returns a set of rows that provide the details of
a linear Support Vector Machine (SVM) model. If invoked for nonlinear SVM, it returns
ORA-40215. Starting from Oracle Database 12c Release 2, this function is deprecated.
See "Model Detail Views" in Oracle Data Mining User’s Guide.

In linear SVM models, only nonzero coefficients are stored. This reduces storage and
speeds up model loading. As a result, if an attribute is missing in the coefficient list
returned by GET_MODEL_DETAILS_SVM, then the coefficient of this attribute should be
interpreted as zero.

Chapter 36
DBMS_DATA_MINING

36-141

Syntax

DBMS_DATA_MINING.get_model_details_svm(
 model_name VARCHAR2,
 reverse_coef NUMBER DEFAULT 0,
 partition_name VARCHAR2 DEFAULT NULL)
 RETURN DM_SVM_Linear_Coeff_Set PIPELINED;

Parameters

Table 36-101 GET_MODEL_DETAILS_SVM Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If you
do not specify a schema, then your own schema is used.

reverse_coef Whether or not GET_MODEL_DETAILS_SVM should transform the
attribute coefficients using the original attribute transformations.
When reverse_coef is set to 0 (default), GET_MODEL_DETAILS_SVM
returns the coefficients directly from the model without applying
transformations.
When reverse_coef is set to 1, GET_MODEL_DETAILS_SVM
transforms the coefficients and bias by applying the normalization
shifts and scales that were generated using automatic data
preparation.
See Usage Note 4.

partition_name Specifies a partition in a partitioned model.

Return Values

Table 36-102 GET_MODEL_DETAILS_SVM Function Return Values

Return Value Description

DM_SVM_LINEAR_COEFF
_SET

A set of rows of type DM_SVM_LINEAR_COEFF. The rows have the
following columns:

(class VARCHAR2(4000),
 attribute_set DM_SVM_ATTRIBUTE_SET)

The attribute_set column returns a nested table of type
DM_SVM_ATTRIBUTE_SET. The rows, of type DM_SVM_ATTRIBUTE,
have the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 attribute_value VARCHAR2(4000),
 coefficient NUMBER)

See Usage Notes.

Usage Notes

1. This table function pipes out rows of type DM_SVM_LINEAR_COEFF. For information
on Data Mining datatypes and piped output from table functions, see "Datatypes".

Chapter 36
DBMS_DATA_MINING

36-142

2. The class column of DM_SVM_LINEAR_COEFF contains Classification target values.
For SVM Regression models, class is null. For each Classification target value,
a set of coefficients is returned. For Binary Classification, one-class Classification,
and Regression models, only a single set of coefficients is returned.

3. The attribute_value column in DM_SVM_ATTRIBUTE_SET is used for categorical
attributes.

4. GET_MODEL_DETAILS functions preserve model transparency by automatically
reversing the transformations applied during the build process. Thus the attributes
returned in the model details are the original attributes (or a close approximation of
the original attributes) used to build the model.

The coefficients are related to the transformed, not the original, attributes.
When returned directly with the model details, the coefficients may not provide
meaningful information. If you want GET_MODEL_DETAILS_SVM to transform the
coefficients such that they relate to the original attributes, set the reverse_coef
parameter to 1.

5. When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

Examples

The following example returns model details for the SVM Classification model
SVMC_SH_Clas_sample, which was created by the sample program dmsvcdem.sql. For
information about the sample programs, see Oracle Data Mining User's Guide.

WITH
 mod_dtls AS (
 SELECT *
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_SVM('SVMC_SH_Clas_sample'))
),
 model_details AS (
 SELECT D.class, A.attribute_name, A.attribute_value, A.coefficient
 FROM mod_dtls D,
 TABLE(D.attribute_set) A
 ORDER BY D.class, ABS(A.coefficient) DESC
)
 SELECT class, attribute_name aname, attribute_value aval, coefficient coeff
 FROM model_details
 WHERE ROWNUM < 11;

CLASS ANAME AVAL COEFF
---------- ------------------------- ------------------------- -----
1 -2.85
1 BOOKKEEPING_APPLICATION 1.11
1 OCCUPATION Other -.94
1 HOUSEHOLD_SIZE 4-5 .88
1 CUST_MARITAL_STATUS Married .82
1 YRS_RESIDENCE .76
1 HOUSEHOLD_SIZE 6-8 -.74
1 OCCUPATION Exec. .71
1 EDUCATION 11th -.71
1 EDUCATION Masters .63

Related Topics

• Oracle Data Mining User’s Guide

Chapter 36
DBMS_DATA_MINING

36-143

36.1.5.37 GET_MODEL_DETAILS_XML Function
This function returns an XML object that provides the details of a Decision Tree model.

Syntax

DBMS_DATA_MINING.get_model_details_xml(
 model_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL)
 RETURN XMLType;

Parameters

Table 36-103 GET_MODEL_DETAILS_XML Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If
you do not specify a schema, then your own schema is used.

partition_name Specifies a partition in a partitioned model.

Return Values

Table 36-104 GET_MODEL_DETAILS_XML Function Return Value

Return Value Description

XMLTYPE The XML definition for the Decision Tree model. See "XMLTYPE"
for details.
The XML definition conforms to the Data Mining Group
Predictive Model Markup Language (PMML) version 2.1
specification. The specification is available at http://
www.dmg.org.

If a nested attribute is used as a splitter, the
attribute will appear in the XML document as
field="'<column_name>'.<subname>", as opposed to the non-
nested attributes which appear in the document as
field="<column_name>".

Note:

The column names are surrounded
by single quotes and a period
separates the column_name from
the subname.

The rest of the document style remains unchanged.

Usage Notes

Special characters that cannot be displayed by Oracle XML are converted to '#'.

Chapter 36
DBMS_DATA_MINING

36-144

http://www.dmg.org
http://www.dmg.org

Examples

The following statements in SQL*Plus return the details of the Decision Tree model
dt_sh_clas_sample. This model is created by the program dmdtdemo.sql, one of the
sample data mining programs provided with Oracle Database Examples.

Note: The """ characters you will see in the XML output are a result of SQL*Plus
behavior. To display the XML in proper format, cut and past it into a file and open the
file in a browser.

column dt_details format a320
SELECT
 dbms_data_mining.get_model_details_xml('dt_sh_clas_sample')
 AS DT_DETAILS
FROM dual;

DT_DETAILS
--
<PMML version="2.1">
 <Header copyright="Copyright (c) 2004, Oracle Corporation. All rights
 reserved."/>
 <DataDictionary numberOfFields="9">
 <DataField name="AFFINITY_CARD" optype="categorical"/>
 <DataField name="AGE" optype="continuous"/>
 <DataField name="BOOKKEEPING_APPLICATION" optype="continuous"/>
 <DataField name="CUST_MARITAL_STATUS" optype="categorical"/>
 <DataField name="EDUCATION" optype="categorical"/>
 <DataField name="HOUSEHOLD_SIZE" optype="categorical"/>
 <DataField name="OCCUPATION" optype="categorical"/>
 <DataField name="YRS_RESIDENCE" optype="continuous"/>
 <DataField name="Y_BOX_GAMES" optype="continuous"/>
 </DataDictionary>
 <TreeModel modelName="DT_SH_CLAS_SAMPLE" functionName="classification"
 splitCharacteristic="binarySplit">
 <Extension name="buildSettings">
 <Setting name="TREE_IMPURITY_METRIC" value="TREE_IMPURITY_GINI"/>
 <Setting name="TREE_TERM_MAX_DEPTH" value="7"/>
 <Setting name="TREE_TERM_MINPCT_NODE" value=".05"/>
 <Setting name="TREE_TERM_MINPCT_SPLIT" value=".1"/>
 <Setting name="TREE_TERM_MINREC_NODE" value="10"/>
 <Setting name="TREE_TERM_MINREC_SPLIT" value="20"/>
 <costMatrix>
 <costElement>
 <actualValue>0</actualValue>
 <predictedValue>0</predictedValue>
 <cost>0</cost>
 </costElement>
 <costElement>
 <actualValue>0</actualValue>
 <predictedValue>1</predictedValue>
 <cost>1</cost>
 </costElement>
 <costElement>
 <actualValue>1</actualValue>
 <predictedValue>0</predictedValue>
 <cost>8</cost>
 </costElement>
 <costElement>
 <actualValue>1</actualValue>

Chapter 36
DBMS_DATA_MINING

36-145

 <predictedValue>1</predictedValue>
 <cost>0</cost>
 </costElement>
 </costMatrix>
 </Extension>
 <MiningSchema>
 .
 .
 .
 .
 .
 .
 </Node>
 </Node>
 </TreeModel>
</PMML>

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

36.1.5.38 GET_MODEL_TRANSFORMATIONS Function
This function returns the transformation expressions embedded in the specified model.
Starting from Oracle Database 12c Release 2, this function is deprecated. See
"Static Data Dictionary Views: ALL_ALL_TABLES to ALL_OUTLINES" in Oracle Database
Reference.

All GET_* interfaces are replaced by model views, and Oracle recommends
that users reference the model views to retrieve the relevant information. The
GET_MODEL_TRANSFORMATIONS function is replaced by the following:

• USER(/DBA/ALL)_MINING_MODEL_XFORMS: provides the user-embedded
transformations

• DM$VX prefixed model view: provides text feature extraction information

• D$VN prefixed mode view: provides normalization and missing value information

• DM$VB: provides binning information

Chapter 36
DBMS_DATA_MINING

36-146

See Also:

“About Transformation Lists” in DBMS_DATA_MINING_TRANSFORM
Operational Notes

"GET_TRANSFORM_LIST Procedure"

"CREATE_MODEL Procedure"

"ALL_MINING_MODEL_XFORMS" in Oracle Database Reference

"DBA_MINING_MODEL_XFORMS" in Oracle Database Reference

"USER_MINING_MODEL_XFORMS" in Oracle Database Reference

Model Details View for Binning

Normalization and Missing Value Handling

Data Preparation for Text Features

Syntax

DBMS_DATA_MINING.get_model_transformations(
 model_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL)
 RETURN DM_Transforms PIPELINED;

Parameters

Table 36-105 GET_MODEL_TRANSFORMATIONS Function Parameters

Parameter Description

model_name Indicates the name of the model in the form
[schema_name.]model_name. If you do not specify a schema, then
your own schema is used.

partition_name Specifies a partition in a partitioned model

Return Values

Table 36-106 GET_MODEL_TRANSFORMATIONS Function Return Value

Return Value Description

DM_TRANSFORMS The transformation expressions embedded in model_name.

The DM_TRANSFORMS type is a table of DM_TRANSFORM objects. Each
DM_TRANSFORM has these fields:

attribute_name VARCHAR2(4000)
attribute_subname VARCHAR2(4000)
expression CLOB
reverse_expression CLOB

Chapter 36
DBMS_DATA_MINING

36-147

Usage Notes

When Automatic Data Preparation (ADP) is enabled, both automatic and user-defined
transformations may be associated with an attribute. In this case, the user-defined
transformations are evaluated before the automatic transformations.

When invoked for a partitioned model, the partition_name parameter must be
specified.

Examples

In this example, several columns in the SH.CUSTOMERS table are used to create a Naive
Bayes model. A transformation expression is specified for one of the columns. The
model does not use ADP.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_income_level,cust_credit_limit
 FROM sh.customers;

describe mining_data
 Name Null? Type
 -------------------------------------- -------- --------------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_INCOME_LEVEL VARCHAR2(30)
 CUST_CREDIT_LIMIT NUMBER

CREATE TABLE settings_nb(
 setting_name VARCHAR2(30),
 setting_value VARCHAR2(30));
BEGIN
 INSERT INTO settings_nb (setting_name, setting_value) VALUES
 (dbms_data_mining.algo_name, dbms_data_mining.algo_naive_bayes);
 INSERT INTO settings_nb (setting_name, setting_value) VALUES
 (dbms_data_mining.prep_auto, dbms_data_mining.prep_auto_off);
 COMMIT;
END;
/
DECLARE
 mining_data_xforms dbms_data_mining_transform.TRANSFORM_LIST;
 BEGIN
 dbms_data_mining_transform.SET_TRANSFORM (
 xform_list => mining_data_xforms,
 attribute_name => 'cust_year_of_birth',
 attribute_subname => null,
 expression => 'cust_year_of_birth + 10',
 reverse_expression => 'cust_year_of_birth - 10');
 dbms_data_mining.CREATE_MODEL (
 model_name => 'new_model',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data',
 case_id_column_name => 'cust_id',
 target_column_name => 'cust_income_level',
 settings_table_name => 'settings_nb',
 data_schema_name => nulL,
 settings_schema_name => null,
 xform_list => mining_data_xforms);
 END;
 /
SELECT attribute_name, TO_CHAR(expression), TO_CHAR(reverse_expression)

Chapter 36
DBMS_DATA_MINING

36-148

 FROM TABLE (dbms_data_mining.GET_MODEL_TRANSFORMATIONS('new_model'));

ATTRIBUTE_NAME TO_CHAR(EXPRESSION) TO_CHAR(REVERSE_EXPRESSION)
------------------ ------------------------ -----------------------------
CUST_YEAR_OF_BIRTH cust_year_of_birth + 10 cust_year_of_birth - 10

Related Topics

• Oracle Database Reference

36.1.5.39 GET_TRANSFORM_LIST Procedure
This procedure converts transformation expressions specified as DM_TRANSFORMS
to a transformation list (TRANSFORM_LIST) that can be used in creating a model.
DM_TRANSFORMS is returned by the GET_MODEL_TRANSFORMATIONS function.

You can also use routines in the DBMS_DATA_MINING_TRANSFORM package to construct a
transformation list.

See Also:

“About Transformation Lists” in DBMS_DATA_MINING_TRANSFORM

"GET_MODEL_TRANSFORMATIONS Function"

"CREATE_MODEL Procedure"

Syntax

DBMS_DATA_MINING.GET_TRANSFORM_LIST (
 xform_list OUT NOCOPY TRANSFORM_LIST,
 model_xforms IN DM_TRANSFORMS);

Parameters

Table 36-107 GET_TRANSFORM_LIST Procedure Parameters

Parameter Description

xform_list A list of transformation specifications that can be embedded in a model.
Accepted as a parameter to the CREATE_MODEL Procedure.

The TRANSFORM_LIST type is a table of TRANSFORM_REC objects. Each
TRANSFORM_REC has these fields:

attribute_name VARCHAR2(30)
attribute_subname VARCHAR2(4000)
expression EXPRESSION_REC
reverse_expression EXPRESSION_REC
attribute_spec VARCHAR2(4000)

For details about the TRANSFORM_LIST collection type, see Table 36-114.

Chapter 36
DBMS_DATA_MINING

36-149

Table 36-107 (Cont.) GET_TRANSFORM_LIST Procedure Parameters

Parameter Description

model_xforms A list of embedded transformation expressions returned by the
GET_MODEL_TRANSFORMATIONS Function for a specific model.

The DM_TRANSFORMS type is a table of DM_TRANSFORM objects. Each
DM_TRANSFORM has these fields:

attribute_name VARCHAR2(4000)
attribute_subname VARCHAR2(4000)
expression CLOB
reverse_expression CLOB

Examples

In this example, a model mod1 is trained using several columns in the SH.CUSTOMERS
table. The model uses ADP, which automatically bins one of the columns.

A second model mod2 is trained on the same data without ADP, but it uses a
transformation list that was obtained from mod1. As a result, both mod1 and mod2 have
the same embedded transformation expression.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_income_level, cust_credit_limit
 FROM sh.customers;

describe mining_data
 Name Null? Type
 --- -------- ----------------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_INCOME_LEVEL VARCHAR2(30)
 CUST_CREDIT_LIMIT NUMBER

CREATE TABLE setmod1(setting_name VARCHAR2(30),setting_value VARCHAR2(30));
BEGIN
 INSERT INTO setmod1 VALUES (dbms_data_mining.algo_name, dbms_data_mining.algo_naive_bayes);
 INSERT INTO setmod1 VALUES (dbms_data_mining.prep_auto,dbms_data_mining.prep_auto_on);
 dbms_data_mining.CREATE_MODEL (
 model_name => 'mod1',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data',
 case_id_column_name => 'cust_id',
 target_column_name => 'cust_income_level',
 settings_table_name => 'setmod1');
 COMMIT;
END;
/
CREATE TABLE setmod2(setting_name VARCHAR2(30),setting_value VARCHAR2(30));
BEGIN
 INSERT INTO setmod2
 VALUES (dbms_data_mining.algo_name, dbms_data_mining.algo_naive_bayes);
 COMMIT;
END;
/
DECLARE
 v_xform_list dbms_data_mining_transform.TRANSFORM_LIST;

Chapter 36
DBMS_DATA_MINING

36-150

 dmxf DM_TRANSFORMS;
BEGIN
 EXECUTE IMMEDIATE
 'SELECT dm_transform(attribute_name, attribute_subname,expression, reverse_expression)
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS (''mod1''))'
 BULK COLLECT INTO dmxf;
 dbms_data_mining.GET_TRANSFORM_LIST (
 xform_list => v_xform_list,
 model_xforms => dmxf);
 dbms_data_mining.CREATE_MODEL(
 model_name => 'mod2',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data',
 case_id_column_name => 'cust_id',
 target_column_name => 'cust_income_level',
 settings_table_name => 'setmod2',
 xform_list => v_xform_list);
END;
/

-- Transformation expression embedded in mod1
SELECT TO_CHAR(expression) FROM TABLE (dbms_data_mining.GET_MODEL_TRANSFORMATIONS('mod1'));

TO_CHAR(EXPRESSION)
--
CASE WHEN "CUST_YEAR_OF_BIRTH"<1915 THEN 0 WHEN "CUST_YEAR_OF_BIRTH"<=1915 THEN 0
WHEN "CUST_YEAR_OF_BIRTH"<=1920.5 THEN 1 WHEN "CUST_YEAR_OF_BIRTH"<=1924.5 THEN 2
.
.
.
.5 THEN 29 WHEN "CUST_YEAR_OF_BIRTH" IS NOT NULL THEN 30 END

-- Transformation expression embedded in mod2
SELECT TO_CHAR(expression) FROM TABLE (dbms_data_mining.GET_MODEL_TRANSFORMATIONS('mod2'));

TO_CHAR(EXPRESSION)
--
CASE WHEN "CUST_YEAR_OF_BIRTH"<1915 THEN 0 WHEN "CUST_YEAR_OF_BIRTH"<=1915 THEN 0
WHEN "CUST_YEAR_OF_BIRTH"<=1920.5 THEN 1 WHEN "CUST_YEAR_OF_BIRTH"<=1924.5 THEN 2
.
.
.
.5 THEN 29 WHEN "CUST_YEAR_OF_BIRTH" IS NOT NULL THEN 30 END

-- Reverse transformation expression embedded in mod1
SELECT TO_CHAR(reverse_expression)FROM TABLE
(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('mod1'));

TO_CHAR(REVERSE_EXPRESSION)
--
DECODE("CUST_YEAR_OF_BIRTH",0,'(; 1915), [1915; 1915]',1,'(1915; 1920.5]',2,'(1
920.5; 1924.5]',3,'(1924.5; 1928.5]',4,'(1928.5; 1932.5]',5,'(1932.5; 1936.5]',6
.
.
.
8,'(1987.5; 1988.5]',29,'(1988.5; 1989.5]',30,'(1989.5;)',NULL,'NULL')

-- Reverse transformation expression embedded in mod2
SELECT TO_CHAR(reverse_expression) FROM TABLE
(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('mod2'));

Chapter 36
DBMS_DATA_MINING

36-151

TO_CHAR(REVERSE_EXPRESSION)
--
DECODE("CUST_YEAR_OF_BIRTH",0,'(; 1915), [1915; 1915]',1,'(1915; 1920.5]',2,'(1
920.5; 1924.5]',3,'(1924.5; 1928.5]',4,'(1928.5; 1932.5]',5,'(1932.5; 1936.5]',6
.
.
.
8,'(1987.5; 1988.5]',29,'(1988.5; 1989.5]',30,'(1989.5;)',NULL,'NULL')

36.1.5.40 IMPORT_MODEL Procedure
This procedure imports one or more data mining models. The procedure is
overloaded. You can call it to import mining models from a dump file set, or you can
call it to import a single mining model from a PMML document.

Import from a dump file set

You can import mining models from a dump file set that was created by the
EXPORT_MODEL Procedure. IMPORT_MODEL and EXPORT_MODEL use Oracle Data
Pump technology to export to and import from a dump file set.

When Oracle Data Pump is used directly to export/import an entire schema or
database, the mining models in the schema or database are included. EXPORT_MODEL
and IMPORT_MODEL export/import mining models only.

Import from PMML

You can import a mining model represented in Predictive Model Markup Language
(PMML). The model must be of type RegressionModel, either linear regression or
binary logistic regression.

PMML is an XML-based standard specified by the Data Mining Group (http://
www.dmg.org). Applications that are PMML-compliant can deploy PMML-compliant
models that were created by any vendor. Oracle Data Mining supports the core
features of PMML 3.1 for regression models.

See Also:

Oracle Data Mining User's Guide for more information about exporting and
importing mining models

Oracle Database Utilities for information about Oracle Data Pump

http://www.dmg.org/faq.html for more information about PMML

Syntax

Imports a mining model from a dump file set:

DBMS_DATA_MINING.IMPORT_MODEL (
 filename IN VARCHAR2,
 directory IN VARCHAR2,
 model_filter IN VARCHAR2 DEFAULT NULL,
 operation IN VARCHAR2 DEFAULT NULL,
 remote_link IN VARCHAR2 DEFAULT NULL,

Chapter 36
DBMS_DATA_MINING

36-152

http://www.dmg.org
http://www.dmg.org
http://www.dmg.org/faq.html

 jobname IN VARCHAR2 DEFAULT NULL,
 schema_remap IN VARCHAR2 DEFAULT NULL,
 tablespace_remap IN VARCHAR2 DEFAULT NULL);

Imports a mining model from a PMML document:

DBMS_DATA_MINING.IMPORT_MODEL (
 model_name IN VARCHAR2,
 pmmldoc IN XMLTYPE
 strict_check IN BOOLEAN DEFAULT FALSE);

Parameters

Table 36-108 IMPORT_MODEL Procedure Parameters

Parameter Description

filename Name of the dump file set from which the models should be
imported. The dump file set must have been created by the
EXPORT_MODEL procedure or the expdp export utility of Oracle Data
Pump.
The dump file set can contain one or more files. (Refer to
"EXPORT_MODEL Procedure" for details.) If the dump file set
contains multiple files, you can specify 'filename%U' instead
of listing them. For example, if your dump file set contains 3
files, archive01.dmp, archive02.dmp, and archive03.dmp, you can
import them by specifying 'archive%U'.

directory Name of a pre-defined directory object that specifies where the
dump file set is located. Both the exporting and the importing user
must have read/write access to the directory object and to the file
system directory that it identifies.
Note: The target database must have also have read/write access to
the file system directory.

model_filter Optional parameter that specifies one or more models to import. If
you do not specify a value for model_filter, all models in the dump
file set are imported. You can also specify NULL (the default) or 'ALL'
to import all models.
The value of model_filter can be one or more model names. The
following are valid filters.

'mymodel1'
'name IN (''mymodel2'',''mymodel3'')'

The first causes IMPORT_MODEL to import a single model named
mymodel1. The second causes IMPORT_MODEL to import two models,
mymodel2 and mymodel3.

operation Optional parameter that specifies whether to import the models or
the SQL statements that create the models. By default, the models are
imported.
You can specify either of the following values for operation:

• 'IMPORT' — Import the models (Default)
• 'SQL_FILE'— Write the SQL DDL for creating the models to a

text file. The text file is named job_name.sql and is located in
the dump set directory.

Chapter 36
DBMS_DATA_MINING

36-153

Table 36-108 (Cont.) IMPORT_MODEL Procedure Parameters

Parameter Description

remote_link Optional parameter that specifies the name of a database link to a
remote system. The default value is NULL. A database link is a schema
object in a local database that enables access to objects in a remote
database. When you specify a value for remote_link, you can import
models into the local database from the remote database. The import
is fileless; no dump file is involved. The IMP_FULL_DATABASE role is
required for importing the remote models. The EXP_FULL_DATABASE
privilege, the CREATE DATABASE LINK privilege, and other privileges
may also be required. (See Example 2.)

jobname Optional parameter that specifies the name of the import job. By
default, the name has the form username_imp_nnnn, where nnnn is
a number. For example, a job name in the SCOTT schema might be
SCOTT_imp_134.

If you specify a job name, it must be unique within the schema. The
maximum length of the job name is 30 characters.
A log file for the import job, named jobname.log, is created in the
same directory as the dump file set.

schema_remap Optional parameter for importing into a different schema. By
default, models are exported and imported within the same schema.
If the dump file set belongs to a different schema, you must
specify a schema mapping in the form export_user:import_user.
For example, you would specify 'SCOTT:MARY' to import a model
exported by SCOTT into the MARY schema.

Note: In some cases, you may need to have the IMP_FULL_DATABASE
privilege or the SYS role to import a model from a different schema.

tablespace_rem
ap

Optional parameter for importing into a different tablespace.
By default, models are exported and imported within the same
tablespace.
If the dump file set belongs to a different tablespace,
you must specify a tablespace mapping in the form
export_tablespace:import_tablespace. For example, you would
specify 'TBLSPC01:TBLSPC02' to import a model that was exported
from tablespace TBLSPC01 into tablespace TBLSPC02.

Note: In some cases, you may need to have the IMP_FULL_DATABASE
privilege or the SYS role to import a model from a different
tablespace.

model_name Name for the new model that will be created in the database as a
result of an import from PMML The name must be unique within the
user's schema.

pmmldoc The PMML document representing the model to be imported. The
PMML document has an XMLTYPE object type. See "XMLTYPE" for
details.

Chapter 36
DBMS_DATA_MINING

36-154

Table 36-108 (Cont.) IMPORT_MODEL Procedure Parameters

Parameter Description

strict_check Whether or not an error occurs when the PMML document contains
sections that are not part of core PMML (for example, Output or
Targets). Oracle Data Mining supports only core PMML; any non-core
features may affect the scoring representation.
If the PMML does not strictly conform to core PMML and
strict_check is set to TRUE, then IMPORT_MODEL returns an error.
If strict_check is FALSE (the default), then the error is suppressed.
The model may be imported and scored.

Examples

1. This example shows a model being exported and imported within the schema
dmuser2. Then the same model is imported into the dmuser3 schema. The dmuser3
user has the IMP_FULL_DATABASE privilege. The dmuser2 user has been assigned
the USER2 tablespace; dmuser3 has been assigned the USER3 tablespace.

SQL> connect dmuser2
Enter password: dmuser2_password
Connected.
SQL> select model_name from user_mining_models;

MODEL_NAME

NMF_SH_SAMPLE
SVMO_SH_CLAS_SAMPLE
SVMR_SH_REGR_SAMPLE

-- export the model called NMF_SH_SAMPLE to a dump file in same schema
SQL>EXECUTE DBMS_DATA_MINING.EXPORT_MODEL (
 filename =>'NMF_SH_SAMPLE_out',
 directory =>'DATA_PUMP_DIR',
 model_filter => 'name = ''NMF_SH_SAMPLE''');

-- import the model back into the same schema
SQL>EXECUTE DBMS_DATA_MINING.IMPORT_MODEL (
 filename => 'NMF_SH_SAMPLE_out01.dmp',
 directory => 'DATA_PUMP_DIR',
 model_filter => 'name = ''NMF_SH_SAMPLE''');

-- connect as different user
-- import same model into that schema
SQL> connect dmuser3
Enter password: dmuser3_password
Connected.
SQL>EXECUTE DBMS_DATA_MINING.IMPORT_MODEL (
 filename => 'NMF_SH_SAMPLE_out01.dmp',
 directory => 'DATA_PUMP_DIR',
 model_filter => 'name = ''NMF_SH_SAMPLE''',
 operation =>'IMPORT',
 remote_link => NULL,
 jobname => 'nmf_imp_job',
 schema_remap => 'dmuser2:dmuser3',
 tablespace_remap => 'USER2:USER3');

Chapter 36
DBMS_DATA_MINING

36-155

The following example shows user MARY importing all models from a dump file,
model_exp_001.dmp, which was created by user SCOTT. User MARY has been
assigned a tablespace named USER2; user SCOTT was assigned the tablespace
USERS when the models were exported into the dump file model_exp_001.dmp.The
dump file is located in the file system directory mapped to a directory object called
DM_DUMP. If user MARY does not have IMP_FULL_DATABASE privileges, IMPORT_MODEL
will raise an error.

-- import all models
DECLARE
 file_name VARCHAR2(40);
BEGIN
 file_name := 'model_exp_001.dmp';
 DBMS_DATA_MINING.IMPORT_MODEL(
 filename=> 'file_name',
 directory=>'DM_DUMP',
 schema_remap=>'SCOTT:MARY',
 tablespace_remap=>'USERS:USER2');
 DBMS_OUTPUT.PUT_LINE(
 'DBMS_DATA_MINING.IMPORT_MODEL of all models from SCOTT done!');
END;
/

2. This example shows how the user xuser could import the model dmuser.r1mod
from a remote database. The SQL*Net connection alias for the remote database
is R1DB. The user xuser is assigned the SYSAUX tablespace; the user dmuser is
assigned the TBS_1 tablespace.

CONNECT / AS SYSDBA;
GRANT CREATE DATABASE LINK TO xuser;
GRANT imp_full_database TO xuser;
CONNECT xuser/xuserpassword
CREATE DATABASE LINK dmuser_link
 CONNECT TO dmuser IDENTIFIED BY dmuserpassword USING 'R1DB';
EXEC dbms_data_mining.import_model (
 NULL,
 'DMUSER_DIR',
 'R1MOD',
 remote_link => 'DMUSER_LINK', schema_remap => 'DMUSER:XUSER',
 tablespace_remap => 'TBS_1:SYSAUX');
SELECT name FROM dm_user_models;

NAME

R1MOD

3. This example shows how a PMML document called SamplePMML1.xml could be
imported from a location referenced by directory object PMMLDIR into the schema of
the current user. The imported model will be called PMMLMODEL1.

BEGIN
 dbms_data_mining.import_model ('PMMLMODEL1',
 XMLType (bfilename ('PMMLDIR', 'SamplePMML1.xml'),
 nls_charset_id ('AL32UTF8')
));
END;

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 36
DBMS_DATA_MINING

36-156

36.1.5.41 IMPORT_SERMODEL Procedure
This procedure imports the serialized format of the model back into a database.

The import routine takes the serialized content in the BLOB and the name of the model
to be created with the content. This import does not create model views or tables that
are needed for querying model details. The import procedure only provides the ability
to score the model.

Syntax

DBMS_DATA_MINING.IMPORT_SERMODEL (
 model_data IN BLOB,
 model_name IN VARCHAR2,);

Parameters

Table 36-109 IMPORT_SERMODEL Procedure Parameters

Parameter Description

model_data Provides model data in BLOB format.

model_name Name of the mining model in the form [schema_name.]model_name. If
you do not specify a schema, then your own schema is used.

Examples

The following statement imports the serialized format of the models.

declare
 v_blob blob;
BEGIN
 dbms_lob.createtemporary(v_blob, FALSE);
-- fill in v_blob from somewhere (e.g., bfile, etc.)
 dbms_data_mining.import_sermodel(v_blob, 'MY_MODEL');
 dbms_lob.freetemporary(v_blob);
END;
/

Related Topics

• EXPORT_SERMODEL Procedure
This procedure exports the model in a serialized format so that they can be moved
to another platform for scoring.

See Also:

Oracle Data Mining User's Guide for more information about exporting and
importing mining models

Chapter 36
DBMS_DATA_MINING

36-157

36.1.5.42 JSON Schema for R Extensible Algorithm
Follow JSON schema when creating a new JSON object with flexibility.

Usage Note

Some flexibility when creating a new JSON object are as follows:

• Partial registration is allowed. For example, detail function can be missing.

• Different orders are allowed. For example, detail function can be written before
build function or after the build function.

Example 36-1 JSON Schema

JSON schema 1.1 for R extensible algorithm:

{
 "type": "object",
 "properties": {
 "algo_name_display": { "type" : "object",
 "properties" : {
 "language" : { "type" :
"string",

"enum" : ["English", "Spanish", "French"],

"default" : "English"},
 "name" : { "type" :
"string"}}
 },

 "function_language": {"type": "string" },
 "mining_function": {
 "type" : "array",
 "items" : [
 { "type" : "object",
 "properties" : {
 "mining_function_name" : { "type" :
"string"},
 "build_function": {
 "type": "object",
 "properties": {
 "function_body": { "type":
"CLOB" }
 }
 },

 "detail_function": {
 "type" : "array",
 "items" : [
 {"type": "object",
 "properties": {
 "function_body": { "type": "CLOB" },
 "view_columns": { "type" : "array",

Chapter 36
DBMS_DATA_MINING

36-158

"items" : {

 "type" : "object",

 "properties" : {

 "name" : { "type" : "string"},

 "type" : { "type" : "string",

 "enum" : ["VARCHAR2",

 "NUMBER",

 "DATE",

 "BOOLEAN"]

 }

 }
 }
 }
 }
]
 },

 "score_function": {
 "type": "object",
 "properties": {
 "function_body": { "type": "CLOB" }
 }
 },
 "weight_function": {
 "type": "object",
 "properties": {
 "function_body": { "type": "CLOB" },
 }
 }
 }
 }]
 },

 "algo_setting": {
 "type" : "array",
 "items" : [
 { "type" : "object",
 "properties" : {
 "name" : { "type" : "string"},
 "name_display": { "type" : "object",
 "properties" :
{
 "language" :
{ "type" : "string",

Chapter 36
DBMS_DATA_MINING

36-159

 "enum" : ["English", "Spanish", "French"],

 "default" : "English"},
 "name" :
{ "type" : "string"}}
 },
 "type" : { "type" : "string",
 "enum" : ["string",
"integer", "number", "boolean"]},

 "optional": {"type" : "BOOLEAN",
 "default" : "FALSE"},

 "value" : { "type" : "string"},

 "min_value" : { "type": "object",
 "properties": {

"min_value": {"type": "number"},

"inclusive": { "type": "boolean",

 "default" : TRUE},
 }
 },
 "max_value" : {"type": "object",
 "properties": {
 "max_value":
{"type": "number"},
 "inclusive":
{ "type": "boolean",

 "default" : TRUE},
 }
 },

 "categorical choices" : { "type": "array",

"items": {

"type": "string"
 }
 },

 "description_display": { "type" : "object",

"properties" : {

"language" : { "type" : "string",

 "enum" : ["English", "Spanish", "French"],

 "default" : "English"},

"name" : { "type" : "string"}}

Chapter 36
DBMS_DATA_MINING

36-160

 }
 }
 }
]
 }
 }
}

Example 36-2 JSON object example

The following is an JSON object example that must be passed to the registration
procedure:

{ "algo_name_display" : {"English", "t1"},
 "function_language" : "R",
 "mining_function" : {
 "mining_function_name" : "CLASSIFICATION",
 "build_function" : {"function_body":
"function(dat, formula, family)
{

set.seed(1234);
 mod <- glm(formula = formula,
data=dat,
 family=
eval(parse(text=family)));
mod}"},
 "score_function" : { "function_body": "function(mod, dat) {
 res <- predict(mod,
newdata = dat,
type=''response
 '');
 res2=data.frame(1-res,
res); res2}"}}
 },
 "algo_setting" : [{"name" :
"dbms_data_mining.odms_m

issing_value_treatment",
 "name_display" : {"English",
"dbms_data_mining.odms_missing_value
_treatment"},
 "type" : "string",
 "optional" : "TRUE",
 "value" :
"dbms_data_mining.odms_missing_value_mean_mode",
 "categorical choices" :
["dbms_data_mining.odms_missing_value_mean_mode",

 "dbms_data_mining.odms_missing_value_auto",

 "dbms_data_mining.odms_missing_value_delete_row"],
 "description" : {"English",

Chapter 36
DBMS_DATA_MINING

36-161

"how to treat missing values"}
 },

{"name" : "RALG_PARAMETER_FAMILY",
 "name_display" : {"English",
"RALG_PARAMETER_FAMILY"},
 "type" : "string",
 "optional" : "TRUE",
 "value" : "",
 "description" : {"English", "R family
parameter in build function"}
 }
],
 }

36.1.5.43 REGISTER_ALGORITHM Procedure
User can register a new algorithm by providing algorithm name, mining function, and
all other algorithm metadata to this function.

Syntax

 DBMS_DATA_MINING.REGISTER_ALGORITHM (
 algorithm_name IN VARCHAR2,
 algorithm_metadata IN CLOB,
 algorithm_description IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-110 REGISTER_ALGORITHM Procedure Parameters

Parameter Description

algorithm_name Name of the algorithm.

algorithm_metadata Metadata of the algorithm.

algorithm_description Description of the algorithm.

Usage Notes

The registration procedure performs the following:

• Checks whether algorithm_metadata has correct JSON syntax.

• Checks whether the input JSON object follows the predefined JSON schema.

• Checks whether current user has RQADMIN privilege.

• Checks duplicate algorithms such that the same algorithm is not registered twice.

• Checks for missing entries. For example, algorithm name, algorithm type,
metadata, and build function.

Register Algorithms After the JSON Object Is Created

SQL users can register new algorithms by following the given procedure:

Chapter 36
DBMS_DATA_MINING

36-162

Create a JSON object following JSON schema and pass it to REGISTER_ALGORITHM
procedure.

BEGIN
 DBMS_DATA_MINING.register_algorithm(
 algorithm_name => 't1',
 algorithm_metadata =>
 '{"function_language" : "R",
 "mining_function" :
 { "mining_function_name" : "CLASSIFICATION",
 "build_function" : {"function_body": "function(dat, formula,
family) { set.seed(1234);
 mod <- glm(formula = formula,
data=dat,

family=eval(parse(text=family)));
mod}"},
 "score_function" : {"function_body": "function(mod, dat) {
 res <- predict(mod,
newdata = dat, type=''response'');
 res2=data.frame(1-res,
res); res2}"}}
 }',
 algorithm_description => 't1');
END;
/

36.1.5.44 RANK_APPLY Procedure
This procedure ranks the results of an APPLY operation based on a top-N specification
for predictive and descriptive model results.

For classification models, you can provide a cost matrix as input, and obtain the
ranked results with costs applied to the predictions.

Syntax

DBMS_DATA_MINING.RANK_APPLY (
 apply_result_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 score_column_name IN VARCHAR2,
 score_criterion_column_name IN VARCHAR2,
 ranked_apply_table_name IN VARCHAR2,
 top_N IN NUMBER (38) DEFAULT 1,
 cost_matrix_table_name IN VARCHAR2 DEFAULT NULL,
 apply_result_schema_name IN VARCHAR2 DEFAULT NULL,
 cost_matrix_schema_name IN VARCHAR2 DEFAULT NULL);

Chapter 36
DBMS_DATA_MINING

36-163

Parameters

Table 36-111 RANK_APPLY Procedure Parameters

Parameter Description

apply_result_table_na
me

Name of the table or view containing the results of an APPLY
operation on the test data set (see Usage Notes)

case_id_column_name Name of the case identifier column. This must be the same
as the one used for generating APPLY results.

score_column_name Name of the prediction column in the apply results table

score_criterion_colum
n_name

Name of the probability column in the apply results table

ranked_apply_result_t
ab_name

Name of the table containing the ranked apply results

top_N Top N predictions to be considered from the APPLY results
for precision recall computation

cost_matrix_table_nam
e

Name of the cost matrix table

apply_result_schema_n
ame

Name of the schema hosting the APPLY results table

cost_matrix_schema_na
me

Name of the schema hosting the cost matrix table

Usage Notes

You can use RANK_APPLY to generate ranked apply results, based on a top-N filter and
also with application of cost for predictions, if the model was built with costs.

The behavior of RANK_APPLY is similar to that of APPLY with respect to other DDL-like
operations such as CREATE_MODEL, DROP_MODEL, and RENAME_MODEL. The procedure
does not depend on the model; the only input of relevance is the apply results
generated in a fixed schema table from APPLY.

The main intended use of RANK_APPLY is for the generation of the final APPLY results
against the scoring data in a production setting. You can apply the model against test
data using APPLY, compute various test metrics against various cost matrix tables, and
use the candidate cost matrix for RANK_APPLY.

The schema for the apply results from each of the supported algorithms is listed in
subsequent sections. The case_id column will be the same case identifier column as
that of the apply results.

Classification Models — NB and SVM

For numerical targets, the ranked results table will have the definition as shown:

(case_id VARCHAR2/NUMBER,
prediction NUMBER,
probability NUMBER,
cost NUMBER,
rank INTEGER)

Chapter 36
DBMS_DATA_MINING

36-164

For categorical targets, the ranked results table will have the following definition:

(case_id VARCHAR2/NUMBER,
prediction VARCHAR2,
probability NUMBER,
cost NUMBER,
rank INTEGER)

Clustering Using k-Means or O-Cluster

Clustering is an unsupervised mining function, and hence there are no targets. The
results of an APPLY operation contains simply the cluster identifier corresponding to a
case, and the associated probability. Cost matrix is not considered here. The ranked
results table will have the definition as shown, and contains the cluster ids ranked by
top-N.

(case_id VARCHAR2/NUMBER,
cluster_id NUMBER,
probability NUMBER,
rank INTEGER)

Feature Extraction using NMF

Feature extraction is also an unsupervised mining function, and hence there are
no targets. The results of an APPLY operation contains simply the feature identifier
corresponding to a case, and the associated match quality. Cost matrix is not
considered here. The ranked results table will have the definition as shown, and
contains the feature ids ranked by top-N.

(case_id VARCHAR2/NUMBER,
feature_id NUMBER,
match_quality NUMBER,
rank INTEGER)

Examples

BEGIN
/* build a model with name census_model.
 * (See example under CREATE_MODEL)
 */

/* if training data was pre-processed in any manner,
 * perform the same pre-processing steps on apply
 * data also.
 * (See examples in the section on DBMS_DATA_MINING_TRANSFORM)
 */

/* apply the model to data to be scored */
DBMS_DATA_MINING.RANK_APPLY(
 apply_result_table_name => 'census_apply_result',
 case_id_column_name => 'person_id',
 score_column_name => 'prediction',
 score_criterion_column_name => 'probability
 ranked_apply_result_tab_name => 'census_ranked_apply_result',
 top_N => 3,
 cost_matrix_table_name => 'census_cost_matrix');
END;
/

-- View Ranked Apply Results

Chapter 36
DBMS_DATA_MINING

36-165

SELECT *
 FROM census_ranked_apply_result;

36.1.5.45 REMOVE_COST_MATRIX Procedure
The REMOVE_COST_MATRIX procedure removes the default scoring matrix from a
classification model.

See Also:

• "ADD_COST_MATRIX Procedure"

• "REMOVE_COST_MATRIX Procedure"

Syntax

DBMS_DATA_MINING.REMOVE_COST_MATRIX (
 model_name IN VARCHAR2);

Parameters

Table 36-112 Remove_Cost_Matrix Procedure Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name.
If you do not specify a schema, your own schema is used.

Usage Notes

If the model is not in your schema, then REMOVE_COST_MATRIX requires the ALTER ANY
MINING MODEL system privilege or the ALTER object privilege for the mining model.

Example

The Naive Bayes model NB_SH_CLAS_SAMPLE has an associated cost matrix that can be
used for scoring the model.

SQL>SELECT *
 FROM TABLE(dbms_data_mining.get_model_cost_matrix('nb_sh_clas_sample'))
 ORDER BY predicted, actual;

ACTUAL PREDICTED COST
---------- ---------- ----------
0 0 0
1 0 .75
0 1 .25
1 1 0

You can remove the cost matrix with REMOVE_COST_MATRIX.

SQL>EXECUTE dbms_data_mining.remove_cost_matrix('nb_sh_clas_sample');

SQL>SELECT *
 FROM TABLE(dbms_data_mining.get_model_cost_matrix('nb_sh_clas_sample'))
 ORDER BY predicted, actual;

Chapter 36
DBMS_DATA_MINING

36-166

no rows selected

36.1.5.46 RENAME_MODEL Procedure
This procedure changes the name of the mining model indicated by model_name to
the name that you specify as new_model_name.

If a model with new_model_name already exists, then the procedure optionally
renames new_model_name to versioned_model_name before renaming model_name
to new_model_name.

The model name is in the form [schema_name.]model_name. If you do not specify
a schema, your own schema is used. For mining model naming restrictions, see the
Usage Notes for "CREATE_MODEL Procedure".

Syntax

DBMS_DATA_MINING.RENAME_MODEL (
 model_name IN VARCHAR2,
 new_model_name IN VARCHAR2,
 versioned_model_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-113 RENAME_MODEL Procedure Parameters

Parameter Description

model_name Model to be renamed.

new_model_name New name for the model model_name.

versioned_model_name New name for the model new_model_name if it already
exists.

Usage Notes

If you attempt to rename a model while it is being applied, then the model will be
renamed but the apply operation will return indeterminate results.

Examples

1. This example changes the name of model census_model to census_model_2012.

BEGIN
 DBMS_DATA_MINING.RENAME_MODEL(
 model_name => 'census_model',
 new_model_name => 'census_model_2012');
END;
/

2. In this example, there are two classification models in the user's schema:
clas_mod, the working model, and clas_mod_tst, a test model. The RENAME_MODEL
procedure preserves clas_mod as clas_mod_old and makes the test model the
new working model.

SELECT model_name FROM user_mining_models;
MODEL_NAME

Chapter 36
DBMS_DATA_MINING

36-167

CLAS_MOD
CLAS_MOD_TST

BEGIN
 DBMS_DATA_MINING.RENAME_MODEL(
 model_name => 'clas_mod_tst',
 new_model_name => 'clas_mod',
 versioned_model_name => 'clas_mod_old');
END;
/

SELECT model_name FROM user_mining_models;
MODEL_NAME

CLAS_MOD
CLAS_MOD_OLD

36.2 DBMS_DATA_MINING_TRANSFORM
DBMS_DATA_MINING_TRANSFORM implements a set of transformations that are commonly
used in data mining.

This chapter contains the following topics:

• Overview

• Operational Notes

• Security Model

• Datatypes

• Constants

• Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

See Also:

• DBMS_DATA_MINING

• Oracle Data Mining User's Guide

36.2.1 Using DBMS_DATA_MINING_TRANSFORM
This section contains topics that relate to using the DBMS_DATA_MINING_TRANSFORM
package.

• Overview

• Operational Notes

• Security Model

• Datatypes

• Constants

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-168

36.2.1.1 DBMS_DATA_MINING_TRANSFORM Overview
A transformation is a SQL expression that modifies the data in one or more columns.

Data must typically undergo certain transformations before it can be used to
build a mining model. Many data mining algorithms have specific transformation
requirements.

Data that will be scored must be transformed in the same way as the data that was
used to create (train) the model.

External or Embedded Transformations

DBMS_DATA_MINING_TRANSFORM offers two approaches to implementing transformations.
For a given model, you can either:

• Create a list of transformation expressions and pass it to the CREATE_MODEL
Procedure

or

• Create a view that implements the transformations and pass the name of the view
to the CREATE_MODEL Procedure

If you create a transformation list and pass it to CREATE_MODEL, the transformation
expressions are embedded in the model and automatically implemented whenever the
model is applied.

If you create a view, the transformation expressions are external to the model. You will
need to re-create the transformations whenever you apply the model.

Note:

Embedded transformations significantly enhance the model's usability while
simplifying the process of model management.

Automatic Transformations

Oracle Data Mining supports an Automatic Data Preparation (ADP) mode. When ADP
is enabled, most algorithm-specific transformations are automatically embedded. Any
additional transformations must be explicitly provided in an embedded transformation
list or in a view.

If ADP is enabled and you create a model with a transformation list, both
sets of transformations are embedded. The model will execute the user-specified
transformations from the transformation list before executing the automatic
transformations specified by ADP.

Within a transformation list, you can selectively disable ADP for individual attributes.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-169

See Also:

"Automatic Data Preparation" in DBMS_DATA_MINING

Oracle Data Mining User's Guide for a more information about ADP

"DBMS_DATA_MINING_TRANSFORM-About Transformation Lists"

Transformations in DBMS_DATA_MINING_TRANSFORM

The transformations supported by DBMS_DATA_MINING_TRANSFORM are summarized in
this section.

Binning

Binning refers to the mapping of continuous or discrete values to discrete values of
reduced cardinality.

• Supervised Binning (Categorical and Numerical)

Binning is based on intrinsic relationships in the data as determined by a decision
tree model.

See "INSERT_BIN_SUPER Procedure".

• Top-N Frequency Categorical Binning

Binning is based on the number of cases in each category.

See "INSERT_BIN_CAT_FREQ Procedure"

• Equi-Width Numerical Binning

Binning is based on equal-range partitions.

See "INSERT_BIN_NUM_EQWIDTH Procedure".

• Quantile Numerical Binning

Binning is based on quantiles computed using the SQL NTILE function.

See "INSERT_BIN_NUM_QTILE Procedure".

Linear Normalization

Normalization is the process of scaling continuous values down to a specific range,
often between zero and one. Normalization transforms each numerical value by
subtracting a number (the shift) and dividing the result by another number (the scale).

x_new = (x_old-shift)/scale

• Min-Max Normalization

Normalization is based on the minimum and maximum with the following shift and
scale:

shift = min
scale = max-min

See "INSERT_NORM_LIN_MINMAX Procedure".

• Scale Normalization

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-170

Normalization is based on the minimum and maximum with the following shift and
scale:

shift = 0
scale = max{abs(max), abs(min)}

See "INSERT_NORM_LIN_SCALE Procedure".

• Z-Score Normalization

Normalization is based on the mean and standard deviation with the following shift
and scale:

shift = mean
scale = standard_deviation

See "INSERT_NORM_LIN_ZSCORE Procedure".

Outlier Treatment

An outlier is a numerical value that is located far from the rest of the data. Outliers can
artificially skew the results of data mining.

• Winsorizing

Outliers are replaced with the nearest value that is not an outlier.

See "INSERT_CLIP_WINSOR_TAIL Procedure"

• Trimming

Outliers are set to NULL.

See "INSERT_CLIP_TRIM_TAIL Procedure".

Missing Value Treatment

Missing data may indicate sparsity or it may indicate that some values are missing
at random. DBMS_DATA_MINING_TRANSFORM supports the following transformations for
minimizing the effects of missing values:

• Missing numerical values are replaced with the mean.

See "INSERT_MISS_NUM_MEAN Procedure".

• Missing categorical values are replaced with the mode.

See "INSERT_MISS_CAT_MODE Procedure".

Note:

Oracle Data Mining also has default mechanisms for handling missing data.
See Oracle Data Mining User's Guide for details.

36.2.1.2 DBMS_DATA_MINING_TRANSFORM Security Model
The DBMS_DATA_MINING_TRANSFORM package is owned by user SYS and is installed as
part of database installation. Execution privilege on the package is granted to public.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-171

The routines in the package are run with invokers' rights (run with the privileges of the
current user).

The DBMS_DATA_MINING_TRANSFORM.INSERT_* procedures have a data_table_name
parameter that enables the user to provide the input data for transformation purposes.
The value of data_table_name can be the name of a physical table or a view. The
data_table_name parameter can also accept an inline query.

Note:

Because an inline query can be used to specify the data for transformation,
Oracle strongly recommends that the calling routine perform any necessary
SQL injection checks on the input string.

See Also:

"Operational Notes" for a description of the
DBMS_DATA_MINING_TRANSFORM.INSERT_* procedures

36.2.1.3 DBMS_DATA_MINING_TRANSFORM Datatypes
DBMS_DATA_MINING_TRANSFORM defines the datatypes described in the following
tabletable.

Table 36-114 Datatypes in DBMS_DATA_MINING_TRANSFORM

List Type List Elements Description

COLUMN_
LIST

VARRAY(1000) OF varchar2(32) COLUMN_LIST stores quoted and non-quoted
identifiers for column names.
COLUMN_LIST is the datatype of the exclude_list
parameter in the INSERT procedures. See
"INSERT_AUTOBIN_NUM_EQWIDTH Procedure" for
an example.
See Oracle Database PL/SQL Language Reference for
information about populating VARRAY structures.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-172

Table 36-114 (Cont.) Datatypes in DBMS_DATA_MINING_TRANSFORM

List Type List Elements Description

DESCRIBE_
LIST

DBMS_SQL.DESC_TAB2

TYPE desc_tab2 IS TABLE OF desc_rec2
INDEX BY BINARY_INTEGER

TYPE desc_rec2 IS RECORD (
col_type
BINARY_INTEGER := 0,
col_max_len
BINARY_INTEGER := 0,
col_name
VARCHAR2(32767):= '',
col_name_len
BINARY_INTEGER := 0,
col_schema_name
VARCHAR2(32) := '',
col_schema_name_len
BINARY_INTEGER := 0,
col_precision
BINARY_INTEGER := 0,
col_scale
BINARY_INTEGER := 0,
col_charsetid
BINARY_INTEGER := 0,
col_charsetform
BINARY_INTEGER := 0,
col_null_ok BOOLEAN := TRUE);

DESCRIBE_LIST describes the columns of the
data table after the transformation list has been
applied. A DESCRIBE_LIST is returned by the
DESCRIBE_STACK Procedure.

The DESC_TAB2 and DESC_REC2 types are defined
in the DBMS_SQL package. See "DESC_REC2 Record
Type".
The col_type field of DESC_REC2 identifies the
datatype of the column. The datatype is expressed
as a numeric constant that represents a built-in
datatype. For example, a 1 indicates a variable
length character string. The codes for Oracle built-
in datatypes are listed in Oracle Database SQL
Language Reference. The codes for the Oracle Data
Mining nested types are described in "Constants".

The col_name field of DESC_REC2 identifies the
column name. It may be populated with a column
name, an alias, or an expression. If the column
name is a SELECT expression, it may be very long.
If the expression is longer than 30 bytes, it cannot
be used in a view unless it is given an alias.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-173

Table 36-114 (Cont.) Datatypes in DBMS_DATA_MINING_TRANSFORM

List Type List Elements Description

TRANSFORM
_
LIST

TABLE OF transform_rec

TYPE transform_rec IS RECORD (
attribute_name VARCHAR2(30),
attribute_subname VARCHAR2(4000),
expression EXPRESSION_REC,
reverse_expression EXPRESSION_REC,
attribute_spec VARCHAR2(4000));

TYPE expression_rec IS RECORD (
lstmt DBMS_SQL.VARCHAR2A,
lb BINARY_INTEGER DEFAULT 1,
ub BINARY_INTEGER DEFAULT
0);

TYPE varchar2a IS TABLE OF
VARCHAR2(32767)
INDEX BY BINARY_INTEGER;

TRANSFORM_LIST is a list of transformations that
can be embedded in a model. A TRANSFORM_LIST
is accepted as an argument by the CREATE_MODEL
Procedure.

Each element in a TRANSFORM_LIST is a
TRANSFORM_REC that specifies how to transform a
single attribute. The attribute_name is a column
name. The attribute_subname is the nested
attribute name if the column is nested, otherwise
attribute_subname is null.

The expression field holds a SQL expression
for transforming the attribute. See "About
Transformation Lists" for an explanation of reverse
expressions.
The attribute_spec field can be used to cause the
attribute to be handled in a specific way during the
model build. See Table 36-146 for details.

The expressions in a TRANSFORM_REC have
type EXPRESSION_REC. The lstmt field stores a
VARCHAR2A, which is a table of VARCHAR2(32767).
The VARCHAR2A datatype allows transformation
expressions to be very long, as they can be
broken up across multiple rows of VARCHAR2. The
VARCHAR2A type is defined in the DBMS_SQL package.
See "VARCHAR2A Table Type".
The ub (upper bound) and lb (lower bound) fields
indicate how many rows there are in the VARCHAR2A
table. If ub < lb (default) the EXPRESSION_REC is
empty; if lb=ub=1 there is one row; if lb=1 and ub=2
there are 2 rows, and so on.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

36.2.1.4 DBMS_DATA_MINING_TRANSFORM Constants
DBMS_DATA_MINING_TRANSFORM defines the constants described in the following table.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-174

Table 36-115 Constants in DBMS_DATA_MINING_TRANSFORM

Constant Value Description

NEST_NUM_COL_TYPE 100001 Indicates that an attribute in the transformation
list comes from a row in a column of
DM_NESTED_NUMERICALS.

Nested numerical attributes are defined as follows:

attribute_name VARCHAR2(4000)
value NUMBER

NEST_CAT_COL_TYPE 100002 Indicates that an attribute in the transformation
list comes from a row in a column of
DM_NESTED_CATEGORICALS.

Nested categorical attributes are defined as follows:

attribute_name VARCHAR2(4000)
value VARCHAR2(4000)

NEST_BD_COL_TYPE 100003 Indicates that an attribute in the transformation
list comes from a row in a column of
DM_NESTED_BINARY_DOUBLES.

Nested binary double attributes are defined as follows:

attribute_name VARCHAR2(4000)
value BINARY_DOUBLE

NEST_BF_COL_TYPE 100004 Indicates that an attribute in the transformation
list comes from a row in a column of
DM_NESTED_BINARY_FLOATS.

attribute_name VARCHAR2(4000)
value BINARY_FLOAT

See Also:

Oracle Data Mining User's Guide for information about nested data in Oracle
Data Mining

36.2.2 DBMS_DATA_MINING_TRANSFORM Operational Notes
The DBMS_DATA_MINING_TRANSFORM package offers a flexible framework for specifying
data transformations. If you choose to embed transformations in the model (the
preferred method), you create a transformation list object and pass it to the
CREATE_MODEL Procedure. If you choose to transform the data without embedding,
you create a view.

When specified in a transformation list, the transformation expressions are executed
by the model. When specified in a view, the transformation expressions are executed
by the view.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-175

Transformation Definitions

Transformation definitions are used to generate the SQL expressions that transform
the data. For example, the transformation definitions for normalizing a numeric column
are the shift and scale values for that data.

With the DBMS_DATA_MINING_TRANSFORM package, you can call procedures to compute
the transformation definitions, or you can compute them yourself, or you can do both.

Transformation Definition Tables

DBMS_DATA_MINING_TRANSFORM provides INSERT procedures that compute
transformation definitions and insert them in transformation definition tables. You can
modify the values in the transformation definition tables or populate them yourself.

XFORM routines use populated definition tables to transform data in external views.
STACK routines use populated definition tables to build transformation lists.

To specify transformations based on definition tables, follow these steps:

1. Use CREATE routines to create transformation definition tables.

The tables have columns to hold the transformation definitions for a given type
of transformation. For example, the CREATE_BIN_NUM Procedure creates a
definition table that has a column for storing data values and another column for
storing the associated bin identifiers.

2. Use INSERT routines to compute and insert transformation definitions in the tables.

Each INSERT routine uses a specific technique for computing the transformation
definitions. For example, the INSERT_BIN_NUM_EQWIDTH Procedure computes
bin boundaries by identifying the minimum and maximum values then setting the
bin boundaries at equal intervals.

3. Use STACK or XFORM routines to generate transformation expressions based on the
information in the definition tables:

• Use STACK routines to add the transformation expressions to a transformation
list. Pass the transformation list to the CREATE_MODEL Procedure. The
transformation expressions will be assembled into one long SQL query and
embedded in the model.

• Use XFORM routines to execute the transformation expressions within a view.
The transformations will be external to the model and will need to be re-
created whenever the model is applied to new data.

Transformations Without Definition Tables

STACK routines are not the only method for adding transformation expressions to a
transformation list. You can also build a transformation list without using definition
tables.

To specify transformations without using definition tables, follow these steps:

1. Write a SQL expression for transforming an attribute.

2. Write a SQL expression for reversing the transformation.
(See "Reverse Transformations and Model Transparency" in
"DBMS_DATA_MINING_TRANSFORM-About Transformation Lists".)

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-176

3. Determine whether or not to disable ADP for the attribute. By default ADP
is enabled for the attribute if it is specified for the model. (See "Disabling
Automatic Data Preparation" in "DBMS_DATA_MINING_TRANSFORM - About
Transformation Lists".)

4. Specify the SQL expressions and ADP instructions in a call to the
SET_TRANSFORM Procedure, which adds the information to a transformation
list.

5. Repeat steps 1 through 4 for each attribute that you wish to transform.

6. Pass the transformation list to the CREATE_MODEL Procedure. The
transformation expressions will be assembled into one long SQL query and
embedded in the model.

Note:

SQL expressions that you specify with SET_TRANSFORM must fit within
a VARCHAR2. To specify a longer expression, you can use the
SET_EXPRESSION Procedure. With SET_EXPRESSION, you can build an
expression by appending rows to a VARCHAR2 array.

About Stacking

Transformation lists are built by stacking transformation records. Transformation lists
are evaluated from bottom to top. Each transformation expression depends on the
result of the transformation expression below it in the stack.

Related Topics

• CREATE_MODEL Procedure
This procedure creates a mining model with a given mining function.

• DBMS_DATA_MINING_TRANSFORM — About Transformation Lists
The elements of a transformation list are transformation records. Each
transformation record provides all the information needed by the model for
managing the transformation of a single attribute.

• DBMS_DATA_MINING_TRANSFORM — About Stacking and Stack Procedures
Transformation lists are built by stacking transformation records. Transformation
lists are evaluated from bottom to top. Each transformation expression depends on
the result of the transformation expression below it in the stack.

• DBMS_DATA_MINING_TRANSFORM — Nested Data Transformations
The CREATE routines create transformation definition tables that include two
columns, col and att, for identifying attributes. The column col holds the name of
a column in the data table. If the data column is not nested, then att is null, and
the name of the attribute is col. If the data column is nested, then att holds the
name of the nested attribute, and the name of the attribute is col.att.

36.2.2.1 DBMS_DATA_MINING_TRANSFORM — About Transformation Lists
The elements of a transformation list are transformation records. Each
transformation record provides all the information needed by the model for managing
the transformation of a single attribute.

Each transformation record includes the following fields:

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-177

• attribute_name — Name of the column of data to be transformed

• attribute_subname — Name of the nested attribute if attribute_name is a nested
column, otherwise NULL

• expression — SQL expression for transforming the attribute

• reverse_expression — SQL expression for reversing the transformation

• attribute_spec — Identifies special treatment for the attribute during the model
build. See Table 36-146 for details.

See Also:

• Table 36-114 for details about the TRANSFORM_LIST and TRANSFORM_REC
object types

• SET_TRANSFORM Procedure

• CREATE_MODEL Procedure

Reverse Transformations and Model Transparency

An algorithm manipulates transformed attributes to train and score a model. The
transformed attributes, however, may not be meaningful to an end user. For example,
if attribute x has been transformed into bins 1 — 4, the bin names 1, 2 , 3, and 4 are
manipulated by the algorithm, but a user is probably not interested in the model details
about bins 1 — 4 or in predicting the numbers 1 — 4.

To return original attribute values in model details and predictions, you can provide a
reverse expression in the transformation record for the attribute. For example, if you
specify the transformation expression 'log(10, y)' for attribute y, you could specify
the reverse transformation expression 'power(10, y)'.

Reverse transformations enable model transparency. They make internal processing
transparent to the user.

Note:

STACK procedures automatically reverse normalization transformations, but
they do not provide a mechanism for reversing binning, clipping, or missing
value transformations.

You can use the DBMS_DATA_MINING.ALTER_REVERSE_EXPRESSION procedure
to specify or update reverse transformations expressions for an existing
model.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-178

See Also:

Table 36-114

"ALTER_REVERSE_EXPRESSION Procedure"

"Summary of DBMS_DATA_MINING Subprograms" for links to the model
details functions

Disabling Automatic Data Preparation

ADP is controlled by a model-specific setting (PREP_AUTO). The PREP_AUTO setting
affects all model attributes unless you disable it for individual attributes.

If ADP is enabled and you set attribute_spec to NOPREP, only the transformations that
you specify for that attribute will be evaluated. If ADP is enabled and you do not set
attribute_spec to NOPREP, the automatic transformations will be evaluated after the
transformations that you specify for the attribute.

If ADP is not enabled for the model, the attribute_spec field of the transformation
record is ignored.

See Also:

"Automatic Data Preparation" for information about the PREP_AUTO setting

Adding Transformation Records to a Transformation List

A transformation list is a stack of transformation records. When a new transformation
record is added, it is appended to the top of the stack. (See "About Stacking" for
details.)

When you use SET_TRANSFORM to add a transformation record to a transformation list,
you can specify values for all the fields in the transformation record.

When you use STACK procedures to add transformation records to a transformation
list, only the transformation expression field is populated. For normalization
transformations, the reverse transformation expression field is also populated.

You can use both STACK procedures and SET_TRANSFORM to build one transformation
list. Each STACK procedure call adds transformation records for all the attributes
in a specified transformation definition table. Each SET_TRANSFORM call adds a
transformation record for a single attribute.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-179

36.2.2.2 DBMS_DATA_MINING_TRANSFORM — About Stacking and Stack
Procedures

Transformation lists are built by stacking transformation records. Transformation lists
are evaluated from bottom to top. Each transformation expression depends on the
result of the transformation expression below it in the stack.

Stack Procedures

STACK procedures create transformation records from the information in transformation
definition tables. For example STACK_BIN_NUM builds a transformation record for each
attribute specified in a definition table for numeric binning. STACK procedures stack the
transformation records as follows:

• If an attribute is specified in the definition table but not in the transformation
list, the STACK procedure creates a transformation record, computes the reverse
transformation (if possible), inserts the transformation and reverse transformation
in the transformation record, and appends the transformation record to the top of
the transformation list.

• If an attribute is specified in the transformation list but not in the definition table,
the STACK procedure takes no action.

• If an attribute is specified in the definition table and in the transformation list, the
STACK procedure stacks the transformation expression from the definition table on
top of the transformation expression in the transformation record and updates the
reverse transformation. See Table 36-114and Example 36-6.

Example 36-3 Stacking a Clipping Transformation

This example shows how STACK_CLIP Procedure would add transformation records
to a transformation list. Note that the clipping transformations are not reversed in
COL1 and COL2 after stacking (as described in "Reverse Transformations and Model
Transparency" in "DBMS_DATA_MINING_TRANSFORM-About Transformation Lists").

Refer to:

• CREATE_CLIP Procedure — Creates the definition table

• INSERT_CLIP_TRIM_TAIL Procedure — Inserts definitions in the table

• INSERT_CLIP_WINSOR_TAIL Procedure — Inserts definitions in the table

• Table 36-114 — Describes the structure of the transformation list (TRANSFORM_LIST
object)

Assume a clipping definition table populated as follows.

col att lcut lval rcut rval

COL1 null -1.5 -1.5 4.5 4.5

COL2 null 0 0 1 1

Assume the following transformation list before stacking.

transformation record #1:

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-180

 attribute_name = COL1
 attribute_subname = null
 expression = log(10, COL1)
 reverse_expression = power(10, COL1)

transformation record #2:

 attribute_name = COL3
 attribute_subname = null
 expression = ln(COL3)
 reverse_expression = exp(COL3)

After stacking, the transformation list is as follows.

transformation record #1:

 attribute_name = COL1
 attribute_subname = null
 expression = CASE WHEN log(10, COL1) < -1.5 THEN -1.5
 WHEN log(10, COL1) > 4.5 THEN 4.5
 ELSE log(10, COL1)
 END;
 reverse_expression = power(10, COL1)

transformation record #2:

 attribute_name = COL3
 attribute_subname = null
 expression = ln(COL3)
 reverse_expression = exp(COL3)

transformation record #3:

 attribute_name = COL2
 attribute_subname = null
 expression = CASE WHEN COL2 < 0 THEN 0
 WHEN COL2 > 1 THEN 1
 ELSE COL2
 END;
 reverse_expression = null

36.2.2.3 DBMS_DATA_MINING_TRANSFORM — Nested Data
Transformations

The CREATE routines create transformation definition tables that include two columns,
col and att, for identifying attributes. The column col holds the name of a column in
the data table. If the data column is not nested, then att is null, and the name of the
attribute is col. If the data column is nested, then att holds the name of the nested
attribute, and the name of the attribute is col.att.

The INSERT and XFORM routines ignore the att column in the definition tables. Neither
the INSERT nor the XFORM routines support nested data.

Only the STACK procedures and SET_TRANSFORM support nested data. Nested data
transformations are always embedded in the model.

feature 322331-1 Native doubles in DMFs

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-181

Nested columns in Oracle Data Mining can have the following types:

DM_NESTED_NUMERICALS
DM_NESTED_CATEGORICALS
DM_NESTED_BINARY_DOUBLES
DM_NESTED_BINARY_FLOATS

See Also:

"Constants"

Oracle Data Mining User's Guide for details about nested attributes in Oracle
Data Mining

Specifying Nested Attributes in a Transformation Record

A transformation record (TRANSFORM_REC) includes two fields, attribute_name and
attribute_subname, for identifying the attribute. The field attribute_name holds
the name of a column in the data table. If the data column is not nested, then
attribute_subname is null, and the name of the attribute is attribute_name. If
the data column is nested, then attribute_subname holds the name of the nested
attribute, and the name of the attribute is attribute_name.attribute_subname.

Transforming Individual Nested Attributes

You can specify different transformations for different attributes in a nested column,
and you can specify a default transformation for all the remaining attributes in the
column. To specify a default nested transformation, specify null in the attribute_name
field and the name of the nested column in the attribute_subname field as shown in
Example 36-4. Note that the keyword VALUE is used to represent the value of a nested
attribute in a transformation expression.

Example 36-4 Transforming a Nested Column

The following statement transforms two of the nested attributes in COL_N1. Attribute
ATTR1 is transformed with normalization; Attribute ATTR2 is set to null, which causes
attribute removal transformation (ATTR2 is not used in training the model). All the
remaining attributes in COL_N1 are divided by 10.

DECLARE
 stk dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.SET_TRANSFORM(
 stk,'COL_N1', 'ATTR1', '(VALUE - (-1.5))/20', 'VALUE *20 + (-1.5)');
 dbms_data_mining_transform.SET_TRANSFORM(
 stk,'COL_N1', 'ATTR2', NULL, NULL);
 dbms_data_mining_transform.SET_TRANSFORM(
 stk, NULL, 'COL_N1', 'VALUE/10', 'VALUE*10');
END;
/

The following SQL is generated from this statement.

CAST(MULTISET(SELECT DM_NESTED_NUMERICAL(
 "ATTRIBUTE_NAME",
 DECODE("ATTRIBUTE_NAME",

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-182

 'ATTR1', ("VALUE" - (-1.5))/20,
 "VALUE"/10))
 FROM TABLE("COL_N1")
 WHERE "ATTRIBUTE_NAME" IS NOT IN ('ATTR2'))
 AS DM_NESTED_NUMERICALS)

If transformations are not specified for COL_N1.ATTR1 and COL_N1.ATTR2, then the
default transformation is used for all the attributes in COL_N1, and the resulting SQL
does not include a DECODE.

 CAST(MULTISET(SELECT DM_NESTED_NUMERICAL(
 "ATTRIBUTE_NAME",
 "VALUE"/10)
 FROM TABLE("COL_N1"))
 AS DM_NESTED_NUMERICALS)

Since DECODE is limited to 256 arguments, multiple DECODE functions are nested to
support an arbitrary number of individual nested attribute specifications.

Adding a Nested Column

You can specify a transformation that adds a nested column to the data, as shown in
Example 36-5.

Example 36-5 Adding a Nested Column to a Transformation List

DECLARE
 v_xlst dbms_data_mining_transform.TRANSFORM_LIST;
 BEGIN
 dbms_data_mining_transform.SET_TRANSFORM(v_xlst,
 'YOB_CREDLIM', NULL,
 'dm_nested_numericals(
 dm_nested_numerical(
 ''CUST_YEAR_OF_BIRTH'', cust_year_of_birth),
 dm_nested_numerical(
 ''CUST_CREDIT_LIMIT'', cust_credit_limit))',
 NULL);
 dbms_data_mining_transform.SET_TRANSFORM(
 v_xlst, 'CUST_YEAR_OF_BIRTH', NULL, NULL, NULL);
 dbms_data_mining_transform.SET_TRANSFORM(
 v_xlst, 'CUST_CREDIT_LIMIT', NULL, NULL, NULL);
 dbms_data_mining_transform.XFORM_STACK(
 v_xlst, 'mining_data', 'mining_data_v');
END;
/

set long 2000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_V';

TEXT

SELECT "CUST_ID","CUST_POSTAL_CODE",dm_nested_numericals(
 dm_nested_numerical(
 'CUST_YEAR_OF_BIRTH', cust_year_of_birth),
 dm_nested_numerical(
 'CUST_CREDIT_LIMIT', cust_credit_limit)) "YOB_CREDLIM" FROM
mining_data

SELECT * FROM mining_data_v WHERE cust_id = 104500;

CUST_ID CUST_POSTAL_CODE YOB_CREDLIM(ATTRIBUTE_NAME, VALUE)

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-183

------- ----------------

 104500 68524 DM_NESTED_NUMERICALS(DM_NESTED_NUMERICAL(
 'CUST_YEAR_OF_BIRTH', 1962),
 DM_NESTED_NUMERICAL('CUST_CREDIT_LIMIT', 15000))

Stacking Nested Transformations

Example 36-6 shows how the STACK_NORM_LIN Procedure would add
transformation records for nested column COL_N to a transformation list.

Refer to:

• CREATE_NORM_LIN Procedure — Creates the definition table

• INSERT_NORM_LIN_MINMAX Procedure — Inserts definitions in the table

• INSERT_NORM_LIN_SCALE Procedure — Inserts definitions in the table

• INSERT_NORM_LIN_ZSCORE Procedure — Inserts definitions in the table

• Table 36-114 — Describes the structure of the transformation list

Example 36-6 Stacking a Nested Normalization Transformation

Assume a linear normalization definition table populated as follows.

col att shift scale

COL_N ATT2 0 20

null COL_N 0 10

Assume the following transformation list before stacking.

transformation record #1:

 attribute_name = COL_N
 attribute_subname = ATT1
 expression = log(10, VALUE)
 reverse_expression = power(10, VALUE)

transformation record #2:

 attribute_name = null
 attribute_subname = COL_N
 expression = ln(VALUE)
 reverse_expression = exp(VALUE)

After stacking, the transformation list is as follows.

transformation record #1:

 attribute_name = COL_N
 attribute_subname = ATT1
 expression = (log(10, VALUE) - 0)/10
 reverse_expression = power(10, VALUE*10 + 0)

transformation record #2:

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-184

 attribute_name = NULL
 attribute_subname = COL_N
 expression = (ln(VALUE)- 0)/10
 reverse_expression = exp(VALUE *10 + 0)

transformation record #3:

 attribute_name = COL_N
 attribute_subname = ATT2
 expression = (ln(VALUE) - 0)/20
 reverse_expression = exp(VALUE * 20 + 0)

36.2.3 Summary of DBMS_DATA_MINING_TRANSFORM
Subprograms

This table lists the DBMS_DATA_MINING_TRANSFORM subprograms in alphabetical order
and briefly describes them.

Table 36-116 DBMS_DATA_MINING_TRANSFORM Package Subprograms

Subprogram Purpose

CREATE_BIN_CAT Procedure Creates a transformation definition table for
categorical binning

CREATE_BIN_NUM Procedure Creates a transformation definition table for numerical
binning

CREATE_CLIP Procedure Creates a transformation definition table for clipping

CREATE_COL_REM Procedure Creates a transformation definition table for column
removal

CREATE_MISS_CAT Procedure Creates a transformation definition table for
categorical missing value treatment

CREATE_MISS_NUM Procedure Creates a transformation definition table for numerical
missing values treatment

CREATE_NORM_LIN Procedure Creates a transformation definition table for linear
normalization

DESCRIBE_STACK Procedure Describes the transformation list

GET_EXPRESSION Function Returns a VARCHAR2 chunk from a transformation
expression

INSERT_AUTOBIN_NUM_EQWI
DTH Procedure

Inserts numeric automatic equi-width binning
definitions in a transformation definition table

INSERT_BIN_CAT_FREQ
Procedure

Inserts categorical frequency-based binning definitions
in a transformation definition table

INSERT_BIN_NUM_EQWIDTH
Procedure

Inserts numeric equi-width binning definitions in a
transformation definition table

INSERT_BIN_NUM_QTILE
Procedure

Inserts numeric quantile binning expressions in a
transformation definition table

INSERT_BIN_SUPER Procedure Inserts supervised binning definitions in numerical
and categorical transformation definition tables

INSERT_CLIP_TRIM_TAIL
Procedure

Inserts numerical trimming definitions in a
transformation definition table

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-185

Table 36-116 (Cont.) DBMS_DATA_MINING_TRANSFORM Package
Subprograms

Subprogram Purpose

INSERT_CLIP_WINSOR_TAIL
Procedure

Inserts numerical winsorizing definitions in a
transformation definition table

INSERT_MISS_CAT_MODE
Procedure

Inserts categorical missing value treatment definitions
in a transformation definition table

INSERT_MISS_NUM_MEAN
Procedure

Inserts numerical missing value treatment definitions
in a transformation definition table

INSERT_NORM_LIN_MINMAX
Procedure

Inserts linear min-max normalization definitions in a
transformation definition table

INSERT_NORM_LIN_SCALE
Procedure

Inserts linear scale normalization definitions in a
transformation definition table

INSERT_NORM_LIN_ZSCORE
Procedure

Inserts linear zscore normalization definitions in a
transformation definition table

SET_EXPRESSION Procedure Adds a VARCHAR2 chunk to an expression

SET_TRANSFORM Procedure Adds a transformation record to a transformation list

STACK_BIN_CAT Procedure Adds a categorical binning expression to a
transformation list

STACK_BIN_NUM Procedure Adds a numerical binning expression to a
transformation list

STACK_CLIP Procedure Adds a clipping expression to a transformation list

STACK_COL_REM Procedure Adds a column removal expression to a transformation
list

STACK_MISS_CAT Procedure Adds a categorical missing value treatment expression
to a transformation list

STACK_MISS_NUM Procedure Adds a numerical missing value treatment expression
to a transformation list

STACK_NORM_LIN Procedure Adds a linear normalization expression to a
transformation list

XFORM_BIN_CAT Procedure Creates a view of the data table with categorical
binning transformations

XFORM_BIN_NUM Procedure Creates a view of the data table with numerical binning
transformations

XFORM_CLIP Procedure Creates a view of the data table with clipping
transformations

XFORM_COL_REM Procedure Creates a view of the data table with column removal
transformations

XFORM_EXPR_NUM Procedure Creates a view of the data table with the specified
numeric transformations

XFORM_EXPR_STR Procedure Creates a view of the data table with the specified
categorical transformations

XFORM_MISS_CAT Procedure Creates a view of the data table with categorical
missing value treatment

XFORM_MISS_NUM Procedure Creates a view of the data table with numerical missing
value treatment

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-186

Table 36-116 (Cont.) DBMS_DATA_MINING_TRANSFORM Package
Subprograms

Subprogram Purpose

XFORM_NORM_LIN Procedure Creates a view of the data table with linear
normalization transformations

XFORM_STACK Procedure Creates a view of the transformation list

36.2.3.1 CREATE_BIN_CAT Procedure
This procedure creates a transformation definition table for categorical binning.

The columns are described in the following table.

Table 36-117 Columns in a Transformation Definition Table for Categorical
Binning

Name Datatype Description

col VARCHAR2(30) Name of a column of categorical data.
If the column is not nested, the column name is also the
attribute name. For information about attribute names, see
Oracle Data Mining User's Guide.

att VARCHAR2(4000) The attribute subname if col is a nested column.

If col is nested, the attribute name is col.att. If col is not
nested, att is null.

val VARCHAR2(4000) Values of the attribute

bin VARCHAR2(4000) Bin assignments for the values

Syntax

DBMS_DATA_MINING_TRANSFORM.CREATE_BIN_CAT (
 bin_table_name IN VARCHAR2,
 bin_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-118 CREATE_BIN_CAT Procedure Parameters

Parameter Description

bin_table_name Name of the transformation definition table to be created

bin_schema_name Schema of bin_table_name. If no schema is specified, the current
schema is used.

Usage Notes

1. See Oracle Data Mining User's Guide for details about categorical data.

2. See "Nested Data Transformations" for information about transformation definition
tables and nested data.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-187

3. You can use the following procedures to populate the transformation definition
table:

• INSERT_BIN_CAT_FREQ Procedure — frequency-based binning

• INSERT_BIN_SUPER Procedure — supervised binning

See Also:

"Binning" in DBMS_DATA_MINING_TRANSFORM Overview

"Operational Notes"

Examples

The following statement creates a table called bin_cat_xtbl in the current schema.
The table has columns that can be populated with bin assignments for categorical
attributes.

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_BIN_CAT('bin_cat_xtbl');
END;
/
DESCRIBE bin_cat_xtbl
 Name Null? Type
 --- -------- ----------------------------
 COL VARCHAR2(30)
 ATT VARCHAR2(4000)
 VAL VARCHAR2(4000)
 BIN VARCHAR2(4000)

36.2.3.2 CREATE_BIN_NUM Procedure
This procedure creates a transformation definition table for numerical binning.

The columns are described in the following table.

Table 36-119 Columns in a Transformation Definition Table for Numerical
Binning

Name Datatype Description

col VARCHAR2(30) Name of a column of numerical data.
If the column is not nested, the column name is also the
attribute name. For information about attribute names, see
Oracle Data Mining User's Guide.

att VARCHAR2(4000) The attribute subname if col is a nested column.

If col is nested, the attribute name is col.att. If col is not
nested, att is null.

val NUMBER Values of the attribute

bin VARCHAR2(4000) Bin assignments for the values

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-188

Syntax

DBMS_DATA_MINING_TRANSFORM.CREATE_BIN_NUM (
 bin_table_name IN VARCHAR2,
 bin_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-120 CREATE_BIN_NUM Procedure Parameters

Parameter Description

bin_table_name Name of the transformation definition table to be created

bin_schema_name Schema of bin_table_name. If no schema is specified, the current
schema is used.

Usage Notes

1. See Oracle Data Mining User's Guide for details about numerical data.

2. See "Nested Data Transformations" for information about transformation definition
tables and nested data.

3. You can use the following procedures to populate the transformation definition
table:

• INSERT_AUTOBIN_NUM_EQWIDTH Procedure — automatic equi-width
binning

• INSERT_BIN_NUM_EQWIDTH Procedure — user-specified equi-width
binning

• INSERT_BIN_NUM_QTILE Procedure — quantile binning

• INSERT_BIN_SUPER Procedure — supervised binning

See Also:

"Binning" in DBMS_DATA_MINING_TRANSFORM Overview

"Operational Notes"

Examples

The following statement creates a table called bin_num_xtbl in the current schema.
The table has columns that can be populated with bin assignments for numerical
attributes.

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_BIN_NUM('bin_num_xtbl');
END;
/

DESCRIBE bin_num_xtbl
 Name Null? Type
 --- -------- ----------------------------
 COL VARCHAR2(30)

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-189

 ATT VARCHAR2(4000)
 VAL NUMBER
 BIN VARCHAR2(4000)

36.2.3.3 CREATE_CLIP Procedure
This procedure creates a transformation definition table for clipping or winsorizing to
minimize the effect of outliers.

The columns are described in the following table.

Table 36-121 Columns in a Transformation Definition Table for Clipping or
Winsorizing

Name Datatype Description

col VARCHAR2(30) Name of a column of numerical data.
If the column is not nested, the column name is also the
attribute name. For information about attribute names, see
Oracle Data Mining User's Guide.

att VARCHAR2(4000) The attribute subname if col is a nested column of
DM_NESTED_NUMERICALS. If col is nested, the attribute name
is col.att.

If col is not nested, att is null.

lcut NUMBER The lowest typical value for the attribute.
If the attribute values were plotted on an xy axis, lcut
would be the left-most boundary of the range of values
considered typical for this attribute.
Any values to the left of lcut are outliers.

lval NUMBER Value assigned to an outlier to the left of lcut

rcut NUMBER The highest typical value for the attribute
If the attribute values were plotted on an xy axis, rcut
would be the right-most boundary of the range of values
considered typical for this attribute.
Any values to the right of rcut are outliers.

rval NUMBER Value assigned to an outlier to the right of rcut

Syntax

DBMS_DATA_MINING_TRANSFORM.CREATE_CLIP (
 clip_table_name IN VARCHAR2,
 clip_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-122 CREATE_CLIP Procedure Parameters

Parameter Description

clip_table_name Name of the transformation definition table to be created

clip_schema_name Schema of clip_table_name. If no schema is specified, the
current schema is used.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-190

Usage Notes

1. See Oracle Data Mining User's Guide for details about numerical data.

2. See "Nested Data Transformations" for information about transformation definition
tables and nested data.

3. You can use the following procedures to populate the transformation definition
table:

• INSERT_CLIP_TRIM_TAIL Procedure — replaces outliers with nulls

• INSERT_CLIP_WINSOR_TAIL Procedure — replaces outliers with an average
value

See Also:

"Outlier Treatment" in DBMS_DATA_MINING_TRANSFORM Overview

"Operational Notes"

Examples

The following statement creates a table called clip_xtbl in the current schema.
The table has columns that can be populated with clipping instructions for numerical
attributes.

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_CLIP('clip_xtbl');
END;
/

DESCRIBE clip_xtbl
 Name Null? Type
 --- -------- ----------------------------
 COL VARCHAR2(30)
 ATT VARCHAR2(4000)
 LCUT NUMBER
 LVAL NUMBER
 RCUT NUMBER
 RVAL NUMBER

36.2.3.4 CREATE_COL_REM Procedure
This procedure creates a transformation definition table for removing columns from the
data table.

The columns are described in the following table.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-191

Table 36-123 Columns in a Transformation Definition Table for Column
Removal

Name Datatype Description

col VARCHAR2(30) Name of a column of data.
If the column is not nested, the column name is also the
attribute name. For information about attribute names, see
Oracle Data Mining User's Guide.

att VARCHAR2(4000) The attribute subname if col is nested
(DM_NESTED_NUMERICALS or DM_NESTED_CATEGORICALS). If col
is nested, the attribute name is col.att.

If col is not nested, att is null.

Syntax

DBMS_DATA_MINING_TRANSFORM.CREATE_COL_REM (
 rem_table_name VARCHAR2,
 rem_schema_name VARCHAR2 DEFAULT NULL);

Parameters

Table 36-124 CREATE_COL_REM Procedure Parameters

Parameter Description

rem_table_name Name of the transformation definition table to be created

rem_schema_name Schema of rem_table_name. If no schema is specified, the current
schema is used.

Usage Notes

1. See "Nested Data Transformations" for information about transformation definition
tables and nested data.

2. See "Operational Notes".

Examples

The following statement creates a table called rem_att_xtbl in the current schema.
The table has columns that can be populated with the names of attributes to exclude
from the data to be mined.

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_COL_REM ('rem_att_xtbl');
END;
 /
DESCRIBE rem_att_xtbl
 Name Null? Type
 --- -------- ----------------------------
 COL VARCHAR2(30)
 ATT VARCHAR2(4000)

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-192

36.2.3.5 CREATE_MISS_CAT Procedure
This procedure creates a transformation definition table for replacing categorical
missing values.

The columns are described in the following table.

Table 36-125 Columns in a Transformation Definition Table for Categorical
Missing Value Treatment

Name Datatype Description

col VARCHAR2(30) Name of a column of categorical data.
If the column is not nested, the column name is also the
attribute name. For information about attribute names, see
Oracle Data Mining User's Guide.

att VARCHAR2(4000) The attribute subname if col is a nested column of
DM_NESTED_CATEGORICALS. If col is nested, the attribute
name is col.att.

If col is not nested, att is null.

val VARCHAR2(4000) Replacement for missing values in the attribute

Syntax

DBMS_DATA_MINING_TRANSFORM.CREATE_MISS_CAT (
 miss_table_name IN VARCHAR2,
 miss_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-126 CREATE_MISS_CAT Procedure Parameters

Parameter Description

miss_table_name Name of the transformation definition table to be created

miss_schema_name Schema of miss_table_name. If no schema is specified, the
current schema is used.

Usage Notes

1. See Oracle Data Mining User's Guide for details about categorical data.

2. See "Nested Data Transformations" for information about transformation definition
tables and nested data.

3. You can use the INSERT_MISS_CAT_MODE Procedure to populate the
transformation definition table.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-193

See Also:

"Missing Value Treatment" in DBMS_DATA_MINING_TRANSFORM
Overview

"Operational Notes"

Examples

The following statement creates a table called miss_cat_xtbl in the current schema.
The table has columns that can be populated with values for missing data in
categorical attributes.

BEGIN

 DBMS_DATA_MINING_TRANSFORM.CREATE_MISS_CAT('miss_cat_xtbl');
END;
/

DESCRIBE miss_cat_xtbl
 Name Null? Type
 --- -------- ----------------------------
 COL VARCHAR2(30)
 ATT VARCHAR2(4000)
 VAL VARCHAR2(4000)

36.2.3.6 CREATE_MISS_NUM Procedure
This procedure creates a transformation definition table for replacing numerical
missing values.

The columns are described in Table 36-127.

Table 36-127 Columns in a Transformation Definition Table for Numerical
Missing Value Treatment

Name Datatype Description

col VARCHAR2(30) Name of a column of numerical data.
If the column is not nested, the column name is also the
attribute name. For information about attribute names, see
Oracle Data Mining User's Guide.

att VARCHAR2(4000) The attribute subname if col is a nested column of
DM_NESTED_NUMERICALS. If col is nested, the attribute name
is col.att.

If col is not nested, att is null.

val NUMBER Replacement for missing values in the attribute

Syntax

DBMS_DATA_MINING_TRANSFORM.CREATE_MISS_NUM (
 miss_table_name IN VARCHAR2,
 miss_schema_name IN VARCHAR2 DEFAULT NULL);

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-194

Parameters

Table 36-128 CREATE_MISS_NUM Procedure Parameters

Parameter Description

miss_table_name Name of the transformation definition table to be created

miss_schema_name Schema of miss_table_name. If no schema is specified, the
current schema is used.

Usage Notes

1. See Oracle Data Mining User's Guide for details about numerical data.

2. See "Nested Data Transformations" for information about transformation definition
tables and nested data.

3. You can use the INSERT_MISS_NUM_MEAN Procedure to populate the
transformation definition table.

See Also:

"Missing Value Treatment" in DBMS_DATA_MINING_TRANSFORM
Overview

"Operational Notes"

Example

The following statement creates a table called miss_num_xtbl in the current schema.
The table has columns that can be populated with values for missing data in numerical
attributes.

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_MISS_NUM('miss_num_xtbl');
END;
/

DESCRIBE miss_num_xtbl
 Name Null? Type
 --- -------- ----------------------------
 COL VARCHAR2(30)
 ATT VARCHAR2(4000)
 VAL NUMBER

36.2.3.7 CREATE_NORM_LIN Procedure
This procedure creates a transformation definition table for linear normalization.

The columns are described in Table 36-129.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-195

Table 36-129 Columns in a Transformation Definition Table for Linear
Normalization

Name Datatype Description

col VARCHAR2(30) Name of a column of numerical data.
If the column is not nested, the column name is also the
attribute name. For information about attribute names, see
Oracle Data Mining User's Guide.

att VARCHAR2(4000) The attribute subname if col is a nested column of
DM_NESTED_NUMERICALS. If col is nested, the attribute name
is col.att.

If col is not nested, att is null.

shift NUMBER A constant to subtract from the attribute values

scale NUMBER A constant by which to divide the shifted values

Syntax

DBMS_DATA_MINING_TRANSFORM.CREATE_NORM_LIN (
 norm_table_name IN VARCHAR2,
 norm_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-130 CREATE_NORM_LIN Procedure Parameters

Parameter Description

norm_table_name Name of the transformation definition table to be created

norm_schema_name Schema of norm_table_name. If no schema is specified, the
current schema is used.

Usage Notes

1. See Oracle Data Mining User's Guide for details about numerical data.

2. See "Nested Data Transformations" for information about transformation definition
tables and nested data.

3. You can use the following procedures to populate the transformation definition
table:

• INSERT_NORM_LIN_MINMAX Procedure — Uses linear min-max
normalization

• INSERT_NORM_LIN_SCALE Procedure — Uses linear scale normalization

• INSERT_NORM_LIN_ZSCORE Procedure — Uses linear zscore
normalization

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-196

See Also:

"Linear Normalization" in DBMS_DATA_MINING_TRANSFORM
Overview

"Operational Notes"

Examples

The following statement creates a table called norm_xtbl in the current schema. The
table has columns that can be populated with shift and scale values for normalizing
numerical attributes.

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_NORM_LIN('norm_xtbl');
END;
/

DESCRIBE norm_xtbl
 Name Null? Type
 --- -------- ----------------------------
 COL VARCHAR2(30)
 ATT VARCHAR2(4000)
 SHIFT NUMBER
 SCALE NUMBER

36.2.3.8 DESCRIBE_STACK Procedure
This procedure describes the columns of the data table after a list of transformations
has been applied.

Only the columns that are specified in the transformation list are transformed. The
remaining columns in the data table are included in the output without changes.

To create a view of the data table after the transformations have been applied, use the
XFORM_STACK Procedure.

Syntax

DBMS_DATA_MINING_TRANSFORM.DESCRIBE_STACK (
 xform_list IN TRANSFORM_LIST,
 data_table_name IN VARCHAR2,
 describe_list OUT DESCRIBE_LIST,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-131 DESCRIBE_STACK Procedure Parameters

Parameter Description

xform_list A list of transformations. See Table 36-114 for a description of the
TRANSFORM_LIST object type.

data_table_name Name of the table containing the data to be transformed

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-197

Table 36-131 (Cont.) DESCRIBE_STACK Procedure Parameters

Parameter Description

describe_list Descriptions of the columns in the data table after the
transformations specified in xform_list have been applied. See
Table 36-114 for a description of the DESCRIBE_LIST object type.

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

Usage Notes

See "Operational Notes" for information about transformation lists and embedded
transformations.

Examples

This example shows the column name and datatype, the column name length, and
the column maximum length for the view dmuser.cust_info after the transformation
list has been applied. All the transformations are user-specified. The results of
DESCRIBE_STACK do not include one of the columns in the original table, because the
SET_TRANSFORM procedure sets that column to NULL.

CREATE OR REPLACE VIEW cust_info AS
 SELECT a.cust_id, c.country_id, c.cust_year_of_birth,
 CAST(COLLECT(DM_Nested_Numerical(
 b.prod_name, 1))
 AS DM_Nested_Numericals) custprods
 FROM sh.sales a, sh.products b, sh.customers c
 WHERE a.prod_id = b.prod_id AND
 a.cust_id=c.cust_id and
 a.cust_id between 100001 AND 105000
 GROUP BY a.cust_id, country_id, cust_year_of_birth;

describe cust_info
 Name Null? Type
 --- -------- ----------------------------
 CUST_ID NOT NULL NUMBER
 COUNTRY_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUSTPRODS SYS.DM_NESTED_NUMERICALS

DECLARE
 cust_stack dbms_data_mining_transform.TRANSFORM_LIST;
 cust_cols dbms_data_mining_transform.DESCRIBE_LIST;
BEGIN
 dbms_data_mining_transform.SET_TRANSFORM (cust_stack,
 'country_id', NULL, 'country_id/10', 'country_id*10');
 dbms_data_mining_transform.SET_TRANSFORM (cust_stack,
 'cust_year_of_birth', NULL, NULL, NULL);
 dbms_data_mining_transform.SET_TRANSFORM (cust_stack,
 'custprods', 'Mouse Pad', 'value*100', 'value/100');
 dbms_data_mining_transform.DESCRIBE_STACK(
 xform_list => cust_stack,
 data_table_name => 'cust_info',
 describe_list => cust_cols);
 dbms_output.put_line('====');
 for i in 1..cust_cols.COUNT loop

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-198

 dbms_output.put_line('COLUMN_NAME: '||cust_cols(i).col_name);
 dbms_output.put_line('COLUMN_TYPE: '||cust_cols(i).col_type);
 dbms_output.put_line('COLUMN_NAME_LEN: '||cust_cols(i).col_name_len);
 dbms_output.put_line('COLUMN_MAX_LEN: '||cust_cols(i).col_max_len);
 dbms_output.put_line('====');
 END loop;
END;
/
====
COLUMN_NAME: CUST_ID
COLUMN_TYPE: 2
COLUMN_NAME_LEN: 7
COLUMN_MAX_LEN: 22
====
COLUMN_NAME: COUNTRY_ID
COLUMN_TYPE: 2
COLUMN_NAME_LEN: 10
COLUMN_MAX_LEN: 22
====
COLUMN_NAME: CUSTPRODS
COLUMN_TYPE: 100001
COLUMN_NAME_LEN: 9
COLUMN_MAX_LEN: 40
====

36.2.3.9 GET_EXPRESSION Function
This function returns a row from a VARCHAR2 array that stores a transformation
expression. The array is built by calls to the SET_EXPRESSION Procedure.

The array can be used for specifying SQL expressions that are too long to be used
with the SET_TRANSFORM Procedure.

Syntax

DBMS_DATA_MINING_TRANSFORM.GET_EXPRESSION (
 expression IN EXPRESSION_REC,
 chunk_num IN PLS_INTEGER DEFAULT NULL);
 RETURN VARCHAR2;

Parameters

Table 36-132 GET_EXPRESSION Function Parameters

Parameter Description

expression An expression record (EXPRESSION_REC) that specifies a
transformation expression or a reverse transformation expression for
an attribute. Each expression record includes a VARCHAR2 array and
index fields for specifying upper and lower boundaries within the
array.
There are two EXPRESSION_REC fields within a transformation record
(TRANSFORM_REC): one for the transformation expression; the other
for the reverse transformation expression.
See Table 36-114 for a description of the EXPRESSION_REC type.

chunk A VARCHAR2 chunk (row) to be appended to expression.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-199

Usage Notes

1. Chunk numbering starts with one. For chunks outside of the range, the return
value is null. When a chunk number is null the whole expression is returned as a
string. If the expression is too big, a VALUE_ERROR is raised.

2. See "About Transformation Lists".

3. See "Operational Notes".

Examples

See the example for the SET_EXPRESSION Procedure.

Related Topics

• SET_EXPRESSION Procedure
This procedure appends a row to a VARCHAR2 array that stores a SQL expression.

• SET_TRANSFORM Procedure
This procedure appends the transformation instructions for an attribute to a
transformation list.

36.2.3.10 INSERT_AUTOBIN_NUM_EQWIDTH Procedure
This procedure performs numerical binning and inserts the transformation definitions in
a transformation definition table. The procedure identifies the minimum and maximum
values and computes the bin boundaries at equal intervals.

INSERT_AUTOBIN_NUM_EQWIDTH computes the number of bins separately for each
column. If you want to use equi-width binning with the same number of bins for each
column, use the INSERT_BIN_NUM_EQWIDTH Procedure.

INSERT_AUTOBIN_NUM_EQWIDTH bins all the NUMBER and FLOAT columns in the data
source unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_AUTOBIN_NUM_EQWIDTH (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 bin_num IN PLS_INTEGER DEFAULT 3,
 max_bin_num IN PLS_INTEGER DEFAULT 100,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 round_num IN PLS_INTEGER DEFAULT 6,
 sample_size IN PLS_INTEGER DEFAULT 50000,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 rem_table_name IN VARCHAR2 DEFAULT NULL,
 rem_schema_name IN VARCHAR2 DEFAULT NULL));

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-200

Parameters

Table 36-133 INSERT_AUTOBIN_NUM_EQWIDTH Procedure Parameters

Parameter Description

bin_table_name Name of the transformation definition table for numerical
binning. You can use the CREATE_BIN_NUM Procedure to create
the definition table. The following columns are required:

COL VARCHAR2(30)
VAL NUMBER
BIN VARCHAR2(4000)

CREATE_BIN_NUM creates an additional column, ATT, which may be
used for specifying nested attributes. This column is not used by
INSERT_AUTOBIN_NUM_EQWIDTH.

data_table_name Name of the table containing the data to be transformed

bin_num Minimum number of bins. If bin_num is 0 or NULL, it is ignored.

The default value of bin_num is 3.

max_bin_num Maximum number of bins. If max_bin_num is 0 or NULL, it is
ignored.
The default value of max_bin_num is 100.

exclude_list List of numerical columns to be excluded from the binning
process. If you do not specify exclude_list, all numerical
columns in the data source are binned.
The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

round_num Specifies how to round the number in the VAL column of the
transformation definition table.
When round_num is positive, it specifies the most significant
digits to retain. When round_num is negative, it specifies the least
significant digits to remove. In both cases, the result is rounded
to the specified number of digits. See the Usage Notes for an
example.
The default value of round_num is 6.

sample_size Size of the data sample. If sample_size is less than the total
number of non-NULL values in the column, then sample_size is
used instead of the SQL COUNT function in computing the number
of bins. If sample_size is 0 or NULL, it is ignored. See the Usage
Notes.
The default value of sample_size is 50,000.

bin_schema_name Schema of bin_table_name. If no schema is specified, the current
schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-201

Table 36-133 (Cont.) INSERT_AUTOBIN_NUM_EQWIDTH Procedure Parameters

Parameter Description

rem_table_name Name of a transformation definition table for column
removal. The table must have the columns described in
"CREATE_COL_REM Procedure".

INSERT_AUTOBIN_NUM_EQWIDTH ignores columns with all nulls or
only one unique value. If you specify a value for rem_table_name,
these columns are removed from the mining data. If you do not
specify a value for rem_table_name, these unbinned columns
remain in the data.

rem_schema_name Schema of rem_table_name. If no schema is specified, the current
schema is used.

Usage Notes

1. See Oracle Data Mining User's Guide for details about numerical data.

2. INSERT_AUTOBIN_NUM_EQWIDTH computes the number of bins for a column based
on the number of non-null values (COUNT), the maximum (MAX), the minimum (MIN),
the standard deviation (STDDEV), and the constant C=3.49/0.9:

N=floor(power(COUNT,1/3)*(max-min)/(c*dev))

If the sample_size parameter is specified, it is used instead of COUNT.

See Oracle Database SQL Language Reference for information about the COUNT,
MAX, MIN, STDDEV, FLOOR, and POWER functions.

3. INSERT_AUTOBIN_NUM_EQWIDTH uses absolute values to compute the number of
bins. The sign of the parameters bin_num, max_bin_num, and sample_size has no
effect on the result.

4. In computing the number of bins, INSERT_AUTOBIN_NUM_EQWIDTH evaluates the
following criteria in the following order:

a. The minimum number of bins (bin_num)

b. The maximum number of bins (max_bin_num)

c. The maximum number of bins for integer columns, calculated as the number
of distinct values in the range max-min+1.

5. The round_num parameter controls the rounding of column values in the
transformation definition table, as follows:

For a value of 308.162:
when round_num = 1 result is 300
when round_num = 2 result is 310
when round_num = 3 result is 308
when round_num = 0 result is 308.162
when round_num = -1 result is 308.16
when round_num = -2 result is 308.2

Examples

In this example, INSERT_AUTOBIN_NUM_EQWIDTH computes the bin boundaries for
the cust_year_of_birth column in sh.customers and inserts the transformations

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-202

in a transformation definition table. The STACK_BIN_NUM Procedure creates a
transformation list from the contents of the definition table. The CREATE_MODEL
Procedure embeds the transformation list in a new model called nb_model.

The transformation and reverse transformation expressions embedded in nb_model
are returned by the GET_MODEL_TRANSFORMATIONS Function.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_postal_code
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 ----------------------------- -------- ----------------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)

BEGIN
 dbms_data_mining_transform.CREATE_BIN_NUM(
 bin_table_name => 'bin_tbl');
 dbms_data_mining_transform.INSERT_AUTOBIN_NUM_EQWIDTH (
 bin_table_name => 'bin_tbl',
 data_table_name => 'mining_data',
 bin_num => 3,
 max_bin_num => 5,
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'));
END;
/

set numwidth 4
column val off
SELECT col, val, bin FROM bin_tbl
 ORDER BY val ASC;

COL VAL BIN
------------------------- ---- -----
CUST_YEAR_OF_BIRTH 1913
CUST_YEAR_OF_BIRTH 1928 1
CUST_YEAR_OF_BIRTH 1944 2
CUST_YEAR_OF_BIRTH 1959 3
CUST_YEAR_OF_BIRTH 1975 4
CUST_YEAR_OF_BIRTH 1990 5

DECLARE
 year_birth_xform dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_BIN_NUM (
 bin_table_name => 'bin_tbl',
 xform_list => year_birth_xform);
 dbms_data_mining.CREATE_MODEL(
 model_name => 'nb_model',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data',
 case_id_column_name => 'cust_id',
 target_column_name => 'cust_postal_code',
 settings_table_name => null,
 data_schema_name => null,
 settings_schema_name => null,
 xform_list => year_birth_xform);
END;

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-203

/

SELECT attribute_name
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('nb_model'));

ATTRIBUTE_NAME

CUST_YEAR_OF_BIRTH

SELECT expression
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('nb_model'));

EXPRESSION
--
CASE WHEN "CUST_YEAR_OF_BIRTH"<1913 THEN NULL WHEN "CUST_YEAR_OF_BIRTH"<=1928.4
 THEN '1' WHEN "CUST_YEAR_OF_BIRTH"<=1943.8 THEN '2' WHEN "CUST_YEAR_OF_BIRTH"
<=1959.2 THEN '3' WHEN "CUST_YEAR_OF_BIRTH"<=1974.6 THEN '4' WHEN
"CUST_YEAR_OF_BIRTH" <=1990 THEN '5' END

SELECT reverse_expression
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('nb_model'));

REVERSE_EXPRESSION
--
DECODE("CUST_YEAR_OF_BIRTH",'5','(1974.6; 1990]','1','[1913; 1928.4]','2','(1928
.4; 1943.8]','3','(1943.8; 1959.2]','4','(1959.2; 1974.6]',NULL,'(; 1913), (199
0;), NULL')

36.2.3.11 INSERT_BIN_CAT_FREQ Procedure
This procedure performs categorical binning and inserts the transformation definitions
in a transformation definition table. The procedure computes the bin boundaries based
on frequency.

INSERT_BIN_CAT_FREQ bins all the CHAR and VARCHAR2 columns in the data source
unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_BIN_CAT_FREQ (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 bin_num IN PLS_INTEGER DEFAULT 9,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 default_num IN PLS_INTEGER DEFAULT 2,
 bin_support IN NUMBER DEFAULT NULL,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-204

Parameters

Table 36-134 INSERT_BIN_CAT_FREQ Procedure Parameters

Parameter Description

bin_table_name Name of the transformation definition table for categorical
binning. You can use the CREATE_BIN_CAT Procedure to create the
definition table.The following columns are required:

COL VARCHAR2(30)
VAL VARCHAR2(4000)
BIN VARCHAR2(4000)

CREATE_BIN_CAT creates an additional column, ATT, which may be
used for specifying nested attributes. This column is not used by
INSERT_BIN_CAT_FREQ.

data_table_name Name of the table containing the data to be transformed

bin_num The number of bins to fill using frequency-based binning The
total number of bins will be bin_num+1. The additional bin is the
default bin. Classes that are not assigned to a frequency-based bin
will be assigned to the default bin.
The default binning order is from highest to lowest: the most
frequently occurring class is assigned to the first bin, the second
most frequently occurring class is assigned to the second bin, and
so on.You can reverse the binning order by specifying a negative
number for bin_num. The negative sign causes the binning order
to be from lowest to highest.
If the total number of distinct values (classes) in the column is less
than bin_num, then a separate bin will be created for each value
and the default bin will be empty.
If you specify NULL or 0 for bin_num, no binning is performed.

The default value of bin_num is 9.

exclude_list List of categorical columns to be excluded from the binning
process. If you do not specify exclude_list, all categorical
columns in the data source are binned.
The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

default_num The number of class occurrences (rows of the same class) required
for assignment to the default bin
By default, default_num is the minimum number of occurrences
required for assignment to the default bin. For example, if
default_num is 3 and a given class occurs only once, it will not
be assigned to the default bin. You can change the occurrence
requirement from minimum to maximum by specifying a negative
number for default_num. For example, if default_num is -3 and a
given class occurs only once, it will be assigned to the default bin,
but a class that occurs four or more times will not be included.
If you specify NULL or 0 for default_bin, there are no
requirements for assignment to the default bin.
The default value of default_num is 2.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-205

Table 36-134 (Cont.) INSERT_BIN_CAT_FREQ Procedure Parameters

Parameter Description

bin_support The number of class occurrences (rows of the same class)
required for assignment to a frequency-based bin. bin_support
is expressed as a fraction of the total number of rows.
By default, bin_support is the minimum percentage required for
assignment to a frequency-based bin. For example, if there are
twenty rows of data and you specify.2 for bin_support, then
there must be four or more occurrences of a class (.2*20) in
order for it to be assigned to a frequency-based bin. You can
change bin_support from a minimum percentage to a maximum
percentage by specifying a negative number for bin_support. For
example, if there are twenty rows of data and you specify -.2 for
bin_support, then there must be four or less occurrences of a
class in order for it to be assigned to a frequency-based bin.
Classes that occur less than a positive bin_support or more than a
negative bin_support will be assigned to the default bin.

If you specify NULL or 0 for bin_support, then there is no support
requirement for frequency-based binning.
The default value of bin_support is NULL.

bin_schema_name Schema of bin_table_name. If no schema is specified, the current
schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

Usage Notes

1. See Oracle Data Mining User's Guide for details about categorical data.

2. If values occur with the same frequency, INSERT_BIN_CAT_FREQ assigns them in
descending order when binning is from most to least frequent, or in ascending
order when binning is from least to most frequent.

Examples

1. In this example, INSERT_BIN_CAT_FREQ computes the bin boundaries for the
cust_postal_code and cust_city columns in sh.customers and inserts the
transformations in a transformation definition table. The STACK_BIN_CAT
Procedure creates a transformation list from the contents of the definition table,
and the CREATE_MODEL Procedure embeds the transformation list in a new
model called nb_model.

The transformation and reverse transformation expressions embedded in
nb_model are returned by the GET_MODEL_TRANSFORMATIONS Function.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_postal_code, cust_city
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 ------------------------------------- -------- -----------------------------
 CUST_ID NOT NULL NUMBER

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-206

 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CITY NOT NULL VARCHAR2(30)

BEGIN
 dbms_data_mining_transform.CREATE_BIN_CAT(
 bin_table_name => 'bin_tbl_1');
 dbms_data_mining_transform.INSERT_BIN_CAT_FREQ (
 bin_table_name => 'bin_tbl_1',
 data_table_name => 'mining_data',
 bin_num => 4);
END;
/

column col format a18
column val format a15
column bin format a10
SELECT col, val, bin
 FROM bin_tbl_1
 ORDER BY col ASC, bin ASC;

COL VAL BIN
------------------ --------------- ----------
CUST_CITY Los Angeles 1
CUST_CITY Greenwich 2
CUST_CITY Killarney 3
CUST_CITY Montara 4
CUST_CITY 5
CUST_POSTAL_CODE 38082 1
CUST_POSTAL_CODE 63736 2
CUST_POSTAL_CODE 55787 3
CUST_POSTAL_CODE 78558 4
CUST_POSTAL_CODE 5

DECLARE
 city_xform dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_BIN_CAT (
 bin_table_name => 'bin_tbl_1',
 xform_list => city_xform);
 dbms_data_mining.CREATE_MODEL(
 model_name => 'nb_model',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data',
 case_id_column_name => 'cust_id',
 target_column_name => 'cust_city',
 settings_table_name => null,
 data_schema_name => null,
 settings_schema_name => null,
 xform_list => city_xform);
END;
/

SELECT attribute_name
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('nb_model'));

ATTRIBUTE_NAME

CUST_CITY
CUST_POSTAL_CODE

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-207

SELECT expression
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('nb_model'));

EXPRESSION

DECODE("CUST_CITY",'Greenwich','2','Killarney','3','Los Angeles','1',
'Montara','4',NULL,NULL,'5')
DECODE("CUST_POSTAL_CODE",'38082','1','55787','3','63736','2','78558','4',NULL,NULL,'5')

SELECT reverse_expression
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('nb_model'));

REVERSE_EXPRESSION

DECODE("CUST_CITY",'2','''Greenwich''','3','''Killarney''','1',
'''Los Angeles''','4','''Montara''',NULL,'NULL','5','DEFAULT')
DECODE("CUST_POSTAL_CODE",'1','''38082''','3','''55787''','2','''63736''',
'4','''78558''',NULL,'NULL','5','DEFAULT')

2. The binning order in example 1 is from most frequent to least frequent. The
following example shows reverse order binning (least frequent to most frequent).
The binning order is reversed by setting bin_num to -4 instead of 4.

BEGIN
 dbms_data_mining_transform.CREATE_BIN_CAT(
 bin_table_name => 'bin_tbl_reverse');
 dbms_data_mining_transform.INSERT_BIN_CAT_FREQ (
 bin_table_name => 'bin_tbl_reverse',
 data_table_name => 'mining_data',
 bin_num => -4);
 END;
 /

column col format a20
SELECT col, val, bin
 FROM bin_tbl_reverse
 ORDER BY col ASC, bin ASC;

COL VAL BIN
-------------------- --------------- ----------
CUST_CITY Tokyo 1
CUST_CITY Sliedrecht 2
CUST_CITY Haarlem 3
CUST_CITY Diemen 4
CUST_CITY 5
CUST_POSTAL_CODE 49358 1
CUST_POSTAL_CODE 80563 2
CUST_POSTAL_CODE 74903 3
CUST_POSTAL_CODE 71349 4
CUST_POSTAL_CODE 5

36.2.3.12 INSERT_BIN_NUM_EQWIDTH Procedure
This procedure performs numerical binning and inserts the transformation definitions in
a transformation definition table. The procedure identifies the minimum and maximum
values and computes the bin boundaries at equal intervals.

INSERT_BIN_NUM_EQWIDTH computes a specified number of bins (n) and assigns (max-
min)/n values to each bin. The number of bins is the same for each column. If you

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-208

want to use equi-width binning, but you want the number of bins to be calculated on a
per-column basis, use the INSERT_AUTOBIN_NUM_EQWIDTH Procedure.

INSERT_BIN_NUM_EQWIDTH bins all the NUMBER and FLOAT columns in the data source
unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_BIN_NUM_EQWIDTH (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 bin_num IN PLS_INTEGER DEFAULT 10,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 round_num IN PLS_INTEGER DEFAULT 6,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-135 INSERT_BIN_NUM_EQWIDTH Procedure Parameters

Parameter Description

bin_table_name Name of the transformation definition table for numerical
binning. You can use the CREATE_BIN_NUM Procedure to create
the definition table. The following columns are required:

COL VARCHAR2(30)
VAL NUMBER
BIN VARCHAR2(4000)

CREATE_BIN_NUM creates an additional column, ATT, which may
be used for specifying nested attributes. This column is not used
by INSERT_BIN_NUM_EQWIDTH.

data_table_name Name of the table containing the data to be transformed

bin_num Number of bins. No binning occurs if bin_num is 0 or NULL.

The default number of bins is 10.

exclude_list List of numerical columns to be excluded from the binning
process. If you do not specify exclude_list, all numerical
columns in the data source are binned.
The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

round_num Specifies how to round the number in the VAL column of the
transformation definition table.
When round_num is positive, it specifies the most significant
digits to retain. When round_num is negative, it specifies the least
significant digits to remove. In both cases, the result is rounded
to the specified number of digits. See the Usage Notes for an
example.
The default value of round_num is 6.

bin_schema_name Schema of bin_table_name. If no schema is specified, the current
schema is used.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-209

Table 36-135 (Cont.) INSERT_BIN_NUM_EQWIDTH Procedure Parameters

Parameter Description

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

Usage Notes

1. See Oracle Data Mining User's Guide for details about numerical data.

2. The round_num parameter controls the rounding of column values in the
transformation definition table, as follows:

For a value of 308.162:
when round_num = 1 result is 300
when round_num = 2 result is 310
when round_num = 3 result is 308
when round_num = 0 result is 308.162
when round_num = -1 result is 308.16
when round_num = -2 result is 308.2

3. INSERT_BIN_NUM_EQWIDTH ignores columns with all NULL values or only one unique
value.

Examples

In this example, INSERT_BIN_NUM_EQWIDTH computes the bin boundaries for the
affinity_card column in mining_data_build and inserts the transformations in
a transformation definition table. The STACK_BIN_NUM Procedure creates a
transformation list from the contents of the definition table. The CREATE_MODEL
Procedure embeds the transformation list in a new model called glm_model.

The transformation and reverse transformation expressions embedded in glm_model
are returned by the GET_MODEL_TRANSFORMATIONS Function.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_income_level, cust_gender, affinity_card
 FROM mining_data_build;

DESCRIBE mining_data
 Name Null? Type
 ------------------------- -------- -----------------
 CUST_ID NOT NULL NUMBER
 CUST_INCOME_LEVEL VARCHAR2(30)
 CUST_GENDER VARCHAR2(1)
 AFFINITY_CARD NUMBER(10)

BEGIN
 dbms_data_mining_transform.CREATE_BIN_NUM(
 bin_table_name => 'bin_tbl');
 dbms_data_mining_transform.INSERT_BIN_NUM_EQWIDTH (
 bin_table_name => 'bin_tbl',
 data_table_name => 'mining_data',
 bin_num => 4,
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'));
END;
/

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-210

set numwidth 10
column val off
column col format a20
column bin format a10
SELECT col, val, bin FROM bin_tbl
 ORDER BY val ASC;

COL VAL BIN
-------------------- ---------- ----------
AFFINITY_CARD 0
AFFINITY_CARD .25 1
AFFINITY_CARD .5 2
AFFINITY_CARD .75 3
AFFINITY_CARD 1 4

CREATE TABLE glmsettings(
 setting_name VARCHAR2(30),
 setting_value VARCHAR2(30));

BEGIN
 INSERT INTO glmsettings (setting_name, setting_value) VALUES
 (dbms_data_mining.algo_name,
dbms_data_mining.algo_generalized_linear_model);
 COMMIT;
END;
/

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_BIN_NUM (
 bin_table_name => 'bin_tbl',
 xform_list => xforms,
 literal_flag => TRUE);
 dbms_data_mining.CREATE_MODEL(
 model_name => 'glm_model',
 mining_function => dbms_data_mining.regression,
 data_table_name => 'mining_data',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 settings_table_name => 'glmsettings',
 data_schema_name => null,
 settings_schema_name => null,
 xform_list => xforms);
END;
/

SELECT attribute_name
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('glm_model'));

ATTRIBUTE_NAME

AFFINITY_CARD

SELECT expression
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('glm_model'));

EXPRESSION
--
CASE WHEN "AFFINITY_CARD"<0 THEN NULL WHEN "AFFINITY_CARD"<=.25 THEN 1 WHEN

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-211

"AFFINITY_CARD"<=.5 THEN 2 WHEN "AFFINITY_CARD"<=.75 THEN 3 WHEN
"AFFINITY_CARD"<=1 THEN 4 END

SELECT reverse_expression
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('glm_model'));

REVERSE_EXPRESSION
--
DECODE("AFFINITY_CARD",4,'(.75; 1]',1,'[0; .25]',2,'(.25; .5]',3,'(.5; .75]',
NULL,'(; 0), (1;), NULL')

36.2.3.13 INSERT_BIN_NUM_QTILE Procedure
This procedure performs numerical binning and inserts the transformation definitions in
a transformation definition table. The procedure calls the SQL NTILE function to order
the data and divide it equally into the specified number of bins (quantiles).

INSERT_BIN_NUM_QTILE bins all the NUMBER and FLOAT columns in the data source
unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_BIN_NUM_QTILE (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 bin_num IN PLS_INTEGER DEFAULT 10,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-136 INSERT_BIN_NUM_QTILE Procedure Parameters

Parameter Description

bin_table_name Name of the transformation definition table for numerical
binning. You can use the CREATE_BIN_NUM Procedure to create
the definition table. The following columns are required:

COL VARCHAR2(30)
VAL NUMBER
BIN VARCHAR2(4000)

CREATE_BIN_NUM creates an additional column, ATT, which may
be used for specifying nested attributes. This column is not used
by INSERT_BIN_NUM_QTILE.

data_table_name Name of the table containing the data to be transformed

bin_num Number of bins. No binning occurs if bin_num is 0 or NULL.

The default number of bins is 10.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-212

Table 36-136 (Cont.) INSERT_BIN_NUM_QTILE Procedure Parameters

Parameter Description

exclude_list List of numerical columns to be excluded from the binning
process. If you do not specify exclude_list, all numerical
columns in the data source are binned.
The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

bin_schema_name Schema of bin_table_name. If no schema is specified, the
current schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

Usage Notes

1. See Oracle Data Mining User's Guide for details about numerical data.

2. After dividing the data into quantiles, the NTILE function distributes any remainder
values one for each quantile, starting with the first. See Oracle Database SQL
Language Reference for details.

3. Columns with all NULL values are ignored by INSERT_BIN_NUM_QTILE.

Examples

In this example, INSERT_BIN_NUM_QTILE computes the bin boundaries for the
cust_year_of_birth and cust_credit_limit columns in sh.customers and inserts
the transformations in a transformation definition table. The STACK_BIN_NUM
Procedure creates a transformation list from the contents of the definition table.

The SQL expression that computes the transformation is shown in STACK_VIEW. The
view is for display purposes only; it cannot be used to embed the transformations in a
model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_credit_limit, cust_city
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 --------------------------------------- -------- -----------------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_CREDIT_LIMIT NUMBER
 CUST_CITY NOT NULL VARCHAR2(30)

BEGIN
 dbms_data_mining_transform.CREATE_BIN_NUM(
 bin_table_name => 'bin_tbl');
 dbms_data_mining_transform.INSERT_BIN_NUM_QTILE (
 bin_table_name => 'bin_tbl',
 data_table_name => 'mining_data',
 bin_num => 3,
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'));

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-213

END;
/

set numwidth 8
column val off
column col format a20
column bin format a10
SELECT col, val, bin
 FROM bin_tbl
 ORDER BY col ASC, val ASC;

COL VAL BIN
-------------------- -------- ----------
CUST_CREDIT_LIMIT 1500
CUST_CREDIT_LIMIT 3000 1
CUST_CREDIT_LIMIT 9000 2
CUST_CREDIT_LIMIT 15000 3
CUST_YEAR_OF_BIRTH 1913
CUST_YEAR_OF_BIRTH 1949 1
CUST_YEAR_OF_BIRTH 1965 2
CUST_YEAR_OF_BIRTH 1990 3

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_BIN_NUM (
 bin_table_name => 'bin_tbl',
 xform_list => xforms);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'stack_view');
END;
/

set long 3000
SELECT text FROM user_views WHERE view_name in 'STACK_VIEW';

TEXT
--
SELECT "CUST_ID",CASE WHEN "CUST_YEAR_OF_BIRTH"<1913 THEN NULL WHEN "CUST_YEAR_O
F_BIRTH"<=1949 THEN '1' WHEN "CUST_YEAR_OF_BIRTH"<=1965 THEN '2' WHEN "CUST_YEAR
_OF_BIRTH"<=1990 THEN '3' END "CUST_YEAR_OF_BIRTH",CASE WHEN "CUST_CREDIT_LIMIT"
<1500 THEN NULL WHEN "CUST_CREDIT_LIMIT"<=3000 THEN '1' WHEN "CUST_CREDIT_LIMIT"
<=9000 THEN '2' WHEN "CUST_CREDIT_LIMIT"<=15000 THEN '3' END "CUST_CREDIT_LIMIT"
,"CUST_CITY" FROM mining_data

36.2.3.14 INSERT_BIN_SUPER Procedure
This procedure performs numerical and categorical binning and inserts the
transformation definitions in transformation definition tables. The procedure computes
bin boundaries based on intrinsic relationships between predictors and a target.

INSERT_BIN_SUPER uses an intelligent binning technique known as supervised
binning. It builds a single-predictor decision tree and derives the bin boundaries from
splits within the tree.

INSERT_BIN_SUPER bins all the VARCHAR2, CHAR, NUMBER, and FLOAT columns in the data
source unless you specify a list of columns to ignore.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-214

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_BIN_SUPER (
 num_table_name IN VARCHAR2,
 cat_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 max_bin_num IN PLS_INTEGER DEFAULT 1000,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 num_schema_name IN VARCHAR2 DEFAULT NULL,
 cat_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 rem_table_name IN VARCHAR2 DEFAULT NULL,
 rem_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-137 INSERT_BIN_SUPER Procedure Parameters

Parameter Description

num_table_name Name of the transformation definition table for numerical
binning. You can use the CREATE_BIN_NUM Procedure to create
the definition table. The following columns are required:

COL VARCHAR2(30)
VAL VNUMBER
BIN VARCHAR2(4000)

CREATE_BIN_NUM creates an additional column, ATT, which may
be used for specifying nested attributes. This column is not used
by INSERT_BIN_SUPER.

cat_table_name Name of the transformation definition table for categorical
binning. You can use the CREATE_BIN_CAT Procedure to create
the definition table. The following columns are required:

COL VARCHAR2(30)
VAL VARCHAR2(4000)
BIN VARCHAR2(4000)

CREATE_BIN_CAT creates an additional column, ATT, which is
used for specifying nested attributes. This column is not used by
INSERT_BIN_SUPER.

data_table_name Name of the table containing the data to be transformed

target_column_name Name of a column to be used as the target for the decision tree
models

max_bin_num The maximum number of bins. The default is 1000.

exclude_list List of columns to be excluded from the binning process. If
you do not specify exclude_list, all numerical and categorical
columns in the data source are binned.
The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-215

Table 36-137 (Cont.) INSERT_BIN_SUPER Procedure Parameters

Parameter Description

num_schema_name Schema of num_table_name. If no schema is specified, the
current schema is used.

cat_schema_name Schema of cat_table_name. If no schema is specified, the
current schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

rem_table_name Name of a column removal definition table. The table must
have the columns described in "CREATE_COL_REM Procedure".
You can use CREATE_COL_REM to create the table. See Usage
Notes.

rem_schema_name Schema of rem_table_name. If no schema is specified, the
current schema is used.

Usage Notes

1. See Oracle Data Mining User's Guide for details about numerical and categorical
data.

2. Columns that have no significant splits are not binned. You can remove the
unbinned columns from the mining data by specifying a column removal definition
table. If you do not specify a column removal definition table, the unbinned
columns remain in the mining data.

3. See Oracle Data Mining Concepts to learn more about decision trees in Oracle
Data Mining

Examples

In this example, INSERT_BIN_SUPER computes the bin boundaries for predictors of
cust_credit_limit and inserts the transformations in transformation definition tables.
One predictor is numerical, the other is categorical. (INSERT_BIN_SUPER determines
that the cust_postal_code column is not a significant predictor.) STACK procedures
create transformation lists from the contents of the definition tables.

The SQL expressions that compute the transformations are shown in the views
MINING_DATA_STACK_NUM and MINING_DATA_STACK_CAT. The views are for display
purposes only; they cannot be used to embed the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_marital_status,
 cust_postal_code, cust_credit_limit
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 -------------------------------- -------- ------------------------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_MARITAL_STATUS VARCHAR2(20)
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CREDIT_LIMIT NUMBER

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-216

BEGIN
 dbms_data_mining_transform.CREATE_BIN_NUM(
 bin_table_name => 'bin_num_tbl');
 dbms_data_mining_transform.CREATE_BIN_CAT(
 bin_table_name => 'bin_cat_tbl');
 dbms_data_mining_transform.CREATE_COL_REM(
 rem_table_name => 'rem_tbl');
END;
/

BEGIN
 COMMIT;
 dbms_data_mining_transform.INSERT_BIN_SUPER (
 num_table_name => 'bin_num_tbl',
 cat_table_name => 'bin_cat_tbl',
 data_table_name => 'mining_data',
 target_column_name => 'cust_credit_limit',
 max_bin_num => 4,
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'),
 num_schema_name => 'dmuser',
 cat_schema_name => 'dmuser',
 data_schema_name => 'dmuser',
 rem_table_name => 'rem_tbl',
 rem_schema_name => 'dmuser');
 COMMIT;
END;
/

set numwidth 8
column val off
SELECT col, val, bin FROM bin_num_tbl
 ORDER BY bin ASC;

COL VAL BIN
-------------------- -------- ----------
CUST_YEAR_OF_BIRTH 1923.5 1
CUST_YEAR_OF_BIRTH 1923.5 1
CUST_YEAR_OF_BIRTH 1945.5 2
CUST_YEAR_OF_BIRTH 1980.5 3
CUST_YEAR_OF_BIRTH 4

column val on
column val format a20
SELECT col, val, bin FROM bin_cat_tbl
 ORDER BY bin ASC;

COL VAL BIN
-------------------- -------------------- ----------
CUST_MARITAL_STATUS married 1
CUST_MARITAL_STATUS single 2
CUST_MARITAL_STATUS Mar-AF 3
CUST_MARITAL_STATUS Mabsent 3
CUST_MARITAL_STATUS Divorc. 3
CUST_MARITAL_STATUS Married 3
CUST_MARITAL_STATUS Widowed 3
CUST_MARITAL_STATUS NeverM 3
CUST_MARITAL_STATUS Separ. 3
CUST_MARITAL_STATUS divorced 4
CUST_MARITAL_STATUS widow 4

SELECT col from rem_tbl;

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-217

COL

CUST_POSTAL_CODE

DECLARE
 xforms_num dbms_data_mining_transform.TRANSFORM_LIST;
 xforms_cat dbms_data_mining_transform.TRANSFORM_LIST;
 BEGIN
 dbms_data_mining_transform.STACK_BIN_NUM (
 bin_table_name => 'bin_num_tbl',
 xform_list => xforms_num);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms_num,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_num');
 dbms_data_mining_transform.STACK_BIN_CAT (
 bin_table_name => 'bin_cat_tbl',
 xform_list => xforms_cat);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms_cat,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_cat');
 END;
 /

set long 3000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK_NUM';

TEXT
--
SELECT "CUST_ID",CASE WHEN "CUST_YEAR_OF_BIRTH"<1923.5 THEN '1' WHEN "CUST_YEAR_
OF_BIRTH"<=1923.5 THEN '1' WHEN "CUST_YEAR_OF_BIRTH"<=1945.5 THEN '2' WHEN "CUST
_YEAR_OF_BIRTH"<=1980.5 THEN '3' WHEN "CUST_YEAR_OF_BIRTH" IS NOT NULL THEN '4'
END "CUST_YEAR_OF_BIRTH","CUST_MARITAL_STATUS","CUST_POSTAL_CODE","CUST_CREDIT_L
IMIT" FROM mining_data

SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK_CAT';

TEXT
--
SELECT "CUST_ID","CUST_YEAR_OF_BIRTH",DECODE("CUST_MARITAL_STATUS",'Divorc.','3'
,'Mabsent','3','Mar-AF','3','Married','3','NeverM','3','Separ.','3','Widowed','3
','divorced','4','married','1','single','2','widow','4') "CUST_MARITAL_STATUS","
CUST_POSTAL_CODE","CUST_CREDIT_LIMIT" FROM mining_data

36.2.3.15 INSERT_CLIP_TRIM_TAIL Procedure
This procedure replaces numeric outliers with nulls and inserts the transformation
definitions in a transformation definition table.

INSERT_CLIP_TRIM_TAIL computes the boundaries of the data based on a specified
percentage. It removes the values that fall outside the boundaries (tail values) from
the data. If you wish to replace the tail values instead of removing them, use the
INSERT_CLIP_WINSOR_TAIL Procedure.

INSERT_CLIP_TRIM_TAIL clips all the NUMBER and FLOAT columns in the data source
unless you specify a list of columns to ignore.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-218

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_CLIP_TRIM_TAIL (
 clip_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 tail_frac IN NUMBER DEFAULT 0.025,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 clip_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-138 INSERT_CLIP_TRIM_TAIL Procedure Parameters

Parameter Description

clip_table_name Name of the transformation definition table for numerical
clipping. You can use the CREATE_CLIP Procedure to create the
definition table. The following columns are required:

 COL VARCHAR2(30)
 LCUT NUMBER
 LVAL NUMBER
 RCUT NUMBER
 RVAL NUMBER

CREATE_CLIP creates an additional column, ATT, which may be
used for specifying nested attributes. This column is not used by
INSERT_CLIP_TRIM_TAIL.

data_table_name Name of the table containing the data to be transformed

tail_frac The percentage of non-null values to be designated as outliers at
each end of the data. For example, if tail_frac is .01, then 1% of
the data at the low end and 1% of the data at the high end will be
treated as outliers.
If tail_frac is greater than or equal to .5, no clipping occurs.

The default value of tail_frac is 0.025.

exclude_list List of numerical columns to be excluded from the clipping
process. If you do not specify exclude_list, all numerical
columns in the data are clipped.
The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

clip_schema_name Schema of clip_table_name. If no schema is specified, the
current schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

Usage Notes

1. See Oracle Data Mining User's Guide for details about numerical data.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-219

2. The DBMS_DATA_MINING_TRANSFORM package provides two clipping procedures:
INSERT_CLIP_TRIM_TAIL and INSERT_CLIP_WINSOR_TAIL. Both procedures
compute the boundaries as follows:

• Count the number of non-null values, n, and sort them in ascending order

• Calculate the number of outliers, t, as n*tail_frac

• Define the lower boundary lcut as the value at position 1+floor(t)

• Define the upper boundary rcut as the value at position n-floor(t)

(The SQL FLOOR function returns the largest integer less than or equal to t.)

• All values that are <= lcut or => rcut are designated as outliers.

INSERT_CLIP_TRIM_TAIL replaces the outliers with nulls, effectively removing them
from the data.

INSERT_CLIP_WINSOR_TAIL assigns lcut to the low outliers and rcut to the high
outliers.

Examples

In this example, INSERT_CLIP_TRIM_TAIL trims 10% of the data in two columns (5%
from the high end and 5% from the low end) and inserts the transformations in a
transformation definition table. The STACK_CLIP Procedure creates a transformation
list from the contents of the definition table.

The SQL expression that computes the trimming is shown in the view
MINING_DATA_STACK. The view is for display purposes only; it cannot be used to embed
the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_credit_limit, cust_city
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 ------------------------------- -------- -------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_CREDIT_LIMIT NUMBER
 CUST_CITY NOT NULL VARCHAR2(30)

BEGIN
 dbms_data_mining_transform.CREATE_CLIP(
 clip_table_name => 'clip_tbl');
 dbms_data_mining_transform.INSERT_CLIP_TRIM_TAIL(
 clip_table_name => 'clip_tbl',
 data_table_name => 'mining_data',
 tail_frac => 0.05,
 exclude_list => DBMS_DATA_MINING_TRANSFORM.COLUMN_LIST('cust_id'));
END;
/

SELECT col, lcut, lval, rcut, rval
 FROM clip_tbl
 ORDER BY col ASC;

COL LCUT LVAL RCUT RVAL
-------------------- -------- -------- -------- --------
CUST_CREDIT_LIMIT 1500 11000

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-220

CUST_YEAR_OF_BIRTH 1934 1982

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_CLIP (
 clip_table_name => 'clip_tbl',
 xform_list => xforms);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack');
 END;
 /

set long 3000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK';

TEXT
--
SELECT "CUST_ID",CASE WHEN "CUST_YEAR_OF_BIRTH" < 1934 THEN NULL WHEN "CUST_YEAR
_OF_BIRTH" > 1982 THEN NULL ELSE "CUST_YEAR_OF_BIRTH" END "CUST_YEAR_OF_BIRTH",C
ASE WHEN "CUST_CREDIT_LIMIT" < 1500 THEN NULL WHEN "CUST_CREDIT_LIMIT" > 11000 T
HEN NULL ELSE "CUST_CREDIT_LIMIT" END "CUST_CREDIT_LIMIT","CUST_CITY" FROM minin
g_data

36.2.3.16 INSERT_CLIP_WINSOR_TAIL Procedure
This procedure replaces numeric outliers with the upper or lower boundary values. It
inserts the transformation definitions in a transformation definition table.

INSERT_CLIP_WINSOR_TAIL computes the boundaries of the data based on a specified
percentage. It replaces the values that fall outside the boundaries (tail values)
with the related boundary value. If you wish to set tail values to null, use the
INSERT_CLIP_TRIM_TAIL Procedure.

INSERT_CLIP_WINSOR_TAIL clips all the NUMBER and FLOAT columns in the data source
unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_CLIP_WINSOR_TAIL (
 clip_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 tail_frac IN NUMBER DEFAULT 0.025,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 clip_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-221

Parameters

Table 36-139 INSERT_CLIP_WINSOR_TAIL Procedure Parameters

Parameter Description

clip_table_name Name of the transformation definition table for numerical
clipping. You can use the CREATE_CLIP Procedure to create the
definition table. The following columns are required:

 COL VARCHAR2(30)
 LCUT NUMBER
 LVAL NUMBER
 RCUT NUMBER
 RVAL NUMBER

CREATE_CLIP creates an additional column, ATT, which may be
used for specifying nested attributes. This column is not used by
INSERT_CLIP_WINSOR_TAIL.

data_table_name Name of the table containing the data to be transformed

tail_frac The percentage of non-null values to be designated as outliers at
each end of the data. For example, if tail_frac is .01, then 1% of
the data at the low end and 1% of the data at the high end will be
treated as outliers.
If tail_frac is greater than or equal to .5, no clipping occurs.

The default value of tail_frac is 0.025.

exclude_list List of numerical columns to be excluded from the clipping
process. If you do not specify exclude_list, all numerical
columns in the data are clipped.
The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

clip_schema_name Schema of clip_table_name. If no schema is specified, the
current schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

Usage Notes

1. See Oracle Data Mining User's Guide for details about numerical data.

2. The DBMS_DATA_MINING_TRANSFORM package provides two clipping procedures:
INSERT_CLIP_WINSOR_TAIL and INSERT_CLIP_TRIM_TAIL. Both procedures
compute the boundaries as follows:

• Count the number of non-null values, n, and sort them in ascending order

• Calculate the number of outliers, t, as n*tail_frac

• Define the lower boundary lcut as the value at position 1+floor(t)

• Define the upper boundary rcut as the value at position n-floor(t)

(The SQL FLOOR function returns the largest integer less than or equal to t.)

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-222

• All values that are <= lcut or => rcut are designated as outliers.

INSERT_CLIP_WINSOR_TAIL assigns lcut to the low outliers and rcut to the high
outliers.

INSERT_CLIP_TRIM_TAIL replaces the outliers with nulls, effectively removing them
from the data.

Examples

In this example, INSERT_CLIP_WINSOR_TAIL winsorizes 10% of the data in two columns
(5% from the high end, and 5% from the low end) and inserts the transformations in a
transformation definition table. The STACK_CLIP Procedure creates a transformation
list from the contents of the definition table.

The SQL expression that computes the transformation is shown in the view
MINING_DATA_STACK. The view is for display purposes only; it cannot be used to embed
the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_credit_limit, cust_city
 FROM sh.customers;

describe mining_data
 Name Null? Type
 -- -------- -------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_CREDIT_LIMIT NUMBER
 CUST_CITY NOT NULL VARCHAR2(30)

BEGIN
 dbms_data_mining_transform.CREATE_CLIP(
 clip_table_name => 'clip_tbl');
 dbms_data_mining_transform.INSERT_CLIP_WINSOR_TAIL(
 clip_table_name => 'clip_tbl',
 data_table_name => 'mining_data',
 tail_frac => 0.05,
 exclude_list => DBMS_DATA_MINING_TRANSFORM.COLUMN_LIST('cust_id'));
END;
/

SELECT col, lcut, lval, rcut, rval FROM clip_tbl
 ORDER BY col ASC;
COL LCUT LVAL RCUT RVAL
------------------------------ -------- -------- -------- --------
CUST_CREDIT_LIMIT 1500 1500 11000 11000
CUST_YEAR_OF_BIRTH 1934 1934 1982 1982

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_CLIP (
 clip_table_name => 'clip_tbl',
 xform_list => xforms);
dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack');
END;
/

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-223

set long 3000
SQL> SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK';

TEXT
--
SELECT "CUST_ID",CASE WHEN "CUST_YEAR_OF_BIRTH" < 1934 THEN 1934 WHEN "CUST_YEAR
_OF_BIRTH" > 1982 THEN 1982 ELSE "CUST_YEAR_OF_BIRTH" END "CUST_YEAR_OF_BIRTH",C
ASE WHEN "CUST_CREDIT_LIMIT" < 1500 THEN 1500 WHEN "CUST_CREDIT_LIMIT" > 11000 T
HEN 11000 ELSE "CUST_CREDIT_LIMIT" END "CUST_CREDIT_LIMIT","CUST_CITY" FROM mini
ng_data

36.2.3.17 INSERT_MISS_CAT_MODE Procedure
This procedure replaces missing categorical values with the value that occurs most
frequently in the column (the mode). It inserts the transformation definitions in a
transformation definition table.

INSERT_MISS_CAT_MODE replaces missing values in all VARCHAR2 and CHAR columns in
the data source unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_MISS_CAT_MODE (
 miss_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 miss_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-140 INSERT_MISS_CAT_MODE Procedure Parameters

Parameter Description

miss_table_name Name of the transformation definition table for categorical
missing value treatment. You can use the CREATE_MISS_CAT
Procedure to create the definition table. The following columns are
required:

 COL VARCHAR2(30)
 VAL VARCHAR2(4000)

CREATE_MISS_CAT creates an additional column, ATT, which may
be used for specifying nested attributes. This column is not used
by INSERT_MISS_CAT_MODE.

data_table_name Name of the table containing the data to be transformed

exclude_list List of categorical columns to be excluded from missing value
treatment. If you do not specify exclude_list, all categorical
columns are transformed.
The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-224

Table 36-140 (Cont.) INSERT_MISS_CAT_MODE Procedure Parameters

Parameter Description

miss_schema_name Schema of miss_table_name. If no schema is specified, the current
schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the current
schema is used.

Usage Notes

1. See Oracle Data Mining User's Guide for details about categorical data.

2. If you wish to replace categorical missing values with a value other than the mode,
you can edit the transformation definition table.

See Also:

Oracle Data Mining User's Guide for information about default missing
value treatment in Oracle Data Mining

Example

In this example, INSERT_MISS_CAT_MODE computes missing value treatment for
cust_city and inserts the transformation in a transformation definition table. The
STACK_MISS_CAT Procedure creates a transformation list from the contents of the
definition table.

The SQL expression that computes the transformation is shown in the view
MINING_DATA_STACK. The view is for display purposes only; it cannot be used to embed
the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_city
 FROM sh.customers;

describe mining_data
 Name Null? Type
 -------------------------------- -------- ----------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_CITY NOT NULL VARCHAR2(30)

BEGIN
 dbms_data_mining_transform.create_miss_cat(
 miss_table_name => 'missc_tbl');
 dbms_data_mining_transform.insert_miss_cat_mode(
 miss_table_name => 'missc_tbl',
 data_table_name => 'mining_data');
END;
/

SELECT stats_mode(cust_city) FROM mining_data;

STATS_MODE(CUST_CITY)

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-225

Los Angeles

SELECT col, val
 from missc_tbl;

COL VAL
------------------------------ ------------------------------
CUST_CITY Los Angeles

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_MISS_CAT (
 miss_table_name => 'missc_tbl',
 xform_list => xforms);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack');
END;
/

set long 3000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK';

TEXT
--
SELECT "CUST_ID","CUST_YEAR_OF_BIRTH",NVL("CUST_CITY",'Los Angeles') "CUST_CITY"
 FROM mining_data

36.2.3.18 INSERT_MISS_NUM_MEAN Procedure
This procedure replaces missing numerical values with the average (the mean) and
inserts the transformation definitions in a transformation definition table.

INSERT_MISS_NUM_MEAN replaces missing values in all NUMBER and FLOAT columns in
the data source unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_MISS_NUM_MEAN (
 miss_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 round_num IN PLS_INTEGER DEFAULT 6,
 miss_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-226

Parameters

Table 36-141 INSERT_MISS_NUM_MEAN Procedure Parameters

Parameter Description

miss_table_name Name of the transformation definition table for numerical
missing value treatment. You can use the CREATE_MISS_NUM
Procedure to create the definition table.

The following columns are required by INSERT_MISS_NUM_MEAN:

 COL VARCHAR2(30)
 VAL NUMBER

CREATE_MISS_NUM creates an additional column, ATT, which may
be used for specifying nested attributes. This column is not used
by INSERT_MISS_NUM_MEAN.

data_table_name Name of the table containing the data to be transformed

exclude_list List of numerical columns to be excluded from missing value
treatment. If you do not specify exclude_list, all numerical
columns are transformed.
The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

round_num The number of significant digits to use for the mean.
The default number is 6.

miss_schema_name Schema of miss_table_name. If no schema is specified, the
current schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

Usage Notes

1. See Oracle Data Mining User's Guide for details about numerical data.

2. If you wish to replace numerical missing values with a value other than the mean,
you can edit the transformation definition table.

See Also:

Oracle Data Mining User's Guide for information about default missing
value treatment in Oracle Data Mining

Example

In this example, INSERT_MISS_NUM_MEAN computes missing value treatment for
cust_year_of_birth and inserts the transformation in a transformation definition table.
The STACK_MISS_NUM Procedure creates a transformation list from the contents of
the definition table.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-227

The SQL expression that computes the transformation is shown in the view
MINING_DATA_STACK. The view is for display purposes only; it cannot be used to embed
the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_city
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 -- -------- -------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_CITY NOT NULL VARCHAR2(30)

BEGIN
 dbms_data_mining_transform.create_miss_num(
 miss_table_name => 'missn_tbl');
 dbms_data_mining_transform.insert_miss_num_mean(
 miss_table_name => 'missn_tbl',
 data_table_name => 'mining_data',
 exclude_list => DBMS_DATA_MINING_TRANSFORM.COLUMN_LIST('cust_id'));
END;
/

set numwidth 4
column val off
SELECT col, val
 FROM missn_tbl;

COL VAL
-------------------- ----
CUST_YEAR_OF_BIRTH 1957

SELECT avg(cust_year_of_birth) FROM mining_data;

AVG(CUST_YEAR_OF_BIRTH)

 1957

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_MISS_NUM (
 miss_table_name => 'missn_tbl',
 xform_list => xforms);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack');
END;
/

set long 3000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK';

TEXT
--
SELECT "CUST_ID",NVL("CUST_YEAR_OF_BIRTH",1957.4) "CUST_YEAR_OF_BIRTH","CUST_CIT
Y" FROM mining_data

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-228

36.2.3.19 INSERT_NORM_LIN_MINMAX Procedure
This procedure performs linear normalization and inserts the transformation definitions
in a transformation definition table.

INSERT_NORM_LIN_MINMAX computes the minimum and maximum values from the data
and sets the value of shift and scale as follows:

shift = min
scale = max - min

Normalization is computed as:

x_new = (x_old - shift)/scale

INSERT_NORM_LIN_MINMAX rounds the value of scale to a specified number of
significant digits before storing it in the transformation definition table.

INSERT_NORM_LIN_MINMAX normalizes all the NUMBER and FLOAT columns in the data
source unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_NORM_LIN_MINMAX (
 norm_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 round_num IN PLS_INTEGER DEFAULT 6,
 norm_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-142 INSERT_NORM_LIN_MINMAX Procedure Parameters

Parameter Description

norm_table_name Name of the transformation definition table for linear
normalization. You can use the CREATE_NORM_LIN Procedure to
create the definition table. The following columns are required:

 COL VARCHAR2(30)
 SHIFT NUMBER
 SCALE NUMBER

CREATE_NORM_LIN creates an additional column, ATT, which may
be used for specifying nested attributes. This column is not used
by INSERT_NORM_LIN_MINMAX.

data_table_name Name of the table containing the data to be transformed

exclude_list List of numerical columns to be excluded from normalization.
If you do not specify exclude_list, all numerical columns are
transformed.
The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-229

Table 36-142 (Cont.) INSERT_NORM_LIN_MINMAX Procedure Parameters

Parameter Description

round_num The number of significant digits to use for the minimum and
maximum. The default number is 6.

norm_schema_name Schema of norm_table_name. If no schema is specified, the
current schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

Usage Notes

See Oracle Data Mining User's Guide for details about numerical data.

Examples

In this example, INSERT_NORM_LIN_MINMAX normalizes the cust_year_of_birth
column and inserts the transformation in a transformation definition table. The
STACK_NORM_LIN Procedure creates a transformation list from the contents of the
definition table.

The SQL expression that computes the transformation is shown in the view
MINING_DATA_STACK. The view is for display purposes only; it cannot be used to embed
the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_gender, cust_year_of_birth
 FROM sh.customers;

describe mining_data
 Name Null? Type
 ------------------------------------ -------- ----------------
 CUST_ID NOT NULL NUMBER
 CUST_GENDER NOT NULL CHAR(1)
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)

BEGIN
 dbms_data_mining_transform.CREATE_NORM_LIN(
 norm_table_name => 'norm_tbl');
 dbms_data_mining_transform.INSERT_NORM_LIN_MINMAX(
 norm_table_name => 'norm_tbl',
 data_table_name => 'mining_data',
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'),
 round_num => 3);
END;
/

SELECT col, shift, scale FROM norm_tbl;

COL SHIFT SCALE
------------------------------ ---------- ----------
CUST_YEAR_OF_BIRTH 1910 77

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_NORM_LIN (

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-230

 norm_table_name => 'norm_tbl',
 xform_list => xforms);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack');
END;
/

set long 3000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK';

TEXT
--
SELECT "CUST_ID","CUST_GENDER",("CUST_YEAR_OF_BIRTH"-1910)/77 "CUST_YEAR_OF_BIRT
H" FROM mining_data

36.2.3.20 INSERT_NORM_LIN_SCALE Procedure
This procedure performs linear normalization and inserts the transformation definitions
in a transformation definition table.

INSERT_NORM_LIN_SCALE computes the minimum and maximum values from the data
and sets the value of shift and scale as follows:

shift = 0
scale = max(abs(max), abs(min))

Normalization is computed as:

x_new = (x_old)/scale

INSERT_NORM_LIN_SCALE rounds the value of scale to a specified number of significant
digits before storing it in the transformation definition table.

INSERT_NORM_LIN_SCALE normalizes all the NUMBER and FLOAT columns in the data
source unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_NORM_LIN_SCALE (
 norm_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 round_num IN PLS_INTEGER DEFAULT 6,
 norm_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-231

Parameters

Table 36-143 INSERT_NORM_LIN_SCALE Procedure Parameters

Parameter Description

norm_table_name Name of the transformation definition table for linear
normalization. You can use the CREATE_NORM_LIN Procedure to
create the definition table. The following columns are required:

 COL VARCHAR2(30)
 SHIFT NUMBER
 SCALE NUMBER

CREATE_NORM_LIN creates an additional column, ATT, which may
be used for specifying nested attributes. This column is not used
by INSERT_NORM_LIN_SCALE.

data_table_name Name of the table containing the data to be transformed

exclude_list List of numerical columns to be excluded from normalization.
If you do not specify exclude_list, all numerical columns are
transformed.
The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

round_num The number of significant digits to use for scale. The default
number is 6.

norm_schema_name Schema of norm_table_name. If no schema is specified, the
current schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

Usage Notes

See Oracle Data Mining User's Guide for details about numerical data.

Examples

In this example, INSERT_NORM_LIN_SCALE normalizes the cust_year_of_birth
column and inserts the transformation in a transformation definition table. The
STACK_NORM_LIN Procedure creates a transformation list from the contents of the
definition table.

The SQL expression that computes the transformation is shown in the view
MINING_DATA_STACK. The view is for display purposes only; it cannot be used to embed
the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_gender, cust_year_of_birth
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 ---------------------------------- -------- ------------------
 CUST_ID NOT NULL NUMBER

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-232

 CUST_GENDER NOT NULL CHAR(1)
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)

BEGIN
 dbms_data_mining_transform.CREATE_NORM_LIN(
 norm_table_name => 'norm_tbl');
 dbms_data_mining_transform.INSERT_NORM_LIN_SCALE(
 norm_table_name => 'norm_tbl',
 data_table_name => 'mining_data',
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'),
 round_num => 3);
 END;
 /

SELECT col, shift, scale FROM norm_tbl;

COL SHIFT SCALE
-------------------- ----- -----
CUST_YEAR_OF_BIRTH 0 1990

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_NORM_LIN (
 norm_table_name => 'norm_tbl',
 xform_list => xforms);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack');
END;
/

set long 3000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK';

TEXT
--
SELECT "CUST_ID","CUST_GENDER",("CUST_YEAR_OF_BIRTH"-0)/1990 "CUST_YEAR_OF_BIRTH
" FROM mining_data

36.2.3.21 INSERT_NORM_LIN_ZSCORE Procedure
This procedure performs linear normalization and inserts the transformation definitions
in a transformation definition table.

INSERT_NORM_LIN_ZSCORE computes the mean and the standard deviation from the
data and sets the value of shift and scale as follows:

shift = mean
scale = stddev

Normalization is computed as:

x_new = (x_old - shift)/scale

INSERT_NORM_LIN_ZSCORE rounds the value of scale to a specified number of
significant digits before storing it in the transformation definition table.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-233

INSERT_NORM_LIN_ZSCORE normalizes all the NUMBER and FLOAT columns in the data
unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_NORM_LIN_ZSCORE (
 norm_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 round_num IN PLS_INTEGER DEFAULT 6,
 norm_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-144 INSERT_NORM_LIN_ZSCORE Procedure Parameters

Parameter Description

norm_table_name Name of the transformation definition table for linear
normalization. You can use the CREATE_NORM_LIN Procedure to
create the definition table. The following columns are required:

 COL VARCHAR2(30)
 SHIFT NUMBER
 SCALE NUMBER

CREATE_NORM_LIN creates an additional column, ATT, which may
be used for specifying nested attributes. This column is not used
by INSERT_NORM_LIN_ZSCORE.

data_table_name Name of the table containing the data to be transformed

exclude_list List of numerical columns to be excluded from normalization.
If you do not specify exclude_list, all numerical columns are
transformed.
The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

round_num The number of significant digits to use for scale. The default
number is 6.

norm_schema_name Schema of norm_table_name. If no schema is specified, the
current schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

Usage Notes

See Oracle Data Mining User's Guide for details about numerical data.

Examples

In this example, INSERT_NORM_LIN_ZSCORE normalizes the cust_year_of_birth
column and inserts the transformation in a transformation definition table. The
STACK_NORM_LIN Procedure creates a transformation list from the contents of the
definition table.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-234

The SQL expression that computes the transformation is shown in the view
MINING_DATA_STACK. The view is for display purposes only; it cannot be used to embed
the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_gender, cust_year_of_birth
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 ----------------------------------- -------- --------------------
 CUST_ID NOT NULL NUMBER
 CUST_GENDER NOT NULL CHAR(1)
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)

BEGIN
 dbms_data_mining_transform.CREATE_NORM_LIN(
 norm_table_name => 'norm_tbl');
 dbms_data_mining_transform.INSERT_NORM_LIN_ZSCORE(
 norm_table_name => 'norm_tbl',
 data_table_name => 'mining_data',
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'),
 round_num => 3);
END;
/

SELECT col, shift, scale FROM norm_tbl;

COL SHIFT SCALE
-------------------- ----- -----
CUST_YEAR_OF_BIRTH 1960 15

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_NORM_LIN (
 norm_table_name => 'norm_tbl',
 xform_list => xforms);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack');
END;
/

set long 3000
SQL> SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK';

TEXT
--
SELECT "CUST_ID","CUST_GENDER",("CUST_YEAR_OF_BIRTH"-1960)/15 "CUST_YEAR_OF_BIRT
H" FROM mining_data

36.2.3.22 SET_EXPRESSION Procedure
This procedure appends a row to a VARCHAR2 array that stores a SQL expression.

The array can be used for specifying a transformation expression that is too long to be
used with the SET_TRANSFORM Procedure.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-235

The GET_EXPRESSION Function returns a row in the array.

When you use SET_EXPRESSION to build a transformation expression, you must build a
corresponding reverse transformation expression, create a transformation record, and
add the transformation record to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.SET_EXPRESSION (
 expression IN OUT NOCOPY EXPRESSION_REC,
 chunk VARCHAR2 DEFAULT NULL);

Parameters

Table 36-145 SET_EXPRESSION Procedure Parameters

Parameter Description

expression An expression record (EXPRESSION_REC) that specifies a transformation
expression or a reverse transformation expression for an attribute.
Each expression record includes a VARCHAR2 array and index fields for
specifying upper and lower boundaries within the array.
There are two EXPRESSION_REC fields within a transformation record
(TRANSFORM_REC): one for the transformation expression; the other for
the reverse transformation expression.
See Table 36-114 for a description of the EXPRESSION_REC type.

chunk A VARCHAR2 chunk (row) to be appended to expression.

Notes

1. You can pass NULL in the chunk argument to SET_EXPRESSION to clear the previous
chunk. The default value of chunk is NULL.

2. See "About Transformation Lists".

3. See "Operational Notes".

Examples

In this example, two calls to SET_EXPRESSION construct a transformation expression
and two calls construct the reverse transformation.

Note:

This example is for illustration purposes only. It shows how SET_EXPRESSION
appends the text provided in chunk to the text that already exists in
expression. The SET_EXPRESSION procedure is meant for constructing very
long transformation expressions that cannot be specified in a VARCHAR2
argument to SET_TRANSFORM.

Similarly while transformation lists are intended for embedding in a model,
the transformation list v_xlst is shown in an external view for illustration
purposes.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-236

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_postal_code, cust_credit_limit
 FROM sh.customers;

DECLARE
 v_expr dbms_data_mining_transform.EXPRESSION_REC;
 v_rexp dbms_data_mining_transform.EXPRESSION_REC;
 v_xrec dbms_data_mining_transform.TRANSFORM_REC;
 v_xlst dbms_data_mining_transform.TRANSFORM_LIST :=
 dbms_data_mining_transform.TRANSFORM_LIST(NULL);
BEGIN
 dbms_data_mining_transform.SET_EXPRESSION(
 EXPRESSION => v_expr,
 CHUNK => '("CUST_YEAR_OF_BIRTH"-1910)');
 dbms_data_mining_transform.SET_EXPRESSION(
 EXPRESSION => v_expr,
 CHUNK => '/77');
 dbms_data_mining_transform.SET_EXPRESSION(
 EXPRESSION => v_rexp,
 CHUNK => '"CUST_YEAR_OF_BIRTH"*77');
 dbms_data_mining_transform.SET_EXPRESSION(
 EXPRESSION => v_rexp,
 CHUNK => '+1910');

 v_xrec := null;
 v_xrec.attribute_name := 'CUST_YEAR_OF_BIRTH';
 v_xrec.expression := v_expr;
 v_xrec.reverse_expression := v_rexp;
 v_xlst.TRIM;
 v_xlst.extend(1);
 v_xlst(1) := v_xrec;

 dbms_data_mining_transform.XFORM_STACK (
 xform_list => v_xlst,
 data_table_name => 'mining_data',
 xform_view_name => 'v_xlst_view');

 dbms_output.put_line('====');
 FOR i IN 1..v_xlst.count LOOP
 dbms_output.put_line('ATTR: '||v_xlst(i).attribute_name);
 dbms_output.put_line('SUBN: '||v_xlst(i).attribute_subname);
 FOR j IN v_xlst(i).expression.lb..v_xlst(i).expression.ub LOOP
 dbms_output.put_line('EXPR: '||v_xlst(i).expression.lstmt(j));
 END LOOP;
 FOR j IN v_xlst(i).reverse_expression.lb..
 v_xlst(i).reverse_expression.ub LOOP
 dbms_output.put_line('REXP: '||v_xlst(i).reverse_expression.lstmt(j));
 END LOOP;
 dbms_output.put_line('====');
 END LOOP;
 END;
/
====
ATTR: CUST_YEAR_OF_BIRTH
SUBN:
EXPR: ("CUST_YEAR_OF_BIRTH"-1910)
EXPR: /77
REXP: "CUST_YEAR_OF_BIRTH"*77
REXP: +1910
====

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-237

36.2.3.23 SET_TRANSFORM Procedure
This procedure appends the transformation instructions for an attribute to a
transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.SET_TRANSFORM (
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 attribute_name VARCHAR2,
 attribute_subname VARCHAR2,
 expression VARCHAR2,
 reverse_expression VARCHAR2,
 attribute_spec VARCHAR2 DEFAULT NULL);

Parameters

Table 36-146 SET_TRANSFORM Procedure Parameters

Parameter Description

xform_list A transformation list. See Table 36-114for a description of the
TRANSFORM_LIST object type.

attribute_name Name of the attribute to be transformed

attribute_subname Name of the nested attribute if attribute_name is a nested
column, otherwise NULL.

expression A SQL expression that specifies the transformation of the
attribute.

reverse_expression A SQL expression that reverses the transformation for
readability in model details and in the target of a supervised
model (if the attribute is a target)

attribute_spec One or more keywords that identify special treatment for the
attribute during model build. Values are:
• NOPREP — When ADP is on, prevents automatic

transformation of the attribute. If ADP is not on, this value
has no effect.

• TEXT — Causes the attribute to be treated as unstructured
text data

• FORCE_IN — Forces the inclusion of the attribute in the
model build. Applies only to GLM models with feature
selection enabled (ftr_selection_enable = yes). Feature
selection is disabled by default.
If the model is not using GLM with feature selection, this
value has no effect.
See "Specifying Transformation Instructions for an
Attribute" in Oracle Data Mining User's Guide for more
information about attribute_spec.

Usage Notes

1. See the following relevant sections in "Operational Notes":

• About Transformation Lists

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-238

• Nested Data Transformations

2. As shown in the following example, you can eliminate an attribute by specifying
a null transformation expression and reverse expression. You can also use
the STACK interface to remove a column (CREATE_COL_REM Procedure and
STACK_COL_REM Procedure).

36.2.3.24 STACK_BIN_CAT Procedure
This procedure adds categorical binning transformations to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.STACK_BIN_CAT (
 bin_table_name IN VARCHAR2,
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 literal_flag IN BOOLEAN DEFAULT FALSE,
 bin_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-147 STACK_BIN_CAT Procedure Parameters

Parameter Description

bin_table_name Name of the transformation definition table for categorical
binning. You can use the CREATE_BIN_CAT Procedure to create the
definition table. The table must be populated with transformation
definitions before you call STACK_BIN_CAT. To populate the table,
you can use one of the INSERT procedures for categorical binning
or you can write your own SQL.
See Table 36-117

xform_list A transformation list. See Table 36-114 for a description of the
TRANSFORM_LIST object type.

literal_flag Indicates whether the values in the bin column in the
transformation definition table are valid SQL literals. When
literal_flag is FALSE (the default), the bin identifiers will be
transformed to SQL literals by surrounding them with single
quotes.
Set literal_flag to TRUE if the bin identifiers are numbers that
should have a numeric datatype, as is the case for an O-Cluster
model.
See "INSERT_BIN_NUM_EQWIDTH Procedure" for an example.

bin_schema_name Schema of bin_table_name. If no schema is specified, the current
schema is used.

Usage Notes

See "Operational Notes". The following sections are especially relevant:

• "About Transformation Lists"

• "About Stacking"

• "Nested Data Transformations"

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-239

Examples

This example shows how a binning transformation for the categorical column
cust_postal_code could be added to a stack called mining_data_stack.

Note:

This example invokes the XFORM_STACK Procedure to show how the
data is transformed by the stack. XFORM_STACK simply generates an external
view of the transformed data. The actual purpose of the STACK procedures
is to assemble a list of transformations for embedding in a model. The
transformations are passed to CREATE_MODEL in the xform_list parameter.
See INSERT_BIN_NUM_EQWIDTH Procedure for an example.

CREATE or REPLACE VIEW mining_data AS
 SELECT cust_id, cust_postal_code, cust_credit_limit
 FROM sh.customers
 WHERE cust_id BETWEEN 100050 AND 100100;
BEGIN
 dbms_data_mining_transform.CREATE_BIN_CAT ('bin_cat_tbl');
 dbms_data_mining_transform.INSERT_BIN_CAT_FREQ (
 bin_table_name => 'bin_cat_tbl',
 data_table_name => 'mining_data',
 bin_num => 3);
 END;
/
DECLARE
 MINING_DATA_STACK dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_BIN_CAT (
 bin_table_name => 'bin_cat_tbl',
 xform_list => mining_data_stack);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => mining_data_stack,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_view');
 END;
/
-- Before transformation
column cust_postal_code format a16
SELECT * from mining_data
 WHERE cust_id BETWEEN 100050 AND 100053
 ORDER BY cust_id;

 CUST_ID CUST_POSTAL_CODE CUST_CREDIT_LIMIT
---------- ---------------- -----------------
 100050 76486 1500
 100051 73216 9000
 100052 69499 5000
 100053 45704 7000

-- After transformation
SELECT * FROM mining_data_stack_view
 WHERE cust_id BETWEEN 100050 AND 100053
 ORDER BY cust_id;

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-240

 CUST_ID CUST_POSTAL_CODE CUST_CREDIT_LIMIT
---------- ---------------- -----------------
 100050 4 1500
 100051 1 9000
 100052 4 5000
 100053 4 7000

36.2.3.25 STACK_BIN_NUM Procedure
This procedure adds numerical binning transformations to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.STACK_BIN_NUM (
 bin_table_name IN VARCHAR2,
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 literal_flag IN BOOLEAN DEFAULT FALSE,
 bin_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-148 STACK_BIN_NUM Procedure Parameters

Parameter Description

bin_table_name Name of the transformation definition table for numerical
binning. You can use the CREATE_BIN_NUM Procedure to
create the definition table. The table must be populated with
transformation definitions before you call STACK_BIN_NUM. To
populate the table, you can use one of the INSERT procedures for
numerical binning or you can write your own SQL.
See Table 36-119.

xform_list A transformation list. See Table 36-114 for a description of the
TRANSFORM_LIST object type.

literal_flag Indicates whether the values in the bin column in the
transformation definition table are valid SQL literals. When
literal_flag is FALSE (the default), the bin identifiers will be
transformed to SQL literals by surrounding them with single
quotes.
Set literal_flag to TRUE if the bin identifiers are numbers that
should have a numeric datatype, as is the case for an O-Cluster
model.
See "INSERT_BIN_NUM_EQWIDTH Procedure" for an example.

bin_schema_name Schema of bin_table_name. If no schema is specified, the current
schema is used.

Usage Notes

See "Operational Notes". The following sections are especially relevant:

• "About Transformation Lists"

• "About Stacking"

• "Nested Data Transformations"

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-241

Examples

This example shows how a binning transformation for the numerical column
cust_credit_limit could be added to a stack called mining_data_stack.

Note:

This example invokes the XFORM_STACK Procedure to show how the
data is transformed by the stack. XFORM_STACK simply generates an external
view of the transformed data. The actual purpose of the STACK procedures
is to assemble a list of transformations for embedding in a model. The
transformations are passed to CREATE_MODEL in the xform_list parameter.
See INSERT_BIN_NUM_EQWIDTH Procedure for an example.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_postal_code, cust_credit_limit
 FROM sh.customers
 WHERE cust_id BETWEEN 100050 and 100100;
BEGIN
 dbms_data_mining_transform.create_bin_num ('bin_num_tbl');
 dbms_data_mining_transform.insert_bin_num_qtile (
 bin_table_name => 'bin_num_tbl',
 data_table_name => 'mining_data',
 bin_num => 5,
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'));
END;
/
DECLARE
 MINING_DATA_STACK dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_BIN_CAT (
 bin_table_name => 'bin_num_tbl',
 xform_list => mining_data_stack);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => mining_data_stack,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_view');
END;
/
-- Before transformation
SELECT cust_id, cust_postal_code, ROUND(cust_credit_limit) FROM mining_data
 WHERE cust_id BETWEEN 100050 AND 100055
 ORDER BY cust_id;
CUST_ID CUST_POSTAL_CODE ROUND(CUST_CREDIT_LIMIT)
------- ----------------- -------------------------
100050 76486 1500
100051 73216 9000
100052 69499 5000
100053 45704 7000
100055 74673 11000
100055 74673 11000

-- After transformation
SELECT cust_id, cust_postal_code, ROUND(cust_credit_limit)
 FROM mining_data_stack_view
 WHERE cust_id BETWEEN 100050 AND 100055

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-242

 ORDER BY cust_id;
CUST_ID CUST_POSTAL_CODE ROUND(CUST_CREDIT_LIMITT)
------- ---------------- -------------------------
100050 76486
100051 73216 2
100052 69499 1
100053 45704
100054 88021 3
100055 74673 3

36.2.3.26 STACK_CLIP Procedure
This procedure adds clipping transformations to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.STACK_CLIP (
 clip_table_name IN VARCHAR2,
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 clip_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-149 STACK_CLIP Procedure Parameters

Parameter Description

clip_table_name Name of the transformation definition table for clipping.You
can use the CREATE_CLIP Procedure to create the definition
table. The table must be populated with transformation
definitions before you call STACK_CLIP. To populate the
table, you can use one of the INSERT procedures for clipping
or you can write your own SQL.
See Table 36-121

xform_list A transformation list. See Table 36-114 for a description of
the TRANSFORM_LIST object type.

clip_schema_name Schema of clip_table_name. If no schema is specified, the
current schema is used.

Usage Notes

See DBMS_DATA_MINING_TRANSFORM Operational Notes. The following sections
are especially relevant:

• “About Transformation Lists”

• “About Stacking”

• “Nested Data Transformations”

Examples

This example shows how a clipping transformation for the numerical column
cust_credit_limit could be added to a stack called mining_data_stack.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-243

Note:

This example invokes the XFORM_STACK Procedure to show how the
data is transformed by the stack. XFORM_STACK simply generates an external
view of the transformed data. The actual purpose of the STACK procedures
is to assemble a list of transformations for embedding in a model. The
transformations are passed to CREATE_MODEL in the xform_list parameter.
See INSERT_BIN_NUM_EQWIDTH Procedure for an example.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_postal_code, cust_credit_limit
 FROM sh.customers
 WHERE cust_id BETWEEN 100050 AND 100100;
BEGIN
 dbms_data_mining_transform.create_clip ('clip_tbl');
 dbms_data_mining_transform.insert_clip_winsor_tail (
 clip_table_name => 'clip_tbl',
 data_table_name => 'mining_data',
 tail_frac => 0.25,
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'));
END;
/
DECLARE
 MINING_DATA_STACK dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_CLIP (
 clip_table_name => 'clip_tbl',
 xform_list => mining_data_stack);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => mining_data_stack,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_view');
END;
/
-- Before transformation
SELECT cust_id, cust_postal_code, round(cust_credit_limit)
 FROM mining_data
 WHERE cust_id BETWEEN 100050 AND 100054
 ORDER BY cust_id;

CUST_ID CUST_POSTAL_CODE ROUND(CUST_CREDIT_LIMIT)
------- ---------------- ------------------------
100050 76486 1500
100051 73216 9000
100052 69499 5000
100053 45704 7000
100054 88021 11000

-- After transformation
SELECT cust_id, cust_postal_code, round(cust_credit_limit)
 FROM mining_data_stack_view
 WHERE cust_id BETWEEN 100050 AND 100054
 ORDER BY cust_id;

CUST_ID CUST_POSTAL_CODE ROUND(CUST_CREDIT_LIMIT)
------- ---------------- ------------------------
100050 76486 5000

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-244

100051 73216 9000
100052 69499 5000
100053 45704 7000
100054 88021 11000

36.2.3.27 STACK_COL_REM Procedure
This procedure adds column removal transformations to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.STACK_COL_REM (
 rem_table_name IN VARCHAR2,
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 rem_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-150 STACK_COL_REM Procedure Parameters

Parameter Description

rem_table_name Name of the transformation definition table for column removal.
You can use the CREATE_COL_REM Procedure to create the
definition table. See Table 36-123.

The table must be populated with column names before you
call STACK_COL_REM. The INSERT_BIN_SUPER Procedure and the
INSERT_AUTOBIN_NUM_EQWIDTH Procedure can optionally be
used to populate the table. You can also use SQL INSERT
statements.

xform_list A transformation list. See Table 36-114 for a description of the
TRANSFORM_LIST object type.

rem_schema_name Schema of rem_table_name. If no schema is specified, the current
schema is used.

Usage Notes

See "Operational Notes". The following sections are especially relevant:

• "About Transformation Lists"

• "About Stacking"

• "Nested Data Transformations"

Examples

This example shows how the column cust_credit_limit could be removed in a
transformation list called mining_data_stack.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-245

Note:

This example invokes the XFORM_STACK Procedure to show how the
data is transformed by the stack. XFORM_STACK simply generates an external
view of the transformed data. The actual purpose of the STACK procedures
is to assemble a list of transformations for embedding in a model. The
transformations are passed to CREATE_MODEL in the xform_list parameter.
See INSERT_BIN_NUM_EQWIDTH Procedure for an example.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, country_id, cust_postal_code, cust_credit_limit
 FROM sh.customers;

BEGIN
 dbms_data_mining_transform.create_col_rem ('rem_tbl');
END;
/

INSERT into rem_tbl VALUES (upper('cust_postal_code'), null);

DECLARE
 MINING_DATA_STACK dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.stack_col_rem (
 rem_table_name => 'rem_tbl',
 xform_list => mining_data_stack);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => mining_data_stack,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_view');
END;
/

SELECT * FROM mining_data
 WHERE cust_id BETWEEN 100050 AND 100051
 ORDER BY cust_id;

CUST_ID COUNTRY_ID CUST_POSTAL_CODE CUST_CREDIT_LIMIT
------- ---------- ---------------- -----------------
100050 52773 76486 1500
100051 52790 73216 9000

SELECT * FROM mining_data_stack_view
 WHERE cust_id BETWEEN 100050 AND 100051
 ORDER BY cust_id;

CUST_ID COUNTRY_ID CUST_CREDIT_LIMIT
------- ---------- -----------------
100050 52773 1500
100051 52790 9000

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-246

36.2.3.28 STACK_MISS_CAT Procedure
This procedure adds categorical missing value transformations to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.STACK_MISS_CAT (
 miss_table_name IN VARCHAR2,
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 miss_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-151 STACK_MISS_CAT Procedure Parameters

Parameter Description

miss_table_name Name of the transformation definition table for categorical
missing value treatment. You can use the CREATE_MISS_CAT
Procedure to create the definition table. The table must be
populated with transformation definitions before you call
STACK_MISS_CAT. To populate the table, you can use the
INSERT_MISS_CAT_MODE Procedure or you can write your own
SQL.
See Table 36-125.

xform_list A transformation list. See Table 36-114 for a description of the
TRANSFORM_LIST object type.

miss_schema_name Schema of miss_table_name. If no schema is specified, the
current schema is used.

Usage Notes

See "Operational Notes". The following sections are especially relevant:

• "About Transformation Lists"

• "About Stacking"

• "Nested Data Transformations"

Examples

This example shows how the missing values in the column cust_marital_status
could be replaced with the mode in a transformation list called mining_data_stack.

Note:

This example invokes the XFORM_STACK Procedure to show how the
data is transformed by the stack. XFORM_STACK simply generates an external
view of the transformed data. The actual purpose of the STACK procedures
is to assemble a list of transformations for embedding in a model. The
transformations are passed to CREATE_MODEL in the xform_list parameter.
See INSERT_BIN_NUM_EQWIDTH Procedure for an example.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-247

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, country_id, cust_marital_status
 FROM sh.customers
 where cust_id BETWEEN 1 AND 10;

BEGIN
 dbms_data_mining_transform.create_miss_cat ('miss_cat_tbl');
 dbms_data_mining_transform.insert_miss_cat_mode ('miss_cat_tbl',
'mining_data');
END;
/

DECLARE
 MINING_DATA_STACK dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.stack_miss_cat (
 miss_table_name => 'miss_cat_tbl',
 xform_list => mining_data_stack);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => mining_data_stack,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_view');
END;
/
SELECT * FROM mining_data
 ORDER BY cust_id;

CUST_ID COUNTRY_ID CUST_MARITAL_STATUS
------- ---------- --------------------
 1 52789
 2 52778
 3 52770
 4 52770
 5 52789
 6 52769 single
 7 52790 single
 8 52790 married
 9 52770 divorced
 10 52790 widow

SELECT * FROM mining_data_stack_view
 ORDER By cust_id;

CUST_ID COUNTRY_ID CUST_MARITAL_STATUS
------- ----------- --------------------
 1 52789 single
 2 52778 single
 3 52770 single
 4 52770 single
 5 52789 single
 6 52769 single
 7 52790 single
 8 52790 married
 9 52770 divorced
 10 52790 widow

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-248

36.2.3.29 STACK_MISS_NUM Procedure
This procedure adds numeric missing value transformations to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.STACK_MISS_NUM (
 miss_table_name IN VARCHAR2,
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 miss_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-152 STACK_MISS_NUM Procedure Parameters

Parameter Description

miss_table_name Name of the transformation definition table for numerical missing
value treatment. You can use the CREATE_MISS_NUM Procedure
to create the definition table. The table must be populated with
transformation definitions before you call STACK_MISS_NUM. To
populate the table, you can use the INSERT_MISS_NUM_MEAN
Procedure or you can write your own SQL.

See Table 36-127.

xform_list A transformation list. See Table 36-114 for a description of the
TRANSFORM_LIST object type.

miss_schema_name Schema of miss_table_name. If no schema is specified, the
current schema is used.

Usage Notes

See "Operational Notes". The following sections are especially relevant:

• "About Transformation Lists"

• "About Stacking"

• "Nested Data Transformations"

Examples

This example shows how the missing values in the column cust_credit_limit could
be replaced with the mean in a transformation list called mining_data_stack.

Note:

This example invokes the XFORM_STACK Procedure to show how the
data is transformed by the stack. XFORM_STACK simply generates an external
view of the transformed data. The actual purpose of the STACK procedures
is to assemble a list of transformations for embedding in a model. The
transformations are passed to CREATE_MODEL in the xform_list parameter.
See INSERT_BIN_NUM_EQWIDTH Procedure for an example.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-249

describe mining_data
 Name Null? Type
 --- -------- -----
 CUST_ID NOT NULL NUMBER
 CUST_CREDIT_LIMIT NUMBER

BEGIN
 dbms_data_mining_transform.create_miss_num ('miss_num_tbl');
 dbms_data_mining_transform.insert_miss_num_mean
('miss_num_tbl','mining_data');
END;
/
SELECT * FROM miss_num_tbl;

COL ATT VAL
-------------------- ----- ------
CUST_ID 5.5
CUST_CREDIT_LIMIT 185.71

DECLARE
 MINING_DATA_STACK dbms_data_mining_transform.TRANSFORM_LIST;
 BEGIN
 dbms_data_mining_transform.STACK_MISS_NUM (
 miss_table_name => 'miss_num_tbl',
 xform_list => mining_data_stack);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => mining_data_stack,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_view');
END;
/
-- Before transformation
SELECT * FROM mining_data
 ORDER BY cust_id;
CUST_ID CUST_CREDIT_LIMIT
------- -----------------
 1 100
 2
 3 200
 4
 5 150
 6 400
 7 150
 8
 9 100
 10 200

-- After transformation
SELECT * FROM mining_data_stack_view
 ORDER BY cust_id;
CUST_ID CUST_CREDIT_LIMIT
------- -----------------
 1 100
 2 185.71
 3 200
 4 185.71
 5 150
 6 400
 7 150
 8 185.71

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-250

 9 100
 10 200

36.2.3.30 STACK_NORM_LIN Procedure
This procedure adds linear normalization transformations to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.STACK_NORM_LIN (
 norm_table_name IN VARCHAR2,
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 norm_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-153 STACK_NORM_LIN Procedure Parameters

Parameter Description

norm_table_name Name of the transformation definition table for linear
normalization. You can use the CREATE_NORM_LIN Procedure to
create the definition table. The table must be populated with
transformation definitions before you call STACK_NORM_LIN.To
populate the table, you can use one of the INSERT procedures for
normalization or you can write your own SQL.
See Table 36-129.

xform_list A transformation list. See Table 36-114 for a description of the
TRANSFORM_LIST object type.

norm_schema_name Schema of norm_table_name. If no schema is specified, the
current schema is used.

Usage Notes

See "Operational Notes". The following sections are especially relevant:

• "About Transformation Lists"

• "About Stacking"

• "Nested Data Transformations"

Examples

This example shows how the column cust_credit_limit could be normalized in a
transformation list called mining_data_stack.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-251

Note:

This example invokes the XFORM_STACK Procedure to show how the
data is transformed by the stack. XFORM_STACK simply generates an external
view of the transformed data. The actual purpose of the STACK procedures
is to assemble a list of transformations for embedding in a model. The
transformations are passed to CREATE_MODEL in the xform_list parameter.
See INSERT_BIN_NUM_EQWIDTH Procedure for an example.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, country_id, cust_postal_code, cust_credit_limit
 FROM sh.customers;
BEGIN
 dbms_data_mining_transform.create_norm_lin ('norm_lin_tbl');
 dbms_data_mining_transform.insert_norm_lin_minmax (
 norm_table_name => 'norm_lin_tbl',
 data_table_name => 'mining_data',
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id',
 'country_id'));
END;
/
SELECT * FROM norm_lin_tbl;
COL ATT SHIFT SCALE
-------------------- ----- ------ ------
CUST_CREDIT_LIMIT 1500 13500

DECLARE
 MINING_DATA_STACK dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.stack_norm_lin (
 norm_table_name => 'norm_lin_tbl',
 xform_list => mining_data_stack);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => mining_data_stack,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_view');
END;
/
SELECT * FROM mining_data
 WHERE cust_id between 1 and 10
 ORDER BY cust_id;
CUST_ID COUNTRY_ID CUST_POSTAL_CODE CUST_CREDIT_LIMIT
------- ---------- -------------------- -----------------
 1 52789 30828 9000
 2 52778 86319 10000
 3 52770 88666 1500
 4 52770 87551 1500
 5 52789 59200 1500
 6 52769 77287 1500
 7 52790 38763 1500
 8 52790 58488 3000
 9 52770 63033 3000
 10 52790 52602 3000

SELECT * FROM mining_data_stack_view
 WHERE cust_id between 1 and 10
 ORDER BY cust_id;

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-252

CUST_ID COUNTRY_ID CUST_POSTAL_CODE CUST_CREDIT_LIMIT
------- ---------- -------------------- -----------------
 1 52789 30828 .55556
 2 52778 86319 .62963
 3 52770 88666 0
 4 52770 87551 0
 5 52789 59200 0
 6 52769 77287 0
 7 52790 38763 0
 8 52790 58488 .11111
 9 52770 63033 .11111
 10 52790 52602 .11111

36.2.3.31 XFORM_BIN_CAT Procedure
This procedure creates a view that implements the categorical binning transformations
specified in a definition table. Only the columns that are specified in the definition table
are transformed; the remaining columns from the data table are present in the view,
but they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_BIN_CAT (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 literal_flag IN BOOLEAN DEFAULT FALSE,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-154 XFORM_BIN_CAT Procedure Parameters

Parameter Description

bin_table_name Name of the transformation definition table for categorical
binning. You can use the CREATE_BIN_CAT Procedure to
create the definition table. The table must be populated with
transformation definitions before you call XFORM_BIN_CAT. To
populate the table, you can use one of the INSERT procedures for
categorical binning or you can write your own SQL.
See Table 36-117.

data_table_name Name of the table containing the data to be transformed.

xform_view_name Name of the view to be created. The view presents columns
in data_table_name with the transformations specified in
bin_table_name.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-253

Table 36-154 (Cont.) XFORM_BIN_CAT Procedure Parameters

Parameter Description

literal_flag Indicates whether the values in the bin column in the
transformation definition table are valid SQL literals. When
literal_flag is FALSE (the default), the bin identifiers will be
transformed to SQL literals by surrounding them with single
quotes.
Set literal_flag to TRUE if the bin identifiers are numbers that
should have a numeric datatype, as is the case for an O-Cluster
model.
See "INSERT_BIN_NUM_EQWIDTH Procedure" for an example.

bin_schema_name Schema of bin_table_name. If no schema is specified, the
current schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

xform_schema_name Schema of xform_view_name. If no schema is specified, the
current schema is used.

Usage Notes

See "Operational Notes".

Examples

This example creates a view that bins the cust_postal_code column. The data source
consists of three columns from sh.customer.

describe mining_data
 Name Null? Type
 -------------------------------------- -------- ------------------------
 CUST_ID NOT NULL NUMBER
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CREDIT_LIMIT NUMBER

SELECT * FROM mining_data WHERE cust_id between 104066 and 104069;

 CUST_ID CUST_POSTAL_CODE
CUST_CREDIT_LIMIT
--------- --------------------

 104066 69776
7000
 104067 52602
9000
 104068 55787
11000
 104069 55977
5000

BEGIN
 dbms_data_mining_transform.create_bin_cat(
 bin_table_name => 'bin_cat_tbl');
 dbms_data_mining_transform.insert_bin_cat_freq(
 bin_table_name => 'bin_cat_tbl',

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-254

 data_table_name => 'mining_data',
 bin_num => 10);
 dbms_data_mining_transform.xform_bin_cat(
 bin_table_name => 'bin_cat_tbl',
 data_table_name => 'mining_data',
 xform_view_name => 'bin_cat_view');
END;
/

SELECT * FROM bin_cat_view WHERE cust_id between 104066 and 104069;

 CUST_ID CUST_POSTAL_CODE
CUST_CREDIT_LIMIT
---------- --------------------

 104066 6
7000
 104067 11
9000
 104068 3
11000
 104069 11
5000

SELECT text FROM user_views WHERE view_name IN 'BIN_CAT_VIEW';

TEXT

--

SELECT
"CUST_ID",DECODE("CUST_POSTAL_CODE",'38082','1','45704','9','48346','5','

55787','3','63736','2','67843','7','69776','6','72860','10','78558','4','80841',

'8',NULL,NULL,'11') "CUST_POSTAL_CODE","CUST_CREDIT_LIMIT" FROM
mining_data

36.2.3.32 XFORM_BIN_NUM Procedure
This procedure creates a view that implements the numerical binning transformations
specified in a definition table. Only the columns that are specified in the definition table
are transformed; the remaining columns from the data table are present in the view,
but they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_BIN_NUM (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 literal_flag IN BOOLEAN DEFAULT FALSE,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-255

Parameters

Table 36-155 XFORM_BIN_NUM Procedure Parameters

Parameter Description

bin_table_name Name of the transformation definition table for numerical
binning. You can use the CREATE_BIN_NUM Procedure to
create the definition table. The table must be populated with
transformation definitions before you call XFORM_BIN_NUM. To
populate the table, you can use one of the INSERT procedures for
numerical binning or you can write your own SQL.
See "Table 36-119".

data_table_name Name of the table containing the data to be transformed

xform_view_name Name of the view to be created. The view presents columns
in data_table_name with the transformations specified in
bin_table_name.

literal_flag Indicates whether the values in the bin column in the
transformation definition table are valid SQL literals. When
literal_flag is FALSE (the default), the bin identifiers will be
transformed to SQL literals by surrounding them with single
quotes.
Set literal_flag to TRUE if the bin identifiers are numbers that
should have a numeric datatype, as is the case for an O-Cluster
model.
See "INSERT_BIN_NUM_EQWIDTH Procedure" for an example.

bin_schema_name Schema of bin_table_name. If no schema is specified, the
current schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

xform_schema_name Schema of xform_view_name. If no schema is specified, the
current schema is used.

Usage Notes

See "Operational Notes".

Examples

This example creates a view that bins the cust_credit_limit column. The data
source consists of three columns from sh.customer.

describe mining_data
 Name Null? Type
 -------------------------------------- -------- ------------------------
 CUST_ID NOT NULL NUMBER
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CREDIT_LIMIT NUMBER

column cust_credit_limit off
SELECT * FROM mining_data WHERE cust_id between 104066 and 104069;

 CUST_ID CUST_POSTAL_CODE
CUST_CREDIT_LIMIT

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-256

--------- ------------------

 104066 69776
7000
 104067 52602
9000
 104068 55787
11000
 104069 55977
5000

BEGIN
 dbms_data_mining_transform.create_bin_num(
 bin_table_name => 'bin_num_tbl');
 dbms_data_mining_transform.insert_autobin_num_eqwidth(
 bin_table_name => 'bin_num_tbl',
 data_table_name => 'mining_data',
 bin_num => 5,
 max_bin_num => 10,
 exclude_list =>
dbms_data_mining_transform.COLUMN_LIST('cust_id'));
 dbms_data_mining_transform.xform_bin_num(
 bin_table_name => 'bin_num_tbl',
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_view');
END;
/
describe mining_data_view
 Name Null? Type
 ------------------------------------ -------- ------------------------
 CUST_ID NOT NULL NUMBER
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CREDIT_LIMIT VARCHAR2(2)

col cust_credit_limit on
col cust_credit_limit format a25
SELECT * FROM mining_data_view WHERE cust_id between 104066 and 104069;

 CUST_ID CUST_POSTAL_CODE
CUST_CREDIT_LIMIT
---------- --------------------

 104066 69776
5
 104067 52602
6
 104068 55787
8
 104069 55977
3

set long 2000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_VIEW';

TEXT

--

SELECT "CUST_ID","CUST_POSTAL_CODE",CASE WHEN "CUST_CREDIT_LIMIT"<1500 THEN
NULL
 WHEN "CUST_CREDIT_LIMIT"<=2850 THEN '1' WHEN "CUST_CREDIT_LIMIT"<=4200 THEN

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-257

'2'
 WHEN "CUST_CREDIT_LIMIT"<=5550 THEN '3' WHEN "CUST_CREDIT_LIMIT"<=6900 THEN
'4'
 WHEN "CUST_CREDIT_LIMIT"<=8250 THEN '5' WHEN "CUST_CREDIT_LIMIT"<=9600 THEN
'6'
 WHEN "CUST_CREDIT_LIMIT"<=10950 THEN '7' WHEN "CUST_CREDIT_LIMIT"<=12300 THEN
'
8' WHEN "CUST_CREDIT_LIMIT"<=13650 THEN '9' WHEN "CUST_CREDIT_LIMIT"<=15000
THEN
 '10' END "CUST_CREDIT_LIMIT" FROM
mining_data

36.2.3.33 XFORM_CLIP Procedure
This procedure creates a view that implements the clipping transformations specified
in a definition table. Only the columns that are specified in the definition table are
transformed; the remaining columns from the data table are present in the view, but
they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_CLIP (
 clip_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 clip_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2,DEFAULT NULL,
 xform_schema_name IN VARCHAR2,DEFAULT NULL);

Parameters

Table 36-156 XFORM_CLIP Procedure Parameters

Parameter Description

clip_table_name Name of the transformation definition table for clipping. You can
use the CREATE_CLIP Procedure to create the definition table.
The table must be populated with transformation definitions
before you call XFORM_CLIP. To populate the table, you can use
one of the INSERT procedures for clipping you can write your
own SQL.
See Table 36-121.

data_table_name Name of the table containing the data to be transformed

xform_view_name Name of the view to be created. The view presents columns
in data_table_name with the transformations specified in
clip_table_name.

clip_schema_name Schema of clip_table_name. If no schema is specified, the
current schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

xform_schema_name Schema of xform_view_name. If no schema is specified, the
current schema is used.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-258

Examples

This example creates a view that clips the cust_credit_limit column. The data
source consists of three columns from sh.customer.

describe mining_data
 Name Null? Type
 ------------------------------ -------- -------------------------
 CUST_ID NOT NULL NUMBER
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CREDIT_LIMIT NUMBER

BEGIN
 dbms_data_mining_transform.create_clip(
 clip_table_name => 'clip_tbl');
 dbms_data_mining_transform.insert_clip_trim_tail(
 clip_table_name => 'clip_tbl',
 data_table_name => 'mining_data',
 tail_frac => 0.05,
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'));
 dbms_data_mining_transform.xform_clip(
 clip_table_name => 'clip_tbl',
 data_table_name => 'mining_data',
 xform_view_name => 'clip_view');
END;
/
describe clip_view
 Name Null? Type
 ----------------------------- -------- --------------------------
 CUST_ID NOT NULL NUMBER
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CREDIT_LIMIT NUMBER

SELECT MIN(cust_credit_limit), MAX(cust_credit_limit) FROM mining_data;

MIN(CUST_CREDIT_LIMIT) MAX(CUST_CREDIT_LIMIT)
---------------------- ----------------------
 1500 15000

SELECT MIN(cust_credit_limit), MAX(cust_credit_limit) FROM clip_view;

MIN(CUST_CREDIT_LIMIT) MAX(CUST_CREDIT_LIMIT)
---------------------- ----------------------
 1500 11000

set long 2000
SELECT text FROM user_views WHERE view_name IN 'CLIP_VIEW';

TEXT
--
SELECT "CUST_ID","CUST_POSTAL_CODE",CASE WHEN "CUST_CREDIT_LIMIT" < 1500 THEN NU
LL WHEN "CUST_CREDIT_LIMIT" > 11000 THEN NULL ELSE "CUST_CREDIT_LIMIT" END "CUST
_CREDIT_LIMIT" FROM mining_data

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-259

36.2.3.34 XFORM_COL_REM Procedure
This procedure creates a view that implements the column removal transformations
specified in a definition table. Only the columns that are specified in the definition table
are removed; the remaining columns from the data table are present in the view.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_COL_REM (
 rem_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 rem_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-157 XFORM_COL_REM Procedure Parameters

Parameter Description

rem_table_name Name of the transformation definition table for column
removal. You can use the CREATE_COL_REM Procedure to
create the definition table. See Table 36-123.

The table must be populated with column names before
you call XFORM_COL_REM. The INSERT_BIN_SUPER Procedure
and the INSERT_AUTOBIN_NUM_EQWIDTH Procedure can
optionally be used to populate the table. You can also use
SQL INSERT statements.

data_table_name Name of the table containing the data to be transformed

xform_view_name Name of the view to be created. The view presents the
columns in data_table_name that are not specified in
rem_table_name.

rem_schema_name Schema of rem_table_name. If no schema is specified, the
current schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

xform_schema_name Schema of xform_view_name. If no schema is specified, the
current schema is used.

Usage Notes

See "Operational Notes".

Examples

This example creates a view that includes all but one column from the table customers
in the current schema.

describe customers
 Name Null? Type
 --- -------- ----------------------------
 CUST_ID NOT NULL NUMBER

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-260

 CUST_MARITAL_STATUS VARCHAR2(20)
 OCCUPATION VARCHAR2(21)
 AGE NUMBER
 YRS_RESIDENCE NUMBER

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_COL_REM ('colrem_xtbl');
END;
 /
INSERT INTO colrem_xtbl VALUES('CUST_MARITAL_STATUS', null);

NOTE: This currently doesn't work. See bug 9310319

BEGIN
 DBMS_DATA_MINING_TRANSFORM.XFORM_COL_REM (
 rem_table_name => 'colrem_xtbl',
 data_table_name => 'customers',
 xform_view_name => 'colrem_view');
END;
/
describe colrem_view

 Name Null? Type
 --- -------- ----------------------------
 CUST_ID NOT NULL NUMBER
 OCCUPATION VARCHAR2(21)
 AGE NUMBER
 YRS_RESIDENCE NUMBER

36.2.3.35 XFORM_EXPR_NUM Procedure
This procedure creates a view that implements the specified numeric transformations.
Only the columns that you specify are transformed; the remaining columns from the
data table are present in the view, but they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_EXPR_NUM (
 expr_pattern IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 include_list IN COLUMN_LIST DEFAULT NULL,
 col_pattern IN VARCHAR2 DEFAULT ':col',
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-158 XFORM_EXPR_NUM Procedure Parameters

Parameter Description

expr_pattern A numeric transformation expression

data_table_name Name of the table containing the data to be transformed

xform_view_name Name of the view to be created. The view presents columns
in data_table_name with the transformations specified in
expr_pattern and col_pattern.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-261

Table 36-158 (Cont.) XFORM_EXPR_NUM Procedure Parameters

Parameter Description

exclude_list List of numerical columns to exclude. If NULL, no numerical
columns are excluded.
The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

include_list List of numeric columns to include. If NULL, all numeric
columns are included.
The format of include_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

col_pattern The value within expr_pattern that will be replaced with a
column name. The value of col_pattern is case-sensitive.

The default value of col_pattern is ':col'

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

xform_schema_name Schema of xform_view_name. If no schema is specified, the
current schema is used.

Usage Notes

1. The XFORM_EXPR_NUM procedure constructs numeric transformation expressions
from the specified expression pattern (expr_pattern) by replacing every
occurrence of the specified column pattern (col_pattern) with an actual column
name.

XFORM_EXPR_NUM uses the SQL REPLACE function to construct the transformation
expressions.

REPLACE (expr_pattern,col_pattern,'"column_name"') || '"column_name"'

If there is a column match, then the replacement is made in the transformation
expression; if there is not a match, then the column is used without transformation.

See:

Oracle Database SQL Language Reference for information about the
REPLACE function

2. Because of the include and exclude list parameters, the XFORM_EXPR_NUM and
XFORM_EXPR_STR procedures allow you to easily specify individual columns for
transformation within large data sets. The other XFORM_* procedures support an
exclude list only. In these procedures, you must enumerate every column that you
do not want to transform.

3. See "Operational Notes"

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-262

Examples

This example creates a view that transforms the datatype of numeric columns.

describe customers
 Name Null? Type
 ----------------------------------- -------- ------------------------
 CUST_ID NOT NULL NUMBER
 CUST_MARITAL_STATUS VARCHAR2(20)
 OCCUPATION VARCHAR2(21)
 AGE NUMBER
 YRS_RESIDENCE NUMBER

BEGIN
 DBMS_DATA_MINING_TRANSFORM.XFORM_EXPR_NUM(
 expr_pattern => 'to_char(:col)',
 data_table_name => 'customers',
 xform_view_name => 'cust_nonum_view',
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'),
 include_list => null,
 col_pattern => ':col');
END;
/
describe cust_nonum_view
 Name Null? Type
 ----------------------------------- -------- ------------------------
 CUST_ID NOT NULL NUMBER
 CUST_MARITAL_STATUS VARCHAR2(20)
 OCCUPATION VARCHAR2(21)
 AGE VARCHAR2(40)
 YRS_RESIDENCE VARCHAR2(40)

36.2.3.36 XFORM_EXPR_STR Procedure
This procedure creates a view that implements the specified categorical
transformations. Only the columns that you specify are transformed; the remaining
columns from the data table are present in the view, but they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_EXPR_STR (
 expr_pattern IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 include_list IN COLUMN_LIST DEFAULT NULL,
 col_pattern IN VARCHAR2 DEFAULT ':col',
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-159 XFORM_EXPR_STR Procedure Parameters

Parameter Description

expr_pattern A character transformation expression

data_table_name Name of the table containing the data to be transformed

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-263

Table 36-159 (Cont.) XFORM_EXPR_STR Procedure Parameters

Parameter Description

xform_view_name Name of the view to be created. The view presents columns
in data_table_name with the transformations specified in
expr_pattern and col_pattern.

exclude_list List of categorical columns to exclude. If NULL, no categorical
columns are excluded.
The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

include_list List of character columns to include. If NULL, all character
columns are included.
The format of include_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

col_pattern The value within expr_pattern that will be replaced with a
column name. The value of col_pattern is case-sensitive.

The default value of col_pattern is ':col'

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

xform_schema_name Schema of xform_view_name. If no schema is specified, the
current schema is used.

Usage Notes

1. The XFORM_EXPR_STR procedure constructs character transformation expressions
from the specified expression pattern (expr_pattern) by replacing every
occurrence of the specified column pattern (col_pattern) with an actual column
name.

XFORM_EXPR_STR uses the SQL REPLACE function to construct the transformation
expressions.

REPLACE (expr_pattern,col_pattern,'"column_name"') || '"column_name"'

If there is a column match, then the replacement is made in the transformation
expression; if there is not a match, then the column is used without transformation.

See:

Oracle Database SQL Language Reference for information about the
REPLACE function

2. Because of the include and exclude list parameters, the XFORM_EXPR_STR and
XFORM_EXPR_NUM procedures allow you to easily specify individual columns for

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-264

transformation within large data sets. The other XFORM_* procedures support an
exclude list only. In these procedures, you must enumerate every column that you
do not want to transform.

3. See "Operational Notes"

Examples

This example creates a view that transforms character columns to upper case.

describe customers
 Name Null? Type
 ----------------------------------- -------- ------------------------
 CUST_ID NOT NULL NUMBER
 CUST_MARITAL_STATUS VARCHAR2(20)
 OCCUPATION VARCHAR2(21)
 AGE NUMBER
 YRS_RESIDENCE NUMBER

SELECT cust_id, cust_marital_status, occupation FROM customers
 WHERE cust_id > 102995
 ORDER BY cust_id desc;

CUST_ID CUST_MARITAL_STATUS OCCUPATION
------- -------------------- ---------------------
 103000 Divorc. Cleric.
 102999 Married Cleric.
 102998 Married Exec.
 102997 Married Exec.
 102996 NeverM Other

BEGIN
 DBMS_DATA_MINING_TRANSFORM.XFORM_EXPR_STR(
 expr_pattern => 'upper(:col)',
 data_table_name => 'customers',
 xform_view_name => 'cust_upcase_view');
END;
/
describe cust_upcase_view
 Name Null? Type
 ----------------------------- -------- --------------------
 CUST_ID NOT NULL NUMBER
 CUST_MARITAL_STATUS VARCHAR2(20)
 OCCUPATION VARCHAR2(21)
 AGE NUMBER
 YRS_RESIDENCE NUMBER

SELECT cust_id, cust_marital_status, occupation FROM cust_upcase_view
 WHERE cust_id > 102995
 ORDER BY cust_id desc;

CUST_ID CUST_MARITAL_STATUS OCCUPATION
------- -------------------- ---------------------
 103000 DIVORC. CLERIC.
 102999 MARRIED CLERIC.
 102998 MARRIED EXEC.
 102997 MARRIED EXEC.
 102996 NEVERM OTHER

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-265

36.2.3.37 XFORM_MISS_CAT Procedure
This procedure creates a view that implements the categorical missing value treatment
transformations specified in a definition table. Only the columns that are specified in
the definition table are transformed; the remaining columns from the data table are
present in the view, but they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_MISS_CAT (
 miss_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 miss_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL;

Parameters

Table 36-160 XFORM_MISS_CAT Procedure Parameters

Parameter Description

miss_table_name Name of the transformation definition table for categorical
missing value treatment. You can use the CREATE_MISS_CAT
Procedure to create the definition table. The table must be
populated with transformation definitions before you call
XFORM_MISS_CAT. To populate the table, you can use the
INSERT_MISS_CAT_MODE Procedure or you can write your own
SQL.
See Table 36-125.

data_table_name Name of the table containing the data to be transformed

xform_view_name Name of the view to be created. The view presents columns
in data_table_name with the transformations specified in
miss_table_name.

miss_schema_name Schema of miss_table_name. If no schema is specified, the
current schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

xform_schema_name Schema of xform_view_name. If no schema is specified, the
current schema is used.

Usage Notes

See "Operational Notes".

Examples

This example creates a view that replaces missing categorical values with the mode.

SELECT * FROM geog;

REG_ID REGION
------ ------------------------------

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-266

 1 NE
 2 SW
 3 SE
 4 SW
 5
 6 NE
 7 NW
 8 NW
 9
 10
 11 SE
 12 SE
 13 NW
 14 SE
 15 SE

SELECT STATS_MODE(region) FROM geog;

STATS_MODE(REGION)

SE

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_MISS_CAT('misscat_xtbl');
 DBMS_DATA_MINING_TRANSFORM.INSERT_MISS_CAT_MODE (
 miss_table_name => 'misscat_xtbl',
 data_table_name => 'geog');
END;
/

SELECT col, val FROM misscat_xtbl;

COL VAL
---------- ----------
REGION SE

BEGIN
 DBMS_DATA_MINING_TRANSFORM.XFORM_MISS_CAT (
 miss_table_name => 'misscat_xtbl',
 data_table_name => 'geog',
 xform_view_name => 'geogxf_view');
END;
/

SELECT * FROM geogxf_view;

REG_ID REGION
------ ------------------------------
 1 NE
 2 SW
 3 SE
 4 SW
 5 SE
 6 NE
 7 NW
 8 NW
 9 SE
 10 SE
 11 SE
 12 SE
 13 NW

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-267

 14 SE
 15 SE

36.2.3.38 XFORM_MISS_NUM Procedure
This procedure creates a view that implements the numerical missing value treatment
transformations specified in a definition table. Only the columns that are specified in
the definition table are transformed; the remaining columns from the data table are
present in the view, but they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_MISS_NUM (
 miss_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 miss_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL;

Parameters

Table 36-161 XFORM_MISS_NUM Procedure Parameters

Parameter Description

miss_table_name Name of the transformation definition table for numerical
missing value treatment. You can use the CREATE_MISS_NUM
Procedure to create the definition table. The table must be
populated with transformation definitions before you call
XFORM_MISS_NUM. To populate the table, you can use the
INSERT_MISS_NUM_MEAN Procedure or you can write your
own SQL.
See Table 36-127.

data_table_name Name of the table containing the data to be transformed

xform_view_name Name of the view to be created. The view presents columns
in data_table_name with the transformations specified in
miss_table_name.

miss_schema_name Schema of miss_table_name. If no schema is specified, the
current schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

xform_schema_name Schema of xform_view_name. If no schema is specified, the
current schema is used.

Usage Notes

See "Operational Notes".

Examples

This example creates a view that replaces missing numerical values with the mean.

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-268

SELECT * FROM items;

ITEM_ID QTY
---------- ------
aa 200
bb 200
cc 250
dd
ee
ff 100
gg 250
hh 200
ii
jj 200

SELECT AVG(qty) FROM items;

AVG(QTY)

 200

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_MISS_NUM('missnum_xtbl');
 DBMS_DATA_MINING_TRANSFORM.INSERT_MISS_NUM_MEAN (
 miss_table_name => 'missnum_xtbl',
 data_table_name => 'items');
END;
/

SELECT col, val FROM missnum_xtbl;

COL VAL
---------- ------
QTY 200

BEGIN
 DBMS_DATA_MINING_TRANSFORM.XFORM_MISS_NUM (
 miss_table_name => 'missnum_xtbl',
 data_table_name => 'items',
 xform_view_name => 'items_view');
END;
/

SELECT * FROM items_view;

ITEM_ID QTY
---------- ------
aa 200
bb 200
cc 250
dd 200
ee 200
ff 100
gg 250
hh 200
ii 200
jj 200

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-269

36.2.3.39 XFORM_NORM_LIN Procedure
This procedure creates a view that implements the linear normalization
transformations specified in a definition table. Only the columns that are specified
in the definition table are transformed; the remaining columns from the data table are
present in the view, but they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_NORM_LIN (
 norm_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 norm_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-162 XFORM_NORM_LIN Procedure Parameters

Parameter Description

norm_table_name Name of the transformation definition table for linear
normalization. You can use the CREATE_NORM_LIN Procedure
to create the definition table. The table must be populated with
transformation definitions before you call XFORM_NORM_LIN. To
populate the table, you can use one of the INSERT procedures
for normalization or you can write your own SQL.
See Table 36-125.

data_table_name Name of the table containing the data to be transformed

xform_view_name Name of the view to be created. The view presents columns
in data_table_name with the transformations specified in
miss_table_name.

norm_schema_name Schema of miss_table_name. If no schema is specified, the
current schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

xform_schema_name Schema of xform_view_name. If no schema is specified, the
current schema is used.

Usage Notes

See "Operational Notes".

Examples

This example creates a view that normalizes the cust_year_of_birth and
cust_credit_limit columns. The data source consists of three columns from
sh.customer.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_credit_limit
 FROM sh.customers;

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-270

describe mining_data
 Name Null? Type
 -------------------------------------- -------- --------------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_CREDIT_LIMIT NUMBER

SELECT * FROM mining_data WHERE cust_id > 104495
 ORDER BY cust_year_of_birth;

 CUST_ID CUST_YEAR_OF_BIRTH CUST_CREDIT_LIMIT
-------- ------------------ -----------------
 104496 1947 3000
 104498 1954 10000
 104500 1962 15000
 104499 1970 3000
 104497 1976 3000

BEGIN
 dbms_data_mining_transform.CREATE_NORM_LIN(
 norm_table_name => 'normx_tbl');
 dbms_data_mining_transform.INSERT_NORM_LIN_MINMAX(
 norm_table_name => 'normx_tbl',
 data_table_name => 'mining_data',
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'),
 round_num => 3);
END;
/

SELECT col, shift, scale FROM normx_tbl;

COL SHIFT SCALE
------------------------------ -------- --------
CUST_YEAR_OF_BIRTH 1910 77
CUST_CREDIT_LIMIT 1500 13500

BEGIN
 DBMS_DATA_MINING_TRANSFORM.XFORM_NORM_LIN (
 norm_table_name => 'normx_tbl',
 data_table_name => 'mining_data',
 xform_view_name => 'norm_view');
END;
/

SELECT * FROM norm_view WHERE cust_id > 104495
 ORDER BY cust_year_of_birth;

 CUST_ID CUST_YEAR_OF_BIRTH CUST_CREDIT_LIMIT
-------- ------------------ -----------------
 104496 .4805195 .1111111
 104498 .5714286 .6296296
 104500 .6753247 1
 104499 .7792208 .1111111
 104497 .8571429 .1111111

set long 2000
SQL> SELECT text FROM user_views WHERE view_name IN 'NORM_VIEW';

TEXT

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-271

SELECT "CUST_ID",("CUST_YEAR_OF_BIRTH"-1910)/77 "CUST_YEAR_OF_BIRTH",("CUST
_CREDIT_LIMIT"-1500)/13500 "CUST_CREDIT_LIMIT" FROM mining_data

36.2.3.40 XFORM_STACK Procedure
This procedure creates a view that implements the transformations specified by the
stack. Only the columns and nested attributes that are specified in the stack are
transformed. Any remaining columns and nested attributes from the data table appear
in the view without changes.

To create a list of objects that describe the transformed columns, use the
DESCRIBE_STACK Procedure.

See Also:

"Overview"

Oracle Data Mining User's Guide for more information about data mining
attributes

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_STACK (
 xform_list IN TRANSFORM_list,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-163 XFORM_STACK Procedure Parameters

Parameter Description

xform_list The transformation list. See Table 36-114 for a description of the
TRANSFORM_LIST object type.

data_table_name Name of the table containing the data to be transformed

xform_view_name Name of the view to be created. The view applies the
transformations in xform_list to data_table_name.

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

xform_schema_name Schema of xform_view_name. If no schema is specified, the
current schema is used.

Usage Notes

See "Operational Notes". The following sections are especially relevant:

• "About Transformation Lists"

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-272

• "About Stacking"

• "Nested Data Transformations"

Examples

This example applies a transformation list to the view dmuser.cust_info and shows
how the data is transformed.The CREATE statement for cust_info is shown in
"DESCRIBE_STACK Procedure".

BEGIN
 dbms_data_mining_transform.CREATE_BIN_NUM ('birth_yr_bins');
 dbms_data_mining_transform.INSERT_BIN_NUM_QTILE (
 bin_table_name => 'birth_yr_bins',
 data_table_name => 'cust_info',
 bin_num => 6,
 exclude_list => dbms_data_mining_transform.column_list(
 'cust_id','country_id'));
END;
/
SELECT * FROM birth_yr_bins;

COL ATT VAL BIN
-------------------- ----- ------ ----------
CUST_YEAR_OF_BIRTH 1922
CUST_YEAR_OF_BIRTH 1951 1
CUST_YEAR_OF_BIRTH 1959 2
CUST_YEAR_OF_BIRTH 1966 3
CUST_YEAR_OF_BIRTH 1973 4
CUST_YEAR_OF_BIRTH 1979 5
CUST_YEAR_OF_BIRTH 1986 6

DECLARE
 cust_stack dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.SET_TRANSFORM (cust_stack,
 'country_id', NULL, 'country_id/10', 'country_id*10');
 dbms_data_mining_transform.STACK_BIN_NUM ('birth_yr_bins',
 cust_stack);
 dbms_data_mining_transform.SET_TRANSFORM (cust_stack,
 'custprods', 'Mouse Pad', 'value*100', 'value/100');
 dbms_data_mining_transform.XFORM_STACK(
 xform_list => cust_stack,
 data_table_name => 'cust_info',
 xform_view_name => 'cust_xform_view');
 END;
/

-- Two rows of data without transformations
SELECT * from cust_info WHERE cust_id BETWEEN 100010 AND 100011;

CUST_ID COUNTRY_ID CUST_YEAR_OF_BIRTH CUSTPRODS(ATTRIBUTE_NAME, VALUE)
------- ---------- ------------------ ---
 100010 52790 1975 DM_NESTED_NUMERICALS(
 DM_NESTED_NUMERICAL(
 '18" Flat Panel Graphics Monitor', 1),
 DM_NESTED_NUMERICAL(
 'SIMM- 16MB PCMCIAII card', 1))
 100011 52775 1972 DM_NESTED_NUMERICALS(
 DM_NESTED_NUMERICAL(
 'External 8X CD-ROM', 1),

Chapter 36
DBMS_DATA_MINING_TRANSFORM

36-273

 DM_NESTED_NUMERICAL(
 'Mouse Pad', 1),
 DM_NESTED_NUMERICAL(
 'SIMM- 16MB PCMCIAII card', 1),
 DM_NESTED_NUMERICAL(
 'Keyboard Wrist Rest', 1),
 DM_NESTED_NUMERICAL(
 '18" Flat Panel Graphics Monitor', 1),
 DM_NESTED_NUMERICAL(
 'O/S Documentation Set - English', 1))

-- Same two rows of data with transformations
SELECT * FROM cust_xform_view WHERE cust_id BETWEEN 100010 AND 100011;

CUST_ID COUNTRY_ID C CUSTPRODS(ATTRIBUTE_NAME, VALUE)
------- ---------- - --
 100010 5279 5 DM_NESTED_NUMERICALS(
 DM_NESTED_NUMERICAL(
 '18" Flat Panel Graphics Monitor', 1),
 DM_NESTED_NUMERICAL(
 'SIMM- 16MB PCMCIAII card', 1))
 100011 5277.5 4 DM_NESTED_NUMERICALS(
 DM_NESTED_NUMERICAL(
 'External 8X CD-ROM', 1),
 DM_NESTED_NUMERICAL(
 'Mouse Pad', 100),
 DM_NESTED_NUMERICAL(
 'SIMM- 16MB PCMCIAII card', 1),
 DM_NESTED_NUMERICAL(
 'Keyboard Wrist Rest', 1),
 DM_NESTED_NUMERICAL(
 '18" Flat Panel Graphics Monitor', 1),
 DM_NESTED_NUMERICAL(
 'O/S Documentation Set - English', 1))

36.3 DBMS_PREDICTIVE_ANALYTICS
Data mining can discover useful information buried in vast amounts of data. However,
it is often the case that both the programming interfaces and the data mining expertise
required to obtain these results are too complex for use by the wide audiences that
can obtain benefits from using Oracle Data Mining.

The DBMS_PREDICTIVE_ANALYTICS package addresses both of these complexities by
automating the entire data mining process from data preprocessing through model
building to scoring new data. This package provides an important tool that makes data
mining possible for a broad audience of users, in particular, business analysts.

This chapter contains the following topics:

• Overview

• Security Model

• Summary of DBMS_PREDICTIVE_ANALYTICS Subprograms

36.3.1 Using DBMS_PREDICTIVE_ANALYTICS
This section contains topics that relate to using the DBMS_PREDICTIVE_ANALYTICS
package.

Chapter 36
DBMS_PREDICTIVE_ANALYTICS

36-274

• Overview

• Security Model

36.3.1.1 DBMS_PREDICTIVE_ANALYTICS Overview
DBMS_PREDICTIVE_ANALYTICS automates parts of the data mining process.

Data mining, according to a commonly used process model, requires the following
steps:

1. Understand the business problem.

2. Understand the data.

3. Prepare the data for mining.

4. Create models using the prepared data.

5. Evaluate the models.

6. Deploy and use the model to score new data.

DBMS_PREDICTIVE_ANALYTICS automates parts of step 3 — 5 of this process.

Predictive analytics procedures analyze and prepare the input data, create and test
mining models using the input data, and then use the input data for scoring. The
results of scoring are returned to the user. The models and supporting objects are not
preserved after the operation completes.

36.3.1.2 DBMS_PREDICTIVE_ANALYTICS Security Model
The DBMS_PREDICTIVE_ANALYTICS package is owned by user SYS and is installed as
part of database installation. Execution privilege on the package is granted to public.
The routines in the package are run with invokers' rights (run with the privileges of the
current user).

The DBMS_PREDICTIVE_ANALYTICS package exposes APIs which are leveraged by the
Oracle Data Mining option. Users who wish to invoke procedures in this package
require the CREATE MINING MODEL system privilege (as well as the CREATE TABLE and
CREATE VIEW system privilege).

36.3.2 Summary of DBMS_PREDICTIVE_ANALYTICS Subprograms
This table lists and briefly describes the DBMS_PREDICTIVE_ANALYTICS package
subprograms.

Table 36-164 DBMS_PREDICTIVE_ANALYTICS Package Subprograms

Subprogram Purpose

EXPLAIN Procedure Ranks attributes in order of influence in explaining a target
column.

PREDICT Procedure Predicts the value of a target column based on values in the
input data.

PROFILE Procedure Generates rules that identify the records that have the same
target value.

Chapter 36
DBMS_PREDICTIVE_ANALYTICS

36-275

36.3.2.1 EXPLAIN Procedure
The EXPLAIN procedure identifies the attributes that are important in explaining the
variation in values of a target column.

The input data must contain some records where the target value is known (not NULL).
These records are used by the procedure to train a model that calculates the attribute
importance.

Note:

EXPLAIN supports DATE and TIMESTAMP datatypes in addition to the numeric,
character, and nested datatypes supported by Oracle Data Mining models.

Data requirements for Oracle Data Mining are described in Oracle Data
Mining User's Guide.

The EXPLAIN procedure creates a result table that lists the attributes in order of their
explanatory power. The result table is described in the Usage Notes.

Syntax

DBMS_PREDICTIVE_ANALYTICS.EXPLAIN (
 data_table_name IN VARCHAR2,
 explain_column_name IN VARCHAR2,
 result_table_name IN VARCHAR2,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-165 EXPLAIN Procedure Parameters

Parameter Description

data_table_name Name of input table or view

explain_column_name Name of the column to be explained

result_table_name Name of the table where results are saved

data_schema_name Name of the schema where the input table or view resides
and where the result table is created. Default: the current
schema.

Usage Notes

The EXPLAIN procedure creates a result table with the columns described in
Table 36-166.

Chapter 36
DBMS_PREDICTIVE_ANALYTICS

36-276

Table 36-166 EXPLAIN Procedure Result Table

Column Name Datatype Description

ATTRIBUTE_NAME VARCHAR2(30) Name of a column in the input data; all columns except the
explained column are listed in the result table.

EXPLANATORY_VALUE NUMBER Value indicating how useful the column is for determining the
value of the explained column. Higher values indicate greater
explanatory power. Value can range from 0 to 1.
An individual column's explanatory value is independent of
other columns in the input table. The values are based on how
strong each individual column correlates with the explained
column. The value is affected by the number of records in the
input table, and the relations of the values of the column to the
values of the explain column.
An explanatory power value of 0 implies there is no
useful correlation between the column's values and the
explain column's values. An explanatory power of 1 implies
perfect correlation; such columns should be eliminated from
consideration for PREDICT. In practice, an explanatory power
equal to 1 is rarely returned.

RANK NUMBER Ranking of explanatory power. Rows with equal values for
explanatory_value have the same rank. Rank values are not
skipped in the event of ties.

Example

The following example performs an EXPLAIN operation on the
SUPPLEMENTARY_DEMOGRAPHICS table of Sales History.

--Perform EXPLAIN operation
BEGIN
 DBMS_PREDICTIVE_ANALYTICS.EXPLAIN(
 data_table_name => 'supplementary_demographics',
 explain_column_name => 'home_theater_package',
 result_table_name => 'demographics_explain_result');
END;
/
--Display results
SELECT * FROM demographics_explain_result;

ATTRIBUTE_NAME EXPLANATORY_VALUE RANK
-- ----------------- ----------
Y_BOX_GAMES .524311073 1
YRS_RESIDENCE .495987246 2
HOUSEHOLD_SIZE .146208506 3
AFFINITY_CARD .0598227 4
EDUCATION .018462703 5
OCCUPATION .009721543 6
FLAT_PANEL_MONITOR .00013733 7
PRINTER_SUPPLIES 0 8
OS_DOC_SET_KANJI 0 8
BULK_PACK_DISKETTES 0 8
BOOKKEEPING_APPLICATION 0 8
COMMENTS 0 8
CUST_ID 0 8

Chapter 36
DBMS_PREDICTIVE_ANALYTICS

36-277

The results show that Y_BOX_GAMES, YRS_RESIDENCE, and HOUSEHOLD_SIZE are the best
predictors of HOME_THEATER_PACKAGE.

36.3.2.2 PREDICT Procedure
The PREDICT procedure predicts the values of a target column.

The input data must contain some records where the target value is known (not NULL).
These records are used by the procedure to train and test a model that makes the
predictions.

Note:

PREDICT supports DATE and TIMESTAMP datatypes in addition to the numeric,
character, and nested datatypes supported by Oracle Data Mining models.

Data requirements for Oracle Data Mining are described in Oracle Data
Mining User's Guide.

The PREDICT procedure creates a result table that contains a predicted target value for
every record. The result table is described in the Usage Notes.

Syntax

DBMS_PREDICTIVE_ANALYTICS.PREDICT (
 accuracy OUT NUMBER,
 data_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 result_table_name IN VARCHAR2,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-167 PREDICT Procedure Parameters

Parameter Description

accuracy Output parameter that returns the predictive confidence,
a measure of the accuracy of the predicted values. The
predictive confidence for a categorical target is the most
common target value; the predictive confidence for a
numerical target is the mean.

data_table_name Name of the input table or view.

case_id_column_name Name of the column that uniquely identifies each case
(record) in the input data.

target_column_name Name of the column to predict.

result_table_name Name of the table where results will be saved.

data_schema_name Name of the schema where the input table or view resides
and where the result table is created. Default: the current
schema.

Chapter 36
DBMS_PREDICTIVE_ANALYTICS

36-278

Usage Notes

The PREDICT procedure creates a result table with the columns described in
Table 36-168.

Table 36-168 PREDICT Procedure Result Table

Column Name Datatype Description

Case ID column
name

VARCHAR2 or
NUMBER

The name of the case ID column in the input data.

PREDICTION VARCHAR2 or
NUMBER

The predicted value of the target column for the
given case.

PROBABILITY NUMBER For classification (categorical target), the
probability of the prediction. For regression
problems (numerical target), this column contains
NULL.

Note:

Make sure that the name of the case ID column is not 'PREDICTION' or
'PROBABILITY'.

Predictions are returned for all cases whether or not they contained target values in
the input.

Predicted values for known cases may be interesting in some situations. For example,
you could perform deviation analysis to compare predicted values and actual values.

Example

The following example performs a PREDICT operation and displays the first 10
predictions. The results show an accuracy of 79% in predicting whether each customer
has an affinity card.

--Perform PREDICT operation
DECLARE
 v_accuracy NUMBER(10,9);
BEGIN
 DBMS_PREDICTIVE_ANALYTICS.PREDICT(
 accuracy => v_accuracy,
 data_table_name => 'supplementary_demographics',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 result_table_name => 'pa_demographics_predict_result');
 DBMS_OUTPUT.PUT_LINE('Accuracy = ' || v_accuracy);
END;
/

Accuracy = .788696903

--Display results
SELECT * FROM pa_demographics_predict_result WHERE rownum < 10;

Chapter 36
DBMS_PREDICTIVE_ANALYTICS

36-279

 CUST_ID PREDICTION PROBABILITY
---------- ---------- -----------
 101501 1 .834069848
 101502 0 .991269965
 101503 0 .99978311
 101504 1 .971643388
 101505 1 .541754127
 101506 0 .803719133
 101507 0 .999999303
 101508 0 .999999987
 101509 0 .999953074

36.3.2.3 PROFILE Procedure
The PROFILE procedure generates rules that describe the cases (records) from the
input data.

For example, if a target column CHURN has values 'Yes' and 'No', PROFILE generates
a set of rules describing the expected outcomes. Each profile includes a rule, record
count, and a score distribution.

The input data must contain some cases where the target value is known (not NULL).
These cases are used by the procedure to build a model that calculates the rules.

Note:

PROFILE does not support nested types or dates.

Data requirements for Oracle Data Mining are described in Oracle Data
Mining User's Guide.

The PROFILE procedure creates a result table that specifies rules (profiles) and their
corresponding target values. The result table is described in the Usage Notes.

Syntax

DBMS_PREDICTIVE_ANALYTICS.PROFILE (
 data_table_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 result_table_name IN VARCHAR2,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 36-169 PROFILE Procedure Parameters

Parameter Description

data_table_name Name of the table containing the data to be analyzed.

target_column_name Name of the target column.

result_table_name Name of the table where the results will be saved.

Chapter 36
DBMS_PREDICTIVE_ANALYTICS

36-280

Table 36-169 (Cont.) PROFILE Procedure Parameters

Parameter Description

data_schema_name Name of the schema where the input table or view
resides and where the result table is created. Default:
the current schema.

Usage Notes

The PROFILE procedure creates a result table with the columns described in
Table 36-170.

Table 36-170 PROFILE Procedure Result Table

Column Name Datatype Description

PROFILE_ID NUMBER A unique identifier for this profile (rule).

RECORD_COUNT NUMBER The number of records described by the profile.

DESCRIPTION SYS.XMLTYPE The profile rule. See "XML Schema for Profile Rules".

XML Schema for Profile Rules

The DESCRIPTION column of the result table contains XML that conforms to the
following XSD:

<xs:element name="SimpleRule">
 <xs:complexType>
 <xs:sequence>
 <xs:group ref="PREDICATE"/>
 <xs:element ref="ScoreDistribution" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="optional"/>
 <xs:attribute name="score" type="xs:string" use="required"/>
 <xs:attribute name="recordCount" type="NUMBER" use="optional"/>
 </xs:complexType>
</xs:element>

Example

This example generates a rule describing customers who are likely to use an affinity
card (target value is 1) and a set of rules describing customers who are not likely to
use an affinity card (target value is 0). The rules are based on only two predictors:
education and occupation.

SET serveroutput ON
SET trimspool ON
SET pages 10000
SET long 10000
SET pagesize 10000
SET linesize 150
CREATE VIEW cust_edu_occ_view AS
 SELECT cust_id, education, occupation, affinity_card
 FROM sh.supplementary_demographics;
BEGIN
 DBMS_PREDICTIVE_ANALYTICS.PROFILE(
 DATA_TABLE_NAME => 'cust_edu_occ_view',

Chapter 36
DBMS_PREDICTIVE_ANALYTICS

36-281

 TARGET_COLUMN_NAME => 'affinity_card',
 RESULT_TABLE_NAME => 'profile_result');
END;
/

This example generates eight rules in the result table profile_result. Seven of the
rules suggest a target value of 0; one rule suggests a target value of 1. The score
attribute on a rule identifies the target value.

This SELECT statement returns all the rules in the result table.

SELECT a.profile_id, a.record_count, a.description.getstringval()
 FROM profile_result a;

This SELECT statement returns the rules for a target value of 0.

SELECT *
 FROM profile_result t
 WHERE extractvalue(t.description, '/SimpleRule/@score') = 0;

The eight rules generated by this example are displayed as follows.

<SimpleRule id="1" score="0" recordCount="443">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"Armed-F" "Exec." "Prof." "Protec."
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">"< Bach." "Assoc-V" "HS-grad"
 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
 <ScoreDistribution value="0" recordCount="297" />
 <ScoreDistribution value="1" recordCount="146" />
</SimpleRule>

<SimpleRule id="2" score="0" recordCount="18">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"Armed-F" "Exec." "Prof." "Protec."
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">"10th" "11th" "12th" "1st-4th" "5th-6th" "7th-8th" "9th" "Presch."
 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
 <ScoreDistribution value="0" recordCount="18" />
</SimpleRule>

<SimpleRule id="3" score="0" recordCount="458">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"Armed-F" "Exec." "Prof." "Protec."
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">"Assoc-A" "Bach."
 </Array>
 </SimpleSetPredicate>

Chapter 36
DBMS_PREDICTIVE_ANALYTICS

36-282

 </CompoundPredicate>
 <ScoreDistribution value="0" recordCount="248" />
 <ScoreDistribution value="1" recordCount="210" />
</SimpleRule>

<SimpleRule id="4" score="1" recordCount="276">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"Armed-F" "Exec." "Prof." "Protec."
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">"Masters" "PhD" "Profsc"
 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
 <ScoreDistribution value="1" recordCount="183" />
 <ScoreDistribution value="0" recordCount="93" />
</SimpleRule>

<SimpleRule id="5" score="0" recordCount="307">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">"Assoc-A" "Bach." "Masters" "PhD" "Profsc"
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"Crafts" "Sales" "TechSup" "Transp."
 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
 <ScoreDistribution value="0" recordCount="184" />
 <ScoreDistribution value="1" recordCount="123" />
</SimpleRule>

<SimpleRule id="6" score="0" recordCount="243">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">"Assoc-A" "Bach." "Masters" "PhD" "Profsc"
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"?" "Cleric." "Farming" "Handler" "House-s" "Machine" "Other"
 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
 <ScoreDistribution value="0" recordCount="197" />
 <ScoreDistribution value="1" recordCount="46" />
</SimpleRule>

<SimpleRule id="7" score="0" recordCount="2158">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">
 "10th" "11th" "12th" "1st-4th" "5th-6th" "7th-8th" "9th" "< Bach." "Assoc-V" "HS-grad"
 "Presch."
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"?" "Cleric." "Crafts" "Farming" "Machine" "Sales" "TechSup" "
Transp."

Chapter 36
DBMS_PREDICTIVE_ANALYTICS

36-283

 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
 <ScoreDistribution value="0" recordCount="1819"/>
 <ScoreDistribution value="1" recordCount="339"/>
</SimpleRule>

<SimpleRule id="8" score="0" recordCount="597">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">
 "10th" "11th" "12th" "1st-4th" "5th-6th" "7th-8th" "9th" "< Bach." "Assoc-V" "HS-grad"
 "Presch."
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"Handler" "House-s" "Other"
 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
<ScoreDistribution value="0" recordCount="572"/>
<ScoreDistribution value="1" recordCount="25"/>
</SimpleRule>

Chapter 36
DBMS_PREDICTIVE_ANALYTICS

36-284

37
Data Dictionary Views

The information in the data dictionary tables can be viewed through data dictionary
views. The data mining related dictionary views are listed in this chapter.

• ALL_MINING_MODELS

• ALL_MINING_MODEL_ATTRIBUTES

• ALL_MINING_MODEL_PARTITIONS

• ALL_MINING_MODEL_SETTINGS

• ALL_MINING_MODEL_VIEWS

• ALL_MINING_MODEL_XFORMS

37.1 ALL_MINING_MODELS
ALL_MINING_MODELS describes the mining models accessible to the current user.

Mining models are schema objects created by Oracle Data Mining.

Related Views

• DBA_MINING_MODELS describes all mining models in the database.

• USER_MINING_MODELS describes the mining models owned by the current user. This
view does not display the OWNER column.

Column Datatype NULL Description

OWNER VARCHAR2(128) NOT NULL Owner of the mining model

MODEL_NAME VARCHAR2(128) NOT NULL Name of the mining model

MINING_FUNCTION VARCHAR2(30) NOT NULL Function of the mining model. The function
identifies the class of problems that can be
solved by this model. The mining function is
specified when the model is built:
• CLASSIFICATION

• REGRESSION

• CLUSTERING

• FEATURE_EXTRACTION

• ASSOCIATION_RULES

• ATTRIBUTE_IMPORTANCE

37-1

Column Datatype NULL Description

ALGORITHM VARCHAR2(30) NOT NULL Algorithm used by the model. Each mining
function has a default algorithm. The default
can be overridden with a model setting (see
*_MINING_MODEL_SETTINGS):

• CUR_DECOMPOSITION

• NAIVE_BAYES

• DECISION_TREE

• EXPLICIT_SEMANTIC_ANALYS

• EXPONENTIAL_ SMOOTHING

• SUPPORT_VECTOR_MACHINES

• KMEANS

• O_CLUSTER

• NONNEGATIVE_MATRIX_FACTOR

• NEURAL_NETWORK

• GENERALIZED_LINEAR_MODEL

• APRIORI_ASSOCIATION_RULES

• MINIMUM_DESCRIPTION_LENGTH

• EXPECTATION_MAXIMIZATION

• RANDOM_FOREST

• SINGULAR_VALUE_DECOMP

• R_EXTENSIBLE

ALGORITHM_TYPE VARCHAR2(10) NOT NULL Algorithm type of the model

CREATION_DATE DATE NOT NULL Date that the model was created

BUILD_DURATION NUMBER NOT NULL Time (in seconds) of the model build process

MODEL_SIZE NUMBER NOT NULL Size of the model (in megabytes)

PARTITIONED VARCHAR2(3) NOT NULL Indicates whether the model is partitioned or
not. Possible values:
• YES: The model is partitioned.
• NO: The model is not partitioned

COMMENTS VARCHAR2(4000) NOT NULL Comment applied to the model with a SQL
COMMENT statement

Related Topics

• DBA_MINING_MODEL

• USER_MINING_MODELS

See Also:

• Oracle Data Mining User’s Guide for information about mining model
schema objects

• Oracle Data Mining Concepts for an introduction to Data Mining

Chapter 37
ALL_MINING_MODELS

37-2

37.2 ALL_MINING_MODEL_ATTRIBUTES
ALL_MINING_MODEL_ATTRIBUTES describes the attributes of the mining models
accessible to the current user. Only the attributes in the model signature are included
in this view. The attributes in the model signature correspond to the columns in the
training data that were used to build the model.
Mining models are schema objects created by Oracle Data Mining.

Related Views

• DBA_MINING_MODEL_ATTRIBUTES describes the attributes of all mining models in the
database.

• USER_MINING_MODEL_ATTRIBUTES describes the attributes of the mining models
owned by the current user. This view does not display the OWNER column.

Column Datatype NULL Description

OWNER VARCHAR2(128) NOT NULL Owner of the mining model

MODEL_NAME VARCHAR2(128) NOT NULL Name of the mining model

ATTRIBUTE_NAME VARCHAR2(128) NOT NULL Name of the attribute

ATTRIBUTE_TYPE VARCHAR2(11) – Logical type of the attribute. The type is
identified during the model build or apply
process:
• NUMERICAL: Numeric data
• CATEGORICAL: Character data
• TEXT: Unstructured text data
• PARTITION: The input signature column is

used for the partitioning key
• MIXED: The input signature column takes

on more than one attribute type.
This is due to user-defined embedded
transformations that allow an input
column to be transformed into multiple
independent mining attributes, including
mining attributes of different types.

DATA_TYPE VARCHAR2(106) – Data type of the attribute

DATA_LENGTH NUMBER – Length of the data type

DATA_PRECISION NUMBER – Precision of a fixed point number. Precision,
which is the total number of significant
decimal digits, is represented as p in the data
type NUMBER(p,s).

DATA_SCALE NUMBER – Scale of a fixed point number. Scale, which is
the number of digits from the decimal to the
least significant digit, is represented as s in the
data type NUMBER(p,s).

Chapter 37
ALL_MINING_MODEL_ATTRIBUTES

37-3

Column Datatype NULL Description

USAGE_TYPE VARCHAR2(8) – Indicates whether the attribute was used
to construct the model (ACTIVE) or not
(INACTIVE). Some attributes may be eliminated
by transformations or algorithmic processing.
The *_MINING_MODEL_ATTRIBUTES view only lists
the attributes used by the model, therefore the
value of this column is always ACTIVE.

TARGET VARCHAR2(3) – Indicates whether the attribute is the target of
a predictive model (YES) or not (NO). The target
describes the result that is produced when the
model is applied.

ATTRIBUTE_SPEC VARCHAR2(4000) – One or more keywords that identify special
treatment for the attribute during model build.
Values are:
• FORCE_IN: (GLM only) When feature

selection is enabled, forces the inclusion of
the attribute in the model build. Feature
selection is disabled by default. If the
model is not using GLM with feature
selection enabled, this value is ignored.

• NOPREP: When ADP is on, prevents
automatic transformation of the attribute.
If ADP is OFF, this value is ignored.

• TEXT: Causes the attribute to be
treated as unstructured text data. The
TEXT value supports three subsettings:
POLICY_NAME, MAX_FEATURES, TOKEN_TYPE, and
MIN_DOCUMENTS. Subsettings are specified
as name:value pairs within parentheses.
For example: (POLICY_NAME:mypolicy)
(MAX_FEATURES:2000)(TOKEN_TYPE:THEME).
See Oracle Data Mining User’s Guide for
details.

• NULL: The ATTRIBUTE_SPEC for this attribute
is NULL.

ATTRIBUTE_SPEC is a parameter to the
PL/SQL procedure
DBMS_DATA_MINING_TRANSFORM.SET_TRANSFOR

M. See Oracle Database PL/SQL Packages
and Types Reference for details.

Related Topics

• DBA_MINING_MODEL_ATTRIBUTES

• USER_MINING_MODEL_ATTRIBUTES

See Also:

Oracle Data Mining User’s Guide

Chapter 37
ALL_MINING_MODEL_ATTRIBUTES

37-4

37.3 ALL_MINING_MODEL_PARTITIONS
ALL_MINING_MODEL_PARTITIONS describes all the model partitions accessible to the
user.

Related Views

• DBA_MINING_MODEL_PARTITIONS describes all the model partitions accessible to the
system.

• USER_MINING_MODEL_PARTITIONS describes the user's own model partitions. This
view does not display the OWNER column.

Column Datatype NULL Description

OWNER VARCHAR2(128) NOT NULL Name of the model owner

MODEL_NAME VARCHAR2(128) NOT NULL Name of the model

PARTITION_NAME VARCHAR2(128) – Name of the model partition

POSITION NUMBER – Column position number for partitioning
column. Column position represents the
position of the column in a multi-column
partitioning key, or 1 for a unary column
partitioning key.

COLUMN_NAME VARCHAR2(128) NOT NULL Name of the column used for partitioning

COLUMN_VALUE VARCHAR2(4000) – Value of the column for this partition

Related Topics

• DBA_MINING_MODEL_PARTITIONS

• USER_MINING_MODEL_PARTITIONS

37.4 ALL_MINING_MODEL_SETTINGS
ALL_MINING_MODEL_SETTINGS describes the settings of the mining models accessible
to the current user.

Mining models are schema objects created by Oracle Data Mining.

Related Views

• DBA_MINING_MODEL_SETTINGS describes the settings of all mining models in the
database.

• USER_MINING_MODEL_SETTINGS describes the settings of the mining models owned
by the current user. This view does not display the OWNER column.

Column Datatype NULL Description

OWNER VARCHAR2(128) NOT NULL Owner of the mining model

MODEL_NAME VARCHAR2(128) NOT NULL Name of the mining model

SETTING_NAME VARCHAR2(30) NOT NULL Name of the setting

Chapter 37
ALL_MINING_MODEL_PARTITIONS

37-5

Column Datatype NULL Description

SETTING_VALUE VARCHAR2(4000) – Value of the setting

SETTING_TYPE VARCHAR2(7) – Indicates whether the default value (DEFAULT)
or a user-specified value (INPUT) is used by the
model

Related Topics

• DBA_MINING_MODEL_SETTINGS

• USER_MINING_MODEL_SETTINGS

See Also:

Oracle Database PL/SQL Packages and Types Reference for descriptions of
model settings

37.5 ALL_MINING_MODEL_VIEWS
ALL_MINING_MODEL_VIEWS provides a description of all the model views accessible to
the user.

Related Views

• DBA_MINING_MODEL_VIEWS provides a description of all the model views in the
database.

• USER_MINING_MODEL_VIEWS provides a description of the user's own model views.
This view does not display the OWNER column.

Column Datatype NULL Description

OWNER VARCHAR2(128) NOT NULL Owner of the model view

MODEL_NAME VARCHAR2(128) NOT NULL Name of the model to which model views
belongs

VIEW_NAME VARCHAR2(128) NOT NULL Name of the model view

VIEW_TYPE VARCHAR2(128) – Type of the model view

Related Topics

• DBA_MINING_MODEL_VIEWS

• USER_MINING_MODEL_VIEWS

See Also:

"USER_MINING_MODEL_VIEWS" in Oracle Data Mining User’s Guide

Chapter 37
ALL_MINING_MODEL_VIEWS

37-6

37.6 ALL_MINING_MODEL_XFORMS
ALL_MINING_MODEL_XFORMS describes the user-specified transformations embedded in
all models accessible to the user.

Related Views

• DBA_MINING_MODEL_XFORMS describes the user-specified transformations
embedded in all models accessible in the system.

• USER_MINING_MODEL_XFORMS describes the user-specified transformations
embedded with the user's own models. This view does not display the OWNER
column.

Column Datatype NULL Description

OWNER VARCHAR2(128) NOT NULL Name of the model owner

MODEL_NAME VARCHAR2(128) NOT NULL Name of the model

ATTRIBUTE_NAME VARCHAR2(128) Name of the attribute used in the
transformation

ATTRIBUTE_SUBNAME VARCHAR2(4000) Subname of the attribute used in the
transformation

ATTRIBUTE_SPEC VARCHAR2(4000) Attribute specification provided to model
training

EXPRESSION CLOB Transformation expression provided to model
training

REVERSE VARCHAR2(3) Indicates whether the specified transformation
is a reverse transformation (YES) or a forward
expression (NO)

Related Topics

• DBA_MINING_MODEL_XFORMS

• USER_MINING_MODEL_XFORMS

Chapter 37
ALL_MINING_MODEL_XFORMS

37-7

38
SQL Scoring Functions

Data Mining functions are single-row functions that use Oracle Data Mining to score
data. The functions can apply a mining model schema object to the data, or they can
dynamically mine the data by executing an analytic clause.

• CLUSTER_DETAILS

• CLUSTER_DISTANCE

• CLUSTER_ID

• CLUSTER_PROBABILITY

• CLUSTER_SET

• FEATURE_COMPARE

• FEATURE_DETAILS

• FEATURE_ID

• FEATURE_SET

• FEATURE_VALUE

• ORA_DM_PARTITION_NAME

• PREDICTION

• PREDICTION_BOUNDS

• PREDICTION_COST

• PREDICTION_DETAILS

• PREDICTION_PROBABILITY

• PREDICTION_SET

38.1 CLUSTER_DETAILS
Syntax

cluster_details::=

CLUSTER_DETAILS (

schema .

model

, cluster_id

, topN

DESC

ASC

ABS

mining_attribute_clause)

38-1

Analytic Syntax

cluster_details_analytic::=

CLUSTER_DETAILS (INTO n

, cluster_id

, topN

DESC

ASC

ABS

mining_attribute_clause) OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

CLUSTER_DETAILS returns cluster details for each row in the selection. The return value
is an XML string that describes the attributes of the highest probability cluster or the
specified cluster_id.

Chapter 38
CLUSTER_DETAILS

38-2

topN

If you specify a value for topN, the function returns the N attributes that most influence
the cluster assignment (the score). If you do not specify topN, the function returns the
5 most influential attributes.

DESC, ASC, or ABS

The returned attributes are ordered by weight. The weight of an attribute expresses
its positive or negative impact on cluster assignment. A positive weight indicates an
increased likelihood of assignment. A negative weight indicates a decreased likelihood
of assignment.

By default, CLUSTER_DETAILS returns the attributes with the highest positive weights
(DESC). If you specify ASC, the attributes with the highest negative weights are returned.
If you specify ABS, the attributes with the greatest weights, whether negative or
positive, are returned. The results are ordered by absolute value from highest to
lowest. Attributes with a zero weight are not included in the output.

Syntax Choice

CLUSTER_DETAILS can score the data in one of two ways: It can apply a mining model
object to the data, or it can dynamically mine the data by executing an analytic clause
that builds and applies one or more transient mining models. Choose Syntax or
Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a clustering model.

• Analytic Syntax — Use the analytic syntax to score the data without a
pre-defined model. Include INTO n, where n is the number of clusters to
compute, and mining_analytic_clause, which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

The syntax of the CLUSTER_DETAILS function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause".)

See Also:

• Oracle Data Mining User's Guide for information about scoring.

• Oracle Data Mining Concepts for information about clustering.

Chapter 38
CLUSTER_DETAILS

38-3

Note:

The following examples are excerpted from the Data Mining sample
programs. For more information about the sample programs, see Appendix A
in Oracle Data Mining User's Guide.

Example

This example lists the attributes that have the greatest impact (more that 20%
probability) on cluster assignment for customer ID 100955. The query invokes
the CLUSTER_DETAILS and CLUSTER_SET functions, which apply the clustering model
em_sh_clus_sample.

SELECT S.cluster_id, probability prob,
 CLUSTER_DETAILS(em_sh_clus_sample, S.cluster_id, 5 USING T.*) det
FROM
 (SELECT v.*, CLUSTER_SET(em_sh_clus_sample, NULL, 0.2 USING *) pset
 FROM mining_data_apply_v v
 WHERE cust_id = 100955) T,
 TABLE(T.pset) S
ORDER BY 2 DESC;

CLUSTER_ID PROB DET
---------- -----

 14 .6761 <Details algorithm="Expectation Maximization" cluster="14">
 <Attribute name="AGE" actualValue="51" weight=".676" rank="1"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".557" rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".412" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".171" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1"
weight="-.003"rank="5"/>
 </Details>

 3 .3227 <Details algorithm="Expectation Maximization" cluster="3">
 <Attribute name="YRS_RESIDENCE" actualValue="3" weight=".323" rank="1"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".265" rank="2"/>
 <Attribute name="EDUCATION" actualValue="HS-grad" weight=".172" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".125" rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Crafts" weight=".055" rank="5"/>
 </Details>

Analytic Example

This example divides the customer database into four segments based on common
characteristics. The clustering functions compute the clusters and return the score
without a predefined clustering model.

SELECT * FROM (
 SELECT cust_id,
 CLUSTER_ID(INTO 4 USING *) OVER () cls,
 CLUSTER_DETAILS(INTO 4 USING *) OVER () cls_details
 FROM mining_data_apply_v)
WHERE cust_id <= 100003
ORDER BY 1;

CUST_ID CLS CLS_DETAILS
------- --- ---

Chapter 38
CLUSTER_DETAILS

38-4

 100001 5 <Details algorithm="K-Means Clustering" cluster="5">
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".349" rank="1"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="0" weight=".33" rank="2"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="G: 130\,000 - 149\,999"
weight=".291"
 rank="3"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".268" rank="4"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".179" rank="5"/>
 </Details>

 100002 6 <Details algorithm="K-Means Clustering" cluster="6">
 <Attribute name="CUST_GENDER" actualValue="F" weight=".945" rank="1"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="NeverM" weight=".856" rank="2"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".468" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".012" rank="4"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="L: 300\,000 and above" weight=".009"
 rank="5"/>
 </Details>

 100003 7 <Details algorithm="K-Means Clustering" cluster="7">
 <Attribute name="CUST_MARITAL_STATUS" actualValue="NeverM" weight=".862" rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".423" rank="2"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="0" weight=".113" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".007" rank="4"/>
 <Attribute name="CUST_ID" actualValue="100003" weight=".006" rank="5"/>
 </Details>

38.2 CLUSTER_DISTANCE
Syntax

cluster_distance::=

CLUSTER_DISTANCE (

schema .

model

, cluster_id

mining_attribute_clause)

Analytic Syntax

cluster_distance_analytic::=

CLUSTER_DISTANCE (INTO n

, cluster_id

mining_attribute_clause)

OVER (mining_analytic_clause)

Chapter 38
CLUSTER_DISTANCE

38-5

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

CLUSTER_DISTANCE returns a cluster distance for each row in the selection. The cluster
distance is the distance between the row and the centroid of the highest probability
cluster or the specified cluster_id. The distance is returned as BINARY_DOUBLE.

Syntax Choice

CLUSTER_DISTANCE can score the data in one of two ways: It can apply a mining
model object to the data, or it can dynamically mine the data by executing an analytic
clause that builds and applies one or more transient mining models. Choose Syntax or
Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a clustering model.

• Analytic Syntax — Use the analytic syntax to score the data without a
pre-defined model. Include INTO n, where n is the number of clusters to
compute, and mining_analytic_clause, which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

The syntax of the CLUSTER_DISTANCE function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, this data is also

Chapter 38
CLUSTER_DISTANCE

38-6

used for building the transient models. The mining_attribute_clause behaves as
described for the PREDICTION function. (See "mining_attribute_clause".)

See Also:

• Oracle Data Mining User's Guide for information about scoring.

• Oracle Data Mining Concepts for information about clustering.

Note:

The following example is excerpted from the Data Mining sample programs.
For more information about the sample programs, see Appendix A in Oracle
Data Mining User's Guide.

Example

This example finds the 10 rows that are most anomalous as measured by their
distance from their nearest cluster centroid.

SELECT cust_id
 FROM (
 SELECT cust_id,
 rank() over
 (order by CLUSTER_DISTANCE(km_sh_clus_sample USING *) desc) rnk
 FROM mining_data_apply_v)
 WHERE rnk <= 11
 ORDER BY rnk;

 CUST_ID

 100579
 100050
 100329
 100962
 101251
 100179
 100382
 100713
 100629
 100787
 101478

38.3 CLUSTER_ID
Syntax

cluster_id::=

CLUSTER_ID (

schema .

model mining_attribute_clause)

Chapter 38
CLUSTER_ID

38-7

Analytic Syntax

cluster_id_analytic::=

CLUSTER_ID (INTO n mining_attribute_clause) OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

CLUSTER_ID returns the identifier of the highest probability cluster for each row in the
selection. The cluster identifier is returned as an Oracle NUMBER.

Syntax Choice

CLUSTER_ID can score the data in one of two ways: It can apply a mining model object
to the data, or it can dynamically mine the data by executing an analytic clause that
builds and applies one or more transient mining models. Choose Syntax or Analytic
Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a clustering model.

• Analytic Syntax — Use the analytic syntax to score the data without a
pre-defined model. Include INTO n, where n is the number of clusters to
compute, and mining_analytic_clause, which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

Chapter 38
CLUSTER_ID

38-8

The syntax of the CLUSTER_ID function can use an optional GROUPING hint when scoring
a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause".)

See Also:

• Oracle Data Mining User's Guide for information about scoring.

• Oracle Data Mining Concepts for information about clustering.

Note:

The following examples are excerpted from the Data Mining sample
programs. For more information about the sample programs, see Appendix A
in Oracle Data Mining User's Guide.

Example

The following example lists the clusters into which the customers in
mining_data_apply_v have been grouped.

SELECT CLUSTER_ID(km_sh_clus_sample USING *) AS clus, COUNT(*) AS cnt
 FROM mining_data_apply_v
 GROUP BY CLUSTER_ID(km_sh_clus_sample USING *)
 ORDER BY cnt DESC;

 CLUS CNT
---------- ----------
 2 580
 10 216
 6 186
 8 115
 19 110
 12 101
 18 81
 16 39
 17 38
 14 34

Analytic Example

This example divides the customer database into four segments based on common
characteristics. The clustering functions compute the clusters and return the score
without a predefined clustering model.

SELECT * FROM (
 SELECT cust_id,
 CLUSTER_ID(INTO 4 USING *) OVER () cls,

Chapter 38
CLUSTER_ID

38-9

 CLUSTER_DETAILS(INTO 4 USING *) OVER () cls_details
 FROM mining_data_apply_v)
WHERE cust_id <= 100003
ORDER BY 1;

CUST_ID CLS CLS_DETAILS
------- --- ---
 100001 5 <Details algorithm="K-Means Clustering" cluster="5">
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".349" rank="1"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="0" weight=".33" rank="2"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="G: 130\,000 - 149\,999"
 weight=".291" rank="3"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".268" rank="4"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".179" rank="5"/>
 </Details>

 100002 6 <Details algorithm="K-Means Clustering" cluster="6">
 <Attribute name="CUST_GENDER" actualValue="F" weight=".945" rank="1"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="NeverM" weight=".856" rank="2"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".468" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".012" rank="4"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="L: 300\,000 and above"
 weight=".009" rank="5"/>
 </Details>

 100003 7 <Details algorithm="K-Means Clustering" cluster="7">
 <Attribute name="CUST_MARITAL_STATUS" actualValue="NeverM" weight=".862" rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".423" rank="2"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="0" weight=".113" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".007" rank="4"/>
 <Attribute name="CUST_ID" actualValue="100003" weight=".006" rank="5"/>
 </Details>

38.4 CLUSTER_PROBABILITY
Syntax

cluster_probability::=

CLUSTER_PROBABILITY (

schema .

model

, cluster_id

mining_attribute_clause)

Analytic Syntax

cluster_prob_analytic::=

CLUSTER_PROBABILITY (INTO n

, cluster_id

mining_attribute_clause)

OVER (mining_analytic_clause)

Chapter 38
CLUSTER_PROBABILITY

38-10

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

CLUSTER_PROBABILITY returns a probability for each row in the selection. The
probability refers to the highest probability cluster or to the specified cluster_id. The
cluster probability is returned as BINARY_DOUBLE.

Syntax Choice

CLUSTER_PROBABILITY can score the data in one of two ways: It can apply a mining
model object to the data, or it can dynamically mine the data by executing an analytic
clause that builds and applies one or more transient mining models. Choose Syntax or
Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a clustering model.

• Analytic Syntax — Use the analytic syntax to score the data without a
pre-defined model. Include INTO n, where n is the number of clusters to
compute, and mining_analytic_clause, which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

The syntax of the CLUSTER_PROBABILITY function can use an optional GROUPING hint
when scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are

Chapter 38
CLUSTER_PROBABILITY

38-11

also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause".)

See Also:

• Oracle Data Mining User's Guide for information about scoring.

• Oracle Data Mining Concepts for information about clustering.

Note:

The following example is excerpted from the Data Mining sample programs.
For more information about the sample programs, see Appendix A in Oracle
Data Mining User's Guide.

Example

The following example lists the ten most representative customers, based on
likelihood, of cluster 2.

SELECT cust_id
 FROM (SELECT cust_id, rank() OVER (ORDER BY prob DESC, cust_id) rnk_clus2
 FROM (SELECT cust_id, CLUSTER_PROBABILITY(km_sh_clus_sample, 2 USING *) prob
 FROM mining_data_apply_v))
WHERE rnk_clus2 <= 10
ORDER BY rnk_clus2;

 CUST_ID

 100256
 100988
 100889
 101086
 101215
 100390
 100985
 101026
 100601
 100672

38.5 CLUSTER_SET
Syntax

cluster_set::=

CLUSTER_SET (

schema .

model

, topN

, cutoff

mining_attribute_clause)

Chapter 38
CLUSTER_SET

38-12

Analytic Syntax

cluster_set_analytic::=

CLUSTER_SET (INTO n

, topN

, cutoff

mining_attribute_clause)

OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

CLUSTER_SET returns a set of cluster ID and probability pairs for each row in the
selection. The return value is a varray of objects with field names CLUSTER_ID
and PROBABILITY. The cluster identifier is an Oracle NUMBER; the probability is
BINARY_DOUBLE.

topN and cutoff

You can specify topN and cutoff to limit the number of clusters returned by the
function. By default, both topN and cutoff are null and all clusters are returned.

• topN is the N most probable clusters. If multiple clusters share the Nth probability,
then the function chooses one of them.

Chapter 38
CLUSTER_SET

38-13

• cutoff is a probability threshold. Only clusters with probability greater than or
equal to cutoff are returned. To filter by cutoff only, specify NULL for topN.

To return up to the N most probable clusters that are greater than or equal to cutoff,
specify both topN and cutoff.

Syntax Choice

CLUSTER_SET can score the data in one of two ways: It can apply a mining model object
to the data, or it can dynamically mine the data by executing an analytic clause that
builds and applies one or more transient mining models. Choose Syntax or Analytic
Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a clustering model.

• Analytic Syntax — Use the analytic syntax to score the data without a
pre-defined model. Include INTO n, where n is the number of clusters to
compute, and mining_analytic_clause, which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

The syntax of the CLUSTER_SET function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause".)

See Also:

• Oracle Data Mining User's Guide for information about scoring.

• Oracle Data Mining Concepts for information about clustering.

Note:

The following example is excerpted from the Data Mining sample programs.
For more information about the sample programs, see Appendix A in Oracle
Data Mining User's Guide.

Example

This example lists the attributes that have the greatest impact (more that 20%
probability) on cluster assignment for customer ID 100955. The query invokes
the CLUSTER_DETAILS and CLUSTER_SET functions, which apply the clustering model
em_sh_clus_sample.

SELECT S.cluster_id, probability prob,
 CLUSTER_DETAILS(em_sh_clus_sample, S.cluster_id, 5 USING T.*) det

Chapter 38
CLUSTER_SET

38-14

FROM
 (SELECT v.*, CLUSTER_SET(em_sh_clus_sample, NULL, 0.2 USING *) pset
 FROM mining_data_apply_v v
 WHERE cust_id = 100955) T,
 TABLE(T.pset) S
ORDER BY 2 DESC;

CLUSTER_ID PROB DET
---------- ----- --
 14 .6761 <Details algorithm="Expectation Maximization" cluster="14">
 <Attribute name="AGE" actualValue="51" weight=".676" rank="1"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".557" rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".412" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".171" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1"
weight="-.003"rank="5"/>
 </Details>

 3 .3227 <Details algorithm="Expectation Maximization" cluster="3">
 <Attribute name="YRS_RESIDENCE" actualValue="3" weight=".323" rank="1"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".265" rank="2"/>
 <Attribute name="EDUCATION" actualValue="HS-grad" weight=".172" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".125" rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Crafts" weight=".055" rank="5"/>
 </Details>

38.6 FEATURE_COMPARE
Syntax

feature_compare::=

FEATURE_COMPARE (

schema .

model mining_attribute_clause AND mining_attribute_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

Purpose

The FEATURE_COMPARE function uses a Feature Extraction model to compare two
different documents, including short ones such as keyword phrases or two attribute
lists, for similarity or dissimilarity. The FEATURE_COMPARE function can be used with
Feature Extraction algorithms such as Singular Value Decomposition (SVD), Principal

Chapter 38
FEATURE_COMPARE

38-15

Component Analysis PCA), Non-Negative Matrix Factorization (NMF), and Explicit
Semantic Analysis (ESA). This function is applicable not only to documents, but also to
numeric and categorical data.

The input to the FEATURE_COMPARE function is a single feature model built using
the Feature Extraction algorithms of Oracle Data Mining, such as NMF, SVD, and
ESA. The double USING clause provides a mechanism to compare two different
documents or constant keyword phrases, or any combination of the two, for similarity
or dissimilarity using the extracted features in the model.

The syntax of the FEATURE_COMPARE function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

The mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. See mining_attribute_clause.

See Also:

• Oracle Data Mining User's Guide for information about scoring

• Oracle Data Mining Concepts for information about clustering

Note:

The following examples are excerpted from the Data Mining sample
programs. For more information about the sample programs, see Appendix A
in Oracle Data Mining User's Guide.

Examples

An ESA model is built against a 2005 Wiki dataset rendering over 200,000 features.
The documents are mined as text and the document titles are considered as the
Feature IDs.

The examples show the FEATURE_COMPARE function with the ESA algorithm, which
compares a similar set of texts and then a dissimilar set of texts.

Similar texts

SELECT 1-FEATURE_COMPARE(esa_wiki_mod USING 'There are several PGA tour golfers from
South Africa' text AND USING 'Nick Price won the 2002 Mastercard Colonial Open' text)
similarity FROM DUAL;

SIMILARITY

 .258

Chapter 38
FEATURE_COMPARE

38-16

The output metric shows the results of a distance calculation. Therefore, a smaller
number represents more similar texts. So 1 minus the distance in the queries
represents a document similarity metric.

Dissimilar texts

SELECT 1-FEATURE_COMPARE(esa_wiki_mod USING 'There are several PGA tour golfers from
South Africa' text AND USING 'John Elway played quarterback for the Denver Broncos'
text) similarity FROM DUAL;

SIMILARITY

 .007

38.7 FEATURE_DETAILS
Syntax

feature_details::=

FEATURE_DETAILS (

schema .

model

, feature_id

, topN

DESC

ASC

ABS

mining_attribute_clause)

Analytic Syntax

feature_details_analytic::=

FEATURE_DETAILS (INTO n

, feature_id

, topN

DESC

ASC

ABS

mining_attribute_clause) OVER (mining_analytic_clause)

Chapter 38
FEATURE_DETAILS

38-17

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

FEATURE_DETAILS returns feature details for each row in the selection. The return value
is an XML string that describes the attributes of the highest value feature or the
specified feature_id.

topN

If you specify a value for topN, the function returns the N attributes that most influence
the feature value. If you do not specify topN, the function returns the 5 most influential
attributes.

DESC, ASC, or ABS

The returned attributes are ordered by weight. The weight of an attribute expresses its
positive or negative impact on the value of the feature. A positive weight indicates a
higher feature value. A negative weight indicates a lower feature value.

By default, FEATURE_DETAILS returns the attributes with the highest positive weight
(DESC). If you specify ASC, the attributes with the highest negative weight are returned.
If you specify ABS, the attributes with the greatest weight, whether negative or positive,
are returned. The results are ordered by absolute value from highest to lowest.
Attributes with a zero weight are not included in the output.

Syntax Choice

FEATURE_DETAILS can score the data in one of two ways: It can apply a mining model
object to the data, or it can dynamically mine the data by executing an analytic clause

Chapter 38
FEATURE_DETAILS

38-18

that builds and applies one or more transient mining models. Choose Syntax or
Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a feature extraction model.

• Analytic Syntax — Use the analytic syntax to score the data without a
pre-defined model. Include INTO n, where n is the number of features to
extract, and mining_analytic_clause, which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

The syntax of the FEATURE_DETAILS function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause".)

See Also:

• Oracle Data Mining User's Guide for information about scoring.

• Oracle Data Mining Concepts for information about feature extraction.

Note:

The following examples are excerpted from the Data Mining sample
programs. For more information about the sample programs, see Appendix A
in Oracle Data Mining User's Guide.

Example

This example uses the feature extraction model nmf_sh_sample to score the data.
The query returns the three features that best represent customer 100002 and the
attributes that most affect those features.

SELECT S.feature_id fid, value val,
 FEATURE_DETAILS(nmf_sh_sample, S.feature_id, 5 using T.*) det
 FROM
 (SELECT v.*, FEATURE_SET(nmf_sh_sample, 3 USING *) fset
 FROM mining_data_apply_v v
 WHERE cust_id = 100002) T,
 TABLE(T.fset) S
ORDER BY 2 DESC;

 FID VAL DET
---- ------ --
 5 3.492 <Details algorithm="Non-Negative Matrix Factorization" feature="5">
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".077" rank="1"/>
 <Attribute name="OCCUPATION" actualValue="Prof." weight=".062" rank="2"/>

Chapter 38
FEATURE_DETAILS

38-19

 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight=".001" rank="3"/>
 <Attribute name="OS_DOC_SET_KANJI" actualValue="0" weight="0" rank="4"/>
 <Attribute name="YRS_RESIDENCE" actualValue="4" weight="0" rank="5"/>
 </Details>
 3 1.928 <Details algorithm="Non-Negative Matrix Factorization" feature="3">
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".239" rank="1"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="L: 300\,000 and above"
 weight=".051" rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".02" rank="3"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".006" rank="4"/>
 <Attribute name="AGE" actualValue="41" weight=".004" rank="5"/>
 </Details>
 8 .816 <Details algorithm="Non-Negative Matrix Factorization" feature="8">
 <Attribute name="EDUCATION" actualValue="Bach." weight=".211" rank="1"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="NeverM" weight=".143" rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".137" rank="3"/>
 <Attribute name="CUST_GENDER" actualValue="F" weight=".044" rank="4"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".032" rank="5"/>
 </Details>

Analytic Example

This example dynamically maps customer attributes into six features and returns the
feature mapping for customer 100001.

SELECT feature_id, value
 FROM (
 SELECT cust_id, feature_set(INTO 6 USING *) OVER () fset
 FROM mining_data_apply_v),
 TABLE (fset)
 WHERE cust_id = 100001
 ORDER BY feature_id;

FEATURE_ID VALUE
---------- --------
 1 2.670
 2 .000
 3 1.792
 4 .000
 5 .000
 6 3.379

38.8 FEATURE_ID
Syntax

feature_id::=

FEATURE_ID (

schema .

model mining_attribute_clause)

Chapter 38
FEATURE_ID

38-20

Analytic Syntax

feature_id_analytic::=

FEATURE_ID (INTO n mining_attribute_clause) OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

FEATURE_ID returns the identifier of the highest value feature for each row in the
selection. The feature identifier is returned as an Oracle NUMBER.

Syntax Choice

FEATURE_ID can score the data in one of two ways: It can apply a mining model object
to the data, or it can dynamically mine the data by executing an analytic clause that
builds and applies one or more transient mining models. Choose Syntax or Analytic
Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a feature extraction model.

• Analytic Syntax — Use the analytic syntax to score the data without a
pre-defined model. Include INTO n, where n is the number of features to
extract, and mining_analytic_clause, which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

Chapter 38
FEATURE_ID

38-21

The syntax of the FEATURE_ID function can use an optional GROUPING hint when scoring
a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause".)

See Also:

• Oracle Data Mining User's Guide for information about scoring.

• Oracle Data Mining Concepts for information about feature extraction.

Note:

The following example is excerpted from the Data Mining sample programs.
For more information about the sample programs, see Appendix A in Oracle
Data Mining User's Guide.

Example

This example lists the features and corresponding count of customers in a data set.

SELECT FEATURE_ID(nmf_sh_sample USING *) AS feat, COUNT(*) AS cnt
 FROM nmf_sh_sample_apply_prepared
 GROUP BY FEATURE_ID(nmf_sh_sample USING *)
 ORDER BY cnt DESC, feat DESC;

 FEAT CNT
---------- ----------
 7 1443
 2 49
 3 6
 6 1
 1 1

38.9 FEATURE_SET
Syntax

feature_set::=

FEATURE_SET (

schema .

model

, topN

, cutoff

mining_attribute_clause)

Chapter 38
FEATURE_SET

38-22

Analytic Syntax

feature_set_analytic::=

FEATURE_SET (INTO n

, topN

, cutoff

mining_attribute_clause)

OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

FEATURE_SET returns a set of feature ID and feature value pairs for each row in the
selection. The return value is a varray of objects with field names FEATURE_ID and
VALUE. The data type of both fields is NUMBER.

topN and cutoff

You can specify topN and cutoff to limit the number of features returned by the
function. By default, both topN and cutoff are null and all features are returned.

• topN is the N highest value features. If multiple features have the Nth value, then
the function chooses one of them.

Chapter 38
FEATURE_SET

38-23

• cutoff is a value threshold. Only features that are greater than or equal to cutoff
are returned. To filter by cutoff only, specify NULL for topN.

To return up to N features that are greater than or equal to cutoff, specify both topN
and cutoff.

Syntax Choice

FEATURE_SET can score the data in one of two ways: It can apply a mining model object
to the data, or it can dynamically mine the data by executing an analytic clause that
builds and applies one or more transient mining models. Choose Syntax or Analytic
Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a feature extraction model.

• Analytic Syntax — Use the analytic syntax to score the data without a
pre-defined model. Include INTO n, where n is the number of features to
extract, and mining_analytic_clause, which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

The syntax of the FEATURE_SET function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause".)

See Also:

• Oracle Data Mining User's Guide for information about scoring.

• Oracle Data Mining Concepts for information about feature extraction.

Note:

The following example is excerpted from the Data Mining sample programs.
For more information about the sample programs, see Appendix A in Oracle
Data Mining User's Guide.

Example

This example lists the top features corresponding to a given customer record and
determines the top attributes for each feature (based on coefficient > 0.25).

WITH
feat_tab AS (
SELECT F.feature_id fid,
 A.attribute_name attr,

Chapter 38
FEATURE_SET

38-24

 TO_CHAR(A.attribute_value) val,
 A.coefficient coeff
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_NMF('nmf_sh_sample')) F,
 TABLE(F.attribute_set) A
 WHERE A.coefficient > 0.25
),
feat AS (
SELECT fid,
 CAST(COLLECT(Featattr(attr, val, coeff))
 AS Featattrs) f_attrs
 FROM feat_tab
GROUP BY fid
),
cust_10_features AS (
SELECT T.cust_id, S.feature_id, S.value
 FROM (SELECT cust_id, FEATURE_SET(nmf_sh_sample, 10 USING *) pset
 FROM nmf_sh_sample_apply_prepared
 WHERE cust_id = 100002) T,
 TABLE(T.pset) S
)
SELECT A.value, A.feature_id fid,
 B.attr, B.val, B.coeff
 FROM cust_10_features A,
 (SELECT T.fid, F.*
 FROM feat T,
 TABLE(T.f_attrs) F) B
 WHERE A.feature_id = B.fid
ORDER BY A.value DESC, A.feature_id ASC, coeff DESC, attr ASC, val ASC;

 VALUE FID ATTR VAL COEFF
-------- ---- ------------------------- ------------------------ -------
 6.8409 7 YRS_RESIDENCE 1.3879
 6.8409 7 BOOKKEEPING_APPLICATION .4388
 6.8409 7 CUST_GENDER M .2956
 6.8409 7 COUNTRY_NAME United States of America .2848
 6.4975 3 YRS_RESIDENCE 1.2668
 6.4975 3 BOOKKEEPING_APPLICATION .3465
 6.4975 3 COUNTRY_NAME United States of America .2927
 6.4886 2 YRS_RESIDENCE 1.3285
 6.4886 2 CUST_GENDER M .2819
 6.4886 2 PRINTER_SUPPLIES .2704
 6.3953 4 YRS_RESIDENCE 1.2931
 5.9640 6 YRS_RESIDENCE 1.1585
 5.9640 6 HOME_THEATER_PACKAGE .2576
 5.2424 5 YRS_RESIDENCE 1.0067
 2.4714 8 YRS_RESIDENCE .3297
 2.3559 1 YRS_RESIDENCE .2768
 2.3559 1 FLAT_PANEL_MONITOR .2593

38.10 FEATURE_VALUE
Syntax

feature_value::=

FEATURE_VALUE (

schema .

model

, feature_id

mining_attribute_clause)

Chapter 38
FEATURE_VALUE

38-25

Analytic Syntax

feature_value_analytic::=

FEATURE_VALUE (INTO n

, feature_id

mining_attribute_clause)

OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

FEATURE_VALUE returns a feature value for each row in the selection. The value refers
to the highest value feature or to the specified feature_id. The feature value is
returned as BINARY_DOUBLE.

Syntax Choice

FEATURE_VALUE can score the data in one of two ways: It can apply a mining model
object to the data, or it can dynamically mine the data by executing an analytic clause
that builds and applies one or more transient mining models. Choose Syntax or
Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a feature extraction model.

Chapter 38
FEATURE_VALUE

38-26

• Analytic Syntax — Use the analytic syntax to score the data without a
pre-defined model. Include INTO n, where n is the number of features to
extract, and mining_analytic_clause, which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

The syntax of the FEATURE_VALUE function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, this data is also
used for building the transient models. The mining_attribute_clause behaves as
described for the PREDICTION function. (See "mining_attribute_clause".)

See Also:

• Oracle Data Mining User's Guide for information about scoring.

• Oracle Data Mining Concepts for information about feature extraction.

Note:

The following example is excerpted from the Data Mining sample programs.
For more information about the sample programs, see Appendix A in Oracle
Data Mining User's Guide.

Example

The following example lists the customers that correspond to feature 3, ordered by
match quality.

SELECT *
 FROM (SELECT cust_id, FEATURE_VALUE(nmf_sh_sample, 3 USING *) match_quality
 FROM nmf_sh_sample_apply_prepared
 ORDER BY match_quality DESC)
 WHERE ROWNUM < 11;

 CUST_ID MATCH_QUALITY
---------- -------------
 100210 19.4101627
 100962 15.2482251
 101151 14.5685197
 101499 14.4186292
 100363 14.4037396
 100372 14.3335148
 100982 14.1716545
 101039 14.1079914
 100759 14.0913761
 100953 14.0799737

Chapter 38
FEATURE_VALUE

38-27

38.11 ORA_DM_PARTITION_NAME
Syntax

ORA_DM_PARTITION_NAME (

schema .

model mining_attribute_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

Purpose

ORA_DM_PARTITION_NAME is a single row function that works along with other existing
functions. This function returns the name of the partition associated with the input row.
When ORA_DM_PARTITION_NAME is used on a non-partitioned model, the result is NULL.

The syntax of the ORA_DM_PARTITION_NAME function can use an optional GROUPING hint
when scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

The mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. See mining_attribute_clause.

See Also:

• Oracle Data Mining User's Guide for information about scoring

• Oracle Data Mining Concepts for information about clustering

Note:

The following examples are excerpted from the Data Mining sample
programs. For more information about the sample programs, see Appendix A
in Oracle Data Mining User's Guide.

Chapter 38
ORA_DM_PARTITION_NAME

38-28

Example

SELECT prediction(mymodel using *) pred, ora_dm_partition_name(mymodel
USING *) pname FROM customers;

38.12 PREDICTION
Syntax

prediction::=

PREDICTION (

grouping_hint schema .

model

cost_matrix_clause

mining_attribute_clause)

Analytic Syntax

prediction_analytic::=

cost_matrix_clause::=

COST

MODEL

AUTO

(class_value

,

) VALUES ((cost_value

,

)

,

)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

Chapter 38
PREDICTION

38-29

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

PREDICTION returns a prediction for each row in the selection. The data type of
the returned prediction depends on whether the function performs Regression,
Classification, or Anomaly Detection.

• Regression: Returns the expected target value for each row. The data type of the
return value is the data type of the target.

• Classification: Returns the most probable target class (or lowest cost target
class, if costs are specified) for each row. The data type of the return value is
the data type of the target.

• Anomaly Detection: Returns 1 or 0 for each row. Typical rows are classified as 1.
Rows that differ significantly from the rest of the data are classified as 0.

cost_matrix_clause

Costs are a biasing factor for minimizing the most harmful kinds of misclassifications.
You can specify cost_matrix_clause for Classification or Anomaly Detection. Costs
are not relevant for Regression. The cost_matrix_clause behaves as described for
"PREDICTION COST".

Syntax Choice

PREDICTION can score data in one of two ways: It can apply a mining model object
to the data, or it can dynamically score the data by executing an analytic clause that
builds and applies one or more transient mining models. Choose Syntax or Analytic
Syntax:

• Syntax: Use this syntax to score the data with a pre-defined model. Supply the
name of a model that performs Classification, Regression, or Anomaly Detection.

• Analytic Syntax: Use the analytic syntax to score the data without a
pre-defined model. The analytic syntax uses mining_analytic_clause ,
which specifies if the data should be partitioned for multiple model builds.
The mining_analytic_clause supports a query_partition_clause and an
order_by_clause. (See "analytic_clause::=".)

– For Regression, specify FOR expr, where expr is an expression that identifies a
target column that has a numeric data type.

– For Classification, specify FOR expr, where expr is an expression that identifies
a target column that has a character data type.

Chapter 38
PREDICTION

38-30

– For Anomaly Detection, specify the keywords OF ANOMALY.

The syntax of the PREDICTION function can use an optional GROUPING hint when scoring
a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring.

• If you specify USING *, all the relevant attributes present in the input row are used.

• If you invoke the function with the analytic syntax, the mining_attribute_clause
is used both for building the transient models and for scoring.

• It you invoke the function with a pre-defined model, the mining_attribute_clause
should include all or some of the attributes that were used to create the model.
The following conditions apply:

– If mining_attribute_clause includes an attribute with the same name but a
different data type from the one that was used to create the model, then the
data type is converted to the type expected by the model.

– If you specify more attributes for scoring than were used to create the model,
then the extra attributes are silently ignored.

– If you specify fewer attributes for scoring than were used to create the model,
then scoring is performed on a best-effort basis.

See Also:

• Oracle Data Mining User's Guide for information about scoring.

• Oracle Data Mining Concepts for information about predictive data
mining.

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
return value of PREDICTION when it is a character value

Note:

The following examples are excerpted from the Data Mining sample
programs. For more information about the sample programs, see Appendix A
in Oracle Data Mining User's Guide.

Example

In this example, the model dt_sh_clas_sample predicts the gender and age of
customers who are most likely to use an affinity card (target = 1). The PREDICTION
function takes into account the cost matrix associated with the model and uses marital
status, education, and household size as predictors.

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v

Chapter 38
PREDICTION

38-31

 WHERE PREDICTION(dt_sh_clas_sample COST MODEL
 USING cust_marital_status, education, household_size) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

CUST_GENDER CNT AVG_AGE
------------ ---------- ----------
F 170 38
M 685 42

The cost matrix associated with the model dt_sh_clas_sample is stored in the table
dt_sh_sample_costs. The cost matrix specifies that the misclassification of 1 is 8
times more costly than the misclassification of 0.

SQL> select * from dt_sh_sample_cost;

ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST
------------------- ---------------------- ------------
 0 0 .000000000
 0 1 1.000000000
 1 0 8.000000000
 1 1 .000000000

Analytic Example

In this example, dynamic regression is used to predict the age of customers who are
likely to use an affinity card. The query returns the 3 customers whose predicted age is
most different from the actual. The query includes information about the predictors that
have the greatest influence on the prediction.

SELECT cust_id, age, pred_age, age-pred_age age_diff, pred_det FROM
 (SELECT cust_id, age, pred_age, pred_det,
 RANK() OVER (ORDER BY ABS(age-pred_age) desc) rnk FROM
 (SELECT cust_id, age,
 PREDICTION(FOR age USING *) OVER () pred_age,
 PREDICTION_DETAILS(FOR age ABS USING *) OVER () pred_det
 FROM mining_data_apply_v))
 WHERE rnk <= 3;

CUST_ID AGE PRED_AGE AGE_DIFF PRED_DET
------- ---- -------- -------- --------
--
 100910 80 40.67 39.33 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
weight=".059"
 rank="1"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="2"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".059"
 rank="3"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".059"
 rank="4"/>
 <Attribute name="YRS_RESIDENCE" actualValue="4" weight=".059"
 rank="5"/>
 </Details>

 101285 79 42.18 36.82 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
weight=".059"
 rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".059"

Chapter 38
PREDICTION

38-32

 rank="2"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="Mabsent"
 weight=".059" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Prof." weight=".059"
 rank="5"/>
 </Details>

 100694 77 41.04 35.96 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
weight=".059"
 rank="1"/>
 <Attribute name="EDUCATION" actualValue="< Bach." weight=".059"
 rank="2"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="3"/>
 <Attribute name="CUST_ID" actualValue="100694" weight=".059"
 rank="4"/>
 <Attribute name="COUNTRY_NAME" actualValue="United States of
 America" weight=".059" rank="5"/>
 </Details>

38.13 PREDICTION_BOUNDS
Syntax

PREDICTION_BOUNDS

(

schema .

model

, confidence_level

, class_value

mining_attribute_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

Purpose

PREDICTION_BOUNDS applies a Generalized Linear Model (GLM) to predict a class or a
value for each row in the selection. The function returns the upper and lower bounds of
each prediction in a varray of objects with fields UPPER and LOWER.

GLM can perform either regression or binary classification:

Chapter 38
PREDICTION_BOUNDS

38-33

• The bounds for regression refer to the predicted target value. The data type of
UPPER and LOWER is the data type of the target.

• The bounds for binary classification refer to the probability of either the predicted
target class or the specified class_value. The data type of UPPER and LOWER is
BINARY_DOUBLE.

If the model was built using ridge regression, or if the covariance matrix is found to be
singular during the build, then PREDICTION_BOUNDS returns NULL for both bounds.

confidence_level is a number in the range (0,1). The default value is 0.95. You can
specify class_value while leaving confidence_level at its default by specifying NULL
for confidence_level.

The syntax of the PREDICTION_BOUNDS function can use an optional GROUPING hint
when scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. This clause behaves as described for the PREDICTION function. (Note that the
reference to analytic syntax does not apply.) See "mining_attribute_clause".

See Also:

• Oracle Data Mining User's Guide for information about scoring

• Oracle Data Mining Concepts for information about Generalized Linear
Models

Note:

The following example is excerpted from the Data Mining sample programs.
For more information about the sample programs, see Appendix A in Oracle
Data Mining User's Guide.

Example

The following example returns the distribution of customers whose ages are predicted
with 98% confidence to be greater than 24 and less than 46.

SELECT count(cust_id) cust_count, cust_marital_status
 FROM (SELECT cust_id, cust_marital_status
 FROM mining_data_apply_v
 WHERE PREDICTION_BOUNDS(glmr_sh_regr_sample,0.98 USING *).LOWER > 24 AND
 PREDICTION_BOUNDS(glmr_sh_regr_sample,0.98 USING *).UPPER < 46)
 GROUP BY cust_marital_status;

 CUST_COUNT CUST_MARITAL_STATUS
-------------- --------------------
 46 NeverM
 7 Mabsent
 5 Separ.

Chapter 38
PREDICTION_BOUNDS

38-34

 35 Divorc.
 72 Married

38.14 PREDICTION_COST
Syntax

prediction_cost::=

PREDICTION_COST (

schema .

model

, class

cost_matrix_clause mining_attribute_clause)

Analytic Syntax

prediction_cost_analytic::=

PREDICTION_COST (
OF ANOMALY

FOR expr

, class

cost_matrix_clause

mining_attribute_clause) OVER (mining_analytic_clause)

cost_matrix_clause::=

COST

MODEL

AUTO

(class_value

,

) VALUES ((cost_value

,

)

,

)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

Chapter 38
PREDICTION_COST

38-35

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

PREDICTION_COST returns a cost for each row in the selection. The cost refers to the
lowest cost class or to the specified class. The cost is returned as BINARY_DOUBLE.

PREDICTION_COST can perform classification or anomaly detection. For classification,
the returned cost refers to a predicted target class. For anomaly detection, the
returned cost refers to a classification of 1 (for typical rows) or 0 (for anomalous rows).

You can use PREDICTION_COST in conjunction with the PREDICTION function to obtain
the prediction and the cost of the prediction.

cost_matrix_clause

Costs are a biasing factor for minimizing the most harmful kinds of misclassifications.
For example, false positives might be considered more costly than false negatives.
Costs are specified in a cost matrix that can be associated with the model or defined
inline in a VALUES clause. All classification algorithms can use costs to influence
scoring.

Decision Tree is the only algorithm that can use costs to influence the model build. The
cost matrix used to build a Decision Tree model is also the default scoring cost matrix
for the model.

The following cost matrix table specifies that the misclassification of 1 is five times
more costly than the misclassification of 0.

ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST
------------------- ---------------------- ----------
 0 0 0
 0 1 1
 1 0 5
 1 1 0

In cost_matrix_clause:

• COST MODEL indicates that scoring should be performed by taking into account the
scoring cost matrix associated with the model. If the cost matrix does not exist,
then the function returns an error.

• COST MODEL AUTO indicates that the existence of a cost matrix is unknown. If a
cost matrix exists, then the function uses it to return the lowest cost prediction.
Otherwise the function returns the highest probability prediction.

Chapter 38
PREDICTION_COST

38-36

• The VALUES clause specifies an inline cost matrix for class_value. For example,
you could specify that the misclassification of 1 is five times more costly than the
misclassification of 0 as follows:

 PREDICTION (nb_model COST (0,1) VALUES ((0, 1),(1, 5)) USING *)

If a model that has a scoring cost matrix is invoked with an inline cost matrix, then
the inline costs are used.

See Also:

Oracle Data Mining User's Guide for more information about cost-
sensitive prediction.

Syntax Choice

PREDICTION_COST can score the data in one of two ways: It can apply a mining model
object to the data, or it can dynamically mine the data by executing an analytic clause
that builds and applies one or more transient mining models. Choose Syntax or
Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a model that performs classification or anomaly detection.

• Analytic Syntax — Use the analytic syntax to score the data without
a pre-defined model. The analytic syntax uses mining_analytic_clause ,
which specifies if the data should be partitioned for multiple model builds.
The mining_analytic_clause supports a query_partition_clause and an
order_by_clause. (See "analytic_clause::=".)

– For classification, specify FOR expr, where expr is an expression that identifies
a target column that has a character data type.

– For anomaly detection, specify the keywords OF ANOMALY.

The syntax of the PREDICTION_COST function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause".)

See Also:

• Oracle Data Mining User's Guide for information about scoring.

• Oracle Data Mining Concepts for information about classification with
costs

Chapter 38
PREDICTION_COST

38-37

Note:

The following example is excerpted from the Data Mining sample programs.
For more information about the sample programs, see Appendix A in Oracle
Data Mining User's Guide.

Example

This example predicts the ten customers in Italy who would respond to the least
expensive sales campaign (offering an affinity card).

SELECT cust_id
FROM (SELECT cust_id,rank()
 OVER (ORDER BY PREDICTION_COST(DT_SH_Clas_sample, 1 COST MODEL USING *)
 ASC, cust_id) rnk
 FROM mining_data_apply_v
 WHERE country_name = 'Italy')
 WHERE rnk <= 10
 ORDER BY rnk;

 CUST_ID

 100081
 100179
 100185
 100324
 100344
 100554
 100662
 100733
 101250
 101306

38.15 PREDICTION_DETAILS
Syntax

prediction_details::=

PREDICTION_DETAILS (

schema .

model

, class_value

, topN

DESC

ASC

ABS

mining_attribute_clause)

Chapter 38
PREDICTION_DETAILS

38-38

Analytic Syntax

prediction_details_analytic::=

PREDICTION_DETAILS (
OF ANOMALY

FOR expr

, class_value

, topN

DESC

ASC

ABS

mining_attribute_clause) OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

PREDICTION_DETAILS returns prediction details for each row in the selection. The return
value is an XML string that describes the attributes of the prediction.

For regression, the returned details refer to the predicted target value. For
classification and anomaly detection, the returned details refer to the highest
probability class or the specified class_value.

Chapter 38
PREDICTION_DETAILS

38-39

topN

If you specify a value for topN, the function returns the N attributes that have the most
influence on the prediction (the score). If you do not specify topN, the function returns
the 5 most influential attributes.

DESC, ASC, or ABS

The returned attributes are ordered by weight. The weight of an attribute expresses
its positive or negative impact on the prediction. For regression, a positive weight
indicates a higher value prediction; a negative weight indicates a lower value
prediction. For classification and anomaly detection, a positive weight indicates a
higher probability prediction; a negative weight indicates a lower probability prediction.

By default, PREDICTION_DETAILS returns the attributes with the highest positive weight
(DESC). If you specify ASC, the attributes with the highest negative weight are returned.
If you specify ABS, the attributes with the greatest weight, whether negative or positive,
are returned. The results are ordered by absolute value from highest to lowest.
Attributes with a zero weight are not included in the output.

Syntax Choice

PREDICTION_DETAILS can score the data in one of two ways: It can apply a mining
model object to the data, or it can dynamically mine the data by executing an analytic
clause that builds and applies one or more transient mining models. Choose Syntax or
Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a model that performs classification, regression, or anomaly detection.

• Analytic Syntax — Use the analytic syntax to score the data without
a pre-defined model. The analytic syntax uses mining_analytic_clause,
which specifies if the data should be partitioned for multiple model builds.
The mining_analytic_clause supports a query_partition_clause and an
order_by_clause. (See "analytic_clause::=".)

– For classification, specify FOR expr, where expr is an expression that identifies
a target column that has a character data type.

– For regression, specify FOR expr, where expr is an expression that identifies a
target column that has a numeric data type.

– For anomaly detection, specify the keywords OF ANOMALY.

The syntax of the PREDICTION_DETAILS function can use an optional GROUPING hint
when scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause".)

Chapter 38
PREDICTION_DETAILS

38-40

See Also:

• Oracle Data Mining User's Guide for information about scoring.

• Oracle Data Mining Concepts for information about predictive data
mining.

Note:

The following examples are excerpted from the Data Mining sample
programs. For more information about the sample programs, see Appendix A
in Oracle Data Mining User's Guide.

Example

This example uses the model svmr_sh_regr_sample to score the data. The query
returns the three attributes that have the greatest influence on predicting a higher
value for customer age.

SELECT PREDICTION_DETAILS(svmr_sh_regr_sample, null, 3 USING *) prediction_details
 FROM mining_data_apply_v
 WHERE cust_id = 100001;

PREDICTION_DETAILS

<Details algorithm="Support Vector Machines">
<Attribute name="CUST_MARITAL_STATUS" actualValue="Widowed" weight=".361" rank="1"/>
<Attribute name="CUST_GENDER" actualValue="F" weight=".14" rank="2"/>
<Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".135" rank="3"/>
</Details>

Analytic Syntax

This example dynamically identifies customers whose age is not typical for the data.
The query returns the attributes that predict or detract from a typical age.

SELECT cust_id, age, pred_age, age-pred_age age_diff, pred_det
 FROM (SELECT cust_id, age, pred_age, pred_det,
 RANK() OVER (ORDER BY ABS(age-pred_age) DESC) rnk
 FROM (SELECT cust_id, age,
 PREDICTION(FOR age USING *) OVER () pred_age,
 PREDICTION_DETAILS(FOR age ABS USING *) OVER () pred_det
 FROM mining_data_apply_v))
 WHERE rnk <= 5;

CUST_ID AGE PRED_AGE AGE_DIFF PRED_DET
------- --- -------- -------- --
 100910 80 40.67 39.33 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
weight=".059"
 rank="1"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="2"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".059"
 rank="3"/>

Chapter 38
PREDICTION_DETAILS

38-41

 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".059"
 rank="4"/>
 <Attribute name="YRS_RESIDENCE" actualValue="4" weight=".059"
 rank="5"/>
 </Details>

 101285 79 42.18 36.82 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
weight=".059"
 rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".059"
 rank="2"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="Mabsent"
 weight=".059" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Prof." weight=".059"
 rank="5"/>
 </Details>

 100694 77 41.04 35.96 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="1"/>
 <Attribute name="EDUCATION" actualValue="< Bach."
weight=".059"
 rank="2"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="3"/>
 <Attribute name="CUST_ID" actualValue="100694" weight=".059"
 rank="4"/>
 <Attribute name="COUNTRY_NAME" actualValue="United States of
 America" weight=".059" rank="5"/>
 </Details>

 100308 81 45.33 35.67 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
weight=".059"
 rank="1"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="2"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".059"
 rank="3"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".059"
 rank="4"/>
 <Attribute name="CUST_GENDER" actualValue="F" weight=".059"
 rank="5"/>
 </Details>

 101256 90 54.39 35.61 <Details algorithm="Support Vector Machines">
 <Attribute name="YRS_RESIDENCE" actualValue="9" weight=".059"
 rank="1"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
weight=".059"
 rank="2"/>
 <Attribute name="EDUCATION" actualValue="< Bach." weight=".059"
 rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="4"/>
 <Attribute name="COUNTRY_NAME" actualValue="United States of
 America" weight=".059" rank="5"/>
 </Details>

Chapter 38
PREDICTION_DETAILS

38-42

38.16 PREDICTION_PROBABILITY
Syntax

prediction_probability::=

PREDICTION_PROBABILITY (

schema .

model

, class

mining_attribute_clause)

Analytic Syntax

prediction_prob_analytic::=

PREDICTION_PROBABILITY (
OF ANOMALY

FOR expr

, class

mining_attribute_clause)

OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Chapter 38
PREDICTION_PROBABILITY

38-43

Purpose

PREDICTION_PROBABILITY returns a probability for each row in the selection. The
probability refers to the highest probability class or to the specified class. The data
type of the returned probability is BINARY_DOUBLE.

PREDICTION_PROBABILITY can perform classification or anomaly detection. For
classification, the returned probability refers to a predicted target class. For anomaly
detection, the returned probability refers to a classification of 1 (for typical rows) or 0
(for anomalous rows).

You can use PREDICTION_PROBABILITY in conjunction with the PREDICTION function to
obtain the prediction and the probability of the prediction.

Syntax Choice

PREDICTION_PROBABILITY can score the data in one of two ways: It can apply a mining
model object to the data, or it can dynamically mine the data by executing an analytic
clause that builds and applies one or more transient mining models. Choose Syntax or
Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a model that performs classification or anomaly detection.

• Analytic Syntax — Use the analytic syntax to score the data without
a pre-defined model. The analytic syntax uses mining_analytic_clause,
which specifies if the data should be partitioned for multiple model builds.
The mining_analytic_clause supports a query_partition_clause and an
order_by_clause. (See "analytic_clause::=".)

– For classification, specify FOR expr, where expr is an expression that identifies
a target column that has a character data type.

– For anomaly detection, specify the keywords OF ANOMALY.

The syntax of the PREDICTION_PROBABILITY function can use an optional GROUPING hint
when scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause".)

See Also:

• Oracle Data Mining User's Guide for information about scoring.

• Oracle Data Mining Concepts for information about predictive data
mining.

Chapter 38
PREDICTION_PROBABILITY

38-44

Note:

The following examples are excerpted from the Data Mining sample
programs. For information about the sample programs, see Appendix A in
Oracle Data Mining User's Guide.

Example

The following example returns the 10 customers living in Italy who are most likely to
use an affinity card.

SELECT cust_id FROM (
 SELECT cust_id
 FROM mining_data_apply_v
 WHERE country_name = 'Italy'
 ORDER BY PREDICTION_PROBABILITY(DT_SH_Clas_sample, 1 USING *)
 DESC, cust_id)
 WHERE rownum < 11;

 CUST_ID

 100081
 100179
 100185
 100324
 100344
 100554
 100662
 100733
 101250
 101306

Analytic Example

This example identifies rows that are most atypical in the data in
mining_data_one_class_v. Each type of marital status is considered separately so
that the most anomalous rows per marital status group are returned.

The query returns three attributes that have the most influence on the determination
of anomalous rows. The PARTITION BY clause causes separate models to be built and
applied for each marital status. Because there is only one record with status Mabsent,
no model is created for that partition (and no details are provided).

SELECT cust_id, cust_marital_status, rank_anom, anom_det FROM
 (SELECT cust_id, cust_marital_status, anom_det,
 rank() OVER (PARTITION BY CUST_MARITAL_STATUS
 ORDER BY ANOM_PROB DESC,cust_id) rank_anom FROM
 (SELECT cust_id, cust_marital_status,
 PREDICTION_PROBABILITY(OF ANOMALY, 0 USING *)
 OVER (PARTITION BY CUST_MARITAL_STATUS) anom_prob,
 PREDICTION_DETAILS(OF ANOMALY, 0, 3 USING *)
 OVER (PARTITION BY CUST_MARITAL_STATUS) anom_det
 FROM mining_data_one_class_v
))
 WHERE rank_anom < 3 order by 2, 3;

CUST_ID CUST_MARITAL_STATUS RANK_ANOM ANOM_DET
------- ------------------- ----------

Chapter 38
PREDICTION_PROBABILITY

38-45

102366 Divorc. 1 <Details algorithm="Support Vector Machines" class="0">
 <Attribute name="COUNTRY_NAME" actualValue="United
Kingdom"
 weight=".069" rank="1"/>
 <Attribute name="AGE" actualValue="28" weight=".013"
 rank="2"/>
 <Attribute name="YRS_RESIDENCE" actualValue="4"
 weight=".006" rank="3"/>
 </Details>

101817 Divorc. 2 <Details algorithm="Support Vector Machines" class="0">
 <Attribute name="YRS_RESIDENCE" actualValue="8"
 weight=".018" rank="1"/>
 <Attribute name="EDUCATION" actualValue="PhD"
weight=".007"
 rank="2"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="K:
 250\,000 - 299\,999" weight=".006" rank="3"/>
 </Details>

101713 Mabsent 1

101790 Married 1 <Details algorithm="Support Vector Machines" class="0">
 <Attribute name="COUNTRY_NAME" actualValue="Canada"
 weight=".063" rank="1"/>
 <Attribute name="EDUCATION" actualValue="7th-8th"
 weight=".011" rank="2"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="4-5"
 weight=".011" rank="3"/>
 </Details>
. . .

38.17 PREDICTION_SET
Syntax

prediction_set::=

PREDICTION_SET (

schema .

model

, bestN

, cutoff

cost_matrix_clause

mining_attribute_clause)

Chapter 38
PREDICTION_SET

38-46

Analytic Syntax

prediction_set_analytic::=

PREDICTION_SET (
OF ANOMALY

FOR expr

, bestN

, cutoff

cost_matrix_clause

mining_attribute_clause) OVER (mining_analytic_clause)

cost_matrix_clause::=

COST

MODEL

AUTO

(class_value

,

) VALUES ((cost_value

,

)

,

)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::-

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Chapter 38
PREDICTION_SET

38-47

Purpose

PREDICTION_SET returns a set of predictions with either probabilities or costs for
each row in the selection. The return value is a varray of objects with field names
PREDICTION_ID and PROBABILITY or COST. The prediction identifier is an Oracle NUMBER;
the probability and cost fields are BINARY_DOUBLE.

PREDICTION_SET can perform classification or anomaly detection. For classification, the
return value refers to a predicted target class. For anomaly detection, the return value
refers to a classification of 1 (for typical rows) or 0 (for anomalous rows).

bestN and cutoff

You can specify bestN and cutoff to limit the number of predictions returned by the
function. By default, both bestN and cutoff are null and all predictions are returned.

• bestN is the N predictions that are either the most probable or the least costly. If
multiple predictions share the Nth probability or cost, then the function chooses
one of them.

• cutoff is a value threshold. Only predictions with probability greater than or equal
to cutoff, or with cost less than or equal to cutoff, are returned. To filter by
cutoff only, specify NULL for bestN. If the function uses a cost_matrix_clause
with COST MODEL AUTO, then cutoff is ignored.

You can specify bestN with cutoff to return up to the N most probable predictions that
are greater than or equal to cutoff. If costs are used, specify bestN with cutoff to
return up to the N least costly predictions that are less than or equal to cutoff.

cost_matrix_clause

You can specify cost_matrix_clause as a biasing factor for minimizing the most
harmful kinds of misclassifications. cost_matrix_clause behaves as described for
"PREDICTION_COST ".

Syntax Choice

PREDICTION_SET can score the data in one of two ways: It can apply a mining model
object to the data, or it can dynamically mine the data by executing an analytic clause
that builds and applies one or more transient mining models. Choose Syntax or
Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a model that performs classification or anomaly detection.

• Analytic Syntax — Use the analytic syntax to score the data without
a pre-defined model. The analytic syntax uses mining_analytic_clause,
which specifies if the data should be partitioned for multiple model builds.
The mining_analytic_clause supports a query_partition_clause and an
order_by_clause. (See "analytic_clause::=".)

– For classification, specify FOR expr, where expr is an expression that identifies
a target column that has a character data type.

– For anomaly detection, specify the keywords OF ANOMALY.

The syntax of the PREDICTION_SET function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

Chapter 38
PREDICTION_SET

38-48

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause".)

See Also:

• Oracle Data Mining User's Guide for information about scoring.

• Oracle Data Mining Concepts for information about predictive data
mining.

Note:

The following example is excerpted from the Data Mining sample programs.
For more information about the sample programs, see Appendix A in Oracle
Data Mining User's Guide.

Example

This example lists the probability and cost that customers with ID less than 100006 will
use an affinity card. This example has a binary target, but such a query is also useful
for multiclass classification such as low, medium, and high.

SELECT T.cust_id, S.prediction, S.probability, S.cost
 FROM (SELECT cust_id,
 PREDICTION_SET(dt_sh_clas_sample COST MODEL USING *) pset
 FROM mining_data_apply_v
 WHERE cust_id < 100006) T,
 TABLE(T.pset) S
ORDER BY cust_id, S.prediction;

 CUST_ID PREDICTION PROBABILITY COST
---------- ---------- ------------ ------------
 100001 0 .966183575 .270531401
 100001 1 .033816425 .966183575
 100002 0 .740384615 2.076923077
 100002 1 .259615385 .740384615
 100003 0 .909090909 .727272727
 100003 1 .090909091 .909090909
 100004 0 .909090909 .727272727
 100004 1 .090909091 .909090909
 100005 0 .272357724 5.821138211
 100005 1 .727642276 .272357724

Chapter 38
PREDICTION_SET

38-49

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Resources
	Conventions

	Part I Introductions
	1 Introduction to Oracle Data Mining
	1.1 About Oracle Data Mining
	1.2 Data Mining in the Database Kernel
	1.3 Data Mining in Oracle Exadata
	1.4 About Partitioned Model
	1.5 Interfaces to Oracle Data Mining
	1.5.1 PL/SQL API
	1.5.2 SQL Functions
	1.5.3 Oracle Data Miner
	1.5.4 Predictive Analytics

	1.6 Overview of Database Analytics

	2 Oracle Data Mining Basics
	2.1 Mining Functions
	2.1.1 Supervised Data Mining
	2.1.1.1 Supervised Learning: Testing
	2.1.1.2 Supervised Learning: Scoring

	2.1.2 Unsupervised Data Mining
	2.1.2.1 Unsupervised Learning: Scoring

	2.2 Algorithms
	2.2.1 Oracle Data Mining Supervised Algorithms
	2.2.2 Oracle Data Mining Unsupervised Algorithms

	2.3 Data Preparation
	2.3.1 Oracle Data Mining Simplifies Data Preparation
	2.3.2 Case Data
	2.3.2.1 Nested Data

	2.3.3 Text Data

	2.4 In-Database Scoring
	2.4.1 Parallel Execution and Ease of Administration
	2.4.2 SQL Functions for Model Apply and Dynamic Scoring

	Part II Mining Functions
	3 Regression
	3.1 About Regression
	3.1.1 How Does Regression Work?
	3.1.1.1 Linear Regression
	3.1.1.2 Multivariate Linear Regression
	3.1.1.3 Regression Coefficients
	3.1.1.4 Nonlinear Regression
	3.1.1.5 Multivariate Nonlinear Regression
	3.1.1.6 Confidence Bounds

	3.2 Testing a Regression Model
	3.2.1 Regression Statistics
	3.2.1.1 Root Mean Squared Error
	3.2.1.2 Mean Absolute Error

	3.3 Regression Algorithms

	4 Classification
	4.1 About Classification
	4.2 Testing a Classification Model
	4.2.1 Confusion Matrix
	4.2.2 Lift
	4.2.2.1 Lift Statistics

	4.2.3 Receiver Operating Characteristic (ROC)
	4.2.3.1 The ROC Curve
	4.2.3.2 Area Under the Curve
	4.2.3.3 ROC and Model Bias
	4.2.3.4 ROC Statistics

	4.3 Biasing a Classification Model
	4.3.1 Costs
	4.3.1.1 Costs Versus Accuracy
	4.3.1.2 Positive and Negative Classes
	4.3.1.3 Assigning Costs and Benefits

	4.3.2 Priors and Class Weights

	4.4 Classification Algorithms

	5 Anomaly Detection
	5.1 About Anomaly Detection
	5.1.1 One-Class Classification
	5.1.2 Anomaly Detection for Single-Class Data
	5.1.3 Anomaly Detection for Finding Outliers

	5.2 Anomaly Detection Algorithm

	6 Clustering
	6.1 About Clustering
	6.1.1 How are Clusters Computed?
	6.1.2 Scoring New Data
	6.1.3 Hierarchical Clustering
	6.1.3.1 Rules
	6.1.3.2 Support and Confidence

	6.2 Evaluating a Clustering Model
	6.3 Clustering Algorithms

	7 Association
	7.1 About Association
	7.1.1 Association Rules
	7.1.2 Market-Basket Analysis
	7.1.3 Association Rules and eCommerce

	7.2 Transactional Data
	7.3 Association Algorithm

	8 Feature Selection and Extraction
	8.1 Finding the Best Attributes
	8.2 About Feature Selection and Attribute Importance
	8.2.1 Attribute Importance and Scoring

	8.3 About Feature Extraction
	8.3.1 Feature Extraction and Scoring

	8.4 Algorithms for Attribute Importance and Feature Extraction

	9 Time Series
	9.1 About Time Series
	9.2 Choosing a Time Series Model
	9.3 Time Series Statistics
	9.3.1 Conditional Log-Likelihood
	9.3.2 Mean Square Error (MSE) and Other Error Measures
	9.3.3 Irregular Time Series
	9.3.4 Build Apply

	9.4 Time Series Algorithm

	Part III Algorithms
	10 Apriori
	10.1 About Apriori
	10.2 Association Rules and Frequent Itemsets
	10.2.1 Antecedent and Consequent
	10.2.2 Confidence

	10.3 Data Preparation for Apriori
	10.3.1 Native Transactional Data and Star Schemas
	10.3.2 Items and Collections
	10.3.3 Sparse Data
	10.3.4 Improved Sampling
	10.3.4.1 Sampling Implementation

	10.4 Calculating Association Rules
	10.4.1 Itemsets
	10.4.2 Frequent Itemsets
	10.4.3 Example: Calculating Rules from Frequent Itemsets
	10.4.4 Aggregates
	10.4.5 Example: Calculating Aggregates
	10.4.6 Including and Excluding Rules
	10.4.7 Performance Impact for Aggregates

	10.5 Evaluating Association Rules
	10.5.1 Support
	10.5.2 Minimum Support Count
	10.5.3 Confidence
	10.5.4 Reverse Confidence
	10.5.5 Lift

	11 CUR Matrix Decomposition
	11.1 About CUR Matrix Decomposition
	11.2 Singular Vectors
	11.3 Statistical Leverage Score
	11.4 Column (Attribute) Selection and Row Selection
	11.5 CUR Matrix Decomposition Algorithm Configuration

	12 Decision Tree
	12.1 About Decision Tree
	12.1.1 Decision Tree Rules
	12.1.1.1 Confidence and Support

	12.1.2 Advantages of Decision Trees
	12.1.3 XML for Decision Tree Models

	12.2 Growing a Decision Tree
	12.2.1 Splitting
	12.2.2 Cost Matrix
	12.2.3 Preventing Over-Fitting

	12.3 Tuning the Decision Tree Algorithm
	12.4 Data Preparation for Decision Tree

	13 Expectation Maximization
	13.1 About Expectation Maximization
	13.1.1 Expectation Step and Maximization Step
	13.1.2 Probability Density Estimation

	13.2 Algorithm Enhancements
	13.2.1 Scalability
	13.2.2 High Dimensionality
	13.2.3 Number of Components
	13.2.4 Parameter Initialization
	13.2.5 From Components to Clusters

	13.3 Configuring the Algorithm
	13.4 Data Preparation for Expectation Maximization

	14 Explicit Semantic Analysis
	14.1 About Explicit Semantic Analysis
	14.1.1 Scoring with ESA
	14.1.2 Scoring Large ESA Models

	14.2 ESA for Text Mining
	14.3 Data Preparation for ESA
	14.4 Terminologies in Explicit Semantic Analysis

	15 Exponential Smoothing
	15.1 About Exponential Smoothing
	15.1.1 Exponential Smoothing Models
	15.1.2 Simple Exponential Smoothing
	15.1.3 Models with Trend but No Seasonality
	15.1.4 Models with Seasonality but No Trend
	15.1.5 Models with Trend and Seasonality
	15.1.6 Prediction Intervals

	15.2 Data Preparation for Exponential Smoothing Models
	15.2.1 Input Data
	15.2.2 Accumulation
	15.2.3 Missing Value
	15.2.4 Prediction
	15.2.5 Parallellism by Partition

	16 Generalized Linear Models
	16.1 About Generalized Linear Models
	16.2 GLM in Oracle Data Mining
	16.2.1 Interpretability and Transparency
	16.2.2 Wide Data
	16.2.3 Confidence Bounds
	16.2.4 Ridge Regression
	16.2.4.1 Configuring Ridge Regression
	16.2.4.2 Ridge and Confidence Bounds
	16.2.4.3 Ridge and Data Preparation

	16.3 Scalable Feature Selection
	16.3.1 Feature Selection
	16.3.1.1 Configuring Feature Selection
	16.3.1.2 Feature Selection and Ridge Regression

	16.3.2 Feature Generation
	16.3.2.1 Configuring Feature Generation

	16.4 Tuning and Diagnostics for GLM
	16.4.1 Build Settings
	16.4.2 Diagnostics
	16.4.2.1 Coefficient Statistics
	16.4.2.2 Global Model Statistics
	16.4.2.3 Row Diagnostics

	16.5 GLM Solvers
	16.6 Data Preparation for GLM
	16.6.1 Data Preparation for Linear Regression
	16.6.2 Data Preparation for Logistic Regression
	16.6.3 Missing Values

	16.7 Linear Regression
	16.7.1 Coefficient Statistics for Linear Regression
	16.7.2 Global Model Statistics for Linear Regression
	16.7.3 Row Diagnostics for Linear Regression

	16.8 Logistic Regression
	16.8.1 Reference Class
	16.8.2 Class Weights
	16.8.3 Coefficient Statistics for Logistic Regression
	16.8.4 Global Model Statistics for Logistic Regression
	16.8.5 Row Diagnostics for Logistic Regression

	17 k-Means
	17.1 About k-Means
	17.1.1 Oracle Data Mining Enhanced k-Means
	17.1.2 Centroid

	17.2 k-Means Algorithm Configuration
	17.3 Data Preparation for k-Means

	18 Minimum Description Length
	18.1 About MDL
	18.1.1 Compression and Entropy
	18.1.1.1 Values of a Random Variable: Statistical Distribution
	18.1.1.2 Values of a Random Variable: Significant Predictors
	18.1.1.3 Total Entropy

	18.1.2 Model Size
	18.1.3 Model Selection
	18.1.4 The MDL Metric

	18.2 Data Preparation for MDL

	19 Naive Bayes
	19.1 About Naive Bayes
	19.1.1 Advantages of Naive Bayes

	19.2 Tuning a Naive Bayes Model
	19.3 Data Preparation for Naive Bayes

	20 Neural Network
	20.1 About Neural Network
	20.1.1 Neuron and activation function
	20.1.2 Loss or Cost function
	20.1.3 Forward-Backward Propagation
	20.1.4 Optimization Solver
	20.1.5 Regularization
	20.1.6 Convergence Check
	20.1.7 LBFGS_SCALE_HESSIAN
	20.1.8 NNET_HELDASIDE_MAX_FAIL

	20.2 Data Preparation for Neural Network
	20.3 Neural Network Algorithm Configuration
	20.4 Scoring with Neural Network

	21 Non-Negative Matrix Factorization
	21.1 About NMF
	21.1.1 Matrix Factorization
	21.1.2 Scoring with NMF
	21.1.3 Text Mining with NMF

	21.2 Tuning the NMF Algorithm
	21.3 Data Preparation for NMF

	22 O-Cluster
	22.1 About O-Cluster
	22.1.1 Partitioning Strategy
	22.1.1.1 Partitioning Numerical Attributes
	22.1.1.2 Partitioning Categorical Attributes

	22.1.2 Active Sampling
	22.1.3 Process Flow
	22.1.4 Scoring

	22.2 Tuning the O-Cluster Algorithm
	22.3 Data Preparation for O-Cluster
	22.3.1 User-Specified Data Preparation for O-Cluster

	23 R Extensibility
	23.1 Oracle Data Mining with R Extensibility
	23.2 Scoring with R
	23.3 About Algorithm Meta Data Registration
	23.3.1 Algorithm Meta Data Registration

	24 Random Forest
	24.1 About Random Forest
	24.2 Building a Random Forest
	24.3 Scoring with Random Forest

	25 Singular Value Decomposition
	25.1 About Singular Value Decomposition
	25.1.1 Matrix Manipulation
	25.1.2 Low Rank Decomposition
	25.1.3 Scalability

	25.2 Configuring the Algorithm
	25.2.1 Model Size
	25.2.2 Performance
	25.2.3 PCA scoring

	25.3 Data Preparation for SVD

	26 Support Vector Machines
	26.1 About Support Vector Machines
	26.1.1 Advantages of SVM
	26.1.2 Advantages of SVM in Oracle Data Mining
	26.1.2.1 Usability
	26.1.2.2 Scalability

	26.1.3 Kernel-Based Learning

	26.2 Tuning an SVM Model
	26.3 Data Preparation for SVM
	26.3.1 Normalization
	26.3.2 SVM and Automatic Data Preparation

	26.4 SVM Classification
	26.4.1 Class Weights

	26.5 One-Class SVM
	26.6 SVM Regression

	Part IV Using the Data Mining API
	27 Data Mining With SQL
	27.1 Highlights of the Data Mining API
	27.2 Example: Targeting Likely Candidates for a Sales Promotion
	27.3 Example: Analyzing Preferred Customers
	27.4 Example: Segmenting Customer Data
	27.5 Example : Building an ESA Model with a Wiki Dataset

	28 About the Data Mining API
	28.1 About Mining Models
	28.2 Data Mining Data Dictionary Views
	28.2.1 ALL_MINING_MODELS
	28.2.2 ALL_MINING_MODEL_ATTRIBUTES
	28.2.3 ALL_MINING_MODEL_PARTITIONS
	28.2.4 ALL_MINING_MODEL_SETTINGS
	28.2.5 ALL_MINING_MODEL_VIEWS
	28.2.6 ALL_MINING_MODEL_XFORMS

	28.3 Data Mining PL/SQL Packages
	28.3.1 DBMS_DATA_MINING
	28.3.2 DBMS_DATA_MINING_TRANSFORM
	28.3.2.1 Transformation Methods in DBMS_DATA_MINING_TRANSFORM

	28.3.3 DBMS_PREDICTIVE_ANALYTICS

	28.4 Data Mining SQL Scoring Functions

	29 Preparing the Data
	29.1 Data Requirements
	29.1.1 Column Data Types
	29.1.2 Data Sets for Classification and Regression
	29.1.3 Scoring Requirements

	29.2 About Attributes
	29.2.1 Data Attributes and Model Attributes
	29.2.2 Target Attribute
	29.2.3 Numericals, Categoricals, and Unstructured Text
	29.2.4 Model Signature
	29.2.5 Scoping of Model Attribute Name
	29.2.6 Model Details

	29.3 Using Nested Data
	29.3.1 Nested Object Types
	29.3.2 Example: Transforming Transactional Data for Mining

	29.4 Using Market Basket Data
	29.4.1 Example: Creating a Nested Column for Market Basket Analysis

	29.5 Using Retail Analysis Data
	29.5.1 Example: Calculating Aggregates

	29.6 Handling Missing Values
	29.6.1 Examples: Missing Values or Sparse Data?
	29.6.1.1 Sparsity in a Sales Table
	29.6.1.2 Missing Values in a Table of Customer Data

	29.6.2 Missing Value Treatment in Oracle Data Mining
	29.6.3 Changing the Missing Value Treatment

	30 Transforming the Data
	30.1 About Transformations
	30.2 Preparing the Case Table
	30.2.1 Creating Nested Columns
	30.2.2 Converting Column Data Types
	30.2.3 Text Transformation
	30.2.4 About Business and Domain-Sensitive Transformations

	30.3 Understanding Automatic Data Preparation
	30.3.1 Binning
	30.3.2 Normalization
	30.3.3 How ADP Transforms the Data

	30.4 Embedding Transformations in a Model
	30.4.1 Specifying Transformation Instructions for an Attribute
	30.4.1.1 Expression Records
	30.4.1.2 Attribute Specifications

	30.4.2 Building a Transformation List
	30.4.2.1 SET_TRANSFORM
	30.4.2.2 The STACK Interface
	30.4.2.3 GET_MODEL_TRANSFORMATIONS and GET_TRANSFORM_LIST

	30.4.3 Transformation Lists and Automatic Data Preparation
	30.4.4 Oracle Data Mining Transformation Routines
	30.4.4.1 Binning Routines
	30.4.4.2 Normalization Routines
	30.4.4.3 Outlier Treatment
	30.4.4.4 Routines for Outlier Treatment

	30.5 Understanding Reverse Transformations

	31 Creating a Model
	31.1 Before Creating a Model
	31.2 The CREATE_MODEL Procedure
	31.2.1 Choosing the Mining Function
	31.2.2 Choosing the Algorithm
	31.2.3 Supplying Transformations
	31.2.3.1 Creating a Transformation List
	31.2.3.2 Transformation List and Automatic Data Preparation

	31.2.4 About Partitioned Model
	31.2.4.1 Partitioned Model Build Process
	31.2.4.2 DDL in Partitioned model
	31.2.4.2.1 Drop Model or Drop Partition
	31.2.4.2.2 Add Partition

	31.2.4.3 Partitioned Model scoring

	31.3 Specifying Model Settings
	31.3.1 Specifying Costs
	31.3.2 Specifying Prior Probabilities
	31.3.3 Specifying Class Weights
	31.3.4 Model Settings in the Data Dictionary
	31.3.5 Specifying Mining Model Settings for R Model
	31.3.5.1 ALGO_EXTENSIBLE_LANG
	31.3.5.2 RALG_BUILD_FUNCTION
	31.3.5.2.1 RALG_BUILD_PARAMETER

	31.3.5.3 RALG_DETAILS_FUNCTION
	31.3.5.3.1 RALG_DETAILS_FORMAT

	31.3.5.4 RALG_SCORE_FUNCTION
	31.3.5.5 RALG_WEIGHT_FUNCTION
	31.3.5.6 Registered R Scripts
	31.3.5.7 R Model Demonstration Scripts

	31.4 Model Detail Views
	31.4.1 Model Detail Views for Association Rules
	31.4.2 Model Detail View for Frequent Itemsets
	31.4.3 Model Detail View for Transactional Itemsets
	31.4.4 Model Detail View for Transactional Rule
	31.4.5 Model Detail Views for Classification Algorithms
	31.4.6 Model Detail Views for Decision Tree
	31.4.7 Model Detail Views for Generalized Linear Model
	31.4.8 Model Detail Views for Naive Bayes
	31.4.9 Model Detail Views for Neural Network
	31.4.10 Model Detail Views for Random Forest
	31.4.11 Model Detail View for Support Vector Machine
	31.4.12 Model Detail Views for Clustering Algorithms
	31.4.13 Model Detail Views for Expectation Maximization
	31.4.14 Model Detail Views for k-Means
	31.4.15 Model Detail Views for O-Cluster
	31.4.16 Model Detail Views for CUR Matrix Decomposition
	31.4.17 Model Detail Views for Explicit Semantic Analysis
	31.4.18 Model Detail Views for Exponential Smoothing Models
	31.4.19 Model Detail Views for Non-Negative Matrix Factorization
	31.4.20 Model Detail Views for Singular Value Decomposition
	31.4.21 Model Detail View for Minimum Description Length
	31.4.22 Model Detail View for Binning
	31.4.23 Model Detail Views for Global Information
	31.4.24 Model Detail View for Normalization and Missing Value Handling

	32 Scoring and Deployment
	32.1 About Scoring and Deployment
	32.2 Using the Data Mining SQL Functions
	32.2.1 Choosing the Predictors
	32.2.2 Single-Record Scoring

	32.3 Prediction Details
	32.3.1 Cluster Details
	32.3.2 Feature Details
	32.3.3 Prediction Details
	32.3.4 GROUPING Hint

	32.4 Real-Time Scoring
	32.5 Dynamic Scoring
	32.6 Cost-Sensitive Decision Making
	32.7 DBMS_DATA_MINING.Apply

	33 Mining Unstructured Text
	33.1 About Unstructured Text
	33.2 About Text Mining and Oracle Text
	33.3 Data Preparation for Text Features
	33.4 Creating a Model that Includes Text Mining
	33.5 Creating a Text Policy
	33.6 Configuring a Text Attribute

	34 Administrative Tasks for Oracle Data Mining
	34.1 Installing and Configuring a Database for Data Mining
	34.1.1 About Installation
	34.1.2 Enabling or Disabling a Database Option
	34.1.3 Database Tuning Considerations for Data Mining

	34.2 Upgrading or Downgrading Oracle Data Mining
	34.2.1 Pre-Upgrade Steps
	34.2.1.1 Dropping Models Created in Java
	34.2.1.2 Dropping Mining Activities Created in Oracle Data Miner Classic

	34.2.2 Upgrading Oracle Data Mining
	34.2.2.1 Using Database Upgrade Assistant to Upgrade Oracle Data Mining
	34.2.2.1.1 Upgrading from Release 10g
	34.2.2.1.2 Upgrading from Release 11g

	34.2.2.2 Using Export/Import to Upgrade Data Mining Models
	34.2.2.2.1 Export/Import Release 10g Data Mining Models
	34.2.2.2.2 Export/Import Release 11g Data Mining Models

	34.2.3 Post Upgrade Steps
	34.2.4 Downgrading Oracle Data Mining

	34.3 Exporting and Importing Mining Models
	34.3.1 About Oracle Data Pump
	34.3.2 Options for Exporting and Importing Mining Models
	34.3.3 Directory Objects for EXPORT_MODEL and IMPORT_MODEL
	34.3.4 Using EXPORT_MODEL and IMPORT_MODEL
	34.3.5 EXPORT and IMPORT Serialized Models
	34.3.6 Importing From PMML

	34.4 Controlling Access to Mining Models and Data
	34.4.1 Creating a Data Mining User
	34.4.1.1 Granting Privileges for Data Mining

	34.4.2 System Privileges for Data Mining
	34.4.3 Object Privileges for Mining Models

	34.5 Auditing and Adding Comments to Mining Models
	34.5.1 Adding a Comment to a Mining Model
	34.5.2 Auditing Mining Models

	35 The Data Mining Sample Programs
	35.1 About the Data Mining Sample Programs
	35.2 Installing the Data Mining Sample Programs
	35.3 The Data Mining Sample Data

	Part V Oracle Data Mining API Reference
	36 PL/SQL Packages
	36.1 DBMS_DATA_MINING
	36.1.1 Using DBMS_DATA_MINING
	36.1.1.1 DBMS_DATA_MINING Overview
	36.1.1.2 DBMS_DATA_MINING Security Model
	36.1.1.3 DBMS_DATA_MINING — Mining Functions

	36.1.2 DBMS_DATA_MINING — Model Settings
	36.1.2.1 DBMS_DATA_MINING — Algorithm Names
	36.1.2.2 DBMS_DATA_MINING — Automatic Data Preparation
	36.1.2.3 DBMS_DATA_MINING — Mining Function Settings
	36.1.2.4 DBMS_DATA_MINING — Global Settings
	36.1.2.5 DBMS_DATA_MINING — Algorithm Settings: ALGO_EXTENSIBLE_LANG
	36.1.2.6 DBMS_DATA_MINING — Algorithm Settings: CUR Matrix Decomposition
	36.1.2.7 DBMS_DATA_MINING — Algorithm Settings: Decision Tree
	36.1.2.8 DBMS_DATA_MINING — Algorithm Settings: Expectation Maximization
	36.1.2.9 DBMS_DATA_MINING — Algorithm Settings: Explicit Semantic Analysis
	36.1.2.10 DBMS_DATA_MINING — Algorithm Settings: Exponential Smoothing
	36.1.2.11 DBMS_DATA_MINING — Algorithm Settings: Generalized Linear Models
	36.1.2.12 DBMS_DATA_MINING — Algorithm Settings: k-Means
	36.1.2.13 DBMS_DATA_MINING — Algorithm Settings: Naive Bayes
	36.1.2.14 DBMS_DATA_MINING — Algorithm Settings: Neural Network
	36.1.2.15 DBMS_DATA_MINING — Algorithm Settings: Non-Negative Matrix Factorization
	36.1.2.16 DBMS_DATA_MINING — Algorithm Settings: O-Cluster
	36.1.2.17 DBMS_DATA_MINING — Algorithm Settings: Random Forest
	36.1.2.18 DBMS_DATA_MINING — Algorithm Constants and Settings: Singular Value Decomposition
	36.1.2.19 DBMS_DATA_MINING — Algorithm Settings: Support Vector Machine

	36.1.3 DBMS_DATA_MINING — Solver Settings
	36.1.3.1 DBMS_DATA_MINING — Solver Settings: ADMM
	36.1.3.2 DBMS_DATA_MINING — Solver Settings: LBFGS

	36.1.4 DBMS_DATA_MINING Datatypes
	36.1.4.1 Deprecated Types

	36.1.5 Summary of DBMS_DATA_MINING Subprograms
	36.1.5.1 ADD_COST_MATRIX Procedure
	36.1.5.2 ADD_PARTITION Procedure
	36.1.5.3 ALTER_REVERSE_EXPRESSION Procedure
	36.1.5.4 APPLY Procedure
	36.1.5.5 COMPUTE_CONFUSION_MATRIX Procedure
	36.1.5.6 COMPUTE_CONFUSION_MATRIX_PART Procedure
	36.1.5.7 COMPUTE_LIFT Procedure
	36.1.5.8 COMPUTE_LIFT_PART Procedure
	36.1.5.9 COMPUTE_ROC Procedure
	36.1.5.10 COMPUTE_ROC_PART Procedure
	36.1.5.11 CREATE_MODEL Procedure
	36.1.5.12 CREATE_MODEL2 Procedure
	36.1.5.13 Create Model Using Registration Information
	36.1.5.14 DROP_ALGORITHM Procedure
	36.1.5.15 DROP_PARTITION Procedure
	36.1.5.16 DROP_MODEL Procedure
	36.1.5.17 EXPORT_MODEL Procedure
	36.1.5.18 EXPORT_SERMODEL Procedure
	36.1.5.19 FETCH_JSON_SCHEMA Procedure
	36.1.5.20 GET_ASSOCIATION_RULES Function
	36.1.5.21 GET_FREQUENT_ITEMSETS Function
	36.1.5.22 GET_MODEL_COST_MATRIX Function
	36.1.5.23 GET_MODEL_DETAILS_AI Function
	36.1.5.24 GET_MODEL_DETAILS_EM Function
	36.1.5.25 GET_MODEL_DETAILS_EM_COMP Function
	36.1.5.26 GET_MODEL_DETAILS_EM_PROJ Function
	36.1.5.27 GET_MODEL_DETAILS_GLM Function
	36.1.5.28 GET_MODEL_DETAILS_GLOBAL Function
	36.1.5.29 GET_MODEL_DETAILS_KM Function
	36.1.5.30 GET_MODEL_DETAILS_NB Function
	36.1.5.31 GET_MODEL_DETAILS_NMF Function
	36.1.5.32 GET_MODEL_DETAILS_OC Function
	36.1.5.33 GET_MODEL_SETTINGS Function
	36.1.5.34 GET_MODEL_SIGNATURE Function
	36.1.5.35 GET_MODEL_DETAILS_SVD Function
	36.1.5.36 GET_MODEL_DETAILS_SVM Function
	36.1.5.37 GET_MODEL_DETAILS_XML Function
	36.1.5.38 GET_MODEL_TRANSFORMATIONS Function
	36.1.5.39 GET_TRANSFORM_LIST Procedure
	36.1.5.40 IMPORT_MODEL Procedure
	36.1.5.41 IMPORT_SERMODEL Procedure
	36.1.5.42 JSON Schema for R Extensible Algorithm
	36.1.5.43 REGISTER_ALGORITHM Procedure
	36.1.5.44 RANK_APPLY Procedure
	36.1.5.45 REMOVE_COST_MATRIX Procedure
	36.1.5.46 RENAME_MODEL Procedure

	36.2 DBMS_DATA_MINING_TRANSFORM
	36.2.1 Using DBMS_DATA_MINING_TRANSFORM
	36.2.1.1 DBMS_DATA_MINING_TRANSFORM Overview
	36.2.1.2 DBMS_DATA_MINING_TRANSFORM Security Model
	36.2.1.3 DBMS_DATA_MINING_TRANSFORM Datatypes
	36.2.1.4 DBMS_DATA_MINING_TRANSFORM Constants

	36.2.2 DBMS_DATA_MINING_TRANSFORM Operational Notes
	36.2.2.1 DBMS_DATA_MINING_TRANSFORM — About Transformation Lists
	36.2.2.2 DBMS_DATA_MINING_TRANSFORM — About Stacking and Stack Procedures
	36.2.2.3 DBMS_DATA_MINING_TRANSFORM — Nested Data Transformations

	36.2.3 Summary of DBMS_DATA_MINING_TRANSFORM Subprograms
	36.2.3.1 CREATE_BIN_CAT Procedure
	36.2.3.2 CREATE_BIN_NUM Procedure
	36.2.3.3 CREATE_CLIP Procedure
	36.2.3.4 CREATE_COL_REM Procedure
	36.2.3.5 CREATE_MISS_CAT Procedure
	36.2.3.6 CREATE_MISS_NUM Procedure
	36.2.3.7 CREATE_NORM_LIN Procedure
	36.2.3.8 DESCRIBE_STACK Procedure
	36.2.3.9 GET_EXPRESSION Function
	36.2.3.10 INSERT_AUTOBIN_NUM_EQWIDTH Procedure
	36.2.3.11 INSERT_BIN_CAT_FREQ Procedure
	36.2.3.12 INSERT_BIN_NUM_EQWIDTH Procedure
	36.2.3.13 INSERT_BIN_NUM_QTILE Procedure
	36.2.3.14 INSERT_BIN_SUPER Procedure
	36.2.3.15 INSERT_CLIP_TRIM_TAIL Procedure
	36.2.3.16 INSERT_CLIP_WINSOR_TAIL Procedure
	36.2.3.17 INSERT_MISS_CAT_MODE Procedure
	36.2.3.18 INSERT_MISS_NUM_MEAN Procedure
	36.2.3.19 INSERT_NORM_LIN_MINMAX Procedure
	36.2.3.20 INSERT_NORM_LIN_SCALE Procedure
	36.2.3.21 INSERT_NORM_LIN_ZSCORE Procedure
	36.2.3.22 SET_EXPRESSION Procedure
	36.2.3.23 SET_TRANSFORM Procedure
	36.2.3.24 STACK_BIN_CAT Procedure
	36.2.3.25 STACK_BIN_NUM Procedure
	36.2.3.26 STACK_CLIP Procedure
	36.2.3.27 STACK_COL_REM Procedure
	36.2.3.28 STACK_MISS_CAT Procedure
	36.2.3.29 STACK_MISS_NUM Procedure
	36.2.3.30 STACK_NORM_LIN Procedure
	36.2.3.31 XFORM_BIN_CAT Procedure
	36.2.3.32 XFORM_BIN_NUM Procedure
	36.2.3.33 XFORM_CLIP Procedure
	36.2.3.34 XFORM_COL_REM Procedure
	36.2.3.35 XFORM_EXPR_NUM Procedure
	36.2.3.36 XFORM_EXPR_STR Procedure
	36.2.3.37 XFORM_MISS_CAT Procedure
	36.2.3.38 XFORM_MISS_NUM Procedure
	36.2.3.39 XFORM_NORM_LIN Procedure
	36.2.3.40 XFORM_STACK Procedure

	36.3 DBMS_PREDICTIVE_ANALYTICS
	36.3.1 Using DBMS_PREDICTIVE_ANALYTICS
	36.3.1.1 DBMS_PREDICTIVE_ANALYTICS Overview
	36.3.1.2 DBMS_PREDICTIVE_ANALYTICS Security Model

	36.3.2 Summary of DBMS_PREDICTIVE_ANALYTICS Subprograms
	36.3.2.1 EXPLAIN Procedure
	36.3.2.2 PREDICT Procedure
	36.3.2.3 PROFILE Procedure

	37 Data Dictionary Views
	37.1 ALL_MINING_MODELS
	37.2 ALL_MINING_MODEL_ATTRIBUTES
	37.3 ALL_MINING_MODEL_PARTITIONS
	37.4 ALL_MINING_MODEL_SETTINGS
	37.5 ALL_MINING_MODEL_VIEWS
	37.6 ALL_MINING_MODEL_XFORMS

	38 SQL Scoring Functions
	38.1 CLUSTER_DETAILS
	38.2 CLUSTER_DISTANCE
	38.3 CLUSTER_ID
	38.4 CLUSTER_PROBABILITY
	38.5 CLUSTER_SET
	38.6 FEATURE_COMPARE
	38.7 FEATURE_DETAILS
	38.8 FEATURE_ID
	38.9 FEATURE_SET
	38.10 FEATURE_VALUE
	38.11 ORA_DM_PARTITION_NAME
	38.12 PREDICTION
	38.13 PREDICTION_BOUNDS
	38.14 PREDICTION_COST
	38.15 PREDICTION_DETAILS
	38.16 PREDICTION_PROBABILITY
	38.17 PREDICTION_SET

