
Oracle® Database
Using AutoUpgrade to Upgrade and Convert
Non-CDBs to a PDB with the Same Operating
System

19c
F10903-05
June 2021

Oracle Database Using AutoUpgrade to Upgrade and Convert Non-CDBs to a PDB with the Same Operating
System, 19c

F10903-05

Copyright © 2018, 2021, Oracle and/or its affiliates.

Primary Authors: Nirmal Kumar, Sunil Surabhi, Douglas Williams

Contributing Authors: Padmaja Potineni, Rajesh Bhatiya, Prakash Jashnani, Mark Bauer

Contributors: Roy Swonger, Byron Motta, Hector Vieyra Farfan, Daniel Overby Hansen, Carol Tagliaferri,
Mike Dietrich, Marcus Doeringer, Umesh Aswathnarayana Rao, Rae Burns, Subrahmanyam Kodavaluru,
Cindy Lim, Amar Mbaye, Akash Pathak, Thomas Zhang, Zhihai Zhang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Use Case Scenario for this Document vi

Documentation Accessibility vi

1 Checking Compatibility Before Upgrading Oracle Database

Checking the Compatibility Level of Oracle Database 1-1

Values for the COMPATIBLE Initialization Parameter in Oracle Database 1-1

2 Preparing to Upgrade Oracle Database

Pre-Upgrade Information Check with AutoUpgrade 2-2

Understanding Unplug-Plug Upgrades with AutoUpgrade 2-2

Installing Oracle Software in a New Oracle Home 2-5

Choose a New Location for Oracle Home when Upgrading 2-5

Installing the New Oracle Database Software for Single Instance 2-5

Prepare a Backup Strategy Before Upgrading Oracle Database 2-6

Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades 2-6

Release Updates and Requirements for Upgrading Oracle Database 2-7

Recommendations for Oracle Net Services When Upgrading Oracle Database 2-7

Understanding Password Case Sensitivity and Upgrades 2-8

Checking for Accounts Using Case-Insensitive Password Version 2-9

Running Upgrades with Read-Only Tablespaces 2-12

Enabling Oracle Database Vault After Upgrading Oracle Database 2-13

Upgrading Oracle Database Without Disabling Oracle Database Vault 2-14

Common Upgrade Scenarios with Oracle Database Vault 2-14

Preparations for Running AutoUpgrade Processing Modes 2-15

Create Configuration File for AutoUpgrade 2-16

Local Parameters for the AutoUpgrade Configuration File 2-16

Global Parameters for the AutoUpgrade User Configuration File 2-27

Locally Modifiable Global Parameters for AutoUpgrade Configuration File 2-32

Understanding Non-CDB to PDB Upgrades with AutoUpgrade 2-36

Non-CDB to PDB Upgrade Guidelines and Examples 2-38

iii

Examples of Non-CDB to PDB Configuration Files for AutoUpgrade 2-39

3 Using AutoUpgrade to Upgrade and convert Non-CDBs to PDBs

AutoUpgrade with Source and Target Database Homes on Same Server (Typical) 3-1

AutoUpgrade with Source and Target Database Homes on Different Servers 3-1

4 Post-Upgrade Tasks for Oracle Database

Check the Upgrade With Post-Upgrade Status Tool 4-1

Required Tasks to Complete After Upgrading Oracle Database 4-1

Setting Environment Variables on Linux and Unix Systems After Manual Upgrades 4-2

Check PL/SQL Packages and Dependent Procedures 4-2

Upgrading Statistics Tables Created by the DBMS_STATS Package After Upgrading
Oracle Database 4-3

Configuring the FTP and HTTP Ports and HTTP Authentication for Oracle XML DB 4-3

Install Oracle Text Supplied Knowledge Bases After Upgrading Oracle Database 4-4

Replace the DEMO Directory in Read-Only Oracle Homes 4-4

Configure Access Control Lists (ACLs) to External Network Services 4-5

Enabling Oracle Database Vault After Upgrading Oracle Database 4-6

Upgrading Oracle Database Without Disabling Oracle Database Vault 4-6

Common Upgrade Scenarios with Oracle Database Vault 4-7

Check for the SQLNET.ALLOWED_LOGON_VERSION Parameter Behavior 4-7

Recommended and Best Practices to Complete After Upgrading Oracle Database 4-8

Back Up the Database 4-9

Run AutoUpgrade Postupgrade Checks 4-9

Regathering Fixed Objects Statistics with DBMS_STATS 4-10

Reset Passwords to Enforce Case-Sensitivity 4-11

Finding and Resetting User Passwords That Use the 10G Password Version 4-11

Understand Oracle Grid Infrastructure, Oracle ASM, and Oracle Clusterware 4-14

Oracle Grid Infrastructure Installation and Upgrade and Oracle ASM 4-14

Add New Features as Appropriate 4-15

Develop New Administrative Procedures as Needed 4-15

Migrating Tables from the LONG Data Type to the LOB Data Type 4-15

Migrate Your Upgraded Oracle Databases to Use Unified Auditing 4-16

Understanding Unified Auditing Migration Process for Oracle Database 4-16

Migrating to Unified Auditing for Oracle Database 4-18

About Managing Earlier Audit Records After You Migrate to Unified Auditing 4-19

Removing the Unified Auditing Functionality 4-20

Obtaining Documentation References if You Choose Not to Use Unified Auditing 4-21

Identify Oracle Text Indexes for Rebuilds 4-21

Dropping and Recreating DBMS_SCHEDULER Jobs 4-22

iv

Transfer Unified Audit Records After the Upgrade 4-22

About Transferring Unified Audit Records After an Upgrade 4-22

Transferring Unified Audit Records After an Upgrade 4-23

About Recovery Catalog Upgrade After Upgrading Oracle Database 4-24

About Testing the Upgraded Production Oracle Database 4-24

Upgrading the Time Zone File Version After Upgrading Oracle Database 4-25

v

Preface

This guide provides a compilation of topics from the Oracle Database user assistance
documentation that are collected to help you complete a specific use case scenario.

• Use Case Scenario for this Document

• Documentation Accessibility

Use Case Scenario for this Document
Use this scenario document to assist you to upgrade and convert to a PDB an earlier
release non-CDB to the new release Oracle Database with the AutoUpgrade utility.

Prerequisites for this Scenario

• You have installed a new Oracle Database release on your server with a
multitenant container database (CDB) deployment.

Oracle recommends that you back up your database.

Outline for this Scenario

1. Checking Compatibility Before Upgrading Oracle Database. Check that your
earlier release is compatible with this upgrade scenario.

2. Preparing to Upgrade Oracle Database. Review steps and complete preparation
tasks for this upgrade scenario.

3. Upgrading Oracle Database. Upgrade and convert your database from a non-
CDB to a PDB on a multitenant Oracle Database 19c using the AutoUpgrade
utility.

4. Post-upgrade tasks for Oracle Database. Complete this basic list of post-
upgrade tasks.

These steps correspond to the chapters in this document.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Checking Compatibility Before Upgrading
Oracle Database

Check the Oracle Database server upgrade compatibility matrix before upgrading the Oracle
Database.

• Checking the Compatibility Level of Oracle Database

• Values for the COMPATIBLE Initialization Parameter in Oracle Database

Checking the Compatibility Level of Oracle Database
Use this SQL query to check that the compatibility level of your database corresponds to the
value of the COMPATIBLE initialization parameter:

SQL> SELECT name, value FROM v$parameter
 WHERE name = 'compatible';

Values for the COMPATIBLE Initialization Parameter in Oracle
Database

Review to find the default, minimum, and maximum values for the COMPATIBLE initialization
parameter for Oracle Database 19c.

Default and Minimum COMPATIBLE Parameter Values

The COMPATIBLE parameter should not be changed for an RU or an RUR, either for CDB or
Non-CDB instances. The following table lists the default and minimum values for the
COMPATIBLE parameter in Oracle Database 19c, compared to earlier releases supported for
direct upgrade:

Table 1-1 The COMPATIBLE Initialization Parameter

Oracle Database Release Default Value Minimum Value

Oracle Database 19c 19.0.0 11.2.0

Oracle Database 12c Release 2 (12.2) 12.2.0 11.2.0

Oracle Database 12c Release 1 (12.1) 12.0.0 11.0.0

Oracle Database 11g Release 2 (11.2) 11.2.0 10.0.0

1-1

2
Preparing to Upgrade Oracle Database

Before you upgrade Oracle Database, review new features, and carry out procedures to
prepare your database for upgrade.

Note:

Oracle strongly recommends that you test the upgrade process and prepare a
backup strategy.

• Installing Oracle Software in a New Oracle Home
Choose a new location for Oracle Home and then install the new Oracle Database
Software for single-instance.

• Prepare a Backup Strategy Before Upgrading Oracle Database
You must design and carry out an appropriate backup strategy to ensure a successful
upgrade.

• Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades
Ensure that you have completed these database preparation tasks before starting an
Oracle Database upgrade.

• Enabling Oracle Database Vault After Upgrading Oracle Database
Depending on your target database release, you can be required to disable Oracle
Database Vault to complete an Oracle Database upgrade.

• Preparations for Running AutoUpgrade Processing Modes
You must complete preparations before you can run an AutoUpgrade processing mode.

• Pre-Upgrade Information Check with AutoUpgrade
To obtain a checklist of tasks you must complete before upgrading an Oracle Database
on a physical server or virtual machine, run the AutoUpgrade utility (autoupgrade.jar) in
analyze mode.

• Create Configuration File for AutoUpgrade
To use AutoUpgrade to complete the upgrade, you first create a configuration file with
AutoUpgrade from the new release Oracle home.

• Local Parameters for the AutoUpgrade Configuration File
To configure information for specific Oracle Databases for the AutoUpgrade utility
upgrade, you provide information in the AutoUpgrade local parameters.

• Global Parameters for the AutoUpgrade User Configuration File
To specify a default behavior for a parameter for all Oracle Database upgrades
addressed in the configuration file, you can use the optional AutoUpgrade global
parameters.

• Locally Modifiable Global Parameters for AutoUpgrade Configuration File
Locally modifiable global parameters are parameters that you set both globally, and as
you require, set locally, so that you can better control AutoUpgrade job processing.

2-1

• Understanding Non-CDB to PDB Upgrades with AutoUpgrade
You can upgrade and convert a non-CDB to a PDB in a new CDB in a single
operation, or upgrade and then convert a Non-CDB database to a PDB in a pre-
existing CDB.

• Non-CDB to PDB Upgrade Guidelines and Examples
Before conversion, back up your datafiles and database, and follow the guidelines
for your source Oracle Database release.

• Understanding Unplug-Plug Upgrades with AutoUpgrade
AutoUpgrade can perform an unplug of a pluggable database (PDB) from an
earlier release source container database (CDB), plug it into a later release target
CDB, and then complete all the steps required to upgrade the PDB to the target
CDB release.

• Examples of Non-CDB to PDB Configuration Files for AutoUpgrade
Use these examples to understand how you can modify your own Oracle
Database upgrade configuration file for AutoUpgrade.

Pre-Upgrade Information Check with AutoUpgrade
To obtain a checklist of tasks you must complete before upgrading an Oracle
Database on a physical server or virtual machine, run the AutoUpgrade utility
(autoupgrade.jar) in analyze mode.

Before starting your upgrade, ensure that you have a new release Oracle Database
installed and configured that you can use as the target for your upgrade. When your
target Oracle Database home is prepared, run AutoUpgrade with the -preupgrade
clause on your system, using the instructions that you can find in this guide.

Oracle requires that you run AutoUpgrade in -analyze mode before you upgrade
Oracle Database. AutoUpgrade can identify issues for you to address before you start
your upgrade. In certain cases, AutoUpgrade can also generate scripts that can
resolve some issues.

Tip:

Consider reviewing Oracle’s upgrade blog for tips and suggestions that can
assist you with your upgrade preparations.

Related Topics

• Upgrade your Database – NOW! Mike Dietrich's Oracle Database Upgrade Blog

Understanding Unplug-Plug Upgrades with AutoUpgrade
AutoUpgrade can perform an unplug of a pluggable database (PDB) from an earlier
release source container database (CDB), plug it into a later release target CDB, and
then complete all the steps required to upgrade the PDB to the target CDB release.

There are two workflows for unplug-plug PDB upgrades using AutoUpgrade,
depending on how you configure the upgrade:

Chapter 2
Pre-Upgrade Information Check with AutoUpgrade

2-2

https://mikedietrichde.com/

• You unplug one or more pluggable databases from one source CDB, and plug them into
a new release target CDB

• You unplug multiple pluggable databases from different source CDBs, and plug them into
a new release target CDB

After the upgrade, for each PDB, you must configure database listeners and local naming
parameters (tnsnames.ora files). You must also configure Oracle Wallet management.

Caution:

As with any other change to the database, before you run AutoUpgrade to complete
the conversion and upgrade, Oracle strongly recommends that you implement a
reliable backup strategy to prevent unexpected data loss. There is no option to roll
back an unplug-plug PDB upgrade after AutoUpgrade starts this procedure.
AutoUpgrade does not support unplug-plug upgrades of PDBs that use Transparent
Data Encryption (TDE), or that have an encrypted tablespace.

The following illustration shows the two unplug-plug options you can use:

1. Unplug PDBs from one source Oracle Database 12.2 CDB (CDB1, with pdba and pdbb)
and plug them into a new release target CDB (CDB3).

2. Unplug PDBs from multiple source CDBs (Oracle Database 12.2 on CDB1, pdba and
pdbb), and Oracle Database 18c, CDB2, pdbc and pdbd), and plug them into a new release
target CDB (CDB3).

Figure 2-1 Unplug-Plug Upgrades from Source to Target

Requirements for Source and Target CDBs

To perform an unplug-plug upgrade, your source and target CDBs must meet the following
conditions:

• You have created the target release CDB, and opened the CDB before starting the
unplug-plug upgrade.

Chapter 2
Understanding Unplug-Plug Upgrades with AutoUpgrade

2-3

• The endian format of the source and target CDBs are identical.

• The set of Oracle Database components configured for the target release CDB
include all of the components available on the source CDB.

• The source and target CDBs have compatible character sets and national
character sets

• The source CDB release must be supported for direct upgrade to the target CDB
release.

• External authentication (operating system authentication) is enabled for the source
and target CDBs

• The Oracle Application Express installation type on the source CDBs should
match the installation type on the target CDB.

• There should be no existing guaranteed restore point (GRP) on the non-CDB
Oracle Database that you want to plug in to the CDB.

Caution:

Do not use AutoUpgrade to perform an unplug-plug upgrade to a CDB that is
part of an Oracle Data Guard configuration. To upgrade a PDB using an
unplug-plug to a CDB with an Oracle Data Guard configuration, you must
perform the upgrade manually using the procedure described in the following
My Oracle Support note:

Making Use Deferred PDB Recovery and the STANDBYS=NONE Feature
with Oracle Multitenant (Doc ID 1916648.1)

Features of Unplug-Plug Upgrades

When you select an unplug-plug upgrade, depending on how you configure the
AutoUpgrade configuration file, you can use AutoUpgrade to perform the following
options during the upgrade:

• You can either keep the PDB name that you have in the source CDB, or you can
change the PDB name.

• You can make a copy of the data files to the target CDB, while preserving all of the
old files.

• You can copy the data files to the target location, and then delete the old files on
the source CDB

• You can process one PDB, or you can link to an inclusion list and process many
PDBs in one upgrade procedure; the only limit for the number of PDBs you can
process are the server limits, and the limits for PDBS on the CDB.

Example 2-1 AutoUpgrade Configuration File for Unplug-Plug Upgrades

To use the unplug-plug PDB upgrade option, you must set the system identifier
parameters for the source CDB and PDB, parameter target_cdb in the AutoUpgrade
configuration file. The target_cdb parameter value defines the Oracle system identifier

Chapter 2
Understanding Unplug-Plug Upgrades with AutoUpgrade

2-4

https://support.oracle.com/rs?type=doc&id=1916648.1
https://support.oracle.com/rs?type=doc&id=1916648.1

(SID) of the container database into which you are plugging the non-CDB Oracle Database.
For example:

global.autoupg_log_dir=/home/oracle/autoupg
global.autoupg log_dir=/home/oracle/autoupg
upg1.sid=CDB122
upg1.source_home=/u01/app/oracle/product/12.2.0/dbhome_1
upg1.target_home=/u01/app/oracle/product/19.1.0/dbhome_1
upg1.target_version=19.1.0
upg1.target_cdb=cdb21x
upg1.target_pdb_name.pdb_2=depsales
upg1.target_pdb_copy_option.pdb_2=file_name_convert=('pdb_2','depsales')

Installing Oracle Software in a New Oracle Home
Choose a new location for Oracle Home and then install the new Oracle Database Software
for single-instance.

• Choose a New Location for Oracle Home when Upgrading

• Installing the New Oracle Database Software for Single Instance

Choose a New Location for Oracle Home when Upgrading
You must choose a location for Oracle home for the new release of Oracle Database that is
separate from the Oracle home of your current release.

Using separate installation locations enables you to keep your existing Oracle software
installed along with the new Oracle software. By using separate installation locations, you can
test the upgrade process on a test database before replacing your production environment
entirely.

When you upgrade a database, whether the database is a non-CDB or a CDB, a new
location is needed to install the new Oracle home.

If you are upgrading a PDB by using an unplug/plug upgrade, then the target CDB into which
you plug the PDB is the location for the PDB. There is no need to choose a new location for
installing the target Oracle homes, because the target CDB already has its Oracle home.

Installing the New Oracle Database Software for Single Instance
Use this procedure overview to assist you to install the software for the new Oracle Database
release for a single instance deployment.

Note:

You cannot upgrade a database using Database Upgrade Assistant (DBUA) when
the source and target Oracle homes are owned by different users. Attempting to do
so returns error PRKH-1014. Either ensure that the source and target databases
have the same owner, or perform a manual upgrade.

To install the new Oracle Database software for this release:

Chapter 2
Installing Oracle Software in a New Oracle Home

2-5

1. Follow the instructions in your Oracle operating system-specific documentation to
prepare for installation of Oracle Database software.

2. Start Oracle Universal Installer, and select a software-only installation.

When installation of Oracle Database software has completed successfully, click
Exit to close Oracle Universal Installer.

3. If you use Oracle Label Security, Oracle Database Vault, or both, then select
Enterprise Edition on the Select Database Edition page, click Select Options,
and enable one or both components from the components list.

Prepare a Backup Strategy Before Upgrading Oracle
Database

You must design and carry out an appropriate backup strategy to ensure a successful
upgrade.

For Oracle Database Enterprise Edition, the primary fallback mechanism is Flashback
Database. However, you should also have a complete backup strategy in place.

To develop a backup strategy, consider the following questions:

• How long can the production database remain inoperable before business
consequences become intolerable?

• What backup strategy is necessary to meet your availability requirements?

• Are backups archived in a safe, offsite location?

• Are backups tested to ensure that they are done properly?

• How quickly can backups be restored (including backups in offsite storage)?

• Have disaster recovery procedures been tested successfully?

Your backup strategy should answer all of these questions, and include procedures for
successfully backing up and recovering your database. For information about
implementing backup strategies using RMAN, review Oracle Database Backup and
Recovery User’s Guide.

Related Topics

• Backing Up the Database

• Using Flashback Database and Restore Points

Database Preparation Tasks to Complete Before Starting
Oracle Database Upgrades

Ensure that you have completed these database preparation tasks before starting an
Oracle Database upgrade.

• Release Updates and Requirements for Upgrading Oracle Database

• Recommendations for Oracle Net Services When Upgrading Oracle Database

• Understanding Password Case Sensitivity and Upgrades

Chapter 2
Prepare a Backup Strategy Before Upgrading Oracle Database

2-6

• Checking for Accounts Using Case-Insensitive Password Version

• Running Upgrades with Read-Only Tablespaces

Release Updates and Requirements for Upgrading Oracle Database
Before starting upgrades, update your new release Oracle home to the latest Release Update
(Update).

The software for new Oracle Database releases contains a full release that includes all the
latest updates for Oracle Database at the time of the release.

Before you start an upgrade, Oracle strongly recommends that you update your new release
Oracle home to the latest quarterly Release Update (Update).

My Oracle Support provides detailed notes about how you can obtain the updates, as well as
tools for lifecycle management.. For example:

• My Oracle Support note 2118136.2 contains a download assistant to help you select the
updates, revisions, Patch Set Updates (PSU), SPU (CPU), Bundle Patches, Patchsets,
and Base Releases that you need for your environment. Oracle highly recommends that
you start here.

• My Oracle Support note 1227443.1 contains a list of Oracle Database PSU/BP/Update/
Revision known issues. This note provides information about all known issues notes for
Oracle Database, Oracle Grid Infrastructure, and the Oracle JavaVM Component
(OJVM).

Related Topics

• My Oracle Support Note 2118136.2

• My Oracle Support Note 1227443.1

Recommendations for Oracle Net Services When Upgrading Oracle
Database

You must ensure that the listener is running in your new release Oracle home.

If the Oracle Database that you are upgrading does not have a listener configured, then
before you start the upgrade, you must run Oracle Net Configuration Assistant (NETCA) to
configure the listening protocol address and service information for the new release of Oracle
Database, including a listener.ora file. The current listener is backward-compatible with
earlier Oracle Database releases.

If you are upgrading Oracle Real Application Clusters Oracle Database, or a release older
than Oracle Database 12c, then review the following additional information.

When you upgrade an Oracle RAC database with DBUA, it automatically migrates the
listener from your old Oracle home to the new Oracle Grid Infrastructure home. You must
administer the listener by using the lsnrctl command in the Oracle Grid Infrastructure home.
Do not attempt to use the lsnrctl commands from Oracle home locations for earlier
releases.

In Oracle Database, underlying net services parameters enable data compression, which
reduces the size of the session data unit that is transmitted over a SQL TCP connection.

The following new parameters for the sqlnet.ora file specify compression, and the preferred
compression scheme:

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-7

https://support.oracle.com/rs?type=doc&id=2118136.2
https://support.oracle.com/rs?type=doc&id=1227443.1

• SQLNET.COMPRESSION

• SQLNET.COMPRESSION_LEVELS

• SQLNET.COMPRESSION_THRESHOLD

These parameters, which were introduced with Oracle Database 12c, are not
supported in earlier releases.

Related Topics

• Oracle Database Net Services Reference

Understanding Password Case Sensitivity and Upgrades
By default, Oracle Database 12c Release 2 (12.2) and later releases are upgraded to
an Exclusive Mode. Exclusive Modes do not support case-insensitive password-based
authentication.

Accounts that have only the 10G password version become inaccessible when the
server runs in an Exclusive Mode.

In previous Oracle Database releases, you can configure the authentication protocol
so that it allows case-insensitive password-based authentication by setting
SEC_CASE_SENSITIVE_LOGON=FALSE. Starting with Oracle Database 12c release 2
(12.2), the default password-based authentication protocol configuration excludes the
use of the case-insensitive 10G password version. By default, the SQLNET.ORA
parameter SQLNET.ALLOWED_LOGON_VERSION_SERVER is set to 12, which is an Exclusive
Mode. When the database is configured in Exclusive Mode, the password-based
authentication protocol requires that one of the case-sensitive password versions (11G
or 12C) is present for the account being authenticated. This mode excludes the use of
the 10G password version used in earlier releases. After upgrading to Oracle Database
12c release 2 and later releases, accounts that have only the case-insensitive 10G
password version become inaccessible. This change occurs because the server runs
in an Exclusive Mode by default. When Oracle Database is configured in Exclusive
Mode, it cannot use the old 10G password version to authenticate the client. The server
is left with no password version with which to authenticate the client.

For greater security, Oracle recommends that you leave case-sensitive password-
based authentication enabled. This setting is the default. However, you can
temporarily disable case-sensitive authentication during the upgrade to new Oracle
Database releases. After the upgrade, you can then decide if you want to enable the
case-sensitive password-based authentication feature as part of your implementation
plan to manage your password versions.

Before upgrading, Oracle recommends that you determine if this change to the default
password-based authentication protocol configuration affects you. Perform the
following checks:

• Identify if you have accounts that use only 10G case-insensitive password
authentication versions.

• Identify if you have Oracle Database 11g release 2 (11.2.0.3) database or earlier
clients that have not applied critical patch update CPUOct2012, or a later patch
update, and have any account that does not have the case-insensitive 10G
password version.

• Ensure that you do not have the deprecated parameter
SEC_CASE_SENSITIVE_LOGON set to FALSE. Setting this parameter to FALSE

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-8

prevents the use of the case-sensitive password versions (the 11G and 12C password
versions) for authentication.

Options for Accounts Using Case-Insensitive Versions

If you have user accounts that have only the case-insensitive 10G password version, then you
must choose one of the following alternatives:

• Before upgrade, update the password versions for each account that has only the 10G
password version. You can update the password versions by expiring user passwords
using the 10G password version, and requesting that these users log in to their account.
When they attempt to log in, the server automatically updates the list of password
versions, which includes the case-sensitive password versions.

• Change the setting of the SQLNET.ORA parameter
SQLNET.ALLOWED_LOGON_VERSION_SERVER to any of the settings that are not Exclusive
Mode. For example: SQLNET.ALLOWED_LOGON_VERSION_SERVER=11

Related Topics

• Oracle Database 2 Day DBA

• Oracle Database Net Services Reference

• Oracle Database Security Guide

Checking for Accounts Using Case-Insensitive Password Version
Use these procedures to identify if the Oracle Database that you want to upgrade has
accounts or configuration parameters that are using a case-insensitive password version.

By default, in Oracle Database 12c release 2 (12.2) and later releases, the 10G password
version is not generated or allowed.

If you do not set SQLNET.ALLOWED_LOGON_VERSION_SERVER to a permissive authentication
protocol that permits case-insensitive versions, and you do not want user accounts
authenticated with case-insensitive password versions to be locked out of the database, then
you must identify affected accounts, and ensure that they are using case-sensitive password
versions.

Example 2-2 Finding User Accounts That Use Case-Insensitive (10G) Version

Log in to SQL*Plus as an administrative user, and enter the following SQL query:

SELECT USERNAME,PASSWORD_VERSIONS FROM DBA_USERS;

The following result shows password versions for the accounts:

USERNAME PASSWORD_VERSIONS
------------------------------ -----------------
JONES 10G 11G 12C
ADAMS 10G 11G
CLARK 10G 11G
PRESTON 11G
BLAKE 10G

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-9

In this example, the backgrounds for each user account password verification version
in use are different:

• JONES was created in Oracle Database 10G, and the password for JONES was reset
in Oracle Database 12C when the setting for the
SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter was set to 8. As a result, this
password reset created all three versions. 11G and 12C use case-sensitive
passwords.

• ADAMS and CLARK were originally created with the 10G version, and then 11G, after
they were imported from an earlier release. These account passwords were then
reset in 11G, with the deprecated parameter SEC_CASE_SENSITIVE_LOGON set
to TRUE.

• The password for BLAKE was created with the 10G version, and the password has
not been reset. As a result, user BLAKE continues to use the 10G password
version, which uses a case-insensitive password.

The user BLAKE has only the 10G password version before upgrade:

SQL> SELECT USERNAME,PASSWORD_VERSIONS FROM DBA_USERS;

USERNAME PASSWORD_VERSIONS
------------------------------ -----------------
BLAKE 10G

If you upgrade to a new Oracle Database release without taking any further action,
then this account becomes inaccessible. Ensure that the system is not configured in
Exclusive Mode (by setting the SQLNET.ORA parameter
SQLNET.ALLOWED_LOGON_VERSION_SERVER to a more permissive authentication mode)
before the upgrade.

Example 2-3 Fixing Accounts with Case-Insensitive Passwords

Complete the following procedure:

1. Use the following SQL query to find the accounts that only have the 10G password
version:

 select USERNAME
 from DBA_USERS
 where (PASSWORD_VERSIONS = '10G '
 or PASSWORD_VERSIONS = '10G HTTP ')
 and USERNAME <> 'ANONYMOUS';

2. Configure the system so that it is not running in Exclusive Mode by editing the
setting of the SQLNET.ORA parameter SQLNET.ALLOWED_LOGON_VERSION_SERVER to a
level appropriate for affected accounts. For example:

SQLNET.ALLOWED_LOGON_VERSION_SERVER=11

After you make this change, proceed with the upgrade.

3. After the upgrade completes, use the following command syntax to expire the
accounts you found in step 1, where username is the name of a user returned from
the query in step 1:

ALTER USER username PASSWORD EXPIRE;

4. Ask the users for whom you have expired the passwords to log in.

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-10

5. When these users log in, they are prompted to reset their passwords. The system
internally generates the missing 11G and 12C password versions for their account, in
addition to the 10G password version. The 10G password version is still present, because
the system is running in the permissive mode.

6. Ensure that the client software with which users are connecting has the O5L_NP capability
flag.

Note:

All Oracle Database release 11.2.0.4 and later clients, and all Oracle Database
release 12.1 and later clients have the O5L_NP capability. Other clients require
the CPUOct2012 patch to acquire the O5L_NP capability.

The O5L_NP capability flag is documented in Oracle Database Net Services
Reference, in the section on the parameter
SQLNET.ALLOWED_LOGON_VERSION_SERVER.

7. After all clients have the O5L_NP capability, raise the server security back to Exclusive
Mode by using the following procedure:

a. Remove the SEC_CASE_SENSITIVE_LOGON setting from the instance initialization file, or
set the SEC_CASE_SENSITIVE_LOGON instance initialization parameter to TRUE. For
example:

SEC_CASE_SENSITIVE_LOGON = TRUE

b. Remove the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter from the server
SQLNET.ORA file, or set it back to Exclusive Mode by changing the value of
SQLNET.ALLOWED_LOGON_VERSION_SERVER in the server SQLNET.ORA file back to 12. For
example:

SQLNET.ALLOWED_LOGON_VERSION_SERVER = 12

8. Use the following SQL query to find the accounts that still have the 10G password version:

 select USERNAME
 from DBA_USERS
 where PASSWORD_VERSIONS like '%10G%'
 and USERNAME <> 'ANONYMOUS';

9. Use the list of accounts returned from the query in step 8 to expire all the accounts that
still have the 10G password version. Expire the accounts using the following syntax,
where username is a name on the list returned by the query:

ALTER USER username PASSWORD EXPIRE;

10. Request the users whose accounts you expired to log in to their accounts.

When the users log in, they are prompted to reset their password. The system internally
generates only the 11G and 12C password versions for their account. Because the system
is running in Exclusive Mode, the 10G password version is no longer generated.

11. Check that the system is running in a secure mode by rerunning the query from step 1.
Ensure that no users are found. When the query finds no users, this result means that no
10G password version remains present in the system.

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-11

Example 2-4 Checking for the Presence of SEC_CASE_SENSITIVE_LOGON Set
to FALSE

Oracle Database does not prevent the use of the FALSE setting for
SEC_CASE_SENSITIVE_LOGON when the SQLNET.ALLOWED_LOGON_VERSION_SERVER
parameter is set to 12 or 12a. This setting can result in all accounts in the upgraded
database becoming inaccessible.

SQL> SHOW PARAMETER SEC_CASE_SENSITIVE_LOGON

NAME TYPE VALUE
------------------------------------ -----------

sec_case_sensitive_logon boolean FALSE

You can change this parameter by using the following command:

SQL> ALTER SYSTEM SET SEC_CASE_SENSITIVE_LOGON = TRUE;

System altered.

Note:

Unless the value for the parameter SQLNET.ALLOWED_LOGON_VERSION_SERVER
is changed to a version that is more permissive than 12, such as 11, do not
set the SEC_CASE_SENSITIVE_LOGON parameter to FALSE.

Related Topics

• Oracle Database Net Services Reference

• Oracle Database Security Guide

Running Upgrades with Read-Only Tablespaces
Use the Parallel Upgrade Utility with the -T option to take schema-based tablespaces
offline during upgrade.

Oracle Database can read file headers created in earlier releases, so you are not
required to do anything to them during the upgrade. The file headers of READ ONLY
tablespaces are updated when they are changed to READ WRITE.

If the upgrade suffers a catastrophic error, so that the upgrade is unable to bring the
tablespaces back online, then review the upgrade log files. The log files contain the
actual SQL statements required to make the tablespaces available. To bring the
tablespaces back online, you must run the SQL statements in the log files for the
database, or run the log files for each PDB.

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-12

Viewing Tablespace Commands in Upgrade Log Files

If a catastrophic upgrade failure occurs, then you can navigate to the log directory
(Oracle_base/cfgtoologs/dbua), and run commands in the log files manually to bring up
tablespaces. You can view tablespace commands in the following log files:

• Non-CDB Upgrades: catupgrd0.log

• PDB databases: catupgrdpdbname0.log, where pdbname is the name of the PDB that you
are upgrading.

At the beginning of each log file, you find SQL statements such as the following, which sets
tables to READ ONLY:

SQL> ALTER TABLESPACE ARGROTBLSPA6 READ ONLY;

Tablespace altered.

SQL> ALTER TABLESPACE ARGROTBLSPB6 READ ONLY;

Tablespace altered.

Near the end of each log file, you find SQL statements to reset tables to READ WRITE:

SQL> ALTER TABLESPACE ARGROTBLSPA6 READ WRITE;

Tablespace altered.

SQL> ALTER TABLESPACE ARGROTBLSPB6 READ WRITE;

Tablespace altered.

See Also:

Oracle Database Administrator’s Guide for information about transporting
tablespaces between databases

Enabling Oracle Database Vault After Upgrading Oracle
Database

Depending on your target database release, you can be required to disable Oracle Database
Vault to complete an Oracle Database upgrade.

• Upgrading Oracle Database Without Disabling Oracle Database Vault

• Common Upgrade Scenarios with Oracle Database Vault

Chapter 2
Enabling Oracle Database Vault After Upgrading Oracle Database

2-13

Upgrading Oracle Database Without Disabling Oracle Database Vault
If your target Oracle Database release is 12.2 or later, then you can upgrade without
disabling Oracle Database Vault.

If you have Oracle Database Vault enabled in your source Oracle Database release,
then you can upgrade Oracle Database to Oracle Database 18c and later releases
without first disabling Oracle Database Vault. After the upgrade, if your source Oracle
Database release is Oracle Database 12c release 1 (12.1) or later, then Oracle
Database Vault is enabled with the same enforcement settings that you had in place
before the upgrade. For example, if your source database is Oracle Database release
12.1, and Oracle Database Vault was disabled in that release, then it remains disabled
after you upgrade. If your source Oracle Database release 12.1 database had Oracle
Database Vault enabled before the upgrade, then Oracle Database Vault is enabled
after the upgrade.

If you manually disable Oracle Database Vault before the upgrade, then you must
enable Oracle Database Vault manually after the upgrade.

If you did not have Oracle Database Vault enabled before the upgrade, then you can
enable it manually after the upgrade.

Enable Oracle Database Vault in the upgraded database by using the procedure
dvsys.dbms_macadm.enable_dv(). Run this procedure with a user account that is
granted DV_OWNER. After you run the procedure, restart the database instance so that
the procedure takes effect.

Related Topics

• Oracle Database Vault Administrator’s Guide

Common Upgrade Scenarios with Oracle Database Vault
The requirements to enable Oracle Database Vault after upgrades change, depending
on your source Oracle Database release.

• Upgrades from Oracle Database 11g release 2 (11.2) or earlier: After the upgrade,
Oracle Database Vault is disabled by default.

• Upgrades from Oracle Database 12c release 1 (12.1) or later: After the upgrade,
Oracle Database Vault has the same enforcement status that you had in place
before the upgrade.

Table 2-1 Common Oracle Database Vault Upgrade Scenarios and Upgrade
Preparation Tasks

Source Database
Release

Target Database
Release

Do you need to
disable Database
Vault Before
Upgrade

What is Database
Vault Status After
Upgrade

11.2 or earlier 12.1 Yes Disabled. You need to
enable Database Vault
manually after the
upgrade.

Chapter 2
Enabling Oracle Database Vault After Upgrading Oracle Database

2-14

Table 2-1 (Cont.) Common Oracle Database Vault Upgrade Scenarios and
Upgrade Preparation Tasks

Source Database
Release

Target Database
Release

Do you need to
disable Database
Vault Before
Upgrade

What is Database
Vault Status After
Upgrade

11.2.or earlier 12.2, 18.1 and later No Disabled. You need to
enable Database Vault
manually after the
upgrade.

12.1, 12.2, 18.1, and
later

12.2, 18.1 and later No Database Vault has
the same enforcement
status that you had in
place before the
upgrade.

Preparations for Running AutoUpgrade Processing Modes
You must complete preparations before you can run an AutoUpgrade processing mode.

Before you can use an AutoUpgrade processing mode, confirm that you meet the following
requirements:

• You have created a user configuration file.

• The source Oracle Database release is up and running in the original Oracle home. In
case of a restart of AutoUpgrade, you must start the database in the Oracle home that
corresponds to the phase in the upgrade flow.

• The server on which the database is running is registered on the server hosts file (for
example, /etc/hosts), or on a domain name server (DNS).

If you are logged in to the server on which the target database is located, and the
database is running either on localhost, or where AutoUpgrade is running, then remove
the hostname parameter from the AutoUpgrade config file.

• On container databases (CDBs), if you want to upgrade a subset of pluggable databases
(PDBs), then the PDBs on which you want to run the upgrade are open, and they are
configured in the user configuration file, using the AutoUpgrade local parameter pdbs. If
you do not specify a list of PDBs, then AutoUpgrade upgrades all PDBs on the CDB.

• You have the AutoUpgrade jar file (autoupgrade.jar) downloaded or available, and you
are able to run it using a Java 8 distribution.

• If you want to run AutoUpgrade in a batch or script , then you have called AutoUpgrade
using the noconsole parameter in the command.

In Oracle Database 19c (19.3) and later target Oracle homes, the autoupgrade.jar file exists
by default. However, before you use AutoUpgrade, Oracle strongly recommends that you
download the latest version, which is available form My Oracle Support Document
2485457.1.

Related Topics

• My Oracle Support Document 2485457.1

Chapter 2
Preparations for Running AutoUpgrade Processing Modes

2-15

https://support.oracle.com/rs?type=doc&id=2485457.1

Create Configuration File for AutoUpgrade
To use AutoUpgrade to complete the upgrade, you first create a configuration file with
AutoUpgrade from the new release Oracle home.

In the following example, the AutoUpgrade utility is run using the parameter
sample_config_file. This parameter generates a configuration file in the home of the
user running AutoUpgrade that you can edit to provide environment paths and settings
and upgrade preferences for the upgrade. To generate the configuration file (config),
you run AutoUpgrade from the new release Oracle Database home using the
sample_config_file parameter, and specify an output file name.

In this example, user oracle navigates to the location of an earlier release Oracle
home, which in this case is Oracle Database 12c Release 2 (12.2):

cd /u01/app/oracle/product/12.2/

Next, the Oracle user starts AutoUpgrade from the Oracle Database 19c Oracle home,
and creates a configuration file in its user home directory, /home/oracle:

java -jar /u01/app/oracle/product/19/rdbms/admin/autoupgrade.jar -
create_sample_file config
Created sample configuration file /home/oracle/sample_config.cfg

After you create the configuration file, open it up in your preferred text editor, and
modify parameter settings as needed for your environment.

cd /
vi sample_config.cfg

Local Parameters for the AutoUpgrade Configuration File
To configure information for specific Oracle Databases for the AutoUpgrade utility
upgrade, you provide information in the AutoUpgrade local parameters.

Usage Notes

Local parameters take precedence over any global parameters set in the AutoUpgrade
configuration file. Except where indicated with (Optional), all local parameters are
required. All local parameters take a prefix (in examples, identified by a value you
define to identify a particular database or upgrade. The prefix identifies the specific
upgrade job to which the parameter applies in the configuration file.

Example: The set of parameters for the first upgrade in the configuration file uses the
prefix sales, and the set of parameters for the next upgrade in the configuration file
uses the prefix employees:

sales.source_home=/u01/app/oracle/12.2/dbhome1
.
.

Chapter 2
Create Configuration File for AutoUpgrade

2-16

.
employees.sid=salescdb
employees.source_home-/03/app/oracle/21/dbhome1

Table 2-2 Local Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

add_after_upgrade_pfile (Optional) Specifies a path and file name of a PFILE whose parameters you
want to add after the upgrade.

Example:

sales3.add_after_upgrade_pfile=/path/to/my/pfile_add.ora

add_during_upgrade_pfile (Optional) Specifies a path and file name of a PFILE whose parameters you
want to add during the upgrade.

Example:

sales3.add_during_upgrade_pfile=/path/to/my/newpfile.ora

after_action (Optional) Specifies a custom action that you want to have performed after
completing the upgrade job for the database identified by the prefix address.

The script that you use must be in the form of name.ext (for example,
myscript.sh, so that AutoUpgrade can identify the type of script that you
want to run. Permitted extension options:

• Unix shell (.sh)
• Microsoft Windows batch (.bat, .cmd)
• Microsoft Windows PowerShell (.ps1)
• Oracle SQL file (.sql), with a local operation only designated by the

prefix.
By default, if the script fails, then AutoUpgrade continues to run. Use the Y
flag to specify that AutoUpgrade stops if the operating system detects that
your script fails. If the script finishes with a status different than 0, then it is
considered a failed completion.

In contrast to the global after_action parameter, the local after_action
parameter can specify a SQL script, which then runs on the database using
the target Oracle Database binaries on a non-CDB Oracle home, or on
CDB$ROOT. If you want to run additional container-specific actions, then they
must be set within the code. For more complex scenarios, you can run
container-specific actions in a shell.

Examples:

Run the specified script before AutoUpgrade starts processing, with the Y
flag set to stop AutoUpgrade if the script fails:

sales2.after_action=/user/path/script.sh Y

Run the specified script before AutoUpgrade starts processing, with
AutoUpgrade set to continue to run if the script fails:

sales3.after_action=/user/path/script.sh

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-17

Table 2-2 (Cont.) Local Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

before_action (Optional) Specifies a custom action that you want to have performed before
starting the upgrade job for the specific database job addressed by the
prefix. If you want to have a script run before all upgrade jobs, then specify
that script by using the local parameter (global.before_action)

The script that you use must be in the form of name.ext (for example,
myscript.sh), so that AutoUpgrade can identify the type of script that you
want to run. Permitted extension options:

• Unix shell (.sh)
• Microsoft Windows batch (.bat, .cmd)
• Microsoft Windows PowerShell (.ps1)
• Oracle SQL file (.sql), with a local operation only designated by the

prefix.
By default, if the script fails, then AutoUpgrade continues to run. Use the Y
flag to specify that AutoUpgrade stops if the operating system detects that
your script fails. If the script finishes with a status different than 0, then it is
considered a failed completion.

In contrast to the global before_action parameter, the local
before_action parameter can specify a SQL script, which can run on the
database in the source database Oracle home, using the earlier release
Oracle Database binaries. The script runs on a non-CDB Oracle home, or
on CDB$ROOT. If you want to run additional container-specific actions, then
they must be set within the code. For more complex scenarios, you can run
container-specific actions in a shell.

Examples:

Run the specified script before AutoUpgrade starts processing, with the Y
flag set to stop AutoUpgrade if the script fails:

sales.before_action=/user/path/script.sh Y

Run the specified script before AutoUpgrade starts processing, with
AutoUpgrade set to continue to run if the script fails:

sales4.before_action=/user/path/script.sh

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-18

Table 2-2 (Cont.) Local Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

catctl_options (Optional) Specifies one or more of a set of catctl.pl options that you can
select for AutoUpgrade to submit for catctl.pl to override default
behavior. For a complete description of the options, refer to "Parallel
Upgrade Utility (catctl.pl) Parameters," which is linked to at the end of
this table.

Available catctl.pl options:

• -n Number of processes to use for parallel operations.
• -N Number of SQL processors to use when upgrading PDBs.
• -t Run SQL in classic upgrade overwriting default replay upgrade

method
• -T Takes offline user schema-based table spaces.
• -z Turns on production debugging information for catcon.pm.
Example:

sales4.catctl_options=-t

checklist (Optional) Specifies the path to a checklist that you can use to override the
default list of fixups that AutoUpgrade performs, such as fixups that you do
not want implemented automatically, due to policy or security concerns.

To use this parameter during other AutoUpgrade modes, you must run
AutoUpgrade in analyze mode. After AutoUpgrade finishes the analysis,
you can then find the checklist file identified by the database name under
the precheck directory (dbname_checklist.cfg). Update the file manually
to exclude the fixups that you want AutoUpgrade to bypass, and save the file
with a new name. When you run AutoUpgrade again, you can specify the
parameter pointing to the checklist file that you created, and modify fixups
that are performed for individual databases. If you do not specify a checklist
file path, then the set of fixups that run during the upgrade is the latest
version of the checklist file that is created during the deploy mode that you
specified.

Example:

sales.checklist=/u01/app/oracle/upgrade-jobs/
salesdb_checklist.cfg

In the preceding example, salesdb_checklist.cfg is the checklist
configuration file for the database salesdb.

del_after_upgrade_pfile (Optional) Specifies a path and file name of a PFILE whose parameters you
want to remove after the upgrade.

Example:

sales3.del_after_upgrade_pfile=/path/to/my/pfile_del.ora

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-19

Table 2-2 (Cont.) Local Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

del_during_upgrade_pfile (Optional) Specifies a path and file name of a PFILE whose parameters you
want to have removed during upgrade.

Example:

sales3.del_during_upgrade_pfile=/path/to/my/oldpfile.ora

env (Optional) Specifies custom operating system environment variables set on
your operating system, excluding ORACLE_SID, ORACLE_HOME,
ORACLE_BASE, and TNS_ADMIN.

Use case:

Use this parameter to provide environment setting that are indicated in the
database sqlnet.ora file, such as secure socket layer cipher suites that
are used for Oracle Wallet.

Syntax:

prefix.env=VARIABLE1=value1/, VARIABLE2=value2/

For example, assume that for the PDB sales2, the value for
WALLET_LOCATION is set using custom environment variables:

WALLET_LOCATION=
 (SOURCE=
 (METHOD=file)
 (METHOD_DATA=(DIRECTORY=/databases/
wallets/$CUSTOM_ENV1/$CUSTOM_ENV2))

In that case, for AutoUpgrade to know what those custom environment
variables are, you must provide them using the env parameter, where dir1
is the path indicated by the environment variable CUSTOM_ENV1, and dir2 is
the path specified by CUSTOM_ENV2:

sales2.env=CUSTOM_ENV1=dir1,CUSTOM_ENV2=dir2

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-20

Table 2-2 (Cont.) Local Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

log_dir (Optional with AutoUpgrade 19.8) Sets the location of log files that are
generated for database upgrades that are in the set of databases included in
the upgrade job identified by the prefix for the parameter.

When set, AutoUpgrade creates a hierarchical directory based on a local log
file path that you specify. For example, where the job identifier prefix is
sales, and where log_dir is identified as upgrade-jobs, and stage1,
stage2, and stagen represent stages of the upgrades:

/u01/app/oracle/upgrade-jobs
 /temp/
 /sales/
 /sales/stage1
 /sales/stage2
 /sales/stagen

You cannot use wild cards for paths, such as tilde (~). You must use a
complete path.

Example:

salesdb.log_dir=/u01/app/oracle/upgrade-jobs

By default, if the global configuration file parameter
global.autoupg_log_dir is specified, and you do not specify log_dir,
then the default is the path specified in global.autoupg_log_dir.

When neither global.autoupg_log_dir nor log_dir is specified, then
by default the log files are placed in the location indicated by the orabase
utility for the databases that you include in your configuration file. In that
case, the default logs directory is in the path ORACLE_BASE/cfgtoollogs/
autoupgrade.

If the orabase utility fails for all databases included in the configuration file,
then the log file location is then based on the temp directory for the user
running AutoUpgrade.

pdbs (Optional) Sets a list of PDBs on which you want the upgrade to run. This
parameter only applies to upgrades of multitenant architecture (CDB)
databases. If you are plugging in and upgrading a non-CDB database, then
this parameter is ignored.

The PDB list is comma-deliminated. The list can contain either PDB names,
or a star character (*), which indicates that you want to upgrade all PDBs
that are open on the CDB at the time that you run AutoUpgrade. If a PDB is
in a mounted state, then AutoUpgrade ignores that PDB when running in
ANALYZE mode. If the parameter is not specified, then all PDBs in the CDB
are upgraded. However, if the PDB is in mount state, and the deploy mode is
fixups, deploy or upgrade, then the PDB is opened in read-write mode, or
upgrade mode, or both, so that the stages can run.

Example:

sales1.pdbs=pdb1, pdb2, pdbn
 upgr1.pdbs=*

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-21

Table 2-2 (Cont.) Local Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

raise_compatible (Optional) Increases the compatible parameter to the default value of the
target release after the upgrade is completed successfully.

Options:

[yes | no]

The default value is no.

CAUTION:

• After the COMPATIBLE parameter is increased, database downgrade is
not possible.

• Oracle recommends that you only raise the COMPATIBLE parameter to
the current release level after you have thoroughly tested the upgraded
database.

• Regardless of what value you use for the autoupgrade command-line
parameter restore, if you set the value of the configuration file
parameter raise_compatible to yes, then before starting the
upgrade, you must delete manually any guaranteed restore point you
have created. After the upgrade is completed successfully,
AutoUpgrade deletes the guaranteed restore point it creates before
starting the upgrade. When AutoUpgrade starts the POSTUPGRADE
stage, there is no way to restore the database.

Example:

sales1.raise_compatible=yes

remove_underscore_parameters (Optional) Removes underscore (hidden) parameters from PFILE files
during upgrade, and after upgrade, for all Oracle Databases in the
configuration file. Underscore parameters should only be used by advice of
Oracle Support.

Options:

[yes | no]

The default value is no.

Example:

sales1.remove_underscore_parameters=yes

restoration (Optional) Generates a Guaranteed Restore Point (GRP) for database
restoration. If you set restoration=no, then both the database backup and
restoration must be performed manually. Use this option for databases that
operate in NOARCHIVELOG mode, and for Standard Edition and SE2
databases, which do not support the Oracle Flashback technology feature
Flashback Database.

Options:

[yes | no]

The default value is no.

Example:

sales1.restoration=no

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-22

Table 2-2 (Cont.) Local Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

run_utlrp (Optional) Enables or disables running utlrp as part of the upgrade.

The utlrp utility recompiles all Data Dictionary objects that become invalid
during a database upgrade. Oracle recommends that you run this utility after
every Oracle Database upgrade. Options: yes, no. The default is enabled
(yes).

Example:

prefix.run_utlrp=yes

sid (Required) Identifies the Oracle system identifier (SID) of the database that
you want to upgrade.

Example:

sales1.sid=salesdb

skip_tde_key_import (Optional) The default is NO. You can use this option for nonCDB-to-PDB
and unplug/plug operations. When set to YES, the import of the source
database KeyStore import into the target database is skipped, without
raising an error. AutoUpgrade will leave the PDB open in upgrade mode, so
that you can import the keys manually yourself.

source_home (Required for analyze, fixups, and deploy modes. Optional for upgrade
mode.) Current Oracle home (ORACLE_HOME) of the database that you want
to upgrade. For the mode upgrade, the source home and target home
values can be the same path.

Example:

sales2.source_home=/path/to/my/source/oracle/home

source_tns_admin_dir (Optional) Specifies the path to the TNS_ADMIN directory in the source
database home. This parameter has no effect on Microsoft Windows,
because on Windows, the TNS_ADMIN environmental variable is set within
the registry.

Example:

sales1.source_tns_admin_dir=/u01/app/oracle/12.2/
dbhome01/network/admin

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-23

Table 2-2 (Cont.) Local Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

start_time (Optional) Sets a future start time for the upgrade job to run. Use this
parameter to schedule upgrade jobs to balance the load on your server, and
to prevent multiple jobs from starting immediately.

Values must either take the form now (start immediately), or take the English
Date Format form DD/MM/YYYY or MM/DD/YYYY, where MM is month, DD
is day, and YYYY is year. If you do not set a value, then the default is now.

Example:

sales1.start_time=now
sales2.start_time=07/11/2020 01:30:15

Permitted values:

now
30/12/2019 15:30:00
01/11/2020 01:30:15
2/5/2020 3:30:50

If more than one job is started with the start_time value set to now, then
AutoUpgrade schedules start times based on resources available in the
system, which can result in start time for jobs that are separated by a few
minutes.

Values are invalid that use the wrong deliminator for the date or time
element, or use the wrong date or hour format.

Example:

30-12-2019 15:30:00
01/11/2020 3:30:15pm
2020/06/01 01:30:15

target_base (Optional) Specifies the target ORACLE_BASE path for the target Oracle
home.

Example:

target_base=/u01/app/oracle
sales4.target_base=/u04/app/oracle4

target_cdb (Optional) Specifies the SID of the target CDB into which a non-CDB Oracle
Database is plugged in. This parameter is mandatory when you want to
upgrade and convert a non-CDB Oracle Database.

Example:

emp.target_cdb=salescdb

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-24

Table 2-2 (Cont.) Local Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

target_pdb_copy_option=file_
name_convert=('f1', 'r1',
'f2', 'r2', 'f3', 'r3'...)

(Optional) This option is only used when creating a pluggable database
within the target CDB. It specifies the file_name_convert option that will
be used by the create pluggable database statement that is executed by
AutoUpgrade when converting a non-CDB database to a PDB or an existing
PDB from a different source CDB into a PDB in the specified target CDB. If
you do not specify this parameter, then the default value of the parameter is
NOCOPY, and existing data files are reused.

On the target CDB, if you have the parameters DB_CREATE_FILE_DEST or
PDB_FILE_NAME_CONVERT set, and you want these parameters on the
target CDB to take effect, then set the value of
prefix.target_pdb_copy_option=file_name_convert=NONE

If you want one or more data file names changed during conversion, then
enter values for the parameter to indicate the filename you want to change,
and the filename to which you want the existing files copied, using the
syntax prefix.target_pdb_copy_option=('f1', 'r1', 'f2',
'r2', . . .), where f1 is the first filename pattern on your source, r1 is
the first replacement filename pattern on your target CDB, f2 is the second
filename pattern on your source, r2 is the second replacement file pattern
on your target CDB, and so on.

Example:

In this example, AutoUpgrade will copy existing datafiles during conversion
of a database specified with the prefix string upg1 to replace the file path
string and filename /old/path/pdb_2 with the file path string and
filename /new/path/depsales:

upg1.target_pdb_copy_option=file_name_convert=('/old/
path/pdb_2', '/new/path/depsales')

To convert OMF files with
target_pdb_copy_option=file_name_convert, the target Oracle home
must be Oracle Database 19c Release Update 6 or later (19.6.0), or Oracle
Database 18c Release Update 10 or later (18.10.0).

In this example, the parameter is configured so that data files that are stored
on Oracle ASM, but not stored as Oracle-managed files, are copied from
+DATA/dbname/sales to +DATA/dbname/depsales:

upg1.target_pdb_copy_option=file_name_convert=('+DATA/
dbname/sales', '+DATA/dbname/depsales')

target_pdb_name (Optional) Specifies the name that you want to assign to a non-CDB source
Oracle Database after is plugged in to the target CDB. The default value is
to use the database unique name of the non-CDB Oracle Database. If you
want to specify a name that is different from the existing name of the non-
CDB when you plug it in to the CDB, then you must set this parameter.

Example:

emp.target_pdb_name=sales2

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-25

Table 2-2 (Cont.) Local Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

target_tns_admin_dir (Optional) Specifies the path to the TNS_ADMIN directory in the target
database home.

Example:

sales1.target_tns_admin_dir=/u01/app/oracle/19/dbhome01/
network/admin

timezone_upg (Optional) Enables or disables running the time zone upgrade as part of the
AutoUpgrade process. To preserve data integrity, Oracle recommends that
you upgrade the time zone settings at the time of your database upgrade. In
particular, upgrade the timezone when you have data that depend on the
time zone, such as timestamp with time zone table columns. Note that
this setting can be disabled by overwriting the fixup on the checklist file.
Options: yes, no. The default is enabled (yes).

Example:

sales1.timezone_upg=yes

upgrade_node (Optional) Specifies the node on which the current user configuration is
valid. The default value is localhost.

The purpose of this parameter is to prevent AutoUpgrade from processing
databases that are listed in the configuration file that you use with
AutoUpgrade, where the value for the upgrade_node parameter does not
correspond to the current host name. It does not enable running
AutoUpgrade remotely. You can use the keyword localhost as a wild card
to indicate that databases on the local host should be processed.

Use case:

The configuration file config.cfg contains 10 databases. Five of the
databases have the value of upgrade_node set to denver01. The
remaining five have the value of upgrade_node set to denver02. If
AutoUpgrade is run on the server denver01 using the configuration file
config.cfg, then AutoUpgrade only processes the databases where
upgrade_node is set to denver01. It ignores the databases where
upgrade_node is set to denver02. The utility hostname identifies the value
used to resolve the upgrade node.

Example:

hostname
denver02
sales1.upgrade_node=denver01

Chapter 2
Local Parameters for the AutoUpgrade Configuration File

2-26

Global Parameters for the AutoUpgrade User Configuration File
To specify a default behavior for a parameter for all Oracle Database upgrades addressed in
the configuration file, you can use the optional AutoUpgrade global parameters.

Usage Notes

All global parameters are optional. All global parameters take the prefix global.

The add_after_upgrade_pfile and del_during_upgrade_pfile global and local PFILE
parameters operations are run in the following hierarchical order:

1. Global Actions

a. Remove global

b. Add global

2. Local Actions

a. Remove local

b. Add local

Table 2-3 Global Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

add_after_upgrade_pfile (Optional) Specifies a path and file name of a PFILE whose parameters you
want to add after the PFILE is upgraded. This specification applies to all
databases in the user configuration file.

Example:

global.add_after_upgrade_pfile=/path/to/my/add_after.ora

add_during_upgrade_pfile (Optional) Specifies a path and file name of a PFILE whose parameters you
want to have added during the PFILE upgrade. This specification applies to
all databases in the user configuration file.

global.add_during_upgrade_pfile=/path/to/my/
add_during.ora

Chapter 2
Global Parameters for the AutoUpgrade User Configuration File

2-27

Table 2-3 (Cont.) Global Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

after_action (Optional) Specifies a path and a file name for a custom user script that you
want to have run after all the upgrade jobs finish successfully. The script that
you use must be in the form of name.ext (for example, myscript.sh, so
that AutoUpgrade can identify the type of script that you want to run.
Permitted extension options:

• Unix shell (.sh)
• Microsoft Windows batch (.bat, .cmd)
• Microsoft Windows PowerShell (.ps1)
By default, if the script fails, then AutoUpgrade continues to run. Use the Y
flag to specify that AutoUpgrade stops if the operating system detects that
your script fails. If the script finishes with a status different than 0, then it is
considered a failed completion.

Examples:

If the script fails, then stop AutoUpgrade:

global.after_action=/path/to/my/script.sh Y

If the script fails, then continue AutoUpgrade:

global.after_action=/path/to/my/script.sh

autoupg_log_dir (Optional) Sets the location of the log files, and temporary files that belong
to global modules, which AutoUpgrade uses.

Example:

global.autoupg_log_dir=/path/to/my/global/log/dir

Starting with AutoUpgrade 19.7, you can configure different log directory
path in the userconfig file in the logs directory for a specific prefix

global.autoupg_log_dir=/path/to/my/global/log/dir
myprefix.log_dir=global.auto_log_dir:different/path

The result of using this syntax is that log files and temporary files are placed
in the following path for databases identified by the prefix myprefix:

/path/to/my/global/log/dir/different/path

If you do not set this parameter to a path, then by default the log files are
placed in the location indicated by the orabase utility for the databases that
you include in your configuration file. In that case, the default logs directory
is in the path ORACLE_BASE/cfgtoollogs/autoupgrade.

If the orabase utility fails for all databases included in the configuration file,
then the log file location is then based on the temp directory for the user
running AutoUpgrade.

Chapter 2
Global Parameters for the AutoUpgrade User Configuration File

2-28

Table 2-3 (Cont.) Global Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

before_action (Optional) Specifies a custom user script that you want to have run for all
upgrades before starting the upgrade jobs. The script that you use must be
in the form of name.ext (for example, myscript.sh), so that AutoUpgrade
can identify the type of script that you want to run. If you want to have a
script run before a specific upgrade job, then specify that script by using the
local parameter (local.before_action)

Permitted extension options:

• Unix shell (.sh)
• Microsoft Windows batch (.bat, .cmd)
• Microsoft Windows PowerShell (.ps1)
By default, if the script fails, then AutoUpgrade continues to run. Use the Y
flag to specify that AutoUpgrade stops if the operating system detects that
your script fails. If the script finishes with a status different than 0, then it is
considered a failed completion.

Examples:

If the script fails, then stop AutoUpgrade:

global.before_action=/path/to/my/script.sh Y

If the script fails, then continue AutoUpgrade:

global.before_action=/path/to/my/script.sh

catctl_options (Optional) Specifies one or more of a set of catctl.pl options that you can
select for AutoUpgrade to submit for catctl.pl to override default
behavior. For a complete description of the options, refer to "Parallel
Upgrade Utility (catctl.pl) Parameters," which is linked to at the end of
this table.

Available catctl.pl options:

• -n Number of processes to use for parallel operations.
• -N Number of SQL processors to use when upgrading PDBs.
• -t Run SQL in classic upgrade overwriting default replay upgrade

method
• -T Takes offline user schema-based table spaces.
• -z Turns on production debugging information for catcon.pm.
Example:

global.catctl_options=-t -n 24 -N 4

del_after_upgrade_pfile (Optional) Specifies a path and file name of a PFILE whose parameters you
want to have removed after the PFILE upgrade. This specification applies to
all databases in the user configuration file.

Example:

global.del_after_upgrade_pfile=/path/to/my/del_after.ora

Chapter 2
Global Parameters for the AutoUpgrade User Configuration File

2-29

Table 2-3 (Cont.) Global Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

del_during_upgrade_pfile (Optional) Specifies a path and file name of a PFILE whose parameters you
want to have removed during the PFILE upgrade. This specification applies
to all databases in the user configuration file.

Example:

global.del_during_upgrade_pfile=/path/to/my/
del_during.ora

drop_grp_after_upgrade (Optional) Deletes the Guaranteed Restore Point (GRP) after database
upgrade. If you select this option, then GRP is deleted after upgrade
completes successfully. If you set raise_compatible to yes, then you
must also set the parameter drop_grp_after_upgrade to yes.

Options:

[yes | no]

The default value is no.

Example:

global.drop_grp_after_upgrade=yes

target_base (Optional) Specifies the target ORACLE_BASE path for the target Oracle
home. Use of this parameter is only required in rare cases.

Example:

global.target_base=/u01/app/oracle
sales4.target_base=/u04/app/oracle4

Chapter 2
Global Parameters for the AutoUpgrade User Configuration File

2-30

Table 2-3 (Cont.) Global Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

raise_compatible (Optional) Increases the compatible parameter to the default value of the
target release after the upgrade is completed successfully.

Options:

[yes | no]

The default value is no.

CAUTION:

• After the COMPATIBLE parameter is increased, database downgrade is
not possible.

• Oracle recommends that you only raise the COMPATIBLE parameter to
the current release level after you have thoroughly tested the upgraded
database.

• Regardless of what value you use for the autoupgrade command-line
parameter restore, if you set the value of the configuration file
parameter raise_compatible to yes, then before starting the
upgrade, you must delete manually any guaranteed restore point you
have created. After the upgrade is completed successfully,
AutoUpgrade deletes the guaranteed restore point it creates before
starting the upgrade. When AutoUpgrade starts the POSTUPGRADE
stage, there is no way to restore the database.

• If you set raise_compatible to yes, then you must also set the
parameter drop_grp_after_upgrade to yes.

Example:

global.raise_compatible=yes

target_home (Optional for analyze and fixups modes. Required for upgrade and deploy
modes.) Sets a global target home for all of the databases specified in the
configuration file. Use this option to avoid specifying the same
target_home multiple times. This parameter can be overwritten locally.

Example:

global.target_home=/target/Oracle/home

Chapter 2
Global Parameters for the AutoUpgrade User Configuration File

2-31

Table 2-3 (Cont.) Global Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

target_version (Optional) Specifies the target release version on which you want
AutoUpgrade to perform the upgrade. AutoUpgrade uses the release version
information that you provide in this parameter to ensure that the correct
checks and fixups are used for the target Oracle Database release to which
you are upgrading. The format for this parameter are period-delimited values
of valid Oracle versions.

Valid values

• 12.2
• 18
• 19
This option is only required if the target home is not present on the system,
or if the target home is a 12.2 release. Otherwise, AutoUpgrade can derive
the target release value.

Example:

global.target_version=18
employees.target_version=12.2

upgradexml (Optional) Generates the upgrade.xml file. Options: [yes | no]

The upgrade.xml is equivalent to the file in earlier releases that the
preupgrade package generated when you specified the XML parameter.
This file is created during the analyze mode (mode -analyze). It is
generated in the prechecks directory defined for the AutoUpgrade log files.

Example:

global.upgradexml=yes

Related Topics

• Parallel Upgrade Utility (catctl.pl) Parameters

Locally Modifiable Global Parameters for AutoUpgrade
Configuration File

Locally modifiable global parameters are parameters that you set both globally, and as
you require, set locally, so that you can better control AutoUpgrade job processing.

Usage Notes

Locally modifiable global parameters are required parameters. You must define these
parameters in your AutoUpgrade configuration file, either globally, or locally. With
locally modifiable global parameters, you can use the prefix global to set values as
global parameters for all jobs in your AutoUpgrade configuration file, but reset the
same parameter with a local job prefix for a particular job in the same configuration
file. You can also choose to set locally modifiable global parameters only as local
parameters for each AutoUpgrade job.

Chapter 2
Locally Modifiable Global Parameters for AutoUpgrade Configuration File

2-32

Note:

These parameters are available in the latest version of AutoUpgrade that you can
download from My Oracle Support.

When a locally modifiable global parameter is set both with a global prefix, and with a local
job prefix, the locally modified parameter value overrides the global parameter values for the
job identified by the prefix that you use with the parameter. The syntax you use is in the form
global.target_home=Global target Oracle home, and database.target_home=local
target Oracle home.

Example:

In the AutoUpgrade configuration file, the required parameter target_home is set globally to
one Oracle home path. But in the configuration file, the same parameter is set locally to a
different Oracle home path. As AutoUpgrade processes the jobs in the configuration file, it
uses the locally defined path for target_home for the job defined by the prefix upgrade3,
overriding the global parameter setting:

global.target_home=/u01/app/oracle/21.0.0/dbhome01
upgrade3.target_home=/u03/app/oracle3/12.2.0.1/dbhome3

Table 2-4 Locally Modifiable Global Parameters for AutoUpgrade Configuration Files

Parameter Description

defer_standby_log_shippin
g

(Optional) Defers shipping logs from the primary database to the
standby database before the upgrade, where you have a primary
database with a physical standby database. When Autoupgrade
defers log shipping, you will receive a notice that log shipping is
deferred, and that after the upgrade completes successfully, you
need to reenable shipping logs from the primary database to the
secondary database. The default option is No. If you change the
default to Yes, then log shipping is deferred.

drop_grp_after_upgrade (Optional) Deletes the Guaranteed Restore Point (GRP) after
database upgrade. If you select this option, then GRP is deleted
after upgrade completes successfully.

Options:

[yes | no]

The default value is no.

Examples:

global.drop_grp_after_upgrade=yes

sales.drop_grp_after_upgrade=yes

Chapter 2
Locally Modifiable Global Parameters for AutoUpgrade Configuration File

2-33

Table 2-4 (Cont.) Locally Modifiable Global Parameters for AutoUpgrade
Configuration Files

Parameter Description

enable_local_undo (Optional) For a CDB upgrade, specifies whether or not LOCAL undo
should be enabled before the upgrade of CDB$ROOT by running the
following statement: ALTER DATABASE LOCAL UNDO ON; The
allowed values are [YES | NO]. The default value is NO.

When local undo is first enabled, the size of the undo tablespace in
PDB$SEED is determined as a factor of the size of the undo
tablespace in CDB$ROOT. The default is 30 percent of the undo
tablespace size. Every other PDB in the CDB inherits this property
from PDB$SEED. Ensure that there is enough space to allocate new
UNDO tablespaces.

manage_network_files Specifies whether network files are processed during the upgrade.

Options:

[FULL|SKIP|IGNORE_READ_ONLY]

FULL: (default) Raise all exceptions encountered during the copy
and merge of network files into the target Oracle home.

SKIP: Do not process network files during postupgrade.

IGNORE_READ_ONLY: Attempt to copy and merge network files, but
do not raise an exception during the upgrade if the target file is read
only

The following network files are processed: oranfstab, ldap.ora,
tnsnames.ora, sqlnet.ora, and listener.ora

remove_underscore_paramet
ers

(Optional) Removes underscore (hidden) parameters from PFILE
files during upgrade, and after upgrade, for all Oracle Databases in
the configuration file. Underscore parameters should only be used
by advice of Oracle Support.

Options:

[yes | no]

The default value is no.

Example:

global.remove_underscore_parameters=yes

Chapter 2
Locally Modifiable Global Parameters for AutoUpgrade Configuration File

2-34

Table 2-4 (Cont.) Locally Modifiable Global Parameters for AutoUpgrade
Configuration Files

Parameter Description

restoration (Optional, available with Enterprise Edition only) Generates a
Guaranteed Restore Point (GRP) for database restoration. If you
select this option, then both database backup and database
restoration must be performed manually by the DBA.

Options:

[yes | no]

The default value is yes.

Example:

global.restoration=no

Standard Edition does not support Flashback Database, so this
option is not available for Standard Edition. If your database is a
Standard Edition Oracle Database, then you must ensure that you
have a separate fallback mechanism is in place.

target_version (Optional) Specifies the target release version on which you want
AutoUpgrade to perform the upgrade. AutoUpgrade uses the
release version information that you provide in this parameter to
ensure that the correct checks and fixups are used for the target
Oracle Database release to which you are upgrading. The format for
this parameter are period-delimited values of valid Oracle versions.

Valid values

• 12.2
• 18
• 19
• 21
This option is only required if the target home is not present on the
system, or if the target home is a 12.2 release. Otherwise,
AutoUpgrade can derive the target release value.

Example:

global.target_version=18
employees.target_version=12.2

target_home Specifies the target Oracle home (ORACLE_HOME) path.

Example:

global.target_home=/u01/app/oracle/21.0.0/dbhome01
sales4.target_home=/u04/app/oracle4/21.0.0/
dbhome04

If the mode is ANALYZE or FIXUPS, then the parameter
target_home is optional.

Chapter 2
Locally Modifiable Global Parameters for AutoUpgrade Configuration File

2-35

Table 2-4 (Cont.) Locally Modifiable Global Parameters for AutoUpgrade
Configuration Files

Parameter Description

target_base (Optional) Specifies the target ORACLE_BASE path for the target
Oracle home.

Example:

global.target_base=/u01/app/oracle
sales4.target_base=/u04/app/oracle4

Understanding Non-CDB to PDB Upgrades with
AutoUpgrade

You can upgrade and convert a non-CDB to a PDB in a new CDB in a single
operation, or upgrade and then convert a Non-CDB database to a PDB in a pre-
existing CDB.

Oracle Database 19c is the terminal release in which non-CDB Oracle Database
architecture is supported. Oracle strongly recommends that you move to using
pluggable databases (PDBs). When you migrate your database from the non-CDB
architecture to PDBs in Oracle Database 19c, you obtain up to three user-configurable
PDBs in a container database (CDB), without requiring a multitenant license. If you
choose to configure four or more PDBs, then a multitenant license is required.

The non-CDB to PDB feature of the AutoUpgrade utility provides you flexible options
to control how you upgrade your existing Oracle Database when you upgrade and
convert an earlier release non-CDB architecture Oracle Database to a multitenant
architecture database. You can perform this upgrade and conversion in a single
operation.

Caution:

Before you run AutoUpgrade to complete the conversion and upgrade.
Oracle strongly recommends that you create a full backup of your source
database, and complete thorough testing of the upgrade. There is no option
to roll back to the non-CDB Oracle Database state after AutoUpgrade starts
this procedure.

Chapter 2
Understanding Non-CDB to PDB Upgrades with AutoUpgrade

2-36

Figure 2-2 Converting and Upgrading a Non-CDB Using AutoUpgrade

Example 2-5 AutoUpgrade Configuration File for Non-CDB to PDB Conversion

To use the non-CDB to PDB option, you must set the parameters target_cdb in the
AutoUpgrade configuration file. The target_cdb parameter value defines the Oracle system
identifier (SID) of the container database into which you are plugging the non-CDB Oracle
Database. For example:

global.autoupg_log_dir=/home/oracle/autoupg
upg1.sid=s12201
upg1.source_home=/u01/product/12.2.0/dbhome_1
upg1.log_dir=/home/oracle/autoupg
upg1.target_home=/u01/product/19.1.0/dbhome_1
upg1.target_base=/u01
upg1.target_version=19.1.0
upg1.target_cdb=cdb19x

You can see a more detailed example of a non-CDB to PDB upgrade from Oracle Database
12c (12.2) to Oracle Database 19c using the multitenant architecture in the blog post
"Unplug / Plug / Upgrade with AutoUpgrade," in Mike Dietrich's Blog, Upgrade Your Database
Now!

Related Topics

• Unplug / Plug / Upgrade with AutoUpgrade in Mike Dietrich, Upgrade Your Database Now

• Permitted Features, Options, and Management Packs by Oracle Database Offering

Chapter 2
Understanding Non-CDB to PDB Upgrades with AutoUpgrade

2-37

https://mikedietrichde.com/2021/06/07/unplug-plug-upgrade-with-autoupgrade/

Non-CDB to PDB Upgrade Guidelines and Examples
Before conversion, back up your datafiles and database, and follow the guidelines for
your source Oracle Database release.

To ensure that no data is lost during the conversion, Oracle strongly recommends that
allow time in your upgrade plan to implement your backup strategy before you use
AutoUpgrade to perform a non-CDB upgrade and conversion.

Guidelines for Upgrade Planning

The non-CDB-to-PDB conversion and upgrade process is not recoverable. To ensure
a proper upgrade and conversion, and to reduce unexpected downtime, Oracle
strongly recommends that you address any error conditions found during the analyze
phase.

If you do not set the target_pdb_copy_option in your AutoUpgrade configuration file,
then the database conversion uses the same file location and file names that are used
with existing database files. To prevent potential data loss, ensure that your data is
backed up, and consider your file placement plans before starting AutoUpgrade.

GRP and Upgrades from Non-CDB to Multitenant Architecture

• During the upgrade, AutoUpgrade creates a guaranteed restore point (GRP) that
is available only in the context of the upgrade stage of the AutoUpgrade Deploy
workflow. To ensure against any potential data loss, you must implement your
backup strategy before starting AutoUpgrade.

• Database conversion from non-CDB to the multitenant architecture is performed
during the AutoUpgrade Drain stage. After this stage is complete, the GRP that
AutoUpgrade creates is removed, and it is not possible to use the AutoUpgrade
restore command to restore the database. In the event that you require a
recovery to the earlier non-CDB Oracle Database release, you must be prepared
to recover the database manually.

Example 2-6 Upgrading and Converting a Non-CDB to Oracle Database 19c
Using Multitenant Architecture

During the Deploy conversion and upgrade workflow, AutoUpgrade version 19.9 and
later creates a GRP, and runs the Prefixup stage. If any part of the Deploy workflow up
to the Prefixup stage completion fails, then AutoUpgrade can restore the database
back to the GRP created at the start of the deployment.

However, after the Prefixup stage is complete, the upgraded database is plugged in to
the target release Oracle Database container database (CDB) to complete conversion.
As soon as the non-CDB is plugged into the CDB, the GRP is no longer valid, and is
dropped.

If anything goes wrong during the plug-in, then AutoUpgrade cannot recover and
restore the database. You must restore the database manually.

Chapter 2
Non-CDB to PDB Upgrade Guidelines and Examples

2-38

Examples of Non-CDB to PDB Configuration Files for
AutoUpgrade

Use these examples to understand how you can modify your own Oracle Database upgrade
configuration file for AutoUpgrade.

These examples are for an upgrade from an Oracle Database 12c Release 2 (12.2) non-CDB
named DB12 to an Oracle Database 19c PDB named PDB3 in the target Oracle Database
19c CDB named CDB2. To understand details of how the global and local parameters are
used, refer to the parameter references.

Caution:

Because this upgrade is a conversion from a Non-CDB to a PDB, AutoUpgrade
cannot create a guaranteed restore point that enables you to restore the Non-CDB
to 19c. To ensure your ability to recover from an issue, either back up your earlier
release database, or convert the CDB to a PDB in your earlier release Oracle
Database, and then upgrade and convert the earlier release PDB to the later
release.

Example 2-7 AutoUpgrade Configuration File for Upgrade and Convert with Separate
Backup Solutionfor Source Database

In this example, the configuration file directs AutoUpgrade to upgrade and convert the non-
CDB Oracle Database 12c named DB12 to a PDB named PDB3 on the Oracle Database 19c
CDB named CDB2.

global.autoupg_log_dir=/home/oracle/logs
upg1.dbname=DB12
upg1.start_time=NOW
upg1.source_home=/u01/app/oracle/product/12
upg1.target_home=/u01/app/oracle/product/19
upg1.sid=DB12
upg1.log_dir=/home/oracle/logs
upg1.upgrade_node=localhost
upg1.target_version=19
upg1.restoration=no
upg1.target_cdb=CDB2
upg1.target_pdb_name=PDB3

Example 2-8 AutoUpgrade Using target_pdb_copy_option

In this example, the parameter upg1.target_pdb_copy_option is used to have AutoUpgrade
make a copy of the Oracle Database 12c (12.2.0.1) release to a PDB named PDB3, plugged
into the Oracle Database 19c CDB1. AutoUpgrade then moves PDB3 from /u02/oradata/
CDB1/pdb3 to /u02/oradata/CDB2/pdb3.

global.autoupg_log_dir=/home/oracle/logs

upg1.source_home=/u01/app/oracle/product/12.2.0.1

Chapter 2
Examples of Non-CDB to PDB Configuration Files for AutoUpgrade

2-39

upg1.target_home=/u01/app/oracle/product/19
upg1.sid=CDB1
upg1.pdb=PDB3
upg1.target_cdb=CDB2
upg1.target_pdb_copy_option=file_name_convert=('CDB1', 'CDB2')
upg1.log_dir=/home/oracle/logs

Chapter 2
Examples of Non-CDB to PDB Configuration Files for AutoUpgrade

2-40

3
Using AutoUpgrade to Upgrade and convert
Non-CDBs to PDBs

The AutoUpgrade Utility simplifies the task of upgrading and converting your earlier release
Oracle Database to Oracle Database 19c using the multitenant architecture.

• AutoUpgrade with Source and Target Database Homes on Same Server (Typical)
When your Oracle Database Source and Target Oracle homes are installed on the same
physical server, use this example.

• AutoUpgrade with Source and Target Database Homes on Different Servers
When your Oracle Database Source and Target Oracle homes are located on different
physical servers, you must complete tasks on both servers.

AutoUpgrade with Source and Target Database Homes on
Same Server (Typical)

When your Oracle Database Source and Target Oracle homes are installed on the same
physical server, use this example.

Context: Source and Target homes are on the same server.

To start the analysis, enter the following command.

java -jar autoupgrade.jar -config config.txt -mode analyze

The command produces a report that indicates any error conditions that the command finds.
Review the error conditions. When relevant, customize the fixups that AutoUpgrade has
created to address error conditions.

To start the deployment of the upgrade, enter the following command:

java -jar autoupgrade.jar -config config.txt -mode deploy

AutoUpgrade with Source and Target Database Homes on
Different Servers

When your Oracle Database Source and Target Oracle homes are located on different
physical servers, you must complete tasks on both servers.

Context: Source and Target Oracle homes are on different physical servers.

To start the analysis, enter the following command.

java -jar autoupgrade.jar -config config.txt -mode analyze

3-1

The command produces a report that indicates any error conditions that the command
finds. Review the error conditions. When relevant, customize the fixups that
AutoUpgrade has created to address error conditions.

Because the source and target Oracle Database Oracle homes are on different
servers, you run fixups on each server.

1. Run fixups on the source server:

java -jar autoupgrade.jar -config config.txt -mode fixups

2. Complete the tasks to move the source Oracle Database from the source server to
the target server.

3. On the target server, start up the database in upgrade mode, and then run
AutoUpgrade in upgrade mode:

java -jar autoupgrade.jar -config config.txt -mode upgrade

Chapter 3
AutoUpgrade with Source and Target Database Homes on Different Servers

3-2

4
Post-Upgrade Tasks for Oracle Database

After you have finished upgrading Oracle Database, complete the required post-upgrade
tasks and consider these recommendations for the new release.

• Check the Upgrade With Post-Upgrade Status Tool
Review the upgrade spool log file and use the Post-Upgrade Status Tool, utlusts.sql.

• Required Tasks to Complete After Upgrading Oracle Database
Review and complete these required tasks that are specified for your environment after
you complete your upgrade.

• Recommended and Best Practices to Complete After Upgrading Oracle Database
Oracle recommends that you complete these good practices guidelines for updating
Oracle Database. Except where noted, these practices are recommended for all types of
upgrades.

Check the Upgrade With Post-Upgrade Status Tool
Review the upgrade spool log file and use the Post-Upgrade Status Tool, utlusts.sql.

The Post-Upgrade Status Tool is located in the path $ORACLE_HOME/rdbms/admin. The
tool is a SQL script that is included with Oracle Database. You run the Post-Upgrade Status
Tool in the environment of the new release. You can run the Post-Upgrade Status Tool at any
time after you upgrade the database.

Required Tasks to Complete After Upgrading Oracle Database
Review and complete these required tasks that are specified for your environment after you
complete your upgrade.

You must complete these postupgrade tasks after you upgrade Oracle Database. You must
complete these tasks both when you perform the upgrade with replay upgrade (the default) or
with AutoUpgrade, except as noted.

• Setting Environment Variables on Linux and Unix Systems After Manual Upgrades
Check that required operating system environment variables point to the directories of the
new Oracle Database release.

• Check PL/SQL Packages and Dependent Procedures
It is possible that packages that you installed in the earlier release Oracle Database are
not available in the new release, which can affect applications.

• Upgrading Statistics Tables Created by the DBMS_STATS Package After Upgrading
Oracle Database
If you created statistics tables using the DBMS_STATS.CREATE_STAT_TABLE procedure,
then upgrade these tables by running DBMS_STATS.UPGRADE_STAT_TABLE.

• Configuring the FTP and HTTP Ports and HTTP Authentication for Oracle XML DB
Oracle Database Configuration Assistant (DBCA) does not configure ports for Oracle
XML DB on Oracle Database 12c and later releases. Upgrades use digest authentication.

4-1

• Install Oracle Text Supplied Knowledge Bases After Upgrading Oracle Database
After an Oracle Database upgrade, all user extensions to the Oracle Text supplied
knowledge bases must be regenerated.

• Replace the DEMO Directory in Read-Only Oracle Homes
After upgrading Read-Only Oracle homes, make a copy of the earlier release
Oracle Database demo directory, and replace the demo directory in the Read-Only
Oracle home with the new release demo directory.

• Configure Access Control Lists (ACLs) to External Network Services
Oracle Database 12c and later releases include fine-grained access control to the
UTL_TCP, UTL_SMTP, UTL_MAIL, UTL_HTTP, or UTL_INADDR packages.

• Enabling Oracle Database Vault After Upgrading Oracle Database
Depending on your target database release, you can be required to disable Oracle
Database Vault to complete an Oracle Database upgrade.

• Check for the SQLNET.ALLOWED_LOGON_VERSION Parameter Behavior
Connections to Oracle Database from clients earlier than release 10g fail with the
error ORA-28040: No matching authentication protocol.

Setting Environment Variables on Linux and Unix Systems After
Manual Upgrades

Check that required operating system environment variables point to the directories of
the new Oracle Database release.

Confirm that the following Oracle user environment variables point to the directories of
the new Oracle home:

• ORACLE_HOME

• PATH

Related Topics

• Step 2: Ensure That the Required Environment Variables Are Set

Check PL/SQL Packages and Dependent Procedures
It is possible that packages that you installed in the earlier release Oracle Database
are not available in the new release, which can affect applications.

After the upgrade, if you use AutoUpgrade, review the AutoUpgrade report on invalid
objects. If you use a replay upgrade, then check to ensure that any packages that you
may have used in your own scripts, or that you call from your scripts, are available in
the new release. Testing procedures dependent on packages should be part of your
upgrade plan.

Code in database applications can reference objects in the connected database. For
example, Oracle Call Interface (OCI) and precompiler applications can submit
anonymous PL/SQL blocks. Triggers in Oracle Forms applications can reference a
schema object. Such applications are dependent on the schema objects they
reference. Dependency management techniques vary, depending on the development
environment. Oracle Database does not automatically track application dependencies.

Related Topics

• Oracle Database Administrator’s Guide

Chapter 4
Required Tasks to Complete After Upgrading Oracle Database

4-2

Upgrading Statistics Tables Created by the DBMS_STATS Package After
Upgrading Oracle Database

If you created statistics tables using the DBMS_STATS.CREATE_STAT_TABLE procedure,
then upgrade these tables by running DBMS_STATS.UPGRADE_STAT_TABLE.

In the following example, green is the owner of the statistics table and STAT_TABLE is the
name of the statistics table.

EXECUTE DBMS_STATS.UPGRADE_STAT_TABLE('green', 'stat_table');

Perform this procedure for each statistics table.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
DBMS_STATS package

Configuring the FTP and HTTP Ports and HTTP Authentication for Oracle
XML DB

Oracle Database Configuration Assistant (DBCA) does not configure ports for Oracle XML
DB on Oracle Database 12c and later releases. Upgrades use digest authentication.

Oracle recommends that when you configure ports, you also configure the authentication for
HTTP for accessing Oracle XML DB Repository to take advantage of improved security
features.

Starting with Oracle Database 12c, Oracle enhanced database security by supporting digest
authentication. Digest authentication is an industry-standard protocol that is commonly used
with the HTTP protocol. It is supported by most HTTP clients. Digest authentication ensures
that passwords are always transmitted in a secure manner, even when an encrypted
(HTTPS) connection is not in use. Support for digest authentication enables organizations to
deploy applications that use Oracle XML DB HTTP, without having to worry about passwords
being compromised. Digest authentication support in Oracle XML DB also ensures that the
Oracle XML DB HTTP server remains compatible with Microsoft Web Folders WebDAV
clients.

After installing or upgrading for the new release, you must manually configure the FTP and
HTTP ports for Oracle XML DB as follows:

1. Use DBMS_XDB_CONFIG.setHTTPPort(HTTP_port_number) to set the HTTP port for Oracle
XML DB:

SQL> exec DBMS_XDB_CONFIG.setHTTPPort(port_number);

Chapter 4
Required Tasks to Complete After Upgrading Oracle Database

4-3

2. Use DBMS_XDB_CONFIG.setFTPPort(FTP_port_number) to set the FTP port for
Oracle XML DB:

SQL> exec DBMS_XDB_CONFIG.setFTPPort(FTP_port_number);

Note:

You can query the port numbers to use for FTP and HTTP in the
procedure by using DBMS_XDB_CONFIG.getFTPPort and
DBMS_XDB_CONFIG.getHTTPPort respectively.

3. To see all the used port numbers, query DBMS_XDB_CONFIG.usedport.

Install Oracle Text Supplied Knowledge Bases After Upgrading Oracle
Database

After an Oracle Database upgrade, all user extensions to the Oracle Text supplied
knowledge bases must be regenerated.

Regenerating the user extensions affect all databases installed in the given Oracle
home.

After an upgrade, the Oracle Text-supplied knowledge bases that are part of the
companion products for the new Oracle Database are not immediately available. Any
Oracle Text features dependent on the supplied knowledge bases that were available
before the upgrade do not function after the upgrade. To re-enable such features, you
must install the Oracle Text supplied knowledge bases from the installation media for
the new Oracle Database release.

See Also:

• Oracle Text Application Developer's Guide for information about Oracle
Text-supplied knowledge bases

• Oracle Database Installation Guide for companion products

Replace the DEMO Directory in Read-Only Oracle Homes
After upgrading Read-Only Oracle homes, make a copy of the earlier release Oracle
Database demo directory, and replace the demo directory in the Read-Only Oracle home
with the new release demo directory.

Oracle Database 18c and later releases contain a product demonstration directory in
the file path Oracle_home/rdbms/demo. These directories include examples and
product demonstrations that are specific to the options and features for each Oracle
Database release, some of which you can add to after upgrade by installing Oracle
Database Examples. In your earlier release, if you downloaded and worked with the
earlier release demonstration files, then you have two problems: you want to save your

Chapter 4
Required Tasks to Complete After Upgrading Oracle Database

4-4

earlier release work for review and testing with the new release, and you want to obtain
refreshes of the demonstrations that are specific to the new release.

After upgrading the Oracle home, and downloading and doing any other work you want to do
with the new demonstration files, you can then refresh your old demonstration files.

Example 4-1 Copying the Earlier Release Demo Directory and Refreshing the
Demonstrations in the Read-Only Oracle Home

After the upgrade, use this procedure to save any work in your earlier demo directory in the
Read-Only Oracle home, and and replace the earlier release demo directory with the new
release demo directory:

1. Log in as the Oracle software owner user (oracle).

2. Check if the rdbms/demo directory is copied to the Read Only Oracle home.

In this example, the environment variable ORACLE_BASE_HOME is defined as the path to the
Read-Only Oracle home.

Linux and Unix platforms:

$ ls -l -d $ORACLE_BASE_HOME/rdbms/demo
/u01/app/oracle/product/19.0.0/dbhome_1/rdbms/demo

Microsoft Windows platforms

ls -l -d %ORACLE_BASE_HOME%\rdbms\demo
%ORACLE_BASE_HOME%\rdbms\demo

3. Change directory to the Read-Only Oracle home, and make a copy, where
demo.old_release18 is the name you give to your earlier release demonstration files:

cd $ORACLE_BASE_HOME/rdbms
mv demo demo.old_release18

4. Copy the new demo directory from the upgraded Oracle home to the Read-Only Oracle
home.

In this example, the environment variable ORACLE_HOME is defined as the new release
Oracle home.

Linux and Unix:

cp -r $ORACLE_HOME/rdbms/demo demo

Microsoft Windows

xcopy c:\%ORACLE_HOME%\rdbms\demo c:%ORACLE_BASE_HOME%\rdbms\demo /E

Configure Access Control Lists (ACLs) to External Network Services
Oracle Database 12c and later releases include fine-grained access control to the UTL_TCP,
UTL_SMTP, UTL_MAIL, UTL_HTTP, or UTL_INADDR packages.

Chapter 4
Required Tasks to Complete After Upgrading Oracle Database

4-5

If you have applications that use these packages, then after upgrading Oracle
Database you must configure network access control lists (ACLs) in the database
before the affected packages can work as they did in earlier releases. Without the
ACLs, your applications can fail with the error "ORA-24247: network access denied by
access control list (ACL)."

See Also:

Oracle Database Security Guide for more complicated situations, such as
connecting some users to host A and other users to host B

Enabling Oracle Database Vault After Upgrading Oracle Database
Depending on your target database release, you can be required to disable Oracle
Database Vault to complete an Oracle Database upgrade.

• Upgrading Oracle Database Without Disabling Oracle Database Vault
If your target Oracle Database release is 12.2 or later, then you can upgrade
without disabling Oracle Database Vault.

• Common Upgrade Scenarios with Oracle Database Vault
The requirements to enable Oracle Database Vault after upgrades change,
depending on your source Oracle Database release.

Upgrading Oracle Database Without Disabling Oracle Database Vault
If your target Oracle Database release is 12.2 or later, then you can upgrade without
disabling Oracle Database Vault.

If you have Oracle Database Vault enabled in your source Oracle Database release,
then you can upgrade Oracle Database to Oracle Database 18c and later releases
without first disabling Oracle Database Vault. After the upgrade, if your source Oracle
Database release is Oracle Database 12c release 1 (12.1) or later, then Oracle
Database Vault is enabled with the same enforcement settings that you had in place
before the upgrade. For example, if your source database is Oracle Database release
12.1, and Oracle Database Vault was disabled in that release, then it remains disabled
after you upgrade. If your source Oracle Database release 12.1 database had Oracle
Database Vault enabled before the upgrade, then Oracle Database Vault is enabled
after the upgrade.

If you manually disable Oracle Database Vault before the upgrade, then you must
enable Oracle Database Vault manually after the upgrade.

If you did not have Oracle Database Vault enabled before the upgrade, then you can
enable it manually after the upgrade.

Enable Oracle Database Vault in the upgraded database by using the procedure
dvsys.dbms_macadm.enable_dv(). Run this procedure with a user account that is
granted DV_OWNER. After you run the procedure, restart the database instance so that
the procedure takes effect.

Related Topics

• Oracle Database Vault Administrator’s Guide

Chapter 4
Required Tasks to Complete After Upgrading Oracle Database

4-6

Common Upgrade Scenarios with Oracle Database Vault
The requirements to enable Oracle Database Vault after upgrades change, depending on
your source Oracle Database release.

• Upgrades from Oracle Database 11g release 2 (11.2) or earlier: After the upgrade, Oracle
Database Vault is disabled by default.

• Upgrades from Oracle Database 12c release 1 (12.1) or later: After the upgrade, Oracle
Database Vault has the same enforcement status that you had in place before the
upgrade.

Table 4-1 Common Oracle Database Vault Upgrade Scenarios and Upgrade
Preparation Tasks

Source Database
Release

Target Database
Release

Do you need to
disable Database
Vault Before Upgrade

What is Database
Vault Status After
Upgrade

11.2 or earlier 12.1 Yes Disabled. You need to
enable Database Vault
manually after the
upgrade.

11.2.or earlier 12.2, 18.1 and later No Disabled. You need to
enable Database Vault
manually after the
upgrade.

12.1, 12.2, 18.1, and
later

12.2, 18.1 and later No Database Vault has the
same enforcement
status that you had in
place before the
upgrade.

Check for the SQLNET.ALLOWED_LOGON_VERSION Parameter
Behavior

Connections to Oracle Database from clients earlier than release 10g fail with the error
ORA-28040: No matching authentication protocol.

Starting with Oracle Database 18c, the default value for the SQLNET.ALLOWED_LOGON_VERSION
parameter changed from 11 in Oracle Database 12c (12.2) to 12 in Oracle Database 18c and
later releases. The use of this parameter is deprecated.

SQLNET.ALLOWED_LOGON_VERSION is now replaced with the
SQLNET.ALLOWED_LOGON_VERSION_SERVER and SQLNET.ALLOWED_LOGON_VERSION_CLIENT
parameters. If you have not explicitly set the SQLNET.ALLOWED_LOGON_VERSION_SERVER
parameter in the upgraded database, then connections from clients earlier than release 10g
fail with the error ORA-28040: No matching authentication protocol. For better security,
check the password verifiers of your database users, and then configure the database to use
the correct password verifier by setting the SQLNET.ALLOWED_LOGON_VERSION_SERVER and
SQLNET.ALLOWED_LOGON_VERSION_CLIENT parameters.

If you have password-protected roles (secure roles) in your existing database, and if you
upgrade to Oracle Database 18c and later releases with the default
SQLNET.ALLOWED_LOGON_VERSION_SERVER setting of 12, because those secure roles only have

Chapter 4
Required Tasks to Complete After Upgrading Oracle Database

4-7

release 10g verifiers, then the password for each secure role must be reset by the
administrator so that the secure roles can remain usable after the upgrade.

See Also:

• Oracle Database Security Guide for information about ensuring against
password security threats

• Oracle Database Security GuideOracle Database Security Guide for
information about setting the password versions of users

Recommended and Best Practices to Complete After
Upgrading Oracle Database

Oracle recommends that you complete these good practices guidelines for updating
Oracle Database. Except where noted, these practices are recommended for all types
of upgrades.

• Back Up the Database
Oracle strongly recommends that you at least perform a level 1 backup, or if time
allows, perform a level 0 backup.

• Run AutoUpgrade Postupgrade Checks
If you did not run AutoUpgrade in deploy mode, then run Autoupgrade with the
preupgrade parameter, run in postfixups mode.

• Regathering Fixed Objects Statistics with DBMS_STATS
After an upgrade, or after other database configuration changes, Oracle strongly
recommends that you regather fixed object statistics after you have run
representative workloads on Oracle Database.

• Reset Passwords to Enforce Case-Sensitivity
For upgraded databases, improve security by using case-sensitive passwords for
default user accounts and user accounts.

• Finding and Resetting User Passwords That Use the 10G Password Version
For better security, find and reset passwords for user accounts that use the 10G
password version so that they use later, more secure password versions.

• Understand Oracle Grid Infrastructure, Oracle ASM, and Oracle Clusterware
Oracle Clusterware and Oracle Automatic Storage Management (Oracle ASM) are
both part of an Oracle Grid Infrastructure installation.

• Oracle Grid Infrastructure Installation and Upgrade and Oracle ASM
Oracle ASM is installed with Oracle Grid Infrastructure.

• Add New Features as Appropriate
Review new features as part of your database upgrade plan.

• Develop New Administrative Procedures as Needed
Plan a review of your scripts and procedures, and change as needed.

• Migrating Tables from the LONG Data Type to the LOB Data Type
You can use the ALTER TABLE statement to change the data type of a LONG column
to CLOB and that of a LONG RAW column to BLOB.

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-8

• Migrate Your Upgraded Oracle Databases to Use Unified Auditing
To use the full facilities of unified auditing, you must manually migrate to unified auditing.

• Identify Oracle Text Indexes for Rebuilds
You can run a script that helps you to identify Oracle Text index indexes with token tables
that can benefit by being rebuilt after upgrading to the new Oracle Database release..

• Dropping and Recreating DBMS_SCHEDULER Jobs
If DBMS_SCHEDULER jobs do not function after upgrading from an earlier release, drop
and recreate the jobs.

• Transfer Unified Audit Records After the Upgrade
Review these topics to understand how you can obtain better performance after you
upgrade and migrate to unified auditing

• About Recovery Catalog Upgrade After Upgrading Oracle Database
If you use a version of the recovery catalog schema that is older than that required by the
RMAN client, then you must upgrade it.

• About Testing the Upgraded Production Oracle Database
Repeat tests on your production database that you carried out on your test database to
ensure applications operate as expected.

• Upgrading the Time Zone File Version After Upgrading Oracle Database
If the AutoUpgrade preupgrade report in upgrade.xml instructs you to upgrade the time
zone files after completing the database upgrade, and you do not set AutoUpgrade to
complete this task for you, then use the DBMS_DST PL/SQL package to upgrade the time
zone file.

Back Up the Database
Oracle strongly recommends that you at least perform a level 1 backup, or if time allows,
perform a level 0 backup.

Related Topics

• Backing Up the Database

Run AutoUpgrade Postupgrade Checks
If you did not run AutoUpgrade in deploy mode, then run Autoupgrade with the preupgrade
parameter, run in postfixups mode.

Note:

If you ran AutoUpgrade in deploy mode, then this step was already completed for
you, so you do not need to complete it now.

To see how to check your database after upgrades, use the following example.

Example 4-2 Running AutoUpgrade Using Postupgrade Fixup Mode

1. Set the Oracle home environment to the source Oracle Database home:

setenv ORACLE_HOME /u01/app/oracle/product/12.2.0/dbhome_1

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-9

.

2. Set the Oracle System Identifier (SID) to the source Oracle Database SID:

setenv ORACLE_SID db122

.

3. Run AutoUpgrade using the preupgrade parameter in postfixups mode, setting the
target home to the target Oracle Database Oracle home. For example:

java -jar autoupgrade.jar -preupgrade "target_home=/u01/app/oracle/
product/19.0.0/dbhome_1,dir=/autoupgrade/test/log" –mode postfixups

4. Check the results of the postfixup script checks in the file postfixups.xml under
directory /autoupgrade/test/log/db122/102/postfixups.

Regathering Fixed Objects Statistics with DBMS_STATS
After an upgrade, or after other database configuration changes, Oracle strongly
recommends that you regather fixed object statistics after you have run representative
workloads on Oracle Database.

Note:

To provide a baseline that is useful for performance tuning, Oracle
recommends that you gather baseline statistics at a point when the system is
operating at an optimal level.

Fixed objects are the X$ tables and their indexes. V$ performance views are defined
through X$ tables. Gathering fixed object statistics is valuable for database
performance, because these statistics help the optimizer to generate good execution
plans, which can improve database performance. Failing to obtain representative
statistics can lead to suboptimal execution plans, which can cause significant
performance problems.

Ensure that your database has run representative workloads, and then gather fixed
objects statistics by using the DBMS_STATS.GATHER_FIXED_OBJECTS_STATS PL/SQL
procedure. DBMS_STATS.GATHER_FIXED_OBJECTS_STATS also displays recommendations
for removing all hidden or underscore parameters and events from the INIT.ORA or
SPFILE.

Because of the transient nature of X$ tables, you must gather fixed objects statistics
when there is a representative workload on the system. If you cannot gather fixed
objects statistics during peak load, then Oracle recommends that you do it after the
system is in a runtime state, and the most important types of fixed object tables are
populated.

To gather statistics for fixed objects, run the following PL/SQL procedure:

SQL> execute dbms_stats.gather_fixed_objects_stats;

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-10

Related Topics

• Gathering Database Statistics

Reset Passwords to Enforce Case-Sensitivity
For upgraded databases, improve security by using case-sensitive passwords for default user
accounts and user accounts.

For greater security, Oracle recommends that you enable case sensitivity in passwords. Case
sensitivity increases the security of passwords by requiring that users enter both the correct
password string, and the correct case for each character in that string. For example, the
password hPP5620qr fails if it is entered as hpp5620QR or hPp5620Qr.

To secure your database, create passwords in a secure fashion. If you have default
passwords in your database, then change these passwords. By default, case sensitivity is
enforce when you change passwords. Every password should satisfy the Oracle
recommended password requirements, including passwords for predefined user accounts.

For new databases created after the upgrade, there are no additional tasks or management
requirements.

Existing Database Requirements and Guidelines for Password Changes

• If the default security settings for Oracle Database 12c release 1 (12.1) and later are in
place, then passwords must be at least eight characters, and passwords such as welcome
and oracle are not allowed.

• The IGNORECASE parameter is deprecated. Do not use this parameter.

• For existing databases, to take advantage of password case-sensitivity, you must reset
the passwords of existing users during the database upgrade procedure. Reset the
password for each existing database user with an ALTER USER statement.

• Query the PASSWORD_VERSIONS column of DBA_USERS to find the USERNAME of accounts that
only have the 10G password version, and do not have either the 11G or the 12C password
version. Reset the password for any account that has only the 10G password version.

See Also:

• Oracle Database Security Guide for more information about password case
sensitivity

• Oracle Database Security Guide for more information about password strength

Finding and Resetting User Passwords That Use the 10G Password
Version

For better security, find and reset passwords for user accounts that use the 10G password
version so that they use later, more secure password versions.

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-11

Finding All Password Versions of Current Users

You can query the DBA_USERS data dictionary view to find a list of all the password
versions configured for user accounts.

For example:

SELECT USERNAME,PASSWORD_VERSIONS FROM DBA_USERS;

USERNAME PASSWORD_VERSIONS
------------------------------ -----------------
JONES 10G 11G 12C
ADAMS 10G 11G
CLARK 10G 11G
PRESTON 11G
BLAKE 10G

The PASSWORD_VERSIONS column shows the list of password versions that exist for the
account. 10G refers to the earlier case-insensitive Oracle password version, 11G refers
to the SHA-1-based password version, and 12C refers to the SHA-2-based SHA-512
password version.

• User jones: The password for this user was reset in Oracle Database 12c Release
12.1 when the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter setting was 8.
This enabled all three password versions to be created.

• Users adams and clark: The passwords for these accounts were originally created
in Oracle Database 10g and then reset in Oracle Database 11g. The Oracle
Database 11g software was using the default SQLNET.ALLOWED_LOGON_VERSION
setting of 8 at that time. Because case insensitivity is enabled by default, their
passwords are now case sensitive, as is the password for preston.

• User preston: This account was imported from an Oracle Database 11g database
that was running in Exclusive Mode (SQLNET.ALLOWED_LOGON_VERSION = 12).

• User blake: This account still uses the Oracle Database 10g password version. At
this stage, user blake is prevented from logging in.

Resetting User Passwords That Use the 10G Password Version

You should remove the 10G password version from the accounts of all users. In the
following procedure, to reset the passwords of users who have the 10G password
version, you must temporarily relax the SQLNET.ALLOWED_LOGON_VERSION_SERVER
setting, which controls the ability level required of clients before login can be allowed.
Relaxing the setting enables these users to log in and change their passwords, and
hence generate the newer password versions in addition to the 10G password version.
Afterward, you can set the database to use Exclusive Mode and ensure that the clients
have the O5L_NP capability. Then the users can reset their passwords again, so that
their password versions no longer include 10G, but only have the more secure 11G and
12C password versions.

1. Query the DBA_USERS view to find users who only use the 10G password version.

SELECT USERNAME FROM DBA_USERS
WHERE (PASSWORD_VERSIONS = '10G '
OR PASSWORD_VERSIONS = '10G HTTP ')
AND USERNAME <> 'ANONYMOUS';

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-12

2. Configure the database so that it does not run in Exclusive Mode, as follows:

a. Edit the SQLNET.ALLOWED_LOGON_VERSION_SERVER setting in the sqlnet.ora file so
that it is more permissive than the default. For example:

SQLNET.ALLOWED_LOGON_VERSION_SERVER=11

b. If you are in the CDB root, then restart the database (for example, SHUTDOWN
IMMEDIATE followed by STARTUP). If you are in a PDB, connect to the root using the
SYSDBA administrative privilege, and then enter the following statements:

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE pdb_name OPEN;

3. Expire the users that you found when you queried the DBA_USERS view to find users who
only use the 10G password version.

You must expire the users who have only the 10G password version, and do not have one
or both of the 11G or 12C password versions.

For example:

ALTER USER username PASSWORD EXPIRE;

4. Ask the users whose passwords you expired to log in.

When the users log in, they are prompted to change their passwords. The database
generates the missing 11G and 12C password versions for their account, in addition to the
10G password version. The 10G password version continues to be present, because the
database is running in the permissive mode.

5. Ensure that the client software with which the users are connecting has the O5L_NP ability.

All Oracle Database release 11.2.0.3 and later clients have the O5L_NP ability. If you have
an earlier Oracle Database client, then you must install the CPUOct2012 patch.

6. After all clients have the O5L_NP capability, set the security for the server back to
Exclusive Mode, as follows:

a. Remove the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter from the server
sqlnet.ora file, or set the value of SQLNET.ALLOWED_LOGON_VERSION_SERVER in the
server sqlnet.ora file back to 12, to set it to an Exclusive Mode.

SQLNET.ALLOWED_LOGON_VERSION_SERVER = 12

b. If you are in the CDB root, then restart the database (for example, SHUTDOWN
IMMEDIATE followed by STARTUP). If you are in a PDB, connect to the root using the
SYSDBA administrative privilege, and then enter the following statements:

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE pdb_name OPEN;

7. Find the accounts that still have the 10G password version.

SELECT USERNAME FROM DBA_USERS
WHERE PASSWORD_VERSIONS LIKE '%10G%'
AND USERNAME <> 'ANONYMOUS';

8. Expire the accounts that still have the 10G password version.

ALTER USER username PASSWORD EXPIRE;

9. Ask these users to log in to their accounts.

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-13

When the users log in, they are prompted to reset their passwords. The database
then generates only the 11G and 12C password versions for their accounts.
Because the database is running in Exclusive Mode, the 10G password version is
no longer generated.

10. Rerun the following query:

SELECT USERNAME FROM DBA_USERS
WHERE PASSWORD_VERSIONS LIKE '%10G%'
AND USERNAME <> 'ANONYMOUS';

If this query does not return any results, then it means that no user accounts have
the 10G password version. Hence, the database is running in a more secure mode
than in previous releases.

Understand Oracle Grid Infrastructure, Oracle ASM, and Oracle
Clusterware

Oracle Clusterware and Oracle Automatic Storage Management (Oracle ASM) are
both part of an Oracle Grid Infrastructure installation.

If Oracle Grid Infrastructure is installed for a single server, then it is deployed as an
Oracle Restart installation with Oracle ASM. If Oracle Grid Infrastructure is installed for
a cluster, then it is deployed as an Oracle Clusterware installation with Oracle ASM.

Oracle Restart enhances the availability of Oracle Database in a single-instance
environment. If you install Oracle Restart, and there is a temporary failure of any part
of the Oracle Database software stack, including the database, listener, and Oracle
ASM instance, Oracle Restart automatically restarts the failed component. In addition,
Oracle Restart starts all these components when the database host computer is
restarted. The components are started in the proper order, taking into consideration
the dependencies among components.

Oracle Clusterware is portable cluster software that enables clustering of single
servers so that they cooperate as a single system. Oracle Clusterware also provides
the required infrastructure for Oracle RAC. In addition, Oracle Clusterware enables the
protection of any Oracle application or any other application within a cluster. In any
case Oracle Clusterware is the intelligence in those systems that ensures required
cooperation between the cluster nodes.

Oracle Grid Infrastructure Installation and Upgrade and Oracle ASM
Oracle ASM is installed with Oracle Grid Infrastructure.

In earlier releases, Oracle ASM was installed as part of the Oracle Database
installation. Starting with Oracle Database release 11.2, Oracle ASM is installed when
you install the Grid Infrastructure components. Oracle ASM shares an Oracle home
with Oracle Clusterware.

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-14

See Also:

Oracle Grid Infrastructure Installation Guide for your platform for information about
Oracle homes, role-allocated system privileges groups, different installation
software owner users, and other changes.

Add New Features as Appropriate
Review new features as part of your database upgrade plan.

Oracle Database New Features Guide describes many of the new features available in the
new Oracle Database release. Determine which of these new features can benefit the
database and applications. You can then develop a plan for using these features.

It is not necessary to make any immediate changes to begin using your new Oracle Database
software. You can choose to introduce new feature enhancements into your database and
applications gradually.

See Also:

Oracle Database New Features Guide

Develop New Administrative Procedures as Needed
Plan a review of your scripts and procedures, and change as needed.

After familiarizing yourself with the features of the new Oracle Database release, review your
database administration scripts and procedures to determine whether any changes are
necessary.

Coordinate your changes to the database with the changes that are necessary for each
application. For example, by enabling integrity constraints in the database, you may be able
to remove some data checking from your applications.

Migrating Tables from the LONG Data Type to the LOB Data Type
You can use the ALTER TABLE statement to change the data type of a LONG column to CLOB
and that of a LONG RAW column to BLOB.

The LOB data types (BFILE, BLOB, CLOB, and NCLOB) can provide many advantages over LONG
data types.

In the following example, the LONG column named long_col in table long_tab is changed to
data type CLOB:

SQL> ALTER TABLE Long_tab MODIFY (long_col CLOB);

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-15

After using this method to change LONG columns to LOBs, all the existing constraints
and triggers on the table are still usable. However, all the indexes, including Domain
indexes and Functional indexes, on all columns of the table become unusable and
must be rebuilt using an ALTER INDEX...REBUILD statement. Also, the Domain indexes
on the LONG column must be dropped before changing the LONG column to a LOB.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for
information about modifying applications to use LOB data

Migrate Your Upgraded Oracle Databases to Use Unified Auditing
To use the full facilities of unified auditing, you must manually migrate to unified
auditing.

In unified auditing, all Oracle Database audit trails (SYS.AUD$ for the database audit
trail, SYS.FGA_LOG$ for fine-grained auditing, DVYS.AUDIT_TRAIL$ for Database Vault,
and so on) are combined into one single audit trail, which you can view by querying
the UNIFIED_AUDIT_TRAIL data dictionary view for single-instance installations and
GV$UNIFIED_AUDIT_TRAIL for Oracle Real Application Clusters environments.

• Understanding Unified Auditing Migration Process for Oracle Database
Decide which audit policies you want to use in the upgraded database.

• Migrating to Unified Auditing for Oracle Database
Use this procedure for multitenant container (CDB) databases to migrate to unified
auditing.

• About Managing Earlier Audit Records After You Migrate to Unified Auditing
Review, archive, and purge earlier audit trails in preparation for using the unified
audit trail.

• Removing the Unified Auditing Functionality
Use this procedure to remove unified auditing, and to use mixed-mode audit.

• Obtaining Documentation References if You Choose Not to Use Unified Auditing
You can access documentation listed here to obtain configuration information
about how to use non-unified auditing.

See Also:

Oracle Database Security Guide for information about how the audit features
have changed for this release

Understanding Unified Auditing Migration Process for Oracle Database
Decide which audit policies you want to use in the upgraded database.

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-16

By default, unified auditing is not enabled for upgraded databases. If you have upgraded from
an earlier release to Oracle Database 12c, then your database uses the same auditing
functionality that was used in the earlier release. For newly created databases, the mixed-
mode method of unified auditing is enabled by default. After you complete the migration to
unified auditing, traditional auditing is disabled, and the new audit records write to the unified
audit trail.

To enable and configure the audit policies and how they are used, choose one method as
follows:

• Use the pure unified audit facility.

Migrate to unified auditing to use the full unified auditing facility features. After you
complete the procedure to migrate to unified auditing, you can create and enable new
audit policies and also use the predefined audit policies. The audit records for these
policies write to the unified audit trail. The earlier audit trails and their audit records
remain, but no new audit records write to the earlier audit trails.

Note:

The audit configuration from the earlier release has no effect in the unified audit
system. Only unified audit policies generate audit records inside the unified
audit trail.

• Use a mixed-mode audit facility.

The mixed-mode audit facility enables both traditional and unified auditing facilities to run
simultaneously and applies to both new and upgraded databases. The mixed-mode
unified auditing facility becomes available if you enable at least one of the unified auditing
predefined audit policies. Audit records for these policies write to the unified audit trail.
The audit configuration in the earlier release of Oracle Database is also available, and
the audit records for this configuration write to the earlier audit trails. If you decide that
you prefer using the pure unified audit facility, then you can migrate to it.

Note:

If the database is not writable, then audit records write to new format operating
system files in the $ORACLE_BASE/audit/$ORACLE_SID directory.

See Also:

– Oracle Database Security Guide for information about the predefined audit
policies

– Oracle Database Security Guide for information about the
ora_SecureConfig audit policy

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-17

Migrating to Unified Auditing for Oracle Database
Use this procedure for multitenant container (CDB) databases to migrate to unified
auditing.

Perform the following procedure in the root. The procedure migrates both the root
CDB, and any associated PDBs, to unified auditing.

Note:

You can disable unified auditing from the container database (CDB) root only,
not for individual pluggable databases (PDBs).

However, when unified auditing is disabled, then individual PDBs can use the
mixed mode auditing, depending on whether or not the local audit policy is
enabled in that PDB. If you have a CDB common audit policy enabled, then
all PDBs use mixed mode auditing.

1. Log in to SQL*Plus as user SYS with the SYSDBA privilege.

sqlplus sys as sysdba
Enter password: password

In the multitenant environment, this login connects you to root.

2. Check if your Oracle Database is migrated to unified auditing using this query:

SQL> SELECT VALUE FROM V$OPTION WHERE PARAMETER = 'Unified
Auditing';

If the output for the VALUE column is TRUE, then unified auditing is already enabled
in your database. You can proceed to Managing Earlier Audit Records. If the
output is FALSE, then complete the remaining steps in this procedure.

3. Stop the database. For single-instance environments, enter the following
commands from SQL*Plus:

SQL> SHUTDOWN IMMEDIATE
SQL> EXIT

For Windows systems, stop the Oracle service:

net stop OracleService%ORACLE_SID%

For Oracle Real Application Clusters (Oracle RAC) installations, shut down each
database instance as follows:

srvctl stop database -db db_name

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-18

4. Stop the listener. (Stopping the listener is not necessary for Oracle RAC and Oracle Grid
Infrastructure listeners.)

lsnrctl stop listener_name

You can find the name of the listener by running the lsnrctl status command. The
Alias setting indicates the name.

5. Go to the directory $ORACLE_HOME/rdbms/lib.

6. Enable unified auditing for the Oracle user.

• Linux and Unix

make -f ins_rdbms.mk uniaud_on ioracle ORACLE_HOME=$ORACLE_HOME

• Microsoft Windows

Rename the file %ORACLE_HOME%/bin/orauniaud12.dll.dbl to
%ORACLE_HOME%/bin/orauniaud12.dll.

Note:

For Oracle RAC databases that have non-shared Oracle homes, you must
repeat this step on each cluster member node, so that the binaries are updated
inside the local ORACLE_HOME on each cluster node.

7. Restart the listener.

lsnrctl start listener_name

8. Restart the database.

Log in to SQL*Plus and then enter the STARTUP command:

sqlplus sys as sysoper
Enter password: password

SQL> STARTUP

For Microsoft Windows systems, start the Oracle service:

net start OracleService%ORACLE_SID%

For Oracle RAC installations, start each database instance:

srvctl start database -db db_name

About Managing Earlier Audit Records After You Migrate to Unified Auditing
Review, archive, and purge earlier audit trails in preparation for using the unified audit trail.

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-19

After you complete the procedure to migrate Oracle Database to use unified auditing,
any audit records that your database had before remain in their earlier audit trails. You
can archive these audit records and then purge their audit trails. With unified auditing
in place, any new audit records write to the unified audit trail.

See Also:

• "Archiving the Audit Trail" in Oracle Database Security Guide

• "Purging Audit Trail Records" in Oracle Database Security Guide

Removing the Unified Auditing Functionality
Use this procedure to remove unified auditing, and to use mixed-mode audit.

After you have enabled your databases to use unified auditing, if you decide that you
do not want unified auditing, then you can use this procedure to remove the unified
auditing functionality. In this case, your database uses the mixed-mode audit facility.

1. Stop the database.

sqlplus sys as sysoper
Enter password: password

SQL> SHUTDOWN IMMEDIATE
SQL> EXIT

For Windows systems, stop the Oracle service:

net stop OracleService%ORACLE_SID%

For Oracle RAC installations, shut down each database instance as follows:

srvctl stop database -db db_name

2. Go to the $ORACLE_HOME/rdbms/lib directory.

3. Disable the unified auditing executable.

• Unix: Run the following command:

make -f ins_rdbms.mk uniaud_off ioracle ORACLE_HOME=$ORACLE_HOME

• Microsoft Windows: Rename the %ORACLE_HOME%/bin/
orauniaud12.dll file to %ORACLE_HOME%/bin/orauniaud12.dll.dbl.

4. Restart the database.

sqlplus sys as sysoper
Enter password: password

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-20

SQL> STARTUP
SQL> EXIT

For Microsoft Windows systems, start the Oracle service again.

net start OracleService%ORACLE_SID%

For Oracle RAC installations, start each database instance using the following syntax:

srvctl start database -db db_name

Obtaining Documentation References if You Choose Not to Use Unified Auditing
You can access documentation listed here to obtain configuration information about how to
use non-unified auditing.

After upgrading to the new release Oracle Database, if you choose not to change to unified
auditing, then Oracle documentation and Oracle Technology Network provide information
about traditional non-unified auditing.

• Oracle Database Security Guide: This guide is the main source of information for
configuring auditing. You must use the Oracle Database Release 11g version of this
manual. To access this guide:

1. Visit the database page on docs.oracle.com site on Oracle Technology Network:

https://docs.oracle.com/en/database/index.html

2. Select Oracle Database.

3. In the Downloads page, select the Documentation tab.

4. On the release list field, select Earlier Releases, and select Oracle Database 11g
Release 2 (11.2).

5. From the Oracle Database 11g Release 2 (11.2) Documentation page, select the All
Books link to display publications in the documentation set.

6. Search for Security Guide.

7. Select either the HTML or the PDF link for this guide.

Identify Oracle Text Indexes for Rebuilds
You can run a script that helps you to identify Oracle Text index indexes with token tables that
can benefit by being rebuilt after upgrading to the new Oracle Database release..

When you upgrade from Oracle Database 12c release 1 (12.2.0.1) to Oracle Database 18c
and later releases, the Oracle Text token tables ($I, $P, and so on) are expanded from 64
bytes to 255 bytes. However, if you have indexes with existing token tables using the smaller
size range, then the Oracle Text indexes cannot take advantage of this widened token
column range. You must rebuild the indexes to use the 255 byte size range. Oracle provides
a script that can assist you to identify indexes that can benefit by being rebuilt.

Obtain the script from My Oracle Support:

https://support.oracle.com/rs?type=doc&id=2287094.1

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-21

https://docs.oracle.com/en/database/index.html
https://support.oracle.com/rs?type=doc&id=2287094.1

Dropping and Recreating DBMS_SCHEDULER Jobs
If DBMS_SCHEDULER jobs do not function after upgrading from an earlier release,
drop and recreate the jobs.

If you find that DBMS_SCHEDULER jobs are not functioning after an upgrade. drop
and recreate those jobs. This issue can occur even if the upgrade process does not
report issues, and system objects are valid.

Transfer Unified Audit Records After the Upgrade
Review these topics to understand how you can obtain better performance after you
upgrade and migrate to unified auditing

• About Transferring Unified Audit Records After an Upgrade
Transferring the unified audit records from Oracle Database 12c release 12.1 to
the new relational table under the AUDSYS schema for the new Oracle Database
release improves the read performance of the unified audit trail.

• Transferring Unified Audit Records After an Upgrade
You can transfer unified audit records to the new relational table in AUDSYS by
using the DBMS_AUDIT_MGMT.TRANSFER_UNIFIED_AUDIT_RECORDS PL/SQL
procedure.

About Transferring Unified Audit Records After an Upgrade
Transferring the unified audit records from Oracle Database 12c release 12.1 to the
new relational table under the AUDSYS schema for the new Oracle Database release
improves the read performance of the unified audit trail.

Starting with Oracle Database 12c Release 2, unified audit records are written directly
to a new internal relational table that is located in the AUDSYS schema. In Oracle
Database 12c release 12.1, the unified audit records were written to the common
logging infrastructure (CLI) SGA queues. If you migrated to unified auditing in that
release, then to obtain better read performance, you can transfer the unified audit
records that are from that release to the new Oracle Database release internal table. It
is not mandatory that you perform this transfer, but Oracle recommends that you do so
to obtain better unified audit trail read performance. This is a one-time operation. All
new unified audit records that are generated after the upgrade are written to the new
table. The table is a read-only table. Any attempt to modify the metadata or data of this
table is mandatorily audited.

After you upgrade to the new Oracle Database release, if you have any unified audit
records present in the UNIFIED_AUDIT_TRAIL from the earlier release, then consider
transferring them to the new internal relational table by using the transfer procedure for
better read performance of the unified audit trail.

As with the SYS schema, you cannot query the AUDSYS schema if you have the
SELECT ANY TABLE system privilege. In addition, this table is not listed as a schema
object in the ALL_TABLES data dictionary view unless you have either the SELECT
ANY DICTIONARY system privilege or an explicit SELECT privilege on this internal
table. Until the database is open read write, the audit records are written to operating
system spillover files (.bin format). However, you can transfer the audit records in
these operating system files to the internal relational table after the database opens in

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-22

the read write mode by using the DBMS_AUDIT_MGMT.LOAD_UNIFIED_AUDIT_FILES
procedure.

Transferring Unified Audit Records After an Upgrade
You can transfer unified audit records to the new relational table in AUDSYS by using the
DBMS_AUDIT_MGMT.TRANSFER_UNIFIED_AUDIT_RECORDS PL/SQL procedure.

1. Log in to the database instance as a user who has been granted the AUDIT_ADMIN role.

For example, in a non-multitenant environment:

sqlplus sec_admin
Enter password: password

For a multitenant environment, connect to the root:

sqlplus c##sec_admin@root
Enter password: password

You can perform this procedure execution in the root as well as in a PDB, because the
UNIFIED_AUDIT_TRAIL view is container specific. In addition, the transfer procedure is
container specific. That is, performing the transfer from the root does not affect the
unified audit records that are present in the unified audit trail for the PDB.

2. For a multitenant environment, query the DBA_PDB_HISTORY view to find the correct
GUID that is associated with the CLI table that is specific to the container from which
audit records must be transferred.

For example:

SQL> SELECT PDB_NAME, PDB_GUID FROM DBA_PDB_HISTORY;

PDB_NAME PDB_GUID
-------- --------------------------------
HR_PDB 33D96CA7862D53DFE0534DC0E40A7C9B
...

3. In a multitenant environment, connect to the container for which you want to transfer the
audit records.

You cannot perform the transfer operation on a container that is different from the one in
which you are currently connected.

4. Run the DBMS_AUDIT_MGMT.TRANSFER_UNIFIED_AUDIT_RECORDS procedure.

For example:

SQL> EXEC DBMS_AUDIT_MGMT.TRANSFER_UNIFIED_AUDIT_RECORDS;

PL/SQL procedure successfully completed.

Or, to specify the PDB GUID:

SQL> EXEC DBMS_AUDIT_MGMT.TRANSFER_UNIFIED_AUDIT_RECORDS
('33D96CA7862D53DFE0534DC0E40A7C9B');

PL/SQL procedure successfully completed.

5. If the database is in open read write mode, then execute the
DBMS_AUDIT_MGMT.LOAD_UNIFIED_AUDIT_FILES procedure.

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-23

Until the database is in open read write mode, audit records are written to
operating system (OS) files. The
DBMS_AUDIT_MGMT.LOAD_UNIFIED_AUDIT_FILES procedure moves the
unified audit records that are present in the files to database tables. You can find
the unified audit records that are present in the OS spillover files by querying the
V$UNIFIED_AUDIT_TRAIL dynamic view.

For example, if you want to execute this procedure for audit records in the HR_PDB
container, then you must connect to that PDB first:

SQL> CONNECT sec_admin@HR_PDB
Enter password: password

SQL> EXEC DBMS_AUDIT_MGMT.LOAD_UNIFIED_AUDIT_FILES;

PL/SQL procedure successfully completed.

6. Query the UNIFIED_AUDIT_TRAIL data dictionary view to check if the records
transferred correctly.

Oracle highly recommends that you query UNIFIED_AUDIT_TRAIL. After a
successful audit record transfer, you should query the UNIFIED_AUDIT_TRAIL
because querying the V$UNIFIED_AUDIT_TRAIL dynamic view will show the
audit records that are present only in the OS spillover files.

About Recovery Catalog Upgrade After Upgrading Oracle Database
If you use a version of the recovery catalog schema that is older than that required by
the RMAN client, then you must upgrade it.

See Also:

• Oracle Database Backup and Recovery User's Guide for information on
managing an RMAN recovery catalog

• Oracle Database Backup and Recovery User's Guide for complete
information about upgrading the recovery catalog and the UPGRADE
CATALOG command

About Testing the Upgraded Production Oracle Database
Repeat tests on your production database that you carried out on your test database
to ensure applications operate as expected.

If you upgraded a test database to the new Oracle Database release, and then tested
it, then you can now repeat those tests on the production database that you upgraded
to the new Oracle Database release. Compare the results, noting anomalies. Repeat
the test upgrade as many times as necessary.

To verify that your applications operate properly with a new Oracle Database release,
test the newly upgraded production database with your existing applications. You also
can test enhanced functions by adding available Oracle Database features, and then
testing them. However, first ensure that the applications operate in the same manner
as they did before the upgrade.

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-24

Upgrading the Time Zone File Version After Upgrading Oracle Database
If the AutoUpgrade preupgrade report in upgrade.xml instructs you to upgrade the time zone
files after completing the database upgrade, and you do not set AutoUpgrade to complete
this task for you, then use the DBMS_DST PL/SQL package to upgrade the time zone file.

Oracle Database supplies multiple versions of time zone files. There are two types of files
associated with each time zone file: a large file, which contains all the time zones defined in
the database, and a small file, which contains only the most commonly used time zones. The
large versions are designated as timezlrg_version_number.dat. The small versions are
designated as timezone_version_number.dat. The files are located in the oracore/
zoneinfo subdirectory under the Oracle Database home directory.

Related Topics

• Upgrading Time Zone Data Using the DBMS_DST Package

• https://support.oracle.com/rs?type=doc&id=1585343.1

Chapter 4
Recommended and Best Practices to Complete After Upgrading Oracle Database

4-25

https://support.oracle.com/rs?type=doc&id=1585343.1

	Contents
	Preface
	Use Case Scenario for this Document
	Documentation Accessibility

	1 Checking Compatibility Before Upgrading Oracle Database
	Checking the Compatibility Level of Oracle Database
	Values for the COMPATIBLE Initialization Parameter in Oracle Database

	2 Preparing to Upgrade Oracle Database
	Pre-Upgrade Information Check with AutoUpgrade
	Understanding Unplug-Plug Upgrades with AutoUpgrade
	Installing Oracle Software in a New Oracle Home
	Choose a New Location for Oracle Home when Upgrading
	Installing the New Oracle Database Software for Single Instance

	Prepare a Backup Strategy Before Upgrading Oracle Database
	Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades
	Release Updates and Requirements for Upgrading Oracle Database
	Recommendations for Oracle Net Services When Upgrading Oracle Database
	Understanding Password Case Sensitivity and Upgrades
	Checking for Accounts Using Case-Insensitive Password Version
	Running Upgrades with Read-Only Tablespaces

	Enabling Oracle Database Vault After Upgrading Oracle Database
	Upgrading Oracle Database Without Disabling Oracle Database Vault
	Common Upgrade Scenarios with Oracle Database Vault

	Preparations for Running AutoUpgrade Processing Modes
	Create Configuration File for AutoUpgrade
	Local Parameters for the AutoUpgrade Configuration File
	Global Parameters for the AutoUpgrade User Configuration File
	Locally Modifiable Global Parameters for AutoUpgrade Configuration File
	Understanding Non-CDB to PDB Upgrades with AutoUpgrade
	Non-CDB to PDB Upgrade Guidelines and Examples
	Examples of Non-CDB to PDB Configuration Files for AutoUpgrade

	3 Using AutoUpgrade to Upgrade and convert Non-CDBs to PDBs
	AutoUpgrade with Source and Target Database Homes on Same Server (Typical)
	AutoUpgrade with Source and Target Database Homes on Different Servers

	4 Post-Upgrade Tasks for Oracle Database
	Check the Upgrade With Post-Upgrade Status Tool
	Required Tasks to Complete After Upgrading Oracle Database
	Setting Environment Variables on Linux and Unix Systems After Manual Upgrades
	Check PL/SQL Packages and Dependent Procedures
	Upgrading Statistics Tables Created by the DBMS_STATS Package After Upgrading Oracle Database
	Configuring the FTP and HTTP Ports and HTTP Authentication for Oracle XML DB
	Install Oracle Text Supplied Knowledge Bases After Upgrading Oracle Database
	Replace the DEMO Directory in Read-Only Oracle Homes
	Configure Access Control Lists (ACLs) to External Network Services
	Enabling Oracle Database Vault After Upgrading Oracle Database
	Upgrading Oracle Database Without Disabling Oracle Database Vault
	Common Upgrade Scenarios with Oracle Database Vault

	Check for the SQLNET.ALLOWED_LOGON_VERSION Parameter Behavior

	Recommended and Best Practices to Complete After Upgrading Oracle Database
	Back Up the Database
	Run AutoUpgrade Postupgrade Checks
	Regathering Fixed Objects Statistics with DBMS_STATS
	Reset Passwords to Enforce Case-Sensitivity
	Finding and Resetting User Passwords That Use the 10G Password Version
	Understand Oracle Grid Infrastructure, Oracle ASM, and Oracle Clusterware
	Oracle Grid Infrastructure Installation and Upgrade and Oracle ASM
	Add New Features as Appropriate
	Develop New Administrative Procedures as Needed
	Migrating Tables from the LONG Data Type to the LOB Data Type
	Migrate Your Upgraded Oracle Databases to Use Unified Auditing
	Understanding Unified Auditing Migration Process for Oracle Database
	Migrating to Unified Auditing for Oracle Database
	About Managing Earlier Audit Records After You Migrate to Unified Auditing
	Removing the Unified Auditing Functionality
	Obtaining Documentation References if You Choose Not to Use Unified Auditing

	Identify Oracle Text Indexes for Rebuilds
	Dropping and Recreating DBMS_SCHEDULER Jobs
	Transfer Unified Audit Records After the Upgrade
	About Transferring Unified Audit Records After an Upgrade
	Transferring Unified Audit Records After an Upgrade

	About Recovery Catalog Upgrade After Upgrading Oracle Database
	About Testing the Upgraded Production Oracle Database
	Upgrading the Time Zone File Version After Upgrading Oracle Database

