
Oracle® Database
VLDB and Partitioning Guide

19c
E96199-11
August 2021

Oracle Database VLDB and Partitioning Guide, 19c

E96199-11

Copyright © 2008, 2021, Oracle and/or its affiliates.

Primary Author: Eric Belden

Contributors: Penny Avril, Hermann Baer, Yasin Baskan, Gregg Christman, Jean-Pierre Dijcks, Sandeep
Doraiswamy, Amit Ganesh, Lilian Hobbs, Kevin Jernigan, Dominique Jeunot, Hariharan Lakshmanan, Paul
Lane, Sue K. Lee, Diana Lorentz, Vineet Marwah, Valarie Moore, Sujatha Muthulingam, Ajit Mylavarapu, Tony
Morales, Ananth Raghavan, Venkatesh Radhakrishnan, Vivekanandhan Raja, Andy Rivenes, Chandrajith
Unnithan, Mark Van de Wiel

Contributors: Frederick Kush

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxii

Documentation Accessibility xxii

Related Documents xxii

Conventions xxiii

 Changes in This Release for Oracle Database VLDB and Partitioning
Guide

Changes for VLDB and Partitioning in Oracle Database 19c xxiv

Changes for VLDB and Partitioning in Oracle Database Release 18c xxv

1 Introduction to Very Large Databases

1.1 Introduction to Partitioning 1-1

1.2 VLDB and Partitioning 1-2

1.3 Partitioning As the Foundation for Information Lifecycle Management 1-3

1.4 Partitioning for All Databases 1-3

2 Partitioning Concepts

2.1 Partitioning Overview 2-1

2.1.1 Basics of Partitioning 2-2

2.1.2 Partitioning Key 2-3

2.1.3 Partitioned Tables 2-4

2.1.3.1 When to Partition a Table 2-4

2.1.3.2 When to Partition an Index 2-4

2.1.4 Partitioned Index-Organized Tables 2-5

2.1.5 System Partitioning 2-5

2.1.6 Partitioning for Information Lifecycle Management 2-5

2.1.7 Range Partitioning for Hash Clusters 2-6

2.1.8 Partitioning and LOB Data 2-6

2.1.9 Partitioning on External Tables 2-6

iii

2.1.10 Hybrid Partitioned Tables 2-7

2.1.11 Collections in XMLType and Object Data 2-10

2.2 Benefits of Partitioning 2-10

2.2.1 Partitioning for Performance 2-11

2.2.1.1 Partition Pruning for Performance 2-11

2.2.1.2 Partition-Wise Joins for Performance 2-11

2.2.2 Partitioning for Manageability 2-11

2.2.3 Partitioning for Availability 2-12

2.3 Partitioning Strategies 2-12

2.3.1 Single-Level Partitioning 2-12

2.3.1.1 Range Partitioning 2-13

2.3.1.2 Hash Partitioning 2-13

2.3.1.3 List Partitioning 2-14

2.3.2 Composite Partitioning 2-14

2.3.2.1 Composite Range-Range Partitioning 2-15

2.3.2.2 Composite Range-Hash Partitioning 2-15

2.3.2.3 Composite Range-List Partitioning 2-15

2.3.2.4 Composite List-Range Partitioning 2-16

2.3.2.5 Composite List-Hash Partitioning 2-16

2.3.2.6 Composite List-List Partitioning 2-16

2.3.2.7 Composite Hash-Hash Partitioning 2-16

2.3.2.8 Composite Hash-List Partitioning 2-16

2.3.2.9 Composite Hash-Range Partitioning 2-16

2.4 Partitioning Extensions 2-16

2.4.1 Manageability Extensions 2-17

2.4.1.1 Interval Partitioning 2-17

2.4.1.2 Partition Advisor 2-17

2.4.2 Partitioning Key Extensions 2-17

2.4.2.1 Reference Partitioning 2-18

2.4.2.2 Virtual Column-Based Partitioning 2-19

2.5 Indexing on Partitioned Tables 2-19

2.5.1 Deciding on the Type of Partitioned Index to Use 2-20

2.5.2 Local Partitioned Indexes 2-20

2.5.3 Global Partitioned Indexes 2-21

2.5.3.1 Global Range Partitioned Indexes 2-22

2.5.3.2 Global Hash Partitioned Indexes 2-22

2.5.3.3 Maintenance of Global Partitioned Indexes 2-22

2.5.4 Global Nonpartitioned Indexes 2-23

2.5.5 Miscellaneous Information about Creating Indexes on Partitioned Tables 2-24

2.5.6 Partial Indexes for Partitioned Tables 2-24

iv

2.5.7 Partitioned Indexes on Composite Partitions 2-25

3 Partitioning for Availability, Manageability, and Performance

3.1 Partition Pruning 3-1

3.1.1 Benefits of Partition Pruning 3-1

3.1.2 Information That Can Be Used for Partition Pruning 3-2

3.1.3 How to Identify Whether Partition Pruning Has Been Used 3-3

3.1.4 Static Partition Pruning 3-3

3.1.5 Dynamic Partition Pruning 3-4

3.1.5.1 Dynamic Pruning with Bind Variables 3-4

3.1.5.2 Dynamic Pruning with Subqueries 3-5

3.1.5.3 Dynamic Pruning with Star Transformation 3-6

3.1.5.4 Dynamic Pruning with Nested Loop Joins 3-7

3.1.6 Partition Pruning with Zone Maps 3-8

3.1.7 Partition Pruning Tips 3-9

3.1.7.1 Data Type Conversions 3-10

3.1.7.2 Function Calls 3-12

3.1.7.3 Collection Tables 3-13

3.2 Partition-Wise Operations 3-14

3.2.1 Full Partition-Wise Joins 3-14

3.2.1.1 Querying a Full Partition-Wise Join 3-15

3.2.1.2 Full Partition-Wise Joins: Single-Level - Single-Level 3-15

3.2.1.3 Full Partition-Wise Joins: Composite - Single-Level 3-17

3.2.1.4 Full Partition-Wise Joins: Composite - Composite 3-19

3.2.2 Partial Partition-Wise Joins 3-20

3.2.2.1 Partial Partition-Wise Joins: Single-Level Partitioning 3-20

3.2.2.2 Partial Partition-Wise Joins: Composite 3-22

3.3 Index Partitioning 3-24

3.3.1 Local Partitioned Indexes 3-25

3.3.1.1 Local Prefixed Indexes 3-26

3.3.1.2 Local Nonprefixed Indexes 3-26

3.3.2 Global Partitioned Indexes 3-27

3.3.2.1 Prefixed and Nonprefixed Global Partitioned Indexes 3-27

3.3.2.2 Management of Global Partitioned Indexes 3-28

3.3.3 Summary of Partitioned Index Types 3-28

3.3.4 The Importance of Nonprefixed Indexes 3-29

3.3.5 Performance Implications of Prefixed and Nonprefixed Indexes 3-29

3.3.6 Advanced Index Compression With Partitioned Indexes 3-30

3.3.7 Guidelines for Partitioning Indexes 3-31

3.3.8 Physical Attributes of Index Partitions 3-32

v

3.4 Partitioning and Table Compression 3-33

3.4.1 Table Compression and Bitmap Indexes 3-33

3.4.2 Example of Table Compression and Partitioning 3-34

3.5 Recommendations for Choosing a Partitioning Strategy 3-35

3.5.1 When to Use Range or Interval Partitioning 3-35

3.5.2 When to Use Hash Partitioning 3-37

3.5.3 When to Use List Partitioning 3-38

3.5.4 When to Use Composite Partitioning 3-39

3.5.4.1 When to Use Composite Range-Hash Partitioning 3-39

3.5.4.2 When to Use Composite Range-List Partitioning 3-40

3.5.4.3 When to Use Composite Range-Range Partitioning 3-41

3.5.4.4 When to Use Composite List-Hash Partitioning 3-42

3.5.4.5 When to Use Composite List-List Partitioning 3-42

3.5.4.6 When to Use Composite List-Range Partitioning 3-43

3.5.5 When to Use Interval Partitioning 3-44

3.5.6 When to Use Reference Partitioning 3-45

3.5.7 When to Partition on Virtual Columns 3-45

3.5.8 Considerations When Using Read-Only Tablespaces 3-46

4 Partition Administration

4.1 Specifying Partitioning When Creating Tables and Indexes 4-1

4.1.1 About Creating Range-Partitioned Tables and Global Indexes 4-3

4.1.1.1 Creating a Range-Partitioned Table 4-3

4.1.1.2 Creating a Range-Partitioned Table With More Complexity 4-4

4.1.1.3 Creating a Range-Partitioned Global Index 4-5

4.1.2 Creating Range-Interval-Partitioned Tables 4-5

4.1.3 About Creating Hash Partitioned Tables and Global Indexes 4-6

4.1.3.1 Creating a Hash Partitioned Table 4-6

4.1.3.2 Creating a Hash Partitioned Global Index 4-7

4.1.4 About Creating List-Partitioned Tables 4-8

4.1.4.1 Creating a List-Partitioned Table 4-8

4.1.4.2 Creating a List-Partitioned Table With a Default Partition 4-9

4.1.4.3 Creating an Automatic List-Partitioned Table 4-10

4.1.4.4 Creating a Multi-column List-Partitioned Table 4-12

4.1.5 Creating Reference-Partitioned Tables 4-14

4.1.6 Creating Interval-Reference Partitioned Tables 4-15

4.1.7 Creating a Table Using In-Memory Column Store With Partitioning 4-16

4.1.8 Creating a Table with Read-Only Partitions or Subpartitions 4-17

4.1.9 Creating a Partitioned External Table 4-18

4.1.10 Specifying Partitioning on Key Columns 4-19

vi

4.1.10.1 Creating a Multicolumn Range-Partitioned Table By Date 4-20

4.1.10.2 Creating a Multicolumn Range-Partitioned Table to Enforce Equal-Sized
Partitions 4-21

4.1.11 Using Virtual Column-Based Partitioning 4-22

4.1.12 Using Table Compression with Partitioned Tables 4-23

4.1.13 Using Key Compression with Partitioned Indexes 4-23

4.1.14 Specifying Partitioning with Segments 4-24

4.1.14.1 Deferred Segment Creation for Partitioning 4-24

4.1.14.2 Truncating Segments That Are Empty 4-25

4.1.14.3 Maintenance Procedures for Segment Creation on Demand 4-25

4.1.15 Specifying Partitioning When Creating Index-Organized Tables 4-26

4.1.15.1 Creating Range-Partitioned Index-Organized Tables 4-27

4.1.15.2 Creating Hash Partitioned Index-Organized Tables 4-27

4.1.15.3 Creating List-Partitioned Index-Organized Tables 4-28

4.1.16 Partitioning Restrictions for Multiple Block Sizes 4-28

4.1.17 Partitioning of Collections in XMLType and Objects 4-29

4.1.17.1 Performing PMOs on Partitions that Contain Collection Tables 4-30

4.1.17.2 Partitioning of XMLIndex for Binary XML Tables 4-31

4.2 Specifying Composite Partitioning When Creating Tables 4-31

4.2.1 Creating Composite Hash-* Partitioned Tables 4-31

4.2.2 Creating Composite Interval-* Partitioned Tables 4-32

4.2.2.1 Creating Composite Interval-Hash Partitioned Tables 4-33

4.2.2.2 Creating Composite Interval-List Partitioned Tables 4-34

4.2.2.3 Creating Composite Interval-Range Partitioned Tables 4-34

4.2.3 Creating Composite List-* Partitioned Tables 4-35

4.2.3.1 Creating Composite List-Hash Partitioned Tables 4-36

4.2.3.2 Creating Composite List-List Partitioned Tables 4-36

4.2.3.3 Creating Composite List-Range Partitioned Tables 4-37

4.2.4 Creating Composite Range-* Partitioned Tables 4-38

4.2.4.1 About Creating Composite Range-Hash Partitioned Tables 4-39

4.2.4.2 About Creating Composite Range-List Partitioned Tables 4-40

4.2.4.3 Creating Composite Range-Range Partitioned Tables 4-43

4.2.5 Specifying Subpartition Templates to Describe Composite Partitioned Tables 4-45

4.2.5.1 Specifying a Subpartition Template for a *-Hash Partitioned Table 4-45

4.2.5.2 Specifying a Subpartition Template for a *-List Partitioned Table 4-46

4.3 Maintenance Operations Supported on Partitions 4-47

4.3.1 Updating Indexes Automatically 4-52

4.3.2 Asynchronous Global Index Maintenance for Dropping and Truncating
Partitions 4-54

4.3.3 Modifying a Subpartition Template 4-55

4.3.4 Filtering Maintenance Operations 4-55

4.4 Maintenance Operations for Partitioned Tables and Indexes 4-56

vii

4.4.1 About Adding Partitions and Subpartitions 4-57

4.4.1.1 Adding a Partition to a Range-Partitioned Table 4-58

4.4.1.2 Adding a Partition to a Hash-Partitioned Table 4-58

4.4.1.3 Adding a Partition to a List-Partitioned Table 4-59

4.4.1.4 Adding a Partition to an Interval-Partitioned Table 4-59

4.4.1.5 About Adding Partitions to a Composite *-Hash Partitioned Table 4-60

4.4.1.6 About Adding Partitions to a Composite *-List Partitioned Table 4-61

4.4.1.7 About Adding Partitions to a Composite *-Range Partitioned Table 4-62

4.4.1.8 About Adding a Partition or Subpartition to a Reference-Partitioned Table 4-62

4.4.1.9 Adding Index Partitions 4-63

4.4.1.10 Adding Multiple Partitions 4-64

4.4.2 About Coalescing Partitions and Subpartitions 4-65

4.4.2.1 Coalescing a Partition in a Hash Partitioned Table 4-65

4.4.2.2 Coalescing a Subpartition in a *-Hash Partitioned Table 4-65

4.4.2.3 Coalescing Hash Partitioned Global Indexes 4-66

4.4.3 About Dropping Partitions and Subpartitions 4-66

4.4.3.1 Dropping Table Partitions 4-66

4.4.3.2 Dropping Interval Partitions 4-69

4.4.3.3 Dropping Index Partitions 4-69

4.4.3.4 Dropping Multiple Partitions 4-70

4.4.4 About Exchanging Partitions and Subpartitions 4-70

4.4.4.1 Creating a Table for Exchange With a Partitioned Table 4-72

4.4.4.2 Exchanging a Range, Hash, or List Partition 4-73

4.4.4.3 Exchanging a Partition of an Interval Partitioned Table 4-75

4.4.4.4 Exchanging a Partition of a Reference-Partitioned Table 4-75

4.4.4.5 About Exchanging a Partition of a Table with Virtual Columns 4-76

4.4.4.6 Exchanging a Hash Partitioned Table with a *-Hash Partition 4-77

4.4.4.7 Exchanging a Subpartition of a *-Hash Partitioned Table 4-77

4.4.4.8 Exchanging a List-Partitioned Table with a *-List Partition 4-78

4.4.4.9 About Exchanging a Subpartition of a *-List Partitioned Table 4-78

4.4.4.10 Exchanging a Range-Partitioned Table with a *-Range Partition 4-79

4.4.4.11 About Exchanging a Subpartition of a *-Range Partitioned Table 4-80

4.4.4.12 About Exchanging a Partition with the Cascade Option 4-80

4.4.5 About Merging Partitions and Subpartitions 4-81

4.4.5.1 Merging Range Partitions 4-82

4.4.5.2 Merging Interval Partitions 4-84

4.4.5.3 Merging List Partitions 4-85

4.4.5.4 Merging *-Hash Partitions 4-85

4.4.5.5 About Merging *-List Partitions 4-86

4.4.5.6 About Merging *-Range Partitions 4-87

4.4.5.7 Merging Multiple Partitions 4-88

viii

4.4.6 About Modifying Attributes of Tables, Partitions, and Subpartitions 4-89

4.4.6.1 About Modifying Default Attributes 4-89

4.4.6.2 About Modifying Real Attributes of Partitions 4-90

4.4.7 About Modifying List Partitions 4-92

4.4.7.1 About Modifying List Partitions: Adding Values 4-92

4.4.7.2 About Modifying List Partitions: Dropping Values 4-93

4.4.8 About Modifying the Partitioning Strategy 4-94

4.4.9 About Moving Partitions and Subpartitions 4-96

4.4.9.1 Moving Table Partitions 4-97

4.4.9.2 Moving Subpartitions 4-98

4.4.9.3 Moving Index Partitions 4-98

4.4.10 About Rebuilding Index Partitions 4-98

4.4.10.1 About Rebuilding Global Index Partitions 4-98

4.4.10.2 About Rebuilding Local Index Partitions 4-99

4.4.11 About Renaming Partitions and Subpartitions 4-99

4.4.11.1 Renaming a Table Partition 4-100

4.4.11.2 Renaming a Table Subpartition 4-100

4.4.11.3 About Renaming Index Partitions 4-100

4.4.12 About Splitting Partitions and Subpartitions 4-101

4.4.12.1 Splitting a Partition of a Range-Partitioned Table 4-102

4.4.12.2 Splitting a Partition of a List-Partitioned Table 4-103

4.4.12.3 Splitting a Partition of an Interval-Partitioned Table 4-106

4.4.12.4 Splitting a *-Hash Partition 4-106

4.4.12.5 Splitting Partitions in a *-List Partitioned Table 4-107

4.4.12.6 Splitting a *-Range Partition 4-109

4.4.12.7 Splitting Index Partitions 4-111

4.4.12.8 Splitting into Multiple Partitions 4-111

4.4.12.9 Fast SPLIT PARTITION and SPLIT SUBPARTITION Operations 4-112

4.4.13 About Truncating Partitions and Subpartitions 4-113

4.4.13.1 About Truncating a Table Partition 4-114

4.4.13.2 Truncating Multiple Partitions 4-115

4.4.13.3 Truncating Subpartitions 4-118

4.4.13.4 Truncating a Partition with the Cascade Option 4-120

4.5 About Dropping Partitioned Tables 4-120

4.6 Changing a Nonpartitioned Table into a Partitioned Table 4-121

4.6.1 Using Online Redefinition to Partition Collection Tables 4-122

4.6.2 Converting a Non-Partitioned Table to a Partitioned Table 4-124

4.7 Managing Hybrid Partitioned Tables 4-125

4.7.1 Creating Hybrid Partitioned Tables 4-125

4.7.2 Converting to Hybrid Partitioned Tables 4-127

4.7.3 Converting Hybrid Partitioned Tables to Internal Partitioned Tables 4-128

ix

4.7.4 Using ADO With Hybrid Partitioned Tables 4-129

4.7.5 Splitting Partitions in a Hybrid Partitioned Table 4-130

4.7.6 Exchanging Data in Hybrid Partitioned Tables 4-132

4.8 Viewing Information About Partitioned Tables and Indexes 4-136

5 Managing and Maintaining Time-Based Information

5.1 Managing Data in Oracle Database With ILM 5-1

5.1.1 About Oracle Database for ILM 5-2

5.1.1.1 Oracle Database Manages All Types of Data 5-2

5.1.1.2 Regulatory Requirements 5-3

5.1.1.3 The Benefits of an Online Archive 5-3

5.1.2 Implementing ILM Using Oracle Database 5-4

5.1.2.1 Step 1: Define the Data Classes 5-4

5.1.2.2 Step 2: Create Storage Tiers for the Data Classes 5-7

5.1.2.3 Step 3: Create Data Access and Migration Policies 5-9

5.1.2.4 Step 4: Define and Enforce Compliance Policies 5-11

5.2 Implementing an ILM Strategy With Heat Map and ADO 5-12

5.2.1 Using Heat Map 5-13

5.2.1.1 Enabling and Disabling Heat Map 5-13

5.2.1.2 Displaying Heat Map Tracking Data With Views 5-14

5.2.1.3 Managing Heat Map Data With DBMS_HEAT_MAP Subprograms 5-16

5.2.2 Using Automatic Data Optimization 5-17

5.2.2.1 Managing Policies for Automatic Data Optimization 5-17

5.2.2.2 Creating a Table With an ILM ADO Policy 5-19

5.2.2.3 Adding ILM ADO Policies 5-19

5.2.2.4 Disabling and Deleting ILM ADO Policies 5-20

5.2.2.5 Specifying Segment-Level Compression and Storage Tiering With ADO 5-21

5.2.2.6 Specifying Row-Level Compression Tiering With ADO 5-21

5.2.2.7 Managing ILM ADO Parameters 5-22

5.2.2.8 Using PL/SQL Functions for Policy Management 5-24

5.2.2.9 Using Views to Monitor Policies for ADO 5-25

5.2.3 Limitations and Restrictions With ADO and Heat Map 5-26

5.3 Controlling the Validity and Visibility of Data in Oracle Database 5-26

5.3.1 Using In-Database Archiving 5-27

5.3.2 Using Temporal Validity 5-29

5.3.3 Creating a Table With Temporal Validity 5-30

5.3.4 Limitations and Restrictions With In-Database Archiving and Temporal Validity 5-32

5.4 Implementing an ILM System Manually Using Partitioning 5-32

5.5 Managing ILM Heat Map and ADO with Oracle Enterprise Manager 5-35

5.5.1 Accessing the Database Administration Menu 5-36

x

5.5.2 Viewing Automatic Data Optimization Activity at the Tablespace Level 5-36

5.5.3 Viewing the Segment Activity Details of Any Tablespace 5-37

5.5.4 Viewing the Segment Activity Details of Any Object 5-37

5.5.5 Viewing the Segment Activity History of Any Object 5-38

5.5.6 Searching Segment Activity in Automatic Data Optimization 5-38

5.5.7 Viewing Policies for a Segment 5-38

5.5.8 Disabling Background Activity 5-39

5.5.9 Changing Execution Frequency of Background Automatic Data Optimization 5-39

5.5.10 Viewing Policy Executions In the Last 24 Hours 5-40

5.5.11 Viewing Objects Moved In Last 24 Hours 5-40

5.5.12 Viewing Policy Details 5-40

5.5.13 Viewing Objects Associated With a Policy 5-41

5.5.14 Evaluating a Policy Before Execution 5-41

5.5.15 Executing a Single Policy 5-42

5.5.16 Stopping a Policy Execution 5-42

5.5.17 Viewing Policy Execution History 5-42

6 Using Partitioning in a Data Warehouse Environment

6.1 What Is a Data Warehouse? 6-1

6.2 Scalability in a Data Warehouse 6-1

6.2.1 Bigger Databases 6-2

6.2.2 Bigger Individual Tables: More Rows in Tables 6-2

6.2.3 More Users Querying the System 6-2

6.2.4 More Complex Queries 6-2

6.3 Partitioning for Performance in a Data Warehouse 6-3

6.3.1 Partition Pruning in a Data Warehouse 6-3

6.3.1.1 Basic Partition Pruning Techniques 6-3

6.3.1.2 Advanced Partition Pruning Techniques 6-4

6.3.2 Partition-Wise Joins in a Data Warehouse 6-6

6.3.2.1 Full Partition-Wise Joins 6-6

6.3.2.2 Partial Partition-Wise Joins 6-8

6.3.2.3 Benefits of Partition-Wise Joins 6-9

6.3.2.4 Performance Considerations for Parallel Partition-Wise Joins 6-10

6.3.3 Indexes and Partitioned Indexes in a Data Warehouse 6-10

6.3.3.1 Local Partitioned Indexes 6-11

6.3.3.2 Nonpartitioned Indexes 6-12

6.3.3.3 Global Partitioned Indexes 6-12

6.3.4 Materialized Views and Partitioning in a Data Warehouse 6-13

6.3.4.1 Partitioned Materialized Views 6-13

6.4 Manageability in a Data Warehouse 6-14

xi

6.4.1 Partition Exchange Load 6-14

6.4.2 Partitioning and Indexes 6-15

6.4.3 Removing Data from Tables 6-15

6.4.4 Partitioning and Data Compression 6-16

7 Using Partitioning in an Online Transaction Processing Environment

7.1 What Is an Online Transaction Processing System? 7-1

7.2 Performance in an Online Transaction Processing Environment 7-3

7.2.1 Deciding Whether to Partition Indexes 7-3

7.2.2 How to Use Partitioning on Index-Organized Tables 7-4

7.3 Manageability in an Online Transaction Processing Environment 7-5

7.3.1 Impact of a Partition Maintenance Operation on a Partitioned Table with Local
Indexes 7-6

7.3.2 Impact of a Partition Maintenance Operation on Global Indexes 7-6

7.3.3 Common Partition Maintenance Operations in OLTP Environments 7-7

7.3.3.1 Removing (Purging) Old Data 7-7

7.3.3.2 Moving or Merging Older Partitions to a Low-Cost Storage Tier Device 7-7

8 Using Parallel Execution

8.1 Parallel Execution Concepts 8-1

8.1.1 When to Implement Parallel Execution 8-2

8.1.2 When Not to Implement Parallel Execution 8-3

8.1.3 Fundamental Hardware Requirements 8-3

8.1.4 How Parallel Execution Works 8-4

8.1.4.1 Parallel Execution of SQL Statements 8-4

8.1.4.2 Producer/Consumer Model 8-4

8.1.4.3 Granules of Parallelism 8-5

8.1.4.4 Distribution Methods Between Producers and Consumers 8-7

8.1.4.5 How Parallel Execution Servers Communicate 8-10

8.1.5 Parallel Execution Server Pool 8-11

8.1.5.1 Processing without Enough Parallel Execution Servers 8-11

8.1.6 Balancing the Workload to Optimize Performance 8-11

8.1.7 Multiple Parallelizers 8-12

8.1.8 Parallel Execution on Oracle RAC 8-13

8.2 Setting the Degree of Parallelism 8-14

8.2.1 Manually Specifying the Degree of Parallelism 8-14

8.2.2 Default Degree of Parallelism 8-15

8.2.3 Automatic Degree of Parallelism 8-16

8.2.4 Determining Degree of Parallelism in Auto DOP 8-16

8.2.5 Controlling Automatic Degree of Parallelism 8-17

xii

8.2.6 Adaptive Parallelism 8-19

8.3 In-Memory Parallel Execution 8-19

8.3.1 Buffer Cache Usage in Parallel Execution 8-20

8.3.2 Automatic Big Table Caching 8-20

8.4 Parallel Statement Queuing 8-21

8.4.1 About Managing Parallel Statement Queuing with Oracle Database Resource
Manager 8-23

8.4.1.1 About Managing the Order of the Parallel Statement Queue 8-24

8.4.1.2 About Limiting the Parallel Server Resources for a Consumer Group 8-25

8.4.1.3 Specifying a Parallel Statement Queue Timeout for Each Consumer
Group 8-26

8.4.1.4 Specifying a Degree of Parallelism Limit for Consumer Groups 8-26

8.4.1.5 Critical Parallel Statement Prioritization 8-26

8.4.1.6 A Sample Scenario for Managing Statements in the Parallel Queue 8-27

8.4.2 Grouping Parallel Statements with BEGIN_SQL_BLOCK END_SQL_BLOCK 8-29

8.4.3 About Managing Parallel Statement Queuing with Hints 8-30

8.5 Types of Parallelism 8-31

8.5.1 About Parallel Queries 8-31

8.5.1.1 Parallel Queries on Index-Organized Tables 8-32

8.5.1.2 Nonpartitioned Index-Organized Tables 8-32

8.5.1.3 Partitioned Index-Organized Tables 8-32

8.5.1.4 Parallel Queries on Object Types 8-32

8.5.1.5 Rules for Parallelizing Queries 8-33

8.5.2 About Parallel DDL Statements 8-34

8.5.2.1 DDL Statements That Can Be Parallelized 8-34

8.5.2.2 About Using CREATE TABLE AS SELECT in Parallel 8-34

8.5.2.3 Recoverability and Parallel DDL 8-35

8.5.2.4 Space Management for Parallel DDL 8-35

8.5.2.5 Storage Space When Using Dictionary-Managed Tablespaces 8-36

8.5.2.6 Free Space and Parallel DDL 8-36

8.5.2.7 Rules for DDL Statements 8-37

8.5.2.8 Rules for CREATE TABLE AS SELECT 8-38

8.5.3 About Parallel DML Operations 8-38

8.5.3.1 When to Use Parallel DML 8-39

8.5.3.2 Enable Parallel DML Mode 8-40

8.5.3.3 Rules for UPDATE, MERGE, and DELETE 8-41

8.5.3.4 Rules for INSERT SELECT 8-41

8.5.3.5 Transaction Restrictions for Parallel DML 8-42

8.5.3.6 Rollback Segments 8-43

8.5.3.7 Recovery for Parallel DML 8-43

8.5.3.8 Space Considerations for Parallel DML 8-44

8.5.3.9 Restrictions on Parallel DML 8-44

xiii

8.5.3.10 Data Integrity Restrictions 8-45

8.5.3.11 Trigger Restrictions 8-46

8.5.3.12 Distributed Transaction Restrictions 8-46

8.5.3.13 Examples of Distributed Transaction Parallelization 8-47

8.5.3.14 Concurrent Execution of Union All 8-47

8.5.4 About Parallel Execution of Functions 8-48

8.5.4.1 Functions in Parallel Queries 8-49

8.5.4.2 Functions in Parallel DML and DDL Statements 8-49

8.5.5 About Other Types of Parallelism 8-50

8.5.6 Degree of Parallelism Rules for SQL Statements 8-50

8.6 About Initializing and Tuning Parameters for Parallel Execution 8-52

8.6.1 Default Parameter Settings 8-53

8.6.2 Forcing Parallel Execution for a Session 8-54

8.6.3 Tuning General Parameters for Parallel Execution 8-55

8.6.3.1 Parameters Establishing Resource Limits for Parallel Operations 8-55

8.6.3.2 Parameters Affecting Resource Consumption 8-62

8.6.3.3 Parameters Related to I/O 8-67

8.7 Monitoring Parallel Execution Performance 8-68

8.7.1 Monitoring Parallel Execution Performance with Dynamic Performance Views 8-69

8.7.1.1 V$PX_BUFFER_ADVICE 8-69

8.7.1.2 V$PX_SESSION 8-69

8.7.1.3 V$PX_SESSTAT 8-70

8.7.1.4 V$PX_PROCESS 8-70

8.7.1.5 V$PX_PROCESS_SYSSTAT 8-70

8.7.1.6 V$PQ_SESSTAT 8-70

8.7.1.7 V$PQ_TQSTAT 8-70

8.7.1.8 V$RSRC_CONS_GROUP_HISTORY 8-71

8.7.1.9 V$RSRC_CONSUMER_GROUP 8-71

8.7.1.10 V$RSRC_PLAN 8-72

8.7.1.11 V$RSRC_PLAN_HISTORY 8-72

8.7.1.12 V$RSRC_SESSION_INFO 8-72

8.7.1.13 V$RSRCMGRMETRIC 8-72

8.7.2 Monitoring Session Statistics 8-73

8.7.3 Monitoring System Statistics 8-74

8.7.4 Monitoring Operating System Statistics 8-75

8.8 Tips for Tuning Parallel Execution 8-75

8.8.1 Implementing a Parallel Execution Strategy 8-76

8.8.2 Optimizing Performance by Creating and Populating Tables in Parallel 8-76

8.8.3 Using EXPLAIN PLAN to Show Parallel Operations Plans 8-77

8.8.3.1 Example: Using EXPLAIN PLAN to Show Parallel Operations 8-78

8.8.4 Additional Considerations for Parallel DML 8-78

xiv

8.8.4.1 Parallel DML and Direct-Path Restrictions 8-79

8.8.4.2 Limitation on the Degree of Parallelism 8-79

8.8.4.3 When to Increase INITRANS 8-79

8.8.4.4 Limitation on Available Number of Transaction Free Lists for Segments 8-79

8.8.4.5 Multiple Archivers for Large Numbers of Redo Logs 8-80

8.8.4.6 Database Writer Process (DBWn) Workload 8-80

8.8.4.7 [NO]LOGGING Clause 8-80

8.8.5 Optimizing Performance by Creating Indexes in Parallel 8-81

8.8.6 Parallel DML Tips 8-82

8.8.6.1 Parallel DML Tip 1: INSERT 8-82

8.8.6.2 Parallel DML Tip 2: Direct-Path INSERT 8-83

8.8.6.3 Parallel DML Tip 3: Parallelizing INSERT, MERGE, UPDATE, and
DELETE 8-84

8.8.7 Incremental Data Loading in Parallel 8-85

8.8.7.1 Optimizing Performance for Updating the Table in Parallel 8-86

8.8.7.2 Efficiently Inserting the New Rows into the Table in Parallel 8-86

8.8.7.3 Optimizing Performance by Merging in Parallel 8-86

9 Backing Up and Recovering VLDBs

9.1 Data Warehouses 9-1

9.1.1 Data Warehouse Characteristics 9-2

9.2 Oracle Backup and Recovery 9-2

9.2.1 Physical Database Structures Used in Recovering Data 9-3

9.2.1.1 Data files 9-3

9.2.1.2 Redo Logs 9-3

9.2.1.3 Control Files 9-3

9.2.2 Backup Type 9-4

9.2.3 Backup Tools 9-4

9.2.3.1 Oracle Recovery Manager (RMAN) 9-5

9.2.3.2 Oracle Data Pump 9-5

9.2.3.3 User-Managed Backups 9-5

9.3 Data Warehouse Backup and Recovery 9-6

9.3.1 Recovery Time Objective (RTO) 9-6

9.3.2 Recovery Point Objective (RPO) 9-7

9.3.2.1 More Data Means a Longer Backup Window 9-7

9.3.2.2 Divide and Conquer 9-7

9.4 The Data Warehouse Recovery Methodology 9-8

9.4.1 Best Practice 1: Use ARCHIVELOG Mode 9-8

9.4.1.1 Is Downtime Acceptable? 9-9

9.4.2 Best Practice 2: Use RMAN 9-9

9.4.3 Best Practice 3: Use Block Change Tracking 9-9

xv

9.4.4 Best Practice 4: Use RMAN Multisection Backups 9-10

9.4.5 Best Practice 5: Leverage Read-Only Tablespaces 9-10

9.4.6 Best Practice 6: Plan for NOLOGGING Operations in Your Backup/Recovery
Strategy 9-11

9.4.6.1 Extract, Transform, and Load 9-12

9.4.6.2 The Extract, Transform, and Load Strategy 9-12

9.4.6.3 Incremental Backup 9-13

9.4.6.4 The Incremental Approach 9-13

9.4.6.5 Flashback Database and Guaranteed Restore Points 9-14

9.4.7 Best Practice 7: Not All Tablespaces Should Be Treated Equally 9-14

10

Storage Management for VLDBs

10.1 High Availability 10-1

10.1.1 Hardware-Based Mirroring 10-2

10.1.1.1 RAID 1 Mirroring 10-2

10.1.1.2 RAID 5 Mirroring 10-2

10.1.2 Mirroring Using Oracle ASM 10-3

10.2 Performance 10-3

10.2.1 Hardware-Based Striping 10-4

10.2.1.1 RAID 0 Striping 10-4

10.2.1.2 RAID 5 Striping 10-4

10.2.2 Striping Using Oracle ASM 10-5

10.2.3 Information Lifecycle Management 10-5

10.2.4 Partition Placement 10-6

10.2.5 Bigfile Tablespaces 10-6

10.2.6 Oracle Database File System (DBFS) 10-6

10.3 Scalability and Manageability 10-7

10.3.1 Stripe and Mirror Everything (SAME) 10-7

10.3.2 SAME and Manageability 10-8

10.4 Oracle ASM Settings Specific to VLDBs 10-8

Glossary

Index

xvi

List of Examples

3-1 Creating a table with partition pruning 3-2

3-2 Partitioned table sales_range with attribute clustering and a zone map on a correlated column 3-9

3-3 Execution plan for partition pruning with zone maps 3-9

3-4 Querying with a full partition-wise join 3-15

3-5 Creating a table with range and interval partitioning 3-36

3-6 Creating a table with hash partitioning 3-38

3-7 Creating a table with list partitioning 3-38

3-8 Creating a table with composite range-hash partitioning 3-40

3-9 Creating a table with composite range-list partitioning 3-41

3-10 Creating a table with composite range-range partitioning 3-41

3-11 Creating a table with composite list-hash partitioning 3-42

3-12 Creating a table with composite list-list partitioning 3-43

3-13 Creating a table with composite list-range partitioning 3-43

3-14 Creating a table with virtual columns for partitioning 3-46

4-1 Creating a range-partitioned table 4-4

4-2 Creating a range-partitioned table with LOGGING and ENABLE ROW MOVEMENT 4-4

4-3 Creating a range-partitioned global index table 4-5

4-4 Creating a hash partitioned global index 4-8

4-5 Creating a list-partitioned table 4-9

4-6 Creating a list-partitioned table with a default partition 4-9

4-7 Creating an automatic list partitioned table 4-10

4-8 Creating a multicolumn list-partitioned table 4-12

4-9 Creating reference-partitioned tables 4-14

4-10 Creating a table with read-only and read-write partitions 4-17

4-11 Creating a Partitioned External Table 4-18

4-12 Creating a multicolumn range-partitioned table 4-20

4-13 Creating a range-partitioned table with a compressed partition 4-23

4-14 Creating a range-partitioned index-organized table 4-27

4-15 Creating a hash partitioned index-organized table 4-27

4-16 Creating a list-partitioned index-organized table 4-28

4-17 Creating a composite hash-hash partitioned table 4-32

4-18 Creating a composite interval-list partitioned table 4-34

4-19 Creating a composite interval-range partitioned table 4-35

4-20 Creating a composite list-hash partitioned table 4-36

4-21 Creating a composite list-list partitioned table 4-37

xvii

4-22 Creating a composite list-range partitioned table 4-38

4-23 Creating a composite range-hash partitioned table using one STORE IN clause 4-39

4-24 Creating a composite range-list partitioned table 4-41

4-25 Creating a range-hash partitioned table with a subpartition template 4-45

4-26 Creating a range-list partitioned table with a subpartition template 4-46

4-27 Using a filtering clause when performing maintenance operations 4-56

4-28 Adding partitions to a range-list partitioned table 4-61

4-29 Adding partitions to a range-range partitioned table 4-62

4-30 Using the FOR EXCHANGE WITH clause of CREATE TABLE 4-73

4-31 Exchanging a Range Partition 4-74

4-32 Exchanging a partition for a reference-partitioned table 4-75

4-33 Exchanging a partition using cascade for a reference-partitioned table 4-80

4-34 Merging range partitions 4-83

4-35 Modifying the partitioning strategy 4-95

4-36 Splitting a partition of a range-partitioned table and rebuilding indexes 4-102

4-37 Splitting a partition of a range-partitioned table online 4-102

4-38 Splitting the default partition of a list-partitioned table 4-104

4-39 Truncating Multiple Partitions 4-116

4-40 Truncating Multiple Subpartitions 4-118

4-41 Redefining partitions with collection tables 4-122

4-42 Using the MODIFY clause of ALTER TABLE to convert online to a partitioned table 4-124

4-43 Creating a Hybrid Range-Partitioned Table 4-126

4-44 Adding an External Partition to a Hybrid Range-artitioned Table 4-127

4-45 Converting to a Hybrid Range-Partitioned Table 4-127

4-46 Converting from a Hybrid Partitioned Table to an Internal Table 4-128

4-47 Using ADO with a Hybrid Partitioned Table 4-129

4-48 Splitting the Default Partition in a Hybrid Partitioned Table 4-130

4-49 Exchanging data of an internal partition of a hybrid partitioned table with an external

nonpartioned table 4-132

4-50 Exchanging data of an external nonpartitioned table with an internal partition of a

hybrid partitioned table 4-133

5-1 Heat map views 5-14

5-2 Using DBMS_HEAT_MAP package subprograms 5-16

5-3 Creating a table with an ILM ADO policy 5-19

5-4 Adding ILM ADO policies 5-19

5-5 Disabling and deleting ILM ADO policies 5-20

5-6 Using segment-level compression and storage tiering 5-21

xviii

5-7 Creating an ADO policy using row-level Hybrid Columnar Compression 5-22

5-8 Creating an ADO policy using row-level advanced compression 5-22

5-9 Using CUSTOMIZE_ILM to customize ADO settings 5-25

5-10 Using In-Database Archiving 5-27

5-11 Creating a table with temporal validity 5-30

5-12 Manually implementing an ILM system 5-32

6-1 Creating a compressed partitioned materialized view 6-13

7-1 Creating a unique index and primary key constraint 7-4

8-1 Running an Explain Plan for a Query on Customers and Sales 8-9

8-2 Explain Plan Output for a Query on Customers and Sales 8-9

8-3 Using consumer groups to set priorities in the parallel statement queue 8-28

8-4 Explain Plan for UNION ALL 8-48

8-5 Parallelizing INSERT SELECT 8-84

8-6 Parallelizing UPDATE and DELETE 8-85

8-7 Parallelizing UPDATE and DELETE 8-85

xix

List of Figures

2-1 Views of Partitioned and Nonpartitioned Tables 2-2

2-2 List, Range, and Hash Partitioning 2-13

2-3 Composite Range—List Partitioning 2-15

2-4 Before Reference Partitioning 2-18

2-5 With Reference Partitioning 2-19

2-6 Local Partitioned Index 2-21

2-7 Global Partitioned Index 2-23

2-8 Global Nonpartitioned Index 2-23

3-1 Parallel Execution of a Full Partition-wise Join 3-16

3-2 Range and Hash Partitions of a Composite Table 3-18

3-3 Partial Partition-Wise Join 3-21

3-4 Local Prefixed Index 3-26

3-5 Local Nonprefixed Index 3-27

3-6 Global Prefixed Partitioned Index 3-28

5-1 Allocating Data Classes to a Partition 5-6

5-2 Data Usage Over Time 5-7

5-3 Data Lifecycle 5-9

8-1 Inter-operation Parallelism and Dynamic Partitioning 8-5

8-2 Data Flow Diagram for Joining Tables 8-9

8-3 Parallel Execution Server Connections and Buffers 8-10

8-4 Creating a Summary Table in Parallel 8-35

8-5 Unusable Free Space (Internal Fragmentation) 8-37

8-6 Asynchronous Read 8-68

xx

List of Tables

3-1 Types of Partitioned Indexes 3-29

3-2 Comparing Prefixed Local, Nonprefixed Local, and Global Indexes 3-30

4-1 ALTER TABLE Maintenance Operations for Table Partitions 4-48

4-2 ALTER TABLE Maintenance Operations for Table Subpartitions 4-50

4-3 ALTER INDEX Maintenance Operations for Index Partitions 4-51

4-4 Views With Information Specific to Partitioned Tables and Indexes 4-136

5-1 Cost Savings Using Tiered Storage 5-9

5-2 ILM ADO Parameters 5-22

8-1 Referential Integrity Restrictions 8-46

8-2 Parallelization Priority Order 8-51

8-3 Parameters and Their Defaults 8-53

8-4 Locks Acquired by Parallel DML Statements 8-66

8-5 Summary of INSERT Features 8-83

xxi

Preface

This book contains an overview of very large database (VLDB) topics, with emphasis
on partitioning and parallel execution as a key component of the VLDB strategy.
Partitioning enhances the performance, manageability, and availability of a wide
variety of applications and helps reduce the total cost of ownership for storing large
amounts of data. Parallel execution enables the processing of large volumes of data
and expensive SQL operations, speeding up processing times significantly.

This Preface contains the following topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This document is intended for database administrators (DBAs) and developers who
create, manage, and write applications for very large databases (VLDB).

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see the following Oracle resources:

• Oracle Database Concepts

• Oracle Database Administrator’s Guide

• Oracle Database Data Warehousing Guide

• Oracle Database Reference

Preface

xxii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Oracle Database SQL Language Reference

• Oracle Database SQL Tuning Guide

• Oracle Database Performance Tuning Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xxiii

Changes in This Release for Oracle
Database VLDB and Partitioning Guide

This chapter describes changes to Oracle Database VLDB and Partitioning Guide.

• Changes for VLDB and Partitioning in Oracle Database 19c

• Changes for VLDB and Partitioning in Oracle Database Release 18c

See Also:

• Oracle Database Licensing Information User Manual to determine
whether a feature is available on your edition of Oracle Database

• Oracle Database New Features Guide for a complete description of the
new features in this release

• Oracle Database Upgrade Guide for a complete description of the
deprecated and desupported features in this release

Changes for VLDB and Partitioning in Oracle Database 19c
The following are changes in Very Large Databases and Partitioning for Oracle
Database release 19c, version 19.1.

New Features

These are the new features in Oracle Database release 19c, version 19.1, to support
very large databases:

• Oracle Hybrid Partitioned Tables

Oracle hybrid partitioned tables combine classical internal partitioned tables with
external partitioned tables into a more general partitioning called hybrid partitioned
tables. This feature enables you to easily integrate internal partitions and external
partitions (those residing on sources outside the database) into a single partition
table. Using this feature also enables you to easily move non-active partitions to
external files for a cheaper storage solution.

Partitions of hybrid partitioned tables can reside on both Oracle tablespaces and
external sources, such as Linux files with comma-separated values (CSV) records
or files on Hadoop Distributed File System (HDFS) with Java server. Hybrid
partitioned tables support all existing external table types for external partitions:
ORACLE_DATAPUMP, ORACLE_LOADER, ORACLE_HDFS, ORACLE_HIVE.

Changes in This Release for Oracle Database VLDB and Partitioning Guide

xxiv

See Also:

– Hybrid Partitioned Tables for an overview of hybrid partitioned tables

– Managing Hybrid Partitioned Tables for information about administering
hybrid partitioned tables

– Oracle Database Administrator’s Guide for information about hybrid
partitioned external tables

– Oracle Database Concepts for conceptual information about partitioned
tables

– Oracle Database In-Memory Guide for information about the In-Memory
Column Store and hybrid partition tables

– Oracle Database SQL Tuning Guide for information about optimizations for
hybrid partitioned tables

– Oracle Database SQL Language Reference for information about creating
and altering hybrid partitioned tables with the CREATE TABLE and ALTER
TABLE SQL commands

– Oracle Database Utilities for information about using SQL*Loader with
hybrid partitioned tables, using Oracle Data Pump with hybrid partitioned
tables, and managing external tables

– Oracle Database PL/SQL Packages and Types Reference for information
about the using PL/SQL procedures with hybrid partitioned tables, including
the CREATE_HYBRID_PARTNED_TABLE procedure in the DBMS_HADOOP
package

– Oracle Database Reference for information about hybrid partition tables in
data dictionary views, including the USER_TABLES, USER_ALL_TABLES,
ALL_TABLES, ALL_ALL_TABLES, DBA_TABLES and DBA_ALL_TABLES
views

– Oracle Database Data Warehousing Guide for information about
materialized views and hybrid partitioned tables

Changes for VLDB and Partitioning in Oracle Database Release
18c

The following are changes in Very Large Databases and Partitioning for Oracle Database
release 18c, version 18.1.

• New Features

New Features

These are the new features in Oracle Database release 18c, version 18.1, to support very
large databases:

• Enhanced Parallel Partition-wise Operations

Changes in This Release for Oracle Database VLDB and Partitioning Guide

xxv

Parallel partition-wise SQL operations can improve query performance
significantly, leading to better response time. Parallel partition-wise joins are used
commonly for processing large joins efficiently and fast.

In addition to parallel partition-wise joins, queries using the SELECT DISTINCT
clause and SQL window functions can perform parallel partition-wise operations.

See Also:

– Partition-Wise Operations

– Partition-Wise Joins in a Data Warehouse

– Oracle Database Data Warehousing Guide for information about
data warehousing and optimization techniques

• Modifying the Partitioning Strategy

You can change the partitioning strategy of a regular (heap-organized) table with
the ALTER TABLE MODIFY PARTITION SQL statement. Modifying the partitioning
strategy, such as hash partitioning to range partitioning, can be performed offline
or online. Indexes are maintained as part of the table modification. When
performed in online mode, the conversion has no impact on ongoing DML
operations.

This functionality enables partitioned tables to evolve without manually recreating
the tables. Changing an existing partitioning strategy of a table online enables
applications to adjust partitioning for new business requirements without
application downtime.

See Also:

– About Modifying the Partitioning Strategy

• Online Merging of Partitions and Subpartitions

You can use the ONLINE keyword with the ALTER TABLE MERGE PARTITION and
SUBPARTITION SQL statements to enable online merge operations for regular
(heap-organized) tables, providing concurrent data manipulation language (DML)
operations with the ongoing partition merge operation.

Enabling partition maintenance operations online enables you to schedule and
execute all of the operations as needed, without the necessity to plan around
periods of query-only windows. This capability both increases application
availability and simplifies application development.

See Also:

– About Merging Partitions and Subpartitions

• Automatic In-Memory Management With Heat Map Data

Changes in This Release for Oracle Database VLDB and Partitioning Guide

xxvi

Heat Map data can assist Automatic Data Optimization (ADO) to automatically manage
the contents of the In-Memory column store (IM column store). Using Heat Map data,
which includes column statistics and other relevant statistics, the IM column store can
determine when it is almost full (under memory pressure). If the determination is almost
full, then inactive segments can be evicted if there are more frequently accessed
segments that would benefit from population in the IM column store.

See Also:

– Using Heat Map

– Oracle Database In-Memory Guide for information about enabling and
sizing the In-Memory Column Store

• Enhancements to Multitenant Parallel Statement Queuing

Parallel execution has been enhanced to work more effectively in a multitenant database.
With these enhancements, such as updates to the PARALLEL_MAX_SERVERS and
PARALLEL_SERVERS_TARGET initialization parameters, parallel statement queuing in a
multitenant environment can perform as effectively as in a non-PDB multitenant.

See Also:

Oracle Multitenant Administrator's Guide for information about parallel
execution (PX) servers and utilization limits for CDBs and PDBs

• Timeout and Dequeue Actions for Parallel Statement Queuing

You can specify queue timeout and dequeue actions for parallel statement with enhanced
functionality to the PARALLEL_QUEUE_TIMEOUT_ACTION resource manager directive and the
DBMS_RESOURCE_MANAGER.DEQUEUE_PARALLEL_STATEMENT PL/SQL procedure.

See Also:

– About Managing Parallel Statement Queuing with Oracle Database
Resource Manager

– Specifying a Parallel Statement Queue Timeout for Each Consumer Group

– About Managing the Order of the Parallel Statement Queue

• PARALLEL_MIN_DEGREE Initialization Parameter

Changes in This Release for Oracle Database VLDB and Partitioning Guide

xxvii

See Also:

– Controlling Automatic Degree of Parallelism

– Oracle Database Reference for information about
PARALLEL_MIN_DEGREE

Changes in This Release for Oracle Database VLDB and Partitioning Guide

xxviii

1
Introduction to Very Large Databases

Very large databases (VLDBs) present administration challenges that require multiple
strategies. Partitioning is a key component of the VLDB strategy.

Modern enterprises frequently run mission-critical databases containing upwards of several
hundred gigabytes, and often several terabytes of data. These enterprises are challenged by
the support and maintenance requirements of very large databases (VLDB), and must devise
methods to meet those challenges.

This chapter contains the following sections:

• Introduction to Partitioning

• VLDB and Partitioning

• Partitioning As the Foundation for Information Lifecycle Management

• Partitioning for All Databases

Note:

Partitioning functionality is available only if you purchase the Oracle Partitioning
option.

1.1 Introduction to Partitioning
Partitioning provides support for very large tables and indexes by subdividing them into
smaller and more manageable pieces.

Partitioning addresses key issues in supporting very large tables and indexes by
decomposing them into smaller and more manageable pieces called partitions, which are
entirely transparent to an application. SQL queries and Data Manipulation Language (DML)
statements do not need to be modified to access partitioned tables. However, after partitions
are defined, data definition language (DDL) statements can access and manipulate individual
partitions rather than entire tables or indexes. This is how partitioning can simplify the
manageability of large database objects.

Each partition of a table or index must have the same logical attributes, such as column
names, data types, and constraints, but each partition can have separate physical attributes,
such as compression enabled or disabled, physical storage settings, and tablespaces.

Partitioning is useful for many different types of applications, particularly applications that
manage large volumes of data. OLTP systems often benefit from improvements in
manageability and availability, while data warehousing systems benefit from performance and
manageability.

Partitioning offers these advantages:

1-1

• It enables data management operations such as data loads, index creation and
rebuilding, and backup and recovery at the partition level, rather than on the entire
table. This results in significantly reduced times for these operations.

• It improves query performance. Often the results of a query can be achieved by
accessing a subset of partitions, rather than the entire table. For some queries,
this technique (called partition pruning) can provide order-of-magnitude gains in
performance.

• It significantly reduces the impact of scheduled downtime for maintenance
operations.

Partition independence for partition maintenance operations lets you perform
concurrent maintenance operations on different partitions of the same table or
index. You can also run concurrent SELECT and DML operations against partitions
that are unaffected by maintenance operations.

• It increases the availability of mission-critical databases if critical tables and
indexes are divided into partitions to reduce the maintenance windows, recovery
times, and impact of failures.

• Parallel execution provides specific advantages to optimize resource utilization,
and minimize execution time. Parallel execution is supported for queries and for
DML and DDL.

Partitioning enables faster data access within Oracle Database. Whether a database
has 10 GB or 10 TB of data, partitioning can improve data access by orders of
magnitude. Partitioning can be implemented without requiring any modifications to
your applications. For example, you could convert a nonpartitioned table to a
partitioned table without needing to modify any of the SELECT statements or DML
statements that access that table. You do not need to rewrite your application code to
take advantage of partitioning.

1.2 VLDB and Partitioning
Partitioning is a valuable strategy for managing for very large databases (VLDBs).

A very large database has no minimum absolute size. Although a VLDB is a database
like smaller databases, there are specific challenges in managing a VLDB. These
challenges are related to the sheer size and the cost-effectiveness of performing
operations against a system of that size.

Several trends have been responsible for the steady growth in database size:

• For a long time, systems have been developed in isolation. Companies have
started to see the benefits of combining these systems to enable cross-
departmental analysis while reducing system maintenance costs. Consolidation of
databases and applications is a key factor in the ongoing growth of database size.

• Many companies face regulations for storing data for a minimum amount of time.
The regulations generally result in more data being stored for longer periods of
time.

• Companies grow by expanding sales and operations or through mergers and
acquisitions, causing the amount of generated and processed data to increase. At
the same time, the user population that relies on the database for daily activities
increases.

Partitioning is a critical feature for managing very large databases. Growth is the basic
challenge that partitioning addresses for very large databases, and partitioning

Chapter 1
VLDB and Partitioning

1-2

enables a divide and conquer technique for managing the tables and indexes in the
database, especially as those tables and indexes grow. Partitioning is the feature that allows
a database to scale for very large data sets while maintaining consistent performance,
without unduly increasing administrative or hardware resources.

See Also:

• Partitioning for Availability, Manageability, and Performance for information
about availability, manageability, and performance considerations for
partitioning implementations

• Backing Up and Recovering VLDBs for information about the challenges
surrounding backup and recovery for very large databases

• Storage Management for VLDBs for information about best practices for
storage, which is a key component of very large databases

1.3 Partitioning As the Foundation for Information Lifecycle
Management

Partitioning provides support for Information Lifecycle Management (ILM).

Information Lifecycle Management (ILM) is a set of processes and policies for managing data
throughout its useful life. One important component of an ILM strategy is determining the
most appropriate and cost-effective medium for storing data at any point during its lifetime:
newer data used in day-to-day operations is stored on the fastest, most highly-available
storage tier, while older data which is accessed infrequently may be stored on a less
expensive and less efficient storage tier. Older data may also be updated less frequently so it
makes sense to compress and store the data as read-only.

Oracle Database provides the ideal environment for implementing your ILM solution. Oracle
supports multiple storage tiers, and because all of the data remains in Oracle Database,
multiple storage tiers are transparent to the application and the data continues to be secure.
Partitioning provides the fundamental technology that enables data in tables to be stored in
different partitions.

Although multiple storage tiers and sophisticated ILM policies are most often found in
enterprise-level systems, most companies and most databases need some degree of
information lifecycle management. The most basic of ILM operations, archiving older data
and purging or removing that data from the database, can be orders of magnitude faster
when using partitioning.

See Also:

Managing and Maintaining Time-Based Information for more information about ILM

1.4 Partitioning for All Databases
Partitioning provides benefits for large and small databases.

Chapter 1
Partitioning As the Foundation for Information Lifecycle Management

1-3

The benefits of partitioning are not just for very large databases; all databases, even
small databases, can benefit from partitioning. Even a database whose size is
measured in megabytes can gain the same type of performance and manageability
benefits from partitioning as the largest multi-terabyte system.

See Also:

• Using Partitioning in a Data Warehouse Environment for more
information about how partitioning can provide benefits in a data
warehouse environment

• Using Partitioning in an Online Transaction Processing Environment for
more information about how partitioning can provide benefits in an OLTP
environment

Chapter 1
Partitioning for All Databases

1-4

2
Partitioning Concepts

Partitioning enhances the performance, manageability, and availability of a wide variety of
applications and helps reduce the total cost of ownership for storing large amounts of data.

Partitioning allows tables, indexes, and index-organized tables to be subdivided into smaller
pieces, enabling these database objects to be managed and accessed at a finer level of
granularity. Oracle provides a rich variety of partitioning strategies and extensions to address
every business requirement. Because it is entirely transparent, partitioning can be applied to
almost any application without the need for potentially expensive and time consuming
application changes.

This chapter contains the following sections:

• Partitioning Overview

• Benefits of Partitioning

• Partitioning Strategies

• Partitioning Extensions

• Indexing on Partitioned Tables

2.1 Partitioning Overview
Partitioning provides a technique to subdivide objects into smaller pieces.

Partitioning allows a table, index, or index-organized table to be subdivided into smaller
pieces, where each piece of such a database object is called a partition. Each partition has its
own name, and may optionally have its own storage characteristics.

The following topics are discussed:

• Basics of Partitioning

• Partitioning Key

• Partitioned Tables

• Partitioned Index-Organized Tables

• System Partitioning

• Partitioning for Information Lifecycle Management

• Range Partitioning for Hash Clusters

• Partitioning and LOB Data

• Partitioning on External Tables

• Hybrid Partitioned Tables

• Collections in XMLType and Object Data

2-1

2.1.1 Basics of Partitioning
Partitioning enables administration of an object either collectively or individually.

From the perspective of a database administrator, a partitioned object has multiple
pieces that can be managed either collectively or individually. This gives an
administrator considerable flexibility in managing partitioned objects. However, from
the perspective of the application, a partitioned table is identical to a nonpartitioned
table; no modifications are necessary when accessing a partitioned table using SQL
queries and DML statements.

Figure 2-1 offers a graphical view of how partitioned tables differ from nonpartitioned
tables.

Figure 2-1 Views of Partitioned and Nonpartitioned Tables

A nonpartitioned table
can have partitioned or
nonpartitioned indexes.

A partitioned table
can have partitioned or
nonpartitioned indexes.

Table 1

January - March January

Table 2

February March

Note:

All partitions of a partitioned object must reside in tablespaces of the same
block size.

Chapter 2
Partitioning Overview

2-2

See Also:

• Oracle Database Concepts for more information about multiple block sizes

• Oracle Database SQL Language Reference for general restrictions on
partitioning, the exact syntax of the partitioning clauses for creating and altering
partitioned tables and indexes, any restrictions on their use, and specific
privileges required for creating and altering tables

2.1.2 Partitioning Key
Each row in a partitioned table is unambiguously assigned to a single partition using a key.

The partitioning key consists of one or more columns that determine the partition where each
row is stored. Oracle automatically directs insert, update, and delete operations to the
appropriate partition with the partitioning key.

Validating Partition Content

You can identify whether rows in a partition are conformant to the partition definition or
whether the partition key of the row is violating the partition definition with the
ORA_PARTITION_VALIDATION SQL function. The SQL function takes a rowid as input and
returns 1 if the row is in the correct partition and 0 otherwise. The function is applicable for
internal, external, and hybrid partitioned tables for both internal and external partitions and
subpartitions.

For example:

SQL> CREATE TABLE test1 (column1 NUMBER)
 PARTITION BY RANGE(column1)
 (PARTITION p1 VALUES LESS THAN (10),
 PARTITION p2 VALUES LESS THAN (20));

SQL> CREATE TABLE test2 (column1 NUMBER);

SQL> INSERT INTO test1 VALUES (1);

SQL> INSERT INTO test2 VALUES (99);

SQL> ALTER TABLE test1 EXCHANGE PARTITION p2 WITH TABLE test2 WITHOUT VALIDATION;

SQL> SELECT test1.*, ORA_PARTITION_VALIDATION(rowid) FROM test1;

COL1 ORA_PARTITION_VALIDATION(ROWID)
---------- -------------------------------
 1 1
 99 0

See Also:

• Oracle Database SQL Language Reference for information about SQL
functions

Chapter 2
Partitioning Overview

2-3

2.1.3 Partitioned Tables
Most tables can be partitioned.

Any table can be partitioned up to a million separate partitions except those tables
containing columns with LONG or LONG RAW data types. You can, however, use tables
containing columns with CLOB or BLOB data types.

The following topics are discussed:

• When to Partition a Table

• When to Partition an Index

Note:

To reduce disk and memory usage (specifically, the buffer cache), you can
store tables and partitions of a partitioned table in a compressed format
inside the database. This often improves scaleup for read-only operations.
Table compression can also speed up query execution. There is, however, a
slight cost in CPU overhead.

See Also:

Oracle Database Administrator’s Guide for information about guidelines for
managing tables

2.1.3.1 When to Partition a Table
There are certain situations when you would want to partition a table.

Here are some suggestions for situations when you should consider partitioning a
table:

• Tables that are greater than 2 GB.

These tables should always be considered as candidates for partitioning.

• Tables that contain historical data, in which new data is added into the newest
partition.

A typical example is a historical table where only the current month's data is
updatable and the other 11 months are read only.

• Tables whose contents must be distributed across different types of storage
devices.

2.1.3.2 When to Partition an Index
There are certain situations when you would want to partition an index.

Here are some suggestions for when to consider partitioning an index:

Chapter 2
Partitioning Overview

2-4

• Avoid index maintenance when data is removed.

• Perform maintenance on parts of the data without invalidating the entire index.

• Reduce the effect of index skew caused by an index on a column with a monotonically
increasing value.

2.1.4 Partitioned Index-Organized Tables
Partitioned index-organized tables are very useful for providing improved performance,
manageability, and availability for index-organized tables.

For partitioning an index-organized table:

• Partition columns must be a subset of the primary key columns.

• Secondary indexes can be partitioned (both locally and globally).

• OVERFLOW data segments are always equipartitioned with the table partitions.

See Also:

Oracle Database Concepts for more information about index-organized tables

2.1.5 System Partitioning
System partitioning enables application-controlled partitioning without having the database
controlling the data placement.

The database simply provides the ability to break down a table into partitions without knowing
what the individual partitions are going to be used for. All aspects of partitioning have to be
controlled by the application. For example, an attempt to insert into a system partitioned table
without the explicit specification of a partition fails.

System partitioning provides the well-known benefits of partitioning (scalability, availability,
and manageability), but the partitioning and actual data placement are controlled by the
application.

See Also:

Oracle Database Data Cartridge Developer's Guide for more information about
system partitioning

2.1.6 Partitioning for Information Lifecycle Management
Information Lifecycle Management (ILM) is concerned with managing data during its lifetime.

Partitioning plays a key role in ILM because it enables groups of data (that is, partitions) to be
distributed across different types of storage devices and managed individually.

Chapter 2
Partitioning Overview

2-5

See Also:

Managing and Maintaining Time-Based Information for more information
about Information Lifecycle Management

2.1.7 Range Partitioning for Hash Clusters
Partitioned hash clusters are supported in Oracle Database.

Only single-level range partitioning is supported for partitioned hash clusters.

See Also:

Oracle Database Reference for information about partitioned hash clusters.

2.1.8 Partitioning and LOB Data
Unstructured data, such as images and documents, which is stored in a LOB column
in a database can also be partitioned.

When a table is partitioned, all of the columns reside in the tablespace for that
partition, except LOB columns, which can be stored in their own tablespace.

This technique is very useful when a table consists of large LOBs because they can be
stored separately from the main data. This can be beneficial if the main data is being
frequently updated but the LOB data is not. For example, an employee record may
contain a photo which is unlikely to change frequently. However, the employee
personnel details (such as address, department, manager, and so on) could change.
This approach also means that you can use less expensive storage for storing the
LOB data and more expensive, faster storage can be used for the employee record.

2.1.9 Partitioning on External Tables
Partitioning is supported on external tables.

This functionality enables optimizations, such as static partition pruning, dynamic
pruning, and partition wise join for queries over partitioned external tables. This
functionality also provides incremental, partition-based statistics collection for each
external table partition, which enables better optimizer plans.

Tip:

For data sources in the Cloud, you can create external tables manually, but
Oracle recommends that you use the DBMS_CLOUD package to do so.

Chapter 2
Partitioning Overview

2-6

See Also:

• Oracle Database Utilities for information about external tables

• Database PL/SQL Packages and Types Reference for a complete description of
the DBMS_CLOUD PL/SQL package.

2.1.10 Hybrid Partitioned Tables
Oracle hybrid partitioned tables combine classical internal partitioned tables with Oracle
external partitioned tables to form a more general partitioning called hybrid partitioned tables.

Hybrid partitioned tables enable you to easily integrate internal partitions and external
partitions (those residing on sources outside the database) into a single partition table. Using
this feature also enables you to easily move non-active partitions to external files for a
cheaper storage solution.

Partitions of hybrid partitioned tables can reside on both Oracle tablespaces and external
sources, such as Linux files with comma-separated values (CSV) records, files on Hadoop
Distributed File System (HDFS) with Java server or Object Store on Cloud. Hybrid partitioned
tables support all existing external table types for external partitions: ORACLE_DATAPUMP,
ORACLE_LOADER, ORACLE_HDFS, ORACLE_HIVE. External table types for external partitions use
the following access driver types:

• ORACLE_DATAPUMP

• ORACLE_LOADER

• ORACLE_HDFS

• ORACLE_HIVE

For external partitions of ORACLE_LOADER and ORACLE_DATAPUMP access driver type, you must
grant the following privileges to the user:

• READ privileges on directories with data files

• WRITE privileges on directories with logging and bad files

• EXECUTE privileges on directories with pre-processor programs

Table-level external parameters apply to all external partitions of hybrid partitioned tables. For
example, the DEFAULT DIRECTORY value defined in the EXTERNAL PARTITION ATTRIBUTES
clause is the default location for data files and logging and bad files. You can override the
default directory location with a DEFAULT DIRECTORY value in a partition clause. For external
partitions of ORACLE_HIVE and ORACLE_HDFS access driver type, the DEFAULT DIRECTORY is only
used to store specifications for log files.

Enforcement of constraints is not supported on data stored in external partitions because the
constraints apply to the entire table. For example, primary or foreign key constraints cannot
be enforced on a hybrid partitioned table. Only constraints in the RELY DISABLE mode, such as
NOT NULL, primary key, unique, and foreign-primary key are supported on hybrid partitioned
tables. To activate optimizations based on these constraints, set the session parameter
QUERY_REWRITE_INTEGRITY to TRUSTED or STALE_TOLERATED.

Chapter 2
Partitioning Overview

2-7

Hybrid partitioned tables can use partition-based optimizations across internal and
external partitions. Partition-based optimizations include the following across internal
and external data sources:

• Static partition pruning

• Dynamic partition pruning

• Bloom pruning

Hybrid partitioned tables provide users with the capability to move data between
internal and external partitions for cost effective purposes. However, Automatic Data
Optimization (ADO) defined on the table level only has an effect on internal partitions
of the table.

Supported Operations on Hybrid Partitioned Tables

The following are operations supported on hybrid partitioned tables.

• Creating single level RANGE and LIST partitioning methods

• Using ALTER TABLE .. DDLs such as ADD, DROP, and RENAME partitions

• Modifying for external partitions the location of the external data sources at the
partition level

• Altering an existing partitioned internal table to a hybrid partitioned table containing
both internal and external partitions

• Changing the existing location to an empty location resulting in an empty external
partition

• Creating global partial non-unique indexes on internal partitions

• Creating materialized views on internal partitions

• Creating materialized views that include external partitions in
QUERY_REWRITE_INTEGRITY stale tolerated mode only

• Full partition wise refreshing on external partitions

• DML trigger operations on a hybrid partitioned table on internal partitions

• Validating with ANALYZE TABLE ... VALIDATE STRUCTURE on internal partitions only on
hybrid partitioned tables

• Altering an existing hybrid partitioned table with no external partitions to a
partitioned table with internal partitions only

• An external partition can be exchanged with an external nonpartitioned table. Also,
an internal partition can be exchanged with an internal nonpartitioned table.

Restrictions on Hybrid Partitioned Tables

The following are restrictions and limitations on hybrid partitioned tables.

• Restrictions that apply to external tables also apply to hybrid partitioned tables
unless explicitly noted

• No support for REFERENCE and SYSTEM partitioning methods

• Only single level LIST and RANGE partitioning are supported.

• No unique indexes or global unique indexes. Only partial indexes are allowed and
unique indexes cannot be partial.

Chapter 2
Partitioning Overview

2-8

• Only single level list partitioning is supported for HIVE.

• Attribute clustering (CLUSTERING clause) is not allowed.

• DML operations only on internal partitions of a hybrid partitioned table (external partitions
are treated as read-only partitions)

• In-memory defined on the table level only has an effect on internal partitions of the hybrid
partitioned table.

• No column default value

• Invisible columns are not allowed.

• The CELLMEMORY clause is not allowed.

• SPLIT, MERGE, and MOVE maintenance operations are not allowed on external partitions.

• LOB, LONG, and ADT types are not allowed.

• Only RELY constraints are allowed

See Also:

• Managing Hybrid Partitioned Tables for information about administering hybrid
partitioned tables

• Oracle Database Administrator’s Guide for information about hybrid partitioned
external tables

• Oracle Database Concepts for conceptual information about partitioned tables

• Oracle Database In-Memory Guide for information about the In-Memory
Column Store and hybrid partition tables

• Oracle Database SQL Tuning Guide for information about optimizations for
hybrid partitioned tables

• Oracle Database SQL Language Reference for information about creating and
altering hybrid partitioned tables using the CREATE TABLE and ALTER TABLE SQL
commands

• Oracle Database Utilities for information about using SQL*Loader with hybrid
partitioned tables, using Oracle Data Pump with hybrid partitioned tables, and
managing external tables

• Oracle Database PL/SQL Packages and Types Reference for information about
the using PL/SQL with hybrid partitioned tables, including the
CREATE_HYBRID_PARTNED_TABLE procedure in the DBMS_HADOOP package

• Oracle Database Reference for information about hybrid partition tables in data
dictionary views, including the external family of data dictionary views and
*_TABLES views

• Oracle Database Data Warehousing Guide for information about materialized
views and hybrid partitioned tables

Chapter 2
Partitioning Overview

2-9

2.1.11 Collections in XMLType and Object Data
Partitioning when using XMLType and object tables and columns offers the standard
advantages of partitioning, such as enabling tables and indexes to be subdivided into
smaller pieces, thus enabling these database objects to be managed and accessed at
a finer level of granularity.

When you partition an XMLType table or a table with an XMLType column using list,
range, or hash partitioning, any ordered collection tables (OCTs) within the data are
automatically partitioned accordingly, by default. This equipartitioning means that the
partitioning of an OCT follows the partitioning scheme of its parent (base) table. There
is a corresponding collection-table partition for each partition of the base table. A child
element is stored in the collection-table partition that corresponds to the base-table
partition of its parent element.

If you partition a table that has a nested table, then Oracle Database uses the
partitioning scheme of the original base table as the basis for how the nested table is
partitioned. This partitioning of one base table partition for each nested table partition
is called equipartitioning. By default, nested tables are automatically partitioned when
the base table is partitioned. Note, however, that composite partitioning is not
supported for OCTs or nested tables.

See Also:

• Partitioning of Collections in XMLType and Objects for information about
partitioning an XMLType table

• Oracle Database SQL Language Reference for syntax of nested tables

• Oracle Database Object-Relational Developer's Guide

2.2 Benefits of Partitioning
Partitioning can provide tremendous benefit to a wide variety of applications by
improving performance, manageability, and availability.

It is not unusual for partitioning to greatly improve the performance of certain queries
or maintenance operations. Moreover, partitioning can greatly simplify common
administration tasks.

Partitioning also enables database designers and administrators to solve some difficult
problems posed by cutting-edge applications. Partitioning is a key tool for building
multi-terabyte systems or systems with extremely high availability requirements.

The following topics are discussed:

• Partitioning for Performance

• Partitioning for Manageability

• Partitioning for Availability

Chapter 2
Benefits of Partitioning

2-10

2.2.1 Partitioning for Performance
You can use partitioning to improve performance.

By limiting the amount of data to be examined or operated on, and by providing data
distribution for parallel execution, partitioning provides multiple performance benefits.
Partitioning features include:

• Partition Pruning for Performance

• Partition-Wise Joins for Performance

2.2.1.1 Partition Pruning for Performance
Partition pruning is the simplest and also the most substantial means to improve performance
using partitioning.

Partition pruning can often improve query performance by several orders of magnitude. For
example, suppose an application contains an Orders table containing a historical record of
orders, and that this table has been partitioned by week. A query requesting orders for a
single week would only access a single partition of the Orders table. If the Orders table had 2
years of historical data, then this query would access one partition instead of 104 partitions.
This query could potentially execute 100 times faster simply because of partition pruning.

Partition pruning works with all of Oracle performance features. Oracle uses partition pruning
with any indexing or join technique, or parallel access method.

2.2.1.2 Partition-Wise Joins for Performance
Partitioning can also improve the performance of multi-table joins by using a technique known
as partition-wise joins.

Partition-wise joins can be applied when two tables are being joined and both tables are
partitioned on the join key, or when a reference partitioned table is joined with its parent table.
Partition-wise joins break a large join into smaller joins that occur between each of the
partitions, completing the overall join in less time. This offers significant performance benefits
both for serial and parallel execution.

2.2.2 Partitioning for Manageability
Partitioning enables you to partition tables and indexes into smaller, more manageable units,
providing database administrators with the ability to pursue a divide and conquer approach to
data management.

With partitioning, maintenance operations can be focused on particular portions of tables. For
example, you could back up a single partition of a table, rather than back up the entire table.
For maintenance operations across an entire database object, it is possible to perform these
operations on a per-partition basis, thus dividing the maintenance process into more
manageable chunks.

A typical usage of partitioning for manageability is to support a rolling window load process in
a data warehouse. Suppose that you load new data into a table on a weekly basis. That table
could be partitioned so that each partition contains one week of data. The load process is
simply the addition of a new partition using a partition exchange load. Adding a single

Chapter 2
Benefits of Partitioning

2-11

partition is much more efficient than modifying the entire table, because you do not
need to modify any other partitions.

2.2.3 Partitioning for Availability
Partitioned database objects provide partition independence. This characteristic of
partition independence can be an important part of a high-availability strategy.

For example, if one partition of a partitioned table is unavailable, then all of the other
partitions of the table remain online and available. The application can continue to
execute queries and transactions against the available partitions for the table, and
these database operations can run successfully, provided they do not need to access
the unavailable partition.

The database administrator can specify that each partition be stored in a separate
tablespace; the most common scenario is having these tablespaces stored on different
storage tiers. Storing different partitions in different tablespaces enables you to do
backup and recovery operations on each individual partition, independent of the other
partitions in the table. Thus allowing the active parts of the database to be made
available sooner so access to the system can continue, while the inactive data is still
being restored. Moreover, partitioning can reduce scheduled downtime. The
performance gains provided by partitioning may enable you to complete maintenance
operations on large database objects in relatively small batch windows.

2.3 Partitioning Strategies
Oracle Partitioning offers three fundamental data distribution methods as basic
partitioning strategies that control how data is placed into individual partitions.

These strategies are:

• Range

• Hash

• List

Using these data distribution methods, a table can either be partitioned as a single-
level or as a composite-partitioned table:

• Single-Level Partitioning

• Composite Partitioning

Each partitioning strategy has different advantages and design considerations. Thus,
each strategy is more appropriate for a particular situation.

2.3.1 Single-Level Partitioning
Single-level partitioning includes range, hash, and list partitioning.

A table is defined by specifying one of the following data distribution methodologies,
using one or more columns as the partitioning key:

• Range Partitioning

• Hash Partitioning

• List Partitioning

Chapter 2
Partitioning Strategies

2-12

For example, consider a table with a column of type NUMBER as the partitioning key and two
partitions less_than_five_hundred and less_than_one_thousand. The
less_than_one_thousand partition contains rows where the following condition is true:

500 <= partitioning key < 1000

Figure 2-2 offers a graphical view of the basic partitioning strategies for a single-level
partitioned table.

Figure 2-2 List, Range, and Hash Partitioning

Range
Partitioning

List
Partitioning

Hash
Partitioning

h1

East Sales Region
New York
Virginia
Florida

West Sales Region
California
Oregon
Hawaii

Central Sales Region
Illinois
Texas
Missouri

January and
February

March and
April

May and
June

July and
August

h2
h3
h4

2.3.1.1 Range Partitioning
Range partitioning maps data to partitions based on ranges of values of the partitioning key
that you establish for each partition.

Range partitioning is the most common type of partitioning and is often used with dates. For a
table with a date column as the partitioning key, the January-2017 partition would contain
rows with partitioning key values from 01-Jan-2017 to 31-Jan-2017.

Each partition has a VALUES LESS THAN clause, that specifies a non-inclusive upper bound for
the partitions. Any values of the partitioning key equal to or higher than this literal are added
to the next higher partition. All partitions, except the first, have an implicit lower bound
specified by the VALUES LESS THAN clause of the previous partition.

A MAXVALUE literal can be defined for the highest partition. MAXVALUE represents a virtual
infinite value that sorts higher than any other possible value for the partitioning key, including
the NULL value.

2.3.1.2 Hash Partitioning
Hash partitioning maps data to partitions based on a hashing algorithm that Oracle applies to
the partitioning key that you identify.

The hashing algorithm evenly distributes rows among partitions, giving partitions
approximately the same size.

Chapter 2
Partitioning Strategies

2-13

Hash partitioning is the ideal method for distributing data evenly across devices. Hash
partitioning is also an easy-to-use alternative to range partitioning, especially when the
data to be partitioned is not historical or has no obvious partitioning key.

Note:

You cannot change the hashing algorithms used by partitioning.

2.3.1.3 List Partitioning
List partitioning enables you to explicitly control how rows map to partitions by
specifying a list of discrete values for the partitioning key in the description for each
partition.

The advantage of list partitioning is that you can group and organize unordered and
unrelated sets of data in a natural way. For a table with a region column as the
partitioning key, the East Sales Region partition might contain values New York,
Virginia, and Florida.

The DEFAULT partition enables you to avoid specifying all possible values for a list-
partitioned table by using a default partition, so that all rows that do not map to any
other partition do not generate an error.

2.3.2 Composite Partitioning
Composite partitioning is a combination of the basic data distribution methods.

With composite partitioning, a table is partitioned by one data distribution method and
then each partition is further subdivided into subpartitions using a second data
distribution method. All subpartitions for a given partition represent a logical subset of
the data.

Composite partitioning supports historical operations, such as adding new range
partitions, but also provides higher degrees of potential partition pruning and finer
granularity of data placement through subpartitioning. Figure 2-3 offers a graphical
view of range-hash and range-list composite partitioning, as an example.

Chapter 2
Partitioning Strategies

2-14

Figure 2-3 Composite Range—List Partitioning

Composite Partitioning
Range-Hash

h1
h2

h3
h4

h1
h2

h3
h4

h2
h3

h1

h4

h1
h2

h3
h4

March and
April

Composite Partitioning
Range - List

January and
February

May and
June

East Sales Region
New York
Virginia
Florida

West Sales Region
California
Oregon
Hawaii

Central Sales Region
Illinois
Texas
Missouri

The types of composite partitioning are:

• Composite Range-Range Partitioning

• Composite Range-Hash Partitioning

• Composite Range-List Partitioning

• Composite List-Range Partitioning

• Composite List-Hash Partitioning

• Composite List-List Partitioning

• Composite Hash-Hash Partitioning

• Composite Hash-List Partitioning

• Composite Hash-Range Partitioning

2.3.2.1 Composite Range-Range Partitioning
Composite range-range partitioning enables logical range partitioning along two dimensions.

An example of composite range-range partitioning is partition by order_date and range
subpartition by shipping_date.

2.3.2.2 Composite Range-Hash Partitioning
Composite range-hash partitioning partitions data using the range method, and within each
partition, subpartitions it using the hash method.

Composite range-hash partitioning provides the improved manageability of range partitioning
and the data placement, striping, and parallelism advantages of hash partitioning.

2.3.2.3 Composite Range-List Partitioning
Composite range-list partitioning partitions data using the range method, and within each
partition, subpartitions it using the list method.

Chapter 2
Partitioning Strategies

2-15

Composite range-list partitioning provides the manageability of range partitioning and
the explicit control of list partitioning for the subpartitions.

2.3.2.4 Composite List-Range Partitioning
Composite list-range partitioning enables logical range subpartitioning within a given
list partitioning strategy.

An example of composite list-range partitioning is list partition by country_id and
range subpartition by order_date.

2.3.2.5 Composite List-Hash Partitioning
Composite list-hash partitioning enables hash subpartitioning of a list-partitioned
object.

A composite list-hash partitioning, is useful to enable partition-wise joins.

2.3.2.6 Composite List-List Partitioning
Composite list-list partitioning enables logical list partitioning along two dimensions.

An example of composite list-list partitioning is list partition by country_id and list
subpartition by sales_channel.

2.3.2.7 Composite Hash-Hash Partitioning
Composite hash-hash partitioning enables hash partitioning along two dimensions.

The composite hash-hash partitioning technique is beneficial to enable partition-wise
joins along two dimensions.

2.3.2.8 Composite Hash-List Partitioning
Composite hash-list partitioning is introduced in this topic.

Composite hash-list partitioning enables hash partitioning along two dimensions.

2.3.2.9 Composite Hash-Range Partitioning
Composite hash-range partitioning is introduced in this topic.

Composite hash-range partitioning enables hash partitioning along two dimensions.

2.4 Partitioning Extensions
In addition to the basic partitioning strategies, Oracle Database provides partitioning
extensions.

Oracle Database provides the following types of partitioning extensions:

• Manageability Extensions

• Partitioning Key Extensions

Chapter 2
Partitioning Extensions

2-16

2.4.1 Manageability Extensions
Manageability extensions for partitioning are introduced in this topic.

The following extensions significantly enhance the manageability of partitioned tables:

• Interval Partitioning

• Partition Advisor

2.4.1.1 Interval Partitioning
Interval partitioning is an extension of range partitioning .

Interval partitioning instructs the database to automatically create partitions of a specified
interval when data inserted into the table exceeds all of the existing range partitions. You
must specify at least one range partition. The range partitioning key value determines the
high value of the range partitions, which is called the transition point, and the database
creates interval partitions for data with values that are beyond that transition point. The lower
boundary of every interval partition is the non-inclusive upper boundary of the previous range
or interval partition.

For example, if you create an interval partitioned table with monthly intervals and you set the
transition point at January 1, 2007, then the lower boundary for the January 2007 interval is
January 1, 2007. The lower boundary for the July 2007 interval is July 1, 2007, regardless of
whether the June 2007 partition was created.

You can create single-level interval partitioned tables and the following composite partitioned
tables:

• Interval-range

• Interval-hash

• Interval-list

Interval partitioning supports a subset of the capabilities of range partitioning.

See Also:

Oracle Database SQL Language Reference for information about restrictions when
using interval partitioning

2.4.1.2 Partition Advisor
The Partition Advisor is part of the SQL Access Advisor.

The Partition Advisor can recommend a partitioning strategy for a table based on a supplied
workload of SQL statements which can be supplied by the SQL Cache, a SQL Tuning set, or
be defined by the user.

2.4.2 Partitioning Key Extensions
Extensions to partitioning keys are introduced in this topic.

Chapter 2
Partitioning Extensions

2-17

The following extensions extend the flexibility in defining partitioning keys:

• Reference Partitioning

• Virtual Column-Based Partitioning

2.4.2.1 Reference Partitioning
Reference partitioning enables the partitioning of two tables that are related to one
another by referential constraints.

The partitioning key is resolved through an existing parent-child relationship, enforced
by enabled and active primary key and foreign key constraints.

The benefit of this extension is that tables with a parent-child relationship can be
logically equipartitioned by inheriting the partitioning key from the parent table without
duplicating the key columns. The logical dependency also automatically cascades
partition maintenance operations, thus making application development easier and
less error-prone.

An example of reference partitioning is the Orders and LineItems tables related to
each other by a referential constraint orderid_refconstraint. Namely,
LineItems.order_id references Orders.order_id. The Orders table is range
partitioned on order_date. Reference partitioning on orderid_refconstraint for
LineItems leads to creation of the following partitioned table, which is equipartitioned
on the Orders table, as shown in Figure 2-4 and Figure 2-5.

Figure 2-4 Before Reference Partitioning

Table ORDERS

.

Table LINEITEMS

.

Jan 2006 Feb 2006

Jan 2006 Feb 2006

· Redundant storage of order_date

· Redundant maintenance

RANGE(order_date)

Primary Key order_id

Foreign Key order_id

Chapter 2
Partitioning Extensions

2-18

Figure 2-5 With Reference Partitioning

Table ORDERS

.

Table LINEITEMS

.

Jan 2006 Feb 2006

Jan 2006 Feb 2006

PARTITION BY REFERENCE

· Partitioning key inherited through �
 PK-FK relationship

RANGE(order_date)

Primary Key order_id

Foreign Key order_id

All basic partitioning strategies are available for reference partitioning. Interval partitioning
can also be used with reference partitioning.

Note:

Reference partitioning is not supported with the online redefinition package
(DBMS_REDEFINITION).

2.4.2.2 Virtual Column-Based Partitioning
Oracle partitioning includes a partitioning strategy defined on virtual columns.

Virtual columns enable the partitioning key to be defined by an expression, using one or more
existing columns of a table. The expression is stored as metadata only. For example, a ten-
digit account ID can include account branch information as the leading three digits. With the
extension of virtual column based partitioning, an ACCOUNTS table containing an ACCOUNT_ID
column can be extended with a virtual (derived) column ACCOUNT_BRANCH. ACCOUNT_BRANCH is
derived from the first three digits of the ACCOUNT_ID column, which becomes the partitioning
key for this table.

Virtual column-based partitioning is supported with all basic partitioning strategies, including
reference partitioning, and interval and interval-* composite partitioning.

2.5 Indexing on Partitioned Tables
Indexes on partitioned tables can either be nonpartitioned or partitioned.

Chapter 2
Indexing on Partitioned Tables

2-19

As with partitioned tables, partitioned indexes improve manageability, availability,
performance, and scalability. They can either be partitioned independently (global
indexes) or automatically linked to a table's partitioning method (local indexes). In
general, you should use global indexes for OLTP applications and local indexes for
data warehousing or decision support systems (DSS) applications.

The following topics are discussed:

• Deciding on the Type of Partitioned Index to Use

• Local Partitioned Indexes

• Global Partitioned Indexes

• Global Nonpartitioned Indexes

• Miscellaneous Information about Creating Indexes on Partitioned Tables

• Partial Indexes for Partitioned Tables

• Partitioned Indexes on Composite Partitions

2.5.1 Deciding on the Type of Partitioned Index to Use
The type of partitioned index to use should be chosen after reviewing various factors.

When deciding what kind of partitioned index to use, you should consider the following
guidelines in this order:

1. If the table partitioning column is a subset of the index keys, then use a local
index. If this is the case, then you are finished. If this is not the case, then continue
to guideline 2.

2. If the index is unique and does not include the partitioning key columns, then use a
global index. If this is the case, then you are finished. Otherwise, continue to
guideline 3.

3. If your priority is manageability, then consider a local index. If this is the case, then
you are finished. If this is not the case, continue to guideline 4.

4. If the application is an OLTP type and users need quick response times, then use
a global index. If the application is a DSS type and users are more interested in
throughput, then use a local index.

See Also:

• Using Partitioning in a Data Warehouse Environment for information
about partitioned indexes and how to decide which type to use in data
warehouse environment

• Using Partitioning in an Online Transaction Processing Environment for
information about partitioned indexes and how to decide which type to
use in an online transaction processing environment

2.5.2 Local Partitioned Indexes
Local partitioned indexes are easier to manage than other types of partitioned indexes.

Chapter 2
Indexing on Partitioned Tables

2-20

They also offer greater availability and are common in DSS environments. The reason for this
is equipartitioning: each partition of a local index is associated with exactly one partition of the
table. This functionality enables Oracle to automatically keep the index partitions
synchronized with the table partitions, and makes each table-index pair independent. Any
actions that make one partition's data invalid or unavailable only affect a single partition.

Local partitioned indexes support more availability when there are partition or subpartition
maintenance operations on the table. A type of index called a local nonprefixed index is very
useful for historical databases. In this type of index, the partitioning is not on the left prefix of
the index columns.

You cannot explicitly add a partition to a local index. Instead, new partitions are added to local
indexes only when you add a partition to the underlying table. Likewise, you cannot explicitly
drop a partition from a local index. Instead, local index partitions are dropped only when you
drop a partition from the underlying table.

A local index can be unique. However, in order for a local index to be unique, the partitioning
key of the table must be part of the index's key columns.

Figure 2-6 offers a graphical view of local partitioned indexes.

Figure 2-6 Local Partitioned Index

Index

Partitions

Table

Partitions

See Also:

• Index Partitioning for more information about prefixed indexes

• Local Partitioned Indexes for more information about local partitioned indexes

2.5.3 Global Partitioned Indexes
Global partitioned indexes are introduced in the topic.

Oracle offers global range partitioned indexes and global hash partitioned indexes, discussed
in the following topics:

• Global Range Partitioned Indexes

• Global Hash Partitioned Indexes

Chapter 2
Indexing on Partitioned Tables

2-21

• Maintenance of Global Partitioned Indexes

2.5.3.1 Global Range Partitioned Indexes
Global range partitioned indexes are flexible in that the degree of partitioning and the
partitioning key are independent from the table's partitioning method.

The highest partition of a global index must have a partition bound, all of whose values
are MAXVALUE. This ensures that all rows in the underlying table can be represented in
the index. Global prefixed indexes can be unique or nonunique.

You cannot add a partition to a global index because the highest partition always has a
partition bound of MAXVALUE. To add a new highest partition, use the ALTER INDEX SPLIT
PARTITION statement. If a global index partition is empty, you can explicitly drop it by
issuing the ALTER INDEX DROP PARTITION statement. If a global index partition contains
data, dropping the partition causes the next highest partition to be marked unusable.
You cannot drop the highest partition in a global index.

2.5.3.2 Global Hash Partitioned Indexes
Global hash partitioned indexes improve performance by spreading out contention
when the index is monotonically growing.

In other words, most of the index insertions occur only on the right edge of an index,
which is uniformly spread across N hash partitions for a global hash partitioned index.

2.5.3.3 Maintenance of Global Partitioned Indexes
The maintenance of global partitioned indexes is introduced in this topic.

By default, the following operations on partitions on a heap-organized table mark all
global indexes as unusable:

ADD (HASH)
COALESCE (HASH)
DROP
EXCHANGE
MERGE
MOVE
SPLIT
TRUNCATE

These indexes can be maintained by appending the clause UPDATE INDEXES to the
SQL statements for the operation. Note, however, that appending the UPDATE INDEXES
clause maintains the global index as part of the partition maintenance operation,
potentially elongating the run time of the operation and increasing the resource
requirements.

The two advantages to maintaining global indexes are:

• The index remains available and online throughout the operation. Hence no other
applications are affected by this operation.

• The index does not have to be rebuilt after the operation.

• The global index maintenance for DROP and TRUNCATE is implemented as metadata-
only operation.

Chapter 2
Indexing on Partitioned Tables

2-22

Note:

This feature is supported only for heap-organized tables.

Figure 2-7 offers a graphical view of global partitioned indexes.

Figure 2-7 Global Partitioned Index

Partitioned

Indexes

Partitioned

Tables

See Also:

Global Partitioned Indexes for more information about global partitioned indexes

2.5.4 Global Nonpartitioned Indexes
Global nonpartitioned indexes behave just like local nonpartitioned indexes.

Figure 2-8 offers a graphical view of global nonpartitioned indexes.

Figure 2-8 Global Nonpartitioned Index

Index

Partitioned

Tables

Chapter 2
Indexing on Partitioned Tables

2-23

2.5.5 Miscellaneous Information about Creating Indexes on Partitioned
Tables

You can create bitmap indexes on partitioned tables, with some restrictions.

Bitmap indexes must be local to the partitioned table. They cannot be global indexes.

Global indexes can be unique. Local indexes can only be unique if the partitioning key
is a part of the index key.

2.5.6 Partial Indexes for Partitioned Tables
You can create local and global indexes on a subset of the partitions of a table,
enabling more flexibility in index creation.

This feature is supported using a default table indexing property. When a table is
created or altered, a default indexing property can be specified for the table or its
partitions. The table indexing property is only considered for partial indexes.

When an index is created as PARTIAL on a table:

• Local indexes: An index partition is created usable if indexing is turned on for the
table partition, and unusable otherwise. You can override this behavior by
specifying USABLE/UNUSABLE at the index or index partition level.

• Global indexes: Includes only those partitions for which indexing is turned on, and
exclude the others.

This feature is not supported for unique indexes, or for indexes used for enforcing
unique constraints. FULL is the default if neither FULL nor PARTIAL is specified.

By default, any index is created as FULL index, which decouples the index from the
table indexing property.

The INDEXING clause may also be specified at the partition and subpartition levels.

The following SQL DDL creates a table with these items:

• Partitions ORD_P1 and ORD_P3 are included in all partial global indexes

• Local index partitions (for indexes created PARTIAL) corresponding to the above
two table partitions are created usable by default.

• Other partitions are excluded from all partial global indexes, and created unusable
in local indexes (for indexes created PARTIAL).

CREATE TABLE orders (
 order_id NUMBER(12),
 order_date DATE CONSTRAINT order_date_nn NOT NULL,
 order_mode VARCHAR2(8),
 customer_id NUMBER(6) CONSTRAINT order_customer_id_nn NOT NULL,
 order_status NUMBER(2),
 order_total NUMBER(8,2),
 sales_rep_id NUMBER(6),
 promotion_id NUMBER(6),
 CONSTRAINT order_mode_lov CHECK (order_mode in ('direct','online')),
 CONSTRAINT order_total_min CHECK (order_total >= 0))
 INDEXING OFF
 PARTITION BY RANGE (ORDER_DATE)

Chapter 2
Indexing on Partitioned Tables

2-24

 (PARTITION ord_p1 VALUES LESS THAN (TO_DATE('01-MAR-1999','DD-MON-YYYY'))
 INDEXING ON,
 PARTITION ord_p2 VALUES LESS THAN (TO_DATE('01-JUL-1999','DD-MON-YYYY'))
 INDEXING OFF,
 PARTITION ord_p3 VALUES LESS THAN (TO_DATE('01-OCT-1999','DD-MON-YYYY'))
 INDEXING ON,
 PARTITION ord_p4 VALUES LESS THAN (TO_DATE('01-MAR-2000','DD-MON-YYYY')),
 PARTITION ord_p5 VALUES LESS THAN (TO_DATE('01-MAR-2010','DD-MON-YYYY')));

A local or global partial index, can be created to follow the table indexing properties of the
previous SQL example by specification of the INDEXING PARTIAL clause.

CREATE INDEX ORDERS_ORDER_TOTAL_GIDX ON ORDERS (ORDER_TOTAL)
 GLOBAL INDEXING PARTIAL;

The ORDERS_ORDER_TOTAL_GIDX index is created to index only those partitions that have
INDEXING ON, and excludes the remaining partitions.

Updates to views include the following:

• Table Indexing Property - The column INDEXING is added to *_PART_TABLES,
*_TAB_PARTITIONS, and *_TAB_SUBPARTITIONS views.

This column has one of two values ON or OFF, specifying indexing on or indexing off.

• Partial Global Indexes as an Index Level Property - A new column INDEXING is added to
the USER_INDEXES view. This column can be set to FULL or PARTIAL.

• Partial Global Index Optimization - The column ORPHANED_ENTRIES is added to the
dictionary views USER_INDEXES and USER_IND_PARTITIONS to represent if a global index
(partition) contains stale entries owing to deferred index maintenance during DROP/
TRUNCATE PARTITION, or MODIFY PARTITION INDEXING OFF. The column can have one of
the following values:

– YES => the index (partition) contains orphaned entries

– NO => the index (partition) does not contain any orphaned entries

See Also:

Oracle Database Reference for information about the database views

2.5.7 Partitioned Indexes on Composite Partitions
There a few items to consider when partitioned indexes on composite partitions

When using partitioned indexes on composite partitions, note the following:

• Subpartitioned indexes are always local and stored with the table subpartition by default.

• Tablespaces can be specified at either index or index subpartition levels.

Chapter 2
Indexing on Partitioned Tables

2-25

3
Partitioning for Availability, Manageability, and
Performance

Partitioning enables availability, manageability, and performance.

This chapter provides high-level insight into how partitioning enables availability,
manageability, and performance. Guidelines are provided on when to use a given partitioning
strategy. The main focus is the use of table partitioning, although most of the
recommendations and considerations apply to index partitioning as well.

This chapter contains the following sections:

• Partition Pruning

• Partition-Wise Operations

• Index Partitioning

• Partitioning and Table Compression

• Recommendations for Choosing a Partitioning Strategy

3.1 Partition Pruning
Partition pruning is an essential performance feature for data warehouses.

In partition pruning, the optimizer analyzes FROM and WHERE clauses in SQL statements to
eliminate unneeded partitions when building the partition access list. This functionality
enables Oracle Database to perform operations only on those partitions that are relevant to
the SQL statement.

The following topics are discussed:

• Benefits of Partition Pruning

• Information That Can Be Used for Partition Pruning

• How to Identify Whether Partition Pruning Has Been Used

• Static Partition Pruning

• Dynamic Partition Pruning

• Partition Pruning with Zone Maps

• Partition Pruning Tips

3.1.1 Benefits of Partition Pruning
Partition pruning dramatically reduces the amount of data retrieved from disk and shortens
processing time, thus improving query performance and optimizing resource utilization.

If you partition the index and table on different columns (with a global partitioned index), then
partition pruning also eliminates index partitions even when the partitions of the underlying
table cannot be eliminated.

3-1

Depending upon the actual SQL statement, Oracle Database may use static or
dynamic pruning. Static pruning occurs at compile-time, with the information about the
partitions accessed beforehand. Dynamic pruning occurs at run-time, meaning that the
exact partitions to be accessed by a statement are not known beforehand. A sample
scenario for static pruning is a SQL statement containing a WHERE condition with a
constant literal on the partition key column. An example of dynamic pruning is the use
of operators or functions in the WHERE condition.

Partition pruning affects the statistics of the objects where pruning occurs and also
affects the execution plan of a statement.

3.1.2 Information That Can Be Used for Partition Pruning
Partition pruning can be performed on partitioning columns.

Oracle Database prunes partitions when you use range, LIKE, equality, and IN-list
predicates on the range or list partitioning columns, and when you use equality and IN-
list predicates on the hash partitioning columns.

On composite partitioned objects, Oracle Database can prune at both levels using the
relevant predicates. For example, see the table sales_range_hash, which is
partitioned by range on the column s_saledate and subpartitioned by hash on the
column s_productid in Example 3-1.

Oracle uses the predicate on the partitioning columns to perform partition pruning as
follows:

• When using range partitioning, Oracle accesses only partitions sal99q2 and
sal99q3, representing the partitions for the third and fourth quarters of 1999.

• When using hash subpartitioning, Oracle accesses only the one subpartition in
each partition that stores the rows with s_productid=1200. The mapping between
the subpartition and the predicate is calculated based on Oracle's internal hash
distribution function.

A reference-partitioned table can take advantage of partition pruning through the join
with the referenced table. Virtual column-based partitioned tables benefit from partition
pruning for statements that use the virtual column-defining expression in the SQL
statement.

Example 3-1 Creating a table with partition pruning

CREATE TABLE sales_range_hash(
 s_productid NUMBER,
 s_saledate DATE,
 s_custid NUMBER,
 s_totalprice NUMBER)
PARTITION BY RANGE (s_saledate)
SUBPARTITION BY HASH (s_productid) SUBPARTITIONS 8
 (PARTITION sal99q1 VALUES LESS THAN
 (TO_DATE('01-APR-1999', 'DD-MON-YYYY')),
 PARTITION sal99q2 VALUES LESS THAN
 (TO_DATE('01-JUL-1999', 'DD-MON-YYYY')),
 PARTITION sal99q3 VALUES LESS THAN
 (TO_DATE('01-OCT-1999', 'DD-MON-YYYY')),
 PARTITION sal99q4 VALUES LESS THAN
 (TO_DATE('01-JAN-2000', 'DD-MON-YYYY')));

SELECT * FROM sales_range_hash

Chapter 3
Partition Pruning

3-2

WHERE s_saledate BETWEEN (TO_DATE('01-JUL-1999', 'DD-MON-YYYY'))
 AND (TO_DATE('01-OCT-1999', 'DD-MON-YYYY')) AND s_productid = 1200;

3.1.3 How to Identify Whether Partition Pruning Has Been Used
Whether Oracle uses partition pruning is reflected in the execution plan of a statement, either
in the plan table for the EXPLAIN PLAN statement or in the shared SQL area.

The partition pruning information is reflected in the plan columns PSTART (PARTITION_START)
and PSTOP (PARTITION_STOP). For serial statements, the pruning information is also reflected
in the OPERATION and OPTIONS columns.

See Also:

Oracle Database SQL Tuning Guide for more information about EXPLAIN PLAN and
how to interpret it

3.1.4 Static Partition Pruning
Oracle determines when to use static pruning primarily based on static predicates.

For many cases, Oracle determines the partitions to be accessed at compile time. Static
partition pruning occurs if you use static predicates, except for the following cases:

• Partition pruning occurs using the result of a subquery.

• The optimizer rewrites the query with a star transformation and pruning occurs after the
star transformation.

• The most efficient execution plan is a nested loop.

These three cases result in the use of dynamic pruning.

If at parse time Oracle can identify which contiguous set of partitions is accessed, then the
PSTART and PSTOP columns in the execution plan show the begin and the end values of the
partitions being accessed. Any other cases of partition pruning, including dynamic pruning,
show the KEY value in PSTART and PSTOP, optionally with an additional attribute.

The following is an example:

SQL> explain plan for select * from sales where time_id = to_date('01-jan-2001', 'dd-mon-yyyy');
Explained.

SQL> select * from table(dbms_xplan.display);
PLAN_TABLE_OUTPUT
--
Plan hash value: 3971874201
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |
--
0	SELECT STATEMENT		673	19517	27 (8)	00:00:01		
1	PARTITION RANGE SINGLE		673	19517	27 (8)	00:00:01	17	17
* 2	TABLE ACCESS FULL	SALES	673	19517	27 (8)	00:00:01	17	17
--
Predicate Information (identified by operation id):

 2 - filter("TIME_ID"=TO_DATE('2001-01-01 00:00:00', 'yyyy-mm-dd hh24:mi:ss'))

Chapter 3
Partition Pruning

3-3

This plan shows that Oracle accesses partition number 17, as shown in the PSTART
and PSTOP columns. The OPERATION column shows PARTITION RANGE SINGLE,
indicating that only a single partition is being accessed. If OPERATION shows PARTITION
RANGE ALL, then all partitions are being accessed and effectively no pruning takes
place. PSTART then shows the very first partition of the table and PSTOP shows the very
last partition.

An execution plan with a full table scan on an interval-partitioned table shows 1 for
PSTART, and 1048575 for PSTOP, regardless of how many interval partitions were
created.

3.1.5 Dynamic Partition Pruning
Oracle dynamic partition pruning is introduced in this topic.

Dynamic pruning occurs if pruning is possible and static pruning is not possible. The
following examples show multiple dynamic pruning cases:

• Dynamic Pruning with Bind Variables

• Dynamic Pruning with Subqueries

• Dynamic Pruning with Star Transformation

• Dynamic Pruning with Nested Loop Joins

3.1.5.1 Dynamic Pruning with Bind Variables
Statements that use bind variables against partition columns result in dynamic pruning.

The following SQL statement is an example.

SQL> explain plan for select * from sales s where time_id in (:a, :b, :c, :d);
Explained.

SQL> select * from table(dbms_xplan.display);
PLAN_TABLE_OUTPUT

Plan hash value: 513834092

| Id | Operation | Name |Rows|Bytes|Cost (%CPU)| Time | Pstart| Pstop|

0	SELECT STATEMENT		2517	72993	292 (0)	00:00:04		
1	INLIST ITERATOR							
2	PARTITION RANGE ITERATOR		2517	72993	292 (0)	00:00:04	KEY(I)	KEY(I)
3	TABLE ACCESS BY LOCAL INDEX ROWID	SALES	2517	72993	292 (0)	00:00:04	KEY(I)	KEY(I)
4	BITMAP CONVERSION TO ROWIDS							
* 5	BITMAP INDEX SINGLE VALUE	SALES_TIME_BIX					KEY(I)	KEY(I)

Predicate Information (identified by operation id):

5 - access("TIME_ID"=:A OR "TIME_ID"=:B OR "TIME_ID"=:C OR "TIME_ID"=:D)

For parallel execution plans, only the partition start and stop columns contain the
partition pruning information; the operation column contains information for the parallel
operation, as shown in the following example:

SQL> explain plan for select * from sales where time_id in (:a, :b, :c, :d);
Explained.

SQL> select * from table(dbms_xplan.display);
PLAN_TABLE_OUTPUT

Chapter 3
Partition Pruning

3-4

Plan hash value: 4058105390

| Id| Operation | Name |Rows|Bytes|Cost(%CP| Time |Pstart| Pstop| TQ |INOUT| PQ Dis|

0	SELECT STATEMENT		2517	72993	75(36)	00:00:01					
1	PX COORDINATOR										
2	PX SEND QC(RANDOM)	:TQ10000	2517	72993	75(36)	00:00:01			Q1,00	P->S	QC(RAND
3	PX BLOCK ITERATOR		2517	72993	75(36)	00:00:01	KEY(I)	KEY(I)	Q1,00	PCWC	
* 4	TABLE ACCESS FULL	SALES	2517	72993	75(36)	00:00:01	KEY(I)	KEY(I)	Q1,00	PCWP	

Predicate Information (identified by operation id):

 4 - filter("TIME_ID"=:A OR "TIME_ID"=:B OR "TIME_ID"=:C OR "TIME_ID"=:D)

See Also:

Oracle Database SQL Tuning Guide for more information about EXPLAIN PLAN and
how to interpret it

3.1.5.2 Dynamic Pruning with Subqueries
Statements that explicitly use subqueries against partition columns result in dynamic pruning.

The following SQL statement is an example.

SQL> explain plan for select sum(amount_sold) from sales where time_id in
 (select time_id from times where fiscal_year = 2000);
Explained.

SQL> select * from table(dbms_xplan.display);
PLAN_TABLE_OUTPUT
PLAN_TABLE_OUTPUT
--
Plan hash value: 3827742054

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |
--
0	SELECT STATEMENT		1	25	523 (5)	00:00:07		
1	SORT AGGREGATE		1	25				
* 2	HASH JOIN		191K	4676K	523 (5)	00:00:07		
* 3	TABLE ACCESS FULL	TIMES	304	3648	18 (0)	00:00:01		
4	PARTITION RANGE SUBQUERY		918K	11M	498 (4)	00:00:06	KEY(SQ)	KEY(SQ)
5	TABLE ACCESS FULL	SALES	918K	11M	498 (4)	00:00:06	KEY(SQ)	KEY(SQ)
--

Predicate Information (identified by operation id):

 2 - access("TIME_ID"="TIME_ID")
 3 - filter("FISCAL_YEAR"=2000)

See Also:

Oracle Database SQL Tuning Guide for more information about EXPLAIN PLAN and
how to interpret it

Chapter 3
Partition Pruning

3-5

3.1.5.3 Dynamic Pruning with Star Transformation
Statements that get transformed by the database using the star transformation result
in dynamic pruning.

The following SQL statement is an example.

SQL> explain plan for select p.prod_name, t.time_id, sum(s.amount_sold)
 from sales s, times t, products p
 where s.time_id = t.time_id and s.prod_id = p.prod_id and t.fiscal_year = 2000
 and t.fiscal_week_number = 3 and p.prod_category = 'Hardware'
 group by t.time_id, p.prod_name;
Explained.

SQL> select * from table(dbms_xplan.display);
PLAN_TABLE_OUTPUT
--
Plan hash value: 4020965003

--
| Id | Operation | Name | Rows | Bytes | Pstart| Pstop |
--
0	SELECT STATEMENT		1	79		
1	HASH GROUP BY		1	79		
* 2	HASH JOIN		1	79		
* 3	HASH JOIN		2	64		
* 4	TABLE ACCESS FULL	TIMES	6	90		
5	PARTITION RANGE SUBQUERY		587	9979	KEY(SQ)	KEY(SQ)
6	TABLE ACCESS BY LOCAL INDEX ROWID	SALES	587	9979	KEY(SQ)	KEY(SQ)
7	BITMAP CONVERSION TO ROWIDS					
8	BITMAP AND					
9	BITMAP MERGE					
10	BITMAP KEY ITERATION					
11	BUFFER SORT					
* 12	TABLE ACCESS FULL	TIMES	6	90		
* 13	BITMAP INDEX RANGE SCAN	SALES_TIME_BIX			KEY(SQ)	KEY(SQ)
14	BITMAP MERGE					
15	BITMAP KEY ITERATION					
16	BUFFER SORT					
17	TABLE ACCESS BY INDEX ROWID	PRODUCTS	14	658		
* 18	INDEX RANGE SCAN	PRODUCTS_PROD_CAT_IX	14			
* 19	BITMAP INDEX RANGE SCAN	SALES_PROD_BIX			KEY(SQ)	KEY(SQ)
20	TABLE ACCESS BY INDEX ROWID	PRODUCTS	14	658		
* 21	INDEX RANGE SCAN	PRODUCTS_PROD_CAT_IX	14			
--

Predicate Information (identified by operation id):

 2 - access("S"."PROD_ID"="P"."PROD_ID")
 3 - access("S"."TIME_ID"="T"."TIME_ID")
 4 - filter("T"."FISCAL_WEEK_NUMBER"=3 AND "T"."FISCAL_YEAR"=2000)
 12 - filter("T"."FISCAL_WEEK_NUMBER"=3 AND "T"."FISCAL_YEAR"=2000)
 13 - access("S"."TIME_ID"="T"."TIME_ID")
 18 - access("P"."PROD_CATEGORY"='Hardware')
 19 - access("S"."PROD_ID"="P"."PROD_ID")
 21 - access("P"."PROD_CATEGORY"='Hardware')

Note

 - star transformation used for this statement

Chapter 3
Partition Pruning

3-6

Note:

The Cost (%CPU) and Time columns were removed from the plan table output in this
example.

See Also:

Oracle Database SQL Tuning Guide for more information about EXPLAIN PLAN and
how to interpret it

3.1.5.4 Dynamic Pruning with Nested Loop Joins
Statements that are most efficiently executed using a nested loop join use dynamic pruning.

The following SQL statement is an example.

SQL> explain plan for select t.time_id, sum(s.amount_sold)
 from sales s, times t
 where s.time_id = t.time_id and t.fiscal_year = 2000 and t.fiscal_week_number = 3
 group by t.time_id;
Explained.

SQL> select * from table(dbms_xplan.display);
PLAN_TABLE_OUTPUT
--
Plan hash value: 50737729

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |
--
0	SELECT STATEMENT		6	168	126 (4)	00:00:02		
1	HASH GROUP BY		6	168	126 (4)	00:00:02		
2	NESTED LOOPS		3683	100K	125 (4)	00:00:02		
* 3	TABLE ACCESS FULL	TIMES	6	90	18 (0)	00:00:01		
4	PARTITION RANGE ITERATOR		629	8177	18 (6)	00:00:01	KEY	KEY
* 5	TABLE ACCESS FULL	SALES	629	8177	18 (6)	00:00:01	KEY	KEY
--

Predicate Information (identified by operation id):

 3 - filter("T"."FISCAL_WEEK_NUMBER"=3 AND "T"."FISCAL_YEAR"=2000)
 5 - filter("S"."TIME_ID"="T"."TIME_ID")

See Also:

Oracle Database SQL Tuning Guide for more information about EXPLAIN PLAN and
how to interpret it

Chapter 3
Partition Pruning

3-7

3.1.6 Partition Pruning with Zone Maps
Partition pruning is enhanced to take advantage of zone maps for pruning of complete
partitions. Providing enhanced pruning capabilities provides better performance with
less resource consumption and shorter time-to-information.

A zone map is a independent access structure that can be built for a table. During
table scans, zone maps enable you to prune disk blocks of a table and partitions of a
partitioned table based on predicates on the table columns. Zone maps have no
correlation to the partition key columns of a partitioned table, so statements on
partitioned tables with zone maps can prune partitions based on non-partition key
columns.

See Also:

Oracle Database Data Warehousing Guide for information about zone maps
and attribute clustering

Partition pruning with zone maps is especially effective when the zone map column
values correlate with partition key column values. For example, the correlation can be
between columns of the partitioned table itself, such as a shipping date that has a
correlation to the partition key column order date in the same partitioned table, or
within the join zone map columns and the partitioned table, such as a join zone map
column month description from a dimension table times that correlates with the
partition key column day of the partitioned table.

Example 3-2 illustrates partition pruning with zone maps for correlated columns of a
partitioned table. Column s_shipdate in the partitioned table sales_range correlates
with the partition key column order_date because orders are normally shipped within
a couple of days after an order was received.

Due to the correlation of s_shipdate and the partition key column any selective
predicate on this column has a high likelihood to enable partition pruning for the
partitioned table sales_range, without having the column as part of the partitioning
key.

The following SELECT statement looks for all orders that were shipped in the first
quarter of 1999:

SELECT * FROM sales_range
 WHERE s_shipdate BETWEEN to_date('01/01/1999','dd/mm/yyyy')
 AND to_date('03/01/1999','mm/dd/yyyy');

In the following execution plan for the previous SELECT statement, zone maps are used
for partition pruning and also to prune blocks from the partitions that have to be
accessed.

Partition pruning with zone maps is identified by having KEY(ZM) in the PSTART and
PSTOP columns of the execution plan. The block level pruning of all accessed partitions
is identified by the filter predicate at table access time (id 2).

Chapter 3
Partition Pruning

3-8

Example 3-2 Partitioned table sales_range with attribute clustering and a zone map
on a correlated column

CREATE TABLE sales_range(
 s_productid NUMBER,
 s_saledate DATE,
 s_shipdate DATE,
 s_custid NUMBER,
 s_totalprice NUMBER)
CLUSTERING BY (s_shipdate)
WITH MATERIALIZED ZONEMAP
PARTITION BY RANGE (s_saledate)
 (PARTITION sal99q1 VALUES LESS THAN
 (TO_DATE('01-APR-1999', 'DD-MON-YYYY')),
 PARTITION sal99q2 VALUES LESS THAN
 (TO_DATE('01-JUL-1999', 'DD-MON-YYYY')),
 PARTITION sal99q3 VALUES LESS THAN
 (TO_DATE('01-OCT-1999', 'DD-MON-YYYY')),
 PARTITION sal99q4 VALUES LESS THAN
 (TO_DATE('01-JAN-2000', 'DD-MON-YYYY')));

Example 3-3 Execution plan for partition pruning with zone maps

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

0	SELECT STATEMENT				3 (100)			
1	PARTITION RANGE ITERATOR		58	3306	3 (0)	00:00:01	KEY(ZM)	KEY(ZM)
* 2	TABLE ACCESS FULL WITH ZONEMAP	SALES_RANGE	58	3306	3 (0)	00:00:01	KEY(ZM)	KEY(ZM)

Predicate Information (identified by operation id):

2 - filter((SYS_ZMAP_FILTER('/* ZM_PRUNING */ SELECT "ZONE_ID$", CASE WHEN
 BITAND(zm."ZONE_STATE$",1)=1 THEN 1 ELSE CASE WHEN (zm."MAX_1_S_SHIPDATE" < :1 OR
 zm."MIN_1_S_SHIPDATE" > :2) THEN 3 ELSE 2 END END FROM "SH"."ZMAP$_SALES_RANGE" zm WHERE
 zm."ZONE_LEVEL$"=0 ORDER BY zm."ZONE_ID$"',SYS_OP_ZONE_ID(ROWID),TO_DATE(' 1999-01-01 00:00:00',
 'syyyy-mm-dd hh24:mi:ss'),TO_DATE(' 1999-03-01 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))<3 AND
 "S_SHIPDATE">=TO_DATE(' 1999-01-01 00:00:00','syyyy-mm-dd hh24:mi:ss') AND "S_SHIPDATE"<=TO_DATE('
 1999-03-01 00:00:00', 'syyyy-mm-dd hh24:mi:ss')))

3.1.7 Partition Pruning Tips
Tips for partition pruning are introduced in this topic.

When using partition pruning, you should consider the following:

• Data Type Conversions

• Function Calls

• Collection Tables

Note:

When you manipulate a partition column with any function or transformation, such
as CAST or TRUNC, partition pruning is not taking place.

Chapter 3
Partition Pruning

3-9

3.1.7.1 Data Type Conversions
To get the maximum performance benefit from partition pruning, you should avoid
constructs that require the database to convert the data type you specify.

Data type conversions typically result in dynamic pruning when static pruning would
have otherwise been possible. SQL statements that benefit from static pruning perform
better than statements that benefit from dynamic pruning.

A common case of data type conversions occurs when using the Oracle DATE data
type. An Oracle DATE data type is not a character string but is only represented as
such when querying the database; the format of the representation is defined by the
NLS setting of the instance or the session. Consequently, the same reverse
conversion has to happen when inserting data into a DATE field or when specifying a
predicate on such a field.

A conversion can either happen implicitly or explicitly by specifying a TO_DATE
conversion. Only a properly applied TO_DATE function guarantees that the database
can uniquely determine the date value and using it potentially for static pruning, which
is especially beneficial for single partition access.

Consider the following example that runs against the sales table. You would like to
know the total revenue number for the year 2000. There are multiple ways you can
retrieve the answer to the query, but not every method is equally efficient.

explain plan for SELECT SUM(amount_sold) total_revenue
FROM sales,
WHERE time_id between '01-JAN-00' and '31-DEC-00';

The plan should now be similar to the following:

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |
--
0	SELECT STATEMENT		1	13	525 (8)	00:00:07		
1	SORT AGGREGATE		1	13				
* 2	FILTER							
3	PARTITION RANGE ITERATOR		230K	2932K	525 (8)	00:00:07	KEY	KEY
* 4	TABLE ACCESS FULL	SALES	230K	2932K	525 (8)	00:00:07	KEY	KEY
--

Predicate Information (identified by operation id):

 2 - filter(TO_DATE('01-JAN-00')<=TO_DATE('31-DEC-00'))
 4 - filter("TIME_ID">='01-JAN-00' AND "TIME_ID"<='31-DEC-00')

In this case, the keyword KEY for both PSTART and PSTOP means that dynamic partition
pruning occurs at run-time. Consider the following case.

explain plan for select sum(amount_sold)
from sales
where time_id between '01-JAN-2000' and '31-DEC-2000' ;

The execution plan now shows the following:

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Pstart| Pstop |
--
0	SELECT STATEMENT		1	13	127 (4)		
1	SORT AGGREGATE		1	13			
2	PARTITION RANGE ITERATOR		230K	2932K	127 (4)	13	16
* 3	TABLE ACCESS FULL	SALES	230K	2932K	127 (4)	13	16

Chapter 3
Partition Pruning

3-10

--
Predicate Information (identified by operation id):

 3 - filter("TIME_ID"<=TO_DATE(' 2000-12-31 00:00:00', "syyyy-mm-dd hh24:mi:ss'))

Note:

The Time column was removed from the execution plan.

The execution plan shows static partition pruning. The query accesses a contiguous list of
partitions 13 to 16. In this particular case, the way the date format was specified matches the
NLS date format setting. Though this example shows the most efficient execution plan, you
cannot rely on the NLS date format setting to define a certain format.

alter session set nls_date_format='fmdd Month yyyy';

explain plan for select sum(amount_sold)
from sales
where time_id between '01-JAN-2000' and '31-DEC-2000' ;

The execution plan now shows the following:

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Pstart| Pstop |

0	SELECT STATEMENT		1	13	525 (8)		
1	SORT AGGREGATE		1	13			
* 2	FILTER						
3	PARTITION RANGE ITERATOR		230K	2932K	525 (8)	KEY	KEY
* 4	TABLE ACCESS FULL	SALES	230K	2932K	525 (8)	KEY	KEY

Predicate Information (identified by operation id):

 2 - filter(TO_DATE('01-JAN-2000')<=TO_DATE('31-DEC-2000'))
 4 - filter("TIME_ID">='01-JAN-2000' AND "TIME_ID"<='31-DEC-2000')

Note:

The Time column was removed from the execution plan.

This plan, which uses dynamic pruning, again is less efficient than the static pruning
execution plan. To guarantee a static partition pruning plan, you should explicitly convert data
types to match the partition column data type. For example:

explain plan for select sum(amount_sold)
from sales
where time_id between to_date('01-JAN-2000','dd-MON-yyyy')
 and to_date('31-DEC-2000','dd-MON-yyyy') ;

--

Chapter 3
Partition Pruning

3-11

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Pstart| Pstop |
--
0	SELECT STATEMENT		1	13	127 (4)		
1	SORT AGGREGATE		1	13			
2	PARTITION RANGE ITERATOR		230K	2932K	127 (4)	13	16
* 3	TABLE ACCESS FULL	SALES	230K	2932K	127 (4)	13	16
--

Predicate Information (identified by operation id):

 3 - filter("TIME_ID"<=TO_DATE(' 2000-12-31 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))

Note:

The Time column was removed from the execution plan.

See Also:

• Oracle Database SQL Language Reference for details about the DATE
data type

• Oracle Database Globalization Support Guide for details about NLS
settings and globalization issues

3.1.7.2 Function Calls
Functions can limit the ability of the optimizer to perform pruning.

There are several cases when the optimizer cannot perform pruning. One common
reasons is when an operator is used on top of a partitioning column. This could be an
explicit operator (for example, a function) or even an implicit operator introduced by
Oracle as part of the necessary data type conversion for executing the statement. For
example, consider the following query:

EXPLAIN PLAN FOR
SELECT SUM(quantity_sold)
FROM sales
WHERE time_id = TO_TIMESTAMP('1-jan-2000', 'dd-mon-yyyy');

Because time_id is of type DATE and Oracle must promote it to the TIMESTAMP type to
get the same data type, this predicate is internally rewritten as:

TO_TIMESTAMP(time_id) = TO_TIMESTAMP('1-jan-2000', 'dd-mon-yyyy')

The execution plan for this statement is as follows:

--
|Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |
--
0	SELECT STATEMENT		1	11	6 (17)	00:00:01		
1	SORT AGGREGATE		1	11				
2	PARTITION RANGE ALL		10	110	6 (17)	00:00:01	1	16

Chapter 3
Partition Pruning

3-12

|*3 | TABLE ACCESS FULL | SALES | 10 | 110 | 6 (17)| 00:00:01 | 1 | 16 |
--

Predicate Information (identified by operation id):

3 - filter(INTERNAL_FUNCTION("TIME_ID")=TO_TIMESTAMP('1-jan-2000',:B1))

15 rows selected

The SELECT statement accesses all partitions even though pruning down to a single partition
could have taken place. Consider the example to find the total sales revenue number for
2000. Another way to construct the query would be:

EXPLAIN PLAN FOR
SELECT SUM(amount_sold)
FROM sales
WHERE TO_CHAR(time_id,'yyyy') = '2000';

This query applies a function call to the partition key column, which generally disables
partition pruning. The execution plan shows a full table scan with no partition pruning:

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |
--
0	SELECT STATEMENT		1	13	527 (9)	00:00:07		
1	SORT AGGREGATE		1	13				
2	PARTITION RANGE ALL		9188	116K	527 (9)	00:00:07	1	28
* 3	TABLE ACCESS FULL	SALES	9188	116K	527 (9)	00:00:07	1	28
--

Predicate Information (identified by operation id):

 3 - filter(TO_CHAR(INTERNAL_FUNCTION("TIME_ID"),'yyyy')='2000')

Avoid using implicit or explicit functions on the partition columns. If your queries commonly
use function calls, then consider using a virtual column and virtual column partitioning to
benefit from partition pruning in these cases.

3.1.7.3 Collection Tables
Collection tables can limit the ability of the optimizer to perform pruning.

The following example illustrates what an EXPLAIN PLAN statement might look like when it
contains Collection Tables, which, for the purposes of this discussion, are ordered collection
tables or nested tables. A full table access is not performed because it is constrained to just
the partition in question.

EXPLAIN PLAN FOR
SELECT p.ad_textdocs_ntab
FROM print_media_part p;

Explained.

PLAN_TABLE_OUTPUT

Plan hash value: 2207588228

| Id | Operation | Name | Pstart| Pstop |

Chapter 3
Partition Pruning

3-13

0	SELECT STATEMENT			
1	PARTITION REFERENCE SINGLE		KEY	KEY
2	TABLE ACCESS FULL	TEXTDOC_NT	KEY	KEY
3	PARTITION RANGE ALL		1	2
4	TABLE ACCESS FULL	PRINT_MEDIA_PART	1	2

Note

 - dynamic sampling used for this statement

See Also:

Partitioning of Collections in XMLType and Objects for an example of the
CREATE TABLE statement on which the EXPLAIN PLAN is based

3.2 Partition-Wise Operations
Partition-wise operations significantly reduce response time and improve the use of
both CPU and memory resources.

Partition-wise joins can reduce query response time by minimizing the amount of data
exchanged among parallel execution servers when joins execute in parallel. In Oracle
Real Application Clusters (Oracle RAC) environments, partition-wise joins also avoid
or at least limit the data traffic over the interconnect, which is the key to achieving good
scalability for massive join operations. Parallel partition-wise joins are used commonly
for processing large joins efficiently and fast. Partition-wise joins can be full or partial.
Oracle Database decides which type of join to use.

In addition to parallel partition-wise joins, queries using the SELECT DISTINCT clause
and SQL window functions can perform parallel partition-wise operations.

The following topics are discussed:

• Full Partition-Wise Joins

• Partial Partition-Wise Joins

See Also:

• Partition-Wise Joins in a Data Warehouse for information about parallel
partition-wise operations in a data warehouse environment

• Oracle Database Data Warehousing Guide for information about data
warehousing and optimization techniques

3.2.1 Full Partition-Wise Joins
A full partition-wise join divides a large join into smaller joins between a pair of
partitions from the two joined tables.

Chapter 3
Partition-Wise Operations

3-14

To use full partition-wise joins, you must equipartition both tables on their join keys, or use
reference partitioning.

You can use various partitioning methods to equipartition both tables. These methods are
described at a high level in the following topics:

• Querying a Full Partition-Wise Join

• Full Partition-Wise Joins: Single-Level - Single-Level

• Full Partition-Wise Joins: Composite - Single-Level

• Full Partition-Wise Joins: Composite - Composite

3.2.1.1 Querying a Full Partition-Wise Join
You can query using a full partition-wise join.

Consider a large join between a sales table and a customer table on the column cust_id, as
shown in Example 3-4. The query "find the records of all customers who bought more than
100 articles in Quarter 3 of 1999" is a typical example of a SQL statement performing such a
join.

Such a large join is typical in data warehousing environments. In this case, the entire
customer table is joined with one quarter of the sales data. In large data warehouse
applications, this might mean joining millions of rows. The join method to use in that case is
obviously a hash join. You can reduce the processing time for this hash join even more if both
tables are equipartitioned on the cust_id column. This functionality enables a full partition-
wise join.

When you execute a full partition-wise join in parallel, the granule of parallelism is a partition.
Consequently, the degree of parallelism is limited to the number of partitions. For example,
you require at least 16 partitions to set the degree of parallelism of the query to 16.

Example 3-4 Querying with a full partition-wise join

SELECT c.cust_last_name, COUNT(*)
 FROM sales s, customers c
 WHERE s.cust_id = c.cust_id AND
 s.time_id BETWEEN TO_DATE('01-JUL-1999', 'DD-MON-YYYY') AND
 (TO_DATE('01-OCT-1999', 'DD-MON-YYYY'))
 GROUP BY c.cust_last_name HAVING COUNT(*) > 100;

3.2.1.2 Full Partition-Wise Joins: Single-Level - Single-Level
A single-level to single-level full partition-wise join is the simplest method: two tables are both
partitioned by the join column.

In the example, the customers and sales tables are both partitioned on the cust_id columns.
This partitioning method enables full partition-wise joins when the tables are joined on
cust_id, both representing the same customer identification number. This scenario is
available for range-range, list-list, and hash-hash partitioning. Interval-range and interval-
interval full partition-wise joins are also supported and can be compared to range-range.

In serial, this join is performed between pairs of matching hash partitions, one at a time.
When one partition pair has been joined, the join of another partition pair begins. The join
completes when all partition pairs have been processed. To ensure a good workload
distribution, you should either have many more partitions than the requested degree of
parallelism or use equisize partitions with as many partitions as the requested degree of

Chapter 3
Partition-Wise Operations

3-15

parallelism. Using hash partitioning on a unique or almost-unique column, with the
number of partitions equal to a power of 2, is a good way to create equisized
partitions.

Note:

• A pair of matching hash partitions is defined as one partition with the
same partition number from each table. For example, with full partition-
wise joins based on hash partitioning, the database joins partition 0 of
sales with partition 0 of customers, partition 1 of sales with partition 1 of
customers, and so on.

• Reference partitioning is an easy way to co-partition two tables so that
the optimizer can always consider a full partition-wise join if the tables
are joined in a statement.

Parallel execution of a full partition-wise join is a straightforward parallelization of the
serial execution. Instead of joining one partition pair at a time, partition pairs are joined
in parallel by the query servers. Figure 3-1 illustrates the parallel execution of a full
partition-wise join.

Figure 3-1 Parallel Execution of a Full Partition-wise Join

Server

P1

P1

Server

P2

P2

Server

P3

P3

Server

P16

P16

. . .

sales

customers

Parallel

Execution

Servers

The following example shows the execution plan for sales and customers co-
partitioned by hash with the same number of partitions. The plan shows a full partition-
wise join.

explain plan for SELECT c.cust_last_name, COUNT(*)
FROM sales s, customers c
WHERE s.cust_id = c.cust_id AND
s.time_id BETWEEN TO_DATE('01-JUL-1999', 'DD-MON-YYYY') AND
 (TO_DATE('01-OCT-1999', 'DD-MON-YYYY'))
GROUP BY c.cust_last_name HAVING COUNT(*) > 100;

| Id | Operation | Name | Rows | Bytes | Pstart| Pstop| TQ |IN-OUT| PQ Distrib|

Chapter 3
Partition-Wise Operations

3-16

0	SELECT STATEMENT		46	1196					
1	PX COORDINATOR								
2	PX SEND QC (RANDOM)	:TQ10001	46	1196			Q1,01	P->S	QC (RAND)
* 3	FILTER						Q1,01	PCWC	
4	HASH GROUP BY		46	1196			Q1,01	PCWP	
5	PX RECEIVE		46	1196			Q1,01	PCWP	
6	PX SEND HASH	:TQ10000	46	1196			Q1,00	P->P	HASH
7	HASH GROUP BY		46	1196			Q1,00	PCWP	
8	PX PARTITION HASH ALL		59158	1502K	1	16	Q1,00	PCWC	
* 9	HASH JOIN		59158	1502K			Q1,00	PCWP	
10	TABLE ACCESS FULL	CUSTOMERS	55500	704K	1	16	Q1,00	PCWP	
* 11	TABLE ACCESS FULL	SALES	59158	751K	1	16	Q1,00	PCWP	

Predicate Information (identified by operation id):

 3 - filter(COUNT(SYS_OP_CSR(SYS_OP_MSR(COUNT(*)),0))>100)
 9 - access("S"."CUST_ID"="C"."CUST_ID")
 11 - filter("S"."TIME_ID"<=TO_DATE(' 1999-10-01 00:00:00', 'syyyy-mm-dd hh24:mi:ss') AND
"S"."TIME_ID">=TO_DATE(' 1999-07-01
 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))

Note:

The Cost (%CPU) and Time columns were removed from the plan table output in this
example.

In Oracle RAC environments running on massive parallel processing (MPP) platforms,
placing partitions on nodes is critical to achieving good scalability. To avoid remote I/O, both
matching partitions should have affinity to the same node. Partition pairs should be spread
over all of the nodes to avoid bottlenecks and to use all CPU resources available on the
system.

Nodes can host multiple pairs when there are more pairs than nodes. For example, with an 8-
node system and 16 partition pairs, each node receives two pairs.

See Also:

Oracle Real Application Clusters Administration and Deployment Guide for more
information about data affinity

3.2.1.3 Full Partition-Wise Joins: Composite - Single-Level
A composite to single-level full partition-wise join is a variation of the single-level - single-level
method.

In this scenario, one table (typically the larger table) is composite partitioned on two
dimensions, using the join columns as the subpartition key. In the example, the sales table is
a typical example of a table storing historical data. Using range partitioning is a logical initial
partitioning method for a table storing historical information.

For example, assume you want to partition the sales table into eight partitions by range on
the column time_id. Also assume you have two years and that each partition represents a
quarter. Instead of using range partitioning, you can use composite partitioning to enable a
full partition-wise join while preserving the partitioning on time_id. For example, partition the
sales table by range on time_id and then subpartition each partition by hash on cust_id

Chapter 3
Partition-Wise Operations

3-17

using 16 subpartitions for each partition, for a total of 128 subpartitions. The customers
table can use hash partitioning with 16 partitions.

When you use the method just described, a full partition-wise join works similarly to the
one created by a single-level - single-level hash-hash method. The join is still divided
into 16 smaller joins between hash partition pairs from both tables. The difference is
that now each hash partition in the sales table is composed of a set of 8 subpartitions,
one from each range partition.

Figure 3-2 illustrates how the hash partitions are formed in the sales table. Each cell
represents a subpartition. Each row corresponds to one range partition, for a total of 8
range partitions. Each range partition has 16 subpartitions. Each column corresponds
to one hash partition for a total of 16 hash partitions; each hash partition has 8
subpartitions. Hash partitions can be defined only if all partitions have the same
number of subpartitions, in this case, 16.

Hash partitions are implicit in a composite table. However, Oracle does not record
them in the data dictionary, and you cannot manipulate them with DDL commands as
you can range or list partitions.

Figure 3-2 Range and Hash Partitions of a Composite Table

1999 - Q1

1999 - Q2

1999 - Q3

1999 - Q4

2000 - Q1

2000 - Q2

2000 - Q3

2000 - Q4

Hash partition #9

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H11

H12

H13

H14

H15

H16

s
a
le

s
d

a
te

customerid

The following example shows the execution plan for the full partition-wise join with the
sales table range partitioned by time_id, and subpartitioned by hash on cust_id.

Chapter 3
Partition-Wise Operations

3-18

--
| Id | Operation | Name | Pstart| Pstop |IN-OUT| PQ Distrib |
--
0	SELECT STATEMENT					
1	PX COORDINATOR					
2	PX SEND QC (RANDOM)	:TQ10001			P->S	QC (RAND)
* 3	FILTER				PCWC	
4	HASH GROUP BY				PCWP	
5	PX RECEIVE				PCWP	
6	PX SEND HASH	:TQ10000			P->P	HASH
7	HASH GROUP BY				PCWP	
8	PX PARTITION HASH ALL		1	16	PCWC	
* 9	HASH JOIN				PCWP	
10	TABLE ACCESS FULL	CUSTOMERS	1	16	PCWP	
11	PX PARTITION RANGE ITERATOR		8	9	PCWC	
* 12	TABLE ACCESS FULL	SALES	113	144	PCWP	
--

Predicate Information (identified by operation id):

 3 - filter(COUNT(SYS_OP_CSR(SYS_OP_MSR(COUNT(*)),0))>100)
 9 - access("S"."CUST_ID"="C"."CUST_ID")
 12 - filter("S"."TIME_ID"<=TO_DATE(' 1999-10-01 00:00:00', 'syyyy-mm-dd hh24:mi:ss') AND
"S"."TIME_ID">=TO_DATE(' 1999-07-01
 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))

Note:

The Rows, Cost (%CPU), Time, and TQ columns were removed from the plan table
output in this example.

Composite - single-level partitioning is effective because it enables you to combine pruning
on one dimension with a full partition-wise join on another dimension. In the previous
example query, pruning is achieved by scanning only the subpartitions corresponding to Q3
of 1999, in other words, row number 3 in Figure 3-2. Oracle then joins these subpartitions
with the customer table, using a full partition-wise join.

All characteristics of the single-level - single-level partition-wise join apply to the composite -
single-level partition-wise join. In particular, for this example, these two points are common to
both methods:

• The degree of parallelism for this full partition-wise join cannot exceed 16. Even though
the sales table has 128 subpartitions, it has only 16 hash partitions.

• A partition is now a collection of subpartitions. For example, in Figure 3-2, store hash
partition 9 of the sales table shown by the eight circled subpartitions, on the same node
as hash partition 9 of the customers table.

3.2.1.4 Full Partition-Wise Joins: Composite - Composite
You can use composite to composite full partition-wise joins for additional flexibility.

If needed, you can also partition the customers table by the composite method. For example,
you partition it by range on a postal code column to enable pruning based on postal codes.

Chapter 3
Partition-Wise Operations

3-19

You then subpartition it by hash on cust_id using the same number of partitions (16)
to enable a partition-wise join on the hash dimension.

You can get full partition-wise joins on all combinations of partition and subpartition
partitions: partition - partition, partition - subpartition, subpartition - partition, and
subpartition - subpartition.

3.2.2 Partial Partition-Wise Joins
With partial partition-wise joins, only one table must be partitioned on the join key.

Oracle Database can perform partial partition-wise joins only in parallel. Unlike full
partition-wise joins, partial partition-wise joins require you to partition only one table on
the join key, not both tables. The partitioned table is referred to as the reference table.
The other table may or may not be partitioned. Partial partition-wise joins are more
common than full partition-wise joins.

To execute a partial partition-wise join, the database dynamically repartitions the other
table based on the partitioning of the reference table. After the other table is
repartitioned, the execution is similar to a full partition-wise join.

The performance advantage that partial partition-wise joins have over joins in
nonpartitioned tables is that the reference table is not moved during the join operation.
Parallel joins between nonpartitioned tables require both input tables to be
redistributed on the join key. This redistribution operation involves exchanging rows
between parallel execution servers. This is a CPU-intensive operation that can lead to
excessive interconnect traffic in Oracle RAC environments. Partitioning large tables on
a join key, either a foreign or primary key, prevents this redistribution every time the
table is joined on that key. Of course, if you choose a foreign key to partition the table,
which is the most common scenario, then select a foreign key that is involved in many
queries.

To illustrate partial partition-wise joins, consider the previous sales/customers
example. Assume that customers is not partitioned or is partitioned on a column other
than cust_id. Because sales is often joined with customers on cust_id, and because
this join dominates our application workload, partition sales on cust_id to enable
partial partition-wise joins every time customers and sales are joined. As with full
partition-wise joins, you have several alternatives:

• Partial Partition-Wise Joins: Single-Level Partitioning

• Partial Partition-Wise Joins: Composite

3.2.2.1 Partial Partition-Wise Joins: Single-Level Partitioning
A single-level partial partition-wise join is the simplest method to enable a partial
partition-wise join.

For example, you can enable a single-level partial partition-wise join to partition sales
by hash on cust_id. The number of partitions determines the maximum degree of
parallelism, because the partition is the smallest granule of parallelism for partial
partition-wise join operations.

The parallel execution of a partial partition-wise join is illustrated in Figure 3-3, which
assumes that both the degree of parallelism and the number of partitions of sales are
16. The execution involves two sets of query servers: one set, labeled set 1 in

Chapter 3
Partition-Wise Operations

3-20

Figure 3-3, scans the customers table in parallel. The granule of parallelism for the scan
operation is a range of blocks.

Rows from customers that are selected by the first set, in this case all rows, are redistributed
to the second set of query servers by hashing cust_id. For example, all rows in customers
that could have matching rows in partition P1 of sales are sent to query server 1 in the
second set. Rows received by the second set of query servers are joined with the rows from
the corresponding partitions in sales. Query server number 1 in the second set joins all
customers rows that it receives with partition P1 of sales.

Figure 3-3 Partial Partition-Wise Join

Server

P1

Server

P2

Server

P16

. . .

. . .

. . .

sales

Parallel
execution
server
set 2

Parallel
execution
server
set 1

customers

re-distribution
hash(c_customerid)

JOIN

SELECT

The example below shows the execution plan for the partial partition-wise join between sales
and customers.

| Id | Operation | Name | Pstart| Pstop |IN-OUT| PQ Distrib |

0	SELECT STATEMENT					
1	PX COORDINATOR					
2	PX SEND QC (RANDOM)	:TQ10002			P->S	QC (RAND)
* 3	FILTER				PCWC	
4	HASH GROUP BY				PCWP	
5	PX RECEIVE				PCWP	
6	PX SEND HASH	:TQ10001			P->P	HASH
7	HASH GROUP BY				PCWP	
* 8	HASH JOIN				PCWP	
9	PART JOIN FILTER CREATE	:BF0000			PCWP	
10	PX RECEIVE				PCWP	
11	PX SEND PARTITION (KEY)	:TQ10000			P->P	PART (KEY)
12	PX BLOCK ITERATOR				PCWC	
13	TABLE ACCESS FULL	CUSTOMERS			PCWP	
14	PX PARTITION HASH JOIN-FILTER		:BF0000	:BF0000	PCWC	

Chapter 3
Partition-Wise Operations

3-21

|* 15 | TABLE ACCESS FULL | SALES |:BF0000|:BF0000| PCWP | |

Predicate Information (identified by operation id):

 3 - filter(COUNT(SYS_OP_CSR(SYS_OP_MSR(COUNT(*)),0))>100)
 8 - access("S"."CUST_ID"="C"."CUST_ID")
 15 - filter("S"."TIME_ID"<=TO_DATE(' 1999-10-01 00:00:00', 'syyyy-mm-dd hh24:mi:ss') AND
"S"."TIME_ID">=TO_DATE(' 1999-07-01
 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))

This query runs in parallel, as displayed in the plan, because there are PX row sources.
One table is partitioned, which is the SALES table. You can determine this because the
PX PARTITION HASH row source contains a nonpartitioned table CUSTOMERS that is
distributed through PX SEND PARTITION to a different worker set that performs the join.

Note:

The Rows, Cost (%CPU), Time, and TQ columns were removed from the plan
table output in this example.

Note:

This discussion is based on hash partitioning, but it also applies for range,
list, and interval partial partition-wise joins.

Considerations for full partition-wise joins also apply to partial partition-wise joins:

• The degree of parallelism does not need to equal the number of partitions. In
Figure 3-3, the query executes with two sets of 16 query servers. In this case,
Oracle assigns 1 partition to each query server of the second set. Again, the
number of partitions should always be a multiple of the degree of parallelism.

• In Oracle RAC environments on MPPs, each hash partition of sales should
preferably have affinity to only one node to avoid remote I/Os. Also, spread
partitions over all nodes to avoid bottlenecks and use all CPU resources available
on the system. A node can host multiple partitions when there are more partitions
than nodes.

See Also:

Oracle Real Application Clusters Administration and Deployment Guide
for more information about data affinity

3.2.2.2 Partial Partition-Wise Joins: Composite
You can use composite partial partition-wise joins.

Chapter 3
Partition-Wise Operations

3-22

As with full partition-wise joins, the prime partitioning method for the sales table is to use the
range method on column time_id. This is because sales is a typical example of a table that
stores historical data. To enable a partial partition-wise join while preserving this range
partitioning, subpartition sales by hash on column cust_id using 16 subpartitions for each
partition. Both pruning and partial partition-wise joins can be used if a query joins customers
and sales and if the query has a selection predicate on time_id.

When the sales table is composite partitioned, the granule of parallelism for a partial
partition-wise join is a hash partition and not a subpartition. Refer to Figure 3-2 for an
illustration of a hash partition in a composite table. Again, the number of hash partitions
should be a multiple of the degree of parallelism. Also, on an MPP system, ensure that each
hash partition has affinity to a single node. In the previous example, the eight subpartitions
composing a hash partition should have affinity to the same node.

Note:

This discussion is based on range-hash, but it also applies for all other
combinations of composite partial partition-wise joins.

The following example shows the execution plan for the query between sales and customers
with sales range partitioned by time_id and subpartitioned by hash on cust_id.

| Id | Operation | Name | Pstart| Pstop |IN-OUT| PQ Distrib |

0	SELECT STATEMENT					
1	PX COORDINATOR					
2	PX SEND QC (RANDOM)	:TQ10002			P->S	QC (RAND)
* 3	FILTER				PCWC	
4	HASH GROUP BY				PCWP	
5	PX RECEIVE				PCWP	
6	PX SEND HASH	:TQ10001			P->P	HASH
7	HASH GROUP BY				PCWP	
* 8	HASH JOIN				PCWP	
9	PART JOIN FILTER CREATE	:BF0000			PCWP	
10	PX RECEIVE				PCWP	
11	PX SEND PARTITION (KEY)	:TQ10000			P->P	PART (KEY)
12	PX BLOCK ITERATOR				PCWC	
13	TABLE ACCESS FULL	CUSTOMERS			PCWP	
14	PX PARTITION RANGE ITERATOR		8	9	PCWC	
15	PX PARTITION HASH ALL		1	16	PCWC	
* 16	TABLE ACCESS FULL	SALES	113	144	PCWP	

Predicate Information (identified by operation id):

 3 - filter(COUNT(SYS_OP_CSR(SYS_OP_MSR(COUNT(*)),0))>100)
 8 - access("S"."CUST_ID"="C"."CUST_ID")
 16 - filter("S"."TIME_ID"<=TO_DATE(' 1999-10-01 00:00:00', 'syyyy-mm-dd hh24:mi:ss') AND
"S"."TIME_ID">=TO_DATE(' 1999-07-01
 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))

Chapter 3
Partition-Wise Operations

3-23

Note:

The Rows, Cost (%CPU), Time, and TQ columns were removed from the plan
table output in this example.

3.3 Index Partitioning
Partitioning indexes has recommendations and considerations in common with
partitioning tables.

The rules for partitioning indexes are similar to those for tables:

• An index can be partitioned unless:

– The index is a cluster index.

– The index is defined on a clustered table.

• You can mix partitioned and nonpartitioned indexes with partitioned and
nonpartitioned tables:

– A partitioned table can have partitioned or nonpartitioned indexes.

– A nonpartitioned table can have partitioned or nonpartitioned indexes.

• Bitmap indexes on nonpartitioned tables cannot be partitioned.

• A bitmap index on a partitioned table must be a local index.

However, partitioned indexes are more complicated than partitioned tables because
there are three types of partitioned indexes:

• Local prefixed

• Local nonprefixed

• Global prefixed

Oracle Database supports all three types. However, there are some restrictions. For
example, a key cannot be an expression when creating a local unique index on a
partitioned table.

The following topics are discussed:

• Local Partitioned Indexes

• Global Partitioned Indexes

• Summary of Partitioned Index Types

• The Importance of Nonprefixed Indexes

• Performance Implications of Prefixed and Nonprefixed Indexes

• Advanced Index Compression With Partitioned Indexes

• Guidelines for Partitioning Indexes

• Physical Attributes of Index Partitions

Chapter 3
Index Partitioning

3-24

See Also:

Oracle Database Reference for information about the DBA_INDEXES,
DBA_IND_PARTITIONS, DBA_IND_SUBPARTITIONS, and DBA_PART_INDEXES views.

3.3.1 Local Partitioned Indexes
In a local index, all keys in a particular index partition refer only to rows stored in a single
underlying table partition.

A local index is created by specifying the LOCAL attribute. Oracle constructs the local index so
that it is equipartitioned with the underlying table. Oracle partitions the index on the same
columns as the underlying table, creates the same number of partitions or subpartitions, and
gives them the same partition bounds as corresponding partitions of the underlying table.

Oracle also maintains the index partitioning automatically when partitions in the underlying
table are added, dropped, merged, or split, or when hash partitions or subpartitions are
added or coalesced. This ensures that the index remains equipartitioned with the table.

A local index can be created UNIQUE if the partitioning columns form a subset of the index
columns. This restriction guarantees that rows with identical index keys always map into the
same partition, where uniqueness violations can be detected.

Local indexes have the following advantages:

• Only one index partition must be rebuilt when a maintenance operation other than SPLIT
PARTITION or ADD PARTITION is performed on an underlying table partition.

• The duration of a partition maintenance operation remains proportional to partition size if
the partitioned table has only local indexes.

• Local indexes support partition independence.

• Local indexes support smooth roll-out of old data and roll-in of new data in historical
tables.

• Oracle can take advantage of the fact that a local index is equipartitioned with the
underlying table to generate better query access plans.

• Local indexes simplify the task of tablespace incomplete recovery. To recover a partition
or subpartition of a table to a point in time, you must also recover the corresponding
index entries to the same point in time. The only way to accomplish this is with a local
index. Then you can recover the corresponding table and index partitions or
subpartitions.

The following topics are discussed:

• Local Prefixed Indexes

• Local Nonprefixed Indexes

See Also:

Oracle Database PL/SQL Packages and Types Reference for a description of the
DBMS_PCLXUTIL package

Chapter 3
Index Partitioning

3-25

3.3.1.1 Local Prefixed Indexes
A local index is prefixed if it is partitioned on a left prefix of the index columns and the
subpartioning key is included in the index key. Local prefixed indexes can be unique or
nonunique.

For example, if the sales table and its local index sales_ix are partitioned on the
week_num column, then index sales_ix is local prefixed if it is defined on the columns
(week_num, xaction_num). On the other hand, if index sales_ix is defined on column
product_num then it is not prefixed.

Figure 3-4 illustrates another example of a local prefixed index.

Figure 3-4 Local Prefixed Index

DEPTNO 0-9Index IX1 on DEPTNO
Range Partitioned
on DEPTNO

Table EMP
Range Partitioned
on DEPTNO

DEPTNO

0-9

DEPTNO 10-19

DEPTNO

10-19

DEPTNO 90-99. . .

. . .

DEPTNO

90-99

3.3.1.2 Local Nonprefixed Indexes
A local index is nonprefixed if it is not partitioned on a left prefix of the index columns
or if the index key does not include the subpartitioning key.

You cannot have a unique local nonprefixed index unless the partitioning key is a
subset of the index key.

Figure 3-5 illustrates an example of a local nonprefixed index.

Chapter 3
Index Partitioning

3-26

Figure 3-5 Local Nonprefixed Index

ACCTNO 31
ACCTNO 82Index IX3 on ACCTNO

Range Partitioned
on CHKDATE

Table CHECKS
Range Partitioned
on CHKDATE

CHKDATE

1/97

ACCTNO 54
ACCTNO 82

CHKDATE

2/97

ACCTNO 15
ACCTNO 35. . .

. . .

CHKDATE

12/97

3.3.2 Global Partitioned Indexes
In a global partitioned index, the keys in a particular index partition may refer to rows stored
in multiple underlying table partitions or subpartitions.

A global index can be range or hash partitioned, though it can be defined on any type of
partitioned table. A global index is created by specifying the GLOBAL attribute. The database
administrator is responsible for defining the initial partitioning of a global index at creation and
for maintaining the partitioning over time. Index partitions can be merged or split as
necessary.

Normally, a global index is not equipartitioned with the underlying table. There is nothing to
prevent an index from being equipartitioned with the underlying table, but Oracle does not
take advantage of the equipartitioning when generating query plans or executing partition
maintenance operations. So an index that is equipartitioned with the underlying table should
be created as LOCAL.

A global partitioned index contains a single B-tree with entries for all rows in all partitions.
Each index partition may contain keys that refer to many different partitions or subpartitions in
the table.

The highest partition of a global index must have a partition bound that includes all values
that are MAXVALUE. This insures that all rows in the underlying table can be represented in the
index.

The following topics are discussed:

• Prefixed and Nonprefixed Global Partitioned Indexes

• Management of Global Partitioned Indexes

3.3.2.1 Prefixed and Nonprefixed Global Partitioned Indexes
A global partitioned index is prefixed if it is partitioned on a left prefix of the index columns.

Chapter 3
Index Partitioning

3-27

A global partitioned index is nonprefixed if it is not partitioned on a left prefix of the
index columns. Oracle does not support global nonprefixed partitioned indexes. See
Figure 3-6 for an example.

Global prefixed partitioned indexes can be unique or nonunique. Nonpartitioned
indexes are treated as global prefixed nonpartitioned indexes.

3.3.2.2 Management of Global Partitioned Indexes
Management of global partitioned indexes presents several challenges.

Global partitioned indexes are harder to manage than local indexes because of the
following:

• When the data in an underlying table partition is moved or removed (SPLIT, MOVE,
DROP, or TRUNCATE), all partitions of a global index are affected. Consequently
global indexes do not support partition independence.

• When an underlying table partition or subpartition is recovered to a point in time,
all corresponding entries in a global index must be recovered to the same point in
time. Because these entries may be scattered across all partitions or subpartitions
of the index, mixed with entries for other partitions or subpartitions that are not
being recovered, there is no way to accomplish this except by re-creating the
entire global index.

Figure 3-6 Global Prefixed Partitioned Index

EMPNO 15
EMPNO 31Index IX3 on EMPNO

Range Partitioned
on EMPNO

Table EMP
Range Partitioned
on DEPTNO

EMPNO

0-39

EMPNO 54

EMPNO

40-69

EMPNO 73
EMPNO 82
EMPNO 96. . .

. . .

EMPNO

70-MAXVALUE

DEPTNO

0-9

DEPTNO

10-19

DEPTNO

90-99

3.3.3 Summary of Partitioned Index Types
A summary of partitioned index types is provided in this topic.

Table 3-1 summarizes the types of partitioned indexes that Oracle supports. The key
points are:

• If an index is local, then it is equipartitioned with the underlying table. Otherwise, it
is global.

• A prefixed index is partitioned on a left prefix of the index columns. Otherwise, it is
nonprefixed.

Chapter 3
Index Partitioning

3-28

Table 3-1 Types of Partitioned Indexes

Type of Index Index
Equipartitio
ned with
Table

Index
Partitioned
on Left
Prefix of
Index
Columns

UNIQUE
Attribute
Allowed

Example:
Table
Partitioning
Key

Example:
Index
Columns

Example:
Index
Partitioning
Key

Local Prefixed (any
partitioning method)

Yes Yes Yes A A, B A

Local Nonprefixed (any
partitioning method)

Yes No Yes1 A B, A A

Global Prefixed (range
partitioning only)

No2 Yes Yes A B B

1 For a unique local nonprefixed index, the partitioning key must be a subset of the index key and cannot be a partial index.
2 Although a global partitioned index may be equipartitioned with the underlying table, Oracle does not take advantage of the partitioning

or maintain equipartitioning after partition maintenance operations such as DROP or SPLIT PARTITION.

3.3.4 The Importance of Nonprefixed Indexes
Nonprefixed indexes are important because they are particularly useful in historical
databases.

In a table containing historical data, it is common for an index to be defined on one column to
support the requirements of fast access by that column. However, the index can also be
partitioned on another column (the same column as the underlying table) to support the time
interval for rolling out old data and rolling in new data.

Consider a sales table partitioned by week. It contains a year's worth of data, divided into 13
partitions. It is range partitioned on week_no, four weeks to a partition. You might create a
nonprefixed local index sales_ix on sales. The sales_ix index is defined on acct_no
because there are queries that need fast access to the data by account number. However, it
is partitioned on week_no to match the sales table. Every four weeks, the oldest partitions of
sales and sales_ix are dropped and new ones are added.

3.3.5 Performance Implications of Prefixed and Nonprefixed Indexes
There are performance implications of prefixed and nonprefixed indexes.

With a prefixed index, the likelihood to get partition pruning is much higher than with a non-
prefixed index. If a column is part of an index, then you can assume that the column is used
as a filter predicate, which automatically means some level of pruning when a filtered column
is a prefixed column. This result suggests that it is usually less expensive to probe into a
prefixed index than to probe into a nonprefixed index. If an index is prefixed (either local or
global) and Oracle is presented with a predicate involving the index columns, then partition
pruning can restrict application of the predicate to a subset of the index partitions.

For example, in Figure 3-4, if the predicate is deptno=15, the optimizer knows to apply the
predicate only to the second partition of the index. (If the predicate involves a bind variable,
the optimizer does not know exactly which partition but it may still know there is only one
partition involved, in which case at run time, only one index partition is accessed.)

Chapter 3
Index Partitioning

3-29

When an index is nonprefixed, Oracle often has to apply a predicate involving the
index columns to all N index partitions. This is required to look up a single key, or to do
an index range scan. For a range scan, Oracle must also combine information from N
index partitions. For example, in Figure 3-5, a local index is partitioned on chkdate
with an index key on acctno. If the predicate is acctno=31, Oracle probes all 12 index
partitions.

Of course, if there is also a predicate on the partitioning columns, then multiple index
probes might not be necessary. Oracle takes advantage of the fact that a local index is
equipartitioned with the underlying table to prune partitions based on the partition key.
For example, if the predicate in Figure 3-5 is chkdate<3/97, Oracle only has to probe
two partitions.

So for a nonprefixed index, if the partition key is a part of the WHERE clause but not of
the index key, then the optimizer determines which index partitions to probe based on
the underlying table partition.

When many queries and DML statements using keys of local, nonprefixed, indexes
have to probe all index partitions, this effectively reduces the degree of partition
independence provided by such indexes.

Table 3-2 Comparing Prefixed Local, Nonprefixed Local, and Global Indexes

Index
Characteristics

Prefixed Local Nonprefixed
Local

Global

Unique possible? Yes Yes Yes. Must be global if using indexes
on columns other than the
partitioning columns

Manageability Easy to manage Easy to manage Harder to manage

OLTP Good Bad Good

Long Running
(DSS)

Good Good Not Good

3.3.6 Advanced Index Compression With Partitioned Indexes
Advanced index compression with partitioned indexes can reduce the storage
requirements for indexes.

Creating an index using advanced index compression reduces the size of all
supported unique and non-unique indexes. Advanced index compression improves the
compression ratios significantly while still providing efficient access to the indexes.
Advanced compression works well on all supported indexes, including those indexes
that are not good candidates for prefix compression.

For a partitioned index, you can specify the compression type on a partition by
partition basis. You can also specify advanced index compression on index partitions
even when the parent index is not compressed.

The following example shows a mixture of compression attributes on the partition
indexes.

CREATE INDEX my_test_idx ON test(a, b) COMPRESS ADVANCED HIGH LOCAL
 (PARTITION p1 COMPRESS ADVANCED LOW,
 PARTITION p2 COMPRESS,

Chapter 3
Index Partitioning

3-30

 PARTITION p3,
 PARTITION p4 NOCOMPRESS);

The following example shows advanced index compression support on partitions where the
parent index is not compressed.

CREATE INDEX my_test_idx ON test(a, b) NOCOMPRESS LOCAL
 (PARTITION p1 COMPRESS ADVANCED LOW,
 PARTITION p2 COMPRESS ADVANCED HIGH,
 PARTITION p3);

See Also:

Oracle Database Administrator’s Guide for information about advanced index
compression

3.3.7 Guidelines for Partitioning Indexes
There are several guidelines for partitioning indexes.

When deciding how to partition indexes on a table, consider the mix of applications that must
access the table. There is a trade-off between performance and availability and
manageability. Here are some guidelines you should consider:

• For OLTP applications:

– Global indexes and local prefixed indexes provide better performance than local
nonprefixed indexes because they minimize the number of index partition probes.

– Local indexes support more availability when there are partition or subpartition
maintenance operations on the table. Local nonprefixed indexes are very useful for
historical databases.

• For DSS applications, local nonprefixed indexes can improve performance because
many index partitions can be scanned in parallel by range queries on the index key.

For example, a query using the predicate "acctno between 40 and 45" on the table
checks of Figure 3-5 causes parallel scans of all the partitions of the nonprefixed index
ix3. On the other hand, a query using the predicate deptno BETWEEN 40 AND 45 on the
table deptno of Figure 3-4 cannot be parallelized because it accesses a single partition of
the prefixed index ix1.

• For historical tables, indexes should be local if possible. This limits the effect of regularly
scheduled drop partition operations.

• Unique indexes on columns other than the partitioning columns must be global because
unique local nonprefixed indexes whose keys do not contain the partitioning key are not
supported.

• Unusable indexes do not consume space.

See Also:

Oracle Database Administrator’s Guide for information about guidelines for
managing tables

Chapter 3
Index Partitioning

3-31

3.3.8 Physical Attributes of Index Partitions
The physical attributes of index partitions are described in this topic.

Default physical attributes are initially specified when a CREATE INDEX statement
creates a partitioned index. Because there is no segment corresponding to the
partitioned index itself, these attributes are only used in derivation of physical
attributes of member partitions. Default physical attributes can later be modified using
ALTER INDEX MODIFY DEFAULT ATTRIBUTES.

Physical attributes of partitions created by CREATE INDEX are determined as follows:

• Values of physical attributes specified (explicitly or by default) for the index are
used whenever the value of a corresponding partition attribute is not specified.
Handling of the TABLESPACE attribute of partitions of a LOCAL index constitutes an
important exception to this rule in that without a user-specified TABLESPACE value
(at both partition and index levels), the value of the physical attribute of the
corresponding partition of the underlying table is used.

• Physical attributes (other than TABLESPACE, as explained in the preceding) of
partitions of local indexes created during processing ALTER TABLE ADD PARTITION
are set to the default physical attributes of each index.

Physical attributes (other than TABLESPACE) of index partitions created by ALTER TABLE
SPLIT PARTITION are determined as follows:

• Values of physical attributes of the index partition being split are used.

Physical attributes of an existing index partition can be modified by ALTER INDEX
MODIFY PARTITION and ALTER INDEX REBUILD PARTITION. Resulting attributes are
determined as follows:

• Values of physical attributes of the partition before the statement was issued are
used whenever a new value is not specified. The ALTER INDEX REBUILD PARTITION
SQL statement can change the tablespace in which a partition resides.

Physical attributes of global index partitions created by ALTER INDEX SPLIT PARTITION
are determined as follows:

• Values of physical attributes of the partition being split are used whenever a new
value is not specified.

• Physical attributes of all partitions of an index (along with default values) may be
modified by ALTER INDEX, for example, ALTER INDEX indexname NOLOGGING changes
the logging mode of all partitions of indexname to NOLOGGING.

See Also:

Partition Administration for more detailed examples of adding partitions and
examples of rebuilding indexes

Chapter 3
Index Partitioning

3-32

3.4 Partitioning and Table Compression
Compression can be performed on several partitions or a complete partitioned heap-
organized table.

You can do this compression by either defining a complete partitioned table as being
compressed, or by defining it on a per-partition level. Partitions without a specific declaration
inherit the attribute from the table definition or, if nothing is specified on table level, from the
tablespace definition.

The decision whether a partition should be compressed or uncompressed adheres to the
same rules as a nonpartitioned table. However, due to partitioning to separate data logically
into distinct partitions, such a partitioned table is an ideal candidate for compressing parts of
the data (partitions). For example, it is beneficial in all rolling window operations as a
intermediate stage before aging out old data. With data segment compression, you can keep
more old data online, minimizing the burden of additional storage consumption.

You can also change any existing uncompressed table partition later on, add new
compressed and uncompressed partitions, or change the compression attribute as part of
any partition maintenance operation that requires data movement, such as MERGE PARTITION,
SPLIT PARTITION, or MOVE PARTITION. The partitions can contain data or can be empty.

The access and maintenance of a partially or fully compressed partitioned table are the same
as for a fully uncompressed partitioned table. Everything that applies to fully uncompressed
partitioned tables is also valid for partially or fully compressed partitioned tables.

The following topics are discussed:

• Table Compression and Bitmap Indexes

• Example of Table Compression and Partitioning

See Also:

• Oracle Database Data Warehousing Guide for a generic discussion of data
warehousing optimizations and techniques

• Oracle Database Administrator’s Guide for information about guidelines for
managing tables

• Oracle Database Performance Tuning Guide for estimating the compression
factor

3.4.1 Table Compression and Bitmap Indexes
There are several necessary steps before using compression on partitioned tables with
bitmap indexes.

To use table compression on partitioned tables with bitmap indexes, you must do the
following before you introduce the compression attribute for the first time:

1. Mark bitmap indexes unusable.

2. Set the compression attribute.

Chapter 3
Partitioning and Table Compression

3-33

3. Rebuild the indexes.

The first time you make a compressed partition part of an existing, fully uncompressed
partitioned table, you must either drop all existing bitmap indexes or mark them
UNUSABLE before adding a compressed partition. This must be done irrespective of
whether any partition contains any data. It is also independent of the operation that
causes one or more compressed partitions to become part of the table. This does not
apply to a partitioned table having B-tree indexes only.

This rebuilding of the bitmap index structures is necessary to accommodate the
potentially higher number of rows stored for each data block with table compression
enabled. Enabling table compression must be done only for the first time. All
subsequent operations, whether they affect compressed or uncompressed partitions,
or change the compression attribute, behave identically for uncompressed, partially
compressed, or fully compressed partitioned tables.

To avoid the recreation of any bitmap index structure, Oracle recommends creating
every partitioned table with at least one compressed partition whenever you plan to
partially or fully compress the partitioned table in the future. This compressed partition
can stay empty or even can be dropped after the partition table creation.

Having a partitioned table with compressed partitions can lead to slightly larger bitmap
index structures for the uncompressed partitions. The bitmap index structures for the
compressed partitions, however, are usually smaller than the appropriate bitmap index
structure before table compression. This highly depends on the achieved compression
rates.

Note:

Oracle Database raises an error if compression is introduced to an object for
the first time and there are usable bitmap index segments.

3.4.2 Example of Table Compression and Partitioning
Examples of table compression with partitioned tables are described in this topic.

The following statement moves and compresses an existing partition sales_q1_1998 of
table sales:

ALTER TABLE sales
 MOVE PARTITION sales_q1_1998 TABLESPACE ts_arch_q1_1998 COMPRESS;

Alternatively, you could choose Hybrid Columnar Compression (HCC), as in the
following:

ALTER TABLE sales
 MOVE PARTITION sales_q1_1998 TABLESPACE ts_arch_q1_1998
 COMPRESS FOR ARCHIVE LOW;

If you use the MOVE statement, then the local indexes for partition sales_q1_1998
become unusable. You must rebuild them afterward, as follows:

ALTER TABLE sales
 MODIFY PARTITION sales_q1_1998 REBUILD UNUSABLE LOCAL INDEXES;

Chapter 3
Partitioning and Table Compression

3-34

You can also include the UPDATE INDEXES clause in the MOVE statement in order for the entire
operation to be completed automatically without any negative effect on users accessing the
table.

The following statement merges two existing partitions into a new, compressed partition,
residing in a separate tablespace. The local bitmap indexes have to be rebuilt afterward, as in
the following:

ALTER TABLE sales MERGE PARTITIONS sales_q1_1998, sales_q2_1998
 INTO PARTITION sales_1_1998 TABLESPACE ts_arch_1_1998
 COMPRESS FOR OLTP UPDATE INDEXES;

See Also:

• Partition Administration for more details and examples about partition
management operations

• Oracle Database Performance Tuning Guide for details regarding how to
estimate the compression ratio when using table compression

• Oracle Database SQL Language Reference for the SQL syntax

• Oracle Database Concepts for more information about Hybrid Columnar
Compression. Hybrid Columnar Compression is a feature of certain Oracle
storage systems.

3.5 Recommendations for Choosing a Partitioning Strategy
Review these recommendations based on performance considerations when choosing a
partitioning strategy.

The following topics provide recommendations for choosing a partitioning strategy:

• When to Use Range or Interval Partitioning

• When to Use Hash Partitioning

• When to Use List Partitioning

• When to Use Composite Partitioning

• When to Use Interval Partitioning

• When to Use Reference Partitioning

• When to Partition on Virtual Columns

• Considerations When Using Read-Only Tablespaces

3.5.1 When to Use Range or Interval Partitioning
Range and interval partitioning are useful when organizing similar data, especially date and
time data.

Range partitioning is a convenient method for partitioning historical data. The boundaries of
range partitions define the ordering of the partitions in the tables or indexes.

Chapter 3
Recommendations for Choosing a Partitioning Strategy

3-35

Interval partitioning is an extension to range partitioning in which, beyond a point in
time, partitions are defined by an interval. Interval partitions are automatically created
by the database when data is inserted into the partition.

Range or interval partitioning is often used to organize data by time intervals on a
column of type DATE. Thus, most SQL statements accessing range partitions focus on
time frames. An example of this is a SQL statement similar to "select data from a
particular period in time". In such a scenario, if each partition represents data for one
month, the query "find data of month 06-DEC" must access only the December
partition of year 2006. This reduces the amount of data scanned to a fraction of the
total data available, an optimization method called partition pruning.

Range partitioning is also ideal when you periodically load new data and purge old
data, because it is easy to add or drop partitions. For example, it is common to keep a
rolling window of data, keeping the past 36 months' worth of data online. Range
partitioning simplifies this process. To add data from a new month, you load it into a
separate table, clean it, index it, and then add it to the range-partitioned table using the
EXCHANGE PARTITION statement, all while the original table remains online. After you
add the new partition, you can drop the trailing month with the DROP PARTITION
statement. The alternative to using the DROP PARTITION statement can be to archive
the partition and make it read only, but this works only when your partitions are in
separate tablespaces. You can also implement a rolling window of data using inserts
into the partitioned table.

Interval partitioning provides an easy way for interval partitions to be automatically
created as data arrives. Interval partitions can also be used for all other partition
maintenance operations.

In conclusion, consider using range or interval partitioning when:

• Very large tables are frequently scanned by a range predicate on a good
partitioning column, such as ORDER_DATE or PURCHASE_DATE. Partitioning the table
on that column enables partition pruning.

• You want to maintain a rolling window of data.

• You cannot complete administrative operations, such as backup and restore, on
large tables in an allotted time frame, but you can divide them into smaller logical
pieces based on the partition range column.

Example 3-5 creates the table salestable for a period of two years, 2005 and 2006,
and partitions it by range according to the column s_salesdate to separate the data
into eight quarters, each corresponding to a partition. Future partitions are created
automatically through the monthly interval definition. Interval partitions are created in
the provided list of tablespaces in a round-robin manner. Analysis of sales figures by a
short interval can take advantage of partition pruning. The sales table also supports a
rolling window approach.

Example 3-5 Creating a table with range and interval partitioning

CREATE TABLE salestable
 (s_productid NUMBER,
 s_saledate DATE,
 s_custid NUMBER,
 s_totalprice NUMBER)
PARTITION BY RANGE(s_saledate)
INTERVAL(NUMTOYMINTERVAL(1,'MONTH')) STORE IN (tbs1,tbs2,tbs3,tbs4)
 (PARTITION sal05q1 VALUES LESS THAN (TO_DATE('01-APR-2005', 'DD-MON-YYYY')) TABLESPACE tbs1,
 PARTITION sal05q2 VALUES LESS THAN (TO_DATE('01-JUL-2005', 'DD-MON-YYYY')) TABLESPACE tbs2,
 PARTITION sal05q3 VALUES LESS THAN (TO_DATE('01-OCT-2005', 'DD-MON-YYYY')) TABLESPACE tbs3,

Chapter 3
Recommendations for Choosing a Partitioning Strategy

3-36

 PARTITION sal05q4 VALUES LESS THAN (TO_DATE('01-JAN-2006', 'DD-MON-YYYY')) TABLESPACE tbs4,
 PARTITION sal06q1 VALUES LESS THAN (TO_DATE('01-APR-2006', 'DD-MON-YYYY')) TABLESPACE tbs1,
 PARTITION sal06q2 VALUES LESS THAN (TO_DATE('01-JUL-2006', 'DD-MON-YYYY')) TABLESPACE tbs2,
 PARTITION sal06q3 VALUES LESS THAN (TO_DATE('01-OCT-2006', 'DD-MON-YYYY')) TABLESPACE tbs3,
 PARTITION sal06q4 VALUES LESS THAN (TO_DATE('01-JAN-2007', 'DD-MON-YYYY')) TABLESPACE tbs4);

See Also:

Partition Administration for more information about the partition maintenance
operations on interval partitions

3.5.2 When to Use Hash Partitioning
Hash partitioning is useful for randomly distributing data across partitions based on a hashing
algorithm, rather than grouping similar data.

There are times when it is not obvious in which partition data should reside, although the
partitioning key can be identified. Rather than group similar data, there are times when it is
desirable to distribute data such that it does not correspond to a business or a logical view of
the data, as it does in range partitioning. With hash partitioning, a row is placed into a
partition based on the result of passing the partitioning key into a hashing algorithm.

Using this approach, data is randomly distributed across the partitions rather than grouped.
This is a good approach for some data, but may not be an effective way to manage historical
data. However, hash partitions share some performance characteristics with range partitions.
For example, partition pruning is limited to equality predicates. You can also use partition-
wise joins, parallel index access, and parallel DML.

As a general rule, use hash partitioning for the following purposes:

• To enable partial or full parallel partition-wise joins with likely equisized partitions.

• To distribute data evenly among the nodes of an MPP platform that uses Oracle Real
Application Clusters. Consequently, you can minimize interconnect traffic when
processing internode parallel statements.

• To use partition pruning and partition-wise joins according to a partitioning key that is
mostly constrained by a distinct value or value list.

• To randomly distribute data to avoid I/O bottlenecks if you do not use a storage
management technique that stripes and mirrors across all available devices.

Note:

With hash partitioning, only equality or IN-list predicates are supported for partition
pruning.

For optimal data distribution, the following requirements should be satisfied:

• Choose a column or combination of columns that is unique or almost unique.

• Create multiple partitions and subpartitions for each partition that is a power of two. For
example, 2, 4, 8, 16, 32, 64, 128, and so on.

Chapter 3
Recommendations for Choosing a Partitioning Strategy

3-37

Example 3-6 creates four hash partitions for the table sales_hash using the column
s_productid as the partitioning key. Parallel joins with the products table can take
advantage of partial or full partition-wise joins. Queries accessing sales figures for only
a single product or a list of products benefit from partition pruning.

If you do not explicitly specify partition names, but instead you specify the number of
hash partitions, then Oracle automatically generates internal names for the partitions.
Also, you can use the STORE IN clause to assign hash partitions to tablespaces in a
round-robin manner.

Example 3-6 Creating a table with hash partitioning

CREATE TABLE sales_hash
 (s_productid NUMBER,
 s_saledate DATE,
 s_custid NUMBER,
 s_totalprice NUMBER)
PARTITION BY HASH(s_productid)
(PARTITION p1 TABLESPACE tbs1
, PARTITION p2 TABLESPACE tbs2
, PARTITION p3 TABLESPACE tbs3
, PARTITION p4 TABLESPACE tbs4
);

See Also:

• Partition-Wise Operations for information about part-wise joins

• Storage Management for VLDBs for more information about managing
storage for VLDBs

• Partition Administration for more examples on creating hash-partitioned
tables

• Oracle Database SQL Language Reference for partitioning syntax

3.5.3 When to Use List Partitioning
List partitioning is useful to explicitly map rows to partitions based on discrete values.

In Example 3-7, all the customers for states Oregon and Washington are stored in one
partition and customers in other states are stored in different partitions. Account
managers who analyze their accounts by region can take advantage of partition
pruning.

Example 3-7 Creating a table with list partitioning

CREATE TABLE accounts
(id NUMBER
, account_number NUMBER
, customer_id NUMBER
, branch_id NUMBER
, region VARCHAR(2)
, status VARCHAR2(1)
)
PARTITION BY LIST (region)
(PARTITION p_northwest VALUES ('OR', 'WA')

Chapter 3
Recommendations for Choosing a Partitioning Strategy

3-38

, PARTITION p_southwest VALUES ('AZ', 'UT', 'NM')
, PARTITION p_northeast VALUES ('NY', 'VM', 'NJ')
, PARTITION p_southeast VALUES ('FL', 'GA')
, PARTITION p_northcentral VALUES ('SD', 'WI')
, PARTITION p_southcentral VALUES ('OK', 'TX')
);

3.5.4 When to Use Composite Partitioning
Composite partitioning offers the benefits of partitioning on multiple dimensions.

From a performance perspective you can take advantage of partition pruning on one or two
dimensions depending on the SQL statement, and you can take advantage of the use of full
or partial partition-wise joins on either dimension.

You can take advantage of parallel backup and recovery of a single table. Composite
partitioning also increases the number of partitions significantly, which may be beneficial for
efficient parallel execution. From a manageability perspective, you can implement a rolling
window to support historical data and still partition on another dimension if many statements
can benefit from partition pruning or partition-wise joins.

You can split backups of your tables and you can decide to store data differently based on
identification by a partitioning key. For example, you may decide to store data for a specific
product type in a read-only, compressed format, and keep other product type data
uncompressed.

The database stores every subpartition in a composite partitioned table as a separate
segment. Thus, the subpartitions may have properties that differ from the properties of the
table or from the partition to which the subpartitions belong.

The following topics are discussed:

• When to Use Range or Interval Partitioning

• When to Use Hash Partitioning

• When to Use List Partitioning

• When to Use Composite Partitioning

• When to Use Interval Partitioning

• When to Use Reference Partitioning

• When to Partition on Virtual Columns

See Also:

Oracle Database SQL Language Reference for details regarding syntax and
restrictions

3.5.4.1 When to Use Composite Range-Hash Partitioning
Composite range-hash partitioning is particularly common for tables that store history, are
very large consequently, and are frequently joined with other large tables.

For these types of tables (typical of data warehouse systems), composite range-hash
partitioning provides the benefit of partition pruning at the range level with the opportunity to

Chapter 3
Recommendations for Choosing a Partitioning Strategy

3-39

perform parallel full or partial partition-wise joins at the hash level. Specific cases can
benefit from partition pruning on both dimensions for specific SQL statements.

Composite range-hash partitioning can also be used for tables that traditionally use
hash partitioning, but also use a rolling window approach. Over time, data can be
moved from one storage tier to another storage tier, compressed, stored in a read-only
tablespace, and eventually purged. Information Lifecycle Management (ILM) scenarios
often use range partitions to implement a tiered storage approach.

Example 3-8 is an example of a range hash partitioned page_history table of an
Internet service provider. The table definition is optimized for historical analysis for
either specific client_ip values (in which case queries benefit from partition pruning)
or for analysis across many IP addresses, in which case queries can take advantage
of full or partial partition-wise joins.

This example shows the use of interval partitioning. You can use interval partitioning in
addition to range partitioning so that interval partitions are created automatically as
data is inserted into the table.

Example 3-8 Creating a table with composite range-hash partitioning

CREATE TABLE page_history
(id NUMBER NOT NULL
, url VARCHAR2(300) NOT NULL
, view_date DATE NOT NULL
, client_ip VARCHAR2(23) NOT NULL
, from_url VARCHAR2(300)
, to_url VARCHAR2(300)
, timing_in_seconds NUMBER
) PARTITION BY RANGE(view_date) INTERVAL (NUMTODSINTERVAL(1,'DAY'))
SUBPARTITION BY HASH(client_ip)
SUBPARTITIONS 32
(PARTITION p0 VALUES LESS THAN (TO_DATE('01-JAN-2006','dd-MON-yyyy')))
PARALLEL 32 COMPRESS;

See Also:

Managing and Maintaining Time-Based Information for more detail on
Information Lifecycle Management (ILM) and implementing tiered storage
using partitioning

3.5.4.2 When to Use Composite Range-List Partitioning
Composite range-list partitioning is commonly used for large tables that store historical
data and are commonly accessed on multiple dimensions.

Often the historical view of the data is one access path, but certain business cases
add another categorization to the access path. For example, regional account
managers are very interested in how many new customers they signed up in their
region in a specific time period. ILM and its tiered storage approach is a common
reason to create range-list partitioned tables so that older data can be moved and
compressed, but partition pruning on the list dimension is still available.

Example 3-9 creates a range-list partitioned call_detail_records table. A
telecommunication company can use this table to analyze specific types of calls over
time. The table uses local indexes on from_number and to_number.

Chapter 3
Recommendations for Choosing a Partitioning Strategy

3-40

This example shows the use of interval partitioning. You can use interval partitioning in
addition to range partitioning so that interval partitions are created automatically as data is
inserted into the table.

Example 3-9 Creating a table with composite range-list partitioning

CREATE TABLE call_detail_records
(id NUMBER
, from_number VARCHAR2(20)
, to_number VARCHAR2(20)
, date_of_call DATE
, distance VARCHAR2(1)
, call_duration_in_s NUMBER(4)
) PARTITION BY RANGE(date_of_call)
INTERVAL (NUMTODSINTERVAL(1,'DAY'))
SUBPARTITION BY LIST(distance)
SUBPARTITION TEMPLATE
(SUBPARTITION local VALUES('L') TABLESPACE tbs1
, SUBPARTITION medium_long VALUES ('M') TABLESPACE tbs2
, SUBPARTITION long_distance VALUES ('D') TABLESPACE tbs3
, SUBPARTITION international VALUES ('I') TABLESPACE tbs4
)
(PARTITION p0 VALUES LESS THAN (TO_DATE('01-JAN-2005','dd-MON-yyyy')))
PARALLEL;

CREATE INDEX from_number_ix ON call_detail_records(from_number)
LOCAL PARALLEL NOLOGGING;

CREATE INDEX to_number_ix ON call_detail_records(to_number)
LOCAL PARALLEL NOLOGGING;

3.5.4.3 When to Use Composite Range-Range Partitioning
Composite range-range partitioning is useful for applications that store time-dependent data
on multiple time dimensions.

Often these applications do not use one particular time dimension to access the data, but
rather another time dimension, or sometimes both at the same time. For example, a web
retailer wants to analyze its sales data based on when orders were placed, and when orders
were shipped (handed over to the shipping company).

Other business cases for composite range-range partitioning include ILM scenarios, and
applications that store historical data and want to categorize its data by range on another
dimension.

Example 3-10 shows a range-range partitioned table account_balance_history. A bank may
use access to individual subpartitions to contact its customers for low-balance reminders or
specific promotions relevant to a certain category of customers.

This example shows the use of interval partitioning. You can use interval partitioning in
addition to range partitioning so that interval partitions are created automatically as data is
inserted into the table. In this case 7-day (weekly) intervals are created, starting Monday,
January 1, 2007.

Example 3-10 Creating a table with composite range-range partitioning

CREATE TABLE account_balance_history
(id NUMBER NOT NULL
, account_number NUMBER NOT NULL
, customer_id NUMBER NOT NULL

Chapter 3
Recommendations for Choosing a Partitioning Strategy

3-41

, transaction_date DATE NOT NULL
, amount_credited NUMBER
, amount_debited NUMBER
, end_of_day_balance NUMBER NOT NULL
) PARTITION BY RANGE(transaction_date)
INTERVAL (NUMTODSINTERVAL(7,'DAY'))
SUBPARTITION BY RANGE(end_of_day_balance)
SUBPARTITION TEMPLATE
(SUBPARTITION unacceptable VALUES LESS THAN (-1000)
, SUBPARTITION credit VALUES LESS THAN (0)
, SUBPARTITION low VALUES LESS THAN (500)
, SUBPARTITION normal VALUES LESS THAN (5000)
, SUBPARTITION high VALUES LESS THAN (20000)
, SUBPARTITION extraordinary VALUES LESS THAN (MAXVALUE)
)
(PARTITION p0 VALUES LESS THAN (TO_DATE('01-JAN-2007','dd-MON-yyyy')));

3.5.4.4 When to Use Composite List-Hash Partitioning
Composite list-hash partitioning is useful for large tables that are usually accessed on
one dimension, but (due to their size) still must take advantage of parallel full or partial
partition-wise joins on another dimension in joins with other large tables.

Example 3-11 shows a credit_card_accounts table. The table is list-partitioned on
region in order for account managers to quickly access accounts in their region. The
subpartitioning strategy is hash on customer_id so that queries against the
transactions table, which is subpartitioned on customer_id, can take advantage of full
partition-wise joins. Joins with the hash partitioned customers table can also benefit
from full partition-wise joins. The table has a local bitmap index on the is_active
column.

Example 3-11 Creating a table with composite list-hash partitioning

CREATE TABLE credit_card_accounts
(account_number NUMBER(16) NOT NULL
, customer_id NUMBER NOT NULL
, customer_region VARCHAR2(2) NOT NULL
, is_active VARCHAR2(1) NOT NULL
, date_opened DATE NOT NULL
) PARTITION BY LIST (customer_region)
SUBPARTITION BY HASH (customer_id)
SUBPARTITIONS 16
(PARTITION emea VALUES ('EU','ME','AF')
, PARTITION amer VALUES ('NA','LA')
, PARTITION apac VALUES ('SA','AU','NZ','IN','CH')
) PARALLEL;

CREATE BITMAP INDEX is_active_bix ON credit_card_accounts(is_active)
LOCAL PARALLEL NOLOGGING;

3.5.4.5 When to Use Composite List-List Partitioning
Composite list-list partitioning is useful for large tables that are often accessed on
different dimensions.

You can specifically map rows to partitions on those dimensions based on discrete
values.

Chapter 3
Recommendations for Choosing a Partitioning Strategy

3-42

Example 3-12 shows an example of a very frequently accessed current_inventory table.
The table is constantly updated with the current inventory in the supermarket supplier's local
warehouses. Potentially perishable foods are supplied from those warehouses to
supermarkets, and it is important to optimize supplies and deliveries. The table has local
indexes on warehouse_id and product_id.

Example 3-12 Creating a table with composite list-list partitioning

CREATE TABLE current_inventory
(warehouse_id NUMBER
, warehouse_region VARCHAR2(2)
, product_id NUMBER
, product_category VARCHAR2(12)
, amount_in_stock NUMBER
, unit_of_shipping VARCHAR2(20)
, products_per_unit NUMBER
, last_updated DATE
) PARTITION BY LIST (warehouse_region)
SUBPARTITION BY LIST (product_category)
SUBPARTITION TEMPLATE
(SUBPARTITION perishable VALUES ('DAIRY','PRODUCE','MEAT','BREAD')
, SUBPARTITION non_perishable VALUES ('CANNED','PACKAGED')
, SUBPARTITION durable VALUES ('TOYS','KITCHENWARE')
)
(PARTITION p_northwest VALUES ('OR', 'WA')
, PARTITION p_southwest VALUES ('AZ', 'UT', 'NM')
, PARTITION p_northeast VALUES ('NY', 'VM', 'NJ')
, PARTITION p_southeast VALUES ('FL', 'GA')
, PARTITION p_northcentral VALUES ('SD', 'WI')
, PARTITION p_southcentral VALUES ('OK', 'TX')
);

CREATE INDEX warehouse_id_ix ON current_inventory(warehouse_id)
LOCAL PARALLEL NOLOGGING;

CREATE INDEX product_id_ix ON current_inventory(product_id)
LOCAL PARALLEL NOLOGGING;

3.5.4.6 When to Use Composite List-Range Partitioning
Composite list-range partitioning is useful for large tables that are accessed on different
dimensions.

For the most commonly used dimension, you can specifically map rows to partitions on
discrete values. List-range partitioning is commonly used for tables that use range values
within a list partition, whereas range-list partitioning is commonly used for a discrete list
values within a range partition. List-range partitioning is less commonly used to store
historical data, even though equivalent scenarios are all suitable. Range-list partitioning can
be implemented using interval-list partitioning, whereas list-range partitioning does not
support interval partitioning.

Example 3-13 shows a donations table that stores donations in different currencies. The
donations are categorized into small, medium, and high, depending on the amount. Due to
currency differences, the ranges are different.

Example 3-13 Creating a table with composite list-range partitioning

CREATE TABLE donations
(id NUMBER
, name VARCHAR2(60)

Chapter 3
Recommendations for Choosing a Partitioning Strategy

3-43

, beneficiary VARCHAR2(80)
, payment_method VARCHAR2(30)
, currency VARCHAR2(3)
, amount NUMBER
) PARTITION BY LIST (currency)
SUBPARTITION BY RANGE (amount)
(PARTITION p_eur VALUES ('EUR')
 (SUBPARTITION p_eur_small VALUES LESS THAN (8)
 , SUBPARTITION p_eur_medium VALUES LESS THAN (80)
 , SUBPARTITION p_eur_high VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_gbp VALUES ('GBP')
 (SUBPARTITION p_gbp_small VALUES LESS THAN (5)
 , SUBPARTITION p_gbp_medium VALUES LESS THAN (50)
 , SUBPARTITION p_gbp_high VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_aud_nzd_chf VALUES ('AUD','NZD','CHF')
 (SUBPARTITION p_aud_nzd_chf_small VALUES LESS THAN (12)
 , SUBPARTITION p_aud_nzd_chf_medium VALUES LESS THAN (120)
 , SUBPARTITION p_aud_nzd_chf_high VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_jpy VALUES ('JPY')
 (SUBPARTITION p_jpy_small VALUES LESS THAN (1200)
 , SUBPARTITION p_jpy_medium VALUES LESS THAN (12000)
 , SUBPARTITION p_jpy_high VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_inr VALUES ('INR')
 (SUBPARTITION p_inr_small VALUES LESS THAN (400)
 , SUBPARTITION p_inr_medium VALUES LESS THAN (4000)
 , SUBPARTITION p_inr_high VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_zar VALUES ('ZAR')
 (SUBPARTITION p_zar_small VALUES LESS THAN (70)
 , SUBPARTITION p_zar_medium VALUES LESS THAN (700)
 , SUBPARTITION p_zar_high VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_default VALUES (DEFAULT)
 (SUBPARTITION p_default_small VALUES LESS THAN (10)
 , SUBPARTITION p_default_medium VALUES LESS THAN (100)
 , SUBPARTITION p_default_high VALUES LESS THAN (MAXVALUE)
)
) ENABLE ROW MOVEMENT;

3.5.5 When to Use Interval Partitioning
Interval partitioning can be used for almost every table that is range partitioned and
uses fixed intervals for new partitions.

The database automatically creates interval partitions as data for that partition is
inserted. Until this happens, the interval partition exists but no segment is created for
the partition.

The benefit of interval partitioning is that you do not need to create your range
partitions explicitly. You should consider using interval partitioning unless you create
range partitions with different intervals, or if you always set specific partition attributes
when you create range partitions. You can specify a list of tablespaces in the interval
definition. The database creates interval partitions in the provided list of tablespaces in
a round-robin manner.

Chapter 3
Recommendations for Choosing a Partitioning Strategy

3-44

If you upgrade your application and you use range partitioning or composite range-*
partitioning, then you can easily change your existing table definition to use interval
partitioning. You cannot manually add partitions to an interval-partitioned table. If you have
automated the creation of new partitions, then in the future you must change your application
code to prevent the explicit creation of range partitions.

The following SQL statement initiates a change from range partitioning to using monthly
interval partitioning on the sales table.

ALTER TABLE sales SET INTERVAL (NUMTOYMINTERVAL(1,'MONTH'));

You cannot use interval partitioning with reference partitioned tables.

Serializable transactions do not work with interval partitioning. Inserting data into a partition of
an interval partitioned table that does not have a segment yet causes an error.

3.5.6 When to Use Reference Partitioning
Reference partitioning is useful in certain situations.

Reference partitioning is useful in the following scenarios:

• If you have denormalized, or would denormalize, a column from a master table into a
child table to get partition pruning benefits on both tables.

For example, your orders table stores the order_date, but the order_items table, which
stores one or more items for each order, does not. To get good performance for historical
analysis of orders data, you would traditionally duplicate the order_date column in the
order_items table to use partition pruning on the order_items table.

You should consider reference partitioning in such a scenario and avoid having to
duplicate the order_date column. Queries that join both tables and use a predicate on
order_date automatically benefit from partition pruning on both tables.

• If two large tables are joined frequently, then the tables are not partitioned on the join key,
but you want to take advantage of partition-wise joins.

Reference partitioning implicitly enables full partition-wise joins.

• If data in multiple tables has a related life cycle, then reference partitioning can provide
significant manageability benefits.

Partition management operations against the master table are automatically cascaded to
its descendents. For example, when you add a partition to the master table, that addition
is automatically propagated to all its descendents.

To use reference partitioning, you must enable and enforce the foreign key relationship
between the master table and the reference table in place. You can cascade reference-
partitioned tables.

The primary key-foreign key relationship must be enabled all the time and cannot be
disabled. Also the relationship cannot be declared as deferred. These are mandatory
requirements because the enabled primary key-foreign relationship is required to
determine the data placement for the child tables.

3.5.7 When to Partition on Virtual Columns
Partitioning on virtual columns provides more flexibility to partition on a derived column.

Chapter 3
Recommendations for Choosing a Partitioning Strategy

3-45

Virtual column partitioning enables you to partition on an expression, which may use
data from other columns, and perform calculations with these columns. PL/SQL
function calls are not supported in virtual column definitions that are to be used as a
partitioning key.

Virtual column partitioning supports all partitioning methods, plus performance and
manageability features. To get partition pruning benefits, consider using virtual
columns if tables are frequently accessed using a predicate that is not directly
captured in a column, but can be derived. Traditionally, to get partition pruning
benefits, you would have to add a separate column to capture and calculate the
correct value and ensure the column is always populated correctly to ensure correct
query retrieval.

Example 3-14 shows a car_rentals table. The customer's confirmation number
contains a two-character country name as the location where the rental car is picked
up. Rental car analyses usually evaluate regional patterns, so it makes sense to
partition by country.

In this example, the column country is defined as a virtual column derived from the
confirmation number. The virtual column does not require any storage. As the example
illustrates, row movement is supported with virtual columns. The database migrates a
row to a different partition if the virtual column evaluates to a different value in another
partition.

Example 3-14 Creating a table with virtual columns for partitioning

CREATE TABLE car_rentals
(id NUMBER NOT NULL
 , customer_id NUMBER NOT NULL
 , confirmation_number VARCHAR2(12) NOT NULL
 , car_id NUMBER
 , car_type VARCHAR2(10)
 , requested_car_type VARCHAR2(10) NOT NULL
 , reservation_date DATE NOT NULL
 , start_date DATE NOT NULL
 , end_date DATE
 , country as (substr(confirmation_number,9,2))
) PARTITION BY LIST (country)
SUBPARTITION BY HASH (customer_id)
SUBPARTITIONS 16
(PARTITION north_america VALUES ('US','CA','MX')
 , PARTITION south_america VALUES ('BR','AR','PE')
 , PARTITION europe VALUES ('GB','DE','NL','BE','FR','ES','IT','CH')
 , PARTITION apac VALUES ('NZ','AU','IN','CN')
) ENABLE ROW MOVEMENT;

3.5.8 Considerations When Using Read-Only Tablespaces
Review these considerations when using read-only tables.

When a referential integrity constraint is defined between parent and child tables, an
index is defined on the foreign key, and the tablespace in which that index resides is
made read-only, then the integrity check for the constraint is implemented in SQL and
not through consistent read buffer access.

The implication of this is if the child is partitioned and if only some child partitions have
their indexes in read-only tablespaces and if an insert is made into one nonread-only
child segment, then a TM enqueue is acquired on the child table in SX mode.

Chapter 3
Recommendations for Choosing a Partitioning Strategy

3-46

SX mode is incompatible with S requests, so that if you try to insert into the parent, it is
blocked because that insert attempts to acquire an S TM enqueue against the child.

Chapter 3
Recommendations for Choosing a Partitioning Strategy

3-47

4
Partition Administration

Partition administration is an important task when working with partitioned tables and
indexes.

This chapter describes various aspects of creating and maintaining partitioned tables and
indexes.

This chapter contains the following sections:

• Specifying Partitioning When Creating Tables and Indexes

• Specifying Composite Partitioning When Creating Tables

• Maintenance Operations Supported on Partitions

• Maintenance Operations for Partitioned Tables and Indexes

• About Dropping Partitioned Tables

• Changing a Nonpartitioned Table into a Partitioned Table

• Managing Hybrid Partitioned Tables

• Viewing Information About Partitioned Tables and Indexes

Note:

Before you attempt to create a partitioned table or index, or perform maintenance
operations on any partitioned table, it is recommended that you review the
information in Partitioning Concepts.

See Also:

Oracle Database SQL Language Reference for general restrictions on partitioning,
the exact syntax of the partitioning clauses for creating and altering partitioned
tables and indexes, any restrictions on their use, and specific privileges required for
creating and altering tables

4.1 Specifying Partitioning When Creating Tables and Indexes
Creating a partitioned table or index is very similar to creating a nonpartitioned table or index.

When creating a partitioned table or index, you include a partitioning clause in the CREATE
TABLE statement. The partitioning clause, and subclauses, that you include depend upon the
type of partitioning you want to achieve.

4-1

Partitioning is possible on both regular (heap organized) tables and index-organized
tables, except for those containing LONG or LONG RAW columns. You can create
nonpartitioned global indexes, range or hash partitioned global indexes, and local
indexes on partitioned tables.

When you create (or alter) a partitioned table, a row movement clause (either ENABLE
ROW MOVEMENT or DISABLE ROW MOVEMENT) can be specified. This clause either enables
or disables the migration of a row to a new partition if its key is updated. The default is
DISABLE ROW MOVEMENT.

You can specify up to a total of 1024K-1 partitions for a single-level partitioned tables,
or subpartitions for a composite partitioned table.

Creating automatic list composite partitioned tables and interval subpartitions can save
space because these methods only create subpartitions in the presence of data.
Deferring subpartition segment creation when creating new partitions on demand
ensures that a subpartition segment is only created when the first matching row is
inserted.

The following topics present details and examples of creating partitions for the various
types of partitioned tables and indexes:

• About Creating Range-Partitioned Tables and Global Indexes

• Creating Range-Interval-Partitioned Tables

• About Creating Hash Partitioned Tables and Global Indexes

• About Creating List-Partitioned Tables

• Creating Reference-Partitioned Tables

• Creating Interval-Reference Partitioned Tables

• Creating a Table Using In-Memory Column Store With Partitioning

• Creating a Table with Read-Only Partitions or Subpartitions

• Creating a Partitioned External Table

• Specifying Partitioning on Key Columns

• Using Virtual Column-Based Partitioning

• Using Table Compression with Partitioned Tables

• Using Key Compression with Partitioned Indexes

• Specifying Partitioning with Segments

• Specifying Partitioning When Creating Index-Organized Tables

• Partitioning Restrictions for Multiple Block Sizes

• Partitioning of Collections in XMLType and Objects

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-2

See Also:

• Oracle Database Administrator's Guide for information about managing tables

• Oracle Database SQL Language Reference for the exact syntax of the
partitioning clauses for creating and altering partitioned tables and indexes, any
restrictions on their use, and specific privileges required for creating and
altering tables

• Oracle Database SecureFiles and Large Objects Developer's Guide for
information specific to creating partitioned tables containing columns with LOBs
or other objects stored as LOBs

• Oracle Database Object-Relational Developer's Guide for information specific to
creating tables with object types, nested tables, or VARRAYs

4.1.1 About Creating Range-Partitioned Tables and Global Indexes
The PARTITION BY RANGE clause of the CREATE TABLE statement specifies that the table or
index is to be range-partitioned.

The PARTITION clauses identify the individual partition ranges, and the optional subclauses of
a PARTITION clause can specify physical and other attributes specific to a partition segment. If
not overridden at the partition level, partitions inherit the attributes of their underlying table.

The following topics are discussed:

• Creating a Range-Partitioned Table

• Creating a Range-Partitioned Table With More Complexity

• Creating a Range-Partitioned Global Index

4.1.1.1 Creating a Range-Partitioned Table
Use the PARTITION BY RANGE clause of the CREATE TABLE statement to create a range-
partitioned table.

Example 4-1 creates a table of four partitions, one for each quarter of sales. time_id is the
partitioning column, while its values constitute the partitioning key of a specific row. The
VALUES LESS THAN clause determines the partition bound: rows with partitioning key values
that compare less than the ordered list of values specified by the clause are stored in the
partition. Each partition is given a name (sales_q1_2006, sales_q2_2006, sales_q3_2006,
sales_q4_2006), and each partition is contained in a separate tablespace (tsa, tsb, tsc,
tsd). A row with time_id=17-MAR-2006 would be stored in partition sales_q1_2006.

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL: Creating a
Range Partitioned Table.

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-3

https://livesql.oracle.com/apex/livesql/docs/vldbg/partitioning/range-partitioning-example.html
https://livesql.oracle.com/apex/livesql/docs/vldbg/partitioning/range-partitioning-example.html

Example 4-1 Creating a range-partitioned table

CREATE TABLE sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
 PARTITION BY RANGE (time_id)
 (PARTITION sales_q1_2006 VALUES LESS THAN (TO_DATE('01-APR-2006','dd-MON-yyyy'))
 TABLESPACE tsa
 , PARTITION sales_q2_2006 VALUES LESS THAN (TO_DATE('01-JUL-2006','dd-MON-yyyy'))
 TABLESPACE tsb
 , PARTITION sales_q3_2006 VALUES LESS THAN (TO_DATE('01-OCT-2006','dd-MON-yyyy'))
 TABLESPACE tsc
 , PARTITION sales_q4_2006 VALUES LESS THAN (TO_DATE('01-JAN-2007','dd-MON-yyyy'))
 TABLESPACE tsd
);

4.1.1.2 Creating a Range-Partitioned Table With More Complexity
With attributes and storage parameters, more complexity can be added to the creation
of a range-partitioned table.

In Example 4-2, storage parameters and a LOGGING attribute are specified at the table
level. These replace the corresponding defaults inherited from the tablespace level for
the table itself, and are inherited by the range partitions. However, because there was
little business in the first quarter, the storage attributes for partition sales_q1_2006 are
made smaller. The ENABLE ROW MOVEMENT clause is specified to allow the automatic
migration of a row to a new partition if an update to a key value is made that would
place the row in a different partition.

Example 4-2 Creating a range-partitioned table with LOGGING and ENABLE ROW MOVEMENT

CREATE TABLE sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
 STORAGE (INITIAL 100K NEXT 50K) LOGGING
 PARTITION BY RANGE (time_id)
 (PARTITION sales_q1_2006 VALUES LESS THAN (TO_DATE('01-APR-2006','dd-MON-yyyy'))
 TABLESPACE tsa STORAGE (INITIAL 20K NEXT 10K)
 , PARTITION sales_q2_2006 VALUES LESS THAN (TO_DATE('01-JUL-2006','dd-MON-yyyy'))
 TABLESPACE tsb
 , PARTITION sales_q3_2006 VALUES LESS THAN (TO_DATE('01-OCT-2006','dd-MON-yyyy'))
 TABLESPACE tsc
 , PARTITION sales_q4_2006 VALUES LESS THAN (TO_DATE('01-JAN-2007','dd-MON-yyyy'))
 TABLESPACE tsd
)
 ENABLE ROW MOVEMENT;

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-4

4.1.1.3 Creating a Range-Partitioned Global Index
The rules for creating range-partitioned global indexes are similar to those for creating range-
partitioned tables.

Example 4-3 creates a range-partitioned global index on sale_month for the tables created in
the previous examples. Each index partition is named but is stored in the default tablespace
for the index.

Example 4-3 Creating a range-partitioned global index table

CREATE INDEX amount_sold_ix ON sales(amount_sold)
 GLOBAL PARTITION BY RANGE(sale_month)
 (PARTITION p_100 VALUES LESS THAN (100)
 , PARTITION p_1000 VALUES LESS THAN (1000)
 , PARTITION p_10000 VALUES LESS THAN (10000)
 , PARTITION p_100000 VALUES LESS THAN (100000)
 , PARTITION p_1000000 VALUES LESS THAN (1000000)
 , PARTITION p_greater_than_1000000 VALUES LESS THAN (maxvalue)
);

Note:

If your enterprise has databases using different character sets, use caution when
partitioning on character columns, because the sort sequence of characters is not
identical in all character sets. For more information, refer to Oracle Database
Globalization Support Guide

4.1.2 Creating Range-Interval-Partitioned Tables
The INTERVAL clause of the CREATE TABLE statement establishes interval partitioning for the
table.

You must specify at least one range partition using the PARTITION clause. The range
partitioning key value determines the high value of the range partitions, which is called the
transition point, and the database automatically creates interval partitions for data beyond
that transition point. The lower boundary of every interval partition is the non-inclusive upper
boundary of the previous range or interval partition.

For example, if you create an interval partitioned table with monthly intervals and the
transition point is at January 1, 2010, then the lower boundary for the January 2010 interval is
January 1, 2010. The lower boundary for the July 2010 interval is July 1, 2010, regardless of
whether the June 2010 partition was previously created. Note, however, that using a date
where the high or low bound of the partition would be out of the range set for storage causes
an error. For example, TO_DATE('9999-12-01', 'YYYY-MM-DD') causes the high bound to be
10000-01-01, which would not be storable if 10000 is out of the legal range.

The optional STORE IN clause lets you specify one or more tablespaces into which the
database stores interval partition data using a round-robin algorithm for subsequently created
interval partitions.

For interval partitioning, you can specify only one partitioning key column and the datatype is
restricted.

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-5

The following example specifies four partitions with varying interval widths. It also
specifies that above the transition point of January 1, 2010, partitions are created with
an interval width of one month. The high bound of partition p3 represents the transition
point. p3 and all partitions below it (p0, p1, and p2 in this example) are in the range
section while all partitions above it fall into the interval section.

CREATE TABLE interval_sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
 PARTITION BY RANGE (time_id)
 INTERVAL(NUMTOYMINTERVAL(1, 'MONTH'))
 (PARTITION p0 VALUES LESS THAN (TO_DATE('1-1-2008', 'DD-MM-YYYY')),
 PARTITION p1 VALUES LESS THAN (TO_DATE('1-1-2009', 'DD-MM-YYYY')),
 PARTITION p2 VALUES LESS THAN (TO_DATE('1-7-2009', 'DD-MM-YYYY')),
 PARTITION p3 VALUES LESS THAN (TO_DATE('1-1-2010', 'DD-MM-YYYY')));

See Also:

Oracle Database SQL Language Reference for restrictions on partitioning
keys, the exact syntax of the partitioning clauses for creating and altering
partitioned tables and indexes, any restrictions on their use, and specific
privileges required for creating and altering tables.

4.1.3 About Creating Hash Partitioned Tables and Global Indexes
The PARTITION BY HASH clause of the CREATE TABLE statement identifies that the table
is to be hash partitioned.

The PARTITIONS clause can then be used to specify the number of partitions to create,
and optionally, the tablespaces to store them in. Alternatively, you can use PARTITION
clauses to name the individual partitions and their tablespaces.

The only attribute you can specify for hash partitions is TABLESPACE. All of the hash
partitions of a table must share the same segment attributes (except TABLESPACE),
which are inherited from the table level.

The following topics are discussed:

• Creating a Hash Partitioned Table

• Creating a Hash Partitioned Global Index

4.1.3.1 Creating a Hash Partitioned Table
The example in this topic shows how to create a hash partitioned table.

The partitioning column is id, four partitions are created and assigned system
generated names, and they are placed in four named tablespaces (gear1, gear2,
gear3, gear4).

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-6

CREATE TABLE scubagear
 (id NUMBER,
 name VARCHAR2 (60))
 PARTITION BY HASH (id)
 PARTITIONS 4
 STORE IN (gear1, gear2, gear3, gear4);

In the following example, the number of partitions is specified when creating a hash
partitioned table, but system generated names are assigned to them and they are stored in
the default tablespace of the table.

CREATE TABLE departments_hash (department_id NUMBER(4) NOT NULL,
 department_name VARCHAR2(30))
 PARTITION BY HASH(department_id) PARTITIONS 16;

In the following example, names of individual partitions, and tablespaces in which they are to
reside, are specified. The initial extent size for each hash partition (segment) is also explicitly
stated at the table level, and all partitions inherit this attribute.

CREATE TABLE departments_hash (department_id NUMBER(4) NOT NULL,
 department_name VARCHAR2(30))
 STORAGE (INITIAL 10K)
 PARTITION BY HASH(department_id)
 (PARTITION p1 TABLESPACE ts1, PARTITION p2 TABLESPACE ts2,
 PARTITION p3 TABLESPACE ts1, PARTITION p4 TABLESPACE ts3);

If you create a local index for this table, the database constructs the index so that it is
equipartitioned with the underlying table. The database also ensures that the index is
maintained automatically when maintenance operations are performed on the underlying
table. The following is an example of creating a local index on a table:

CREATE INDEX loc_dept_ix ON departments_hash(department_id) LOCAL;

You can optionally name the hash partitions and tablespaces into which the local index
partitions are to be stored, but if you do not do so, then the database uses the name of the
corresponding base partition as the index partition name, and stores the index partition in the
same tablespace as the table partition.

See Also:

Specifying Partitioning on Key Columns for more information about partitioning on
key columns

4.1.3.2 Creating a Hash Partitioned Global Index
Hash partitioned global indexes can improve the performance of indexes where a small
number of leaf blocks in the index have high contention in multiuser OLTP environments.

Hash partitioned global indexes can also limit the impact of index skew on monotonously
increasing column values. Queries involving the equality and IN predicates on the index
partitioning key can efficiently use hash partitioned global indexes.

The syntax for creating a hash partitioned global index is similar to that used for a hash
partitioned table. For example, the statement in Example 4-4 creates a hash partitioned
global index:

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-7

Example 4-4 Creating a hash partitioned global index

CREATE INDEX hgidx ON tab (c1,c2,c3) GLOBAL
 PARTITION BY HASH (c1,c2)
 (PARTITION p1 TABLESPACE tbs_1,
 PARTITION p2 TABLESPACE tbs_2,
 PARTITION p3 TABLESPACE tbs_3,
 PARTITION p4 TABLESPACE tbs_4);

4.1.4 About Creating List-Partitioned Tables
The semantics for creating list partitions are very similar to those for creating range
partitions.

However, to create list partitions, you specify a PARTITION BY LIST clause in the
CREATE TABLE statement, and the PARTITION clauses specify lists of literal values,
which are the discrete values of the partitioning columns that qualify rows to be
included in the partition. For list partitioning, the partitioning key can be one or multiple
column names from the table.

Available only with list partitioning, you can use the keyword DEFAULT to describe the
value list for a partition. This identifies a partition that accommodates rows that do not
map into any of the other partitions.

As with range partitions, optional subclauses of a PARTITION clause can specify
physical and other attributes specific to a partition segment. If not overridden at the
partition level, partitions inherit the attributes of their parent table.

The following topics are discussed:

• Creating a List-Partitioned Table

• Creating a List-Partitioned Table With a Default Partition

• Creating an Automatic List-Partitioned Table

• Creating a Multi-column List-Partitioned Table

4.1.4.1 Creating a List-Partitioned Table
The example in this topic show how to create a list-partitioned table.

Example 4-5creates table q1_sales_by_region which is partitioned by regions
consisting of groups of US states. A row is mapped to a partition by checking whether
the value of the partitioning column for a row matches a value in the value list that
describes the partition. For example, the following list describes how some sample
rows are inserted into the table.

• (10, 'accounting', 100, 'WA') maps to partition q1_northwest

• (20, 'R&D', 150, 'OR') maps to partition q1_northwest

• (30, 'sales', 100, 'FL') maps to partition q1_southeast

• (40, 'HR', 10, 'TX') maps to partition q1_southwest

• (50, 'systems engineering', 10, 'CA') does not map to any partition in the table and
raises an error

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-8

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL: Creating a
List Partitioned Table.

Example 4-5 Creating a list-partitioned table

CREATE TABLE q1_sales_by_region
 (deptno number,
 deptname varchar2(20),
 quarterly_sales number(10, 2),
 state varchar2(2))
 PARTITION BY LIST (state)
 (PARTITION q1_northwest VALUES ('OR', 'WA'),
 PARTITION q1_southwest VALUES ('AZ', 'UT', 'NM'),
 PARTITION q1_northeast VALUES ('NY', 'VM', 'NJ'),
 PARTITION q1_southeast VALUES ('FL', 'GA'),
 PARTITION q1_northcentral VALUES ('SD', 'WI'),
 PARTITION q1_southcentral VALUES ('OK', 'TX'));

4.1.4.2 Creating a List-Partitioned Table With a Default Partition
Unlike range partitioning, with list partitioning, there is no apparent sense of order between
partitions.

You can also specify a default partition into which rows that do not map to any other
partition are mapped. If a default partition were specified in the preceding example, the state
CA would map to that partition.

Example 4-6 creates table sales_by_region and partitions it using the list method. The first
two PARTITION clauses specify physical attributes, which override the table-level defaults. The
remaining PARTITION clauses do not specify attributes and those partitions inherit their
physical attributes from table-level defaults. A default partition is also specified.

Example 4-6 Creating a list-partitioned table with a default partition

CREATE TABLE sales_by_region (item# INTEGER, qty INTEGER,
 store_name VARCHAR(30), state_code VARCHAR(2),
 sale_date DATE)
 STORAGE(INITIAL 10K NEXT 20K) TABLESPACE tbs5
 PARTITION BY LIST (state_code)
 (
 PARTITION region_east
 VALUES ('MA','NY','CT','NH','ME','MD','VA','PA','NJ')
 STORAGE (INITIAL 8M)
 TABLESPACE tbs8,
 PARTITION region_west
 VALUES ('CA','AZ','NM','OR','WA','UT','NV','CO')
 NOLOGGING,
 PARTITION region_south
 VALUES ('TX','KY','TN','LA','MS','AR','AL','GA'),
 PARTITION region_central
 VALUES ('OH','ND','SD','MO','IL','MI','IA'),
 PARTITION region_null
 VALUES (NULL),
 PARTITION region_unknown

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-9

https://livesql.oracle.com/apex/livesql/docs/vldbg/partitioning/list-partitioning-example.html
https://livesql.oracle.com/apex/livesql/docs/vldbg/partitioning/list-partitioning-example.html

 VALUES (DEFAULT)
);

4.1.4.3 Creating an Automatic List-Partitioned Table
The automatic list partitioning method enables list partition creation on demand.

An auto-list partitioned table is similar to a regular list partitioned table, except that this
partitioned table is easier to manage. You can create an auto-list partitioned table
using only the partitioning key values that are known. As data is loaded into the table,
the database automatically creates a new partition if the loaded partitioning key value
does not correspond to any of the existing partitions. Because partitions are
automatically created on demand, the auto-list partitioning method is conceptually
similar to the existing interval partitioning method.

Automatic list partitioning on data types whose value changes very frequently are less
suitable for this method unless you can adjust the data. For example, a SALES_DATE
field with a date value, when the format is not stripped, would increase every second.
Each of the SALES_DATE values, such as 05-22-2016 08:00:00, 05-22-2016 08:00:01,
and so on, would generate its own partition. To avoid the creation of a very large
number of partitions, you must be aware of the data that would be entered and adjust
accordingly. As an example, you can truncate the SALES_DATE date value to a day or
some other time period, depending on the number of partitions required.

The CREATE and ALTER TABLE SQL statements are updated with an additional clause to
specify AUTOMATIC or MANUAL list partitioning. An automatic list-partitioned table must
have at least one partition when created. Because new partitions are automatically
created for new, and unknown, partition key values, an automatic list partition cannot
have a DEFAULT partition.

You can check the AUTOLIST column of the *_PART_TABLES view to determine whether
a table is automatic list-partitioned.

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL:
Creating an Automatic List-Partitioned Table.

Example 4-7 is an example of the CREATE TABLE statement using the AUTOMATIC
keyword for auto-list partitioning on the sales_state field. The CREATE TABLE SQL
statement creates at least one partition as required. As additional rows are inserted,
the number of partitions increases when a new sales_state value is added.

Example 4-7 Creating an automatic list partitioned table

CREATE TABLE sales_auto_list
(
 salesman_id NUMBER(5) NOT NULL,
 salesman_name VARCHAR2(30),
 sales_state VARCHAR2(20) NOT NULL,
 sales_amount NUMBER(10),
 sales_date DATE NOT NULL
)
 PARTITION BY LIST (sales_state) AUTOMATIC
 (PARTITION P_CAL VALUES ('CALIFORNIA')

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-10

https://livesql.oracle.com/apex/livesql/docs/vldbg/partitioning/create-auto-list-partition.html
https://livesql.oracle.com/apex/livesql/docs/vldbg/partitioning/create-auto-list-partition.html

);

SELECT TABLE_NAME, PARTITIONING_TYPE, AUTOLIST, PARTITION_COUNT FROM USER_PART_TABLES WHERE TABLE_NAME
='SALES_AUTO_LIST';
TABLE_NAME PARTITIONING_TYPE AUTOLIST PARTITION_COUNT
---------------- ----------------- -------- ---------------
SALES_AUTO_LIST LIST YES 1

SELECT TABLE_NAME, PARTITION_NAME, HIGH_VALUE FROM USER_TAB_PARTITIONS WHERE TABLE_NAME
='SALES_AUTO_LIST';

TABLE_NAME PARTITION_NAME HIGH_VALUE
–--------------- –-------------- –---------------
SALES_AUTO_LIST P_CAL 'CALIFORNIA'

INSERT INTO SALES_AUTO_LIST VALUES(021, 'Mary Smith', 'FLORIDA', 41000, TO_DATE ('21-DEC-2018','DD-MON-
YYYY'));
1 row inserted.

INSERT INTO SALES_AUTO_LIST VALUES(032, 'Luis Vargas', 'MICHIGAN', 42000, TO_DATE ('31-DEC-2018','DD-
MON-YYYY'));
1 row inserted.

SELECT TABLE_NAME, PARTITIONING_TYPE, AUTOLIST, PARTITION_COUNT FROM USER_PART_TABLES WHERE TABLE_NAME
='SALES_AUTO_LIST';
TABLE_NAME PARTITIONING_TYPE AUTOLIST PARTITION_COUNT
---------------- ----------------- -------- ---------------
SALES_AUTO_LIST LIST YES 3

INSERT INTO SALES_AUTO_LIST VALUES(015, 'Simone Blair', 'CALIFORNIA', 45000, TO_DATE ('11-JAN-2019','DD-
MON-YYYY'));
1 row inserted.

INSERT INTO SALES_AUTO_LIST VALUES(015, 'Simone Blair', 'OREGON', 38000, TO_DATE ('18-JAN-2019','DD-MON-
YYYY'));
1 row inserted.

SELECT TABLE_NAME, PARTITIONING_TYPE, AUTOLIST,PARTITION_COUNT FROM USER_PART_TABLES WHERE TABLE_NAME
='SALES_AUTO_LIST';
TABLE_NAME PARTITIONING_TYPE AUTOLIST PARTITION_COUNT
---------------- ----------------- -------- ---------------
SALES_AUTO_LIST LIST YES 4

SELECT TABLE_NAME, PARTITION_NAME, HIGH_VALUE FROM USER_TAB_PARTITIONS WHERE TABLE_NAME
='SALES_AUTO_LIST';
TABLE_NAME PARTITION_NAME HIGH_VALUE
–--------------- –-------------- –---------------
SALES_AUTO_LIST P_CAL 'CALIFORNIA'
SALES_AUTO_LIST SYS_P478 'FLORIDA'
SALES_AUTO_LIST SYS_P479 'MICHIGAN'
SALES_AUTO_LIST SYS_P480 'OREGON'

See Also:

Oracle Database Reference for information about *_PART_TABLES view

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-11

4.1.4.4 Creating a Multi-column List-Partitioned Table
Multi-column list partitioning enables you to partition a table based on list values of
multiple columns.

Similar to single-column list partitioning, individual partitions can contain sets
containing lists of values.

Multi-column list partitioning is supported on a table using the PARTITION BY LIST
clause on multiple columns of a table. For example:

PARTITION BY LIST (column1,column2)

A multi-column list-partitioned table can only have one DEFAULT partition.

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL:
Creating a Multicolumn List-Partitioned Table.

The following is an example of the CREATE TABLE statement using multi-column
partitioning on the state and channel columns.

Example 4-8 Creating a multicolumn list-partitioned table

CREATE TABLE sales_by_region_and_channel
 (dept_number NUMBER NOT NULL,
 dept_name VARCHAR2(20),
 quarterly_sales NUMBER(10,2),
 state VARCHAR2(2),
 channel VARCHAR2(1)
)
 PARTITION BY LIST (state, channel)
 (
 PARTITION yearly_west_direct VALUES (('OR','D'),('UT','D'),('WA','D')),
 PARTITION yearly_west_indirect VALUES (('OR','I'),('UT','I'),('WA','I')),
 PARTITION yearly_south_direct VALUES (('AZ','D'),('TX','D'),('GA','D')),
 PARTITION yearly_south_indirect VALUES (('AZ','I'),('TX','I'),('GA','I')),
 PARTITION yearly_east_direct VALUES (('PA','D'), ('NC','D'), ('MA','D')),
 PARTITION yearly_east_indirect VALUES (('PA','I'), ('NC','I'), ('MA','I')),
 PARTITION yearly_north_direct VALUES (('MN','D'),('WI','D'),('MI','D')),
 PARTITION yearly_north_indirect VALUES (('MN','I'),('WI','I'),('MI','I')),
 PARTITION yearly_ny_direct VALUES ('NY','D'),
 PARTITION yearly_ny_indirect VALUES ('NY','I'),
 PARTITION yearly_ca_direct VALUES ('CA','D'),
 PARTITION yearly_ca_indirect VALUES ('CA','I'),
 PARTITION rest VALUES (DEFAULT)
);

SELECT PARTITION_NAME, HIGH_VALUE FROM USER_TAB_PARTITIONS WHERE TABLE_NAME
='SALES_BY_REGION_AND_CHANNEL';
PARTITION_NAME HIGH_VALUE
--------------------- ---
REST DEFAULT
YEARLY_CA_DIRECT ('CA', 'D')
YEARLY_CA_INDIRECT ('CA', 'I')

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-12

https://livesql.oracle.com/apex/livesql/docs/vldbg/partitioning/create-multicolumn-list.html
https://livesql.oracle.com/apex/livesql/docs/vldbg/partitioning/create-multicolumn-list.html

YEARLY_EAST_DIRECT ('PA', 'D'), ('NC', 'D'), ('MA', 'D')
YEARLY_EAST_INDIRECT ('PA', 'I'), ('NC', 'I'), ('MA', 'I')
YEARLY_NORTH_DIRECT ('MN', 'D'), ('WI', 'D'), ('MI', 'D')
YEARLY_NORTH_INDIRECT ('MN', 'I'), ('WI', 'I'), ('MI', 'I')
YEARLY_NY_DIRECT ('NY', 'D')
YEARLY_NY_INDIRECT ('NY', 'I')
YEARLY_SOUTH_DIRECT ('AZ', 'D'), ('TX', 'D'), ('GA', 'D')
YEARLY_SOUTH_INDIRECT ('AZ', 'I'), ('TX', 'I'), ('GA', 'I')
YEARLY_WEST_DIRECT ('OR', 'D'), ('UT', 'D'), ('WA', 'D')
YEARLY_WEST_INDIRECT ('OR', 'I'), ('UT', 'I'), ('WA', 'I')
13 rows selected.

INSERT INTO SALES_BY_REGION_AND_CHANNEL VALUES (005, 'AUTO DIRECT', 701000, 'OR', 'D');
INSERT INTO SALES_BY_REGION_AND_CHANNEL VALUES (006, 'AUTO INDIRECT', 1201000, 'OR', 'I');
INSERT INTO SALES_BY_REGION_AND_CHANNEL VALUES (005, 'AUTO DIRECT', 625000, 'WA', 'D');
INSERT INTO SALES_BY_REGION_AND_CHANNEL VALUES (006, 'AUTO INDIRECT', 945000, 'WA', 'I');
INSERT INTO SALES_BY_REGION_AND_CHANNEL VALUES (005, 'AUTO DIRECT', 595000, 'UT', 'D');
INSERT INTO SALES_BY_REGION_AND_CHANNEL VALUES (006, 'AUTO INDIRECT', 825000, 'UT', 'I');
INSERT INTO SALES_BY_REGION_AND_CHANNEL VALUES (003, 'AUTO DIRECT', 1950000, 'CA', 'D');
INSERT INTO SALES_BY_REGION_AND_CHANNEL VALUES (004, 'AUTO INDIRECT', 5725000, 'CA', 'I');
INSERT INTO SALES_BY_REGION_AND_CHANNEL VALUES (010, 'AUTO DIRECT', 925000, 'IL', 'D');
INSERT INTO SALES_BY_REGION_AND_CHANNEL VALUES (010, 'AUTO INDIRECT', 3250000, 'IL', 'I');

SELECT DEPT_NUMBER, DEPT_NAME, QUARTERLY_SALES, STATE, CHANNEL FROM SALES_BY_REGION_AND_CHANNEL
PARTITION(yearly_west_direct);
DEPT_NUMBER DEPT_NAME QUARTERLY_SALES ST C
----------- -------------------- --------------- -- -
 5 AUTO DIRECT 701000 OR D
 5 AUTO DIRECT 625000 WA D
 5 AUTO DIRECT 595000 UT D

SELECT DEPT_NUMBER, DEPT_NAME, QUARTERLY_SALES, STATE, CHANNEL FROM SALES_BY_REGION_AND_CHANNEL
PARTITION(yearly_west_indirect);
DEPT_NUMBER DEPT_NAME QUARTERLY_SALES ST C
----------- -------------------- --------------- -- -
 6 AUTO INDIRECT 1201000 OR I
 6 AUTO INDIRECT 945000 WA I
 6 AUTO INDIRECT 825000 UT I

SELECT DEPT_NUMBER, DEPT_NAME, QUARTERLY_SALES, STATE, CHANNEL FROM SALES_BY_REGION_AND_CHANNEL
PARTITION(yearly_ca_direct);
DEPT_NUMBER DEPT_NAME QUARTERLY_SALES ST C
----------- -------------------- --------------- -- -
 3 AUTO DIRECT 1950000 CA D

SELECT DEPT_NUMBER, DEPT_NAME, QUARTERLY_SALES, STATE, CHANNEL FROM SALES_BY_REGION_AND_CHANNEL
PARTITION(yearly_ca_indirect);
DEPT_NUMBER DEPT_NAME QUARTERLY_SALES ST C
----------- -------------------- --------------- -- -
 4 AUTO INDIRECT 5725000 CA I

SELECT DEPT_NUMBER, DEPT_NAME, QUARTERLY_SALES, STATE, CHANNEL FROM SALES_BY_REGION_AND_CHANNEL
PARTITION(rest);
DEPT_NUMBER DEPT_NAME QUARTERLY_SALES ST C
----------- -------------------- --------------- -- -
 10 AUTO DIRECT 925000 IL D
 10 AUTO INDIRECT 3250000 IL I

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-13

4.1.5 Creating Reference-Partitioned Tables
To create a reference-partitioned table, you specify a PARTITION BY REFERENCE clause
in the CREATE TABLE statement.

The PARTITION BY REFERENCE clause specifies the name of a referential constraint and
this constraint becomes the partitioning referential constraint that is used as the basis
for reference partitioning in the table. The referential constraint must be enabled and
enforced.

As with other partitioned tables, you can specify object-level default attributes, and you
can optionally specify partition descriptors that override the object-level defaults on a
per-partition basis.

Example 4-9 creates a parent table orders which is range-partitioned on order_date.
The reference-partitioned child table order_items is created with four partitions,
Q1_2005, Q2_2005, Q3_2005, and Q4_2005, where each partition contains the
order_items rows corresponding to orders in the respective parent partition.

If partition descriptors are provided, then the number of partitions described must
exactly equal the number of partitions or subpartitions in the referenced table. If the
parent table is a composite partitioned table, then the table has one partition for each
subpartition of its parent; otherwise the table has one partition for each partition of its
parent.

Partition bounds cannot be specified for the partitions of a reference-partitioned table.

The partitions of a reference-partitioned table can be named. If a partition is not
explicitly named, then it inherits its name from the corresponding partition in the parent
table, unless this inherited name conflicts with an existing explicit name. In this case,
the partition has a system-generated name.

Partitions of a reference-partitioned table collocate with the corresponding partition of
the parent table, if no explicit tablespace is specified for the reference-partitioned
table's partition.

Example 4-9 Creating reference-partitioned tables

CREATE TABLE orders
 (order_id NUMBER(12),
 order_date DATE,
 order_mode VARCHAR2(8),
 customer_id NUMBER(6),
 order_status NUMBER(2),
 order_total NUMBER(8,2),
 sales_rep_id NUMBER(6),
 promotion_id NUMBER(6),
 CONSTRAINT orders_pk PRIMARY KEY(order_id)
)
 PARTITION BY RANGE(order_date)
 (PARTITION Q1_2005 VALUES LESS THAN (TO_DATE('01-APR-2005','DD-MON-YYYY')),
 PARTITION Q2_2005 VALUES LESS THAN (TO_DATE('01-JUL-2005','DD-MON-YYYY')),
 PARTITION Q3_2005 VALUES LESS THAN (TO_DATE('01-OCT-2005','DD-MON-YYYY')),
 PARTITION Q4_2005 VALUES LESS THAN (TO_DATE('01-JAN-2006','DD-MON-YYYY'))
);

CREATE TABLE order_items
 (order_id NUMBER(12) NOT NULL,

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-14

 line_item_id NUMBER(3) NOT NULL,
 product_id NUMBER(6) NOT NULL,
 unit_price NUMBER(8,2),
 quantity NUMBER(8),
 CONSTRAINT order_items_fk
 FOREIGN KEY(order_id) REFERENCES orders(order_id)
)
 PARTITION BY REFERENCE(order_items_fk);

4.1.6 Creating Interval-Reference Partitioned Tables
You can use interval partitioned tables as parent tables for reference partitioning. Partitions in
a reference-partitioned table corresponding to interval partitions in the parent table are
created when inserting records into the reference partitioned table.

When creating an interval partition in a child table, the partition name is inherited from the
associated parent table fragment. If the child table has a table-level default tablespace, then it
is used as tablespace for the new interval partition; otherwise, the tablespace is inherited
from the parent table fragment.

The SQL ALTER TABLE SET INTERVAL statement is not allowed for reference-partitioned tables,
but can be run on tables that have reference-partitioned children. In particular, ALTER TABLE
SET INTERVAL removes the interval property from the targeted table and converts any interval-
reference children to ordinary reference-partitioned tables. Also, the SQL ALTER TABLE SET
STORE IN statement is not allowed for reference-partitioned tables, but can be run on tables
that have reference-partitioned children.

Operations that transform interval partitions to conventional partitions in the parent table,
such as ALTER TABLE SPLIT PARTITION on an interval partition, construct the corresponding
transformation in the child table, creating partitions in the child table as necessary.

For example, the following SQL statements provides three interval partitions in the parent
table and none in the child table:

CREATE TABLE par(pk INT CONSTRAINT par_pk PRIMARY KEY, i INT)
 PARTITION BY RANGE(i) INTERVAL (10)
 (PARTITION p1 VALUES LESS THAN (10));

CREATE TABLE chi(fk INT NOT NULL, i INT,
 CONSTRAINT chi_fk FOREIGN KEY(fk) REFERENCES par(pk))
 PARTITION BY REFERENCE(chi_fk);

INSERT INTO par VALUES(15, 15);
INSERT INTO par VALUES(25, 25);
INSERT INTO par VALUES(35, 35);

You can display information about partitions with the USER_TAB_PARTITIONS view:

SELECT table_name, partition_position, high_value, interval
 FROM USER_TAB_PARTITIONS WHERE table_name IN ('PAR', 'CHI')
 ORDER BY 1, 2;

TABLE_NAME PARTITION_POSITION HIGH_VALUE INT
---------------- ------------------ ---------- ---
CHI 1 NO
PAR 1 10 NO
PAR 2 20 YES
PAR 3 30 YES
PAR 4 40 YES

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-15

If the interval partition is split in the parent table, then some interval partitions are
converted to conventional partitions for all tables in the hierarchy, creating
conventional partitions in the child table in the process. For example:

ALTER TABLE par SPLIT PARTITION FOR (25) AT (25)
 INTO (partition x, partition y);

SELECT table_name, partition_position, high_value, interval
 FROM USER_TAB_PARTITIONS WHERE table_name IN ('PAR', 'CHI')
 ORDER BY 1, 2;

TABLE_NAME PARTITION_POSITION HIGH_VALUE INT
---------------- ------------------ ---------- ---
CHI 1 NO
CHI 2 NO
CHI 3 NO
CHI 4 NO
PAR 1 10 NO
PAR 2 20 NO
PAR 3 25 NO
PAR 4 30 NO
PAR 5 40 YES

Interval-reference functionality requires that the database compatibility level (Oracle
Database COMPATIBLE initialization parameter setting) be set to greater than or equal to
12.0.0.0.

4.1.7 Creating a Table Using In-Memory Column Store With
Partitioning

You can create a partitioned table using the In-Memory Column Store with the
INMEMORY clause.

The following example specifies that individual partitions are loaded into the In-
Memory Column Store using the INMEMORY clause with the partitioning clauses of the
CREATE TABLE SQL statements.

CREATE TABLE list_customers
 (customer_id NUMBER(6)
 , cust_first_name VARCHAR2(20)
 , cust_last_name VARCHAR2(20)
 , cust_address CUST_ADDRESS_TYP
 , nls_territory VARCHAR2(30)
 , cust_email VARCHAR2(40))
 PARTITION BY LIST (nls_territory) (
 PARTITION asia VALUES ('CHINA', 'THAILAND')
 INMEMORY MEMCOMPRESS FOR CAPACITY HIGH,
 PARTITION europe VALUES ('GERMANY', 'ITALY', 'SWITZERLAND')
 INMEMORY MEMCOMPRESS FOR CAPACITY LOW,
 PARTITION west VALUES ('AMERICA')
 INMEMORY MEMCOMPRESS FOR CAPACITY LOW,
 PARTITION east VALUES ('INDIA')
 INMEMORY MEMCOMPRESS FOR CAPACITY HIGH,
 PARTITION rest VALUES (DEFAULT);

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-16

See Also:

• Oracle Database In-Memory Guide for overview information about In-Memory
Column Store

• Oracle Database In-Memory Guide for information about enabling objects for
population in the In-Memory Column Store and ADO support

• Oracle Database SQL Language Reference for information about SQL syntax
related to In-Memory Column Store

4.1.8 Creating a Table with Read-Only Partitions or Subpartitions
You can set tables, partitions, and subpartitions to read-only status to protect data from
unintentional DML operations by any user or trigger.

Any attempt to update data in a partition or subpartition that is set to read only results in an
error, while updating data in partitions or subpartitions that are set to read write succeeds.

The CREATE TABLE and ALTER TABLE SQL statements provide a read-only clause for partitions
and subpartitions. The values of the read-only clause can be READ ONLY or READ WRITE. READ
WRITE is the default value. A higher level setting of the read-only clause is applied to partitions
and subpartitions unless the read-only clause has been explicitly set for a partition or
subpartition.

The following is an example of a creating a composite range-list partitioned table with both
read-only and read-write status. The orders_read_write_only is explicitly specified as READ
WRITE, so the default attribute of the table is read write. The default attribute of partition
order_p1 is specified as read only, so the subpartitions ord_p1_northwest and
order_p1_southwest inherit read only status from partition order_p1. Subpartitions
ord_p2_southwest and order_p3_northwest are explicitly specified as read only, overriding
the default read write status.

Example 4-10 Creating a table with read-only and read-write partitions

CREATE TABLE orders_read_write_only (
 order_id NUMBER (12),
 order_date DATE CONSTRAINT order_date_nn NOT NULL,
 state VARCHAR2(2)
) READ WRITE
 PARTITION BY RANGE (order_date)
 SUBPARTITION BY LIST (state)
 (PARTITION order_p1 VALUES LESS THAN (TO_DATE ('01-DEC-2015','DD-MON-YYYY'))
READ ONLY
 (SUBPARTITION order_p1_northwest VALUES ('OR', 'WA'),
 SUBPARTITION order_p1_southwest VALUES ('AZ', 'UT', 'NM')
),
 PARTITION order_p2 VALUES LESS THAN (TO_DATE ('01-MAR-2016','DD-MON-YYYY'))
 (SUBPARTITION order_p2_northwest VALUES ('OR', 'WA'),
 SUBPARTITION order_p2_southwest VALUES ('AZ', 'UT', 'NM') READ ONLY
),
 PARTITION order_p3 VALUES LESS THAN (TO_DATE ('01-JUL-2016','DD-MON-YYYY'))
 (
 SUBPARTITION order_p3_northwest VALUES ('OR', 'WA') READ ONLY,
 SUBPARTITION order_p3_southwest VALUES ('AZ', 'UT', 'NM')

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-17

)
);

You can check the read-only status with the DEF_READ_ONLY column of the
*_PART_TABLES view, the READ_ONLY column of the *_TAB_PARTITIONS view, and the
READ_ONLY column of the *_TAB_SUBPARTITIONS view. Note that only physical
segments, partitions for single-level partitioning and subpartitions for composite
partitioning, have a status. All other levels are logical and only have a default status.

SQL> SELECT PARTITION_NAME, READ_ONLY FROM USER_TAB_PARTITIONS WHERE TABLE_NAME
='ORDERS_READ_WRITE_ONLY';
PARTITION_NAME READ
------------------------------- ----
ORDER_P1 YES
ORDER_P2 NONE
ORDER_P3 NONE

SQL> SELECT PARTITION_NAME, SUBPARTITION_NAME, READ_ONLY FROM
USER_TAB_SUBPARTITIONS WHERE TABLE_NAME ='ORDERS_READ_WRITE_ONLY';
PARTITION_NAME SUBPARTITION_NAME REA
------------------------------ ----------------------------- ---
ORDER_P1 ORDER_P1_NORTHWEST YES
ORDER_P1 ORDER_P1_SOUTHWEST YES
ORDER_P2 ORDER_P2_NORTHWEST NO
ORDER_P2 ORDER_P2_SOUTHWEST YES
ORDER_P3 ORDER_P3_NORTHWEST YES
ORDER_P3 ORDER_P3_SOUTHWEST NO

See Also:

Oracle Database Reference for information about *_PART_TABLES,
*_TAB_PARTITIONS, and *_TAB_SUBPARTITIONS views

4.1.9 Creating a Partitioned External Table
You can create partitions for an external table.

The organization external clause identifies the table as external table, followed by the
specification and access parameters of the external table. While parameters, such as
the default directory; can be overridden on a partition or subpartition level, the external
table type and its access parameters are table-level attributes and applicable to all
partitions or subpartitions.

The table created in Example 4-11 has three partitions for external data accessed from
different locations. Partition p1 stores customer data for California, located in the
default directory of the table. Partition p2 points to a file storing data for Washington.
Partition p3 does not have a file descriptor and is empty.

Example 4-11 Creating a Partitioned External Table

CREATE TABLE sales (loc_id number, prod_id number, cust_id number, amount_sold
number, quantity_sold number)
 ORGANIZATION EXTERNAL
 (TYPE oracle_loader
 DEFAULT DIRECTORY load_d1
 ACCESS PARAMETERS

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-18

 (RECORDS DELIMITED BY NEWLINE CHARACTERSET US7ASCII
 NOBADFILE
 LOGFILE log_dir:'sales.log'
 FIELDS TERMINATED BY ","
)
)
 REJECT LIMIT UNLIMITED
 PARTITION BY RANGE (loc_id)
 (PARTITION p1 VALUES LESS THAN (1000) LOCATION ('california.txt'),
 PARTITION p2 VALUES LESS THAN (2000) DEFAULT DIRECTORY load_d2 LOCATION
('washington.txt'),
 PARTITION p3 VALUES LESS THAN (3000))
;

See Also:

Oracle Database Administrator’s Guide for information about partitioning external
tables

4.1.10 Specifying Partitioning on Key Columns
For range-partitioned and hash partitioned tables, you can specify up to 16 partitioning key
columns.

Use multicolumn partitioning when the partitioning key is composed of several columns and
subsequent columns define a higher granularity than the preceding ones. The most common
scenario is a decomposed DATE or TIMESTAMP key, consisting of separated columns, for year,
month, and day.

In evaluating multicolumn partitioning keys, the database uses the second value only if the
first value cannot uniquely identify a single target partition, and uses the third value only if the
first and second do not determine the correct partition, and so forth. A value cannot
determine the correct partition only when a partition bound exactly matches that value and
the same bound is defined for the next partition. The nth column is investigated only when all
previous (n-1) values of the multicolumn key exactly match the (n-1) bounds of a partition. A
second column, for example, is evaluated only if the first column exactly matches the partition
boundary value. If all column values exactly match all of the bound values for a partition, then
the database determines that the row does not fit in this partition and considers the next
partition for a match.

For nondeterministic boundary definitions (successive partitions with identical values for at
least one column), the partition boundary value becomes an inclusive value, representing a
"less than or equal to" boundary. This is in contrast to deterministic boundaries, where the
values are always regarded as "less than" boundaries.

The following topics are discussed:

• Creating a Multicolumn Range-Partitioned Table By Date

• Creating a Multicolumn Range-Partitioned Table to Enforce Equal-Sized Partitions

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-19

4.1.10.1 Creating a Multicolumn Range-Partitioned Table By Date
The example in this topic shows how to create a multicolumn range-partitioned table
by date.

Example 4-12 illustrates the column evaluation for a multicolumn range-partitioned
table, storing the actual DATE information in three separate columns: year, month, and
day. The partitioning granularity is a calendar quarter. The partitioned table being
evaluated is created as follows:

The year value for 12-DEC-2000 satisfied the first partition, before2001, so no further
evaluation is needed:

SELECT * FROM sales_demo PARTITION(before2001);

 YEAR MONTH DAY AMOUNT_SOLD
---------- ---------- ---------- -----------
 2000 12 12 1000

The information for 17-MAR-2001 is stored in partition q1_2001. The first partitioning
key column, year, does not by itself determine the correct partition, so the second
partitioning key column, month, must be evaluated.

SELECT * FROM sales_demo PARTITION(q1_2001);

 YEAR MONTH DAY AMOUNT_SOLD
---------- ---------- ---------- -----------
 2001 3 17 2000

Following the same determination rule as for the previous record, the second column,
month, determines partition q4_2001 as correct partition for 1-NOV-2001:

SELECT * FROM sales_demo PARTITION(q4_2001);

 YEAR MONTH DAY AMOUNT_SOLD
---------- ---------- ---------- -----------
 2001 11 1 5000

The partition for 01-JAN-2002 is determined by evaluating only the year column, which
indicates the future partition:

SELECT * FROM sales_demo PARTITION(future);

 YEAR MONTH DAY AMOUNT_SOLD
---------- ---------- ---------- -----------
 2002 1 1 4000

If the database encounters MAXVALUE in a partitioning key column, then all other values
of subsequent columns become irrelevant. That is, a definition of partition future in
the preceding example, having a bound of (MAXVALUE,0) is equivalent to a bound of
(MAXVALUE,100) or a bound of (MAXVALUE,MAXVALUE).

Example 4-12 Creating a multicolumn range-partitioned table

CREATE TABLE sales_demo (
 year NUMBER,
 month NUMBER,
 day NUMBER,
 amount_sold NUMBER)

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-20

PARTITION BY RANGE (year,month)
 (PARTITION before2001 VALUES LESS THAN (2001,1),
 PARTITION q1_2001 VALUES LESS THAN (2001,4),
 PARTITION q2_2001 VALUES LESS THAN (2001,7),
 PARTITION q3_2001 VALUES LESS THAN (2001,10),
 PARTITION q4_2001 VALUES LESS THAN (2002,1),
 PARTITION future VALUES LESS THAN (MAXVALUE,0));

REM 12-DEC-2000
INSERT INTO sales_demo VALUES(2000,12,12, 1000);
REM 17-MAR-2001
INSERT INTO sales_demo VALUES(2001,3,17, 2000);
REM 1-NOV-2001
INSERT INTO sales_demo VALUES(2001,11,1, 5000);
REM 1-JAN-2002
INSERT INTO sales_demo VALUES(2002,1,1, 4000);

4.1.10.2 Creating a Multicolumn Range-Partitioned Table to Enforce Equal-Sized
Partitions

The example in this topic shows how to create a multicolumn range-partitioned table to
enforce equal-sized partitions.

The following example illustrates the use of a multicolumn partitioned approach for table
supplier_parts, storing the information about which suppliers deliver which parts. To
distribute the data in equal-sized partitions, it is not sufficient to partition the table based on
the supplier_id, because some suppliers might provide hundreds of thousands of parts,
while others provide only a few specialty parts. Instead, you partition the table on
(supplier_id, partnum) to manually enforce equal-sized partitions.

Every row with supplier_id < 10 is stored in partition p1, regardless of the partnum value.
The column partnum is evaluated only if supplier_id =10, and the corresponding rows are
inserted into partition p1, p2, or even into p3 when partnum >=200. To achieve equal-sized
partitions for ranges of supplier_parts, you could choose a composite range-hash
partitioned table, range partitioned by supplier_id, hash subpartitioned by partnum.

Defining the partition boundaries for multicolumn partitioned tables must obey some rules.
For example, consider a table that is range partitioned on three columns a, b, and c. The
individual partitions have range values represented as follows:

P0(a0, b0, c0)
P1(a1, b1, c1)
P2(a2, b2, c2)
...
Pn(an, bn, cn)

The range values you provide for each partition must follow these rules:

• a0 must be less than or equal to a1, and a1 must be less than or equal to a2, and so on.

• If a0=a1, then b0 must be less than or equal to b1. If a0 < a1, then b0 and b1 can have
any values. If a0=a1 and b0=b1, then c0 must be less than or equal to c1. If b0<b1, then
c0 and c1 can have any values, and so on.

• If a1=a2, then b1 must be less than or equal to b2. If a1<a2, then b1 and b2 can have any
values. If a1=a2 and b1=b2, then c1 must be less than or equal to c2. If b1<b2, then c1
and c2 can have any values, and so on.

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-21

CREATE TABLE supplier_parts (
 supplier_id NUMBER,
 partnum NUMBER,
 price NUMBER)
PARTITION BY RANGE (supplier_id, partnum)
 (PARTITION p1 VALUES LESS THAN (10,100),
 PARTITION p2 VALUES LESS THAN (10,200),
 PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE));

The following three records are inserted into the table:

INSERT INTO supplier_parts VALUES (5,5, 1000);
INSERT INTO supplier_parts VALUES (5,150, 1000);
INSERT INTO supplier_parts VALUES (10,100, 1000);

The first two records are inserted into partition p1, uniquely identified by supplier_id.
However, the third record is inserted into partition p2; it matches all range boundary
values of partition p1 exactly and the database therefore considers the following
partition for a match. The value of partnum satisfies the criteria < 200, so it is inserted
into partition p2.

SELECT * FROM supplier_parts PARTITION (p1);

SUPPLIER_ID PARTNUM PRICE
----------- ---------- ----------
 5 5 1000
 5 150 1000

SELECT * FROM supplier_parts PARTITION (p2);

SUPPLIER_ID PARTNUM PRICE
----------- ---------- ----------
 10 100 1000

4.1.11 Using Virtual Column-Based Partitioning
With partitioning, a virtual column can be used as any regular column.

All partition methods are supported when using virtual columns, including interval
partitioning and all different combinations of composite partitioning. A virtual column
used as the partitioning column cannot use calls to a PL/SQL function.

The following example shows the sales table partitioned by range-range using a
virtual column for the subpartitioning key. The virtual column calculates the total value
of a sale by multiplying amount_sold and quantity_sold. As the example shows, row
movement is also supported with virtual columns. If row movement is enabled, then a
row migrates from one partition to another partition if the virtual column evaluates to a
value that belongs to another partition.

CREATE TABLE sales
 (prod_id NUMBER(6) NOT NULL
 , cust_id NUMBER NOT NULL
 , time_id DATE NOT NULL
 , channel_id CHAR(1) NOT NULL
 , promo_id NUMBER(6) NOT NULL
 , quantity_sold NUMBER(3) NOT NULL
 , amount_sold NUMBER(10,2) NOT NULL
 , total_amount AS (quantity_sold * amount_sold)
)
 PARTITION BY RANGE (time_id) INTERVAL (NUMTOYMINTERVAL(1,'MONTH'))

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-22

 SUBPARTITION BY RANGE(total_amount)
 SUBPARTITION TEMPLATE
 (SUBPARTITION p_small VALUES LESS THAN (1000)
 , SUBPARTITION p_medium VALUES LESS THAN (5000)
 , SUBPARTITION p_large VALUES LESS THAN (10000)
 , SUBPARTITION p_extreme VALUES LESS THAN (MAXVALUE)
)
 (PARTITION sales_before_2007 VALUES LESS THAN
 (TO_DATE('01-JAN-2007','dd-MON-yyyy'))
)
ENABLE ROW MOVEMENT
PARALLEL NOLOGGING;

See Also:

Oracle Database SQL Language Reference for the syntax on how to create a virtual
column

4.1.12 Using Table Compression with Partitioned Tables
For heap-organized partitioned tables, you can compress some or all partitions using table
compression.

The compression attribute can be declared for a tablespace, a table, or a partition of a table.
Whenever the compress attribute is not specified, it is inherited like any other storage
attribute.

Example 4-13 creates a range-partitioned table with one compressed partition costs_old.
The compression attribute for the table and all other partitions is inherited from the
tablespace level.

Example 4-13 Creating a range-partitioned table with a compressed partition

CREATE TABLE costs_demo (
 prod_id NUMBER(6), time_id DATE,
 unit_cost NUMBER(10,2), unit_price NUMBER(10,2))
PARTITION BY RANGE (time_id)
 (PARTITION costs_old
 VALUES LESS THAN (TO_DATE('01-JAN-2003', 'DD-MON-YYYY')) COMPRESS,
 PARTITION costs_q1_2003
 VALUES LESS THAN (TO_DATE('01-APR-2003', 'DD-MON-YYYY')),
 PARTITION costs_q2_2003
 VALUES LESS THAN (TO_DATE('01-JUN-2003', 'DD-MON-YYYY')),
 PARTITION costs_recent VALUES LESS THAN (MAXVALUE));

4.1.13 Using Key Compression with Partitioned Indexes
You can compress some or all partitions of a B-tree index using key compression.

Key compression is applicable only to B-tree indexes. Bitmap indexes are stored in a
compressed manner by default. An index using key compression eliminates repeated
occurrences of key column prefix values, thus saving space and I/O.

The following example creates a local partitioned index with all partitions except the most
recent one compressed:

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-23

CREATE INDEX i_cost1 ON costs_demo (prod_id) COMPRESS LOCAL
 (PARTITION costs_old, PARTITION costs_q1_2003,
 PARTITION costs_q2_2003, PARTITION costs_recent NOCOMPRESS);

You cannot specify COMPRESS (or NOCOMPRESS) explicitly for an index subpartition. All
index subpartitions of a given partition inherit the key compression setting from the
parent partition.

To modify the key compression attribute for all subpartitions of a given partition, you
must first issue an ALTER INDEX...MODIFY PARTITION statement and then rebuild all
subpartitions. The MODIFY PARTITION clause marks all index subpartitions as
UNUSABLE.

4.1.14 Specifying Partitioning with Segments
Partitioning with segments is introduced in this topic.

These topics discuss the functionality when using partitioning with segments.

• Deferred Segment Creation for Partitioning

• Truncating Segments That Are Empty

• Maintenance Procedures for Segment Creation on Demand

4.1.14.1 Deferred Segment Creation for Partitioning
You can defer the creation of segments when creating a partitioned table until the first
row is inserted into a partition.

When the first row is inserted, segments are created for the base table partition, LOB
columns, all global indexes, and local index partitions. Deferred segment creation can
be controlled by the following:

• Setting the DEFERRED_SEGMENT_CREATION initialization parameter to TRUE or FALSE
in the initialization parameter file.

• Setting the initialization parameter DEFERRED_SEGMENT_CREATION to TRUE or FALSE
with the ALTER SESSION or ALTER SYSTEM SQL statements.

• Specifying the keywords SEGMENT CREATION IMMEDIATE or SEGMENT CREATION
DEFERRED with the partition clause when issuing the CREATE TABLE SQL statement.

You can force the creation of segments for an existing created partition with the ALTER
TABLE MODIFY PARTITION ALLOCATE EXTENT SQL statement. This statement allocates
one extent more than the initial number of extents specified during the CREATE TABLE.

Serializable transactions are not supported with deferred segment creation. Inserting
data into an empty table with no segment created, or into a partition of an interval
partitioned table that does not have a segment yet, can cause an error.

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-24

See Also:

• Oracle Database Reference for more information about the
DEFERRED_SEGMENT_CREATION initialization parameter

• Oracle Database SQL Language Reference for more information about the
ALTER SESSION and ALTER SYSTEM SQL statements

• Oracle Database SQL Language Reference for more information about the
keywords SEGMENT CREATION IMMEDIATE and SEGMENT CREATION DEFERRED of the
CREATE TABLE SQL statement

4.1.14.2 Truncating Segments That Are Empty
You can drop empty segments in tables and table fragments with the
DBMS_SPACE_ADMIN.DROP_EMPTY_SEGMENTS procedure.

In addition, if a partition or subpartition has a segment, then the truncate feature drops the
segment if the DROP ALL STORAGE clause is specified with the ALTER TABLE TRUNCATE
PARTITION SQL statement.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_SPACE_ADMIN package

• Oracle Database SQL Language Reference for more information about the
DROP ALL STORAGE clause of ALTER TABLE

4.1.14.3 Maintenance Procedures for Segment Creation on Demand
You can use the MATERIALIZE_DEFERRED_SEGMENTS procedure in the DBMS_SPACE_ADMIN
package to create segments for tables and dependent objects for tables with the deferred
segment property.

You can also force the creation of segments for an existing created table and table fragment
with the DBMS_SPACE_ADMIN.MATERIALIZE_DEFERRED_SEGMENTS procedure. The
MATERIALIZE_DEFERRED_SEGMENTS procedure differs from the ALTER TABLE MODIFY PARTITION
ALLOCATE EXTENT SQL statement because it does not allocate one additional extent for the
table or table fragment.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_SPACE_ADMIN package

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-25

4.1.15 Specifying Partitioning When Creating Index-Organized Tables
For index-organized tables, you can use the range, list, or hash partitioning method.

The semantics for creating partitioned index-organized tables are similar to that for
regular tables with these differences:

• When you create the table, you specify the ORGANIZATION INDEX clause, and
INCLUDING and OVERFLOW clauses as necessary.

• The PARTITION clause can have OVERFLOW subclauses that allow you to specify
attributes of the overflow segments at the partition level.

Specifying an OVERFLOW clause results in the overflow data segments themselves
being equipartitioned with the primary key index segments. Thus, for partitioned index-
organized tables with overflow, each partition has an index segment and an overflow
data segment.

For index-organized tables, the set of partitioning columns must be a subset of the
primary key columns. Because rows of an index-organized table are stored in the
primary key index for the table, the partitioning criterion affects the availability. By
choosing the partitioning key to be a subset of the primary key, an insert operation
must only verify uniqueness of the primary key in a single partition, thereby
maintaining partition independence.

Support for secondary indexes on index-organized tables is similar to the support for
regular tables. Because of the logical nature of the secondary indexes, global indexes
on index-organized tables remain usable for certain operations where they would be
marked UNUSABLE for regular tables.

The following topics are discussed:

• Creating Range-Partitioned Index-Organized Tables

• Creating Hash Partitioned Index-Organized Tables

• Creating List-Partitioned Index-Organized Tables

See Also:

• Maintenance Operations for Partitioned Tables and Indexes for
information about maintenance operations on index-organized tables

• Oracle Database Administrator’s Guide for more information about
managing index-organized tables

• Oracle Database Concepts for more information about index-organized
tables

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-26

4.1.15.1 Creating Range-Partitioned Index-Organized Tables
You can partition index-organized tables, and their secondary indexes, by the range method.

In Example 4-14, a range-partitioned index-organized table sales is created. The INCLUDING
clause specifies that all columns after week_no are to be stored in an overflow segment.
There is one overflow segment for each partition, all stored in the same tablespace
(overflow_here). Optionally, OVERFLOW TABLESPACE could be specified at the individual
partition level, in which case some or all of the overflow segments could have separate
TABLESPACE attributes.

Example 4-14 Creating a range-partitioned index-organized table

CREATE TABLE sales(acct_no NUMBER(5),
 acct_name CHAR(30),
 amount_of_sale NUMBER(6),
 week_no INTEGER,
 sale_details VARCHAR2(1000),
 PRIMARY KEY (acct_no, acct_name, week_no))
 ORGANIZATION INDEX
 INCLUDING week_no
 OVERFLOW TABLESPACE overflow_here
 PARTITION BY RANGE (week_no)
 (PARTITION VALUES LESS THAN (5)
 TABLESPACE ts1,
 PARTITION VALUES LESS THAN (9)
 TABLESPACE ts2 OVERFLOW TABLESPACE overflow_ts2,
 ...
 PARTITION VALUES LESS THAN (MAXVALUE)
 TABLESPACE ts13);

4.1.15.2 Creating Hash Partitioned Index-Organized Tables
Another option for partitioning index-organized tables is to use the hash method.

In Example 4-15, the sales index-organized table is partitioned by the hash method.

Note:

A well-designed hash function is intended to distribute rows in a well-balanced
fashion among the partitions. Therefore, updating the primary key column(s) of a
row is very likely to move that row to a different partition. Oracle recommends that
you explicitly specify the ENABLE ROW MOVEMENT clause when creating a hash
partitioned index-organized table with a changeable partitioning key. The default is
that ENABLE ROW MOVEMENT is disabled.

Example 4-15 Creating a hash partitioned index-organized table

CREATE TABLE sales(acct_no NUMBER(5),
 acct_name CHAR(30),
 amount_of_sale NUMBER(6),
 week_no INTEGER,
 sale_details VARCHAR2(1000),
 PRIMARY KEY (acct_no, acct_name, week_no))
 ORGANIZATION INDEX

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-27

 INCLUDING week_no
 OVERFLOW
 PARTITION BY HASH (week_no)
 PARTITIONS 16
 STORE IN (ts1, ts2, ts3, ts4)
 OVERFLOW STORE IN (ts3, ts6, ts9);

4.1.15.3 Creating List-Partitioned Index-Organized Tables
The other option for partitioning index-organized tables is to use the list method.

In Example 4-16, the sales index-organized table is partitioned by the list method.

Example 4-16 Creating a list-partitioned index-organized table

CREATE TABLE sales(acct_no NUMBER(5),
 acct_name CHAR(30),
 amount_of_sale NUMBER(6),
 week_no INTEGER,
 sale_details VARCHAR2(1000),
 PRIMARY KEY (acct_no, acct_name, week_no))
 ORGANIZATION INDEX
 INCLUDING week_no
 OVERFLOW TABLESPACE ts1
 PARTITION BY LIST (week_no)
 (PARTITION VALUES (1, 2, 3, 4)
 TABLESPACE ts2,
 PARTITION VALUES (5, 6, 7, 8)
 TABLESPACE ts3 OVERFLOW TABLESPACE ts4,
 PARTITION VALUES (DEFAULT)
 TABLESPACE ts5);

4.1.16 Partitioning Restrictions for Multiple Block Sizes
Use caution when creating partitioned objects in a database with tablespaces of
different block sizes.

The storage of partitioned objects in such tablespaces is subject to some restrictions.
Specifically, all partitions of the following entities must reside in tablespaces of the
same block size:

• Conventional tables

• Indexes

• Primary key index segments of index-organized tables

• Overflow segments of index-organized tables

• LOB columns stored out of line

Therefore:

• For each conventional table, all partitions of that table must be stored in
tablespaces with the same block size.

• For each index-organized table, all primary key index partitions must reside in
tablespaces of the same block size, and all overflow partitions of that table must
reside in tablespaces of the same block size. However, index partitions and
overflow partitions can reside in tablespaces of different block size.

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-28

• For each index (global or local), each partition of that index must reside in tablespaces of
the same block size. However, partitions of different indexes defined on the same object
can reside in tablespaces of different block sizes.

• For each LOB column, each partition of that column must be stored in tablespaces of
equal block sizes. However, different LOB columns can be stored in tablespaces of
different block sizes.

When you create or alter a partitioned table or index, all tablespaces you explicitly specify for
the partitions and subpartitions of each entity must be of the same block size. If you do not
explicitly specify tablespace storage for an entity, then the tablespaces the database uses by
default must be of the same block size. Therefore, you must be aware of the default
tablespaces at each level of the partitioned object.

4.1.17 Partitioning of Collections in XMLType and Objects
Partitioning when using XMLType or object tables and columns follows the basic rules for
partitioning.

For the purposes of this discussion, the term Collection Tables is used for the following two
categories: (1) ordered collection tables inside XMLType tables or columns, and (2) nested
tables inside object tables or columns.

When you partition Collection Tables, Oracle Database uses the partitioning scheme of the
base table. Also, Collection Tables are automatically partitioned when the base table is
partitioned. DML against a partitioned nested table behaves in a similar manner to that of a
reference partitioned table.

Oracle Database provides a LOCAL keyword to equipartition a Collection Table with a
partitioned base table. This is the default behavior in this release. The default in earlier
releases was not to equipartition the Collection Table with the partitioned base table. Now you
must specify the GLOBAL keyword to store an unpartitioned Collection Table with a partitioned
base table.

Out-of-line (OOL) table partitioning is supported. However, you cannot create two tables of
the same XML schema that has out-of-line tables. This restriction means that exchange
partitioning cannot be performed for schemas with OOL tables because it is not possible to
have two tables of the same schema.

The statement in the following example creates a nested table partition.

CREATE TABLE print_media_part (
 product_id NUMBER(6),
 ad_id NUMBER(6),
 ad_composite BLOB,
 ad_sourcetext CLOB,
 ad_finaltext CLOB,
 ad_fltextn NCLOB,
 ad_textdocs_ntab TEXTDOC_TAB,
 ad_photo BLOB,
 ad_graphic BFILE,
 ad_header ADHEADER_TYP)
NESTED TABLE ad_textdocs_ntab STORE AS textdoc_nt
PARTITION BY RANGE (product_id)
 (PARTITION p1 VALUES LESS THAN (100),
 PARTITION p2 VALUES LESS THAN (200));

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-29

See Also:

• Performing PMOs on Partitions that Contain Collection Tables and
Partitioning of XMLIndex for Binary XML Tables for additional related
examples

• Collection Tables for an example of issuing a query against a partitioned
nested table and using the EXPLAIN PLAN to improve performance

• Changing a Nonpartitioned Table into a Partitioned Table for information
about using online redefinition to convert your existing nonpartitioned
collection tables to partitioned tables

• Oracle Database SQL Language Reference for details about CREATE
TABLE syntax

4.1.17.1 Performing PMOs on Partitions that Contain Collection Tables
Whether a partition contains Collection Tables or not does not significantly affect your
ability to perform partition maintenance operations (PMOs).

Usually, maintenance operations on Collection Tables are carried out on the base
table. The following example illustrates a typical ADD PARTITION operation based on the
preceding nested table partition:

ALTER TABLE print_media_part
 ADD PARTITION p4 VALUES LESS THAN (400)
 LOB(ad_photo, ad_composite) STORE AS (TABLESPACE omf_ts1)
 LOB(ad_sourcetext, ad_finaltext) STORE AS (TABLESPACE omf_ts1)
 NESTED TABLE ad_textdocs_ntab STORE AS nt_p3;

The storage table for nested table storage column ad_textdocs_ntab is named nt_p3
and inherits all other attributes from the table-level defaults and then from the
tablespace defaults.

You must directly invoke the following partition maintenance operations on the storage
table corresponding to the collection column:

• modify partition

• move partition

• rename partition

• modify the default attributes of a partition

See Also:

• Oracle Database SQL Language Reference for ADD PARTITION syntax

• Maintenance Operations Supported on Partitions for a list of partition
maintenance operations that can be performed on partitioned tables and
composite partitioned tables

Chapter 4
Specifying Partitioning When Creating Tables and Indexes

4-30

4.1.17.2 Partitioning of XMLIndex for Binary XML Tables
For binary XML tables, XMLIndex is equipartitioned with the base table for range, hash, list,
interval, and reference partitions.

In the following example, an XMLIndex is created on a range-partitioned table.

CREATE TABLE purchase_order
 (id NUMBER, doc XMLTYPE)
 PARTITION BY RANGE (id)
 (PARTITION p1 VALUES LESS THAN (10),
 PARTITION p2 VALUES LESS THAN (MAXVALUE));

CREATE INDEX purchase_order_idx ON purchase_order(doc)
 INDEXTYPE IS XDB.XMLINDEX LOCAL;

See Also:

• Oracle Database Data Cartridge Developer's Guide for information about
Oracle XML DB and partitioning of XMLIndex for binary XML tables

• Oracle XML DB Developer’s Guide for information about XMLIndex

• Oracle XML DB Developer’s Guide for information about partitioning XMLType
tables and columns

4.2 Specifying Composite Partitioning When Creating Tables
When creating a composite partitioned table, you use the PARTITION and SUBPARTITION
clauses of the CREATE TABLE SQL statement.

To create a composite partitioned table, you start by using the PARTITION BY {HASH | RANGE
[INTERVAL]| LIST} clause of a CREATE TABLE statement. Next, you specify a SUBPARTITION BY
clause that follows similar syntax and rules as the PARTITION BY clause.

The following topics are discussed:

• Creating Composite Hash-* Partitioned Tables

• Creating Composite Interval-* Partitioned Tables

• Creating Composite List-* Partitioned Tables

• Creating Composite Range-* Partitioned Tables

• Specifying Subpartition Templates to Describe Composite Partitioned Tables

4.2.1 Creating Composite Hash-* Partitioned Tables
Composite hash-* partitioning enables hash partitioning along two dimensions.

The composite hash-hash partitioning strategy has the most business value of the composite
hash-* partitioned tables. This technique is beneficial to enable partition-wise joins along two
dimensions.

Chapter 4
Specifying Composite Partitioning When Creating Tables

4-31

In the following example, the number of subpartitions is specified when creating a
composite hash-hash partitioned table; however, names are not specified. System
generated names are assigned to partitions and subpartitions, which are stored in the
default tablespace of the table.

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL:
Creating a Composite Hash-Hash Partition Table.

Example 4-17 Creating a composite hash-hash partitioned table

CREATE TABLE departments_courses_hash (
 department_id NUMBER(4) NOT NULL,
 department_name VARCHAR2(30),
 course_id NUMBER(4) NOT NULL)
 PARTITION BY HASH(department_id)
 SUBPARTITION BY HASH (course_id) SUBPARTITIONS 32 PARTITIONS 16;

See Also:

Specifying Subpartition Templates to Describe Composite Partitioned Tables
to learn how using a subpartition template can simplify the specification of a
composite partitioned table

4.2.2 Creating Composite Interval-* Partitioned Tables
The concepts of interval-* composite partitioning are similar to the concepts for range-*
partitioning.

However, you extend the PARTITION BY RANGE clause to include the INTERVAL
definition. You must specify at least one range partition using the PARTITION clause.
The range partitioning key value determines the high value of the range partitions,
which is called the transition point, and the database automatically creates interval
partitions for data beyond that transition point.

The subpartitions for intervals in an interval-* partitioned table are created when the
database creates the interval. You can specify the definition of future subpartitions only
with a subpartition template.

The following topics show examples for the different interval-* composite partitioning
methods.

• Creating Composite Interval-Hash Partitioned Tables

• Creating Composite Interval-List Partitioned Tables

• Creating Composite Interval-Range Partitioned Tables

Chapter 4
Specifying Composite Partitioning When Creating Tables

4-32

https://livesql.oracle.com/apex/livesql/docs/vldbg/partitioning/composite-hash-hash-partitioning-example.html
https://livesql.oracle.com/apex/livesql/docs/vldbg/partitioning/composite-hash-hash-partitioning-example.html

See Also:

Specifying Subpartition Templates to Describe Composite Partitioned Tables to
learn how using a subpartition template can simplify the specification of a composite
partitioned table

4.2.2.1 Creating Composite Interval-Hash Partitioned Tables
You can create an interval-hash partitioned table with multiple hash partitions by specifying
multiple hash partitions in the PARTITION clause or by using a subpartition template.

If you do not use either of these methods, then future interval partitions get only a single hash
subpartition.

The following example shows the sales table, interval partitioned using monthly intervals on
time_id, with hash subpartitions by cust_id. This example specifies multiple hash partitions,
without any specific tablespace assignment to the individual hash partitions.

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL: Creating a
Composite Interval-Hash Partitioned Table.

CREATE TABLE sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
 PARTITION BY RANGE (time_id) INTERVAL (NUMTOYMINTERVAL(1,'MONTH'))
 SUBPARTITION BY HASH (cust_id) SUBPARTITIONS 4
 (PARTITION before_2000 VALUES LESS THAN (TO_DATE('01-JAN-2000','dd-MON-yyyy'))
)
PARALLEL;

This next example shows the same sales table, interval partitioned using monthly intervals
on time_id, again with hash subpartitions by cust_id. This time, however, individual hash
partitions are stored in separate tablespaces. The subpartition template is used to define the
tablespace assignment for future hash subpartitions.

CREATE TABLE sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
 PARTITION BY RANGE (time_id) INTERVAL (NUMTOYMINTERVAL(1,'MONTH'))

Chapter 4
Specifying Composite Partitioning When Creating Tables

4-33

https://livesql.oracle.com/apex/livesql/docs/vldbg/partitioning/composite-interval-hash-partitioning-example.html
https://livesql.oracle.com/apex/livesql/docs/vldbg/partitioning/composite-interval-hash-partitioning-example.html

 SUBPARTITION BY hash(cust_id)
 SUBPARTITION template
 (SUBPARTITION p1 TABLESPACE ts1
 , SUBPARTITION p2 TABLESPACE ts2
 , SUBPARTITION p3 TABLESPACE ts3
 , SUBPARTITION P4 TABLESPACE ts4
)
 (PARTITION before_2000 VALUES LESS THAN (TO_DATE('01-JAN-2000','dd-MON-yyyy'))
)
PARALLEL;

4.2.2.2 Creating Composite Interval-List Partitioned Tables
To define list subpartitions for future interval-list partitions, you must use the
subpartition template.

If you do not use the subpartitioning template, then the only subpartition that are
created for every interval partition is a DEFAULT subpartition.

Example 4-18 shows the sales_interval_list table, interval partitioned using
monthly intervals on sales_date, with list subpartitions by channel_id.

Example 4-18 Creating a composite interval-list partitioned table

CREATE TABLE sales_interval_list
 (product_id NUMBER(6)
 , customer_id NUMBER
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , sales_date DATE
 , quantity_sold INTEGER
 , amount_sold NUMBER(10,2)
)
 PARTITION BY RANGE (sales_date) INTERVAL (NUMTOYMINTERVAL(1,'MONTH'))
 SUBPARTITION BY LIST (channel_id)
 SUBPARTITION TEMPLATE
 (SUBPARTITION p_catalog VALUES ('C')
 , SUBPARTITION p_internet VALUES ('I')
 , SUBPARTITION p_partners VALUES ('P')
 , SUBPARTITION p_direct_sales VALUES ('S')
 , SUBPARTITION p_tele_sales VALUES ('T')
)
 (PARTITION before_2017 VALUES LESS THAN (TO_DATE('01-JAN-2017','dd-MON-yyyy'))
)
PARALLEL;

SELECT TABLE_NAME, PARTITION_NAME, SUBPARTITION_NAME FROM USER_TAB_SUBPARTITIONS
WHERE TABLE_NAME ='SALES_INTERVAL_LIST';

4.2.2.3 Creating Composite Interval-Range Partitioned Tables
To define range subpartitions for future interval-range partitions, you must use the
subpartition template.

If you do not use the subpartition template, then the only subpartition that is created for
every interval partition is a range subpartition with the MAXVALUE upper boundary.

Example 4-19 shows the sales table, interval partitioned using daily intervals on
time_id, with range subpartitions by amount_sold.

Chapter 4
Specifying Composite Partitioning When Creating Tables

4-34

Example 4-19 Creating a composite interval-range partitioned table

CREATE TABLE sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
 PARTITION BY RANGE (time_id) INTERVAL (NUMTODSINTERVAL(1,'DAY'))
SUBPARTITION BY RANGE(amount_sold)
 SUBPARTITION TEMPLATE
 (SUBPARTITION p_low VALUES LESS THAN (1000)
 , SUBPARTITION p_medium VALUES LESS THAN (4000)
 , SUBPARTITION p_high VALUES LESS THAN (8000)
 , SUBPARTITION p_ultimate VALUES LESS THAN (maxvalue)
)
 (PARTITION before_2000 VALUES LESS THAN (TO_DATE('01-JAN-2000','dd-MON-yyyy'))
)
PARALLEL;

4.2.3 Creating Composite List-* Partitioned Tables
The concepts of list-hash, list-list, and list-range composite partitioning are similar to the
concepts for range-hash, range-list, and range-range partitioning.

However, for list-* composite partitioning you specify PARTITION BY LIST to define the
partitioning strategy.

The list partitions of a list-* composite partitioned table are similar to non-composite range
partitioned tables. This organization enables optional subclauses of a PARTITION clause to
specify physical and other attributes, including tablespace, specific to a partition segment. If
not overridden at the partition level, then partitions inherit the attributes of their underlying
table.

The subpartition descriptions, in the SUBPARTITION or SUBPARTITIONS clauses, are similar to
range-* composite partitioning methods.

The following topics show examples for the different list-* composite partitioning methods.

• Creating Composite List-Hash Partitioned Tables

• Creating Composite List-List Partitioned Tables

• Creating Composite List-Range Partitioned Tables

Chapter 4
Specifying Composite Partitioning When Creating Tables

4-35

See Also:

• Specifying Subpartition Templates to Describe Composite Partitioned
Tables to learn how using a subpartition template can simplify the
specification of a composite partitioned table

• About Creating Composite Range-Hash Partitioned Tables for more
information about the subpartition definition of a list-hash composite
partitioning method

• About Creating Composite Range-List Partitioned Tables for more
information about the subpartition definition of a list-list composite
partitioning method

• Creating Composite Range-Range Partitioned Tables for more
information about the subpartition definition of a list-range composite
partitioning method

4.2.3.1 Creating Composite List-Hash Partitioned Tables
The example in this topic shows how to create a composite list-hash partitioned table.

Example 4-20 shows an accounts table that is list partitioned by region and
subpartitioned using hash by customer identifier.

Example 4-20 Creating a composite list-hash partitioned table

CREATE TABLE accounts
(id NUMBER
 , account_number NUMBER
 , customer_id NUMBER
 , balance NUMBER
 , branch_id NUMBER
 , region VARCHAR(2)
 , status VARCHAR2(1)
)
PARTITION BY LIST (region)
SUBPARTITION BY HASH (customer_id) SUBPARTITIONS 8
(PARTITION p_northwest VALUES ('OR', 'WA')
 , PARTITION p_southwest VALUES ('AZ', 'UT', 'NM')
 , PARTITION p_northeast VALUES ('NY', 'VM', 'NJ')
 , PARTITION p_southeast VALUES ('FL', 'GA')
 , PARTITION p_northcentral VALUES ('SD', 'WI')
 , PARTITION p_southcentral VALUES ('OK', 'TX')
);

4.2.3.2 Creating Composite List-List Partitioned Tables
The example in this topic shows how to create a composite list-list partitioned table.

Example 4-21 shows an accounts table that is list partitioned by region and
subpartitioned using list by account status.

Chapter 4
Specifying Composite Partitioning When Creating Tables

4-36

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL: Creating a
Composite List-List Partitioned Table.

Example 4-21 Creating a composite list-list partitioned table

CREATE TABLE accounts
(id NUMBER
, account_number NUMBER
, customer_id NUMBER
, balance NUMBER
, branch_id NUMBER
, region VARCHAR(2)
, status VARCHAR2(1)
)
PARTITION BY LIST (region)
SUBPARTITION BY LIST (status)
(PARTITION p_northwest VALUES ('OR', 'WA')
 (SUBPARTITION p_nw_bad VALUES ('B')
 , SUBPARTITION p_nw_average VALUES ('A')
 , SUBPARTITION p_nw_good VALUES ('G')
)
, PARTITION p_southwest VALUES ('AZ', 'UT', 'NM')
 (SUBPARTITION p_sw_bad VALUES ('B')
 , SUBPARTITION p_sw_average VALUES ('A')
 , SUBPARTITION p_sw_good VALUES ('G')
)
, PARTITION p_northeast VALUES ('NY', 'VM', 'NJ')
 (SUBPARTITION p_ne_bad VALUES ('B')
 , SUBPARTITION p_ne_average VALUES ('A')
 , SUBPARTITION p_ne_good VALUES ('G')
)
, PARTITION p_southeast VALUES ('FL', 'GA')
 (SUBPARTITION p_se_bad VALUES ('B')
 , SUBPARTITION p_se_average VALUES ('A')
 , SUBPARTITION p_se_good VALUES ('G')
)
, PARTITION p_northcentral VALUES ('SD', 'WI')
 (SUBPARTITION p_nc_bad VALUES ('B')
 , SUBPARTITION p_nc_average VALUES ('A')
 , SUBPARTITION p_nc_good VALUES ('G')
)
, PARTITION p_southcentral VALUES ('OK', 'TX')
 (SUBPARTITION p_sc_bad VALUES ('B')
 , SUBPARTITION p_sc_average VALUES ('A')
 , SUBPARTITION p_sc_good VALUES ('G')
)
);

4.2.3.3 Creating Composite List-Range Partitioned Tables
The example in this topic shows how to create a composite list-range partitioned table.

Example 4-22 shows an accounts table that is list partitioned by region and subpartitioned
using range by account balance, and row movement is enabled. Subpartitions for different list
partitions could have different ranges specified.

Chapter 4
Specifying Composite Partitioning When Creating Tables

4-37

https://livesql.oracle.com/apex/livesql/docs/vldbg/partitioning/composite-list-list-partitioning-example.html
https://livesql.oracle.com/apex/livesql/docs/vldbg/partitioning/composite-list-list-partitioning-example.html

Example 4-22 Creating a composite list-range partitioned table

CREATE TABLE accounts
(id NUMBER
, account_number NUMBER
, customer_id NUMBER
, balance NUMBER
, branch_id NUMBER
, region VARCHAR(2)
, status VARCHAR2(1)
)
PARTITION BY LIST (region)
SUBPARTITION BY RANGE (balance)
(PARTITION p_northwest VALUES ('OR', 'WA')
 (SUBPARTITION p_nw_low VALUES LESS THAN (1000)
 , SUBPARTITION p_nw_average VALUES LESS THAN (10000)
 , SUBPARTITION p_nw_high VALUES LESS THAN (100000)
 , SUBPARTITION p_nw_extraordinary VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_southwest VALUES ('AZ', 'UT', 'NM')
 (SUBPARTITION p_sw_low VALUES LESS THAN (1000)
 , SUBPARTITION p_sw_average VALUES LESS THAN (10000)
 , SUBPARTITION p_sw_high VALUES LESS THAN (100000)
 , SUBPARTITION p_sw_extraordinary VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_northeast VALUES ('NY', 'VM', 'NJ')
 (SUBPARTITION p_ne_low VALUES LESS THAN (1000)
 , SUBPARTITION p_ne_average VALUES LESS THAN (10000)
 , SUBPARTITION p_ne_high VALUES LESS THAN (100000)
 , SUBPARTITION p_ne_extraordinary VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_southeast VALUES ('FL', 'GA')
 (SUBPARTITION p_se_low VALUES LESS THAN (1000)
 , SUBPARTITION p_se_average VALUES LESS THAN (10000)
 , SUBPARTITION p_se_high VALUES LESS THAN (100000)
 , SUBPARTITION p_se_extraordinary VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_northcentral VALUES ('SD', 'WI')
 (SUBPARTITION p_nc_low VALUES LESS THAN (1000)
 , SUBPARTITION p_nc_average VALUES LESS THAN (10000)
 , SUBPARTITION p_nc_high VALUES LESS THAN (100000)
 , SUBPARTITION p_nc_extraordinary VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_southcentral VALUES ('OK', 'TX')
 (SUBPARTITION p_sc_low VALUES LESS THAN (1000)
 , SUBPARTITION p_sc_average VALUES LESS THAN (10000)
 , SUBPARTITION p_sc_high VALUES LESS THAN (100000)
 , SUBPARTITION p_sc_extraordinary VALUES LESS THAN (MAXVALUE)
)
) ENABLE ROW MOVEMENT;

4.2.4 Creating Composite Range-* Partitioned Tables
The methods for creating composite range-* partitioned tables are introduced in this
topic.

The following topics show examples of the different range-* composite partitioning
methods.

• About Creating Composite Range-Hash Partitioned Tables

Chapter 4
Specifying Composite Partitioning When Creating Tables

4-38

• About Creating Composite Range-List Partitioned Tables

• Creating Composite Range-Range Partitioned Tables

See Also:

Specifying Subpartition Templates to Describe Composite Partitioned Tables to
learn how using a subpartition template can simplify the specification of a composite
partitioned table

4.2.4.1 About Creating Composite Range-Hash Partitioned Tables
The partitions of a range-hash partitioned table are logical structures only, because their data
is stored in the segments of their subpartitions.

As with partitions, these subpartitions share the same logical attributes. Unlike range
partitions in a range-partitioned table, the subpartitions cannot have different physical
attributes from the owning partition, although they are not required to reside in the same
tablespace.

The following topics are discussed:

• Creating a Composite Range-Hash Partitioned Table With the Same Tablespaces

• Creating a Composite Range-Hash Partitioned Table With Varying Tablespaces

• Creating a Local Index Across Multiple Tablespaces

See Also:

Specifying Subpartition Templates to Describe Composite Partitioned Tables to
learn how using a subpartition template can simplify the specification of a composite
partitioned table

4.2.4.1.1 Creating a Composite Range-Hash Partitioned Table With the Same Tablespaces
The example in this topic shows how to create a composite range-hash partitioned table
using the same tablespaces.

The statement in Example 4-23 creates a range-hash partitioned table. Four range partitions
are created, each containing eight subpartitions. Because the subpartitions are not named,
system generated names are assigned, but the STORE IN clause distributes them across the
4 specified tablespaces (ts1, ts2, ts3,ts4).

Example 4-23 Creating a composite range-hash partitioned table using one STORE IN clause

CREATE TABLE sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)

Chapter 4
Specifying Composite Partitioning When Creating Tables

4-39

)
 PARTITION BY RANGE (time_id) SUBPARTITION BY HASH (cust_id)
 SUBPARTITIONS 8 STORE IN (ts1, ts2, ts3, ts4)
 (PARTITION sales_q1_2006 VALUES LESS THAN (TO_DATE('01-APR-2006','dd-MON-yyyy'))
 , PARTITION sales_q2_2006 VALUES LESS THAN (TO_DATE('01-JUL-2006','dd-MON-yyyy'))
 , PARTITION sales_q3_2006 VALUES LESS THAN (TO_DATE('01-OCT-2006','dd-MON-yyyy'))
 , PARTITION sales_q4_2006 VALUES LESS THAN (TO_DATE('01-JAN-2007','dd-MON-yyyy'))
);

4.2.4.1.2 Creating a Composite Range-Hash Partitioned Table With Varying Tablespaces
The example in this topic shows how to create a composite range-hash partitioned
table using varying tablespaces.

Attributes specified for a range partition apply to all subpartitions of that partition. You
can specify different attributes for each range partition, and you can specify a STORE
IN clause at the partition level if the list of tablespaces across which the subpartitions
of that partition should be spread is different from those of other partitions. This is
illustrated in the following example.

CREATE TABLE employees_range_hash
 (department_id NUMBER(4) NOT NULL,
 last_name VARCHAR2(25),
 job_id VARCHAR2(10))
 PARTITION BY RANGE(department_id) SUBPARTITION BY HASH(last_name)
 SUBPARTITIONS 8 STORE IN (ts1, ts3, ts5, ts7)
 (PARTITION p1 VALUES LESS THAN (1000),
 PARTITION p2 VALUES LESS THAN (2000)
 STORE IN (ts2, ts4, ts6, ts8),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
 (SUBPARTITION p3_s1 TABLESPACE ts4,
 SUBPARTITION p3_s2 TABLESPACE ts5));

4.2.4.1.3 Creating a Local Index Across Multiple Tablespaces
The example in this topic shows how to create a local index across multiple
tablespaces.

The following statement is an example of creating a local index on a table where the
index segments are spread across tablespaces ts7, ts8, and ts9.

CREATE INDEX employee_ix ON employees_range_hash(department_id)
 LOCAL STORE IN (ts7, ts8, ts9);

This local index is equipartitioned with the base table so that it consists of as many
partitions as the base table. Each index partition consists of as many subpartitions as
the corresponding base table partition. Index entries for rows in a given subpartition of
the base table are stored in the corresponding subpartition of the index.

4.2.4.2 About Creating Composite Range-List Partitioned Tables
The range partitions of a range-list composite partitioned table are described as the
same for non-composite range partitioned tables.

This organization enables optional subclauses of a PARTITION clause to specify
physical and other attributes, including tablespace, specific to a partition segment. If
not overridden at the partition level, partitions inherit the attributes of their underlying
table.

Chapter 4
Specifying Composite Partitioning When Creating Tables

4-40

The list subpartition descriptions, in the SUBPARTITION clauses, are described as for non-
composite list partitions, except the only physical attribute that can be specified is a
tablespace (optional). Subpartitions inherit all other physical attributes from the partition
description.

The following topics are discussed:

• Creating a Composite Range-List Partitioned Table

• Creating a Composite Range-List Partitioned Table Specifying Tablespaces

See Also:

Specifying Subpartition Templates to Describe Composite Partitioned Tables to
learn how using a subpartition template can simplify the specification of a composite
partitioned table

4.2.4.2.1 Creating a Composite Range-List Partitioned Table
The example in this topic shows how to create a composite range-list partitioned table.

Example 4-24 illustrates how range-list partitioning might be used. The example tracks sales
data of products by quarters and within each quarter, groups it by specified states.

A row is mapped to a partition by checking whether the value of the partitioning column for a
row falls within a specific partition range. The row is then mapped to a subpartition within that
partition by identifying the subpartition whose descriptor value list contains a value matching
the subpartition column value. For example, the following list describes how some sample
rows are inserted.

• (10, 4532130, '23-Jan-1999', 8934.10, 'WA') maps to subpartition q1_1999_northwest

• (20, 5671621, '15-May-1999', 49021.21, 'OR') maps to subpartition q2_1999_northwest

• (30, 9977612, '07-Sep-1999', 30987.90, 'FL') maps to subpartition q3_1999_southeast

• (40, 9977612, '29-Nov-1999', 67891.45, 'TX') maps to subpartition
q4_1999_southcentral

• (40, 4532130, '5-Jan-2000', 897231.55, 'TX') does not map to any partition in the table
and displays an error

• (50, 5671621, '17-Dec-1999', 76123.35, 'CA') does not map to any subpartition in the
table and displays an error

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL: Creating a
Composite Range-List Partitioned Table.

Example 4-24 Creating a composite range-list partitioned table

CREATE TABLE quarterly_regional_sales
 (deptno number, item_no varchar2(20),
 txn_date date, txn_amount number, state varchar2(2))

Chapter 4
Specifying Composite Partitioning When Creating Tables

4-41

https://livesql.oracle.com/apex/livesql/docs/vldbg/partitioning/composite-range-list-partitioning-example.html
https://livesql.oracle.com/apex/livesql/docs/vldbg/partitioning/composite-range-list-partitioning-example.html

 TABLESPACE ts4
 PARTITION BY RANGE (txn_date)
 SUBPARTITION BY LIST (state)
 (PARTITION q1_1999 VALUES LESS THAN (TO_DATE('1-APR-1999','DD-MON-YYYY'))
 (SUBPARTITION q1_1999_northwest VALUES ('OR', 'WA'),
 SUBPARTITION q1_1999_southwest VALUES ('AZ', 'UT', 'NM'),
 SUBPARTITION q1_1999_northeast VALUES ('NY', 'VM', 'NJ'),
 SUBPARTITION q1_1999_southeast VALUES ('FL', 'GA'),
 SUBPARTITION q1_1999_northcentral VALUES ('SD', 'WI'),
 SUBPARTITION q1_1999_southcentral VALUES ('OK', 'TX')
),
 PARTITION q2_1999 VALUES LESS THAN (TO_DATE('1-JUL-1999','DD-MON-YYYY'))
 (SUBPARTITION q2_1999_northwest VALUES ('OR', 'WA'),
 SUBPARTITION q2_1999_southwest VALUES ('AZ', 'UT', 'NM'),
 SUBPARTITION q2_1999_northeast VALUES ('NY', 'VM', 'NJ'),
 SUBPARTITION q2_1999_southeast VALUES ('FL', 'GA'),
 SUBPARTITION q2_1999_northcentral VALUES ('SD', 'WI'),
 SUBPARTITION q2_1999_southcentral VALUES ('OK', 'TX')
),
 PARTITION q3_1999 VALUES LESS THAN (TO_DATE('1-OCT-1999','DD-MON-YYYY'))
 (SUBPARTITION q3_1999_northwest VALUES ('OR', 'WA'),
 SUBPARTITION q3_1999_southwest VALUES ('AZ', 'UT', 'NM'),
 SUBPARTITION q3_1999_northeast VALUES ('NY', 'VM', 'NJ'),
 SUBPARTITION q3_1999_southeast VALUES ('FL', 'GA'),
 SUBPARTITION q3_1999_northcentral VALUES ('SD', 'WI'),
 SUBPARTITION q3_1999_southcentral VALUES ('OK', 'TX')
),
 PARTITION q4_1999 VALUES LESS THAN (TO_DATE('1-JAN-2000','DD-MON-YYYY'))
 (SUBPARTITION q4_1999_northwest VALUES ('OR', 'WA'),
 SUBPARTITION q4_1999_southwest VALUES ('AZ', 'UT', 'NM'),
 SUBPARTITION q4_1999_northeast VALUES ('NY', 'VM', 'NJ'),
 SUBPARTITION q4_1999_southeast VALUES ('FL', 'GA'),
 SUBPARTITION q4_1999_northcentral VALUES ('SD', 'WI'),
 SUBPARTITION q4_1999_southcentral VALUES ('OK', 'TX')
)
);

4.2.4.2.2 Creating a Composite Range-List Partitioned Table Specifying Tablespaces
The example in this topic shows how to create a composite range-list partitioned table
while specifying tablespaces.

The partitions of a range-list partitioned table are logical structures only, because their
data is stored in the segments of their subpartitions. The list subpartitions have the
same characteristics as list partitions. You can specify a default subpartition, just as
you specify a default partition for list partitioning.

The following example creates a table that specifies a tablespace at the partition and
subpartition levels. The number of subpartitions within each partition varies, and
default subpartitions are specified. This example results in the following subpartition
descriptions:

• All subpartitions inherit their physical attributes, other than tablespace, from
tablespace level defaults. This is because the only physical attribute that has been
specified for partitions or subpartitions is tablespace. There are no table level
physical attributes specified, thus tablespace level defaults are inherited at all
levels.

Chapter 4
Specifying Composite Partitioning When Creating Tables

4-42

• The first 4 subpartitions of partition q1_1999 are all contained in tbs_1, except for the
subpartition q1_others, which is stored in tbs_4 and contains all rows that do not map to
any of the other partitions.

• The 6 subpartitions of partition q2_1999 are all stored in tbs_2.

• The first 2 subpartitions of partition q3_1999 are all contained in tbs_3, except for the
subpartition q3_others, which is stored in tbs_4 and contains all rows that do not map to
any of the other partitions.

• There is no subpartition description for partition q4_1999. This results in one default
subpartition being created and stored in tbs_4. The subpartition name is system
generated in the form SYS_SUBPn.

CREATE TABLE sample_regional_sales
 (deptno number, item_no varchar2(20),
 txn_date date, txn_amount number, state varchar2(2))
 PARTITION BY RANGE (txn_date)
 SUBPARTITION BY LIST (state)
 (PARTITION q1_1999 VALUES LESS THAN (TO_DATE('1-APR-1999','DD-MON-YYYY'))
 TABLESPACE tbs_1
 (SUBPARTITION q1_1999_northwest VALUES ('OR', 'WA'),
 SUBPARTITION q1_1999_southwest VALUES ('AZ', 'UT', 'NM'),
 SUBPARTITION q1_1999_northeast VALUES ('NY', 'VM', 'NJ'),
 SUBPARTITION q1_1999_southeast VALUES ('FL', 'GA'),
 SUBPARTITION q1_others VALUES (DEFAULT) TABLESPACE tbs_4
),
 PARTITION q2_1999 VALUES LESS THAN (TO_DATE('1-JUL-1999','DD-MON-YYYY'))
 TABLESPACE tbs_2
 (SUBPARTITION q2_1999_northwest VALUES ('OR', 'WA'),
 SUBPARTITION q2_1999_southwest VALUES ('AZ', 'UT', 'NM'),
 SUBPARTITION q2_1999_northeast VALUES ('NY', 'VM', 'NJ'),
 SUBPARTITION q2_1999_southeast VALUES ('FL', 'GA'),
 SUBPARTITION q2_1999_northcentral VALUES ('SD', 'WI'),
 SUBPARTITION q2_1999_southcentral VALUES ('OK', 'TX')
),
 PARTITION q3_1999 VALUES LESS THAN (TO_DATE('1-OCT-1999','DD-MON-YYYY'))
 TABLESPACE tbs_3
 (SUBPARTITION q3_1999_northwest VALUES ('OR', 'WA'),
 SUBPARTITION q3_1999_southwest VALUES ('AZ', 'UT', 'NM'),
 SUBPARTITION q3_others VALUES (DEFAULT) TABLESPACE tbs_4
),
 PARTITION q4_1999 VALUES LESS THAN (TO_DATE('1-JAN-2000','DD-MON-YYYY'))
 TABLESPACE tbs_4
);

4.2.4.3 Creating Composite Range-Range Partitioned Tables
The range partitions of a range-range composite partitioned table are similar to non-
composite range partitioned tables.

This organization enables optional subclauses of a PARTITION clause to specify physical and
other attributes, including tablespace, specific to a partition segment. If not overridden at the
partition level, then partitions inherit the attributes of their underlying table.

The range subpartition descriptions, in the SUBPARTITION clauses, are similar to non-
composite range partitions, except the only physical attribute that can be specified is an
optional tablespace. Subpartitions inherit all other physical attributes from the partition
description.

Chapter 4
Specifying Composite Partitioning When Creating Tables

4-43

The following example illustrates how range-range partitioning might be used. The
example tracks shipments. The service level agreement with the customer states that
every order is delivered in the calendar month after the order was placed. The
following types of orders are identified:

A row is mapped to a partition by checking whether the value of the partitioning
column for a row falls within a specific partition range. The row is then mapped to a
subpartition within that partition by identifying whether the value of the subpartitioning
column falls within a specific range. For example, a shipment with an order date in
September 2006 and a delivery date of October 28, 2006 falls in partition p06_oct_a.

• E (EARLY): orders that are delivered before the middle of the next month after the
order was placed. These orders likely exceed customers' expectations.

• A (AGREED): orders that are delivered in the calendar month after the order was
placed (but not early orders).

• L (LATE): orders that were only delivered starting the second calendar month after
the order was placed.

CREATE TABLE shipments
(order_id NUMBER NOT NULL
, order_date DATE NOT NULL
, delivery_date DATE NOT NULL
, customer_id NUMBER NOT NULL
, sales_amount NUMBER NOT NULL
)
PARTITION BY RANGE (order_date)
SUBPARTITION BY RANGE (delivery_date)
(PARTITION p_2006_jul VALUES LESS THAN (TO_DATE('01-AUG-2006','dd-MON-yyyy'))
 (SUBPARTITION p06_jul_e VALUES LESS THAN (TO_DATE('15-AUG-2006','dd-MON-yyyy'))
 , SUBPARTITION p06_jul_a VALUES LESS THAN (TO_DATE('01-SEP-2006','dd-MON-yyyy'))
 , SUBPARTITION p06_jul_l VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_2006_aug VALUES LESS THAN (TO_DATE('01-SEP-2006','dd-MON-yyyy'))
 (SUBPARTITION p06_aug_e VALUES LESS THAN (TO_DATE('15-SEP-2006','dd-MON-yyyy'))
 , SUBPARTITION p06_aug_a VALUES LESS THAN (TO_DATE('01-OCT-2006','dd-MON-yyyy'))
 , SUBPARTITION p06_aug_l VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_2006_sep VALUES LESS THAN (TO_DATE('01-OCT-2006','dd-MON-yyyy'))
 (SUBPARTITION p06_sep_e VALUES LESS THAN (TO_DATE('15-OCT-2006','dd-MON-yyyy'))
 , SUBPARTITION p06_sep_a VALUES LESS THAN (TO_DATE('01-NOV-2006','dd-MON-yyyy'))
 , SUBPARTITION p06_sep_l VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_2006_oct VALUES LESS THAN (TO_DATE('01-NOV-2006','dd-MON-yyyy'))
 (SUBPARTITION p06_oct_e VALUES LESS THAN (TO_DATE('15-NOV-2006','dd-MON-yyyy'))
 , SUBPARTITION p06_oct_a VALUES LESS THAN (TO_DATE('01-DEC-2006','dd-MON-yyyy'))
 , SUBPARTITION p06_oct_l VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_2006_nov VALUES LESS THAN (TO_DATE('01-DEC-2006','dd-MON-yyyy'))
 (SUBPARTITION p06_nov_e VALUES LESS THAN (TO_DATE('15-DEC-2006','dd-MON-yyyy'))
 , SUBPARTITION p06_nov_a VALUES LESS THAN (TO_DATE('01-JAN-2007','dd-MON-yyyy'))
 , SUBPARTITION p06_nov_l VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_2006_dec VALUES LESS THAN (TO_DATE('01-JAN-2007','dd-MON-yyyy'))
 (SUBPARTITION p06_dec_e VALUES LESS THAN (TO_DATE('15-JAN-2007','dd-MON-yyyy'))
 , SUBPARTITION p06_dec_a VALUES LESS THAN (TO_DATE('01-FEB-2007','dd-MON-yyyy'))
 , SUBPARTITION p06_dec_l VALUES LESS THAN (MAXVALUE)
)
);

Chapter 4
Specifying Composite Partitioning When Creating Tables

4-44

See Also:

Specifying Subpartition Templates to Describe Composite Partitioned Tables to
learn how using a subpartition template can simplify the specification of a composite
partitioned table

4.2.5 Specifying Subpartition Templates to Describe Composite Partitioned
Tables

You can create subpartitions in a composite partitioned table using a subpartition template.

A subpartition template simplifies the specification of subpartitions by not requiring that a
subpartition descriptor be specified for every partition in the table. Instead, you describe
subpartitions only one time in a template, then apply that subpartition template to every
partition in the table. For interval-* composite partitioned tables, the subpartition template is
the only way to define subpartitions for interval partitions.

The subpartition template is used whenever a subpartition descriptor is not specified for a
partition. If a subpartition descriptor is specified, then it is used instead of the subpartition
template for that partition. If no subpartition template is specified, and no subpartition
descriptor is supplied for a partition, then a single default subpartition is created.

The following topics are discussed:

• Specifying a Subpartition Template for a *-Hash Partitioned Table

• Specifying a Subpartition Template for a *-List Partitioned Table

4.2.5.1 Specifying a Subpartition Template for a *-Hash Partitioned Table
For range-hash, interval-hash, and list-hash partitioned tables, the subpartition template can
describe the subpartitions in detail, or it can specify just the number of hash subpartitions.

Example 4-25 creates a range-hash partitioned table using a subpartition template and
displays the subpartition names and tablespaces.

The example produces a table with the following description.

• Every partition has four subpartitions as described in the subpartition template.

• Each subpartition has a tablespace specified. It is required that if a tablespace is
specified for one subpartition in a subpartition template, then one must be specified for
all.

• The names of the subpartitions, unless you use interval-* subpartitioning, are generated
by concatenating the partition name with the subpartition name in the form:

partition name_subpartition name

For interval-* subpartitioning, the subpartition names are system-generated in the form:

SYS_SUBPn

Example 4-25 Creating a range-hash partitioned table with a subpartition template

CREATE TABLE employees_sub_template (department_id NUMBER(4) NOT NULL,
 last_name VARCHAR2(25), job_id VARCHAR2(10))

Chapter 4
Specifying Composite Partitioning When Creating Tables

4-45

 PARTITION BY RANGE(department_id) SUBPARTITION BY HASH(last_name)
 SUBPARTITION TEMPLATE
 (SUBPARTITION a TABLESPACE ts1,
 SUBPARTITION b TABLESPACE ts2,
 SUBPARTITION c TABLESPACE ts3,
 SUBPARTITION d TABLESPACE ts4
)
 (PARTITION p1 VALUES LESS THAN (1000),
 PARTITION p2 VALUES LESS THAN (2000),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

SQL> SELECT TABLESPACE_NAME, PARTITION_NAME, SUBPARTITION_NAME
 2 FROM DBA_TAB_SUBPARTITIONS WHERE TABLE_NAME='EMPLOYEEES_SUB_TEMPLATE'
 3 ORDER BY TABLESPACE_NAME;

TABLESPACE_NAME PARTITION_NAME SUBPARTITION_NAME
--------------- --------------- ------------------
TS1 P1 P1_A
TS1 P2 P2_A
TS1 P3 P3_A
TS2 P1 P1_B
TS2 P2 P2_B
TS2 P3 P3_B
TS3 P1 P1_C
TS3 P2 P2_C
TS3 P3 P3_C
TS4 P1 P1_D
TS4 P2 P2_D
TS4 P3 P3_D

12 rows selected.

4.2.5.2 Specifying a Subpartition Template for a *-List Partitioned Table
For -list partitioned tables, the subpartition template can describe the subpartitions in
detail.

Example 4-26, for a range-list partitioned table, illustrates how using a subpartition
template can help you stripe data across tablespaces. In this example, a table is
created where the table subpartitions are vertically striped, meaning that subpartition n
from every partition is in the same tablespace.

If you specified the tablespaces at the partition level (for example, tbs_1 for partition
q1_1999, tbs_2 for partition q2_1999, tbs_3 for partition q3_1999, and tbs_4 for
partition q4_1999) and not in the subpartition template, then the table would be
horizontally striped. All subpartitions would be in the tablespace of the owning
partition.

Example 4-26 Creating a range-list partitioned table with a subpartition
template

CREATE TABLE stripe_regional_sales
 (deptno number, item_no varchar2(20),
 txn_date date, txn_amount number, state varchar2(2))
 PARTITION BY RANGE (txn_date)
 SUBPARTITION BY LIST (state)
 SUBPARTITION TEMPLATE
 (SUBPARTITION northwest VALUES ('OR', 'WA') TABLESPACE tbs_1,
 SUBPARTITION southwest VALUES ('AZ', 'UT', 'NM') TABLESPACE tbs_2,

Chapter 4
Specifying Composite Partitioning When Creating Tables

4-46

 SUBPARTITION northeast VALUES ('NY', 'VM', 'NJ') TABLESPACE tbs_3,
 SUBPARTITION southeast VALUES ('FL', 'GA') TABLESPACE tbs_4,
 SUBPARTITION midwest VALUES ('SD', 'WI') TABLESPACE tbs_5,
 SUBPARTITION south VALUES ('AL', 'AK') TABLESPACE tbs_6,
 SUBPARTITION others VALUES (DEFAULT) TABLESPACE tbs_7
)
 (PARTITION q1_1999 VALUES LESS THAN (TO_DATE('01-APR-1999','DD-MON-YYYY')),
 PARTITION q2_1999 VALUES LESS THAN (TO_DATE('01-JUL-1999','DD-MON-YYYY')),
 PARTITION q3_1999 VALUES LESS THAN (TO_DATE('01-OCT-1999','DD-MON-YYYY')),
 PARTITION q4_1999 VALUES LESS THAN (TO_DATE('1-JAN-2000','DD-MON-YYYY'))
);

4.3 Maintenance Operations Supported on Partitions
There are various maintenance operations that can be performed on partitions, subpartitions,
and index partitions.

The maintenance operations that are supported on partitions, subpartitions, and index
partitions are described in the following tables and topics.

• Table 4-1 lists partition maintenance operations that can be performed on partitioned
tables and composite partitioned tables

• Table 4-2 lists subpartition maintenance operations that can be performed on composite
partitioned tables

• Table 4-3 lists maintenance operations that can be performed on index partitions, and on
which type of index (global or local) they can be performed

• Updating Indexes Automatically

• Asynchronous Global Index Maintenance for Dropping and Truncating Partitions

• Modifying a Subpartition Template

• Filtering Maintenance Operations

For each type of partitioning and subpartitioning in Table 4-1 and Table 4-2, the specific
clause of the ALTER TABLE statement that is used to perform that maintenance operation is
listed.

Note:

Partition maintenance operations on multiple partitions are not supported on tables
with domain indexes.

Chapter 4
Maintenance Operations Supported on Partitions

4-47

Table 4-1 ALTER TABLE Maintenance Operations for Table Partitions

Maintenance
Operation

Range
Composite
Range-*

Interval
Composite
Interval-*

Hash List
Composite
List-*

Reference

Adding Partitions,
refer to About Adding
Partitions and
Subpartitions

ADD
PARTITION,
single and
multiple
partitions

N/A ADD PARTITION ADD
PARTITION,
single and
multiple
partitions

N/A. (These
operations
cannot be
performed on
reference-
partitioned
tables. If
performed on a
parent table,
then these
operations
cascade to all
descendant
tables.)

Coalescing Partitions,
refer to About
Coalescing Partitions
and Subpartitions

N/A N/A COALESCE
PARTITION

N/A N/A (These
operations
cannot be
performed on
reference-
partitioned
tables. If
performed on a
parent table,
then these
operations
cascade to all
descendant
tables.)

Dropping Partitions,
refer to About
Dropping Partitions
and Subpartitions

DROP
PARTITION,
single and
multiple
partitions

DROP
PARTITION,
single and
multiple
partitions

N/A DROP
PARTITION,
single and
multiple
partitions

N/A (These
operations
cannot be
performed on
reference-
partitioned
tables. If
performed on a
parent table,
then these
operations
cascade to all
descendant
tables.)

Exchanging
Partitions, refer to
About Exchanging
Partitions and
Subpartitions

EXCHANGE
PARTITION

EXCHANGE
PARTITION

EXCHANGE
PARTITION

EXCHANGE
PARTITION

EXCHANGE
PARTITION

Chapter 4
Maintenance Operations Supported on Partitions

4-48

Table 4-1 (Cont.) ALTER TABLE Maintenance Operations for Table Partitions

Maintenance
Operation

Range
Composite
Range-*

Interval
Composite
Interval-*

Hash List
Composite
List-*

Reference

Merging Partitions,
refer to About
Merging Partitions
and Subpartitions

MERGE
PARTITIONS,
single and
multiple
partitions

MERGE
PARTITIONS,
single and
multiple
partitions

N/A MERGE
PARTITIONS,
single and
multiple
partitions

N/A (These
operations
cannot be
performed on
reference-
partitioned
tables. If
performed on a
parent table,
then these
operations
cascade to all
descendant
tables.)

About Modifying
Default Attributes

MODIFY
DEFAULT
ATTRIBUTES

MODIFY
DEFAULT
ATTRIBUTES

MODIFY
DEFAULT
ATTRIBUTES

MODIFY
DEFAULT
ATTRIBUTES

MODIFY
DEFAULT
ATTRIBUTES

About Modifying Real
Attributes of Partitions

MODIFY
PARTITION

MODIFY
PARTITION

MODIFY
PARTITION

MODIFY
PARTITION

MODIFY
PARTITION

About Modifying List
Partitions: Adding
Values

N/A N/A N/A MODIFY
PARTITION ADD
VALUES

N/A

About Modifying List
Partitions: Dropping
Values

N/A N/A N/A MODIFY
PARTITION
DROP VALUES

N/A

Moving Partitions,
refer to About Moving
Partitions and
Subpartitions

MOVE
SUBPARTITION

MOVE
SUBPARTITION

MOVE
PARTITION

MOVE
SUBPARTITION

MOVE
PARTITION

Renaming Partitions,
refer to About
Renaming Partitions
and Subpartitions

RENAME
PARTITION

RENAME
PARTITION

RENAME
PARTITION

RENAME
PARTITION

RENAME
PARTITION

Splitting Partitions,
refer to About Splitting
Partitions and
Subpartitions

SPLIT
PARTITION,
single and
multiple
partitions

SPLIT
PARTITION,
single and
multiple
partitions

N/A SPLIT
PARTITION,
single and
multiple
partitions

N/A (These
operations
cannot be
performed on
reference-
partitioned
tables. If
performed on a
parent table,
then these
operations
cascade to all
descendant
tables.)

Chapter 4
Maintenance Operations Supported on Partitions

4-49

Table 4-1 (Cont.) ALTER TABLE Maintenance Operations for Table Partitions

Maintenance
Operation

Range
Composite
Range-*

Interval
Composite
Interval-*

Hash List
Composite
List-*

Reference

Truncating Partitions,
refer to About
Truncating Partitions
and Subpartitions

TRUNCATE
PARTITION,
single and
multiple
partitions

TRUNCATE
PARTITION,
single and
multiple
partitions

TRUNCATE
PARTITION,
single and
multiple
partitions

TRUNCATE
PARTITION,
single and
multiple
partitions

TRUNCATE
PARTITION,
single and
multiple
partitions

Table 4-2 ALTER TABLE Maintenance Operations for Table Subpartitions

Maintenance Operation Composite *-Range Composite *-Hash Composite *-List

Adding Subpartitions, refer to
About Adding Partitions and
Subpartitions

MODIFY PARTITION ADD
SUBPARTITION, single
and multiple subpartitions

MODIFY PARTITION ADD
SUBPARTITION

MODIFY PARTITION ADD
SUBPARTITION, single
and multiple subpartitions

Coalescing Subpartitions, refer
to About Coalescing Partitions
and Subpartitions

N/A MODIFY PARTITION
COALESCE
SUBPARTITION

N/A

Dropping Subpartitions, refer to
About Dropping Partitions and
Subpartitions

DROP SUBPARTITION,
single and multiple
subpartitions

N/A DROP SUBPARTITION,
single and multiple
subpartitions

Exchanging Subpartitions, refer
to About Exchanging Partitions
and Subpartitions

EXCHANGE
SUBPARTITION

N/A EXCHANGE
SUBPARTITION

Merging Subpartitions, refer to
About Merging Partitions and
Subpartitions

MERGE SUBPARTITIONS,
single and multiple
subpartitions

N/A MERGE SUBPARTITIONS,
single and multiple
subpartitions

About Modifying Default
Attributes

MODIFY DEFAULT
ATTRIBUTES FOR
PARTITION

MODIFY DEFAULT
ATTRIBUTES FOR
PARTITION

MODIFY DEFAULT
ATTRIBUTES FOR
PARTITION

Modifying Real Attributes of
Subpartitions, refer to About
Modifying Real Attributes of
Partitions

MODIFY SUBPARTITION MODIFY SUBPARTITION MODIFY SUBPARTITION

Modifying List Subpartitions,
refer to About Modifying List
Partitions: Adding Values

N/A N/A MODIFY SUBPARTITION
ADD VALUES

Modifying List Subpartitions,
refer to About Modifying List
Partitions: Dropping Values

N/A N/A MODIFY SUBPARTITION
DROP VALUES

Modifying a Subpartition
Template

SET SUBPARTITION
TEMPLATE

SET SUBPARTITION
TEMPLATE

SET SUBPARTITION
TEMPLATE

Moving Subpartitions, refer to
About Moving Partitions and
Subpartitions

MOVE SUBPARTITION MOVE SUBPARTITION MOVE SUBPARTITION

Renaming Subpartitions, refer
to About Renaming Partitions
and Subpartitions

RENAME SUBPARTITION RENAME SUBPARTITION RENAME SUBPARTITION

Chapter 4
Maintenance Operations Supported on Partitions

4-50

Table 4-2 (Cont.) ALTER TABLE Maintenance Operations for Table Subpartitions

Maintenance Operation Composite *-Range Composite *-Hash Composite *-List

Splitting Subpartitions, refer to
About Splitting Partitions and
Subpartitions

SPLIT SUBPARTITION,
single and multiple
subpartitions

N/A SPLIT SUBPARTITION,
single and multiple
subpartitions

Truncating Subpartitions, refer
to About Truncating Partitions
and Subpartitions

TRUNCATE
SUBPARTITION, single
and multiple subpartitions

TRUNCATE
SUBPARTITION, single
and multiple subpartitions

TRUNCATE
SUBPARTITION, single
and multiple subpartitions

Note:

The first time you use table compression to introduce a compressed partition into a
partitioned table that has bitmap indexes and that currently contains only
uncompressed partitions, you must do the following:

• Either drop all existing bitmap indexes and bitmap index partitions, or mark
them UNUSABLE.

• Set the table compression attribute.

• Rebuild the indexes.

These actions are independent of whether any partitions contain data and of the
operation that introduces the compressed partition.

This does not apply to partitioned tables with B-tree indexes or to partitioned index-
organized tables.

Table 4-3 lists maintenance operations that can be performed on index partitions, and
indicates on which type of index (global or local) they can be performed. The ALTER INDEX
clause used for the maintenance operation is shown.

Global indexes do not reflect the structure of the underlying table. If partitioned, they can be
partitioned by range or hash.

Because local indexes reflect the underlying structure of the table, partitioning is maintained
automatically when table partitions and subpartitions are affected by maintenance activity.
Therefore, partition maintenance on local indexes is less necessary and there are fewer
options.

Table 4-3 ALTER INDEX Maintenance Operations for Index Partitions

Maintenance
Operation

Type of Index Type of Index Partitioning

Range Hash and List Composite

Adding Index Partitions Global - ADD PARTITION (hash
only)

-

Adding Index Partitions Local N/A N/A N/A

Dropping Index
Partitions

Global DROP PARTITION - -

Chapter 4
Maintenance Operations Supported on Partitions

4-51

Table 4-3 (Cont.) ALTER INDEX Maintenance Operations for Index Partitions

Maintenance
Operation

Type of Index Type of Index Partitioning

Range Hash and List Composite

Dropping Index
Partitions

Local N/A N/A N/A

Modifying Default
Attributes of Index
Partitions

Global MODIFY DEFAULT
ATTRIBUTES

- -

Modifying Default
Attributes of Index
Partitions

Local MODIFY DEFAULT
ATTRIBUTES

MODIFY DEFAULT
ATTRIBUTES

MODIFY DEFAULT
ATTRIBUTES

MODIFY DEFAULT
ATTRIBUTES FOR
PARTITION

Modifying Real
Attributes of Index
Partitions

Global MODIFY PARTITION - -

Modifying Real
Attributes of Index
Partitions

Local MODIFY PARTITION MODIFY PARTITION MODIFY PARTITION

MODIFY
SUBPARTITION

About Rebuilding Index
Partitions

Global REBUILD PARTITION - -

About Rebuilding Index
Partitions

Local REBUILD PARTITION REBUILD PARTITION REBUILD
SUBPARTITION

About Renaming Index
Partitions

Global RENAME PARTITION - -

About Renaming Index
Partitions

Local RENAME PARTITION RENAME PARTITION RENAME PARTITION

RENAME
SUBPARTITION

Splitting Index
Partitions

Global SPLIT PARTITION - -

Splitting Index
Partitions

Local N/A N/A N/A

4.3.1 Updating Indexes Automatically
Before discussing the individual maintenance operations for partitioned tables and
indexes, it is important to discuss the effects of the UPDATE INDEXES clause that can be
specified in the ALTER TABLE statement.

By default, many table maintenance operations on partitioned tables invalidate (mark
UNUSABLE) the corresponding indexes or index partitions. You must then rebuild the
entire index or, for a global index, each of its partitions. The database lets you override
this default behavior if you specify UPDATE INDEXES in your ALTER TABLE statement for
the maintenance operation. Specifying this clause tells the database to update the
indexes at the time it executes the maintenance operation DDL statement. This
provides the following benefits:

• The indexes are updated with the base table operation. You are not required to
update later and independently rebuild the indexes.

Chapter 4
Maintenance Operations Supported on Partitions

4-52

• The global indexes are more highly available, because they are not marked UNUSABLE.
These indexes remain available even while the partition DDL is executing and can
access unaffected partitions in the table.

• You need not look up the names of all invalid indexes to rebuild them.

Optional clauses for local indexes let you specify physical and storage characteristics for
updated local indexes and their partitions.

• You can specify physical attributes, tablespace storage, and logging for each partition of
each local index. Alternatively, you can specify only the PARTITION keyword and let the
database update the partition attributes as follows:

– For operations on a single table partition (such as MOVE PARTITION and SPLIT
PARTITION), the corresponding index partition inherits the attributes of the affected
table partition. The database does not generate names for new index partitions, so
any new index partitions resulting from this operation inherit their names from the
corresponding new table partition.

– For MERGE PARTITION operations, the resulting local index partition inherits its name
from the resulting table partition and inherits its attributes from the local index.

• For a composite-partitioned index, you can specify tablespace storage for each
subpartition.

The following operations support the UPDATE INDEXES clause:

• ADD PARTITION | SUBPARTITION

• COALESCE PARTITION | SUBPARTITION

• DROP PARTITION | SUBPARTITION

• EXCHANGE PARTITION | SUBPARTITION

• MERGE PARTITION | SUBPARTITION

• MOVE PARTITION | SUBPARTITION

• SPLIT PARTITION | SUBPARTITION

• TRUNCATE PARTITION | SUBPARTITION

SKIP_UNUSABLE_INDEXES Initialization Parameter

SKIP_UNUSABLE_INDEXES is an initialization parameter with a default value of TRUE. This
setting disables error reporting of indexes and index partitions marked UNUSABLE. If you do not
want the database to choose an alternative execution plan to avoid the unusable elements,
then you should set this parameter to FALSE.

Considerations when Updating Indexes Automatically

The following implications are worth noting when you specify UPDATE INDEXES:

• The partition DDL statement can take longer to execute, because indexes that were
previously marked UNUSABLE are updated. However, you must compare this increase with
the time it takes to execute DDL without updating indexes, and then rebuild all indexes. A
rule of thumb is that it is faster to update indexes if the size of the partition is less that 5%
of the size of the table.

• The EXCHANGE operation is no longer a fast operation. Again, you must compare the time
it takes to do the DDL and then rebuild all indexes.

• When you update a table with a global index:

Chapter 4
Maintenance Operations Supported on Partitions

4-53

– The index is updated in place. The updates to the index are logged, and redo
and undo records are generated. In contrast, if you rebuild an entire global
index, you can do so in NOLOGGING mode.

– Rebuilding the entire index manually creates a more efficient index, because it
is more compact with better space utilization.

• The UPDATE INDEXES clause is not supported for index-organized tables. However,
the UPDATE GLOBAL INDEXES clause may be used with DROP PARTITION, TRUNCATE
PARTITION, and EXCHANGE PARTITION operations to keep the global indexes on
index-organized tables usable. For the remaining operations in the above list,
global indexes on index-organized tables remain usable. In addition, local index
partitions on index-organized tables remain usable after a MOVE PARTITION
operation.

See Also:

Oracle Database SQL Language Reference for information about the
update_all_indexes_clause of ALTER TABLE in for the syntax for updating
indexes

4.3.2 Asynchronous Global Index Maintenance for Dropping and
Truncating Partitions

The partition maintenance operations DROP PARTITION and TRUNCATE PARTITION are
optimized by making the index maintenance for metadata only.

Asynchronous global index maintenance for DROP and TRUNCATE is performed by
default; however, the UPDATE INDEXES clause is still required for backward compatibility.

The following list summarizes the limitations of asynchronous global index
maintenance:

• Only performed on heap tables

• No support for tables with object types

• No support for tables with domain indexes

• Not performed for the user SYS

Maintenance operations on indexes can be performed with the automatic scheduler
job SYS.PMO_DEFERRED_GIDX_MAINT_JOB to clean up all global indexes. This job is
scheduled to run on a regular basis by default. You can run this job at any time using
DBMS_SCHEDULER.RUN_JOB if you want to proactively clean up the indexes. You can also
modify the job to run with a schedule based on your specific requirements. Oracle
recommends that you do not drop the job.

You can also force cleanup of an index needing maintenance using one of the
following options:

• DBMS_PART.CLEANUP_GIDX - This PL/SQL procedure gathers the list of global
indexes in the system that may require cleanup and runs the operations necessary
to restore the indexes to a clean state.

Chapter 4
Maintenance Operations Supported on Partitions

4-54

• ALTER INDEX REBUILD [PARTITION] – This SQL statement rebuilds the entire index or index
partition as is done in releases previous to Oracle Database 12c Release 1 (12.1). The
resulting index (partition) does not contain any stale entries.

• ALTER INDEX [PARTITION] COALESCE CLEANUP – This SQL statement cleans up any
orphaned entries in index blocks.

See Also:

Oracle Database Administrator’s Guide for information about managing jobs with
Oracle Scheduler

4.3.3 Modifying a Subpartition Template
You can modify a subpartition template of a composite partitioned table by replacing it with a
new subpartition template.

Any subsequent operations that use the subpartition template (such as ADD PARTITION or
MERGE PARTITIONS) now use the new subpartition template. Existing subpartitions remain
unchanged.

If you modify a subpartition template of an interval-* composite partitioned table, then interval
partitions that have not yet been created use the new subpartition template.

Use the ALTER TABLE SET SUBPARTITION TEMPLATE statement to specify a new subpartition
template. For example:

ALTER TABLE employees_sub_template
 SET SUBPARTITION TEMPLATE
 (SUBPARTITION e TABLESPACE ts1,
 SUBPARTITION f TABLESPACE ts2,
 SUBPARTITION g TABLESPACE ts3,
 SUBPARTITION h TABLESPACE ts4
);

You can drop a subpartition template by specifying an empty list:

ALTER TABLE employees_sub_template
 SET SUBPARTITION TEMPLATE ();

4.3.4 Filtering Maintenance Operations
Partition maintenance operations support the addition of data filtering, enabling the
combination of partition and data maintenance.

A filtered partition maintenance operation only preserves the data satisfying the data filtering
as part of the partition maintenance. The capability of data filtering applies to MOVE PARTITION,
MERGE PARTITION, and SPLIT PARTITION .

Example 4-27 shows the use of the ALTER TABLE statement to move a partition while
removing all orders that are not open (closed orders).

The filtering predicate must be on the partitioned table. All partition maintenance operations
that can be performed online (MOVE and SPLIT) can also be performed as filtered partition

Chapter 4
Maintenance Operations Supported on Partitions

4-55

maintenance operations. With ONLINE specified, DML operations on the partitions
being maintained are allowed.

Filtered partition maintenance operations performed in online mode do not enforce the
filter predicate on concurrent ongoing DML operations. The filter condition is only
applied one time at the beginning of the partition maintenance operation.
Consequently, any subsequent DML succeeds, but is ignored from a filtering
perspective. Records that do not match the filter condition when the partition
maintenance started are not preserved, regardless of any DML operation. Newly
inserted records are inserted if they match the partition key criteria, regardless of
whether they satisfy the filter condition of the partition maintenance operation. Filter
conditions are limited to the partitioned table itself and do not allow any reference to
other tables, such as a join or subquery expression.

Consider the following scenarios when the keyword ONLINE is specified in the SQL
statement of Example 4-27.

• An existing order record in partition q1_2016 that is updated to status='open'
after the partition maintenance operation has started is not be preserved in the
partition.

• A new order record with status='closed' can be inserted in partition q1_2016
after the partition maintenance operation has started and while the partition
maintenance operation is ongoing.

Example 4-27 Using a filtering clause when performing maintenance
operations

ALTER TABLE orders_move_part
 MOVE PARTITION q1_2016 TABLESPACE open_orders COMPRESS ONLINE
 INCLUDING ROWS WHERE order_state = 'open';

See Also:

Oracle Database SQL Language Reference for the exact syntax of the
partitioning clauses for creating and altering partitioned tables and indexes,
any restrictions on their use, and specific privileges required for creating and
altering tables

4.4 Maintenance Operations for Partitioned Tables and
Indexes

There are various maintenance operations that can be performed on partitioned tables
and indexes.

The operations to perform partition and subpartition maintenance for both tables and
indexes are discussed in the following topics.

• About Adding Partitions and Subpartitions

• About Coalescing Partitions and Subpartitions

• About Dropping Partitions and Subpartitions

• About Exchanging Partitions and Subpartitions

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-56

• About Merging Partitions and Subpartitions

• About Modifying Attributes of Tables, Partitions, and Subpartitions

• About Modifying List Partitions

• About Modifying the Partitioning Strategy

• About Moving Partitions and Subpartitions

• About Rebuilding Index Partitions

• About Renaming Partitions and Subpartitions

• About Splitting Partitions and Subpartitions

• About Truncating Partitions and Subpartitions

Note:

Where the usability of indexes or index partitions affected by the maintenance
operation is discussed, consider the following:

• Only indexes and index partitions that are not empty are candidates for being
marked UNUSABLE. If they are empty, the USABLE/UNUSABLE status is left
unchanged.

• Only indexes or index partitions with USABLE status are updated by subsequent
DML.

See Also:

• Oracle Database Administrator’s Guide for information about managing tables

• Oracle Database SQL Language Reference for the exact syntax of the
partitioning clauses for altering partitioned tables and indexes, any restrictions
on their use, and specific privileges required for creating and altering tables

4.4.1 About Adding Partitions and Subpartitions
This section introduces how to manually add new partitions to a partitioned table and explains
why partitions cannot be specifically added to most partitioned indexes.

This section contains the following topics:

• Adding a Partition to a Range-Partitioned Table

• Adding a Partition to a Hash-Partitioned Table

• Adding a Partition to a List-Partitioned Table

• Adding a Partition to an Interval-Partitioned Table

• About Adding Partitions to a Composite *-Hash Partitioned Table

• About Adding Partitions to a Composite *-List Partitioned Table

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-57

• About Adding Partitions to a Composite *-Range Partitioned Table

• About Adding a Partition or Subpartition to a Reference-Partitioned Table

• Adding Index Partitions

• Adding Multiple Partitions

4.4.1.1 Adding a Partition to a Range-Partitioned Table
You can add a partition after the last existing partition of a table or the beginning of a
table or in the middle of a table.

Use the ALTER TABLE ADD PARTITION statement to add a new partition to the "high" end
(the point after the last existing partition). To add a partition at the beginning or in the
middle of a table, use the SPLIT PARTITION clause.

For example, consider the table, sales, which contains data for the current month in
addition to the previous 12 months. On January 1, 1999, you add a partition for
January, which is stored in tablespace tsx.

ALTER TABLE sales
 ADD PARTITION jan99 VALUES LESS THAN ('01-FEB-1999')
 TABLESPACE tsx;

Local and global indexes associated with the range-partitioned table remain usable.

4.4.1.2 Adding a Partition to a Hash-Partitioned Table
When you add a partition to a hash partitioned table, the database populates the new
partition with rows rehashed from an existing partition (selected by the database) as
determined by the hash function.

Consequently, if the table contains data, then it may take some time to add a hash
partition.

The following statements show two ways of adding a hash partition to table scubagear.
Choosing the first statement adds a new hash partition whose partition name is system
generated, and which is placed in the default tablespace. The second statement also
adds a new hash partition, but that partition is explicitly named p_named and is created
in tablespace gear5.

ALTER TABLE scubagear ADD PARTITION;

ALTER TABLE scubagear
 ADD PARTITION p_named TABLESPACE gear5;

Indexes may be marked UNUSABLE as explained in the following table:

Table Type Index Behavior

Regular (Heap) Unless you specify UPDATE INDEXES as part of the ALTER TABLE
statement:

• The local indexes for the new partition, and for the existing partition
from which rows were redistributed, are marked UNUSABLE and
must be rebuilt.

• All global indexes, or all partitions of partitioned global indexes, are
marked UNUSABLE and must be rebuilt.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-58

Table Type Index Behavior

Index-organized • For local indexes, the behavior is identical to heap tables.
• All global indexes remain usable.

4.4.1.3 Adding a Partition to a List-Partitioned Table
The example in this topic shows how to add a partition to a list-partitioned table.

The following statement illustrates how to add a new partition to a list-partitioned table. In this
example, physical attributes and NOLOGGING are specified for the partition being added.

ALTER TABLE q1_sales_by_region
 ADD PARTITION q1_nonmainland VALUES ('HI', 'PR')
 STORAGE (INITIAL 20K NEXT 20K) TABLESPACE tbs_3
 NOLOGGING;

Any value in the set of literal values that describe the partition being added must not exist in
any of the other partitions of the table.

You cannot add a partition to a list-partitioned table that has a default partition, but you can
split the default partition. By doing so, you effectively create a new partition defined by the
values that you specify, and a second partition that remains the default partition.

Local and global indexes associated with the list-partitioned table remain usable.

4.4.1.4 Adding a Partition to an Interval-Partitioned Table
You cannot explicitly add a partition to an interval-partitioned table. The database
automatically creates a partition for an interval when data for that interval is inserted.

However, exchanging a partition of an interval-partitioned table that has not been materialized
in the data dictionary, meaning to have an explicit entry in the data dictionary beyond the
interval definition, you must manually materialize the partition using the ALTER TABLE LOCK
PARTITION command.

To change the interval for future partitions, use the SET INTERVAL clause of the ALTER TABLE
statement. The SET INTERVAL clause converts existing interval partitions to range partitions,
determines the high value of the defined range partitions, and automatically creates partitions
of the specified interval as needed for data that is beyond that high value. As a side effect, an
interval-partitioned table does not have the notation of MAXVALUES.

You also use the SET INTERVAL clause to migrate an existing range partitioned or range-*
composite partitioned table into an interval or interval-* partitioned table. To disable the
creation of future interval partitions, and effectively revert to a range-partitioned table, use an
empty value in the SET INTERVAL clause. Created interval partitions are transformed into
range partitions with their current high values.

To increase the interval for date ranges, you must ensure that you are at a relevant boundary
for the new interval. For example, if the highest interval partition boundary in your daily
interval partitioned table transactions is January 30, 2007 and you want to change to a
monthly partition interval, then the following statement results in an error:

ALTER TABLE transactions SET INTERVAL (NUMTOYMINTERVAL(1,'MONTH');

ORA-14767: Cannot specify this interval with existing high bounds

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-59

You must create another daily partition with a high bound of February 1, 2007 to
successfully change to a monthly interval:

LOCK TABLE transactions PARTITION FOR(TO_DATE('31-JAN-2007','dd-MON-yyyy')
 IN SHARE MODE;

ALTER TABLE transactions SET INTERVAL (NUMTOYMINTERVAL(1,'MONTH');

The lower partitions of an interval-partitioned table are range partitions. You can split
range partitions to add more partitions in the range portion of the interval-partitioned
table.

To disable interval partitioning on the transactions table, use:

ALTER TABLE transactions SET INTERVAL ();

4.4.1.5 About Adding Partitions to a Composite *-Hash Partitioned Table
Partitions can be added at both the partition level and at the hash subpartition level.

• Adding a Partition to a *-Hash Partitioned Table

• Adding a Subpartition to a *-Hash Partitioned Table

4.4.1.5.1 Adding a Partition to a *-Hash Partitioned Table
The example in this topic shows how to add a new partition to a [range | list | interval]-
hash partitioned table.

For an interval-hash partitioned table, interval partitions are automatically created. You
can specify a SUBPARTITIONS clause that lets you add a specified number of
subpartitions, or a SUBPARTITION clause for naming specific subpartitions. If no
SUBPARTITIONS or SUBPARTITION clause is specified, then the partition inherits table
level defaults for subpartitions. For an interval-hash partitioned table, you can only add
subpartitions to range or interval partitions that have been materialized.

This example adds a range partition q1_2000 to the range-hash partitioned table
sales, which is populated with data for the first quarter of the year 2000. There are
eight subpartitions stored in tablespace tbs5. The subpartitions cannot be set explicitly
to use table compression. Subpartitions inherit the compression attribute from the
partition level and are stored in a compressed form in this example:

ALTER TABLE sales ADD PARTITION q1_2000
 VALUES LESS THAN (2000, 04, 01) COMPRESS
 SUBPARTITIONS 8 STORE IN tbs5;

4.4.1.5.2 Adding a Subpartition to a *-Hash Partitioned Table
Use the MODIFY PARTITION ADD SUBPARTITION clause of the ALTER TABLE statement to
add a hash subpartition to a [range | list | interval]-hash partitioned table.

The newly added subpartition is populated with rows rehashed from other
subpartitions of the same partition as determined by the hash function. For an interval-
hash partitioned table, you can only add subpartitions to range or interval partitions
that have been materialized.

In the following example, a new hash subpartition us_loc5, stored in tablespace us1, is
added to range partition locations_us in table diving.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-60

ALTER TABLE diving MODIFY PARTITION locations_us
 ADD SUBPARTITION us_locs5 TABLESPACE us1;

Index subpartitions corresponding to the added and rehashed subpartitions must be rebuilt
unless you specify UPDATE INDEXES.

4.4.1.6 About Adding Partitions to a Composite *-List Partitioned Table
Partitions can be added at both the partition level and at the list subpartition level.

• Adding a Partition to a *-List Partitioned Table

• Adding a Subpartition to a *-List Partitioned Table

4.4.1.6.1 Adding a Partition to a *-List Partitioned Table
The example in this topic shows how to add a new partition to a [range | list | interval]-list
partitioned table.

The database automatically creates interval partitions as data for a specific interval is
inserted. You can specify SUBPARTITION clauses for naming and providing value lists for the
subpartitions. If no SUBPARTITION clauses are specified, then the partition inherits the
subpartition template. If there is no subpartition template, then a single default subpartition is
created.

The statement in Example 4-28 adds a new partition to the quarterly_regional_sales table
that is partitioned by the range-list method. Some new physical attributes are specified for
this new partition while table-level defaults are inherited for those that are not specified.

Example 4-28 Adding partitions to a range-list partitioned table

ALTER TABLE quarterly_regional_sales
 ADD PARTITION q1_2000 VALUES LESS THAN (TO_DATE('1-APR-2000','DD-MON-YYYY'))
 STORAGE (INITIAL 20K NEXT 20K) TABLESPACE ts3 NOLOGGING
 (
 SUBPARTITION q1_2000_northwest VALUES ('OR', 'WA'),
 SUBPARTITION q1_2000_southwest VALUES ('AZ', 'UT', 'NM'),
 SUBPARTITION q1_2000_northeast VALUES ('NY', 'VM', 'NJ'),
 SUBPARTITION q1_2000_southeast VALUES ('FL', 'GA'),
 SUBPARTITION q1_2000_northcentral VALUES ('SD', 'WI'),
 SUBPARTITION q1_2000_southcentral VALUES ('OK', 'TX')
);

4.4.1.6.2 Adding a Subpartition to a *-List Partitioned Table
Use the MODIFY PARTITION ADD SUBPARTITION clause of the ALTER TABLE statement to add a
list subpartition to a [range | list | interval]-list partitioned table.

For an interval-list partitioned table, you can only add subpartitions to range or interval
partitions that have been materialized.

The following statement adds a new subpartition to the existing set of subpartitions in the
range-list partitioned table quarterly_regional_sales. The new subpartition is created in
tablespace ts2.

ALTER TABLE quarterly_regional_sales
 MODIFY PARTITION q1_1999
 ADD SUBPARTITION q1_1999_south
 VALUES ('AR','MS','AL') tablespace ts2;

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-61

4.4.1.7 About Adding Partitions to a Composite *-Range Partitioned Table
Partitions can be added at both the partition level and at the range subpartition level.

• Adding a Partition to a *-Range Partitioned Table

• Adding a Subpartition to a *-Range Partitioned Table

4.4.1.7.1 Adding a Partition to a *-Range Partitioned Table
The example in this topic shows how to add a new partition to a [range | list | interval]-
range partitioned table.

The database automatically creates interval partitions for an interval-range partitioned
table when data is inserted in a specific interval. You can specify a SUBPARTITION
clause for naming and providing ranges for specific subpartitions. If no SUBPARTITION
clause is specified, then the partition inherits the subpartition template specified at the
table level. If there is no subpartition template, then a single subpartition with a
maximum value of MAXVALUE is created.

Example 4-29 adds a range partition p_2007_jan to the range-range partitioned table
shipments, which is populated with data for the shipments ordered in January 2007.
There are three subpartitions. Subpartitions inherit the compression attribute from the
partition level and are stored in a compressed form in this example:

Example 4-29 Adding partitions to a range-range partitioned table

ALTER TABLE shipments
 ADD PARTITION p_2007_jan
 VALUES LESS THAN (TO_DATE('01-FEB-2007','dd-MON-yyyy')) COMPRESS
 (SUBPARTITION p07_jan_e VALUES LESS THAN (TO_DATE('15-FEB-2007','dd-MON-yyyy'))
 , SUBPARTITION p07_jan_a VALUES LESS THAN (TO_DATE('01-MAR-2007','dd-MON-yyyy'))
 , SUBPARTITION p07_jan_l VALUES LESS THAN (TO_DATE('01-APR-2007','dd-MON-yyyy'))
) ;

4.4.1.7.2 Adding a Subpartition to a *-Range Partitioned Table
You use the MODIFY PARTITION ADD SUBPARTITION clause of the ALTER TABLE statement
to add a range subpartition to a [range | list | interval]-range partitioned table.

For an interval-range partitioned table, you can only add partitions to range or interval
partitions that have been materialized.

The following example adds a range subpartition to the shipments table that contains
all values with an order_date in January 2007 and a delivery_date on or after April
1, 2007.

ALTER TABLE shipments
 MODIFY PARTITION p_2007_jan
 ADD SUBPARTITION p07_jan_vl VALUES LESS THAN (MAXVALUE) ;

4.4.1.8 About Adding a Partition or Subpartition to a Reference-Partitioned
Table

A partition or subpartition can be added to a parent table in a reference partition
definition just as partitions and subpartitions can be added to a range, hash, list, or
composite partitioned table.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-62

The add operation automatically cascades to any descendant reference partitioned tables.
The DEPENDENT TABLES clause can set specific properties for dependent tables when you add
partitions or subpartitions to a master table.

See Also:

Oracle Database SQL Language Reference

4.4.1.9 Adding Index Partitions
You cannot explicitly add a partition to a local index. Instead, a new partition is added to a
local index only when you add a partition to the underlying table.

Specifically, when there is a local index defined on a table and you issue the ALTER TABLE
statement to add a partition, a matching partition is also added to the local index. The
database assigns names and default physical storage attributes to the new index partitions,
but you can rename or alter them after the ADD PARTITION operation is complete.

You can effectively specify a new tablespace for an index partition in an ADD PARTITION
operation by first modifying the default attributes for the index. For example, assume that a
local index, q1_sales_by_region_locix, was created for list partitioned table
q1_sales_by_region. If before adding the new partition q1_nonmainland, as shown in Adding
a Partition to a List-Partitioned Table, you had issued the following statement, then the
corresponding index partition would be created in tablespace tbs_4.

ALTER INDEX q1_sales_by_region_locix
 MODIFY DEFAULT ATTRIBUTES TABLESPACE tbs_4;

Otherwise, it would be necessary for you to use the following statement to move the index
partition to tbs_4 after adding it:

ALTER INDEX q1_sales_by_region_locix
 REBUILD PARTITION q1_nonmainland TABLESPACE tbs_4;

You can add a partition to a hash partitioned global index using the ADD PARTITION syntax of
ALTER INDEX. The database adds hash partitions and populates them with index entries
rehashed from an existing hash partition of the index, as determined by the hash function.
The following statement adds a partition to the index hgidx shown in Creating a Hash
Partitioned Global Index:

ALTER INDEX hgidx ADD PARTITION p5;

You cannot add a partition to a range-partitioned global index, because the highest partition
always has a partition bound of MAXVALUE. To add a new highest partition, use the ALTER
INDEX SPLIT PARTITION statement.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-63

4.4.1.10 Adding Multiple Partitions
You can add multiple new partitions and subpartitions with the ADD PARTITION and ADD
SUBPARTITION clauses of the ALTER TABLE statement.

When adding multiple partitions, local and global index operations are the same as
when adding a single partition. Adding multiple partitions and subpartitions is only
supported for range, list, and system partitions and subpartitions.

You can add multiple range partitions that are listed in ascending order of their upper
bound values to the high end (after the last existing partition) of a range-partitioned or
composite range-partitioned table, provided the MAXVALUE partition is not defined.
Similarly, you can add multiple list partitions to a table using new sets of partition
values if the DEFAULT partition does not exist.

Multiple system partitions can be added using a single SQL statement by specifying
the individual partitions. For example, the following SQL statement adds multiple
partitions to the range-partitioned sales table created in Example 4-1:

ALTER TABLE sales ADD
 PARTITION sales_q1_2007 VALUES LESS THAN (TO_DATE('01-APR-2007','dd-MON-yyyy')),
 PARTITION sales_q2_2007 VALUES LESS THAN (TO_DATE('01-JUL-2007','dd-MON-yyyy')),
 PARTITION sales_q3_2007 VALUES LESS THAN (TO_DATE('01-OCT-2007','dd-MON-yyyy')),
 PARTITION sales_q4_2007 VALUES LESS THAN (TO_DATE('01-JAN-2008','dd-MON-yyyy'))
;

You can use the BEFORE clause to add multiple new system partitions in relation to only
one existing partition. The following SQL statements provide an example of adding
multiple individual partitions using the BEFORE clause:

CREATE TABLE system_part_tab1 (number1 integer, number2 integer)
PARTITION BY SYSTEM
(PARTITION p1,
 PARTITION p2,
 PARTITION p3,
 PARTITION p_last);

ALTER TABLE system_part_tab1 ADD
 PARTITION p4,
 PARTITION p5,
 PARTITION p6
 BEFORE PARTITION p_last;

SELECT SUBSTR(TABLE_NAME,1,18) table_name, TABLESPACE_NAME,
 SUBSTR(PARTITION_NAME,1,16) partition_name
 FROM USER_TAB_PARTITIONS WHERE TABLE_NAME='SYSTEM_PART_TAB1';
TABLE_NAME TABLESPACE_NAME PARTITION_NAME
------------------ ------------------------------ ----------------
SYSTEM_PART_TAB1 USERS P_LAST
SYSTEM_PART_TAB1 USERS P6
SYSTEM_PART_TAB1 USERS P5
SYSTEM_PART_TAB1 USERS P4
SYSTEM_PART_TAB1 USERS P3
SYSTEM_PART_TAB1 USERS P2
SYSTEM_PART_TAB1 USERS P1

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-64

4.4.2 About Coalescing Partitions and Subpartitions
Coalescing partitions is a way of reducing the number of partitions in a hash partitioned table
or index, or the number of subpartitions in a *-hash partitioned table.

When a hash partition is coalesced, its contents are redistributed into one or more remaining
partitions determined by the hash function. The specific partition that is coalesced is selected
by the database, and is dropped after its contents have been redistributed. If you coalesce a
hash partition or subpartition in the parent table of a reference-partitioned table definition,
then the reference-partitioned table automatically inherits the new partitioning definition.

Index partitions may be marked UNUSABLE as explained in the following table:

Table Type Index Behavior

Regular (Heap) Unless you specify UPDATE INDEXES as part of the ALTER TABLE statement:

• Any local index partition corresponding to the selected partition is also
dropped. Local index partitions corresponding to the one or more
absorbing partitions are marked UNUSABLE and must be rebuilt.

• All global indexes, or all partitions of partitioned global indexes, are
marked UNUSABLE and must be rebuilt.

Index-organized • Some local indexes are marked UNUSABLE as noted for heap indexes.
• All global indexes remain usable.

This section contains the following topics:

• Coalescing a Partition in a Hash Partitioned Table

• Coalescing a Subpartition in a *-Hash Partitioned Table

• Coalescing Hash Partitioned Global Indexes

4.4.2.1 Coalescing a Partition in a Hash Partitioned Table
The ALTER TABLE COALESCE PARTITION statement is used to coalesce a partition in a hash
partitioned table.

The following statement reduces by one the number of partitions in a table by coalescing a
partition.

ALTER TABLE ouu1
 COALESCE PARTITION;

4.4.2.2 Coalescing a Subpartition in a *-Hash Partitioned Table
The ALTER TABLE COALESCE SUBPARTITION statement is used to coalesce a subpartition in a
hash partitioned table.

The following statement distributes the contents of a subpartition of partition us_locations
into one or more remaining subpartitions (determined by the hash function) of the same
partition. For an interval-partitioned table, you can only coalesce hash subpartitions of
materialized range or interval partitions. Basically, this operation is the inverse of the MODIFY
PARTITION ADD SUBPARTITION clause discussed in Adding a Subpartition to a *-Hash
Partitioned Table.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-65

ALTER TABLE diving MODIFY PARTITION us_locations
 COALESCE SUBPARTITION;

4.4.2.3 Coalescing Hash Partitioned Global Indexes
You can instruct the database to reduce by one the number of index partitions in a
hash partitioned global index using the COALESCE PARTITION clause of ALTER INDEX.

The database selects the partition to coalesce based on the requirements of the hash
partition. The following statement reduces by one the number of partitions in the hgidx
index, created in Creating a Hash Partitioned Global Index:

ALTER INDEX hgidx COALESCE PARTITION;

4.4.3 About Dropping Partitions and Subpartitions
You can drop partitions from range, interval, list, or composite *-[range | list] partitioned
tables.

For interval partitioned tables, you can only drop range or interval partitions that have
been materialized. For hash partitioned tables, or hash subpartitions of composite *-
hash partitioned tables, you must perform a coalesce operation instead.

You cannot drop a partition from a reference-partitioned table. Instead, a drop
operation on a parent table cascades to all descendant tables.

This section contains the following topics:

• Dropping Table Partitions

• Dropping Interval Partitions

• Dropping Index Partitions

• Dropping Multiple Partitions

4.4.3.1 Dropping Table Partitions
To drop table partitions, use DROP PARTITION or DROP SUBPARTITION with the ALTER
TABLE SQL statement.

The following statements drop a table partition or subpartition:

• ALTER TABLE DROP PARTITION to drop a table partition

• ALTER TABLE DROP SUBPARTITION to drop a subpartition of a composite *-[range |
list] partitioned table

To preserve the data in the partition, use the MERGE PARTITION statement instead of the
DROP PARTITION statement.

To remove data in the partition without dropping the partition, use the TRUNCATE
PARTITION statement.

If local indexes are defined for the table, then this statement also drops the matching
partition or subpartitions from the local index. All global indexes, or all partitions of
partitioned global indexes, are marked UNUSABLE unless either of the following is true:

• You specify UPDATE INDEXES (Cannot be specified for index-organized tables. Use
UPDATE GLOBAL INDEXES instead.)

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-66

• The partition being dropped or its subpartitions are empty.

Note:

• If a table contains only one partition, you cannot drop the partition. Instead, you
must drop the table.

• You cannot drop the highest range partition in the range-partitioned section of
an interval-partitioned or interval-* composite partitioned table.

• With asynchronous global index maintenance, a drop partition update indexes
operation is on metadata only and all global indexes remain valid.

• Dropping a partition does not place the partition in the Oracle Database recycle
bin, regardless of the setting of the recycle bin. Dropped partitions are
immediately removed from the system.

The following sections contain some scenarios for dropping table partitions.

• Dropping a Partition from a Table that Contains Data and Global Indexes

• Dropping a Partition Containing Data and Referential Integrity Constraints

See Also:

• About Merging Partitions and Subpartitions for information about merging a
partition

• About Truncating Partitions and Subpartitions for information about truncating a
partition

• Asynchronous Global Index Maintenance for Dropping and Truncating
Partitions for information about asynchronous index maintenance for dropping
partitions

4.4.3.1.1 Dropping a Partition from a Table that Contains Data and Global Indexes
There are several methods you can use to drop a partition from a table that contains data and
global indexes.

If the partition contains data and one or more global indexes are defined on the table, then
use one of the following methods (method 1, 2 or 3) to drop the table partition.

Method 1

Issue the ALTER TABLE DROP PARTITION statement without maintaining global indexes.
Afterward, you must rebuild any global indexes (whether partitioned or not) because the
index (or index partitions) has been marked UNUSABLE. The following statements provide an
example of dropping partition dec98 from the sales table, then rebuilding its global
nonpartitioned index.

ALTER TABLE sales DROP PARTITION dec98;
ALTER INDEX sales_area_ix REBUILD;

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-67

If index sales_area_ix were a range-partitioned global index, then all partitions of the
index would require rebuilding. Further, it is not possible to rebuild all partitions of an
index in one statement. You must issue a separate REBUILD statement for each
partition in the index. The following statements rebuild the index partitions jan99_ix to
dec99_ix.

ALTER INDEX sales_area_ix REBUILD PARTITION jan99_ix;
ALTER INDEX sales_area_ix REBUILD PARTITION feb99_ix;
ALTER INDEX sales_area_ix REBUILD PARTITION mar99_ix;
...
ALTER INDEX sales_area_ix REBUILD PARTITION dec99_ix;

This method is most appropriate for large tables where the partition being dropped
contains a significant percentage of the total data in the table. While asynchronous
global index maintenance keeps global indexes valid without the need of any index
maintenance, you must use the UPDATE INDEXES clause to enable this new
functionality. This behavior ensures backward compatibility.

Method 2

Issue the DELETE statement to delete all rows from the partition before you issue the
ALTER TABLE DROP PARTITION statement. The DELETE statement updates the global
indexes.

For example, to drop the first partition, issue the following statements:

DELETE FROM sales partition (dec98);
ALTER TABLE sales DROP PARTITION dec98;

This method is most appropriate for small tables, or for large tables when the partition
being dropped contains a small percentage of the total data in the table.

Method 3

Specify UPDATE INDEXES in the ALTER TABLE statement. Doing so leverages the new
asynchronous global index maintenance. Indexes remain valid.

ALTER TABLE sales DROP PARTITION dec98
 UPDATE INDEXES;

4.4.3.1.2 Dropping a Partition Containing Data and Referential Integrity Constraints
There are several methods you can use to drop a partition containing data and
referential integrity constraints.

If a partition contains data and the table has referential integrity constraints, choose
either of the following methods (method 1 or 2) to drop the table partition. This table
has a local index only, so it is not necessary to rebuild any indexes.

Method 1

If there is no data referencing the data in the partition to drop, then you can disable the
integrity constraints on the referencing tables, issue the ALTER TABLE DROP PARTITION
statement, then re-enable the integrity constraints.

This method is most appropriate for large tables where the partition being dropped
contains a significant percentage of the total data in the table. If there is still data
referencing the data in the partition to be dropped, then ensure the removal of all the
referencing data so that you can re-enable the referential integrity constraints.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-68

Method 2

If there is data in the referencing tables, then you can issue the DELETE statement to delete all
rows from the partition before you issue the ALTER TABLE DROP PARTITION statement. The
DELETE statement enforces referential integrity constraints, and also fires triggers and
generates redo and undo logs. The delete can succeed if you created the constraints with the
ON DELETE CASCADE option, deleting all rows from referencing tables as well.

DELETE FROM sales partition (dec94);
ALTER TABLE sales DROP PARTITION dec94;

This method is most appropriate for small tables or for large tables when the partition being
dropped contains a small percentage of the total data in the table.

4.4.3.2 Dropping Interval Partitions
You can drop interval partitions in an interval-partitioned table.

This operation drops the data for the interval only and leaves the interval definition in tact. If
data is inserted in the interval just dropped, then the database again creates an interval
partition.

You can also drop range partitions in an interval-partitioned table. The rules for dropping a
range partition in an interval-partitioned table follow the rules for dropping a range partition in
a range-partitioned table. If you drop a range partition in the middle of a set of range
partitions, then the lower boundary for the next range partition shifts to the lower boundary of
the range partition you just dropped. You cannot drop the highest range partition in the range-
partitioned section of an interval-partitioned table.

The following example drops the September 2007 interval partition from the sales table.
There are only local indexes so no indexes are invalidated.

ALTER TABLE sales DROP PARTITION FOR(TO_DATE('01-SEP-2007','dd-MON-yyyy'));

4.4.3.3 Dropping Index Partitions
You cannot explicitly drop a partition of a local index. Instead, local index partitions are
dropped only when you drop a partition from the underlying table.

If a global index partition is empty, then you can explicitly drop it by issuing the ALTER INDEX
DROP PARTITION statement. But, if a global index partition contains data, then dropping the
partition causes the next highest partition to be marked UNUSABLE. For example, you would
like to drop the index partition P1, and P2 is the next highest partition. You must issue the
following statements:

ALTER INDEX npr DROP PARTITION P1;
ALTER INDEX npr REBUILD PARTITION P2;

Note:

You cannot drop the highest partition in a global index.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-69

4.4.3.4 Dropping Multiple Partitions
You can remove multiple partitions or subpartitions from a range or list partitioned table
with the DROP PARTITION and DROP SUBPARTITION clauses of the SQL ALTER TABLE
statement.

For example, the following SQL statement drops multiple partitions from the range-
partitioned table sales.

ALTER TABLE sales DROP PARTITION sales_q1_2008, sales_q2_2008,
 sales_q3_2008, sales_q4_2008;

You cannot drop all the partitions of a table. When dropping multiple partitions, local
and global index operations are the same as when dropping a single partition.

4.4.4 About Exchanging Partitions and Subpartitions
You can convert a partition or subpartition into a nonpartitioned table, and a
nonpartitioned table into a partition or subpartition of a partitioned table by exchanging
their data segments.

You can also convert a hash partitioned table into a partition of a composite *-hash
partitioned table, or convert the partition of a composite *-hash partitioned table into a
hash partitioned table. Similarly, you can convert a range- or list-partitioned table into a
partition of a composite *-range or -list partitioned table, or convert a partition of the
composite *-range or -list partitioned table into a range- or list-partitioned table.

Exchanging table partitions is useful to get data quickly in or out of a partitioned table.
For example, in data warehousing environments, exchanging partitions facilitates high-
speed data loading of new, incremental data into an existing partitioned table.

Note that during the exchange process the data from the source is moved to the target
and the data from the target is moved to the source.

OLTP and data warehousing environments benefit from exchanging old data partitions
out of a partitioned table. The data is purged from the partitioned table without actually
being deleted and can be archived separately afterward.

When you exchange partitions, logging attributes are preserved. You can optionally
specify if local indexes are also to be exchanged with the INCLUDING INDEXES clause,
and if rows are to be validated for proper mapping with the WITH VALIDATION clause.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-70

Note:

When you specify WITHOUT VALIDATION for the exchange partition operation, this is
normally a fast operation because it involves only data dictionary updates. However,
if the table or partitioned table involved in the exchange operation has a primary key
or unique constraint enabled, then the exchange operation is performed as if WITH
VALIDATION were specified to maintain the integrity of the constraints.

To avoid the overhead of this validation activity, issue the following statement for
each constraint before performing the exchange partition operation:

ALTER TABLE table_name
 DISABLE CONSTRAINT constraint_name KEEP INDEX

Enable the constraints after the exchange.

If you specify WITHOUT VALIDATION, then you must ensure that the data to be
exchanged belongs in the partition you exchange. You can use the
ORA_PARTITION_VALIDATION SQL function to help identify those records that have
been inserted incorrectly in the wrong partition.

Unless you specify UPDATE INDEXES, the Oracle Database marks the global indexes or all
global index partitions on the table whose partition is being exchanged as UNUSABLE. Global
indexes or global index partitions on the table being exchanged remain invalidated.

You cannot use UPDATE INDEXES for index-organized tables. Use UPDATE GLOBAL INDEXES
instead.

Incremental statistics on a partitioned table are maintained with a partition exchange
operation if the statistics were gathered on the nonpartitioned table when DBMS_STATS table
preferences INCREMENTAL is set to true and INCREMENTAL_LEVEL is set to TABLE.

Note:

In situations where column statistics for virtual columns are out of order, the column
statistics are deleted rather than retaining the stale statistics. Information about this
deletion is written to the alert log file.

This section contains the following topics:

• Creating a Table for Exchange With a Partitioned Table

• Exchanging a Range, Hash, or List Partition

• Exchanging a Partition of an Interval Partitioned Table

• Exchanging a Partition of a Reference-Partitioned Table

• About Exchanging a Partition of a Table with Virtual Columns

• Exchanging a Hash Partitioned Table with a *-Hash Partition

• Exchanging a Subpartition of a *-Hash Partitioned Table

• Exchanging a List-Partitioned Table with a *-List Partition

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-71

• About Exchanging a Subpartition of a *-List Partitioned Table

• Exchanging a Range-Partitioned Table with a *-Range Partition

• About Exchanging a Subpartition of a *-Range Partitioned Table

• About Exchanging a Partition with the Cascade Option

See Also:

• Partitioning Key for information about validating partition content

• Viewing Information About Partitioned Tables and Indexes for information
about using views to monitor details about partitioned tables and indexes

• Oracle Database SQL Tuning Guide for more information about
incremental statistics

• Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_STATS package

4.4.4.1 Creating a Table for Exchange With a Partitioned Table
Tables can be created with the FOR EXCHANGE WITH clause to exactly match the shape
of a partitioned table and be eligible for a partition exchange command. However,
indexes are not created as an operation of this command.

Because the FOR EXCHANGE WITH clause of CREATE TABLE provides an exact match
between a non-partitioned and partitioned table, this is an improvement over the
CREATE TABLE AS SELECT statement.

The following list is a summary of the effects of the CREATE TABLE FOR EXCHANGE WITH
DDL operation:

• The use case of this DDL operation is to facilitate creation of a table to be used for
exchange partition DDL.

• The operation creates a clone of the for exchange table in terms of column
ordering and column properties.

• Columns cannot be renamed. The table being created inherits the names from the
for exchange table.

• The only logical property that can be specified during the DDL operation is the
partitioning specification of the table.

The partitioning clause is only relevant for the exchange with a partition of a
composite-partitioned table. In this case, a partition with n subpartitions is
exchanged with a partitioned table with n partitions matching the subpartitions. You
are responsible for the definition of the partitioning clause for this exchange in this
scenario.

The subpartitioning can be asymmetrical across partitions. The partitioning clause
has to match exactly the subpartitioning of the partition to being exchanged.

• The physical properties which can be specified are primarily table segment
attributes.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-72

• Column properties copied with this DDL operation include, but are not limited to, the
following: unusable columns, invisible columns, virtual expression columns, functional
index expression columns, and other internal settings and attributes.

The following is an example of the use of the CREATE TABLE statement with the FOR EXCHANGE
WITH clause to create a table that mimics the shape of an existing table in terms of column
ordering and properties.

Example 4-30 Using the FOR EXCHANGE WITH clause of CREATE TABLE

CREATE TABLE sales_by_year_table
 (prod_id NUMBER NOT NULL,
 cust_id NUMBER NOT NULL,
 time_id DATE NOT NULL,
 channel_id NUMBER NOT NULL,
 promo_id NUMBER NOT NULL,
 quantity_sold NUMBER(10,2) NOT NULL,
 amount_sold NUMBER(10,2) NOT NULL
)
 PARTITION BY RANGE (time_id)
 (PARTITION sales_2016 VALUES LESS THAN (TO_DATE('01-01-2017','dd-mm-yyyy')),
 PARTITION sales_2017 VALUES LESS THAN (TO_DATE('01-01-2018','dd-mm-yyyy')),
 PARTITION sales_2018 VALUES LESS THAN (TO_DATE('01-01-2019','dd-mm-yyyy')),
 PARTITION sales_2019 VALUES LESS THAN (TO_DATE('01-01-2020','dd-mm-yyyy')),
 PARTITION sales_future VALUES LESS THAN (MAXVALUE)
);

DESCRIBE sales_by_year_table
 Name Null? Type
 --- -------- ----------------------------
 PROD_ID NOT NULL NUMBER
 CUST_ID NOT NULL NUMBER
 TIME_ID NOT NULL DATE
 CHANNEL_ID NOT NULL NUMBER
 PROMO_ID NOT NULL NUMBER
 QUANTITY_SOLD NOT NULL NUMBER(10,2)
 AMOUNT_SOLD NOT NULL NUMBER(10,2)

CREATE TABLE sales_later_year_table
 FOR EXCHANGE WITH TABLE sales_by_year_table;

DESCRIBE sales_later_year_table
 Name Null? Type
 --- -------- ----------------------------
 PROD_ID NOT NULL NUMBER
 CUST_ID NOT NULL NUMBER
 TIME_ID NOT NULL DATE
 CHANNEL_ID NOT NULL NUMBER
 PROMO_ID NOT NULL NUMBER
 QUANTITY_SOLD NOT NULL NUMBER(10,2)
 AMOUNT_SOLD NOT NULL NUMBER(10,2)

4.4.4.2 Exchanging a Range, Hash, or List Partition
To exchange a partition of a range, hash, or list partitioned table with a nonpartitioned table,
or the reverse, use the ALTER TABLE EXCHANGE PARTITION statement.

The following is an example of exchanging range partitions with a nonpartitioned table.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-73

Example 4-31 Exchanging a Range Partition

CREATE TABLE sales_future_table
 (prod_id NUMBER NOT NULL,
 cust_id NUMBER NOT NULL,
 time_id DATE NOT NULL,
 channel_id NUMBER NOT NULL,
 promo_id NUMBER NOT NULL,
 quantity_sold NUMBER(10,2) NOT NULL,
 amount_sold NUMBER(10,2) NOT NULL
)
 PARTITION BY RANGE (time_id)
 (PARTITION s_2020 VALUES LESS THAN (TO_DATE('01-01-2021','dd-mm-yyyy')),
 PARTITION s_2021 VALUES LESS THAN (TO_DATE('01-01-2022','dd-mm-yyyy')),
 PARTITION s_2022 VALUES LESS THAN (TO_DATE('01-01-2023','dd-mm-yyyy'))
);

CREATE TABLE sales_exchange_table
 FOR EXCHANGE WITH TABLE sales_future_table;

INSERT INTO sales_exchange_table VALUES (1002,110,TO_DATE('19-02-2020','dd-mm-
yyyy'),12,18,150,4800);
INSERT INTO sales_exchange_table VALUES (1001,100,TO_DATE('12-03-2020','dd-mm-
yyyy'),10,15,400,6500);
INSERT INTO sales_exchange_table VALUES (1001,100,TO_DATE('31-05-2020','dd-mm-
yyyy'),10,15,600,8000);
INSERT INTO sales_exchange_table VALUES (2105,101,TO_DATE('25-06-2020','dd-mm-
yyyy'),12,19,100,3000);
INSERT INTO sales_exchange_table VALUES (1002,120,TO_DATE('31-08-2020','dd-mm-
yyyy'),10,15,400,6000);
INSERT INTO sales_exchange_table VALUES (2105,101,TO_DATE('25-10-2020','dd-mm-
yyyy'),12,19,250,7500);

ALTER TABLE sales_future_table
 EXCHANGE PARTITION s_2020 WITH TABLE sales_exchange_table;

SELECT * FROM sales_future_table PARTITION(s_2020);
 PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD
---------- ---------- --------- ---------- ---------- ------------- -----------
 1002 110 19-FEB-20 12 18 150 4800
 1001 100 12-MAR-20 10 15 400 6500
 1001 100 31-MAY-20 10 15 600 8000
 2105 101 25-JUN-20 12 19 100 3000
 1002 120 31-AUG-20 10 15 400 6000
 2105 101 25-OCT-20 12 19 250 7500
6 rows selected.

REM Note that all records have been removed from the sales_exchange_table
SELECT * FROM sales_exchange_table;
no rows selected

INSERT INTO sales_exchange_table VALUES (1002,110,TO_DATE('15-02-2021','dd-mm-
yyyy'),12,18,300,9500);
INSERT INTO sales_exchange_table VALUES (1002,120,TO_DATE('31-03-2021','dd-mm-
yyyy'),10,15,200,3000);
INSERT INTO sales_exchange_table VALUES (2105,101,TO_DATE('25-04-2021','dd-mm-
yyyy'),12,19,150,9000);

ALTER TABLE sales_future_table
 EXCHANGE PARTITION s_2021 WITH TABLE sales_exchange_table;

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-74

SELECT * FROM sales_future_table PARTITION(s_2021);
 PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD
---------- ---------- --------- ---------- ---------- ------------- -----------
 1002 110 15-FEB-21 12 18 300 9500
 1002 120 31-MAR-21 10 15 200 3000
 2105 101 25-APR-21 12 19 150 9000
3 rows selected.

4.4.4.3 Exchanging a Partition of an Interval Partitioned Table
You can exchange interval partitions in an interval-partitioned table. However, you must
ensure that the interval partition has been created before you can exchange the partition.

The following example shows a partition exchange for the interval_sales table, interval-
partitioned using monthly partitions as of January 1, 2007. This example shows how to add
data for June 2007 to the table using partition exchange load. Assume there are only local
indexes on the interval_sales table, and equivalent indexes have been created on the
interval_sales_june_2007 table.

ALTER TABLE interval_sales
 EXCHANGE PARTITION FOR (TO_DATE('01-JUN-2007','dd-MON-yyyy'))
 WITH TABLE interval_sales_jun_2007
 INCLUDING INDEXES;

Note the use of the FOR syntax to identify a partition that was system-generated. You can
determine the partition name by querying the *_TAB_PARTITIONS data dictionary view to
display the system-generated partition name.

4.4.4.4 Exchanging a Partition of a Reference-Partitioned Table
You can exchange partitions in a reference-partitioned table, but you must ensure that the
data that you reference is available in the respective partition in the parent table.

Example 4-32 shows a partition exchange load scenario for the range-partitioned orders
table, and the reference partitioned order_items table. The data in the
order_items_2018_dec table only contains order item data for orders with an order_date in
December 2018.

You must use the UPDATE GLOBAL INDEXES or UPDATE INDEXES on the exchange partition of
the parent table in order for the primary key index to remain usable. Note also that you must
create or enable the foreign key constraint on the order_items_2018_dec table in order for
the partition exchange on the reference-partitioned table to succeed.

For information and an example using exchanging with the CASCADE keyword, refer to About
Exchanging a Partition with the Cascade Option.

Example 4-32 Exchanging a partition for a reference-partitioned table

CREATE TABLE orders (
 order_id number NOT NULL,
 order_date DATE,
 CONSTRAINT order_pk PRIMARY KEY (order_id))
 PARTITION by range (order_date)
 (PARTITION p_2018_dec values less than ('01-JAN-2019'));

CREATE TABLE order_items (
 order_item_id NUMBER NOT NULL,
 order_id NUMBER not null,
 order_item VARCHAR2(100),

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-75

 CONSTRAINT order_item_pk PRIMARY KEY (order_item_id),
 CONSTRAINT order_item_fk FOREIGN KEY (order_id) references orders(order_id) on delete
cascade)
 PARTITION by reference (order_item_fk);

CREATE TABLE orders_2018_dec (
 order_id NUMBER,
 order_date DATE,
 CONSTRAINT order_2018_dec_pk PRIMARY KEY (order_id));

INSERT into orders_2018_dec values (1,'01-DEC-2018');
COMMIT;

CREATE TABLE order_items_2018_dec (
 order_item_id NUMBER,
 order_id NUMBER NOT NULL,
 order_item VARCHAR2(100),
 CONSTRAINT order_item_2018_dec_pk PRIMARY KEY (order_item_id),
 CONSTRAINT order_item_2018_dec_fk FOREIGN KEY (order_id) references orders_2018_dec
(order_id) on delete cascade);

INSERT into order_items_2018_dec values (1,1,'item A');
INSERT into order_items_2018_dec values (2,1,'item B');

REM You must disable or DROP the constraint before the exchange
ALTER TABLE order_items_2018_dec DROP CONSTRAINT order_item_2018_dec_fk;

REM ALTER TABLE is successful with disabled PK-FK
ALTER TABLE orders
 EXCHANGE PARTITION p_2018_dec
 WITH TABLE orders_2018_dec
 UPDATE GLOBAL INDEXES;

REM You must establish the PK-FK with the future parent prior to this exchange
ALTER TABLE order_items_2018_dec
 ADD CONSTRAINT order_items_dec_2018_fk
 FOREIGN KEY (order_id)
 REFERENCES orders(order_id) ;

REM Complete the exchange
ALTER TABLE order_items
 EXCHANGE PARTITION p_2018_dec
 WITH TABLE order_items_2018_dec;

REM Display the data
SELECT * FROM orders;
 ORDER_ID ORDER_DAT
---------- ---------
 1 01-DEC-18

SELECT * FROM order_items;
ORDER_ITEM_ID ORDER_ID ORDER_ITEM
------------- ---------- ------------
 1 1 item A
 2 1 item B

4.4.4.5 About Exchanging a Partition of a Table with Virtual Columns
You can exchange partitions in the presence of virtual columns.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-76

In order for a partition exchange on a partitioned table with virtual columns to succeed, you
must create a table that matches the definition of all non-virtual columns in a single partition
of the partitioned table. You do not need to include the virtual column definitions, unless
constraints or indexes have been defined on the virtual column.

In this case, you must include the virtual column definition to match the partitioned table's
constraint and index definitions. This scenario also applies to virtual column-based partitioned
tables.

4.4.4.6 Exchanging a Hash Partitioned Table with a *-Hash Partition
You can exchange a whole hash partitioned table, with all of its partitions, with the partition of
a *-hash partitioned table and all of its hash subpartitions.

The following example illustrates this concept for a range-hash partitioned table.

First, create a hash partitioned table:

CREATE TABLE t1 (i NUMBER, j NUMBER)
 PARTITION BY HASH(i)
 (PARTITION p1, PARTITION p2);

Populate the table, then create a range-hash partitioned table as follows:

CREATE TABLE t2 (i NUMBER, j NUMBER)
 PARTITION BY RANGE(j)
 SUBPARTITION BY HASH(i)
 (PARTITION p1 VALUES LESS THAN (10)
 (SUBPARTITION t2_pls1,
 SUBPARTITION t2_pls2),
 PARTITION p2 VALUES LESS THAN (20)
 (SUBPARTITION t2_p2s1,
 SUBPARTITION t2_p2s2)
);

It is important that the partitioning key in table t1 equals the subpartitioning key in table t2.

To migrate the data in t1 to t2, and validate the rows, use the following statement:

ALTER TABLE t2 EXCHANGE PARTITION p1 WITH TABLE t1
 WITH VALIDATION;

4.4.4.7 Exchanging a Subpartition of a *-Hash Partitioned Table
You can use the ALTER TABLE EXCHANGE SUBPARTITION statement to convert a hash
subpartition of a *-hash partitioned table into a nonpartitioned table, or the reverse.

The following example converts the subpartition q3_1999_s1 of table sales into the
nonpartitioned table q3_1999. Local index partitions are exchanged with corresponding
indexes on q3_1999.

ALTER TABLE sales EXCHANGE SUBPARTITION q3_1999_s1
 WITH TABLE q3_1999 INCLUDING INDEXES;

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-77

4.4.4.8 Exchanging a List-Partitioned Table with a *-List Partition
You can use the ALTER TABLE EXCHANGE PARTITION statement to exchange a list-
partitioned table with a *-list partition.

The semantics are the same as described previously in Exchanging a Hash
Partitioned Table with a *-Hash Partition. The following example shows an exchange
partition scenario for a list-list partitioned table.

CREATE TABLE customers_apac
(id NUMBER
, name VARCHAR2(50)
, email VARCHAR2(100)
, region VARCHAR2(4)
, credit_rating VARCHAR2(1)
)
PARTITION BY LIST (credit_rating)
(PARTITION poor VALUES ('P')
, PARTITION mediocre VALUES ('C')
, PARTITION good VALUES ('G')
, PARTITION excellent VALUES ('E')
);

Populate the table with APAC customers. Then create a list-list partitioned table:

CREATE TABLE customers
(id NUMBER
, name VARCHAR2(50)
, email VARCHAR2(100)
, region VARCHAR2(4)
, credit_rating VARCHAR2(1)
)
PARTITION BY LIST (region)
SUBPARTITION BY LIST (credit_rating)
SUBPARTITION TEMPLATE
(SUBPARTITION poor VALUES ('P')
, SUBPARTITION mediocre VALUES ('C')
, SUBPARTITION good VALUES ('G')
, SUBPARTITION excellent VALUES ('E')
)
(PARTITION americas VALUES ('AMER')
, PARTITION emea VALUES ('EMEA')
, PARTITION apac VALUES ('APAC')
);

It is important that the partitioning key in the customers_apac table matches the
subpartitioning key in the customers table.

Next, exchange the apac partition.

ALTER TABLE customers
EXCHANGE PARTITION apac
WITH TABLE customers_apac
WITH VALIDATION;

4.4.4.9 About Exchanging a Subpartition of a *-List Partitioned Table
You can use the ALTER TABLE EXCHANGE SUBPARTITION statement to exchange a
subpartition of a *-list partitioned table.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-78

The semantics of the ALTER TABLEEXCHANGE SUBPARTITION statement are the same as
described previously in Exchanging a Subpartition of a *-Hash Partitioned Table.

4.4.4.10 Exchanging a Range-Partitioned Table with a *-Range Partition
You can use the ALTER TABLE EXCHANGE PARTITION statement to exchange a range-partitioned
table with a *-range partition.

The semantics of the ALTER TABLE EXCHANGE PARTITION statement are the same as described
previously in Exchanging a Hash Partitioned Table with a *-Hash Partition. The example
below shows the orders table, which is interval partitioned by order_date, and subpartitioned
by range on order_total. The example shows how to exchange a single monthly interval
with a range-partitioned table.

CREATE TABLE orders_mar_2007
 (id NUMBER
 , cust_id NUMBER
 , order_date DATE
 , order_total NUMBER
)
PARTITION BY RANGE (order_total)
 (PARTITION p_small VALUES LESS THAN (1000)
 , PARTITION p_medium VALUES LESS THAN (10000)
 , PARTITION p_large VALUES LESS THAN (100000)
 , PARTITION p_extraordinary VALUES LESS THAN (MAXVALUE)
);

Populate the table with orders for March 2007. Then create an interval-range partitioned
table:

CREATE TABLE orders
 (id NUMBER
 , cust_id NUMBER
 , order_date DATE
 , order_total NUMBER
)
PARTITION BY RANGE (order_date) INTERVAL (NUMTOYMINTERVAL(1,'MONTH'))
 SUBPARTITION BY RANGE (order_total)
 SUBPARTITION TEMPLATE
 (SUBPARTITION p_small VALUES LESS THAN (1000)
 , SUBPARTITION p_medium VALUES LESS THAN (10000)
 , SUBPARTITION p_large VALUES LESS THAN (100000)
 , SUBPARTITION p_extraordinary VALUES LESS THAN (MAXVALUE)
)
 (PARTITION p_before_2007 VALUES LESS THAN (TO_DATE('01-JAN-2007','dd-MON-yyyy')));

It is important that the partitioning key in the orders_mar_2007 table matches the
subpartitioning key in the orders table.

Next, exchange the partition.

ALTER TABLE orders
 EXCHANGE PARTITION
 FOR (TO_DATE('01-MAR-2007','dd-MON-yyyy'))
 WITH TABLE orders_mar_2007
 WITH VALIDATION;

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-79

4.4.4.11 About Exchanging a Subpartition of a *-Range Partitioned Table
You can use the ALTER TABLE EXCHANGE SUBPARTITION statement to exchange a
subpartition of a *-range partition.

The semantics of the ALTER TABLE EXCHANGE SUBPARTITION are the same as described
previously in Exchanging a Subpartition of a *-Hash Partitioned Table.

4.4.4.12 About Exchanging a Partition with the Cascade Option
You can cascade exchange operations to reference partitioned child tables with the
CASCADE option of the ALTER TABLE EXCHANGE PARTITION and ALTER TABLE EXCHANGE
SUBPARTITION SQL statements.

Cascading exchange operations require all foreign key constraints to being defined as
ON DELETE CASCADE.

When the CASCADE option for ALTER TABLE EXCHANGE PARTITION and ALTER TABLE
EXCHANGE SUBPARTITION is specified, the EXCHANGE operation cascades to reference
partitioned tables that are children of the targeted table. The exchange operation can
be targeted at any level in a reference partitioned hierarchy and cascades to child
tables starting from the targeted table. Privileges are not required on the child tables,
but ordinary restrictions on the exchange operation apply for all tables affected by the
operation. The CASCADE option is ignored if it is specified for a table that does not have
reference partitioned children.

The reference partitioned hierarchy of the targeted table and the reference partitioned
hierarchy of the exchange table must match. The CASCADE option is not supported if
the same parent key is referenced by multiple dependent tables. Having more than
one dependent table relying on the same primary key makes it impossible for the
kernel to unambiguously identify how to exchange the dependent partitions. Any other
options specified for the operation, such as UPDATE INDEXES, applies for all tables
affected by the operation.

The cascade options are off by default so they do not affect Oracle Database
compatibility.

The following example shows the use of CASCADE when exchanging the a partition of a
referenced-partitioned table.

Example 4-33 Exchanging a partition using cascade for a reference-partitioned table

CREATE TABLE orders (
 order_id number NOT NULL,
 order_date DATE,
 CONSTRAINT order_pk PRIMARY KEY (order_id))
 PARTITION by range (order_date)
 (PARTITION p_2018_dec values less than ('01-JAN-2019'));

CREATE TABLE order_items (
 order_item_id NUMBER NOT NULL,
 order_id NUMBER not null,
 order_item VARCHAR2(100),
 CONSTRAINT order_item_pk PRIMARY KEY (order_item_id),
 CONSTRAINT order_item_fk FOREIGN KEY (order_id) references orders(order_id) on delete
cascade)
 PARTITION by reference (order_item_fk);

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-80

CREATE TABLE orders_2018_dec (
 order_id NUMBER,
 order_date DATE,
 CONSTRAINT order_2018_dec_pk PRIMARY KEY (order_id));

INSERT into orders_2018_dec values (1,'01-DEC-2018');

CREATE TABLE order_items_2018_dec (
 order_item_id NUMBER,
 order_id NUMBER NOT NULL,
 order_item VARCHAR2(100),
 CONSTRAINT order_item_2018_dec_pk PRIMARY KEY (order_item_id),
 CONSTRAINT order_item_2018_dec_fk FOREIGN KEY (order_id) references orders_2018_dec (order_id)
on delete cascade);

INSERT into order_items_2018_dec values (1,1,'item A new');
INSERT into order_items_2018_dec values (2,1,'item B new');

REM Display data from reference partitioned tables before exchange
SELECT * FROM orders;
no rows selected

SELECT * FROM order_items;
no rows selected

REM ALTER TABLE using cascading exchange
ALTER TABLE orders
 EXCHANGE PARTITION p_2018_dec
 WITH TABLE orders_2018_dec
 CASCADE
 UPDATE GLOBAL INDEXES;

REM Display data from reference partitioned tables after exchange
SELECT * FROM orders;
 ORDER_ID ORDER_DAT
---------- ---------
 1 01-DEC-18

SELECT * FROM order_items;
ORDER_ITEM_ID ORDER_ID ORDER_ITEM
------------- ---------- ------------
 1 1 item A new
 2 1 item B new

4.4.5 About Merging Partitions and Subpartitions
Use the ALTER TABLE MERGE PARTITION and SUBPARTITION SQL statements to merge the
contents of two partitions or subpartitions.

The two original partitions or subpartitions are dropped, as are any corresponding local
indexes. You cannot use this statement for a hash partitioned table or for hash subpartitions
of a composite *-hash partitioned table.

You cannot merge partitions for a reference-partitioned table. Instead, a merge operation on a
parent table cascades to all descendant tables. However, you can use the DEPENDENT TABLES
clause to set specific properties for dependent tables when you issue the merge operation on
the master table to merge partitions or subpartitions.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-81

You can use the ONLINE keyword with the ALTER TABLE MERGE PARTITION and
SUBPARTITION SQL statements to enable online merge operations for regular (heap-
organized) tables. For an example of the use of the ONLINE keyword, see
Example 4-34.

If the involved partitions or subpartitions contain data, then indexes may be marked
UNUSABLE as described in the following table:

Table Type Index Behavior

Regular (Heap) Unless you specify UPDATE INDEXES as part of the ALTER TABLE
statement:

• The database marks UNUSABLE all resulting corresponding local
index partitions or subpartitions.

• Global indexes, or all partitions of partitioned global indexes, are
marked UNUSABLE and must be rebuilt.

Index-organized • The database marks UNUSABLE all resulting corresponding local
index partitions.

• All global indexes remain usable.

This section contains the following topics:

• Merging Range Partitions

• Merging Interval Partitions

• Merging List Partitions

• Merging *-Hash Partitions

• About Merging *-List Partitions

• About Merging *-Range Partitions

• Merging Multiple Partitions

See Also:

Oracle Database SQL Language Reference

4.4.5.1 Merging Range Partitions
You can merge the contents of two adjacent range partitions into one partition.

Nonadjacent range partitions cannot be merged. The resulting partition inherits the
higher upper bound of the two merged partitions.

One reason for merging range partitions is to keep historical data online in larger
partitions. For example, you can have daily partitions, with the oldest partition rolled up
into weekly partitions, which can then be rolled up into monthly partitions, and so on.

Example 4-34 shows an example of merging range partitions using the ONLINE
keyword.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-82

Example 4-34 Merging range partitions

-- First, create a partitioned table with four partitions, each on its own
-- tablespace, partitioned by range on the date column
--
CREATE TABLE four_seasons
(one DATE,
 two VARCHAR2(60),
 three NUMBER
)
PARTITION BY RANGE (one)
(
PARTITION quarter_one
 VALUES LESS THAN (TO_DATE('01-APR-2017','dd-mon-yyyy'))
 TABLESPACE quarter_one,
PARTITION quarter_two
 VALUES LESS THAN (TO_DATE('01-JUL-2017','dd-mon-yyyy'))
 TABLESPACE quarter_two,
PARTITION quarter_three
 VALUES LESS THAN (TO_DATE('01-OCT-2017','dd-mon-yyyy'))
 TABLESPACE quarter_three,
PARTITION quarter_four
 VALUES LESS THAN (TO_DATE('01-JAN-2018','dd-mon-yyyy'))
 TABLESPACE quarter_four
);
--
-- Create local PREFIXED indexes on four_seasons
-- Prefixed because the leftmost columns of the index match the
-- Partitioning key
--
CREATE INDEX i_four_seasons_l ON four_seasons (one,two)
 LOCAL (
 PARTITION i_quarter_one TABLESPACE i_quarter_one,
 PARTITION i_quarter_two TABLESPACE i_quarter_two,
 PARTITION i_quarter_three TABLESPACE i_quarter_three,
 PARTITION i_quarter_four TABLESPACE i_quarter_four
);

SELECT TABLE_NAME, PARTITION_NAME FROM USER_TAB_PARTITIONS WHERE TABLE_NAME
='FOUR_SEASONS';
TABLE_NAME PARTITION_NAME
----------------------------------- -------------------------
FOUR_SEASONS QUARTER_FOUR
FOUR_SEASONS QUARTER_ONE
FOUR_SEASONS QUARTER_THREE
FOUR_SEASONS QUARTER_TWO

-- Next, merge the first two partitions
ALTER TABLE four_seasons
 MERGE PARTITIONS quarter_one, quarter_two INTO PARTITION quarter_two
 UPDATE INDEXES
 ONLINE;

SELECT TABLE_NAME, PARTITION_NAME FROM USER_TAB_PARTITIONS WHERE TABLE_NAME
='FOUR_SEASONS';
TABLE_NAME PARTITION_NAME
----------------------------------- -------------------------
FOUR_SEASONS QUARTER_FOUR
FOUR_SEASONS QUARTER_THREE
FOUR_SEASONS QUARTER_TWO

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-83

If you omit the UPDATE INDEXES clause from the ALTER TABLE four_season statement,
then you must rebuild the local index for the affected partition.

-- Rebuild the index for quarter_two, which has been marked unusable
-- because it has not had all of the data from quarter_one added to it.
-- Rebuilding the index corrects this condition.
--
ALTER TABLE four_seasons MODIFY PARTITION quarter_two
 REBUILD UNUSABLE LOCAL INDEXES;

4.4.5.2 Merging Interval Partitions
The contents of two adjacent interval partitions can be merged into one partition.

Nonadjacent interval partitions cannot be merged. The first interval partition can also
be merged with the highest range partition. The resulting partition inherits the higher
upper bound of the two merged partitions.

Merging interval partitions always results in the transition point being moved to the
higher upper bound of the two merged partitions. This result is that the range section
of the interval-partitioned table is extended to the upper bound of the two merged
partitions. Any materialized interval partitions with boundaries lower than the newly
merged partition are automatically converted into range partitions, with their upper
boundaries defined by the upper boundaries of their intervals.

For example, consider the following interval-partitioned table transactions:

CREATE TABLE transactions
(id NUMBER
, transaction_date DATE
, value NUMBER
)
PARTITION BY RANGE (transaction_date)
INTERVAL (NUMTODSINTERVAL(1,'DAY'))
(PARTITION p_before_2007 VALUES LESS THAN (TO_DATE('01-JAN-2007','dd-MON-
yyyy')));

Inserting data into the interval section of the table creates the interval partitions for
these days. The data for January 15, 2007 and January 16, 2007 are stored in
adjacent interval partitions.

INSERT INTO transactions VALUES (1,TO_DATE('15-JAN-2007','dd-MON-yyyy'),100);
INSERT INTO transactions VALUES (2,TO_DATE('16-JAN-2007','dd-MON-yyyy'),600);
INSERT INTO transactions VALUES (3,TO_DATE('30-JAN-2007','dd-MON-yyyy'),200);

Next, merge the two adjacent interval partitions. The new partition again has a system-
generated name.

ALTER TABLE transactions
MERGE PARTITIONS FOR(TO_DATE('15-JAN-2007','dd-MON-yyyy'))
, FOR(TO_DATE('16-JAN-2007','dd-MON-yyyy'));

The transition point for the transactions table has now moved to January 17, 2007.
The range section of the interval-partitioned table contains two range partitions: values
less than January 1, 2007 and values less than January 17, 2007. Values greater than
January 17, 2007 fall in the interval portion of the interval-partitioned table.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-84

4.4.5.3 Merging List Partitions
When you merge list partitions, the partitions being merged can be any two partitions.

They do not need to be adjacent, as for range partitions, because list partitioning does not
assume any order for partitions. The resulting partition consists of all of the data from the
original two partitions. If you merge a default list partition with any other partition, then the
resulting partition is the default partition.

The following statement merges two partitions of a table partitioned using the list method into
a partition that inherits all of its attributes from the table-level default attributes. MAXEXTENTS is
specified in the statement.

ALTER TABLE q1_sales_by_region
 MERGE PARTITIONS q1_northcentral, q1_southcentral
 INTO PARTITION q1_central
 STORAGE(MAXEXTENTS 20);

The value lists for the two original partitions were specified as:

PARTITION q1_northcentral VALUES ('SD','WI')
PARTITION q1_southcentral VALUES ('OK','TX')

The resulting sales_west partition value list comprises the set that represents the union of
these two partition value lists, or specifically:

('SD','WI','OK','TX')

4.4.5.4 Merging *-Hash Partitions
When you merge *-hash partitions, the subpartitions are rehashed into the number of
subpartitions specified by SUBPARTITIONS n or the SUBPARTITION clause. If neither is included,
table-level defaults are used.

The inheritance of properties is different when a *-hash partition is split, as opposed to when
two *-hash partitions are merged. When a partition is split, the new partitions can inherit
properties from the original partition because there is only one parent. However, when
partitions are merged, properties must be inherited from the table level.

For interval-hash partitioned tables, you can only merge two adjacent interval partitions, or
the highest range partition with the first interval partition. The transition point moves when you
merge intervals in an interval-hash partitioned table.

The following example merges two range-hash partitions:

ALTER TABLE all_seasons
 MERGE PARTITIONS quarter_1, quarter_2 INTO PARTITION quarter_2
 SUBPARTITIONS 8;

See Also:

• Splitting a *-Hash Partition for information about splitting a hash partition

• Merging Interval Partitions for information about merging interval partitions

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-85

4.4.5.5 About Merging *-List Partitions
Partitions can be merged at the partition level and subpartitions can be merged at the
list subpartition level.

This section contains the following topics.

• Merging Partitions in a *-List Partitioned Table

• Merging Subpartitions in a *-List Partitioned Table

4.4.5.5.1 Merging Partitions in a *-List Partitioned Table
When you merge two *-list partitions, the resulting new partition inherits the
subpartition descriptions from the subpartition template, if a template exists. If no
subpartition template exists, then a single default subpartition is created for the new
partition.

For interval-list partitioned tables, you can only merge two adjacent interval partitions,
or the highest range partition with the first interval partition. The transition point moves
when you merge intervals in an interval-list partitioned table.

The following statement merges two partitions in the range-list partitioned
stripe_regional_sales table. A subpartition template exists for the table.

ALTER TABLE stripe_regional_sales
 MERGE PARTITIONS q1_1999, q2_1999 INTO PARTITION q1_q2_1999
 STORAGE(MAXEXTENTS 20);

Some new physical attributes are specified for this new partition while table-level
defaults are inherited for those that are not specified. The new resulting partition
q1_q2_1999 inherits the high-value bound of the partition q2_1999 and the subpartition
value-list descriptions from the subpartition template description of the table.

The data in the resulting partitions consists of data from both the partitions. However,
there may be cases where the database returns an error. This can occur because data
may map out of the new partition when both of the following conditions exist:

This error condition can be eliminated by always specifying a default partition in the
default subpartition template.

• Some literal values of the merged subpartitions were not included in the
subpartition template.

• The subpartition template does not contain a default partition definition.

See Also:

• Merging List Partitions for information about merging partitions in a *-list
partitioned table

• Merging Interval Partitions for information about merging interval
partitions

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-86

4.4.5.5.2 Merging Subpartitions in a *-List Partitioned Table
You can merge the contents of any two arbitrary list subpartitions belonging to the same
partition.

The resulting subpartition value-list descriptor includes all of the literal values in the value lists
for the partitions being merged.

The following statement merges two subpartitions of a table partitioned using range-list
method into a new subpartition located in tablespace ts4:

ALTER TABLE quarterly_regional_sales
 MERGE SUBPARTITIONS q1_1999_northwest, q1_1999_southwest
 INTO SUBPARTITION q1_1999_west
 TABLESPACE ts4;

The value lists for the original two partitions were:

• Subpartition q1_1999_northwest was described as ('WA','OR')

• Subpartition q1_1999_southwest was described as ('AZ','NM','UT')

The resulting subpartition value list comprises the set that represents the union of these two
subpartition value lists:

• Subpartition q1_1999_west has a value list described as ('WA','OR','AZ','NM','UT')

The tablespace in which the resulting subpartition is located and the subpartition attributes
are determined by the partition-level default attributes, except for those specified explicitly. If
any of the existing subpartition names are being reused, then the new subpartition inherits
the subpartition attributes of the subpartition whose name is being reused.

4.4.5.6 About Merging *-Range Partitions
Partitions can be merged at the partition level and subpartitions can be merged at the range
subpartition level.

• Merging Partitions in a *-Range Partitioned Table

4.4.5.6.1 Merging Partitions in a *-Range Partitioned Table
When you merge two *-range partitions, the resulting new partition inherits the subpartition
descriptions from the subpartition template, if one exists. If no subpartition template exists,
then a single subpartition with an upper boundary MAXVALUE is created for the new partition.

For interval-range partitioned tables, you can only merge two adjacent interval partitions, or
the highest range partition with the first interval partition. The transition point moves when you
merge intervals in an interval-range partitioned table.

The following statement merges two partitions in the monthly interval-range partitioned
orders table. A subpartition template exists for the table.

ALTER TABLE orders
MERGE PARTITIONS FOR(TO_DATE('01-MAR-2007','dd-MON-yyyy')),
FOR(TO_DATE('01-APR-2007','dd-MON-yyyy'))
INTO PARTITION p_pre_may_2007;

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-87

If the March 2007 and April 2007 partitions were still in the interval section of the
interval-range partitioned table, then the merge operation would move the transition
point to May 1, 2007.

The subpartitions for partition p_pre_may_2007 inherit their properties from the
subpartition template. The data in the resulting partitions consists of data from both the
partitions. However, there may be cases where the database returns an error. This can
occur because data may map out of the new partition when both of the following
conditions are met:

The error condition can be eliminated by always specifying a subpartition with an
upper boundary of MAXVALUE in the subpartition template.

• Some range values of the merged subpartitions were not included in the
subpartition template.

• The subpartition template does not have a subpartition definition with a MAXVALUE
upper boundary.

See Also:

• Merging Range Partitions for information about merging partitions in a *-
range partitioned table

• Merging Interval Partitions for information about merging interval
partitions

4.4.5.7 Merging Multiple Partitions
You can merge the contents of two or more partitions or subpartitions into one new
partition or subpartition and then drop the original partitions or subpartitions with the
MERGE PARTITIONS and MERGE SUBPARTITIONS clauses of the ALTER TABLE SQL
statement.

The MERGE PARTITIONS and MERGE SUBPARTITIONS clauses are synonymous with the
MERGE PARTITION and MERGE SUBPARTITION clauses.

For example, the following SQL statement merges four partitions into one partition and
drops the four partitions that were merged.

ALTER TABLE t1 MERGE PARTITIONS p01, p02, p03, p04 INTO p0;

When merging multiple range partitions, the partitions must be adjacent and specified
in the ascending order of their partition bound values. The new partition inherits the
partition upper bound of the highest of the original partitions.

You can specify the lowest and the highest partitions to be merged when merging
multiple range partitions with the TO syntax. All partitions between specified partitions,
including those specified, are merged into the target partition. You cannot use this
syntax for list and system partitions.

For example, the following SQL statements merges partitions p01 through p04 into the
partition p0.

ALTER TABLE t1 MERGE PARTITIONS p01 TO p04 INTO p0;

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-88

List partitions and system partitions that you want to merge do not need to be adjacent,
because no ordering of the partitions is assumed. When merging multiple list partitions, the
resulting partition value list are the union of the set of partition value list of all of the partitions
to be merged. A DEFAULT list partition merged with other list partitions results in a DEFAULT
partition.

When merging multiple partitions of a composite partitioned table, the resulting new partition
inherits the subpartition descriptions from the subpartition template, if one exists. If no
subpartition template exists, then Oracle creates one MAXVALUE subpartition from range
subpartitions or one DEFAULT subpartition from list subpartitions for the new partition. When
merging multiple subpartitions of a composite partitioned table, the subpartitions to be
merged must belong to the same partition.

When merging multiple partitions, local and global index operations and semantics for
inheritance of unspecified physical attributes are the same for merging two partitions.

In the following SQL statement, four partitions of the partitioned by range table sales are
merged. These four partitions that correspond to the four quarters of the oldest year are
merged into a single partition containing the entire sales data of the year.

ALTER TABLE sales
 MERGE PARTITIONS sales_q1_2009, sales_q2_2009, sales_q3_2009, sales_q4_2009
 INTO PARTITION sales_2009;

The previous SQL statement can be rewritten as the following SQL statement to obtain the
same result.

ALTER TABLE sales
 MERGE PARTITIONS sales_q1_2009 TO sales_q4_2009
 INTO PARTITION sales_2009;

4.4.6 About Modifying Attributes of Tables, Partitions, and Subpartitions
The modification of attributes of tables, partitions, and subpartitions is introduced in this topic.

• About Modifying Default Attributes

• About Modifying Real Attributes of Partitions

4.4.6.1 About Modifying Default Attributes
You can modify the default attributes of a table, or for a partition of a composite partitioned
table.

When you modify default attributes, the new attributes affect only future partitions, or
subpartitions, that are created. The default values can still be specifically overridden when
creating a new partition or subpartition. You can modify the default attributes of a reference-
partitioned table.

This section contains the following topics:

• Modifying Default Attributes of a Table

• Modifying Default Attributes of a Partition

• Modifying Default Attributes of Index Partitions

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-89

4.4.6.1.1 Modifying Default Attributes of a Table
You can modify the default attributes that are inherited for range, hash, list, interval, or
reference partitions using the MODIFY DEFAULT ATTRIBUTES clause of ALTER TABLE.

For hash partitioned tables, only the TABLESPACE attribute can be modified.

4.4.6.1.2 Modifying Default Attributes of a Partition
To modify the default attributes inherited when creating subpartitions, use the ALTER
TABLE MODIFY DEFAULT ATTRIBUTES FOR PARTITION.

The following statement modifies the TABLESPACE in which future subpartitions of
partition p1 in the range-hash partitioned table reside.

ALTER TABLE employees_subpartitions
 MODIFY DEFAULT ATTRIBUTES FOR PARTITION p1 TABLESPACE ts1;

Because all subpartitions of a range-hash partitioned table must share the same
attributes, except TABLESPACE, it is the only attribute that can be changed.

You cannot modify default attributes of interval partitions that have not yet been
created. To change the way in which future subpartitions in an interval-partitioned table
are created, you must modify the subpartition template.

4.4.6.1.3 Modifying Default Attributes of Index Partitions
In a similar fashion to table partitions, you can alter the default attributes that are
inherited by partitions of a range-partitioned global index, or local index partitions of
partitioned tables.

For this you use the ALTER INDEX MODIFY DEFAULT ATTRIBUTES statement. Use the
ALTER INDEX MODIFY DEFAULT ATTRIBUTES FOR PARTITION statement if you are altering
default attributes to be inherited by subpartitions of a composite partitioned table.

4.4.6.2 About Modifying Real Attributes of Partitions
It is possible to modify attributes of an existing partition of a table or index.

You cannot change the TABLESPACE attribute. Use ALTER TABLE MOVE PARTITION/
SUBPARTITION to move a partition or subpartition to a new tablespace.

This section contains the following topics:

• Modifying Real Attributes for a Range or List Partition

• Modifying Real Attributes for a Hash Partition

• Modifying Real Attributes of a Subpartition

• Modifying Real Attributes of Index Partitions

4.4.6.2.1 Modifying Real Attributes for a Range or List Partition
Use the ALTER TABLE MODIFY PARTITION statement to modify existing attributes of a
range partition or list partition.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-90

You can modify segment attributes (except TABLESPACE), or you can allocate and deallocate
extents, mark local index partitions UNUSABLE, or rebuild local indexes that have been marked
UNUSABLE.

If this is a range partition of a *-hash partitioned table, then note the following:

• If you allocate or deallocate an extent, this action is performed for every subpartition of
the specified partition.

• Likewise, changing any other attributes results in corresponding changes to those
attributes of all the subpartitions for that partition. The partition level default attributes are
changed as well. To avoid changing attributes of existing subpartitions, use the FOR
PARTITION clause of the MODIFY DEFAULT ATTRIBUTES statement.

The following are some examples of modifying the real attributes of a partition.

This example modifies the MAXEXTENTS storage attribute for the range partition sales_q1 of
table sales:

ALTER TABLE sales MODIFY PARTITION sales_q1
 STORAGE (MAXEXTENTS 10);

All of the local index subpartitions of partition ts1 in range-hash partitioned table scubagear
are marked UNUSABLE in the following example:

ALTER TABLE scubagear MODIFY PARTITION ts1 UNUSABLE LOCAL INDEXES;

For an interval-partitioned table you can only modify real attributes of range partitions or
interval partitions that have been created.

4.4.6.2.2 Modifying Real Attributes for a Hash Partition
You can use the ALTER TABLE MODIFY PARTITION statement to modify attributes of a hash
partition.

However, because the physical attributes of individual hash partitions must all be the same
(except for TABLESPACE), you are restricted to:

• Allocating a new extent

• Deallocating an unused extent

• Marking a local index subpartition UNUSABLE

• Rebuilding local index subpartitions that are marked UNUSABLE

The following example rebuilds any unusable local index partitions associated with hash
partition p1 of the table:

ALTER TABLE departments_rebuild_index MODIFY PARTITION p1
 REBUILD UNUSABLE LOCAL INDEXES;

4.4.6.2.3 Modifying Real Attributes of a Subpartition
With the MODIFY SUBPARTITION clause of ALTER TABLE you can perform the same actions as
listed previously for partitions, but at the specific composite partitioned table subpartition
level.

For example:

ALTER TABLE employees_rebuild_index MODIFY SUBPARTITION p3_s1
 REBUILD UNUSABLE LOCAL INDEXES;

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-91

4.4.6.2.4 Modifying Real Attributes of Index Partitions
The MODIFY PARTITION clause of ALTER INDEX enables you to modify the real attributes
of an index partition or its subpartitions.

The rules are very similar to those for table partitions, but unlike the MODIFY PARTITION
clause for ALTER INDEX, there is no subclause to rebuild an unusable index partition,
but there is a subclause to coalesce an index partition or its subpartitions. In this
context, coalesce means to merge index blocks where possible to free them for reuse.

You can also allocate or deallocate storage for a subpartition of a local index, or mark
it UNUSABLE, using the MODIFY PARTITION clause.

4.4.7 About Modifying List Partitions
The modification of values in list partitions and subpartitions is introduced in this topic.

• About Modifying List Partitions: Adding Values

• About Modifying List Partitions: Dropping Values

4.4.7.1 About Modifying List Partitions: Adding Values
List partitioning enables you to optionally add literal values from the defining value list.

This section contains the following topics:

• Adding Values for a List Partition

• Adding Values for a List Subpartition

4.4.7.1.1 Adding Values for a List Partition
Use the MODIFY PARTITION ADD VALUES clause of the ALTER TABLE statement to extend
the value list of an existing partition.

Literal values being added must not have been included in any other partition value
list. The partition value list for any corresponding local index partition is
correspondingly extended, and any global indexes, or global or local index partitions,
remain usable.

The following statement adds a new set of state codes ('OK', 'KS') to an existing
partition list.

ALTER TABLE sales_by_region
 MODIFY PARTITION region_south
 ADD VALUES ('OK', 'KS');

The existence of a default partition can have a performance impact when adding
values to other partitions. This is because to add values to a list partition, the database
must check that the values being added do not exist in the default partition. If any of
the values do exist in the default partition, then an error is displayed.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-92

Note:

The database runs a query to check for the existence of rows in the default partition
that correspond to the literal values being added. Therefore, it is advisable to create
a local prefixed index on the table. This speeds up the execution of the query and
the overall operation.

You cannot add values to a default list partition.

4.4.7.1.2 Adding Values for a List Subpartition
Use the MODIFY SUBPARTITION ADD VALUES clause of the ALTER TABLE statement to extend the
value list of an existing subpartition.

This operation is essentially the same as described for About Modifying List Partitions:
Adding Values, however, you use a MODIFY SUBPARTITION clause instead of the MODIFY
PARTITION clause. For example, to extend the range of literal values in the value list for
subpartition q1_1999_southeast, use the following statement:

ALTER TABLE quarterly_regional_sales
 MODIFY SUBPARTITION q1_1999_southeast
 ADD VALUES ('KS');

Literal values being added must not have been included in any other subpartition value list
within the owning partition. However, they can be duplicates of literal values in the
subpartition value lists of other partitions within the table.

For an interval-list composite partitioned table, you can only add values to subpartitions of
range partitions or interval partitions that have been created. To add values to subpartitions of
interval partitions that have not yet been created, you must modify the subpartition template.

4.4.7.2 About Modifying List Partitions: Dropping Values
List partitioning enables you to optionally drop literal values from the defining value list.

This section contains the following topics:

• Dropping Values from a List Partition

• Dropping Values from a List Subpartition

4.4.7.2.1 Dropping Values from a List Partition
Use the MODIFY PARTITION DROP VALUES clause of the ALTER TABLE statement to remove literal
values from the value list of an existing partition.

The statement is always executed with validation, meaning that it checks to see if any rows
exist in the partition that corresponds to the set of values being dropped. If any such rows are
found then the database returns an error message and the operation fails. When necessary,
use a DELETE statement to delete corresponding rows from the table before attempting to
drop values.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-93

Note:

You cannot drop all literal values from the value list describing the partition.
You must use the ALTER TABLE DROP PARTITION statement instead.

The partition value list for any corresponding local index partition reflects the new
value list, and any global index, or global or local index partitions, remain usable.

The following statement drops a set of state codes ('OK' and 'KS') from an existing
partition value list.

ALTER TABLE sales_by_region
 MODIFY PARTITION region_south
 DROP VALUES ('OK', 'KS');

Note:

The database runs a query to check for the existence of rows in the partition
that correspond to the literal values being dropped. Therefore, it is advisable
to create a local prefixed index on the table. This speeds up the query and
the overall operation.

You cannot drop values from a default list partition.

4.4.7.2.2 Dropping Values from a List Subpartition
Use the MODIFY SUBPARTITION DROP VALUES clause of the ALTER TABLE statement to
remove literal values from the value list of an existing subpartition.

This operation is essentially the same as described for About Modifying List Partitions:
Dropping Values, however, you use a MODIFY SUBPARTITION clause instead of the
MODIFY PARTITION clause. For example, to remove a set of literal values in the value
list for subpartition q1_1999_southeast, use the following statement:

ALTER TABLE quarterly_regional_sales
 MODIFY SUBPARTITION q1_1999_southeast
 DROP VALUES ('KS');

For an interval-list composite partitioned table, you can only drop values from
subpartitions of range partitions or interval partitions that have been created. To drop
values from subpartitions of interval partitions that have not yet been created, you
must modify the subpartition template.

4.4.8 About Modifying the Partitioning Strategy
You can change the partitioning strategy of a regular (heap-organized) table with the
ALTER TABLE MODIFY PARTITION SQL statement.

Modifying the partitioning strategy, such as hash partitioning to composite range-hash
partitioning, can be performed offline or online. When performed in online mode, the
conversion does not impact ongoing DML operations. When performed in offline mode,
the conversion does not allow concurrent DML operations during the modification.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-94

Indexes are maintained as part of the table modification. When modifying the partitioning
strategy, all unspecified indexes whose index columns are a prefix of the new partitioning key
are automatically converted to a local partitioned index; otherwise, an index is converted to
global index.

The modification operation is not supported with domain indexes. The UPDATE INDEXES clause
cannot change the columns on which the list of indexes was originally defined or the
uniqueness property of the index or any other index property.

For information about converting a non-partitioned table to a partitioned table, refer to
Converting a Non-Partitioned Table to a Partitioned Table.

Example 4-35 shows the use of ALTER TABLE to convert a range partitioned table to a
composite range-hash partitioned table online. During the ALTER TABLE modification in the
example, indexes are updated.

Live SQL:

View and run a related example on Oracle Live SQL at Modifying the Partitioning
Strategy of a Table.

Example 4-35 Modifying the partitioning strategy

CREATE TABLE mod_sales_partitioning
 (prod_id NUMBER NOT NULL,
 cust_id NUMBER NOT NULL,
 time_id DATE NOT NULL,
 channel_id NUMBER NOT NULL,
 promo_id NUMBER NOT NULL,
 quantity_sold NUMBER(10,2) NOT NULL,
 amount_sold NUMBER(10,2) NOT NULL
)
 PARTITION BY RANGE (time_id)
 (PARTITION sales_q1_2017 VALUES LESS THAN (TO_DATE('01-APR-2017','dd-MON-yyyy')),
 PARTITION sales_q2_2017 VALUES LESS THAN (TO_DATE('01-JUL-2017','dd-MON-yyyy')),
 PARTITION sales_q3_2017 VALUES LESS THAN (TO_DATE('01-OCT-2017','dd-MON-yyyy')),
 PARTITION sales_q4_2017 VALUES LESS THAN (TO_DATE('01-JAN-2018','dd-MON-yyyy'))
);

CREATE INDEX i1_cust_id_indx ON mod_sales_partitioning (cust_id) LOCAL;
CREATE INDEX i2_time_id_indx ON mod_sales_partitioning (time_id);
CREATE INDEX i3_prod_id_indx ON mod_sales_partitioning (prod_id);

SELECT TABLE_NAME, PARTITIONING_TYPE FROM USER_PART_TABLES WHERE TABLE_NAME ='MOD_SALES_PARTITIONING';
TABLE_NAME PARTITION_NAME
------------------------- --------------
MOD_SALES_PARTITIONING RANGE

SELECT TABLE_NAME, PARTITION_NAME FROM USER_TAB_PARTITIONS WHERE TABLE_NAME ='MOD_SALES_PARTITIONING';
TABLE_NAME PARTITION_NAME
------------------------- --------------
MOD_SALES_PARTITIONING SALES_Q1_2017
MOD_SALES_PARTITIONING SALES_Q2_2017
MOD_SALES_PARTITIONING SALES_Q3_2017
MOD_SALES_PARTITIONING SALES_Q4_2017
...

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-95

https://livesql.oracle.com/apex/livesql/docs/vldbg/partitioning/modify-partitioning-strategy.html
https://livesql.oracle.com/apex/livesql/docs/vldbg/partitioning/modify-partitioning-strategy.html

ALTER TABLE mod_sales_partitioning
 MODIFY
 PARTITION BY RANGE (time_id) SUBPARTITION BY HASH (cust_id)
 SUBPARTITIONS 8
 (PARTITION sales_q1_2017 VALUES LESS THAN (TO_DATE('01-APR-2017','dd-MON-yyyy')),
 PARTITION sales_q2_2017 VALUES LESS THAN (TO_DATE('01-JUL-2017','dd-MON-yyyy')),
 PARTITION sales_q3_2017 VALUES LESS THAN (TO_DATE('01-OCT-2017','dd-MON-yyyy')),
 PARTITION sales_q4_2017 VALUES LESS THAN (TO_DATE('01-JAN-2018','dd-MON-yyyy')))
 ONLINE
 UPDATE INDEXES
 (i1_cust_id_indx LOCAL,
 i2_time_id_indx GLOBAL PARTITION BY RANGE (time_id)
 (PARTITION ip1_indx VALUES LESS THAN (MAXVALUE)));

SELECT TABLE_NAME, PARTITIONING_TYPE, SUBPARTITIONING_TYPE FROM USER_PART_TABLES WHERE
TABLE_NAME ='MOD_SALES_PARTITIONING';
TABLE_NAME PARTITION SUBPARTIT
--------------------------- -------------- ----------
MOD_SALES_PARTITIONING RANGE HASH

SELECT TABLE_NAME, PARTITION_NAME, SUBPARTITION_NAME FROM USER_TAB_SUBPARTITIONS WHERE
TABLE_NAME ='MOD_SALES_PARTITIONING';
TABLE_NAME PARTITION_NAME SUBPARTITION_NAME
--------------------------- ------------------ ------------------
MOD_SALES_PARTITIONING SALES_Q1_2017 SYS_SUBP567
MOD_SALES_PARTITIONING SALES_Q1_2017 SYS_SUBP568
MOD_SALES_PARTITIONING SALES_Q1_2017 SYS_SUBP569
MOD_SALES_PARTITIONING SALES_Q1_2017 SYS_SUBP570
...

4.4.9 About Moving Partitions and Subpartitions
Use the MOVE PARTITION clause of the ALTER TABLE statement to change the physical
storage attributes of a partition.

With the MOVE PARTITION clause of the ALTER TABLE statement, you can:

• Re-cluster data and reduce fragmentation

• Move a partition to another tablespace

• Modify create-time attributes

• Store the data in compressed format using table compression

Typically, you can change the physical storage attributes of a partition in a single step
using an ALTER TABLE/INDEX MODIFY PARTITION statement. However, there are some
physical attributes, such as TABLESPACE, that you cannot modify using MODIFY
PARTITION. In these cases, use the MOVE PARTITION clause. Modifying some other
attributes, such as table compression, affects only future storage, but not existing data.

If the partition being moved contains any data, then indexes may be marked UNUSABLE
according to the following table:

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-96

Table Type Index Behavior

Regular (Heap) Unless you specify UPDATE INDEXES as part of the ALTER TABLE statement:

• The matching partition in each local index is marked UNUSABLE. You must
rebuild these index partitions after issuing MOVE PARTITION.

• Any global indexes, or all partitions of partitioned global indexes, are
marked UNUSABLE.

Index-organized Any local or global indexes defined for the partition being moved remain
usable because they are primary-key based logical rowids. However, the
guess information for these rowids becomes incorrect.

This section contains the following topics:

• Moving Table Partitions

• Moving Subpartitions

• Moving Index Partitions

see Also:

• Oracle Database SQL Language Reference for information the ALTER TABLE
MOVE statement

• Oracle Database Administrator’s Guide for information moving tables and
partitions

4.4.9.1 Moving Table Partitions
Use the MOVE PARTITION clause to move a partition.

For example, to move the most active partition to a tablespace that resides on its own set of
disks (to balance I/O), not log the action, and compress the data, issue the following
statement:

ALTER TABLE parts MOVE PARTITION depot2
 TABLESPACE ts094 NOLOGGING COMPRESS;

This statement always drops the old partition segment and creates a new segment, even if
you do not specify a new tablespace.

If you are moving a partition of a partitioned index-organized table, then you can specify the
MAPPING TABLE clause as part of the MOVE PARTITION clause, and the mapping table partition
are moved to the new location along with the table partition.

For an interval or interval-* partitioned table, you can only move range partitions or interval
partitions that have been materialized. A partition move operation does not move the
transition point in an interval or interval-* partitioned table.

You can move a partition in a reference-partitioned table independent of the partition in the
master table.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-97

4.4.9.2 Moving Subpartitions
Use the MOVE SUBPARTITION clause to move a subpartition.

The following statement shows how to move data in a subpartition of a table. In this
example, a PARALLEL clause has also been specified.

ALTER TABLE scuba_gear MOVE SUBPARTITION bcd_types
 TABLESPACE tbs23 PARALLEL (DEGREE 2);

You can move a subpartition in a reference-partitioned table independent of the
subpartition in the master table.

4.4.9.3 Moving Index Partitions
The ALTER TABLE MOVE PARTITION statement for regular tables marks all partitions of a
global index UNUSABLE.

You can rebuild the entire index by rebuilding each partition individually using the
ALTER INDEX REBUILD PARTITION statement. You can perform these rebuilds
concurrently.

You can also simply drop the index and re-create it.

4.4.10 About Rebuilding Index Partitions
Rebuilding an index provides several advantages.

Some reasons for rebuilding index partitions include:

• To recover space and improve performance

• To repair a damaged index partition caused by media failure

• To rebuild a local index partition after loading the underlying table partition with
SQL*Loader or an import utility

• To rebuild index partitions that have been marked UNUSABLE

• To enable key compression for B-tree indexes

The following sections discuss options for rebuilding index partitions and subpartitions.

This section contains the following topics:

• About Rebuilding Global Index Partitions

• About Rebuilding Local Index Partitions

4.4.10.1 About Rebuilding Global Index Partitions
You can rebuild global index partitions with several methods.

• Rebuild each partition by issuing the ALTER INDEX REBUILD PARTITION statement
(you can run the rebuilds concurrently).

• Drop the entire global index and re-create it. This method is more efficient
because the table is scanned only one time.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-98

For most maintenance operations on partitioned tables with indexes, you can optionally avoid
the need to rebuild the index by specifying UPDATE INDEXES on your DDL statement.

4.4.10.2 About Rebuilding Local Index Partitions
You can rebuild local index partitions with several methods.

Rebuild local indexes using either ALTER INDEX or ALTER TABLE as follows:

• ALTER INDEX REBUILD PARTITION/SUBPARTITION

This statement rebuilds an index partition or subpartition unconditionally.

• ALTER TABLE MODIFY PARTITION/SUBPARTITION REBUILD UNUSABLE LOCAL INDEXES

This statement finds all of the unusable indexes for the given table partition or
subpartition and rebuilds them. It only rebuilds an index partition if it has been marked
UNUSABLE.

The following sections contain examples about rebuilding indexes.

• Using ALTER INDEX to Rebuild a Partition

• Using ALTER TABLE to Rebuild an Index Partition

4.4.10.2.1 Using ALTER INDEX to Rebuild a Partition
The ALTER INDEX REBUILD PARTITION statement rebuilds one partition of an index.

It cannot be used for composite-partitioned tables. Only real physical segments can be rebuilt
with this command. When you re-create the index, you can also choose to move the partition
to a new tablespace or change attributes.

For composite-partitioned tables, use ALTER INDEX REBUILD SUBPARTITION to rebuild a
subpartition of an index. You can move the subpartition to another tablespace or specify a
parallel clause. The following statement rebuilds a subpartition of a local index on a table and
moves the index subpartition to another tablespace.

ALTER INDEX scuba
 REBUILD SUBPARTITION bcd_types
 TABLESPACE tbs23 PARALLEL (DEGREE 2);

4.4.10.2.2 Using ALTER TABLE to Rebuild an Index Partition
The REBUILD UNUSABLE LOCAL INDEXES clause of ALTER TABLE MODIFY PARTITION enables you
to rebuild an unusable index partition.

However, the statement does not allow you to specify any new attributes for the rebuilt index
partition. The following example finds and rebuilds any unusable local index partitions for
table scubagear, partition p1.

ALTER TABLE scubagear
 MODIFY PARTITION p1 REBUILD UNUSABLE LOCAL INDEXES;

The ALTER TABLE MODIFY SUBPARTITION is the clause for rebuilding unusable local index
subpartitions.

4.4.11 About Renaming Partitions and Subpartitions
You can rename partitions and subpartitions of both tables and indexes.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-99

One reason for renaming a partition might be to assign a meaningful name, as
opposed to a default system name that was assigned to the partition in another
maintenance operation.

All partitioning methods support the FOR(value) method to identify a partition. You can
use this method to rename a system-generated partition name into a more meaningful
name. This is particularly useful in interval or interval-* partitioned tables.

You can independently rename partitions and subpartitions for reference-partitioned
master and child tables. The rename operation on the master table is not cascaded to
descendant tables.

This section contains the following topics:

• Renaming a Table Partition

• Renaming a Table Subpartition

• About Renaming Index Partitions

4.4.11.1 Renaming a Table Partition
You can rename a range, hash, or list partition, using the ALTER TABLE RENAME
PARTITION statement.

For example:

ALTER TABLE scubagear RENAME PARTITION sys_p636 TO tanks;

4.4.11.2 Renaming a Table Subpartition
You can assign new names to subpartitions of a table.

In this case, you would use the ALTER TABLE RENAME SUBPARTITION syntax.

4.4.11.3 About Renaming Index Partitions
You can rename index partitions and subpartitions with the ALTER INDEX statement.

• Renaming an Index Partition

• Renaming an Index Subpartition

4.4.11.3.1 Renaming an Index Partition
Use the ALTER INDEX RENAME PARTITION statement to rename an index partition.

The ALTER INDEX statement does not support the use of FOR(value) to identify a
partition. You must use the original partition name in the rename operation.

4.4.11.3.2 Renaming an Index Subpartition
Use the ALTER INDEX RENAME SUBPARTITION statement to rename an index subpartition.

The following statement simply shows how to rename a subpartition that has a system
generated name that was a consequence of adding a partition to an underlying table:

ALTER INDEX scuba RENAME SUBPARTITION sys_subp3254 TO bcd_types;

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-100

4.4.12 About Splitting Partitions and Subpartitions
You can split the contents of a partition into two new partitions.

The SPLIT PARTITION clause of the ALTER TABLE or ALTER INDEX statement is used to
redistribute the contents of a partition into two new partitions. Consider doing this when a
partition becomes too large and causes backup, recovery, or maintenance operations to take
a long time to complete or it is felt that there is simply too much data in the partition. You can
also use the SPLIT PARTITION clause to redistribute the I/O load. This clause cannot be used
for hash partitions or subpartitions.

If the partition you are splitting contains any data, then indexes may be marked UNUSABLE as
explained in the following table:

Table Type Index Behavior

Regular (Heap) Unless you specify UPDATE INDEXES as part of the ALTER TABLE statement:

• The database marks UNUSABLE the new partitions (there are two) in each
local index.

• Any global indexes, or all partitions of partitioned global indexes, are
marked UNUSABLE and must be rebuilt.

Index-organized • The database marks UNUSABLE the new partitions (there are two) in each
local index.

• All global indexes remain usable.

You cannot split partitions or subpartitions in a reference-partitioned table except for the
parent table. When you split partitions or subpartitions in the parent table then the split is
cascaded to all descendant tables. However, you can use the DEPENDENT TABLES clause to
set specific properties for dependent tables when you issue the SPLIT statement on the
master table to split partitions or subpartitions.

Partition maintenance with SPLIT operations are supported as online operations with the
keyword ONLINE for heap organized tables, enabling concurrent DML operations while a
partition maintenance operation is ongoing.

For ONLINE operations, split indexes are always updated by default, regardless whether you
specify the UPDATE INDEXES clause.

For an example of the use of the keyword ONLINE with a SPLIT operation, see Example 4-37.

This section contains the following topics:

• Splitting a Partition of a Range-Partitioned Table

• Splitting a Partition of a List-Partitioned Table

• Splitting a Partition of an Interval-Partitioned Table

• Splitting a *-Hash Partition

• Splitting Partitions in a *-List Partitioned Table

• Splitting a *-Range Partition

• Splitting Index Partitions

• Splitting into Multiple Partitions

• Fast SPLIT PARTITION and SPLIT SUBPARTITION Operations

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-101

See Also:

Oracle Database SQL Language Reference

4.4.12.1 Splitting a Partition of a Range-Partitioned Table
You can split a range partition using the ALTER TABLE SPLIT PARTITION statement.

In the SQL statement, you must specify values of the partitioning key column within
the range of the partition at which to split the partition.

You can optionally specify new attributes for the partitions resulting from the split. If
there are local indexes defined on the table, this statement also splits the matching
partition in each local index.

If you do not specify new partition names, then the database assigns names of the
form SYS_Pn. You can examine the data dictionary to locate the names assigned to the
new local index partitions. You may want to rename them. Any attributes that you do
not specify are inherited from the original partition.

Example 4-36 Splitting a partition of a range-partitioned table and rebuilding
indexes

In this example fee_katy is a partition in the table vet_cats, which has a local index,
jaf1. There is also a global index, vet on the table. vet contains two partitions,
vet_parta, and vet_partb. The first of the resulting two new partitions includes all
rows in the original partition whose partitioning key column values map lower than the
specified value. The second partition contains all rows whose partitioning key column
values map greater than or equal to the specified value. The following SQL statement
split the partition fee_katy, and rebuild the index partitions.

ALTER TABLE vet_cats SPLIT PARTITION
 fee_katy at (100) INTO (PARTITION
 fee_katy1, PARTITION fee_katy2);
ALTER INDEX JAF1 REBUILD PARTITION fee_katy1;
ALTER INDEX JAF1 REBUILD PARTITION fee_katy2;
ALTER INDEX VET REBUILD PARTITION vet_parta;
ALTER INDEX VET REBUILD PARTITION vet_partb;

Example 4-37 Splitting a partition of a range-partitioned table online

In this example, the sales_q4_2016 partition of theORDERS table is split into separate
partitions for each month. The ONLINE keyword is specified to enable concurrent DML
operations while a partition maintenance operation is ongoing.

If there were any indexes on the ORDERS table, then those would be maintained
automatically as part of the online split.

CREATE TABLE orders
 (prod_id NUMBER(6),
 cust_id NUMBER,
 time_id DATE,
 channel_id CHAR(1),
 promo_id NUMBER(6),
 quantity_sold NUMBER(3),
 amount_sold NUMBER(10,2)
)

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-102

 PARTITION BY RANGE (time_id)
 (PARTITION sales_q1_2016 VALUES LESS THAN (TO_DATE('01-APR-2016','dd-MON-yyyy')),
 PARTITION sales_q2_2016 VALUES LESS THAN (TO_DATE('01-JUL-2016','dd-MON-yyyy')),
 PARTITION sales_q3_2016 VALUES LESS THAN (TO_DATE('01-OCT-2016','dd-MON-yyyy')),
 PARTITION sales_q4_2016 VALUES LESS THAN (TO_DATE('01-JAN-2017','dd-MON-yyyy'))
);

ALTER TABLE orders
 SPLIT PARTITION sales_q4_2016 INTO
 (PARTITION sales_oct_2016 VALUES LESS THAN (TO_DATE('01-NOV-2016','dd-MON-yyyy')),
 PARTITION sales_nov_2016 VALUES LESS THAN (TO_DATE('01-DEC-2016','dd-MON-yyyy')),
 PARTITION sales_dec_2016
)
 ONLINE;

4.4.12.2 Splitting a Partition of a List-Partitioned Table
You can split a list partition with the ALTER TABLE SPLIT PARTITION statement.

The SPLIT PARTITION clause enables you to specify a list of literal values that define a
partition into which rows with corresponding partitioning key values are inserted. The
remaining rows of the original partition are inserted into a second partition whose value list
contains the remaining values from the original partition. You can optionally specify new
attributes for the two partitions that result from the split.

The following statement splits the partition region_east into two partitions:

ALTER TABLE sales_by_region
 SPLIT PARTITION region_east VALUES ('CT', 'MA', 'MD')
 INTO
 (PARTITION region_east_1
 TABLESPACE tbs2,
 PARTITION region_east_2
 STORAGE (INITIAL 8M))
 PARALLEL 5;

The literal value list for the original region_east partition was specified as:

PARTITION region_east VALUES ('MA','NY','CT','NH','ME','MD','VA','PA','NJ')

The two new partitions are:

• region_east_1 with a literal value list of ('CT','MA','MD')

• region_east_2 inheriting the remaining literal value list of
('NY','NH','ME','VA','PA','NJ')

The individual partitions have new physical attributes specified at the partition level. The
operation is executed with parallelism of degree 5.

You can split a default list partition just like you split any other list partition. This is also the
only means of adding a new partition to a list-partitioned table that contains a default partition.
When you split the default partition, you create a new partition defined by the values that you
specify, and a second partition that remains the default partition.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-103

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL:
Splitting the DEFAULT Partition of a List-Partitioned Table.

Example 4-38 Splitting the default partition of a list-partitioned table

This example splits the default partition of sales_by_region, creating new partitions.

CREATE TABLE sales_by_region
 (dept_number NUMBER NOT NULL,
 dept_name VARCHAR2(20),
 quarterly_sales NUMBER(10,2),
 state VARCHAR2(2)
)
 PARTITION BY LIST (state)
 (
 PARTITION yearly_north VALUES ('MN','WI','MI'),
 PARTITION yearly_south VALUES ('NM','TX','GA'),
 PARTITION yearly_east VALUES ('MA','NY','NC'),
 PARTITION yearly_west VALUES ('CA','OR','WA'),
 PARTITION unknown VALUES (DEFAULT)
);

SELECT PARTITION_NAME, HIGH_VALUE FROM USER_TAB_PARTITIONS WHERE TABLE_NAME ='SALES_BY_REGION';
PARTITION_NAME HIGH_VALUE
-------------- ---------------
UNKNOWN DEFAULT
YEARLY_EAST 'MA', 'NY', 'NC'
YEARLY_NORTH 'MN', 'WI', 'MI'
YEARLY_SOUTH 'NM', 'TX', 'GA'
YEARLY_WEST 'CA', 'OR', 'WA
5 rows selected.

INSERT INTO SALES_BY_REGION VALUES (002, 'AUTO NORTH', 450000, 'MN');
INSERT INTO SALES_BY_REGION VALUES (002, 'AUTO NORTH', 495000, 'WI');
INSERT INTO SALES_BY_REGION VALUES (002, 'AUTO NORTH', 850000, 'MI');

INSERT INTO SALES_BY_REGION VALUES (004, 'AUTO SOUTH', 595000, 'NM');
INSERT INTO SALES_BY_REGION VALUES (004, 'AUTO SOUTH', 4825000, 'TX');
INSERT INTO SALES_BY_REGION VALUES (004, 'AUTO SOUTH', 945000, 'GA');

INSERT INTO SALES_BY_REGION VALUES (006, 'AUTO EAST', 2125000, 'MA');
INSERT INTO SALES_BY_REGION VALUES (006, 'AUTO EAST', 6101000, 'NY');
INSERT INTO SALES_BY_REGION VALUES (006, 'AUTO EAST', 741000, 'NC');

INSERT INTO SALES_BY_REGION VALUES (008, 'AUTO WEST', 7201000, 'CA');
INSERT INTO SALES_BY_REGION VALUES (008, 'AUTO WEST', 901000, 'OR');
INSERT INTO SALES_BY_REGION VALUES (008, 'AUTO WEST', 1125000, 'WA');

INSERT INTO SALES_BY_REGION VALUES (009, 'AUTO MIDWEST', 1950000, 'AZ');
INSERT INTO SALES_BY_REGION VALUES (009, 'AUTO MIDWEST', 5725000, 'UT');

SELECT DEPT_NUMBER, DEPT_NAME, QUARTERLY_SALES, STATE FROM SALES_BY_REGION
PARTITION(yearly_north);
DEPT_NUMBER DEPT_NAME QUARTERLY_SALES ST
----------- -------------------- --------------- --
2 AUTO NORTH 450000 MN

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-104

https://livesql.oracle.com/apex/livesql/docs/vldbg/partitioning/split-list-partition.html
https://livesql.oracle.com/apex/livesql/docs/vldbg/partitioning/split-list-partition.html

2 AUTO NORTH 495000 WI
2 AUTO NORTH 850000 MI

SELECT DEPT_NUMBER, DEPT_NAME, QUARTERLY_SALES, STATE FROM SALES_BY_REGION PARTITION(yearly_south);
DEPT_NUMBER DEPT_NAME QUARTERLY_SALES ST
----------- -------------------- --------------- --
4 AUTO SOUTH 595000 NM
4 AUTO SOUTH 4825000 TX
4 AUTO SOUTH 945000 GA

…

SELECT DEPT_NUMBER, DEPT_NAME, QUARTERLY_SALES, STATE FROM SALES_BY_REGION PARTITION(unknown);
DEPT_NUMBER DEPT_NAME QUARTERLY_SALES ST
----------- -------------------- --------------- --
9 AUTO MIDWEST 1950000 AZ
9 AUTO MIDWEST 5725000 UT

REM Note that the following ADD PARTITION statement fails. This action fails because
REM all undefined values are automatically included in the DEFAULT partition.
ALTER TABLE sales_by_region ADD PARTITION yearly_midwest VALUES ('AZ', 'UT');
ORA-14323: cannot add partition when DEFAULT partition exists

REM You must SPLIT the DEFAULT partition to add a new partition.
ALTER TABLE sales_by_region
 SPLIT PARTITION unknown VALUES ('AZ', 'UT')
 INTO
 (PARTITION yearly_midwest,
 PARTITION unknown);

SELECT PARTITION_NAME, HIGH_VALUE FROM USER_TAB_PARTITIONS WHERE TABLE_NAME ='SALES_BY_REGION';
PARTITION_NAME HIGH_VALUE
-------------- ---------------
UNKNOWN DEFAULT
YEARLY_EAST 'MA', 'NY', 'NC'
YEARLY_MIDWEST 'AZ', 'UT'
YEARLY_NORTH 'MN', 'WI', 'MI'
YEARLY_SOUTH 'NM', 'TX', 'GA'
YEARLY_WEST 'CA', 'OR', 'WA'
6 Rows selected.

SELECT DEPT_NUMBER, DEPT_NAME, QUARTERLY_SALES, STATE FROM SALES_BY_REGION PARTITION(yearly_midwest);
DEPT_NUMBER DEPT_NAME QUARTERLY_SALES ST
----------- -------------------- --------------- --
 9 AUTO MIDWEST 1950000 AZ
 9 AUTO MIDWEST 5725000 UT

SELECT DEPT_NUMBER, DEPT_NAME, QUARTERLY_SALES, STATE FROM SALES_BY_REGION PARTITION(unknown);
no rows selected

REM Split the DEFAULT partition again to add a new 'yearly_mideast' partition.
ALTER TABLE sales_by_region
 SPLIT PARTITION unknown VALUES ('OH', 'IL')
 INTO
 (PARTITION yearly_mideast,
 PARTITION unknown);
Table altered.

SELECT PARTITION_NAME, HIGH_VALUE FROM USER_TAB_PARTITIONS WHERE TABLE_NAME ='SALES_BY_REGION';
PARTITION_NAME HIGH_VALUE
------------------ ------------------

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-105

UNKNOWN DEFAULT
YEARLY_EAST 'MA', 'NY', 'NC'
YEARLY_MIDEAST 'OH', 'IL'
YEARLY_MIDWEST 'AZ', 'UT'
YEARLY_NORTH 'MN', 'WI', 'MI'
YEARLY_SOUTH 'NM', 'TX', 'GA'
YEARLY_WEST 'CA', 'OR', 'WA'
7 rows selected.

INSERT INTO SALES_BY_REGION VALUES (007, 'AUTO MIDEAST', 925000, 'OH');
INSERT INTO SALES_BY_REGION VALUES (007, 'AUTO MIDEAST', 1325000, 'IL');

SELECT DEPT_NUMBER, DEPT_NAME, QUARTERLY_SALES, STATE FROM SALES_BY_REGION
PARTITION(yearly_mideast);
DEPT_NUMBER DEPT_NAME QUARTERLY_SALES ST
----------- -------------------- --------------- --
 7 AUTO MIDEAST 925000 OH
 7 AUTO MIDEAST 1325000 IL

SELECT DEPT_NUMBER, DEPT_NAME, QUARTERLY_SALES, STATE FROM SALES_BY_REGION PARTITION(unknown);
no rows selected

4.4.12.3 Splitting a Partition of an Interval-Partitioned Table
You can split a range or a materialized interval partition with the ALTER TABLE SPLIT
PARTITION statement in an interval-partitioned table.

Splitting a range partition in the interval-partitioned table is described in Splitting a
Partition of a Range-Partitioned Table.

To split a materialized interval partition, you specify a value of the partitioning key
column within the interval partition at which to split the partition. The first of the
resulting two new partitions includes all rows in the original partition whose partitioning
key column values map lower than the specified value. The second partition contains
all rows whose partitioning key column values map greater than or equal to the
specified value. The split partition operation moves the transition point up to the higher
boundary of the partition you just split, and all materialized interval partitions lower
than the newly split partitions are implicitly converted into range partitions, with their
upper boundaries defined by the upper boundaries of the intervals.

You can optionally specify new attributes for the two range partitions resulting from the
split. If there are local indexes defined on the table, then this statement also splits the
matching partition in each local index. You cannot split interval partitions that have not
yet been created.

The following example shows splitting the May 2007 partition in the monthly interval
partitioned table transactions.

ALTER TABLE transactions
 SPLIT PARTITION FOR(TO_DATE('01-MAY-2007','dd-MON-yyyy'))
 AT (TO_DATE('15-MAY-2007','dd-MON-yyyy'));

4.4.12.4 Splitting a *-Hash Partition
You can split a hash partition with the ALTER TABLE SPLIT PARTITION statement.

This is the opposite of merging *-hash partitions. When you split *-hash partitions, the
new subpartitions are rehashed into either the number of subpartitions specified in a
SUBPARTITIONS or SUBPARTITION clause. Or, if no such clause is included, the new

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-106

partitions inherit the number of subpartitions (and tablespaces) from the partition being split.

The inheritance of properties is different when a *-hash partition is split, versus when two *-
hash partitions are merged. When a partition is split, the new partitions can inherit properties
from the original partition because there is only one parent. However, when partitions are
merged, properties must be inherited from table level defaults because there are two parents
and the new partition cannot inherit from either at the expense of the other.

The following example splits a range-hash partition:

ALTER TABLE all_seasons SPLIT PARTITION quarter_1
 AT (TO_DATE('16-dec-1997','dd-mon-yyyy'))
 INTO (PARTITION q1_1997_1 SUBPARTITIONS 4 STORE IN (ts1,ts3),
 PARTITION q1_1997_2);

The rules for splitting an interval-hash partitioned table follow the rules for splitting an interval-
partitioned table. As described in Splitting a Partition of an Interval-Partitioned Table, the
transition point is changed to the higher boundary of the split partition.

4.4.12.5 Splitting Partitions in a *-List Partitioned Table
Partitions can be split at both the partition level and at the subpartition level in a list
partitioned table..

• Splitting a *-List Partition

• Splitting a *-List Subpartition

4.4.12.5.1 Splitting a *-List Partition
You can split a list partition with the ALTER TABLE SPLIT PARTITION statement.

Splitting a partition of a *-list partitioned table is similar to the description in Splitting a
Partition of a List-Partitioned Table. No subpartition literal value list can be specified for either
of the new partitions. The new partitions inherit the subpartition descriptions from the original
partition being split.

The following example splits the q1_1999 partition of the quarterly_regional_sales table:

ALTER TABLE quarterly_regional_sales SPLIT PARTITION q1_1999
 AT (TO_DATE('15-Feb-1999','dd-mon-yyyy'))
 INTO (PARTITION q1_1999_jan_feb
 TABLESPACE ts1,
 PARTITION q1_1999_feb_mar
 STORAGE (INITIAL 8M) TABLESPACE ts2)
 PARALLEL 5;

This operation splits the partition q1_1999 into two resulting partitions: q1_1999_jan_feb and
q1_1999_feb_mar. Both partitions inherit their subpartition descriptions from the original
partition. The individual partitions have new physical attributes, including tablespaces,
specified at the partition level. These new attributes become the default attributes of the new
partitions. This operation is run with parallelism of degree 5.

The ALTER TABLE SPLIT PARTITION statement provides no means of specifically naming
subpartitions resulting from the split of a partition in a composite partitioned table. However,
for those subpartitions in the parent partition with names of the form partition
name_subpartition name, the database generates corresponding names in the newly
created subpartitions using the new partition names. All other subpartitions are assigned
system generated names of the form SYS_SUBPn. System generated names are also assigned

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-107

for the subpartitions of any partition resulting from the split for which a name is not
specified. Unnamed partitions are assigned a system generated partition name of the
form SYS_Pn.

The following query displays the subpartition names resulting from the previous split
partition operation on table quarterly_regional_sales. It also reflects the results of
other operations performed on this table in preceding sections of this chapter since its
creation in About Creating Composite Range-List Partitioned Tables.

SELECT PARTITION_NAME, SUBPARTITION_NAME, TABLESPACE_NAME
 FROM DBA_TAB_SUBPARTITIONS
 WHERE TABLE_NAME='QUARTERLY_REGIONAL_SALES'
 ORDER BY PARTITION_NAME;

PARTITION_NAME SUBPARTITION_NAME TABLESPACE_NAME
-------------------- ------------------------------ ---------------
Q1_1999_FEB_MAR Q1_1999_FEB_MAR_WEST TS2
Q1_1999_FEB_MAR Q1_1999_FEB_MAR_NORTHEAST TS2
Q1_1999_FEB_MAR Q1_1999_FEB_MAR_SOUTHEAST TS2
Q1_1999_FEB_MAR Q1_1999_FEB_MAR_NORTHCENTRAL TS2
Q1_1999_FEB_MAR Q1_1999_FEB_MAR_SOUTHCENTRAL TS2
Q1_1999_FEB_MAR Q1_1999_FEB_MAR_SOUTH TS2
Q1_1999_JAN_FEB Q1_1999_JAN_FEB_WEST TS1
Q1_1999_JAN_FEB Q1_1999_JAN_FEB_NORTHEAST TS1
Q1_1999_JAN_FEB Q1_1999_JAN_FEB_SOUTHEAST TS1
Q1_1999_JAN_FEB Q1_1999_JAN_FEB_NORTHCENTRAL TS1
Q1_1999_JAN_FEB Q1_1999_JAN_FEB_SOUTHCENTRAL TS1
Q1_1999_JAN_FEB Q1_1999_JAN_FEB_SOUTH TS1
Q1_2000 Q1_2000_NORTHWEST TS3
Q1_2000 Q1_2000_SOUTHWEST TS3
Q1_2000 Q1_2000_NORTHEAST TS3
Q1_2000 Q1_2000_SOUTHEAST TS3
Q1_2000 Q1_2000_NORTHCENTRAL TS3
Q1_2000 Q1_2000_SOUTHCENTRAL TS3
Q2_1999 Q2_1999_NORTHWEST TS4
Q2_1999 Q2_1999_SOUTHWEST TS4
Q2_1999 Q2_1999_NORTHEAST TS4
Q2_1999 Q2_1999_SOUTHEAST TS4
Q2_1999 Q2_1999_NORTHCENTRAL TS4
Q2_1999 Q2_1999_SOUTHCENTRAL TS4
Q3_1999 Q3_1999_NORTHWEST TS4
Q3_1999 Q3_1999_SOUTHWEST TS4
Q3_1999 Q3_1999_NORTHEAST TS4
Q3_1999 Q3_1999_SOUTHEAST TS4
Q3_1999 Q3_1999_NORTHCENTRAL TS4
Q3_1999 Q3_1999_SOUTHCENTRAL TS4
Q4_1999 Q4_1999_NORTHWEST TS4
Q4_1999 Q4_1999_SOUTHWEST TS4
Q4_1999 Q4_1999_NORTHEAST TS4
Q4_1999 Q4_1999_SOUTHEAST TS4
Q4_1999 Q4_1999_NORTHCENTRAL TS4
Q4_1999 Q4_1999_SOUTHCENTRAL TS4

36 rows selected.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-108

4.4.12.5.2 Splitting a *-List Subpartition
You can split a list subpartition with the ALTER TABLE SPLIT SUBPARTITION statement.

Splitting a list subpartition of a *-list partitioned table is similar to the description in Splitting a
Partition of a List-Partitioned Table, but the syntax is that of SUBPARTITION rather than
PARTITION. For example, the following statement splits a subpartition of the
quarterly_regional_sales table:

ALTER TABLE quarterly_regional_sales SPLIT SUBPARTITION q2_1999_southwest
 VALUES ('UT') INTO
 (SUBPARTITION q2_1999_utah
 TABLESPACE ts2,
 SUBPARTITION q2_1999_southwest
 TABLESPACE ts3
)
 PARALLEL;

This operation splits the subpartition q2_1999_southwest into two subpartitions:

• q2_1999_utah with literal value list of ('UT')

• q2_1999_southwest which inherits the remaining literal value list of ('AZ','NM')

The individual subpartitions have new physical attributes that are inherited from the
subpartition being split.

You can only split subpartitions in an interval-list partitioned table for range partitions or
materialized interval partitions. To change subpartition values for future interval partitions, you
must modify the subpartition template.

4.4.12.6 Splitting a *-Range Partition
You can split a range partition using the ALTER TABLE SPLIT PARTITION statement.

Splitting a partition of a *-range partitioned table is similar to the description in Splitting a
Partition of a Range-Partitioned Table. No subpartition range values can be specified for
either of the new partitions. The new partitions inherit the subpartition descriptions from the
original partition being split.

The following example splits the May 2007 interval partition of the interval-range partitioned
orders table:

ALTER TABLE orders
 SPLIT PARTITION FOR(TO_DATE('01-MAY-2007','dd-MON-yyyy'))
 AT (TO_DATE('15-MAY-2007','dd-MON-yyyy'))
 INTO (PARTITION p_fh_may07,PARTITION p_sh_may2007);

This operation splits the interval partition FOR('01-MAY-2007') into two resulting partitions:
p_fh_may07 and p_sh_may_2007. Both partitions inherit their subpartition descriptions from the
original partition. Any interval partitions before the June 2007 partition have been converted
into range partitions, as described in Merging Interval Partitions.

The ALTER TABLE SPLIT PARTITION statement provides no means of specifically naming
subpartitions resulting from the split of a partition in a composite partitioned table. However,
for those subpartitions in the parent partition with names of the form partition
name_subpartition name, the database generates corresponding names in the newly
created subpartitions using the new partition names. All other subpartitions are assigned

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-109

system generated names of the form SYS_SUBPn. System generated names are also
assigned for the subpartitions of any partition resulting from the split for which a name
is not specified. Unnamed partitions are assigned a system generated partition name
of the form SYS_Pn.

The following query displays the subpartition names and high values resulting from the
previous split partition operation on table orders. It also reflects the results of other
operations performed on this table in preceding sections of this chapter since its
creation.

BREAK ON partition_name

SELECT partition_name, subpartition_name, high_value
FROM user_tab_subpartitions
WHERE table_name = 'ORCERS'
ORDER BY partition_name, subpartition_position;

PARTITION_NAME SUBPARTITION_NAME HIGH_VALUE
------------------------- ------------------------------ ---------------
P_BEFORE_2007 P_BEFORE_2007_P_SMALL 1000
 P_BEFORE_2007_P_MEDIUM 10000
 P_BEFORE_2007_P_LARGE 100000
 P_BEFORE_2007_P_EXTRAORDINARY MAXVALUE
P_FH_MAY07 SYS_SUBP2985 1000
 SYS_SUBP2986 10000
 SYS_SUBP2987 100000
 SYS_SUBP2988 MAXVALUE
P_PRE_MAY_2007 P_PRE_MAY_2007_P_SMALL 1000
 P_PRE_MAY_2007_P_MEDIUM 10000
 P_PRE_MAY_2007_P_LARGE 100000
 P_PRE_MAY_2007_P_EXTRAORDINARY MAXVALUE
P_SH_MAY2007 SYS_SUBP2989 1000
 SYS_SUBP2990 10000
 SYS_SUBP2991 100000
 SYS_SUBP2992 MAXVALUE

4.4.12.6.1 Splitting a *-Range Subpartition
You can split a range subpartition using the ALTER TABLE SPLIT SUBPARTITION
statement.

Splitting a range subpartition of a *-range partitioned table is similar to the description
in Splitting a Partition of a Range-Partitioned Table, but the syntax is that of
SUBPARTITION rather than PARTITION. For example, the following statement splits a
subpartition of the orders table:

ALTER TABLE orders
SPLIT SUBPARTITION p_pre_may_2007_p_large AT (50000)
INTO (SUBPARTITION p_pre_may_2007_med_large TABLESPACE TS4
 , SUBPARTITION p_pre_may_2007_large_large TABLESPACE TS5
);

This operation splits the subpartition p_pre_may_2007_p_large into two subpartitions:

• p_pre_may_2007_med_large with values between 10000 and 50000

• p_pre_may_2007_large_large with values between 50000 and 100000

The individual subpartitions have new physical attributes that are inherited from the
subpartition being split.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-110

You can only split subpartitions in an interval-range partitioned table for range partitions or
materialized interval partitions. To change subpartition boundaries for future interval
partitions, you must modify the subpartition template.

4.4.12.7 Splitting Index Partitions
You cannot explicitly split a partition in a local index. A local index partition is split only when
you split a partition in the underlying table.

However, you can split a global index partition as is done in the following example:

ALTER INDEX quon1 SPLIT
 PARTITION canada AT (100) INTO
 PARTITION canada1 ..., PARTITION canada2 ...);
ALTER INDEX quon1 REBUILD PARTITION canada1;
ALTER INDEX quon1 REBUILD PARTITION canada2;

The index being split can contain index data, and the resulting partitions do not require
rebuilding, unless the original partition was previously marked UNUSABLE.

4.4.12.8 Splitting into Multiple Partitions
You can redistribute the contents of one partition or subpartition into multiple partitions or
subpartitions with the SPLIT PARTITION and SPLIT SUBPARTITION clauses of the ALTER TABLE
statement.

When splitting multiple partitions, the segment associated with the current partition is
discarded. Each new partitions obtains a new segment and inherits all unspecified physical
attributes from the current source partition. Fast split optimization is applied to multipartition
split operations when required conditions are met.

You can use the extended split syntax to specify a list of new partition descriptions similar to
the create partitioned table SQL statements, rather than specifying the AT or VALUES clause.
Additionally, the range or list values clause for the last new partition description is derived
based on the high bound of the source partition and the bound values specified for the first
(N-1) new partitions resulting from the split.

The following SQL statements are examples of splitting a partition into multiple partitions.

ALTER TABLE SPLIT PARTITION p0 INTO
 (PARTITION p01 VALUES LESS THAN (25),
 PARTITION p02 VALUES LESS THAN (50),
 PARTITION p03 VALUES LESS THAN (75),
 PARTITION p04);

ALTER TABLE SPLIT PARTITION p0 INTO
 (PARTITION p01 VALUES LESS THAN (25),
 PARTITION p02);

In the second SQL example, partition p02 has the high bound of the original partition p0.

To split a range partition into N partitions, (N-1) values of the partitioning key column must be
specified within the range of the partition at which to split the partition. The new non-inclusive
upper bound values specified must be in ascending order. The high bound of Nth new
partition is assigned the value of the high bound of the partition being split. The names and
physical attributes of the N new partitions resulting from the split can be optionally specified.

To split a list partition into N partitions, (N-1) lists of literal values must be specified, each of
which defines the first (N-1) partitions into which rows with corresponding partitioning key

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-111

values are inserted. The remaining rows of the original partition are inserted into the
Nth new partition whose value list contains the remaining literal values from the
original partition. No two value lists can contain the same partition value. The (N-1)
value lists that are specified cannot contain all of the partition values of the current
partition because the Nth new partition would be empty. Also, the (N-1) value lists
cannot contain any partition values that do not exist for the current partition.

When splitting a DEFAULT list partition or a MAXVALUE range partition into multiple
partitions, the first (N-1) new partitions are created using the literal value lists or high
bound values specified, while the Nth new partition resulting from the split have the
DEFAULT value or MAXVALUE. Splitting a partition of a composite partitioned table into
multiple partitions assumes the existing behavior with respect to inheritance of the
number, names, bounds and physical properties of the subpartitions of the new
partitions resulting from the split. The SPLIT_TABLE_SUBPARTITION clause is extended
similarly to allow split of a range or list subpartition into N new subpartitions.

The behavior of the SQL statement with respect to local and global indexes remains
unchanged. Corresponding local index partition are split into multiple partitions. If the
partitioned table contains LOB columns, then existing semantics for the SPLIT
PARTITION clause apply with the extended syntax; that is, LOB data and index
segments is dropped for current partition and new segments are created for each LOB
column for each new partition. Fast split optimization is applied to multipartition split
operations when required conditions are met.

For example, the following SQL statement splits the sales_Q4_2007 partition of the
partitioned by range table sales splits into five partitions corresponding to the quarters
of the next year. In this example, the partition sales_Q4_2008 implicitly becomes the
high bound of the split partition.

ALTER TABLE sales SPLIT PARTITION sales_Q4_2007 INTO
(PARTITION sales_Q4_2007 VALUES LESS THAN (TO_DATE('01-JAN-2008','dd-MON-yyyy')),
 PARTITION sales_Q1_2008 VALUES LESS THAN (TO_DATE('01-APR-2008','dd-MON-yyyy')),
 PARTITION sales_Q2_2008 VALUES LESS THAN (TO_DATE('01-JUL-2008','dd-MON-yyyy')),
 PARTITION sales_Q3_2008 VALUES LESS THAN (TO_DATE('01-OCT-2008','dd-MON-yyyy')),
 PARTITION sales_Q4_2008);

For the sample table customers partitioned by list, the following statement splits the
partition Europe into three partitions.

ALTER TABLE list_customers SPLIT PARTITION Europe INTO
 (PARTITION western-europe VALUES ('GERMANY', 'FRANCE'),
 PARTITION southern-europe VALUES ('ITALY'),
 PARTITION rest-europe);

4.4.12.9 Fast SPLIT PARTITION and SPLIT SUBPARTITION Operations
Oracle Database implements a SPLIT PARTITION operation by creating two or more
new partitions and redistributing the rows from the partition being split into the new
partitions.

This is a time-consuming operation because it is necessary to scan all the rows of the
partition being split and then insert them one-by-one into the new partitions. Further if
you do not use the UPDATE INDEXES clause, then both local and global indexes also
require rebuilding.

Sometimes after a split operation, one new partition contains all of the rows from the
partition being split, while the other partitions contain no rows. This is often the case
when splitting the first or last partition of a table. The database can detect such

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-112

situations and can optimize the split operation. This optimization results in a fast split
operation that behaves like an add partition operation.

Specifically, the database can optimize and speed up SPLIT PARTITION operations if all of the
following conditions are met:

• One of the resulting partitions contains all of the rows.

• The non-empty resulting partition must have storage characteristics identical to those of
the partition being split. Specifically:

– If the partition being split is composite, then the storage characteristics of each
subpartition in the new resulting partition must be identical to those of the
subpartitions of the partition being split.

– If the partition being split contains a LOB column, then the storage characteristics of
each LOB (sub)partition in the new non-empty resulting partition must be identical to
those of the LOB (sub)partitions of the partition being split.

– If a partition of an index-organized table with overflow is being split, then the storage
characteristics of each overflow (sub)partition in the new nonempty resulting partition
must be identical to those of the overflow (sub)partitions of the partition being split.

– If a partition of an index-organized table with mapping table is being split, then the
storage characteristics of each mapping table (sub)partition in the new nonempty
resulting partition must be identical to those of the mapping table (sub)partitions of
the partition being split.

If these conditions are met after the split, then all global indexes remain usable, even if you
did not specify the UPDATE INDEXES clause. Local index (sub)partitions associated with the
resulting partitions remain usable if they were usable before the split. Local index
(sub)partitions corresponding to the non-empty resulting partition are identical to the local
index (sub)partitions of the partition that was split. The same optimization holds for SPLIT
SUBPARTITION operations.

4.4.13 About Truncating Partitions and Subpartitions
Truncating a partition is similar to dropping a partition, except that the partition is emptied of
its data, but not physically dropped.

Use the ALTER TABLE TRUNCATE PARTITION statement to remove all rows from a table partition.
You cannot truncate an index partition. However, if local indexes are defined for the table, the
ALTER TABLE TRUNCATE PARTITION statement truncates the matching partition in each local
index. Unless you specify UPDATE INDEXES, any global indexes are marked UNUSABLE and
must be rebuilt. You cannot use UPDATE INDEXES for index-organized tables. Use UPDATE
GLOBAL INDEXES instead.

This section contains the following topics:

• About Truncating a Table Partition

• Truncating Multiple Partitions

• Truncating Subpartitions

• Truncating a Partition with the Cascade Option

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-113

See Also:

• Asynchronous Global Index Maintenance for Dropping and Truncating
Partitions for information about asynchronous index maintenance for
truncating partitions

• About Dropping Partitions and Subpartitions for information about
dropping a partition

4.4.13.1 About Truncating a Table Partition
Use the ALTER TABLE TRUNCATE PARTITION statement to remove all rows from a table
partition, with or without reclaiming space.

Truncating a partition in an interval-partitioned table does not move the transition point.
You can truncate partitions and subpartitions in a reference-partitioned table.

• Truncating Table Partitions Containing Data and Global Indexes

• Truncating a Partition Containing Data and Referential Integrity Constraints

4.4.13.1.1 Truncating Table Partitions Containing Data and Global Indexes
When truncating a table partition that contains data and global indexes, you can use
one of several methods.

If the partition contains data and global indexes, use one of the following methods
(method 1, 2, or 3) to truncate the table partition.

Method 1

Leave the global indexes in place during the ALTER TABLE TRUNCATE PARTITION
statement. In this example, table sales has a global index sales_area_ix, which is
rebuilt.

ALTER TABLE sales TRUNCATE PARTITION dec98;
ALTER INDEX sales_area_ix REBUILD;

This method is most appropriate for large tables where the partition being truncated
contains a significant percentage of the total data in the table.

Method 2

Run the DELETE statement to delete all rows from the partition before you issue the
ALTER TABLE TRUNCATE PARTITION statement. The DELETE statement updates the global
indexes, and also fires triggers and generates redo and undo logs.

For example, to truncate the first partition, run the following statements:

DELETE FROM sales PARTITION (dec98);
ALTER TABLE sales TRUNCATE PARTITION dec98;

This method is most appropriate for small tables, or for large tables when the partition
being truncated contains a small percentage of the total data in the table.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-114

Method 3

Specify UPDATE INDEXES in the ALTER TABLE statement. This causes the global index to be
truncated at the time the partition is truncated.

ALTER TABLE sales TRUNCATE PARTITION dec98
 UPDATE INDEXES;

With asynchronous global index maintenance, this operation is a metadata-only operation.

4.4.13.1.2 Truncating a Partition Containing Data and Referential Integrity Constraints
If a partition contains data and has referential integrity constraints, then you cannot truncate
the partition. However, if no other data is referencing any data in the partition to remove, then
you can use one of several methods.

Choose either of the following methods (method 1 or 2) to truncate the table partition.

Method 1

Disable the integrity constraints, run the ALTER TABLE TRUNCATE PARTITION statement, then re-
enable the integrity constraints. This method is most appropriate for large tables where the
partition being truncated contains a significant percentage of the total data in the table. If
there is still referencing data in other tables, then you must remove that data to be able to re-
enable the integrity constraints.

Method 2

Issue the DELETE statement to delete all rows from the partition before you issue the ALTER
TABLE TRUNCATE PARTITION statement. The DELETE statement enforces referential integrity
constraints, and also fires triggers and generates redo and undo logs. Data in referencing
tables is deleted if the foreign key constraints were created with the ON DELETE CASCADE
option.

DELETE FROM sales partition (dec94);
ALTER TABLE sales TRUNCATE PARTITION dec94;

This method is most appropriate for small tables, or for large tables when the partition being
truncated contains a small percentage of the total data in the table.

4.4.13.2 Truncating Multiple Partitions
You can truncate multiple partitions from a range or list partitioned table with the TRUNCATE
PARTITION clause of the ALTER TABLE statement.

The corresponding partitions of local indexes are truncated in the operation. Global indexes
must be rebuilt unless UPDATE INDEXES is specified.

In the following example, the ALTER TABLE SQL statement truncates multiple partitions in a
table. Note that the data is truncated, but the partitions are not dropped.

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-115

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL:
Truncating a Range-Partitioned Table.

Example 4-39 Truncating Multiple Partitions

CREATE TABLE sales_partition_truncate
 (product_id NUMBER(6) NOT NULL,
 customer_id NUMBER NOT NULL,
 channel_id CHAR(1),
 promo_id NUMBER(6),
 sales_date DATE,
 quantity_sold INTEGER,
 amount_sold NUMBER(10,2)
)
 PARTITION BY RANGE (sales_date)
 SUBPARTITION BY LIST (channel_id)
(PARTITION q3_2018 VALUES LESS THAN (TO_DATE('1-OCT-2018','DD-MON-YYYY'))
 (SUBPARTITION q3_2018_p_catalog VALUES ('C'),
 SUBPARTITION q3_2018_p_internet VALUES ('I'),
 SUBPARTITION q3_2018_p_partners VALUES ('P'),
 SUBPARTITION q3_2018_p_direct_sales VALUES ('S'),
 SUBPARTITION q3_2018_p_tele_sales VALUES ('T')
),
 PARTITION q4_2018 VALUES LESS THAN (TO_DATE('1-JAN-2019','DD-MON-YYYY'))
 (SUBPARTITION q4_2018_p_catalog VALUES ('C'),
 SUBPARTITION q4_2018_p_internet VALUES ('I'),
 SUBPARTITION q4_2018_p_partners VALUES ('P'),
 SUBPARTITION q4_2018_p_direct_sales VALUES ('S'),
 SUBPARTITION q4_2018_p_tele_sales VALUES ('T')
),
 PARTITION q1_2019 VALUES LESS THAN (TO_DATE('1-APR-2019','DD-MON-YYYY'))
 (SUBPARTITION q1_2019_p_catalog VALUES ('C')
 , SUBPARTITION q1_2019_p_internet VALUES ('I')
 , SUBPARTITION q1_2019_p_partners VALUES ('P')
 , SUBPARTITION q1_2019_p_direct_sales VALUES ('S')
 , SUBPARTITION q1_2019_p_tele_sales VALUES ('T')
),
 PARTITION q2_2019 VALUES LESS THAN (TO_DATE('1-JUL-2019','DD-MON-YYYY'))
 (SUBPARTITION q2_2019_p_catalog VALUES ('C'),
 SUBPARTITION q2_2019_p_internet VALUES ('I'),
 SUBPARTITION q2_2019_p_partners VALUES ('P'),
 SUBPARTITION q2_2019_p_direct_sales VALUES ('S'),
 SUBPARTITION q2_2019_p_tele_sales VALUES ('T')
),
 PARTITION q3_2019 VALUES LESS THAN (TO_DATE('1-OCT-2019','DD-MON-YYYY'))
 (SUBPARTITION q3_2019_p_catalog VALUES ('C'),
 SUBPARTITION q3_2019_p_internet VALUES ('I'),
 SUBPARTITION q3_2019_p_partners VALUES ('P'),
 SUBPARTITION q3_2019_p_direct_sales VALUES ('S'),
 SUBPARTITION q3_2019_p_tele_sales VALUES ('T')
),
 PARTITION q4_2019 VALUES LESS THAN (TO_DATE('1-JAN-2020','DD-MON-YYYY'))
 (SUBPARTITION q4_2019_p_catalog VALUES ('C'),
 SUBPARTITION q4_2019_p_internet VALUES ('I'),
 SUBPARTITION q4_2019_p_partners VALUES ('P'),
 SUBPARTITION q4_2019_p_direct_sales VALUES ('S'),

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-116

https://livesql.oracle.com/apex/livesql/docs/vldbg/partitioning/truncate-partitions.html
https://livesql.oracle.com/apex/livesql/docs/vldbg/partitioning/truncate-partitions.html

 SUBPARTITION q4_2019_p_tele_sales VALUES ('T')
)
);

SELECT TABLE_NAME, PARTITION_NAME, SUBPARTITION_NAME FROM USER_TAB_SUBPARTITIONS
 WHERE TABLE_NAME ='SALES_PARTITION_TRUNCATE';
TABLE_NAME PARTITION_NAME SUBPARTITION_NAME
–------------------------ –-------------- –------------------
SALES_PARTITION_TRUNCATE Q1_2019 Q1_2019_P_CATALOG
SALES_PARTITION_TRUNCATE Q1_2019 Q1_2019_P_DIRECT_SALES
...
30 rows selected.

INSERT INTO sales_partition_truncate VALUES (1001,100,'C',150,'10-SEP-2018',500,2000);
INSERT INTO sales_partition_truncate VALUES (1021,200,'C',160,'16-NOV-2018',100,1500);
INSERT INTO sales_partition_truncate VALUES (1001,100,'C',150,'10-FEB-2019',500,2000);
INSERT INTO sales_partition_truncate VALUES (1021,200,'S',160,'16-FEB-2019',100,1500);
INSERT INTO sales_partition_truncate VALUES (1002,110,'I',180,'15-JUN-2019',100,1000);
INSERT INTO sales_partition_truncate VALUES (5010,150,'P',200,'20-AUG-2019',1000,10000);
INSERT INTO sales_partition_truncate VALUES (1001,100,'T',150,'12-OCT-2019',500,2000);

SELECT * FROM sales_partition_truncate;
PRODUCT_ID CUSTOMER_ID C PROMO_ID SALES_DAT QUANTITY_SOLD AMOUNT_SOLD
---------- ----------- - ---------- --------- ------------- -----------
 1001 100 C 150 10-SEP-18 500 2000
 1021 200 C 160 16-NOV-18 100 1500
 1001 100 C 150 10-FEB-19 500 2000
 1021 200 S 160 16-FEB-19 100 1500
 1002 110 I 180 15-JUN-19 100 1000
 5010 150 P 200 20-AUG-19 1000 10000
 1001 100 T 150 12-OCT-19 500 2000
7 rows selected.

ALTER TABLE sales_partition_truncate
 TRUNCATE PARTITIONS q3_2018, q4_2018;

SELECT * FROM sales_partition_truncate;
PRODUCT_ID CUSTOMER_ID C PROMO_ID SALES_DAT QUANTITY_SOLD AMOUNT_SOLD
---------- ----------- - ---------- --------- ------------- -----------
 1001 100 C 150 10-FEB-19 500 2000
 1021 200 S 160 16-FEB-19 100 1500
 1002 110 I 180 15-JUN-19 100 1000
 5010 150 P 200 20-AUG-19 1000 10000
 1001 100 T 150 12-OCT-19 500 2000
5 rows selected.

SELECT TABLE_NAME, PARTITION_NAME, SUBPARTITION_NAME FROM USER_TAB_SUBPARTITIONS
 WHERE TABLE_NAME ='SALES_PARTITION_TRUNCATE';
TABLE_NAME PARTITION_NAME SUBPARTITION_NAME
–------------------------ –-------------- –------------------
SALES_PARTITION_TRUNCATE Q1_2019 Q1_2019_P_CATALOG
SALES_PARTITION_TRUNCATE Q1_2019 Q1_2019_P_DIRECT_SALES
...
SALES_PARTITION_TRUNCATE Q3_2018 Q3_2018_P_CATALOG
SALES_PARTITION_TRUNCATE Q3_2018 Q3_2018_P_DIRECT_SALES
SALES_PARTITION_TRUNCATE Q3_2018 Q3_2018_P_INTERNET
SALES_PARTITION_TRUNCATE Q3_2018 Q3_2018_P_PARTNERS
SALES_PARTITION_TRUNCATE Q3_2018 Q3_2018_P_TELE_SALES
...
SALES_PARTITION_TRUNCATE Q4_2018 Q4_2018_P_CATALOG
SALES_PARTITION_TRUNCATE Q4_2018 Q4_2018_P_DIRECT_SALES

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-117

SALES_PARTITION_TRUNCATE Q4_2018 Q4_2018_P_INTERNET
SALES_PARTITION_TRUNCATE Q4_2018 Q4_2018_P_PARTNERS
SALES_PARTITION_TRUNCATE Q4_2018 Q4_2018_P_TELE_SALES
...
30 rows selected.

4.4.13.3 Truncating Subpartitions
Use the ALTER TABLE TRUNCATE SUBPARTITION statement to remove all rows from a
subpartition of a composite partitioned table.

When truncating a subpartition, corresponding local index subpartitions are also
truncated.

In the following example, the ALTER TABLE statement truncates data in subpartitions of
a table. In this example, the space occupied by the deleted rows is made available for
use by other schema objects in the tablespace with the DROP STORAGE clause. Note that
the data is truncated, but the subpartitions are not dropped.

Example 4-40 Truncating Multiple Subpartitions

CREATE TABLE sales_partition_truncate
 (product_id NUMBER(6) NOT NULL,
 customer_id NUMBER NOT NULL,
 channel_id CHAR(1),
 promo_id NUMBER(6),
 sales_date DATE,
 quantity_sold INTEGER,
 amount_sold NUMBER(10,2)
)
 PARTITION BY RANGE (sales_date)
 SUBPARTITION BY LIST (channel_id)
(PARTITION q3_2018 VALUES LESS THAN (TO_DATE('1-OCT-2018','DD-MON-YYYY'))
 (SUBPARTITION q3_2018_p_catalog VALUES ('C'),
 SUBPARTITION q3_2018_p_internet VALUES ('I'),
 SUBPARTITION q3_2018_p_partners VALUES ('P'),
 SUBPARTITION q3_2018_p_direct_sales VALUES ('S'),
 SUBPARTITION q3_2018_p_tele_sales VALUES ('T')
),
 PARTITION q4_2018 VALUES LESS THAN (TO_DATE('1-JAN-2019','DD-MON-YYYY'))
 (SUBPARTITION q4_2018_p_catalog VALUES ('C'),
 SUBPARTITION q4_2018_p_internet VALUES ('I'),
 SUBPARTITION q4_2018_p_partners VALUES ('P'),
 SUBPARTITION q4_2018_p_direct_sales VALUES ('S'),
 SUBPARTITION q4_2018_p_tele_sales VALUES ('T')
),
 PARTITION q1_2019 VALUES LESS THAN (TO_DATE('1-APR-2019','DD-MON-YYYY'))
 (SUBPARTITION q1_2019_p_catalog VALUES ('C')
 , SUBPARTITION q1_2019_p_internet VALUES ('I')
 , SUBPARTITION q1_2019_p_partners VALUES ('P')
 , SUBPARTITION q1_2019_p_direct_sales VALUES ('S')
 , SUBPARTITION q1_2019_p_tele_sales VALUES ('T')
),
 PARTITION q2_2019 VALUES LESS THAN (TO_DATE('1-JUL-2019','DD-MON-YYYY'))
 (SUBPARTITION q2_2019_p_catalog VALUES ('C'),
 SUBPARTITION q2_2019_p_internet VALUES ('I'),
 SUBPARTITION q2_2019_p_partners VALUES ('P'),
 SUBPARTITION q2_2019_p_direct_sales VALUES ('S'),
 SUBPARTITION q2_2019_p_tele_sales VALUES ('T')
),
 PARTITION q3_2019 VALUES LESS THAN (TO_DATE('1-OCT-2019','DD-MON-YYYY'))

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-118

 (SUBPARTITION q3_2019_p_catalog VALUES ('C'),
 SUBPARTITION q3_2019_p_internet VALUES ('I'),
 SUBPARTITION q3_2019_p_partners VALUES ('P'),
 SUBPARTITION q3_2019_p_direct_sales VALUES ('S'),
 SUBPARTITION q3_2019_p_tele_sales VALUES ('T')
),
 PARTITION q4_2019 VALUES LESS THAN (TO_DATE('1-JAN-2020','DD-MON-YYYY'))
 (SUBPARTITION q4_2019_p_catalog VALUES ('C'),
 SUBPARTITION q4_2019_p_internet VALUES ('I'),
 SUBPARTITION q4_2019_p_partners VALUES ('P'),
 SUBPARTITION q4_2019_p_direct_sales VALUES ('S'),
 SUBPARTITION q4_2019_p_tele_sales VALUES ('T')
)
);

SELECT TABLE_NAME, PARTITION_NAME, SUBPARTITION_NAME FROM USER_TAB_SUBPARTITIONS
 WHERE TABLE_NAME ='SALES_PARTITION_TRUNCATE';
TABLE_NAME PARTITION_NAME SUBPARTITION_NAME
–------------------------ –-------------- –------------------
SALES_PARTITION_TRUNCATE Q1_2019 Q1_2019_P_CATALOG
SALES_PARTITION_TRUNCATE Q1_2019 Q1_2019_P_DIRECT_SALES
...
30 rows selected.

INSERT INTO sales_partition_truncate VALUES (1001,100,'C',150,'10-SEP-2018',500,2000);
INSERT INTO sales_partition_truncate VALUES (1021,200,'C',160,'16-NOV-2018',100,1500);
INSERT INTO sales_partition_truncate VALUES (1001,100,'C',150,'10-FEB-2019',500,2000);
INSERT INTO sales_partition_truncate VALUES (1021,200,'S',160,'16-FEB-2019',100,1500);
INSERT INTO sales_partition_truncate VALUES (1002,110,'I',180,'15-JUN-2019',100,1000);
INSERT INTO sales_partition_truncate VALUES (5010,150,'P',200,'20-AUG-2019',1000,10000);
INSERT INTO sales_partition_truncate VALUES (1001,100,'T',150,'12-OCT-2019',500,2000);

SELECT * FROM sales_partition_truncate;
PRODUCT_ID CUSTOMER_ID C PROMO_ID SALES_DAT QUANTITY_SOLD AMOUNT_SOLD
---------- ----------- - ---------- --------- ------------- -----------
 1001 100 C 150 10-SEP-18 500 2000
 1021 200 C 160 16-NOV-18 100 1500
 1001 100 C 150 10-FEB-19 500 2000
 1021 200 S 160 16-FEB-19 100 1500
 1002 110 I 180 15-JUN-19 100 1000
 5010 150 P 200 20-AUG-19 1000 10000
 1001 100 T 150 12-OCT-19 500 2000
7 rows selected.

ALTER TABLE sales_subpartition_truncate
 TRUNCATE SUBPARTITIONS q3_2018_p_catalog, q4_2018_p_catalog, q1_2019_p_catalog,
 q2_2019_p_catalog, q3_2019_p_catalog, q4_2019_p_catalog
 DROP STORAGE;

SELECT * FROM sales_partition_truncate;
PRODUCT_ID CUSTOMER_ID C PROMO_ID SALES_DAT QUANTITY_SOLD AMOUNT_SOLD
---------- ----------- - ---------- --------- ------------- -----------
 1021 200 S 160 16-FEB-19 100 1500
 1002 110 I 180 15-JUN-19 100 1000
 5010 150 P 200 20-AUG-19 1000 10000
 1001 100 T 150 12-OCT-19 500 2000
4 rows selected.

SELECT TABLE_NAME, PARTITION_NAME, SUBPARTITION_NAME FROM USER_TAB_SUBPARTITIONS
 WHERE TABLE_NAME ='SALES_PARTITION_TRUNCATE';
TABLE_NAME PARTITION_NAME SUBPARTITION_NAME

Chapter 4
Maintenance Operations for Partitioned Tables and Indexes

4-119

–------------------------ –-------------- –------------------
SALES_PARTITION_TRUNCATE Q1_2019 Q1_2019_P_CATALOG
SALES_PARTITION_TRUNCATE Q1_2019 Q1_2019_P_DIRECT_SALES
...
30 rows selected.

4.4.13.4 Truncating a Partition with the Cascade Option
You can use cascade truncate operations to a reference partitioned child table with the
CASCADE option of TRUNCATE TABLE, ALTER TABLE TRUNCATE PARTITION, and ALTER TABLE
TRUNCATE SUBPARTITION SQL statements.

When the CASCADE option is specified for TRUNCATE TABLE, the truncate table operation
also truncates child tables that reference the targeted table through an enabled
referential constraint that has ON DELETE CASCADE enabled. This cascading action
applies recursively to grandchildren, great-grandchildren, and so on. After determining
the set of tables to be truncated based on the enabled ON DELETE CASCADE referential
constraints, an error is raised if any table in this set is referenced through an enabled
constraint from a child outside of the set. If a parent and child are connected by
multiple referential constraints, a TRUNCATE TABLE CASCADE operation targeting the
parent succeeds if at least one constraint has ON DELETE CASCADE enabled.

Privileges are required on all tables affected by the operation. Any other options
specified for the operation, such as DROP STORAGE or PURGE MATERIALIZED VIEW LOG,
apply for all tables affected by the operation.

When the CASCADE option is specified, the TRUNCATE PARTITION and TRUNCATE
SUBPARTITION operations cascade to reference partitioned tables that are children of
the targeted table. The TRUNCATE can be targeted at any level in a reference partitioned
hierarchy and cascades to child tables starting from the targeted table. Privileges are
not required on the child tables, but the usual restrictions on the TRUNCATE operation,
such as the table cannot be referenced by an enabled referential constraint that is not
a partitioning constraint, apply for all tables affected by the operation.

The CASCADE option is ignored if it is specified for a table that does not have reference
partitioned children. Any other options specified for the operation, such as DROP
STORAGE or UPDATE INDEXES, apply to all tables affected by the operation.

The cascade options are off by default so they do not affect Oracle Database
compatibility.

ALTER TABLE sales
 TRUNCATE PARTITION dec2016
 DROP STORAGE
 CASCADE
 UPDATE INDEXES;

4.5 About Dropping Partitioned Tables
Dropping partitioned tables is similar to dropping nonpartitioned tables.

Oracle Database processes a DROP TABLE statement for a partitioned table in the same
way that it processes the statement for a nonpartitioned table. One exception is when
you use the PURGE keyword.

To avoid running into resource constraints, the DROP TABLE...PURGE statement for a
partitioned table drops the table in multiple transactions, where each transaction drops

Chapter 4
About Dropping Partitioned Tables

4-120

a subset of the partitions or subpartitions and then commits. The table is dropped at the
conclusion of the final transaction.

This behavior comes with some changes to the DROP TABLE statement. First, if the DROP
TABLE...PURGE statement fails, then you can take corrective action, if any, and then reissue the
statement. The statement resumes at the point where it failed. Second, while the DROP
TABLE...PURGE statement is in progress, the table is marked as unusable by setting the STATUS
column to the value UNUSABLE in the following data dictionary views:

• USER_TABLES, ALL_TABLES, DBA_TABLES

• USER_PART_TABLES, ALL_PART_TABLES, DBA_PART_TABLES

• USER_OBJECT_TABLES, ALL_OBJECT_TABLES, DBA_OBJECT_TABLES

You can list all UNUSABLE partitioned tables by querying the STATUS column of these views.

Queries against other data dictionary views pertaining to partitioning, such as
DBA_TAB_PARTITIONS and DBA_TAB_SUBPARTITIONS, exclude rows belonging to an UNUSABLE
table.

After a table is marked UNUSABLE, the only statement that can be issued against it is another
DROP TABLE...PURGE statement, and only if the previous DROP TABLE...PURGE statement failed.
Any other statement issued against an UNUSABLE table results in an error. The table remains
in the UNUSABLE state until the drop operation is complete.

See Also:

• Viewing Information About Partitioned Tables and Indexes for a list of these
views that contain information related to partitioning

• Oracle Database SQL Language Reference for the syntax of the DROP TABLE
statement

• Oracle Database Reference for a description of the data dictionary views
mentioned in this section

4.6 Changing a Nonpartitioned Table into a Partitioned Table
You can change a nonpartitioned table into a partitioned table.

The following topics are discussed:

• Using Online Redefinition to Partition Collection Tables

• Converting a Non-Partitioned Table to a Partitioned Table

See Also:

Oracle Database Administrator’s Guide for information about redefining partitions of
a table

Chapter 4
Changing a Nonpartitioned Table into a Partitioned Table

4-121

4.6.1 Using Online Redefinition to Partition Collection Tables
Oracle Database provides a mechanism to move one or more partitions or to make
other changes to the partitions' physical structures without significantly affecting the
availability of the partitions for DML. This mechanism is called online table redefinition.

You can use online redefinition to copy nonpartitioned Collection Tables to partitioned
Collection Tables and Oracle Database inserts rows into the appropriate partitions in
the Collection Table. Example 4-41 illustrates how this is done for nested tables inside
an Objects column; a similar example works for Ordered Collection Type Tables inside
an XMLType table or column. During the copy_table_dependents operation, you
specify 0 or false for copying the indexes and constraints, because you want to keep
the indexes and constraints of the newly defined collection table. However, the
Collection Tables and its partitions have the same names as that of the interim table
(print_media2 in Example 4-41). You must take explicit steps to preserve the
Collection Table names.

Example 4-41 Redefining partitions with collection tables

REM Connect as a user with appropriate privileges, then run the following
DROP USER eqnt CASCADE;
CREATE USER eqnt IDENTIFIED BY eqnt;
GRANT CONNECT, RESOURCE TO eqnt;

-- Grant privleges required for online redefinition.
GRANT EXECUTE ON DBMS_REDEFINITION TO eqnt;
GRANT ALTER ANY TABLE TO eqnt;
GRANT DROP ANY TABLE TO eqnt;
GRANT LOCK ANY TABLE TO eqnt;
GRANT CREATE ANY TABLE TO eqnt;
GRANT SELECT ANY TABLE TO eqnt;

-- Privileges required to perform cloning of dependent objects.
GRANT CREATE ANY TRIGGER TO eqnt;
GRANT CREATE ANY INDEX TO eqnt;

CONNECT eqnt/eqnt

CREATE TYPE textdoc_typ AS OBJECT (document_typ VARCHAR2(32));
/
CREATE TYPE textdoc_tab AS TABLE OF textdoc_typ;
/

-- (old) non partitioned nested table
CREATE TABLE print_media
 (product_id NUMBER(6) primary key
 , ad_textdocs_ntab textdoc_tab
)
NESTED TABLE ad_textdocs_ntab STORE AS equi_nestedtab
((document_typ NOT NULL)
 STORAGE (INITIAL 8M)
)

;

-- Insert into base table
INSERT INTO print_media VALUES (1,
 textdoc_tab(textdoc_typ('xx'), textdoc_typ('yy')));

Chapter 4
Changing a Nonpartitioned Table into a Partitioned Table

4-122

INSERT INTO print_media VALUES (11,
 textdoc_tab(textdoc_typ('aa'), textdoc_typ('bb')));
COMMIT;

-- Insert into nested table
INSERT INTO TABLE
 (SELECT p.ad_textdocs_ntab FROM print_media p WHERE p.product_id = 11)
 VALUES ('cc');

SELECT * FROM print_media;

PRODUCT_ID AD_TEXTDOCS_NTAB(DOCUMENT_TYP)
---------- ------------------------------
 1 TEXTDOC_TAB(TEXTDOC_TYP('xx'), TEXTDOC_TYP('yy'))
 11 TEXTDOC_TAB(TEXTDOC_TYP('aa'), TEXTDOC_TYP('bb'), TEXTDOC_TYP('cc'))

-- Creating partitioned Interim Table
CREATE TABLE print_media2
 (product_id NUMBER(6)
 , ad_textdocs_ntab textdoc_tab
)
NESTED TABLE ad_textdocs_ntab STORE AS equi_nestedtab2
((document_typ NOT NULL)
 STORAGE (INITIAL 8M)
)
PARTITION BY RANGE (product_id)
(
 PARTITION P1 VALUES LESS THAN (10),
 PARTITION P2 VALUES LESS THAN (20)
);

EXEC dbms_redefinition.start_redef_table('eqnt', 'print_media', 'print_media2');

DECLARE
 error_count pls_integer := 0;
BEGIN
 dbms_redefinition.copy_table_dependents('eqnt', 'print_media', 'print_media2',
 0, true, false, true, false,
 error_count);

 dbms_output.put_line('errors := ' || to_char(error_count));
END;
/

EXEC dbms_redefinition.finish_redef_table('eqnt', 'print_media', 'print_media2');

-- Drop the interim table
DROP TABLE print_media2;

-- print_media has partitioned nested table here

SELECT * FROM print_media PARTITION (p1);

PRODUCT_ID AD_TEXTDOCS_NTAB(DOCUMENT_TYP)
---------- ------------------------------
 1 TEXTDOC_TAB(TEXTDOC_TYP('xx'), TEXTDOC_TYP('yy'))

SELECT * FROM print_media PARTITION (p2);

PRODUCT_ID AD_TEXTDOCS_NTAB(DOCUMENT_TYP)

Chapter 4
Changing a Nonpartitioned Table into a Partitioned Table

4-123

---------- ------------------------------
 11 TEXTDOC_TAB(TEXTDOC_TYP('aa'), TEXTDOC_TYP('bb'), TEXTDOC_TYP('cc'))

4.6.2 Converting a Non-Partitioned Table to a Partitioned Table
A non-partitioned table can be converted to a partitioned table with a MODIFY clause
added to the ALTER TABLE SQL statement.

In addition, the keyword ONLINE can be specified, enabling concurrent DML operations
while the conversion is ongoing.

The following is an example of the ALTER TABLE statement using the ONLINE keyword
for an online conversion to a partitioned table.

Example 4-42 Using the MODIFY clause of ALTER TABLE to convert online to a
partitioned table

ALTER TABLE employees_convert MODIFY
 PARTITION BY RANGE (employee_id) INTERVAL (100)
 (PARTITION P1 VALUES LESS THAN (100),
 PARTITION P2 VALUES LESS THAN (500)
) ONLINE
 UPDATE INDEXES
 (IDX1_SALARY LOCAL,
 IDX2_EMP_ID GLOBAL PARTITION BY RANGE (employee_id)
 (PARTITION IP1 VALUES LESS THAN (MAXVALUE))
);

Considerations When Using the UPDATE INDEXES Clause

When using the UPDATE INDEXES clause, note the following.

• This clause can be used to change the partitioning state of indexes and storage
properties of the indexes being converted.

• The specification of the UPDATE INDEXES clause is optional.

Indexes are maintained both for the online and offline conversion to a partitioned
table.

• This clause cannot change the columns on which the original list of indexes are
defined.

• This clause cannot change the uniqueness property of the index or any other
index property.

• If you do not specify the tablespace for any of the indexes, then the following
tablespace defaults apply.

– Local indexes after the conversion collocate with the table partition.

– Global indexes after the conversion reside in the same tablespace of the
original global index on the non-partitioned table.

• If you do not specify the INDEXES clause or the INDEXES clause does not specify all
the indexes on the original non-partitioned table, then the following default
behavior applies for all unspecified indexes.

– Global partitioned indexes remain the same and retain the original partitioning
shape.

– Non-prefixed indexes become global nonpartitioned indexes.

Chapter 4
Changing a Nonpartitioned Table into a Partitioned Table

4-124

– Prefixed indexes are converted to local partitioned indexes.

Prefixed means that the partition key columns are included in the index definition, but
the index definition is not limited to including the partitioning keys only.

– Bitmap indexes become local partitioned indexes, regardless whether they are
prefixed or not.

Bitmap indexes must always be local partitioned indexes.

• The conversion operation cannot be performed if there are domain indexes.

4.7 Managing Hybrid Partitioned Tables
The following topics are discussed in this section:

• Creating Hybrid Partitioned Tables

• Converting to Hybrid Partitioned Tables

• Converting Hybrid Partitioned Tables to Internal Partitioned Tables

• Using ADO With Hybrid Partitioned Tables

• Splitting Partitions in a Hybrid Partitioned Table

See Also:

• Hybrid Partitioned Tables for an overview of hybrid partitioned tables, including
information about limitations

4.7.1 Creating Hybrid Partitioned Tables
You can use the EXTERNAL PARTITION ATTRIBUTES clause of the CREATE TABLE statement to
determine hybrid partitioning for a table. The partitions of the table can be external and or
internal.

A hybrid partitioned table enables partitions to reside both in database data files (internal
partitions) and in external files and sources (external partitions). You can create and query a
hybrid partitioned table to utilize the benefits of partitioning with classic partitioned tables,
such as pruning, on data that is contained in both internal and external partitions.

The EXTERNAL PARTITION ATTRIBUTES clause of the CREATE TABLE statement is defined at the
table level for specifying table level external parameters in the hybrid partitioned table, such
as:

• The access driver type, such as ORACLE_LOADER, ORACLE_DATAPUMP, ORACLE_HDFS,
ORACLE_HIVE

• The default directory for all external partitions files

• The access parameters

The EXTERNAL clause of the PARTITION clause defines the partition as an external partition.
When there is no EXTERNAL clause, the partition is an internal partition. You can specify for
each external partition different attributes than the default attributes defined at the table level,
such the directory. For example, in Example 4-43 the DEFAULT DIRECTORY value for partitions

Chapter 4
Managing Hybrid Partitioned Tables

4-125

sales_data2, sales_data3, and sales_data_acfs is different than the DEFAULT
DIRECTORY value defined in the EXTERNAL PARTITION ATTRIBUTES clause.

When there is no external file defined for an external partition, the external partition is
empty. It can be populated with an external file by using an ALTER TABLE MODIFY
PARTITION statement. Note that at least one partition must be an internal partition.

In Example 4-43, a hybrid range-partitioned table is a created with four external
partitions and two internal partitions. The external comma-separated (CSV) data files
are stored in the sales_data , sales_data2, sales_data3, and sales_data_acfs
directories defined by the DEFAULT DIRECTORY clauses. sales_data is defined as the
overall DEFAULT DIRECTORY in the EXTERNAL PARTITION ATTRIBUTES clause. The other
directories are defined at the partition level. sales_2014 and sales_2015 are internal
partitions. Data directory sales_data_acfs is stored on an Oracle ACFS file system to
illustrate the use of that storage option.

In Example 4-44, an additional external partition is added to the hybrid range-
partitioned table.

Example 4-43 Creating a Hybrid Range-Partitioned Table

REM Connect as a user with appropriate privileges,
REM then run the following to set up data directories that contain the data files
CREATE DIRECTORY sales_data AS '/u01/my_data/sales_data1';
GRANT READ,WRITE ON DIRECTORY sales_data TO hr;

CREATE DIRECTORY sales_data2 AS '/u01/my_data/sales_data2';
GRANT READ,WRITE ON DIRECTORY sales_data2 TO hr;

CREATE DIRECTORY sales_data3 AS '/u01/my_data/sales_data3';
GRANT READ,WRITE ON DIRECTORY sales_data3 TO hr;

REM set up a data directory on an Oracle ACFS mount point (file system)
CREATE DIRECTORY sales_data_acfs AS '/u01/acfsmounts/acfs1';
GRANT READ,WRITE ON DIRECTORY sales_data_acfs TO hr;

CONNECT AS hr, run the following
CREATE TABLE hybrid_partition_table
 (prod_id NUMBER NOT NULL,
 cust_id NUMBER NOT NULL,
 time_id DATE NOT NULL,
 channel_id NUMBER NOT NULL,
 promo_id NUMBER NOT NULL,
 quantity_sold NUMBER(10,2) NOT NULL,
 amount_sold NUMBER(10,2) NOT NULL
)
 EXTERNAL PARTITION ATTRIBUTES (
 TYPE ORACLE_LOADER
 DEFAULT DIRECTORY sales_data
 ACCESS PARAMETERS(
 FIELDS TERMINATED BY ','
 (prod_id,cust_id,time_id DATE 'dd-mm-
yyyy',channel_id,promo_id,quantity_sold,amount_sold)
)
 REJECT LIMIT UNLIMITED
)
 PARTITION BY RANGE (time_id)
 (PARTITION sales_2014 VALUES LESS THAN (TO_DATE('01-01-2015','dd-mm-yyyy')),
 PARTITION sales_2015 VALUES LESS THAN (TO_DATE('01-01-2016','dd-mm-yyyy')),
 PARTITION sales_2016 VALUES LESS THAN (TO_DATE('01-01-2017','dd-mm-yyyy')) EXTERNAL

Chapter 4
Managing Hybrid Partitioned Tables

4-126

 LOCATION ('sales2016_data.txt'),
 PARTITION sales_2017 VALUES LESS THAN (TO_DATE('01-01-2018','dd-mm-yyyy')) EXTERNAL
 DEFAULT DIRECTORY sales_data2 LOCATION ('sales2017_data.txt'),
 PARTITION sales_2018 VALUES LESS THAN (TO_DATE('01-01-2019','dd-mm-yyyy')) EXTERNAL
 DEFAULT DIRECTORY sales_data3 LOCATION ('sales2018_data.txt'),
 PARTITION sales_2019 VALUES LESS THAN (TO_DATE('01-01-2020','dd-mm-yyyy')) EXTERNAL
 DEFAULT DIRECTORY sales_data_acfs LOCATION ('sales2019_data.txt')
);

Example 4-44 Adding an External Partition to a Hybrid Range-artitioned Table

ALTER TABLE hybrid_partition_table
 ADD PARTITION sales_2020 VALUES LESS THAN (TO_DATE('01-01-2021','dd-mm-yyyy'))
 EXTERNAL DEFAULT DIRECTORY sales_data_acfs LOCATION ('sales2020_data.txt');

See Also:

• Hybrid Partitioned Tables

4.7.2 Converting to Hybrid Partitioned Tables
You can convert a table with only internal partitions to a hybrid partitioned table.

In Example 4-45, an internal range partitioned table is converted to a hybrid partitioned table.
You must add external partition attributes to an existing table first, then add external
partitions. Note that at least one partition must be an internal partition.

Example 4-45 Converting to a Hybrid Range-Partitioned Table

CREATE TABLE internal_to_hypt_table (
 prod_id NUMBER NOT NULL,
 cust_id NUMBER NOT NULL,
 time_id DATE NOT NULL,
 channel_id NUMBER NOT NULL,
 promo_id NUMBER NOT NULL,
 quantity_sold NUMBER(10,2) NOT NULL,
 amount_sold NUMBER(10,2) NOT NULL
)
 PARTITION by range (time_id)
 (PARTITION sales_2014 VALUES LESS THAN (TO_DATE('01-01-2015','dd-mm-yyyy'))
);

SELECT HYBRID FROM USER_TABLES WHERE TABLE_NAME = 'INTERNAL_TO_HYPT_TABLE';
HYB

NO

ALTER TABLE internal_to_hypt_table
 ADD EXTERNAL PARTITION ATTRIBUTES
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY sales_data
 ACCESS PARAMETERS (
 FIELDS TERMINATED BY ','
 (prod_id,cust_id,time_id DATE 'dd-mm-yyyy',channel_id,promo_id,quantity_sold,amount_sold)
)
)
;

Chapter 4
Managing Hybrid Partitioned Tables

4-127

ALTER TABLE internal_to_hypt_table
 ADD PARTITION sales_2015 VALUES LESS THAN (TO_DATE('01-01-2016','dd-mm-yyyy'))
 EXTERNAL LOCATION ('sales2015_data.txt');

ALTER TABLE internal_to_hypt_table
 ADD PARTITION sales_2016 VALUES LESS THAN (TO_DATE('01-01-2017','dd-mm-yyyy'))
 EXTERNAL LOCATION ('sales2016_data.txt');

SELECT HYBRID FROM USER_TABLES WHERE TABLE_NAME = 'INTERNAL_TO_HYPT_TABLE';
HYB

YES

SELECT DEFAULT_DIRECTORY_NAME FROM USER_EXTERNAL_TABLES WHERE TABLE_NAME =
'INTERNAL_TO_HYPT_TABLE';
DEFAULT_DIRECTORY_NAME

SALES_DATA

See Also:

• Hybrid Partitioned Tables

4.7.3 Converting Hybrid Partitioned Tables to Internal Partitioned
Tables

You can convert a hybrid partitioned table to a table with only internal partitions.

In Example 4-46, a hybrid partitioned table is converted to an internal range partitioned
table. First, you must drop the external partitions and then you can drop the external
partition attributes.

Example 4-46 Converting from a Hybrid Partitioned Table to an Internal Table

CREATE TABLE hypt_to_int_table
 (prod_id NUMBER NOT NULL,
 cust_id NUMBER NOT NULL,
 time_id DATE NOT NULL,
 channel_id NUMBER NOT NULL,
 promo_id NUMBER NOT NULL,
 quantity_sold NUMBER(10,2) NOT NULL,
 amount_sold NUMBER(10,2) NOT NULL
)
 EXTERNAL PARTITION ATTRIBUTES (
 TYPE ORACLE_LOADER
 DEFAULT DIRECTORY sales_data
 ACCESS PARAMETERS(
 FIELDS TERMINATED BY ','
 (prod_id,cust_id,time_id DATE 'dd-mm-yyyy',channel_id,promo_id,quantity_sold,amount_sold)
)
 REJECT LIMIT UNLIMITED
)
 PARTITION BY RANGE (time_id)
 (PARTITION sales_2014 VALUES LESS THAN (TO_DATE('01-01-2015','dd-mm-yyyy')),
 PARTITION sales_2015 VALUES LESS THAN (TO_DATE('01-01-2016','dd-mm-yyyy')),

Chapter 4
Managing Hybrid Partitioned Tables

4-128

 PARTITION sales_2016 VALUES LESS THAN (TO_DATE('01-01-2017','dd-mm-yyyy'))
 EXTERNAL LOCATION ('sales2016_data.txt'),
 PARTITION sales_2017 VALUES LESS THAN (TO_DATE('01-01-2018','dd-mm-yyyy'))
 EXTERNAL DEFAULT DIRECTORY sales_data2 LOCATION ('sales2017_data.txt'),
 PARTITION sales_2018 VALUES LESS THAN (TO_DATE('01-01-2019','dd-mm-yyyy'))
 EXTERNAL DEFAULT DIRECTORY sales_data3 LOCATION ('sales2018_data.txt'),
 PARTITION sales_2019 VALUES LESS THAN (TO_DATE('01-01-2020','dd-mm-yyyy'))
 EXTERNAL DEFAULT DIRECTORY sales_data_acfs LOCATION ('sales2019_data.txt')
);

SELECT HYBRID FROM USER_TABLES WHERE TABLE_NAME = 'HYPT_TO_INT_TABLE';
HYB

YES

ALTER TABLE hypt_to_int_table DROP PARTITION sales_2016;
ALTER TABLE hypt_to_int_table DROP PARTITION sales_2017;
ALTER TABLE hypt_to_int_table DROP PARTITION sales_2018;
ALTER TABLE hypt_to_int_table DROP PARTITION sales_2019;

ALTER TABLE hypt_to_int_table DROP EXTERNAL PARTITION ATTRIBUTES();

SELECT HYBRID FROM USER_TABLES WHERE TABLE_NAME = 'HYPT_TO_INT_TABLE';
HYB

NO

See Also:

• Hybrid Partitioned Tables

4.7.4 Using ADO With Hybrid Partitioned Tables
You can use Automatic Data Optimization (ADO) policies with hybrid partitioned tables under
some conditions.

In Example 4-47, note that ADO policies are only defined on the internal partitions of the
table.

Example 4-47 Using ADO with a Hybrid Partitioned Table

SQL> CREATE TABLE hypt_ado_table
 (prod_id NUMBER NOT NULL,
 cust_id NUMBER NOT NULL,
 time_id DATE NOT NULL,
 channel_id NUMBER NOT NULL,
 promo_id NUMBER NOT NULL,
 quantity_sold NUMBER(10,2) NOT NULL,
 amount_sold NUMBER(10,2) NOT NULL
)
 EXTERNAL PARTITION ATTRIBUTES (
 TYPE ORACLE_LOADER
 DEFAULT DIRECTORY sales_data
 ACCESS PARAMETERS(
 FIELDS TERMINATED BY ','
 (prod_id,cust_id,time_id DATE 'dd-mm-yyyy',channel_id,promo_id,quantity_sold,amount_sold)
)

Chapter 4
Managing Hybrid Partitioned Tables

4-129

 REJECT LIMIT UNLIMITED
)
 PARTITION BY RANGE (time_id)
 (PARTITION sales_2014 VALUES LESS THAN (TO_DATE('01-01-2015','dd-mm-yyyy')),
 PARTITION sales_2015 VALUES LESS THAN (TO_DATE('01-01-2016','dd-mm-yyyy')),
 PARTITION sales_2016 VALUES LESS THAN (TO_DATE('01-01-2017','dd-mm-yyyy'))
 EXTERNAL LOCATION ('sales2016_data.txt'),
 PARTITION sales_2017 VALUES LESS THAN (TO_DATE('01-01-2018','dd-mm-yyyy'))
 EXTERNAL DEFAULT DIRECTORY sales_data2 LOCATION ('sales2017_data.txt'),
 PARTITION sales_2018 VALUES LESS THAN (TO_DATE('01-01-2019','dd-mm-yyyy'))
 EXTERNAL DEFAULT DIRECTORY sales_data3 LOCATION ('sales2018_data.txt'),
 PARTITION sales_2019 VALUES LESS THAN (TO_DATE('01-01-2020','dd-mm-yyyy'))
 EXTERNAL DEFAULT DIRECTORY sales_data4 LOCATION ('sales2019_data.txt')
);
Table created.

SQL> SELECT HYBRID FROM USER_TABLES WHERE TABLE_NAME = 'HYPT_ADO_TABLE';
HYB

YES

SQL> ALTER TABLE hypt_ado_table MODIFY PARTITION sales_2014 ILM ADD POLICY ROW STORE COMPRESS
ADVANCED ROW AFTER 6 MONTHS OF NO MODIFICATION;
Table altered.

SQL> ALTER TABLE hypt_ado_table MODIFY PARTITION sales_2015 ILM ADD POLICY ROW STORE COMPRESS
ADVANCED ROW AFTER 6 MONTHS OF NO MODIFICATION;
Table altered.

SQL> SELECT POLICY_NAME, POLICY_TYPE, ENABLED FROM USER_ILMPOLICIES;
POLICY_NAME POLICY_TYPE ENA
------------- --------------- -----
P1 DATA MOVEMENT YES
P2 DATA MOVEMENT YES

See Also:

• Using Automatic Data Optimization for information about ADO policies

4.7.5 Splitting Partitions in a Hybrid Partitioned Table

In Example 4-48, the default (MAXVALUE) partition is split into a two partitions: a new
partition and the existing default position. You can split a default partition similar to
splitting any other partition.

Example 4-48 Splitting the Default Partition in a Hybrid Partitioned Table

CREATE TABLE hybrid_split_table
 (prod_id NUMBER NOT NULL,
 cust_id NUMBER NOT NULL,
 time_id DATE NOT NULL,
 channel_id NUMBER NOT NULL,
 promo_id NUMBER NOT NULL,
 quantity_sold NUMBER(10,2) NOT NULL,
 amount_sold NUMBER(10,2) NOT NULL

Chapter 4
Managing Hybrid Partitioned Tables

4-130

)
 EXTERNAL PARTITION ATTRIBUTES (
 TYPE ORACLE_LOADER
 DEFAULT DIRECTORY sales_data
 ACCESS PARAMETERS(
 FIELDS TERMINATED BY ','
 (prod_id,cust_id,time_id DATE 'dd-mm-yyyy',channel_id,promo_id,quantity_sold,amount_sold)
)
 REJECT LIMIT UNLIMITED
)
 PARTITION BY RANGE (time_id)
 (PARTITION sales_2016 VALUES LESS THAN (TO_DATE('01-01-2017','dd-mm-yyyy'))
 EXTERNAL LOCATION ('sales2016_data.txt'),
 PARTITION sales_2017 VALUES LESS THAN (TO_DATE('01-01-2018','dd-mm-yyyy'))
 EXTERNAL LOCATION ('sales2017_data.txt'),
 PARTITION sales_2018 VALUES LESS THAN (TO_DATE('01-01-2019','dd-mm-yyyy')),
 PARTITION sales_2019 VALUES LESS THAN (TO_DATE('01-01-2020','dd-mm-yyyy')),
 PARTITION sales_future VALUES LESS THAN (MAXVALUE)
);

SELECT HYBRID FROM USER_TABLES WHERE TABLE_NAME = 'HYBRID_SPLIT_TABLE';
HYB

YES

SELECT DEFAULT_DIRECTORY_NAME FROM USER_EXTERNAL_TABLES WHERE TABLE_NAME = 'HYBRID_SPLIT_TABLE';
DEFAULT_DIRECTORY_NAME
--
SALES_DATA

INSERT INTO hybrid_split_table VALUES (1001,100,TO_DATE('10-02-2018','dd-mm-yyyy'),10,15,500,7500);
INSERT INTO hybrid_split_table VALUES (1002,110,TO_DATE('15-06-2018','dd-mm-yyyy'),12,18,100,3200);
...
INSERT INTO hybrid_split_table VALUES (1002,110,TO_DATE('12-01-2019','dd-mm-yyyy'),12,18,150,4800);
INSERT INTO hybrid_split_table VALUES (1001,100,TO_DATE('16-02-2019','dd-mm-yyyy'),10,15,400,6500);
...
INSERT INTO hybrid_split_table VALUES (1002,110,TO_DATE('19-02-2020','dd-mm-yyyy'),12,18,150,4800);
INSERT INTO hybrid_split_table VALUES (1001,100,TO_DATE('12-03-2020','dd-mm-yyyy'),10,15,400,6500);
...

SELECT * FROM hybrid_split_table PARTITION(sales_2016);
 PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD
---------- ---------- --------- ---------- ---------- ------------- -----------
 1001 100 10-JAN-16 10 15 500 7500
 1002 110 25-JAN-16 12 18 100 3200
...

SELECT * FROM hybrid_split_table PARTITION(sales_2017);
 PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD
---------- ---------- --------- ---------- ---------- ------------- -----------
 1002 110 15-JAN-17 12 18 100 3200
 1001 100 10-FEB-17 10 15 500 7500
...

SELECT * FROM hybrid_split_table PARTITION(sales_2018);
 PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD
---------- ---------- --------- ---------- ---------- ------------- -----------
 1001 100 10-FEB-18 10 15 500 7500
 1002 110 15-JUN-18 12 18 100 3200
...

Chapter 4
Managing Hybrid Partitioned Tables

4-131

SELECT * FROM hybrid_split_table PARTITION(sales_2019);
 PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD
---------- ---------- --------- ---------- ---------- ------------- -----------
 1002 110 12-JAN-19 12 18 150 4800
 1001 100 16-FEB-19 10 15 400 6500
...

SELECT * FROM hybrid_split_table PARTITION(sales_future);
 PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD
---------- ---------- --------- ---------- ---------- ------------- -----------
 1002 110 19-FEB-20 12 18 150 4800
 1001 100 12-MAR-20 10 15 400 6500
 1001 100 31-MAR-20 10 15 600 8000
 2105 101 25-APR-20 12 19 100 3000

ALTER TABLE hybrid_split_table
 SPLIT PARTITION sales_future INTO
 (PARTITION sales_2020 VALUES LESS THAN (TO_DATE('01-01-2021','dd-mm-yyyy')),
 PARTITION sales_future
);

SELECT * FROM hybrid_split_table PARTITION(sales_2020);
 PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD
---------- ---------- --------- ---------- ---------- ------------- -----------
 1002 110 19-FEB-20 12 18 150 4800
 1001 100 12-MAR-20 10 15 400 6500
 1001 100 31-MAR-20 10 15 600 8000
 2105 101 25-APR-20 12 19 100 3000

SELECT * FROM hybrid_split_table PARTITION(sales_future);
no rows selected

4.7.6 Exchanging Data in Hybrid Partitioned Tables

You can exchange data of an internal partition in a hybrid partitioned table with an
external nonpartitioned table, and exchange data of external nonpartitioned table with
an internal partition in a hybrid partitioned table. Oracle supports exchange between
internal and external storage but does not support a move operation between these
tiers. Moving data between internal and external storage is a separate operation prior
to exchange.

Example 4-49 Exchanging data of an internal partition of a hybrid partitioned
table with an external nonpartioned table

In this example, data of an internal partition of an hybrid partitioned table is "moved" to
external storage using exchange partition with a nonpartitioned external table
containing the exact same data.

Create a hybrid partitioned table of TYPE ORACLE_DATAPUMP.

CREATE TABLE hybrid_datapump_sales
 (prod_id NUMBER NOT NULL,
 cust_id NUMBER NOT NULL,
 time_id DATE NOT NULL,
 channel_id NUMBER NOT NULL,
 promo_id NUMBER NOT NULL,
 quantity_sold NUMBER(10,2) NOT NULL,
 amount_sold NUMBER(10,2) NOT NULL
)

Chapter 4
Managing Hybrid Partitioned Tables

4-132

 EXTERNAL PARTITION ATTRIBUTES
 (TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY sales_data
 ACCESS PARAMETERS (NOLOGFILE)
)
 PARTITION by range (time_id)
 (
 PARTITION sales_old VALUES LESS THAN (TO_DATE('01-01-2018', 'DD-MM-YYYY'))
 EXTERNAL LOCATION ('sales_old.dmp'),
 PARTITION sales_2018 VALUES LESS THAN (TO_DATE('01-01-2019','dd-mm-yyyy')),
 PARTITION sales_2019 VALUES LESS THAN (TO_DATE('01-01-2020','dd-mm-yyyy')),
 PARTITION sales_2020 VALUES LESS THAN (TO_DATE('01-01-2021','dd-mm-yyyy')),
 PARTITION sales_future VALUES LESS THAN (MAXVALUE)
);

Populate the hybrid partitioned table hybrid_datapump_sales with some data for this
example.

SELECT * FROM hybrid_datapump_sales PARTITION(sales_2018);

 PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD
---------- ---------- --------- ---------- ---------- ------------- -----------
 1001 100 10-FEB-18 10 15 500 7500
 1002 110 15-JUN-18 12 18 100 3200
 1002 110 30-MAR-18 10 15 500 6500
 2105 102 21-APR-18 18 12 100 2000
 1200 155 30-APR-18 20 20 300 3600

Create an external table with the same structure as the sales_2018 partition. The SELECT
clause completes data movement. The data movement operation needs to be done prior to
exchange.

CREATE TABLE year_2018_datapump
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY sales_data
 ACCESS PARAMETERS (NOLOGFILE) LOCATION ('sales_2018.dmp')
)
 AS SELECT * FROM hybrid_datapump_sales PARTITION(sales_2018);

Exchange the data in sales_2018 partition with the data in the external table.

ALTER TABLE hybrid_datapump_sales
 EXCHANGE PARTITION(sales_2018) WITH TABLE year_2018_datapump;

SELECT * FROM year_2018_datapump;

 PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD
---------- ---------- --------- ---------- ---------- ------------- -----------
 1001 100 10-FEB-18 10 15 500 7500
 1002 110 15-JUN-18 12 18 100 3200
 1002 110 30-MAR-18 10 15 500 6500
 2105 102 21-APR-18 18 12 100 2000
 1200 155 30-APR-18 20 20 300 3600

Example 4-50 Exchanging data of an external nonpartitioned table with an internal
partition of a hybrid partitioned table

In this example, data of an external table is exchanged with an internal partition of a hybrid
partitioned table to add new data to a partition of the hybrid partitioned table. The text data
that has been loaded into the external table is first copied to a temporary nonpartitioned

Chapter 4
Managing Hybrid Partitioned Tables

4-133

internal table. Then the nonpartitioned internal table is exchanged with an internal
partition of a hybrid partitioned table.

Create a hybrid partitioned table of TYPE ORACLE_DATAPUMP.

CREATE TABLE hybrid_datapump_sales
 (prod_id NUMBER NOT NULL,
 cust_id NUMBER NOT NULL,
 time_id DATE NOT NULL,
 channel_id NUMBER NOT NULL,
 promo_id NUMBER NOT NULL,
 quantity_sold NUMBER(10,2) NOT NULL,
 amount_sold NUMBER(10,2) NOT NULL
)
 EXTERNAL PARTITION ATTRIBUTES
 (TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY sales_data
 ACCESS PARAMETERS (NOLOGFILE)
)
 PARTITION by range (time_id)
 (
 PARTITION sales_old VALUES LESS THAN (TO_DATE('01-01-2018', 'dd-mm-yyyy'))
 EXTERNAL LOCATION ('sales_old.dmp'),
 PARTITION sales_2018 VALUES LESS THAN (TO_DATE('01-01-2019','dd-mm-yyyy')),
 PARTITION sales_2019 VALUES LESS THAN (TO_DATE('01-01-2020','dd-mm-yyyy')),
 PARTITION sales_2020 VALUES LESS THAN (TO_DATE('01-01-2021','dd-mm-yyyy')),
 PARTITION sales_future VALUES LESS THAN (MAXVALUE)
);

Note that the sales_2020 partition has no records.

SELECT * FROM hybrid_datapump_sales PARTITION(sales_2020);

no rows selected

For this example, create an external table and load it with a text file that has been
generated by some application.

CREATE TABLE ext_sales_year_2020
 (prod_id NUMBER NOT NULL,
 cust_id NUMBER NOT NULL,
 time_id DATE NOT NULL,
 channel_id NUMBER NOT NULL,
 promo_id NUMBER NOT NULL,
 quantity_sold NUMBER(10,2) NOT NULL,
 amount_sold NUMBER(10,2) NOT NULL
)
 ORGANIZATION EXTERNAL
 (
 TYPE ORACLE_LOADER DEFAULT DIRECTORY sales_data
 ACCESS PARAMETERS (
 FIELDS TERMINATED BY ','
 (prod_id,cust_id,time_id DATE 'dd-mm-
yyyy',channel_id,promo_id,quantity_sold,amount_sold)
)
 LOCATION ('sales2020_data.txt')
);

SELECT * FROM ext_sales_year_2020;

 PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD
---------- ---------- --------- ---------- ---------- ------------- -----------

Chapter 4
Managing Hybrid Partitioned Tables

4-134

 1001 100 10-JAN-20 10 15 500 7500
 1002 110 15-JAN-20 12 18 100 3200
 1001 100 20-JAN-20 10 15 500 7500
 2105 101 15-FEB-20 12 19 10 300
 2105 102 21-MAR-20 18 12 100 2000
 1200 155 30-MAR-20 20 20 300 3600
 1400 165 05-JUN-20 22 15 100 4000
 2105 125 05-JUN-20 12 16 40 8500
 2105 302 15-SEP-20 10 11 75 4350
 2108 305 18-NOV-20 10 11 70 4250

10 rows selected.

Create a temporary internal table for the exchanging of data with the hybrid partitioned table.

CREATE TABLE sales_year_2020 AS SELECT * FROM ext_sales_year_2020;

SELECT * FROM sales_year_2020;

 PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD
---------- ---------- --------- ---------- ---------- ------------- -----------
 1001 100 10-JAN-20 10 15 500 7500
 1002 110 15-JAN-20 12 18 100 3200
 1001 100 20-JAN-20 10 15 500 7500
 2105 101 15-FEB-20 12 19 10 300
 2105 102 21-MAR-20 18 12 100 2000
 1200 155 30-MAR-20 20 20 300 3600
 1400 165 05-JUN-20 22 15 100 4000
 2105 125 05-JUN-20 12 16 40 8500
 2105 302 15-SEP-20 10 11 75 4350
 2108 305 18-NOV-20 10 11 70 4250

10 rows selected.

Exchange data in the temporary internal table with the sales_2020 partition to load the data
into the hybrid partitioned table.

ALTER TABLE hybrid_datapump_sales
 EXCHANGE PARTITION(sales_2020) WITH TABLE sales_year_2020;

SELECT * FROM hybrid_datapump_sales PARTITION(sales_2020);

 PROD_ID CUST_ID TIME_ID CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD
---------- ---------- --------- ---------- ---------- ------------- -----------
 1001 100 10-JAN-20 10 15 500 7500
 1002 110 15-JAN-20 12 18 100 3200
 1001 100 20-JAN-20 10 15 500 7500
 2105 101 15-FEB-20 12 19 10 300
 2105 102 21-MAR-20 18 12 100 2000
 1200 155 30-MAR-20 20 20 300 3600
 1400 165 05-JUN-20 22 15 100 4000
 2105 125 05-JUN-20 12 16 40 8500
 2105 302 15-SEP-20 10 11 75 4350
 2108 305 18-NOV-20 10 11 70 4250

10 rows selected.

Chapter 4
Managing Hybrid Partitioned Tables

4-135

4.8 Viewing Information About Partitioned Tables and
Indexes

You can display information about partitioned tables and indexes with Oracle Database
views.

Table 4-4 lists the views that contain information specific to partitioned tables and
indexes:

Table 4-4 Views With Information Specific to Partitioned Tables and Indexes

View Description

DBA_PART_TABLES

ALL_PART_TABLES

USER_PART_TABLES

DBA view displays partitioning information for all
partitioned tables in the database. ALL view displays
partitioning information for all partitioned tables
accessible to the user. USER view is restricted to
partitioning information for partitioned tables owned by
the user.

DBA_TAB_PARTITIONS

ALL_TAB_PARTITIONS

USER_TAB_PARTITIONS

Display partition-level partitioning information, partition
storage parameters, and partition statistics generated by
the DBMS_STATS package or the ANALYZE statement.

DBA_TAB_SUBPARTITIONS

ALL_TAB_SUBPARTITIONS

USER_TAB_SUBPARTITIONS

Display subpartition-level partitioning information,
subpartition storage parameters, and subpartition
statistics generated by the DBMS_STATS package or the
ANALYZE statement.

DBA_PART_KEY_COLUMNS

ALL_PART_KEY_COLUMNS

USER_PART_KEY_COLUMNS

Display the partitioning key columns for partitioned
tables.

DBA_SUBPART_KEY_COLUMNS

ALL_SUBPART_KEY_COLUMNS

USER_SUBPART_KEY_COLUMNS

Display the subpartitioning key columns for composite-
partitioned tables (and local indexes on composite-
partitioned tables).

DBA_PART_COL_STATISTICS

ALL_PART_COL_STATISTICS

USER_PART_COL_STATISTICS

Display column statistics and histogram information for
the partitions of tables.

DBA_SUBPART_COL_STATISTICS

ALL_SUBPART_COL_STATISTICS

USER_SUBPART_COL_STATISTICS

Display column statistics and histogram information for
subpartitions of tables.

DBA_PART_HISTOGRAMS

ALL_PART_HISTOGRAMS

USER_PART_HISTOGRAMS

Display the histogram data (end-points for each
histogram) for histograms on table partitions.

DBA_SUBPART_HISTOGRAMS

ALL_SUBPART_HISTOGRAMS

USER_SUBPART_HISTOGRAMS

Display the histogram data (end-points for each
histogram) for histograms on table subpartitions.

Chapter 4
Viewing Information About Partitioned Tables and Indexes

4-136

Table 4-4 (Cont.) Views With Information Specific to Partitioned Tables and Indexes

View Description

DBA_PART_INDEXES

ALL_PART_INDEXES

USER_PART_INDEXES

Display partitioning information for partitioned indexes.

DBA_IND_PARTITIONS

ALL_IND_PARTITIONS

USER_IND_PARTITIONS

Display the following for index partitions: partition-level
partitioning information, storage parameters for the
partition, statistics collected by the DBMS_STATS
package or the ANALYZE statement.

DBA_IND_SUBPARTITIONS

ALL_IND_SUBPARTITIONS

USER_IND_SUBPARTITIONS

Display the following information for index subpartitions:
partition-level partitioning information, storage
parameters for the partition, statistics collected by the
DBMS_STATS package or the ANALYZE statement.

DBA_SUBPARTITION_TEMPLATES

ALL_SUBPARTITION_TEMPLATES

USER_SUBPARTITION_TEMPLATES

Display information about existing subpartition
templates.

See Also:

• Oracle Database Reference for descriptions of database views

• Oracle Database SQL Tuning Guide for information about histograms and
generating statistics for tables

• Oracle Database Administrator’s Guide for more information about analyzing
tables, indexes, and clusters

Chapter 4
Viewing Information About Partitioned Tables and Indexes

4-137

5
Managing and Maintaining Time-Based
Information

Oracle Database provides strategies to manage and maintain data based on time.

This chapter discusses the components in Oracle Database which can build a strategy to
manage and maintain data based on time.

Although most organizations have long regarded their stores of data as one of their most
valuable corporate assets, how this data is managed and maintained varies enormously from
company to company. Originally, data was used to help achieve operational goals, run the
business, and help identify the future direction and success of the company.

However, new government regulations and guidelines are a key driving force in how and why
data is being retained. Regulations now require organizations to retain and control
information for very long periods of time. Consequently, today there are additional objectives
that information technology (IT) managers are trying to satisfy:

• To store vast quantities of data for the lowest possible cost

• To meet the new regulatory requirements for data retention and protection

• To improve business opportunities by better analysis based on an increased amount of
data

This chapter contains the following sections:

• Managing Data in Oracle Database With ILM

• Implementing an ILM Strategy With Heat Map and ADO

• Controlling the Validity and Visibility of Data in Oracle Database

• Implementing an ILM System Manually Using Partitioning

• Managing ILM Heat Map and ADO with Oracle Enterprise Manager

5.1 Managing Data in Oracle Database With ILM
With Information Lifecycle Management (ILM), you can manage data in Oracle Database
using rules and regulations that apply to that data.

Information today comes in a wide variety of types, for example an e-mail message, a
photograph, or an order in an Online Transaction Processing (OLTP) System. After you know
the type of data and how it is used, you have an understanding of what its evolution and final
disposition is likely to be.

One challenge facing each organization is to understand how its data evolves and grows,
monitor how its usage changes over time, and decide how long it should survive, while
adhering to all the rules and regulations that now apply to that data. Information Lifecycle
Management (ILM) is designed to address these issues, with a combination of processes,
policies, software, and hardware so that the appropriate technology can be used for each
stage in the lifecycle of the data.

5-1

This section contains the following topics:

• About Oracle Database for ILM

• Implementing ILM Using Oracle Database

5.1.1 About Oracle Database for ILM
Oracle Database provides the ideal platform for implementing an ILM solution.

The Oracle Database platform offers the following:

• Application Transparency

Application transparency is very important in ILM because it means that there is no
need to customize applications and it also enables various changes to be made to
the data without any effect on the applications that are using that data. Data can
easily be moved at the different stages of its lifecycle and access to the data can
be optimized with the database. Another important benefit is that application
transparency offers the flexibility required to quickly adapt to any new regulatory
requirements, again without any impact on the existing applications.

• Fine-grained data

Oracle can view data at a very fine-grained level and group related data, whereas
storage devices only see bytes and blocks.

• Low-Cost Storage

With so much data to retain, using low cost storage is a key factor in implementing
ILM. Because Oracle can take advantage of many types of storage devices, the
maximum amount of data can be held for the lowest possible cost.

• Enforceable Compliance Policies

When information is kept for compliance reasons, it is imperative to show to
regulatory bodies that data is being retained and managed in accordance with the
regulations. Within Oracle Database, it is possible to define security and audit
policies, which enforce and log all access to data.

This section contains the following topics:

• Oracle Database Manages All Types of Data

• Regulatory Requirements

• The Benefits of an Online Archive

5.1.1.1 Oracle Database Manages All Types of Data
Information Lifecycle Management is concerned with all data in an organization.

This data includes not just structured data, such as orders in an OLTP system or a
history of sales in a data warehouse, but also unstructured data, such as e-mail,
documents, and images. Oracle Database supports the storing of unstructured data
with BLOBs and Oracle SecureFiles, a sophisticated document management system
is available in Oracle Text.

If all of the information in your organization is contained in Oracle Database, then you
can take advantage of the features and functionality provided by the database to
manage and move the data as it evolves during its lifetime, without having to manage
multiple types of data stores.

Chapter 5
Managing Data in Oracle Database With ILM

5-2

5.1.1.2 Regulatory Requirements
Many organizations must retain specific data for a specific time period. Failure to follow these
regulations could result in organizations having to pay very heavy fines.

Around the world various regulatory requirements, such as Sarbanes-Oxley, HIPAA,
DOD5015.2-STD in the US and the European Data Privacy Directive in the European Union,
are changing how organizations manage their data. These regulations specify what data
must be retained, whether it can be changed, and for how long it must be retained, which
could be for a period of 30 years or longer.

These regulations frequently demand that electronic data is secure from unauthorized access
and changes, and that there is an audit trail of all changes to data and by whom. Oracle
Database can retain huge quantities of data without impacting application performance. It
also contains the features required to restrict access and prevent unauthorized changes to
data, and can be further enhanced with Oracle Audit Vault and Database Firewall. Oracle
Database also provides cryptographic functions that can demonstrate that a highly privileged
user has not intentionally modified data. Using Flashback Data Technology, you can store all
the versions of a row during its lifetime in a tamper proof historical archive.

5.1.1.3 The Benefits of an Online Archive
There are multiple benefits of an online archive.

There usually comes a point during the lifecycle of the data when it is no longer being
regularly accessed and is considered eligible for archiving. Traditionally, the data would have
been removed from the database and stored on tape, where you can store vast quantities of
information for a very low cost. Today, it is no longer necessary to archive that data to tape,
instead it can remain in the database, or be transferred to a central online archive database.
All this information can be stored using low-cost storage devices whose cost per gigabyte is
very close to that of tape.

There are multiple benefits to keeping all of the data in an Oracle Database for archival
purposes. The most important benefit is that the data always be instantly available.
Therefore, time is not wasted locating the tapes where the data was archived and
determining whether the tape is readable and still in a format that can be loaded into the
database.

If the data has been archived for many years, then development time may also be needed to
write a program to reload the data into the database from the tape archive. This could prove
to be expensive and time consuming, especially if the data is extremely old. If the data is
retained in the database, then this is not a problem, because it is online, and in the latest
database format.

Holding the historical data in the database no longer impacts the time required to backup the
database and the size of the backup. When RMAN is used to back up the database, it only
includes in the backup the data that has changed. Because historical data is less likely to
change, after that data has been backed up, it is not backed up again.

Another important factor to consider is how the data is to be physically removed from the
database, especially if it is to be transferred from a production system to a central database
archive. Oracle provides the capability to move this data rapidly between databases by using
transportable tablespaces or partitions, which moves the data as a complete unit.

When it is time to remove data from the database, the fastest way is to remove a set of data.
This is achieved by keeping the data in its own partition. The partition can be dropped, which

Chapter 5
Managing Data in Oracle Database With ILM

5-3

is a very fast operation. However, if this approach is not possible because data
relationships must be maintained, then a conventional SQL delete statement must be
issued. You should not underestimate the time required to issue the delete statement.

If there is a requirement to remove data from the database and there is a possibility
that the data may need to be returned to the database in the future, then consider
removing the data in a database format such as a transportable tablespace, or use the
XML capability of Oracle Database to extract the information in an open format.

Consider an online archive of your data into Oracle Database for the following
reasons:

• The cost of disk is approaching that of tape, so you can eliminate the time to find
the tape that contains the data and the cost of restoring that data

• Data remains online when needed, providing you faster access to meet business
requirements

• Data online means immediate access, so fines by regulatory body for failing to
produce data are less likely

• The current application can be used to access the data, so you do not need to
waste resources to build a new application

5.1.2 Implementing ILM Using Oracle Database
Building an Information Lifecycle Management solution using Oracle Database is quite
straightforward.

An ILM solution can be completed by following these four simple steps, although Step
4 is optional if ILM is not being implemented for compliance:

• Step 1: Define the Data Classes

• Step 2: Create Storage Tiers for the Data Classes

• Step 3: Create Data Access and Migration Policies

• Step 4: Define and Enforce Compliance Policies

5.1.2.1 Step 1: Define the Data Classes
To make effective use of Information Lifecycle Management, first review all the data in
your organization before implementing an Information Lifecycle Management solution.

After reviewing the data, determine the following:

• What data is important, where is it stored, and what must be retained

• How this data flows within the organization

• What happens to this data over time and whether it is still required

• The degree of data availability and protection that is needed

• Data retention for legal and business requirements

After there is an understanding of how the data is used, the data can then be classified
on this basis. The most common type of classification is by age or date, but other
types are possible, such as by product or privacy. A hybrid classification could also be
used, such as by privacy and age.

Chapter 5
Managing Data in Oracle Database With ILM

5-4

To treat the data classes differently, the data must be physically separated. When information
is first created, the information is often frequently accessed, but then over time it may be
referenced very infrequently. For instance, when a customer places an order, they regularly
look at the order to see its status and whether the order has been shipped. After the order
arrives, they may never reference that order again. This order would also be included in
regular reports that are run to see what goods are being ordered, but, over time, would not
figure in any of the reports and may only be referenced in the future if someone does a
detailed analysis that involves this data. For example, orders could be classified by the
Financial Quarters Q1, Q2, Q3, and Q4, and as Historical Orders.

The advantage of using this approach is that when the data is grouped at the row level by its
class, which in this example would be the date of the order, all orders for Q1 can be managed
as a self contained unit, where as the orders for Q2 would reside in a different class. This can
be achieved by using partitioning. Because partitions are transparent to the application, the
data is physically separated but the application still locates all the orders.

5.1.2.1.1 Partitioning for ILM
Partitioning involves physically placing data according to a data value, and a frequently used
technique is to partition information by date.

Figure 5-1 illustrates a scenario where the orders for Q1, Q2, Q3, and Q4 are stored in
individual partitions and the orders for previous years are stored in other partitions.

Chapter 5
Managing Data in Oracle Database With ILM

5-5

Figure 5-1 Allocating Data Classes to a Partition

All ORDERS

Q1�

Orders

Q2�

Orders

Q3�

Orders

Q4�

Orders

Older

Orders

Oracle offers several different partitioning methods. Range partitioning is one
frequently used partitioning method for ILM. Interval and reference partitioning are also
particularly suited for use in an ILM environment.

There are multiple benefits to partitioning data. Partitioning provides an easy way to
distribute the data across appropriate storage devices depending on its usage, while
still keeping the data online and stored on the most cost-effective device. Because
partitioning is transparent to anyone accessing the data, no application changes are
required, thus partitioning can be implemented at any time. When new partitions are
required, they are simply added using the ADD PARTITION clause or they are created
automatically if interval partitioning is being used.

Chapter 5
Managing Data in Oracle Database With ILM

5-6

Among other benefits, each partition can have its own local index. When the optimizer uses
partition pruning, queries only access the relevant partitions instead of all partitions, thus
improving query response times.

5.1.2.1.2 The Lifecycle of Data
An analysis of your data is likely to reveal that initially, it is accessed and updated on a very
frequent basis. As the age of the data increases, its access frequency diminishes to almost
negligible, if any.

Most organizations find themselves in the situation where many users are accessing current
data while very few users are accessing older data, as illustrated in Figure 5-2. Data is
considered to be: active, less active, historical, or ready to be archived.

With so much data being held, during its lifetime the data should be moved to different
physical locations. Depending on where the data is in its lifecycle, it must be located on the
most appropriate storage device.

Figure 5-2 Data Usage Over Time

Months Years

A
c

ti
v

it
y

D
a

ta
 V

o
lu

m
e

0 1 1 5 10

Active

High�
Volume

Less
Active

Low�
Volume

5.1.2.2 Step 2: Create Storage Tiers for the Data Classes
Because Oracle Database can take advantage of many different storage options, the second
step in implementing an Information Lifecycle Management solution is to establish the
required storage tiers.

Although you can create as many storage tiers as you require, a suggested starting point are
the following tiers:

• High Performance

The high performance storage tier is where all the important and frequently accessed
data, such as the partition holding our Q1 orders, is stored. This tier uses smaller, faster
disks on high performance storage devices.

• Low Cost

The low cost storage tier is where the less frequently accessed data is stored, such as
the partitions holding the orders for Q2, Q3, and Q4. This tier is built using large capacity

Chapter 5
Managing Data in Oracle Database With ILM

5-7

disks, such as those found in modular storage arrays or low costs ATA disks,
which offer the maximum amount of inexpensive storage.

• Online Archive

The online archive storage tier is where all the data that is seldom accessed or
modified is stored. This storage tier is likely to be extremely large and to store the
maximum quantity of data. You can use various techniques to compress the data.
Stored on low cost storage devices, such as ATA drives, the data would still be
online and available, for a cost that is only slightly higher than storing this
information on tape, without the disadvantages that come with archiving data to
tape. If the Online Archive storage tier is identified as read-only, then it would be
impossible to change the data and subsequent backups would not be required
after the initial database backup.

• Offline Archive (optional)

The offline archive storage tier is an optional tier because it is only used when
there is a requirement to remove data from the database and store it in some other
format, such as XML on tape.

Figure 5-2 illustrates how data is used over a time interval. Using this information, it
can be determined that to retain all this information, several storage tiers are required
to hold all of the data, which also has the benefit of significantly reducing total storage
costs.

After the storage tiers have been created, the data classes identified in Step 1: Define
the Data Classes are physically implemented inside the database using partitions. This
approach provides an easy way to distribute the data across the appropriate storage
devices depending on its usage, while still keeping the data online and readily
available, and stored on the most cost-effective device.

You can also use Oracle Automatic Storage Management (Oracle ASM) to manage
the data across the storage tiers. Oracle ASM is a high-performance, ease-of-
management storage solution for Oracle Database files. Oracle ASM is a volume
manager and provides a file system designed exclusively for use by the database. To
use Oracle ASM, you allocate partitioned disks for Oracle Database with preferences
for striping and mirroring. Oracle ASM manages the disk space, distributing the I/O
load across all available resources to optimize performance while removing the need
for manual I/O tuning. For example, you can increase the size of the disk for the
database or move parts of the database to new devices without having to shut down
the database.

5.1.2.2.1 Assigning Classes to Storage Tiers
After the storage tiers have been defined, the data classes (partitions) identified in
Step 1 can be assigned to the appropriate storage tiers.

This assignment provides an easy way to distribute the data across the appropriate
storage devices depending on its usage, keeping the data online and available, and
stored on the most cost-effective device. In Figure 5-3 data identified to be active, less
active, historical, or ready to be archived is assigned to the high performance tier, low
cost storage tier, online archive storage tier, and offline archive respectively. Using this
approach, no application changes are required because the data is still visible.

Chapter 5
Managing Data in Oracle Database With ILM

5-8

Figure 5-3 Data Lifecycle

ArchiveHistoricalLess ActiveActive

High Performance
Storage Tier

Low Cost
Storage Tier

Online Archive
Storage Tier

Offline
Archive

5.1.2.2.2 The Costs Savings of Using Tiered Storage
One benefit of implementing an ILM strategy is the cost savings that can result from using
multiple tiered storage.

Assume that there is 3 TB of data to store, comprising of 200 GB on High Performance, 800
GB on Low Cost, and 2 TB on Online Archive. Assume the cost per GB is $72 on the High
Performance tier, $14 on the Low Cost tier, and $7 on the Online Archive tier.

Table 5-1 illustrates the possible cost savings using tiered storage, rather than storing all data
on one class of storage. As you can see, the cost savings can be quite significant and, if the
data is suitable for OLTP and HCC database compression, then even further cost savings are
possible.

Table 5-1 Cost Savings Using Tiered Storage

Storage Tier Single Tier using High
Performance Disks

Multiple Storage Tiers Multiple Tiers with
Database Compression

High Performance (200 GB) $14,400 $14,400 $14,400

Low Cost (800 GB) $57,600 $11,200 $11,200

Online Archive (2 TB) $144,000 $14,000 $5,600

Total of each column $216,000 $39,600 $31,200

5.1.2.3 Step 3: Create Data Access and Migration Policies
The third step in implementing an Information Lifecycle Management solution is to ensure
that only authorized users have access to the data and to specify how to move the data
during its lifetime.

As the data ages, there are multiple techniques that can migrate the data between the
storage tiers.

Chapter 5
Managing Data in Oracle Database With ILM

5-9

5.1.2.3.1 Controlling Access to Data
The security of your data is another very important part of Information Lifecycle
Management because the access rights to the data may change during its lifetime.

In addition, there may be regulatory requirements that place exacting demands on how
the data can be accessed.

The data in Oracle Database can be secured using database features, such as:

• Database Security

• Views

• Virtual Private Database

Virtual Private Database (VPD) defines a very fine-grained level of access to the
database. Security policies determine which rows may be viewed and the columns that
are visible. Multiple policies can be defined so that different users and applications see
different views of the same data. For example, the majority of users could see the
information for Q1, Q2, Q3, and Q4, while only authorized users would be able to view
the historical data.

A security policy is defined at the database level and is transparently applied to all
database users. The benefit of this approach is that it provides a secure and controlled
environment for accessing the data, which cannot be overridden and can be
implemented without requiring any application changes. In addition, read-only
tablespaces can be defined which ensures that the data does not change.

5.1.2.3.2 Moving Data using Partitioning
During its lifetime, data must be moved and partitioning is a technique that can be
used.

Moving data may occur for the following reasons:

• For performance, only a limited number of orders are held on high performance
disks

• Data is no longer frequently accessed and is using valuable high performance
storage, and must be moved to a low-cost storage device

• Legal requirements demand that the information is always available for a given
time interval, and it must be held safely for the lowest possible cost

There are multiple ways that data can be physically moved in Oracle Database to take
advantage of the different storage tiers. For example, if the data is partitioned, then a
partition containing the orders for Q2 could be moved online from the high
performance storage tier to the low cost storage tier. Because the data is being moved
within the database, it can be physically moved, without affecting the applications that
require it or causing disruption to regular users.

Sometimes individual data items, rather than a group of data, must be moved. For
example, suppose data was classified according to a level of privacy and a report,
which had been secret, is now to be made available to the public. If the classification
changed from secret to public and the data was partitioned on its privacy classification,
then the row would automatically move to the partition containing public data.

Whenever data is moved from its original source, it is very important to ensure that the
process selected adheres to any regulatory requirements, such as, the data cannot be

Chapter 5
Managing Data in Oracle Database With ILM

5-10

altered, is secure from unauthorized access, easily readable, and stored in an approved
location.

5.1.2.4 Step 4: Define and Enforce Compliance Policies
The fourth step in an Information Lifecycle Management solution is the creation of policies for
compliance.

When data is decentralized and fragmented, compliance policies have to be defined and
enforced in every data location, which could easily result in a compliance policy being
overlooked. However, using Oracle Database to provide a central location for storing data
means that it is very easy to enforce compliance policies because they are all managed and
enforced from one central location.

When defining compliance policies, consider the following areas:

• Data Retention

• Immutability

• Privacy

• Auditing

• Expiration

5.1.2.4.1 Data Retention
The retention policy describes how the data is to be retained, how long it must be kept, and
what happens after data life.

An example of a retention policy is a record must be stored in its original form, no
modifications are allowed, it must be kept for seven years, and then it may be deleted. Using
Oracle Database security, it is possible to ensure that data remains unchanged and that only
authorized processes can remove the data at the appropriate time. Retention policies can
also be defined through a lifecycle definition in the ILM Assistant.

5.1.2.4.2 Immutability
Immutability is concerned with proving to an external party that data is complete and has not
been modified.

Cryptographic or digital signatures can be generated by Oracle Database and retained either
inside or outside of the database, to show that data has not been altered.

5.1.2.4.3 Privacy
Oracle Database provides several ways to ensure data privacy.

Access to data can be strictly controlled with security policies defined using Virtual Private
Database (VPD). In addition, individual columns can be encrypted so that anyone looking at
the raw data cannot see its contents.

5.1.2.4.4 Auditing
Oracle Database can track all access and changes to data.

Chapter 5
Managing Data in Oracle Database With ILM

5-11

These auditing capabilities can be defined either at the table level or through fine-
grained auditing, which specifies the criteria for when an audit record is generated.
Auditing can be further enhanced using Oracle Audit Vault and Database Firewall.

See Also:

Oracle Audit Vault and Database Firewall Administrator's Guide for
information about Oracle Audit Vault and Database Firewall

5.1.2.4.5 Expiration
Ultimately, data may expire for business or regulatory reasons and must be removed
from the database.

Oracle Database can remove data very quickly and efficiently by simply dropping the
partition which contains the information identified for removal.

5.2 Implementing an ILM Strategy With Heat Map and ADO
To implement an Information Lifecycle Management (ILM) strategy for data movement
in your database, you can use Heat Map and Automatic Data Optimization (ADO)
features.

Note:

Heat Map and ADO are supported in Oracle Database 12c Release 2
multitenant environments.

This section contains the following topics:

• Using Heat Map

• Using Automatic Data Optimization

• Limitations and Restrictions With ADO and Heat Map

See Also:

• Managing ILM Heat Map and ADO with Oracle Enterprise Manager for
information about using Oracle Enterprise Manager Cloud Control with
Heat Map and ADO

• Oracle Database Vault Administrator’s Guide for information about using
Information Lifecycle Management (ILM) with Oracle Database Vault
realms and command rules, including granting the authorization that
enables an ADO administrative user to perform ILM operations on
Database Vault-protected objects.

Chapter 5
Implementing an ILM Strategy With Heat Map and ADO

5-12

5.2.1 Using Heat Map
To implement your ILM strategy, you can use Heat Map in Oracle Database to track data
access and modification.

Heat Map provides data access tracking at the segment-level and data modification tracking
at the segment and row level. You can enable this functionality with the HEAT_MAP initialization
parameter.

Heat Map data can assist Automatic Data Optimization (ADO) to manage the contents of the
In-Memory column store (IM column store) using ADO policies. Using Heat Map data, which
includes column statistics and other relevant statistics, the IM column store can determine
when it is almost full (under memory pressure). If the determination is almost full, then
inactive segments can be evicted if there are more frequently accessed segments that would
benefit from population in the IM column store.

This section contains the following topics:

• Enabling and Disabling Heat Map

• Displaying Heat Map Tracking Data With Views

• Managing Heat Map Data With DBMS_HEAT_MAP Subprograms

See Also:

• Oracle Database In-Memory Guide for information about enabling and sizing
the In-Memory Column Store

5.2.1.1 Enabling and Disabling Heat Map
You can enable and disable heat map tracking at the system or session level with the ALTER
SYSTEM or ALTER SESSION statement using the HEAT_MAP clause.

For example, the following SQL statement enables Heat Map tracking for the database
instance.

ALTER SYSTEM SET HEAT_MAP = ON;

When Heat Map is enabled, all accesses are tracked by the in-memory activity tracking
module. Objects in the SYSTEM and SYSAUX tablespaces are not tracked.

The following SQL statement disables heat map tracking.

ALTER SYSTEM SET HEAT_MAP = OFF;

When Heat Map is disabled, accesses are not tracked by the in-memory activity tracking
module. The default value for the HEAT_MAP initialization parameter is OFF.

The HEAT_MAP initialization parameter also enables and disables Automatic Data Optimization
(ADO). For ADO, Heat Map must be enabled at the system level.

Chapter 5
Implementing an ILM Strategy With Heat Map and ADO

5-13

See Also:

• Using Automatic Data Optimization for more information about ADO

• Oracle Database Reference for information about the HEAT_MAP
initialization parameter

5.2.1.2 Displaying Heat Map Tracking Data With Views
Heat map tracking data is viewed with V$*, ALL*, DBA*, and USER* heat map views.

Example 5-1 shows examples of information provided by heat map views. The
V$HEAT_MAP_SEGMENT view displays real-time segment access information. The ALL_,
DBA_, and USER_HEAT_MAP_SEGMENT views display the latest segment access time for all
segments visible to the user. The ALL_, DBA_, and USER_HEAT_MAP_SEG_HISTOGRAM
views display segment access information for all segments visible to the user. The
DBA_HEATMAP_TOP_OBJECTS view displays heat map information for the top most active
objects. The DBA_HEATMAP_TOP_TABLESPACES view displays heat map information for
the top most active tablespaces.

See Also:

Oracle Database Reference for information about Heat Map views

Example 5-1 Heat map views

/* enable heat map tracking if necessary*/

SELECT SUBSTR(OBJECT_NAME,1,20), SUBSTR(SUBOBJECT_NAME,1,20), TRACK_TIME, SEGMENT_WRITE,
 FULL_SCAN, LOOKUP_SCAN FROM V$HEAT_MAP_SEGMENT;

SUBSTR(OBJECT_NAME,1 SUBSTR(SUBOBJECT_NAM TRACK_TIM SEG FUL LOO
-------------------- -------------------- --------- --- --- ---
SALES SALES_Q1_1998 01-NOV-12 NO NO NO
SALES SALES_Q3_1998 01-NOV-12 NO NO NO
SALES SALES_Q2_2000 01-NOV-12 NO NO NO
SALES SALES_Q3_1999 01-NOV-12 NO NO NO
SALES SALES_Q2_1998 01-NOV-12 NO NO NO
SALES SALES_Q2_1999 01-NOV-12 NO NO NO
SALES SALES_Q4_2001 01-NOV-12 NO NO NO
SALES SALES_Q1_1999 01-NOV-12 NO NO NO
SALES SALES_Q4_1998 01-NOV-12 NO NO NO
SALES SALES_Q1_2000 01-NOV-12 NO NO NO
SALES SALES_Q1_2001 01-NOV-12 NO NO NO
SALES SALES_Q2_2001 01-NOV-12 NO NO NO
SALES SALES_Q3_2000 01-NOV-12 NO NO NO
SALES SALES_Q4_2000 01-NOV-12 NO NO NO
EMPLOYEES 01-NOV-12 NO NO NO
...

SELECT SUBSTR(OBJECT_NAME,1,20), SUBSTR(SUBOBJECT_NAME,1,20), SEGMENT_WRITE_TIME,
 SEGMENT_READ_TIME, FULL_SCAN, LOOKUP_SCAN FROM USER_HEAT_MAP_SEGMENT;

Chapter 5
Implementing an ILM Strategy With Heat Map and ADO

5-14

SUBSTR(OBJECT_NAME,1 SUBSTR(SUBOBJECT_NAM SEGMENT_W SEGMENT_R FULL_SCAN LOOKUP_SC
-------------------- -------------------- --------- --------- --------- ---------
SALES SALES_Q1_1998 30-OCT-12 01-NOV-12
SALES SALES_Q1_1998 30-OCT-12 01-NOV-12
SALES SALES_Q1_1998 30-OCT-12 01-NOV-12
SALES SALES_Q1_1998 30-OCT-12 01-NOV-12
SALES SALES_Q1_1998 30-OCT-12 01-NOV-12
SALES SALES_Q1_1998 30-OCT-12 01-NOV-12
...

SELECT SUBSTR(OBJECT_NAME,1,20), SUBSTR(SUBOBJECT_NAME,1,20), TRACK_TIME, SEGMENT_WRITE, FULL_SCAN,
 LOOKUP_SCAN FROM USER_HEAT_MAP_SEG_HISTOGRAM;

SUBSTR(OBJECT_NAME,1 SUBSTR(SUBOBJECT_NAM TRACK_TIM SEG FUL LOO
-------------------- -------------------- --------- --- --- ---
SALES SALES_Q1_1998 31-OCT-12 NO NO YES
SALES SALES_Q1_1998 01-NOV-12 NO NO YES
SALES SALES_Q1_1998 30-OCT-12 NO YES YES
SALES SALES_Q2_1998 01-NOV-12 NO NO YES
SALES SALES_Q2_1998 31-OCT-12 NO NO YES
SALES SALES_Q2_1998 30-OCT-12 NO YES YES
SALES SALES_Q3_1998 01-NOV-12 NO NO YES
SALES SALES_Q3_1998 30-OCT-12 NO YES YES
SALES SALES_Q3_1998 31-OCT-12 NO NO YES
SALES SALES_Q4_1998 01-NOV-12 NO NO YES
SALES SALES_Q4_1998 31-OCT-12 NO NO YES
SALES SALES_Q4_1998 30-OCT-12 NO YES YES
SALES SALES_Q1_1999 01-NOV-12 NO NO YES
SALES SALES_Q1_1999 31-OCT-12 NO NO YES
...

SELECT SUBSTR(OWNER,1,20), SUBSTR(OBJECT_NAME,1,20), OBJECT_TYPE, SUBSTR(TABLESPACE_NAME,1,20),
 SEGMENT_COUNT FROM DBA_HEATMAP_TOP_OBJECTS ORDER BY SEGMENT_COUNT DESC;

SUBSTR(OWNER,1,20) SUBSTR(OBJECT_NAME,1 OBJECT_TYPE SUBSTR(TABLESPACE_NA SEGMENT_COUNT
-------------------- -------------------- ------------------ -------------------- -------------
SH SALES TABLE EXAMPLE 96
SH COSTS TABLE EXAMPLE 48
PM ONLINE_MEDIA TABLE EXAMPLE 22
OE PURCHASEORDER TABLE EXAMPLE 18
PM PRINT_MEDIA TABLE EXAMPLE 15
OE CUSTOMERS TABLE EXAMPLE 10
OE WAREHOUSES TABLE EXAMPLE 9
HR EMPLOYEES TABLE EXAMPLE 7
OE LINEITEM_TABLE TABLE EXAMPLE 6
IX STREAMS_QUEUE_TABLE TABLE EXAMPLE 6
SH FWEEK_PSCAT_SALES_MV TABLE EXAMPLE 5
SH CUSTOMERS TABLE EXAMPLE 5
HR LOCATIONS TABLE EXAMPLE 5
HR JOB_HISTORY TABLE EXAMPLE 5
SH PRODUCTS TABLE EXAMPLE 5
...

SELECT SUBSTR(TABLESPACE_NAME,1,20), SEGMENT_COUNT
 FROM DBA_HEATMAP_TOP_TABLESPACES ORDER BY SEGMENT_COUNT DESC;

SUBSTR(TABLESPACE_NA SEGMENT_COUNT
-------------------- -------------
EXAMPLE 351
USERS 11

Chapter 5
Implementing an ILM Strategy With Heat Map and ADO

5-15

SELECT COUNT(*) FROM DBA_HEATMAP_TOP_OBJECTS;

 COUNT(*)

 64

SELECT COUNT(*) FROM DBA_HEATMAP_TOP_TABLESPACES;

 COUNT(*)

 2

5.2.1.3 Managing Heat Map Data With DBMS_HEAT_MAP Subprograms
The DBMS_HEAT_MAP package provides additional flexibility for displaying heat map data
using DBMS_HEAT_MAP subprograms.

DBMS_HEAT_MAP includes one set of APIs that externalize heat maps at various levels of
storage such as block, extent, segment, object, and tablespace; and a second set of
APIs that externalize the heat maps materialized by the background process for the
top tablespaces.

Example 5-2 shows examples of the use of DBMS_HEAT_MAP package subprograms.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_HEAT_MAP package

Example 5-2 Using DBMS_HEAT_MAP package subprograms

SELECT SUBSTR(segment_name,1,10) Segment, min_writetime, min_ftstime
 FROM TABLE(DBMS_HEAT_MAP.OBJECT_HEAT_MAP('SH','SALES'));

SELECT SUBSTR(tablespace_name,1,16) Tblspace, min_writetime, min_ftstime
 FROM TABLE(DBMS_HEAT_MAP.TABLESPACE_HEAT_MAP('EXAMPLE'));

SELECT relative_fno, block_id, blocks, TO_CHAR(min_writetime, 'mm-dd-yy hh-mi-ss') Mintime,
 TO_CHAR(max_writetime, 'mm-dd-yy hh-mi-ss') Maxtime,
 TO_CHAR(avg_writetime, 'mm-dd-yy hh-mi-ss') Avgtime
 FROM TABLE(DBMS_HEAT_MAP.EXTENT_HEAT_MAP('SH','SALES')) WHERE ROWNUM < 10;

SELECT SUBSTR(owner,1,10) Owner, SUBSTR(segment_name,1,10) Segment,
 SUBSTR(partition_name,1,16) Partition, SUBSTR(tablespace_name,1,16) Tblspace,
 segment_type, segment_size FROM TABLE(DBMS_HEAT_MAP.OBJECT_HEAT_MAP('SH','SALES'));

OWNER SEGMENT PARTITION TBLSPACE SEGMENT_TYPE SEGMENT_SIZE
---------- ---------- ---------------- ---------------- -------------------- ------------
SH SALES SALES_Q1_1998 EXAMPLE TABLE PARTITION 8388608
SH SALES SALES_Q2_1998 EXAMPLE TABLE PARTITION 8388608
SH SALES SALES_Q3_1998 EXAMPLE TABLE PARTITION 8388608
SH SALES SALES_Q4_1998 EXAMPLE TABLE PARTITION 8388608
SH SALES SALES_Q1_1999 EXAMPLE TABLE PARTITION 8388608
...

Chapter 5
Implementing an ILM Strategy With Heat Map and ADO

5-16

5.2.2 Using Automatic Data Optimization
To implement your ILM strategy, you can use Automatic Data Optimization (ADO) to
automate the compression and movement of data between different tiers of storage within the
database.

The functionality includes the ability to create policies that specify different compression
levels for each tier, and to control when the data movement takes place.

This section contains the following topics:

• Managing Policies for Automatic Data Optimization

• Creating a Table With an ILM ADO Policy

• Adding ILM ADO Policies

• Disabling and Deleting ILM ADO Policies

• Specifying Segment-Level Compression and Storage Tiering With ADO

• Specifying Row-Level Compression Tiering With ADO

• Managing ILM ADO Parameters

• Using PL/SQL Functions for Policy Management

• Using Views to Monitor Policies for ADO

To use Automatic Data Optimization, you must enable Heat Map at the system level. You
enable this functionality with the HEAT_MAP initialization parameter. For information about
setting the HEAT_MAP initialization parameter, refer to Enabling and Disabling Heat Map.

5.2.2.1 Managing Policies for Automatic Data Optimization
You can specify policies for ADO at the row, segment, and tablespace granularity level when
creating and altering tables with SQL statements. In addition, ADO policies can perform
action on indexes.

By specifying policies for ADO, you can automate data movement between different tiers of
storage within the database. These policies also enable you to specify different compression
levels for each tier, and to control when the data movement takes place.

ADO Policies for Tables

The ILM clauses of the SQL CREATE and ALTER TABLE statements enable you to create,
delete, enable or disable a policy for ADO. An ILM policy clause determines the compression
or storage tiering policy and contains additional clauses, such as the AFTER and ON clauses to
specify the condition when a policy action should occur. When you create a table, you can
add a new policy for ADO. You can alter the table to add more policies or to enable, disable,
or delete existing policies. You can add policies to an entire table or a partition of a table. You
can specify only one condition type for an AFTER clause when adding an ADO policies to a
table or partition of a table. ILM ADO policies are given a system-generated name, such P1,
P2, and so on to Pn.

A segment level policy executes only one time. After the policy executes successfully, it is
disabled and is not evaluated again. However, you can explicitly enable the policy again. A
row level policy continues to execute and is not disabled after a successful execution.

Chapter 5
Implementing an ILM Strategy With Heat Map and ADO

5-17

The scope of an ADO policy can be specified for a group of related objects or at the
level of a segment or row, using the keywords GROUP, ROW, or SEGMENT.

The default mappings for compression that can be applied to group policies are:

• COMPRESS ADVANCED on a heap table maps to standard compression for indexes
and LOW for LOB segments.

• COMPRESS FOR QUERY LOW/QUERY HIGH on a heap table maps to standard
compression for indexes and MEDIUM for LOB segments.

• COMPRESS FOR ARCHIVE LOW/ARCHIVE HIGH on a heap table maps to standard
compression for indexes and HIGH for LOB segments.

The compression mapping cannot be changed. GROUP can only be applied to segment
level policies. The storage tiering policies are applicable only at the segment level and
cannot be specified at the row level.

ADO Policies for In-Memory Column Store

Automatic Data Optimization (ADO) supports the In-Memory Column Store (IM column
store) with the INMEMORY, INMEMORY MECOMPRESS, and NO INMEMORY policy types.

• To enable objects for population in the In-Memory Column Store, include INMEMORY
in the ADD POLICY clause.

• To increase the compression level on objects in an IM column store, include
INMEMORY MEMCOMPRESS in the ADD POLICY clause.

• To explicitly evict objects that benefit the least from the IM column store, include NO
INMEMORY in the ADD POLICY clause. For example:

The following is an example of the use the NO INMEMORY clause to evict objects from the
IM column store.

ALTER TABLE sales_2015 ILM ADD POLICY NO INMEMORY
 AFTER 7 DAYS OF NO ACCESS;

An ADO policy with an In-Memory Column Store clause can only be a segment level
policy. The USER/DBA_ILMDATAMOVEMENTPOLICIES and V$HEAT_MAP_SEGMENT views
include information about ADO policies for the In-Memory Column Store.

Customizing ADO Policies

You can customize policies with the ON PL/SQL_function option which provides the
ability to determine when the policy should be executed. The ON PL/SQL_function
option is available only with segment level policies. For example:

CREATE OR REPLACE FUNCTION my_custom_ado_rules (objn IN NUMBER) RETURN BOOLEAN;

ALTER TABLE sales_custom ILM ADD POLICY COMPRESS ADVANCED SEGMENT
 ON my_custom_ado_rules;

Chapter 5
Implementing an ILM Strategy With Heat Map and ADO

5-18

See Also:

• Oracle Database In-Memory Guide for information about In-Memory Column
Store and ADO support

• Oracle Database SQL Language Reference for information about the syntax of
the ILM clauses in SQL statements

5.2.2.2 Creating a Table With an ILM ADO Policy
Use the ILM ADD POLICY clause with the CREATE TABLE statement to create a table with ILM
ADO policy.

The SQL statement in Example 5-3 creates a table and adds an ILM policy.

Example 5-3 Creating a table with an ILM ADO policy

/* Create an example table with an ILM ADO policy */
CREATE TABLE sales_ado
 (PROD_ID NUMBER NOT NULL,
 CUST_ID NUMBER NOT NULL,
 TIME_ID DATE NOT NULL,
 CHANNEL_ID NUMBER NOT NULL,
 PROMO_ID NUMBER NOT NULL,
 QUANTITY_SOLD NUMBER(10,2) NOT NULL,
 AMOUNT_SOLD NUMBER(10,2) NOT NULL)
 PARTITION BY RANGE (time_id)
 (PARTITION sales_q1_2012 VALUES LESS THAN (TO_DATE('01-APR-2012','dd-MON-yyyy')),
 PARTITION sales_q2_2012 VALUES LESS THAN (TO_DATE('01-JUL-2012','dd-MON-yyyy')),
 PARTITION sales_q3_2012 VALUES LESS THAN (TO_DATE('01-OCT-2012','dd-MON-yyyy')),
 PARTITION sales_q4_2012 VALUES LESS THAN (TO_DATE('01-JAN-2013','dd-MON-yyyy')))
 ILM ADD POLICY COMPRESS FOR ARCHIVE HIGH SEGMENT
 AFTER 12 MONTHS OF NO ACCESS;

/* View the existing ILM ADO polices */
SELECT SUBSTR(policy_name,1,24) POLICY_NAME, policy_type, enabled
 FROM USER_ILMPOLICIES;

POLICY_NAME POLICY_TYPE ENABLE
------------------------ ------------- ------
P1 DATA MOVEMENT YES

5.2.2.3 Adding ILM ADO Policies
Use the ILM ADD POLICY clause with the ALTER TABLE statement to add an ILM ADO policy to a
table.

The SQL statements in Example 5-4 provide examples of adding ILM policies to a partition of
the sales table.

Example 5-4 Adding ILM ADO policies

/* Add a row-level compression policy after 30 days of no modifications */
ALTER TABLE sales MODIFY PARTITION sales_q1_2002
 ILM ADD POLICY ROW STORE COMPRESS ADVANCED ROW
 AFTER 30 DAYS OF NO MODIFICATION;

Chapter 5
Implementing an ILM Strategy With Heat Map and ADO

5-19

/* Add a segment level compression policy for data after 6 months of no
modifications */
ALTER TABLE sales MODIFY PARTITION sales_q1_2001
 ILM ADD POLICY COMPRESS FOR ARCHIVE HIGH SEGMENT
 AFTER 6 MONTHS OF NO MODIFICATION;

/* Add a segment level compression policy for data after 12 months of no access
*/
ALTER TABLE sales MODIFY PARTITION sales_q1_2000
 ILM ADD POLICY COMPRESS FOR ARCHIVE HIGH SEGMENT
 AFTER 12 MONTHS OF NO ACCESS;

/* Add storage tier policy to move old data to a different tablespace */
/* that is on low cost storage media */
ALTER TABLE sales MODIFY PARTITION sales_q1_1999
 ILM ADD POLICY
 TIER TO my_low_cost_sales_tablespace;

/* View the existing polices */
SELECT SUBSTR(policy_name,1,24) POLICY_NAME, policy_type, enabled
 FROM USER_ILMPOLICIES;

POLICY_NAME POLICY_TYPE ENABLE
------------------------ ------------- ------
P1 DATA MOVEMENT YES
P2 DATA MOVEMENT YES
P3 DATA MOVEMENT YES
P4 DATA MOVEMENT YES
P5 DATA MOVEMENT YES

5.2.2.4 Disabling and Deleting ILM ADO Policies
Use the ILM DISABLE POLICY or ILM DELETE POLICY clauses with the ALTER TABLE
statement to disable or delete an ILM ADO policy.

You can disable or delete ILM policies for ADO as shown in the SQL statements in
Example 5-5. At times you may need to remove existing ILM policies if those policies
conflict with a new policy that you want to add.

Example 5-5 Disabling and deleting ILM ADO policies

/* You can disable or delete an ADO policy in a table with the following */
ALTER TABLE sales_ado ILM DISABLE POLICY P1;
ALTER TABLE sales_ado ILM DELETE POLICY P1;

/* You can disable or delete all ADO policies in a table with the following */
ALTER TABLE sales_ado ILM DISABLE_ALL;
ALTER TABLE sales_ado ILM DELETE_ALL;

/* You can disable or delete an ADO policy in a partition with the following */
ALTER TABLE sales MODIFY PARTITION sales_q1_2002 ILM DISABLE POLICY P2;
ALTER TABLE sales MODIFY PARTITION sales_q1_2002 ILM DELETE POLICY P2;

/* You can disable or delete all ADO policies in a partition with the following
*/
ALTER TABLE sales MODIFY PARTITION sales_q1_2000 ILM DISABLE_all;
ALTER TABLE sales MODIFY PARTITION sales_q1_2000 ILM DELETE_ALL;

Chapter 5
Implementing an ILM Strategy With Heat Map and ADO

5-20

5.2.2.5 Specifying Segment-Level Compression and Storage Tiering With ADO
You can specify compression at the segment-level within a table using a segment-level
compression tiering policy.

In combination with the row-level compression tiering policy, you have fine-grained control
over how the data in your database is stored and managed.

Example 5-6 illustrates how to create policies for ADO to enforce a compression and storage
tiering policy on the sales_ado table, reflecting the following business requirements:

1. Bulk Load Data

2. Run OLTP workloads

3. After six months with no updates, compress for Archive High

4. Move to low cost storage

Example 5-6 Using segment-level compression and storage tiering

/* Add a segment level compression policy after 6 months of no changes */
ALTER TABLE sales_ado ILM ADD POLICY
 COMPRESS FOR ARCHIVE HIGH SEGMENT
 AFTER 6 MONTHS OF NO MODIFICATION;

Table altered.

/* Add storage tier policy */
ALTER TABLE sales_ado ILM ADD POLICY
 TIER TO my_low_cost_tablespace;

SELECT SUBSTR(policy_name,1,24) POLICY_NAME, policy_type, enabled
 FROM USER_ILMPOLICIES;

POLICY_NAME POLICY_TYPE ENABLED
------------------------ ------------- -------
...
P6 DATA MOVEMENT YES
P7 DATA MOVEMENT YES

5.2.2.6 Specifying Row-Level Compression Tiering With ADO
Automatic Data Optimization (ADO) policies support Hybrid Columnar Compression (HCC) in
addition to basic and advanced compression.

An HCC row level policy can be defined on any table regardless of the compression type of
the table. Rows from cold blocks can be compressed with HCC when there is DML activity on
other parts of the segment.

With HCC policies on non-HCC tables, there may be row movement during updates if the row
is in a HCC compression unit (CU). Also, similar to other use cases of row movement, index
maintenance is necessary to update index entries that referenced the moved row.

Row-level policies are supported in Oracle Database 12c Release 1 (12.1): however, the
database must be at 12.2 compatibility or greater to use HCC row-level compression policies.

Chapter 5
Implementing an ILM Strategy With Heat Map and ADO

5-21

See Also:

Oracle Database Administrator’s Guide for information about table
compression

Example 5-7 Creating an ADO policy using row-level Hybrid Columnar
Compression

The SQL statement in Example 5-7 creates a policy using HCC on the rows of the
table employees_ilm.

ALTER TABLE employees_ilm
 ILM ADD POLICY COLUMN STORE COMPRESS FOR QUERY ROW
 AFTER 30 DAYS OF NO MODIFICATION;

Example 5-8 Creating an ADO policy using row-level advanced compression

The SQL statement in Example 5-8 creates a policy using advanced compression on
the rows of the table sales_ado.

ALTER TABLE sales_ado
 ILM ADD POLICY ROW STORE COMPRESS ADVANCED ROW
 AFTER 60 DAYS OF NO MODIFICATION;

SELECT policy_name, policy_type, enabled
 FROM USER_ILMPOLICIES;

POLICY_NAME POLICY_TYPE ENABLE
------------------------ ------------- -------
...
P8 DATA MOVEMENT YES

5.2.2.7 Managing ILM ADO Parameters
You can customize your ADO environment with ILM ADO parameters that you set with
the CUSTOMIZE_ILM procedure in the DBMS_ILM_ADMIN PL/SQL package.

Various ILM ADO parameters are described in Table 5-2.

Table 5-2 ILM ADO Parameters

Name Description

ABSOLUTEJOB LIMIT The value for ABSOLUTEJOB LIMIT limits the absolute number of concurrent ADO jobs.

DEGREEOF
PARALLELISM

The value for DEGREEOF PARALLELISM determines the degree of parallelism in which the
ADO policy jobs are run.

Chapter 5
Implementing an ILM Strategy With Heat Map and ADO

5-22

Table 5-2 (Cont.) ILM ADO Parameters

Name Description

ENABLED The ENABLED parameter controls ADO background evaluation and execution. The default
is enabled on (TRUE or 1).

The settings of ENABLED and the HEAT_MAP initialization parameters interact as follows:

• If the HEAT_MAP initialization parameter is set to ON and the ENABLED parameter is
set to FALSE (0), then heat map statistics are collected, but ADO does not act on the
statistics automatically.

• If the HEAT_MAP initialization parameter is set to OFF and the ENABLED parameter is
set to TRUE (1), then heat map statistics are not collected and because ADO cannot
rely on the heat map statistics, ADO does nothing. ADO behaves as if ENABLED is
set to FALSE.

EXECUTION MODE The value of EXECUTION MODE controls whether ADO executes in online or offline mode.
The default is online (2).

EXECUTION INTERVAL The value of EXECUTION INTERVAL determines the frequency that ADO initiates
background evaluation. The default is 15 minutes.

JOB LIMIT The value for JOB LIMIT controls the maximum number of ADO jobs at any time. The
maximum number of concurrent ADO jobs is calculated as (JOB LIMIT)*(number of
instances)*(number of CPUs for each instance). The default is 2.

POLICY TIME The value for POLICY TIME determines if ADO policies are specified in seconds or days.
Values are 1 for seconds or 0 for days (default).

RETENTION TIME The value for RETENTION TIME specifies the length of time that data of completed ADO
tasks is kept before that data is purged. The default is 30 days.

TBS PERCENT USED The value for TBS_PERCENT_USED parameter specifies the percentage of the tablespace
quota when a tablespace is considered full. The default is 85 percent.

TBS PERCENT FREE The value for TBS_PERCENT_FREE parameter specifies the targeted free percentage for
the tablespace. The default is 25 percent.

For the values of the TBS_PERCENT* parameters, ADO makes a best effort, but not a
guarantee. When the percentage of the tablespace quota reaches the value of
TBS_PERCENT_USED, ADO begins to move data so that percent free of the tablespace quota
approaches the value of TBS_PERCENT_FREE. As an example, assume that TBS_PERCENT_USED
is set to 85 and TBS_PERCENT_FREE is set to 25, and that a tablespace becomes 90 percent
full. ADO then initiates actions to move data so that the tablespace quota has at least 25
percent free, which can also be interpreted as less than 75 percent used of the tablespace
quota.

You can display the parameters with the DBA_ILMPARAMETERS view. For example, the following
query displays the values of the ADO-related parameters.

SQL> SELECT NAME, VALUE FROM DBA_ILMPARAMETERS;

-- ----------
ENABLED 1
RETENTION TIME 30
JOB LIMIT 2
EXECUTION MODE 2
EXECUTION INTERVAL 15
TBS PERCENT USED 85
TBS PERCENT FREE 25
POLICY TIME 0

Chapter 5
Implementing an ILM Strategy With Heat Map and ADO

5-23

ABSOLUTE JOB LIMIT 10
DEGREE OF PARALLELISM 4
...

See Also:

• Example 5-9 for an example showing how to set ILM ADO parameters
with the CUSTOMIZE_ILM procedure in the DBMS_ILM_ADMIN PL/SQL
package

• Managing ILM Heat Map and ADO with Oracle Enterprise Manager for
information about setting ILM ADO parameters with Oracle Enterprise
Manager Cloud Control

• Oracle Database PL/SQL Packages and Types Reference for a complete
list of ILM ADO parameters

• Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_ILM_ADMIN package

5.2.2.8 Using PL/SQL Functions for Policy Management
You can use the PL/SQL DBMS_ILM and DBMS_ILM_ADMIN packages for advanced policy
management and customization to implement more complex ADO scenarios and
control when policies are actively moving and compressing data.

With the PL/SQL DBMS_ILM and DBMS_ILM_ADMIN packages, you can manage ILM
activities for ADO so that they do not negatively impact important production
workloads. Database compatibility must be set to a minimum of 12.0 to use these
packages.

The EXECUTE_ILM procedure of the DBMS_ILM package creates and schedules jobs to
enforce policies for ADO. The EXECUTE_ILM() procedure provides this functionality,
regardless of any previously-scheduled ILM jobs. All jobs are created and scheduled
to run immediately; however, whether they are run immediately depends on the
number of jobs queued with the scheduler.

You can use the EXECUTE_ILM procedure if you want more control when ILM jobs are
performed, and do not want to wait until the next maintenance window.

The STOP_ILM procedure of the DBMS_ILM package stops all jobs, all running jobs, jobs
based on a task Id, or a specific job.

The CUSTOMIZE_ILM procedure in the DBMS_ILM_ADMIN PL/SQL package enables you to
customize settings for ADO, as shown in Example 5-9.

For example, you can set the values for the TBS_PERCENT_USED and TBS_PERCENT_FREE
ILM parameters or set the ABS_JOBLIMIT ILM parameter. TBS_PERCENT_USED and
TBS_PERCENT_FREE determine when data is moved based on tablespace quotas and
ABS_JOBLIMIT sets the absolute number of concurrent ADO jobs.

You can also recreate objects with policies using the DBMS_METADATA PL/SQL package.

Chapter 5
Implementing an ILM Strategy With Heat Map and ADO

5-24

See Also:

• Managing ILM ADO Parameters for information about ILM ADO parameters

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_ILM, DBMS_ILM_ADMIN, and DBMS_METADATA packages

Example 5-9 Using CUSTOMIZE_ILM to customize ADO settings

SQL> BEGIN
 2 DBMS_ILM_ADMIN.CUSTOMIZE_ILM(DBMS_ILM_ADMIN.TBS_PERCENT_USED, 85);
 3 DBMS_ILM_ADMIN.CUSTOMIZE_ILM(DBMS_ILM_ADMIN.TBS_PERCENT_FREE, 25);
 4 END;
 5 /

SQL> BEGIN
 2 DBMS_ILM_ADMIN.CUSTOMIZE_ILM(DBMS_ILM_ADMIN.ABS_JOBLIMIT, 10);
 3 END;
 4 /

5.2.2.9 Using Views to Monitor Policies for ADO
You can view and monitor the policies for ADO that are associated with your database
objects using the DBA_ILM* and USER_ILM* views, making it easier to change policies as
needed.

• The DBA/USER_ILMDATAMOVEMENTPOLICIES view displays information specific to data
movement related attributes of an ILM policy for ADO.

• The DBA/USER_ILMTASKS view displays the task Ids of the procedure EXECUTE_ILM. Every
time a user invokes the procedure EXECUTE_ILM, a task Id is returned to track this
particular invocation. A task Id is also generated to track periodic internal ILM tasks by
the database. This view contains information about all ILM tasks for ADO.

• The DBA/USER_ILMEVALUATIONDETAILS view displays details on policies considered for a
particular task. It also shows the name of the job that executes the policy in case the
policy was selected for evaluation. In case the policy was not executed, this view also
provides a reason.

• The DBA/USER_ILMOBJECTS view displays all the objects and policies for ADO in the
database. Many objects inherit policies through their parent objects or because they were
created in a particular tablespace. This view provides a mapping between the policies
and objects. In the case of an inherited policy, this view also indicates the level from
which policy is inherited.

• The DBA/USER_ILMPOLICIES view displays details about all the policies for ADO in the
database.

• The DBA/USER_ILMRESULTS view displays information about data movement-related jobs
for ADO in the database.

• The DBA_ILMPARAMETERS view displays information about ADO-related parameters.

Chapter 5
Implementing an ILM Strategy With Heat Map and ADO

5-25

See Also:

Oracle Database Reference for information about the ILM views

5.2.3 Limitations and Restrictions With ADO and Heat Map
The limitations and restrictions associated with ADO and Heat Map are discussed in
this topic.

Limitations and restrictions associated with ADO and Heat Map include:

• Partition-level ADO and compression are supported for Temporal Validity except
for row-level ADO policies that would compress rows that are past their valid time
(access or modification).

• Partition-level ADO and compression are supported for in-database archiving if
partitioned on the ORA_ARCHIVE_STATE column.

• Custom policies (user-defined functions) for ADO are not supported if the policies
default at the tablespace level.

• ADO does not perform checks for storage space in a target tablespace when using
storage tiering.

• ADO is not supported on tables with object types or materialized views.

• ADO is not supported with index-organized tables or clusters.

• ADO concurrency (the number of simultaneous policy jobs for ADO) depends on
the concurrency of the Oracle scheduler. If a policy job for ADO fails more than
two times, then the job is marked disabled and the job must be manually enabled
later.

• ADO has restrictions related to moving tables and table partitions.

See Also:

– Oracle Database SQL Language Reference for information about
restrictions on moving tables

– Oracle Database SQL Language Reference for information about
restrictions on moving table partitions

5.3 Controlling the Validity and Visibility of Data in Oracle
Database

You can control the validity and visibility of data in Oracle Database with In-Database
Archiving and Temporal Validity.

This section contains the following topics:

• Using In-Database Archiving

Chapter 5
Controlling the Validity and Visibility of Data in Oracle Database

5-26

• Using Temporal Validity

• Creating a Table With Temporal Validity

• Limitations and Restrictions With In-Database Archiving and Temporal Validity

5.3.1 Using In-Database Archiving
In-Database Archiving enables you to archive rows within a table by marking them as
inactive.

These inactive rows are in the database and can be optimized using compression, but are
not visible to an application. The data in these rows is available for compliance purposes if
needed by setting a session parameter.

With In-Database Archiving you can store more data for a longer period of time within a
single database, without compromising application performance. Archived data can be
compressed to help improve backup performance, and updates to archived data can be
deferred during application upgrades to improve the performance of upgrades.

To manage In-Database Archiving for a table, you must enable ROW ARCHIVAL for the table
and manipulate the ORA_ARCHIVE_STATE hidden column of the table. Optionally, you specify
either ACTIVE or ALL for the ROW ARCHIVAL VISIBILITY session parameter.

For example, you can use the SQL statements similar to those in Example 5-10 to hide or
show rows in a table. The purpose is to display only active data in most situations, but to
maintain all data in case it is needed in specific situations.

See Also:

• Oracle Database SQL Language Reference for information about using SQL
statements to manage In-Database Archiving features

• Oracle Database PL/SQL Packages and Types Reference for information about
the ARCHIVESTATENAME function in the DBMS_ILM package

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL: Using In-
Database Archiving Example.

Example 5-10 Using In-Database Archiving

/* Set visibility to ACTIVE to display only active rows of a table.*/
ALTER SESSION SET ROW ARCHIVAL VISIBILITY = ACTIVE;

CREATE TABLE employees_indbarch
 (employee_id NUMBER(6) NOT NULL,
 first_name VARCHAR2(20), last_name VARCHAR2(25) NOT NULL,
 email VARCHAR2(25) NOT NULL, phone_number VARCHAR2(20),
 hire_date DATE NOT NULL, job_id VARCHAR2(10) NOT NULL, salary NUMBER(8,2),
 commission_pct NUMBER(2,2), manager_id NUMBER(6), department_id NUMBER(4)) ROW ARCHIVAL;

Chapter 5
Controlling the Validity and Visibility of Data in Oracle Database

5-27

https://livesql.oracle.com/apex/livesql/docs/vldbg/indbarchive/indatabase-archiving-example.html
https://livesql.oracle.com/apex/livesql/docs/vldbg/indbarchive/indatabase-archiving-example.html

/* Show all the columns in the table, including hidden columns */
SELECT SUBSTR(COLUMN_NAME,1,22) NAME, SUBSTR(DATA_TYPE,1,20) DATA_TYPE, COLUMN_ID AS COL_ID,
 SEGMENT_COLUMN_ID AS SEG_COL_ID, INTERNAL_COLUMN_ID AS INT_COL_ID, HIDDEN_COLUMN, CHAR_LENGTH
 FROM USER_TAB_COLS WHERE TABLE_NAME='EMPLOYEES_INDBARCH';

NAME DATA_TYPE COL_ID SEG_COL_ID INT_COL_ID HID CHAR_LENGTH
---------------------- -------------------- ---------- ---------- ---------- --- -----------
ORA_ARCHIVE_STATE VARCHAR2 1 1 YES 4000
EMPLOYEE_ID NUMBER 1 2 2 NO 0
FIRST_NAME VARCHAR2 2 3 3 NO 20
LAST_NAME VARCHAR2 3 4 4 NO 25
EMAIL VARCHAR2 4 5 5 NO 25
PHONE_NUMBER VARCHAR2 5 6 6 NO 20
HIRE_DATE DATE 6 7 7 NO 0
JOB_ID VARCHAR2 7 8 8 NO 10
SALARY NUMBER 8 9 9 NO 0
COMMISSION_PCT NUMBER 9 10 10 NO 0
MANAGER_ID NUMBER 10 11 11 NO 0
DEPARTMENT_ID NUMBER 11 12 12 NO 0

/* Insert some data into the table */
INSERT INTO employees_indbarch(employee_id, first_name, last_name, email,
 hire_date, job_id, salary, manager_id, department_id)
 VALUES (251, 'Scott', 'Tiger', 'scott.tiger@example.com', '21-MAY-2009',
 'IT_PROG', 50000, 103, 60);

INSERT INTO employees_indbarch(employee_id, first_name, last_name, email,
 hire_date, job_id, salary, manager_id, department_id)
 VALUES (252, 'Jane', 'Lion', 'jane.lion@example.com', '11-JUN-2009',
 'IT_PROG', 50000, 103, 60);

/* Decrease the ORA_ARCHIVE_STATE column size to improve formatting in queries */
COLUMN ORA_ARCHIVE_STATE FORMAT a18;

/* The default value for ORA_ARCHIVE_STATE is '0', which means active */
SELECT employee_id, ORA_ARCHIVE_STATE FROM employees_indbarch;

EMPLOYEE_ID ORA_ARCHIVE_STATE
----------- ------------------
 251 0
 252 0

/* Insert a value into ORA_ARCHIVE_STATE to set the record to inactive status*/
UPDATE employees_indbarch SET ORA_ARCHIVE_STATE = '1' WHERE employee_id = 252;

/* Only active records are in the following query */
SELECT employee_id, ORA_ARCHIVE_STATE FROM employees_indbarch;

EMPLOYEE_ID ORA_ARCHIVE_STATE
----------- ------------------
 251 0

/* Set visibility to ALL to display all records */
ALTER SESSION SET ROW ARCHIVAL VISIBILITY = ALL;

SELECT employee_id, ORA_ARCHIVE_STATE FROM employees_indbarch;

EMPLOYEE_ID ORA_ARCHIVE_STATE
----------- ------------------
 251 0
 252 1

Chapter 5
Controlling the Validity and Visibility of Data in Oracle Database

5-28

5.3.2 Using Temporal Validity
Temporal Validity enables you to track time periods for real world validity. Valid times can be
set by users and applications for data, and data can be selected by a specified valid time, or
a valid time range.

Applications often note the validity (or effectivity) of a fact recorded in a database with dates
or timestamps that are relevant to the management of a business. For example, the hire-date
of an employee in a human resources (HR) application, which determines the effective date
of coverage in the insurance industry, is a valid date. This date is in contrast to the date or
time at which the employee record was entered in the database. The former temporal
attribute (hire-date) is called the valid time (VT) while the latter (date entered into the
database) is called the transaction time (TT). While the valid time is usually controlled by the
user, the transaction-time is system-managed.

For ILM, the valid time attributes can signify when a fact is valid in the business world and
when it is not. Using valid time attributes, a query could just show rows that are currently
valid, while not showing rows that contains facts that are not currently valid, such as a closed
order or a future hire.

Concepts that are integral to valid time temporal modeling include:

• Valid time

This is a user-defined representation of time. Examples of a valid time include project
start and finish dates, and employee hire and termination dates.

• Tables with valid-time semantics

These tables have one or more dimensions of user-defined time, each of which has a
start and an end.

• Valid-time flashback queries

This is the ability to do as-of and versions queries using a valid-time dimension.

A valid-time period consists of two date-time columns specified in the table definition. You can
add a valid-time period by explicitly adding columns, or the columns can be created
automatically. A valid-time period can be added during the create table or alter table process.

To support session level visibility control for temporal table queries, the
DBMS_FLASHBACK_ARCHIVE PL/SQL package provides the ENABLE_AT_VALID_TIME procedure.
To execute the procedure, you need the required system and object privileges.

The following PL/SQL procedure sets the valid time visibility as of the given time.

SQL> EXECUTE DBMS_FLASHBACK_ARCHIVE.enable_at_valid_time
 ('ASOF', '31-DEC-12 12.00.01 PM');

The following PL/SQL procedure sets the visibility of temporal data to currently valid data
within the valid time period at the session level.

SQL> EXECUTE DBMS_FLASHBACK_ARCHIVE.enable_at_valid_time('CURRENT');

The following procedure sets the visibility of temporal data to the full table, which is the
default temporal table visibility.

SQL> EXECUTE DBMS_FLASHBACK_ARCHIVE.enable_at_valid_time('ALL');

Chapter 5
Controlling the Validity and Visibility of Data in Oracle Database

5-29

See Also:

• Oracle Database Development Guide for information about Oracle
Temporal

• Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_FLASHBACK_ARCHIVE package

• Oracle Database SQL Language Reference for information about using
the CREATE TABLE or ALTER TABLE to initiate valid-time temporal modeling

• Oracle Database Reference for information about views used to monitor
table information

5.3.3 Creating a Table With Temporal Validity
The example in this topic shows how to create a table with temporal validity.

Example 5-11 shows the use of temporal validity.

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL:
Creating a Table with Temporal Validity.

Example 5-11 Creating a table with temporal validity

/* Create a time with an employee tracking timestamp */
/* using the specified columns*/
CREATE TABLE employees_temp (
 employee_id NUMBER(6) NOT NULL, first_name VARCHAR2(20), last_name VARCHAR2(25) NOT NULL,
 email VARCHAR2(25) NOT NULL, phone_number VARCHAR2(20), hire_date DATE NOT NULL,
 job_id VARCHAR2(10) NOT NULL, salary NUMBER(8,2), commission_pct NUMBER(2,2),
 manager_id NUMBER(6), department_id NUMBER(4),
 PERIOD FOR emp_track_time);

DESCRIBE employees_temp

 Name Null? Type
 --- -------- ---------------
 EMPLOYEE_ID NOT NULL NUMBER(6)
 FIRST_NAME VARCHAR2(20)
 LAST_NAME NOT NULL VARCHAR2(25)
 EMAIL NOT NULL VARCHAR2(25)
 PHONE_NUMBER VARCHAR2(20)
 HIRE_DATE NOT NULL DATE
 JOB_ID NOT NULL VARCHAR2(10)
 SALARY NUMBER(8,2)
 COMMISSION_PCT NUMBER(2,2)
 MANAGER_ID NUMBER(6)
 DEPARTMENT_ID NUMBER(4)

SQL> SELECT SUBSTR(COLUMN_NAME,1,22) NAME, SUBSTR(DATA_TYPE,1,28) DATA_TYPE, COLUMN_ID AS COL_ID,
 SEGMENT_COLUMN_ID AS SEG_COL_ID, INTERNAL_COLUMN_ID AS INT_COL_ID, HIDDEN_COLUMN

Chapter 5
Controlling the Validity and Visibility of Data in Oracle Database

5-30

https://livesql.oracle.com/apex/livesql/docs/vldbg/temporalvalid/temporal-validity-example.html
https://livesql.oracle.com/apex/livesql/docs/vldbg/temporalvalid/temporal-validity-example.html

 FROM USER_TAB_COLS WHERE TABLE_NAME='EMPLOYEES_TEMP';

NAME DATA_TYPE COL_ID SEG_COL_ID INT_COL_ID HID
---------------------- ---------------------------- ------ ---------- ---------- ---
EMP_TRACK_TIME_START TIMESTAMP(6) WITH TIME ZONE 1 1 YES
EMP_TRACK_TIME_END TIMESTAMP(6) WITH TIME ZONE 2 2 YES
EMP_TRACK_TIME NUMBER 3 YES
EMPLOYEE_ID NUMBER 1 3 4 NO
FIRST_NAME VARCHAR2 2 4 5 NO
LAST_NAME VARCHAR2 3 5 6 NO
EMAIL VARCHAR2 4 6 7 NO
PHONE_NUMBER VARCHAR2 5 7 8 NO
HIRE_DATE DATE 6 8 9 NO
JOB_ID VARCHAR2 7 9 10 NO
SALARY NUMBER 8 10 11 NO
COMMISSION_PCT NUMBER 9 11 12 NO
MANAGER_ID NUMBER 10 12 13 NO
DEPARTMENT_ID NUMBER 11 13 14 NO

/* Insert/update/delete with specified values for time columns */
INSERT INTO employees_temp(emp_track_time_start, emp_track_time_end, employee_id, first_name,
 last_name, email, hire_date, job_id, salary, manager_id, department_id)
 VALUES (TIMESTAMP '2009-06-01 12:00:01 Europe/Paris',
 TIMESTAMP '2012-11-30 12:00:01 Europe/Paris', 251, 'Scott', 'Tiger',
 'scott.tiger@example.com', DATE '2009-05-21', 'IT_PROG', 50000, 103, 60);

INSERT INTO employees_temp(emp_track_time_start, emp_track_time_end, employee_id, first_name,
 last_name, email, hire_date, job_id, salary, manager_id, department_id)
 VALUES (TIMESTAMP '2009-06-01 12:00:01 Europe/Paris',
 TIMESTAMP '2012-12-31 12:00:01 Europe/Paris', 252, 'Jane', 'Lion',
 'jane.lion@example.com', DATE '2009-06-11', 'IT_PROG', 50000, 103, 60);

UPDATE employees_temp set salary = salary + salary * .05
 WHERE emp_track_time_start <= TIMESTAMP '2009-06-01 12:00:01 Europe/Paris';

SELECT employee_id, SALARY FROM employees_temp;

EMPLOYEE_ID SALARY
----------- ----------
 251 52500
 252 52500

/* No rows are deleted for the following statement because no records */
/* are in the specified track time. */
DELETE employees_temp WHERE emp_track_time_end < TIMESTAMP '2001-12-31 12:00:01 Europe/Paris';

0 rows deleted.

/* Show rows that are in a specified time period */
SELECT employee_id FROM employees_temp
 WHERE emp_track_time_start > TIMESTAMP '2009-05-31 12:00:01 Europe/Paris' AND
 emp_track_time_end < TIMESTAMP '2012-12-01 12:00:01 Europe/Paris';

EMPLOYEE_ID

 251

/* Show rows that are in a specified time period */
SELECT employee_id FROM employees_temp AS OF PERIOD FOR
 emp_track_time TIMESTAMP '2012-12-01 12:00:01 Europe/Paris';

Chapter 5
Controlling the Validity and Visibility of Data in Oracle Database

5-31

EMPLOYEE_ID

 252

5.3.4 Limitations and Restrictions With In-Database Archiving and
Temporal Validity

This topic lists the limitations and restrictions associated with In-Database Archiving
and Temporal Validity.

The limitations and restrictions include:

• ILM is not supported with OLTP table compression for Temporal Validity. Segment-
level ILM and compression is supported if partitioned on the end-time columns.

• ILM is not supported with OLTP table compression for in-database archiving.
Segment-level ILM and compression is supported if partitioned on the
ORA_ARCHIVE_STATE column.

5.4 Implementing an ILM System Manually Using
Partitioning

You can manually implement an Information Lifecycle Management (ILM) system
using partitioning.

Example 5-12 illustrates how to manually create storage tiers and partition a table
across those storage tiers and then setup a virtual private database (VPD) policy on
that database to restrict access to the online archive tier data.

See Also:

• Oracle Database SQL Language Reference for information about the
CREATE TABLE SQL statement

• Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_RLS package

Example 5-12 Manually implementing an ILM system

REM Setup the tablespaces for the data

REM These tablespaces would be placed on a High Performance Tier
CREATE SMALLFILE TABLESPACE q1_orders DATAFILE 'q1_orders'
 SIZE 2M AUTOEXTEND ON NEXT 1M MAXSIZE UNLIMITED LOGGING
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

CREATE SMALLFILE TABLESPACE q2_orders DATAFILE 'q2_orders'
 SIZE 2M AUTOEXTEND ON NEXT 1M MAXSIZE UNLIMITED LOGGING
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

CREATE SMALLFILE TABLESPACE q3_orders DATAFILE 'q3_orders'
 SIZE 2M AUTOEXTEND ON NEXT 1M MAXSIZE UNLIMITED LOGGING
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

Chapter 5
Implementing an ILM System Manually Using Partitioning

5-32

CREATE SMALLFILE TABLESPACE q4_orders DATAFILE 'q4_orders'
 SIZE 2M AUTOEXTEND ON NEXT 1M MAXSIZE UNLIMITED LOGGING
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

REM These tablespaces would be placed on a Low Cost Tier
CREATE SMALLFILE TABLESPACE "2006_ORDERS" DATAFILE '2006_orders'
 SIZE 5M AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED LOGGING
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

CREATE SMALLFILE TABLESPACE "2005_ORDERS" DATAFILE '2005_orders'
 SIZE 5M AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED LOGGING
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

REM These tablespaces would be placed on the Online Archive Tier
CREATE SMALLFILE TABLESPACE "2004_ORDERS" DATAFILE '2004_orders'
 SIZE 5M AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED LOGGING
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

CREATE SMALLFILE TABLESPACE old_orders DATAFILE 'old_orders'
 SIZE 15M AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED LOGGING
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

REM Now create the Partitioned Table
CREATE TABLE allorders (
 prod_id NUMBER NOT NULL,
 cust_id NUMBER NOT NULL,
 time_id DATE NOT NULL,
 channel_id NUMBER NOT NULL,
 promo_id NUMBER NOT NULL,
 quantity_sold NUMBER(10,2) NOT NULL,
 amount_sold NUMBER(10,2) NOT NULL)
 --
 -- table wide physical specs
 --
 PCTFREE 5 NOLOGGING
 --
 -- partitions
 --
 PARTITION BY RANGE (time_id)
 (partition allorders_pre_2004 VALUES LESS THAN
 (TO_DATE('2004-01-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE old_orders,
 partition allorders_2004 VALUES LESS THAN
 (TO_DATE('2005-01-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE "2004_ORDERS",
 partition allorders_2005 VALUES LESS THAN
 (TO_DATE('2006-01-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE "2005_ORDERS",
 partition allorders_2006 VALUES LESS THAN
 (TO_DATE('2007-01-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE "2006_ORDERS",
 partition allorders_q1_2007 VALUES LESS THAN

Chapter 5
Implementing an ILM System Manually Using Partitioning

5-33

 (TO_DATE('2007-04-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE q1_orders,
 partition allorders_q2_2007 VALUES LESS THAN
 (TO_DATE('2007-07-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE q2_orders,
 partition allorders_q3_2007 VALUES LESS THAN
 (TO_DATE('2007-10-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE q3_orders,
 partition allorders_q4_2007 VALUES LESS THAN
 (TO_DATE('2008-01-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE q4_orders);

ALTER TABLE allorders ENABLE ROW MOVEMENT;

REM Here is another example using INTERVAL partitioning

REM These tablespaces would be placed on a High Performance Tier
CREATE SMALLFILE TABLESPACE cc_this_month DATAFILE 'cc_this_month'
 SIZE 2M AUTOEXTEND ON NEXT 1M MAXSIZE UNLIMITED LOGGING
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

CREATE SMALLFILE TABLESPACE cc_prev_month DATAFILE 'cc_prev_month'
 SIZE 2M AUTOEXTEND ON NEXT 1M MAXSIZE UNLIMITED LOGGING
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

REM These tablespaces would be placed on a Low Cost Tier
CREATE SMALLFILE TABLESPACE cc_prev_12mth DATAFILE 'cc_prev_12'
 SIZE 2M AUTOEXTEND ON NEXT 1M MAXSIZE UNLIMITED LOGGING
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

REM These tablespaces would be placed on the Online Archive Tier
CREATE SMALLFILE TABLESPACE cc_old_tran DATAFILE 'cc_old_tran'
 SIZE 2M AUTOEXTEND ON NEXT 1M MAXSIZE UNLIMITED LOGGING
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

REM Credit Card Transactions where new partitions
REM are automatically placed on the high performance tier
CREATE TABLE cc_tran (
 cc_no VARCHAR2(16) NOT NULL,
 tran_dt DATE NOT NULL,
 entry_dt DATE NOT NULL,
 ref_no NUMBER NOT NULL,
 description VARCHAR2(30) NOT NULL,
 tran_amt NUMBER(10,2) NOT NULL)
 --
 -- table wide physical specs
 --
 PCTFREE 5 NOLOGGING
 --
 -- partitions
 --
 PARTITION BY RANGE (tran_dt)
 INTERVAL (NUMTOYMINTERVAL(1,'month')) STORE IN (cc_this_month)

Chapter 5
Implementing an ILM System Manually Using Partitioning

5-34

 (partition very_old_cc_trans VALUES LESS THAN
 (TO_DATE('1999-07-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE cc_old_tran ,
 partition old_cc_trans VALUES LESS THAN
 (TO_DATE('2006-07-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE cc_old_tran ,
 partition last_12_mths VALUES LESS THAN
 (TO_DATE('2007-06-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE cc_prev_12mth,
 partition recent_cc_trans VALUES LESS THAN
 (TO_DATE('2007-07-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE cc_prev_month,
 partition new_cc_tran VALUES LESS THAN
 (TO_DATE('2007-08-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE cc_this_month);

REM Create a Security Policy to allow user SH to see all credit card data,
REM PM only sees this years data,
REM and all other uses cannot see the credit card data

CREATE OR REPLACE FUNCTION ilm_seehist
 (oowner IN VARCHAR2, ojname IN VARCHAR2)
 RETURN VARCHAR2 AS con VARCHAR2 (200);
BEGIN
 IF SYS_CONTEXT('USERENV','CLIENT_INFO') = 'SH'
 THEN -- sees all data
 con:= '1=1';
 ELSIF SYS_CONTEXT('USERENV','CLIENT_INFO') = 'PM'
 THEN -- sees only data for 2007
 con := 'time_id > ''31-Dec-2006''';
 ELSE
 -- others nothing
 con:= '1=2';
 END IF;
 RETURN (con);
END ilm_seehist;
/

5.5 Managing ILM Heat Map and ADO with Oracle Enterprise
Manager

You can manage Heat Map and Automatic Data Optimization with Oracle Enterprise Manager
Cloud Control.

This section contains the following topics:

• Accessing the Database Administration Menu

Chapter 5
Managing ILM Heat Map and ADO with Oracle Enterprise Manager

5-35

• Viewing Automatic Data Optimization Activity at the Tablespace Level

• Viewing the Segment Activity Details of Any Tablespace

• Viewing the Segment Activity Details of Any Object

• Viewing the Segment Activity History of Any Object

• Searching Segment Activity in Automatic Data Optimization

• Viewing Policies for a Segment

• Disabling Background Activity

• Changing Execution Frequency of Background Automatic Data Optimization

• Viewing Policy Executions In the Last 24 Hours

• Viewing Objects Moved In Last 24 Hours

• Viewing Policy Details

• Viewing Objects Associated With a Policy

• Evaluating a Policy Before Execution

• Executing a Single Policy

• Stopping a Policy Execution

• Viewing Policy Execution History

See Also:

• Displaying Heat Map Tracking Data With Views and Using Views to
Monitor Policies for ADO for information about views available for
displaying Heat Map and ADO policy details

• Oracle Enterprise Manager Cloud Control Administrator's Guide for
information about managing Oracle Enterprise Manager Cloud Control

5.5.1 Accessing the Database Administration Menu
To access the Administration menu for a database:

1. Log in to Oracle Enterprise Manager Cloud Control.

2. Select Databases under the Targets menu.

3. Click the database name in the list.

4. The Administration menu appears on the database home page.

5.5.2 Viewing Automatic Data Optimization Activity at the Tablespace
Level

To monitor the activity of the top 100 tablespaces selected by size in the database,
follow these steps:

Chapter 5
Managing ILM Heat Map and ADO with Oracle Enterprise Manager

5-36

1. From the Administration menu, choose Storage, then select Information Lifecycle
Management.

Enterprise Manager displays the Information Lifecycle Management page.

2. On the Information Lifecycle Management page, you can view the Top 100 Tablespace
Activity Heat Map based on the last access time, last write time, last full scan time, and
last look up scan time.

By default, the size of each box in the heat map represents a tablespace within a heat
map and is determined by tablespace size. You can then use Information Lifecycle
Management to drill down from tablespace to object to segment level heat maps.

5.5.3 Viewing the Segment Activity Details of Any Tablespace
To view segment activity details of any tablespace, follow these steps:

1. From the Administration menu, choose Storage, then select Information Lifecycle
Management.

Enterprise Manager displays the Information Lifecycle Management page.

2. On the Information Lifecycle Management page, click the Show Additional button.

Enterprise Manager displays a dialog box that you can use to search for the segment
activity details of any tablespace.

3. On the dialog box, enter the Tablespace Name and click the Search button.

Enterprise Manager displays the Segment Activity details for the tablespace.

4. Click the Edit Tablespace Policy button to display the Edit Tablespace page with the
ADO tab selected. You can create a policy for the tablespace that allows it to be
compressed or moved.

5.5.4 Viewing the Segment Activity Details of Any Object
To view segment activity details of any object, follow these steps:

1. From the Administration menu, choose Storage, then select Information Lifecycle
Management.

Enterprise Manager displays the Information Lifecycle Management page.

2. Move the cursor over any of the boxes within the Database level heat map where each
box represents a tablespace. Click the Tablespace to which the object you want to view
belongs.

Enterprise Manager displays the Tablespace level heat map for the 100 largest objects
belonging to the tablespace. The Segment Activity tables displays the Segment Activity
details for the 100 largest objects.

3. On the Information Lifecycle Management page, click the Show Additional button.

Enterprise Manager displays a dialog box that you can use to search for the segment
activity details of any object belonging to the tablespace.

4. On the dialog box, enter the Schema Name and Object Name and click Search.

Enterprise Manager displays the Segment Activity details for the object.

5. Click the Edit Object Policy button to display the Edit Object page with the ADO tab
selected. You can create a policy for the object that allows it to be compressed or moved.

Chapter 5
Managing ILM Heat Map and ADO with Oracle Enterprise Manager

5-37

5.5.5 Viewing the Segment Activity History of Any Object
To view the segment activity history of any object, follow these steps:

1. From the Administration menu, choose Storage, then select Information
Lifecycle Management.

Enterprise Manager displays the Information Lifecycle Management page.

2. Move the cursor over any of the boxes within the Database level heat map where
each box represents a tablespace. Click the Tablespace to which the object you
want to view belongs.

Enterprise Manager displays the Tablespace level heat map for the 100 largest
objects belonging to the tablespace. The Segment Activity tables displays the
Segment Activity details for the 100 largest objects.

3. Select the object in the Segment Activity details table and click the Activity
History button.

Enterprise Manager displays the Edit Object page with the ADO tab selected. The
ADO tab displays a list of policies and the Segment Access history.

4. You can select a segment, change the date range to be the last 60 days, select the
Daily option, and clicks the Refresh button to display the Segment Access History
for the object for the last 60 days.

5.5.6 Searching Segment Activity in Automatic Data Optimization
To search for segment activities during different time durations in Automatic Data
Optimization, follow these steps:

1. From the Administration menu, choose Storage, then select Information
Lifecycle Management.

Enterprise Manager displays the Information Lifecycle Management page.

2. On the Information Lifecycle Management page, click any of the boxes in a heat
map. From the initial display which is the database level, click a box in the heat
map to display the 100 largest objects in that tablespace. You can then click a heat
map box to see the heat map of the 100 largest segments in that object.

3. Enter a timestamp that is one year ago for the Last Access Time and then click
Go. A list of segments that have not been accessed or modified in the last year
are displayed. The segments are sorted in descending order by segment size.

On the object level heat map, you can search for a specific segment based on
Tablespace, Name, Partition, Type, Last Access Time, Last Write Time, Last Full
Scan Time, and Last Look Up Scan Time.

You can select a row (segment) and view the row activity for that segment clicking
the Policies column to view the policies associated with the segment.

5.5.7 Viewing Policies for a Segment
To view the policies associated with a segment, follow these steps:

1. From the Administration menu, choose Storage, then select Information
Lifecycle Management.

Chapter 5
Managing ILM Heat Map and ADO with Oracle Enterprise Manager

5-38

Enterprise Manager displays the Information Lifecycle Management page.

2. On the Information Lifecycle Management page, click Go. If the segments in the search
results have policies associated with them, the count is displayed in the Policies column
and is non-zero. Move your mouse over the count to view the associated policies with the
segment, including inherited policies. If the count is zero then no policies are associated
with the segment.

From the Database level heat map drill down to Tablespace level heat map. On the
Tablespace level heat map Enterprise Manager displays the top 100 Objects belonging to
the Tablespace. For each object, Enterprise Manager displays the count of policies in the
column.

From Tablespace level heat map select an object and drill down to the object level heat
map. Enterprise Manager displays the Top 100 largest Segments belonging to the Object.
For each segment, Enterprise Manager displays a count of policies in the Policies
column.

5.5.8 Disabling Background Activity
To disable the Automatic Data Optimization background evaluation and scheduler, follow
these steps:

For more information about the ILM ADO ENABLED parameter, refer to Managing ILM ADO
Parameters.

1. From the Administration menu, choose Storage, then select Information Lifecycle
Management.

Enterprise Manager displays the Information Lifecycle Management page.

2. On the Information Lifecycle Management page, click the Policy tab.

3. Click Configure in the Policy Execution Settings section.

The Configure Policy Execution Settings dialog box is displayed.

4. Change the Status drop-down to Disabled and click OK.

Enterprise Manager displays the Information Lifecycle Management page where the
Status now shows Disabled on the Policy tab in the Policy Execution Settings section.

5.5.9 Changing Execution Frequency of Background Automatic Data
Optimization

To change the execution frequency of the Information Lifecycle Management background
evaluation and scheduler, follow these steps:

For more information about the ILM ADO EXECUTION INTERVAL parameter, refer to Managing
ILM ADO Parameters.

1. From the Administration menu, choose Storage, then select Information Lifecycle
Management.

Enterprise Manager displays the Information Lifecycle Management page.

2. On the Information Lifecycle Management page, click the Policy tab.

3. Click Configure in the Policy Execution Settings section.

The Configure Policy Execution Settings dialog box is displayed.

Chapter 5
Managing ILM Heat Map and ADO with Oracle Enterprise Manager

5-39

4. Change the value of the Execution Interval (mins) to a lower or higher number
than what is currently displayed and then click OK.

Enterprise Manager displays the Information Lifecycle Management page where
the Execution Interval now shows the new value on the Policy tab under Policy
Execution Settings.

5.5.10 Viewing Policy Executions In the Last 24 Hours
To view policies that were executed in the last 24 hours and to view what objects were
moved or compressed with the execution of the policies, follow these steps:

1. From the Administration menu, choose Storage, then select Information
Lifecycle Management.

Enterprise Manager displays the Information Lifecycle Management page.

2. On the Information Lifecycle Management page, click the Policy tab.

3. Click the Policies Completed or the Policies Failed link on the Policy execution
summary for last 24 hours row. Clicking either displays the execution history for
the past 24 hours.

The Policy Execution Details dialog box display, showing the execution details for
the policies in the last 24 hours.

5.5.11 Viewing Objects Moved In Last 24 Hours
To view which objects were moved in the last 24 hours and which policies/jobs moved
those objects, follow these steps:

1. From the Administration menu, choose Storage, then select Information
Lifecycle Management.

Enterprise Manager displays the Information Lifecycle Management page.

2. On the Information Lifecycle Management page, click the Policy tab.

3. On the Policies execution summary for last 24 hours row, click the Objects
Moved link.

The Policy Execution History dialog box displays, showing the execution history for
the jobs and policies executed and the objects moved in the last 24 hours.

5.5.12 Viewing Policy Details
To view the details of a specific ADO policy, follow these steps:

1. From the Administration menu, choose Storage, then select Information
Lifecycle Management.

Enterprise Manager displays the Information Lifecycle Management page.

2. On the Information Lifecycle Management page, click the Policy tab.

3. To view policy details, click the policy name link in the policy table, or select any
row in the policies table and then click the View Policy Details button.

Chapter 5
Managing ILM Heat Map and ADO with Oracle Enterprise Manager

5-40

5.5.13 Viewing Objects Associated With a Policy
To view the objects associated with a specific policy, follow these steps:

1. From the Administration menu, choose Storage, then select Information Lifecycle
Management.

Enterprise Manager displays the Information Lifecycle Management page.

2. On the Information Lifecycle Management page, click the Policy tab.

3. Click the count in the Objects column.

The Objects associated with the Policy are displayed

5.5.14 Evaluating a Policy Before Execution
To evaluate a policy before executing the policy, follow these steps:

1. From the Administration menu, choose Storage, then select Information Lifecycle
Management.

Enterprise Manager displays the Information Lifecycle Management page.

2. On the Information Lifecycle Management page, click the Policy tab.

3. In the Evaluations region, click Evaluate.

A dialog box displays giving you the choice of evaluating all policies in the database, or
all policies affecting objects in a particular schema.

4. Enter a Schema Name and click OK to initiate the evaluation.

The evaluation dialog box closes and the evaluation is submitted. You can refresh the
page or perform other Enterprise Manager tasks and then revisit the Policy Tab later.
When you do, the Completed count in the Evaluations region is increased by 1.

5. When you click the Completed count link in the Evaluations region, a dialog box is
displayed that lists all completed evaluations.

6. When you click the Task ID of the most recent evaluation, the Evaluation Details dialog
box is displayed listing all objects currently included in the evaluation task that will either
be compressed or moved if this evaluation is executed.

7. Click OK to include the list of objects in the execution. The Evaluation Details dialog box
closes.

8. Select the row in the Evaluations table containing the most recent evaluation (top most
row), then click Execute.

The Execute Evaluation dialog box is displayed, again listing the objects that will be
affected during execution.

9. Click OK to begin the execution.

The Execute Evaluation dialog box closes. Eventually, execution results can be seen by
clicking the Completed or Failed links in the Jobs or Policies regions under Policy
Execution Summary for Last 24 Hours. Also, eventually the Evaluations Completed count
is decreased by 1, as the task changes state from INACTIVE to ACTIVE to
COMPLETED.

Chapter 5
Managing ILM Heat Map and ADO with Oracle Enterprise Manager

5-41

5.5.15 Executing a Single Policy
To execute a policy immediately on the objects associated with the Policy, follow these
steps:

1. From the Administration menu, choose Storage, then select Information
Lifecycle Management.

Enterprise Manager displays the Information Lifecycle Management page.

2. On the Information Lifecycle Management page, click the Policy tab.

3. Select the policy and click Execute Policy.

The Execute Policy dialog box is displayed, listing all objects that are evaluated by
the selected policy. The dialog box also includes a Hide/Show button to display
the EXECUTE_ILM commands to be executed. Only objects with this policy enabled
are included.

5.5.16 Stopping a Policy Execution
To stop a policy execution, follow these steps:

1. From the Administration menu, choose Storage, then select Information
Lifecycle Management.

Enterprise Manager displays the Information Lifecycle Management page.

2. On the Information Lifecycle Management page, click the Policy tab.

3. In the Jobs region under Policy Execution Summary for Last 24 Hours, click the In
Progress link. This step assumes there is at least one task or job in progress.

A dialog box displays listing all currently executing tasks.

4. Click the Jobs link for one of the tasks listed in the table.

A dialog box displays listing details about the job(s) running as part of the task.

5. Clicks OK.

The Jobs Details dialog box closes.

6. Select a row in the table and click Stop Execution.

A dialog box displays confirmation of the stop execution process.

7. Click OK.

The confirmation dialog box is dismissed.

5.5.17 Viewing Policy Execution History
To view the execution history for a specific policy, follow these steps:

1. From the Administration menu, choose Storage, then select Information
Lifecycle Management.

Enterprise Manager displays the Information Lifecycle Management page.

2. On the Information Lifecycle Management page, click the Policy tab.

3. Select the policy and click Execution History.

Chapter 5
Managing ILM Heat Map and ADO with Oracle Enterprise Manager

5-42

The Policy Execution History dialog box displays, showing the execution history for the
selected policy. The details include the job information and the objects that were moved
or compressed.

Chapter 5
Managing ILM Heat Map and ADO with Oracle Enterprise Manager

5-43

6
Using Partitioning in a Data Warehouse
Environment

Partitioning features can improve performance in a data warehouse environment.

This chapter describes the partitioning features that significantly enhance data access and
improve overall application performance. Improvements with partitioning are especially true
for applications that access tables and indexes with millions of rows and many gigabytes of
data, as found in a data warehouse environment. Data warehouses often contain large tables
and require techniques for managing these large tables and for providing good query
performance across these large tables.

This chapter contains the following sections:

• What Is a Data Warehouse?

• Scalability in a Data Warehouse

• Partitioning for Performance in a Data Warehouse

• Manageability in a Data Warehouse

6.1 What Is a Data Warehouse?
A data warehouse is a relational database that is designed for query and analysis rather than
for transaction processing.

A data warehouse usually contains historical data derived from transaction data, but can
include data from other sources. Data warehouses separate analysis workload from
transaction workload and enable an organization to consolidate data from several sources.

In addition to a relational database, a data warehouse environment can include an extraction,
transformation, and loading (ETL) solution, analytical processing and data mining capabilities,
client analysis tools, and other applications that manage the process of gathering data and
delivering it to business users.

See Also:

Oracle Database Data Warehousing Guide

6.2 Scalability in a Data Warehouse
Partitioning helps to scale a data warehouse by dividing database objects into smaller pieces,
enabling access to smaller, more manageable objects. Having direct access to smaller
objects addresses the scalability requirements of data warehouses.

This section contains the following topics:

6-1

• Bigger Databases

• Bigger Individual Tables: More Rows in Tables

• More Users Querying the System

• More Complex Queries

6.2.1 Bigger Databases
The ability to split a large database object into smaller pieces transparently simplifies
efficient management of very large databases.

You can identify and manipulate individual partitions and subpartitions to manage large
database objects. Consider the following advantages of partitioned objects:

• Backup and recovery can be performed on a low level of granularity to manage the
size of the database.

• Part of a database object can be placed in compressed storage while other parts
can remain uncompressed.

• Partitioning can store data transparently on different storage tiers to lower the cost
of retaining vast amounts of data. For more information, refer to Managing and
Maintaining Time-Based Information.

6.2.2 Bigger Individual Tables: More Rows in Tables
It takes longer to scan a big table than it takes to scan a small table. Queries against
partitioned tables may access one or more partitions that are small in contrast to the
total size of the table.

Similarly, queries may take advantage of partition elimination on indexes. It takes less
time to read a smaller portion of an index from disk than to read the entire index. Index
structures that share the partitioning strategy with the table, such as local partitioned
indexes, can be accessed and maintained on a partition-by-partition basis.

The database can take advantage of the distinct data sets in separate partitions if you
use parallel execution to speed up queries, DML, and DDL statements. Individual
parallel execution servers can work on their own data sets, identified by the partition
boundaries.

6.2.3 More Users Querying the System
With partitioning, users are more likely to query on isolated and smaller data sets.

Consequently, the database can return results faster than if all users queried the same
and much larger data sets. Data contention is less likely.

6.2.4 More Complex Queries
You can perform complex queries faster using smaller data sets.

If smaller data sets are being accessed, then complex calculations are more likely to
be processed in memory, which is beneficial from a performance perspective and
reduces the application's I/O requirements. A larger data set may have to be written to
the temporary tablespace to complete a query, in which case additional I/O operations
against the database storage occurs.

Chapter 6
Scalability in a Data Warehouse

6-2

6.3 Partitioning for Performance in a Data Warehouse
Good performance is a requirement for a successful data warehouse.

Analyses run against the database should return within a reasonable amount of time, even if
the queries access large amounts of data in tables that are terabytes in size. Partitioning
increases the speed of data access and application processing, which results in successful
data warehouses that are not prohibitively expensive.

This section contains the following topics:

• Partition Pruning in a Data Warehouse

• Partition-Wise Joins in a Data Warehouse

• Indexes and Partitioned Indexes in a Data Warehouse

• Materialized Views and Partitioning in a Data Warehouse

6.3.1 Partition Pruning in a Data Warehouse
Partition pruning is an essential performance feature for data warehouses.

In partition pruning, the optimizer analyzes FROM and WHERE clauses in SQL statements to
eliminate unneeded partitions when building the partition access list. As a result, Oracle
Database performs operations only on those partitions that are relevant to the SQL
statement.

Partition pruning dramatically reduces the amount of data retrieved from disk and shortens
processing time, thus improving query performance and optimizing resource utilization.

This section contains the following topics:

• Basic Partition Pruning Techniques

• Advanced Partition Pruning Techniques

For more information about partition pruning and the difference between static and dynamic
partition pruning, refer to Partitioning for Availability, Manageability, and Performance.

6.3.1.1 Basic Partition Pruning Techniques
The optimizer uses a wide variety of predicates for pruning.

The three predicate types, equality, range, and IN-list, are the predicates most commonly
used for partition pruning. As an example, consider the following query:

SELECT SUM(amount_sold) day_sales
FROM sales
WHERE time_id = TO_DATE('02-JAN-1998', 'DD-MON-YYYY');

Because there is an equality predicate on the partitioning column of sales, the query is
pruned down to a single predicate and this is reflected in the following execution plan:

| Id | Operation | Name | Rows| Bytes | Cost (%CPU)| Time |Pstart| Pstop |

| 0 | SELECT STATEMENT | | | | 21 (100) | | | |
| 1 | SORT AGGREGATE | | 1 | 13 | | | | |

Chapter 6
Partitioning for Performance in a Data Warehouse

6-3

| 2 | PARTITION RANGE SINGLE | | 485 | 6305 | 21 (10) | 00:00:01 | 5 | 5 |
| * 3 | TABLE ACCESS FULL | SALES | 485 | 6305 | 21 (10) | 00:00:01 | 5 | 5 |

Predicate Information (identified by operation id):

 3 - filter("TIME_ID"=TO_DATE('1998-01-02 00:00:00', 'yyyy-mm-dd hh24:mi:ss'))

Similarly, a range or an IN-list predicate on the time_id column and the optimizer
would be used to prune to a set of partitions. The partitioning type plays a role in which
predicates can be used. Range predicates cannot be used for pruning on hash
partitioned tables, but they can be used for all other partitioning strategies. However,
on list-partitioned tables, range predicates may not map to a contiguous set of
partitions. Equality and IN-list predicates can prune with all the partitioning methods.

6.3.1.2 Advanced Partition Pruning Techniques
Oracle Database pruning feature effectively handles more complex predicates or SQL
statements that involve partitioned tables.

A common situation is when a partitioned table is joined to the subset of another table,
limited by a WHERE condition. For example, consider the following query:

SELECT t.day_number_in_month, SUM(s.amount_sold)
 FROM sales s, times t
 WHERE s.time_id = t.time_id
 AND t.calendar_month_desc='2000-12'
 GROUP BY t.day_number_in_month;

If the database performed a nested loop join with times table on the right-hand side,
then the query would access only the partition corresponding to this row from the
times table, so pruning would implicitly take place. But, if the database performed a
hash or sort merge join, this would not be possible. If the table with the WHERE
predicate is relatively small compared to the partitioned table, and the expected
reduction of records or partitions for the partitioned table is significant, then the
database performs dynamic partition pruning using a recursive subquery. The decision
whether to invoke subquery pruning is an internal cost-based decision of the optimizer.

A sample execution plan using a hash join operation would look like the following:

--
| Id| Operation | Name | Rows | Bytes| Cost (%CPU)| Time | Pstart | Pstop |
--
0	SELECT STATEMENT				761 (100)			
1	HASH GROUP BY		20	640	761 (41)	00:00:10		
* 2	HASH JOIN		19153	598K	749 (40)	00:00:09		
* 3	TABLE ACCESS FULL	TIMES	30	570	17 (6)	00:00:01		
4	PARTITION RANGE SUBQUERY		918K	11M	655 (33)	00:00:08	KEY(SQ)	KEY(SQ)
5	TABLE ACCESS FULL	SALES	918	11M	655 (33)	00:00:08	KEY(SQ)	KEY(SQ)
--
Predicate Information (identified by operation id):

PLAN_TABLE_OUTPUT
--
 2 - access("S"."TIME_ID"="T"."TIME_ID")
 3 - filter("T"."CALENDAR_MONTH_DESC"='2000-12')

This execution plan shows that dynamic partition pruning occurred on the sales table
using a subquery, as shown by the KEY(SQ) value in the PSTART and PSTOP columns.

The following is an example of advanced pruning using an OR predicate.

Chapter 6
Partitioning for Performance in a Data Warehouse

6-4

SELECT p.promo_name promo_name, (s.profit - p.promo_cost) profit
FROM
 promotions p,
 (SELECT
 sales.promo_id,
 SUM(sales.QUANTITY_SOLD * (costs.UNIT_PRICE - costs.UNIT_COST)) profit
 FROM
 sales, costs
 WHERE
 ((sales.time_id BETWEEN TO_DATE('01-JAN-1998','DD-MON-YYYY',
 'NLS_DATE_LANGUAGE = American') AND
 TO_DATE('01-JAN-1999','DD-MON-YYYY', 'NLS_DATE_LANGUAGE = American')
 OR
 (sales.time_id BETWEEN TO_DATE('01-JAN-2001','DD-MON-YYYY',
 'NLS_DATE_LANGUAGE = American') AND
 TO_DATE('01-JAN-2002','DD-MON-YYYY', 'NLS_DATE_LANGUAGE = American')))
 AND sales.time_id = costs.time_id
 AND sales.prod_id = costs.prod_id)
 GROUP BY
 sales.promo_id) s
WHERE s.promo_id = p.promo_id
ORDER BY profit
DESC;

This query joins the sales and costs tables. The sales table is partitioned by range on the
column time_id. One condition in the query is two predicates on time_id, which are
combined with an OR operator. This OR predicate is used to prune the partitions in the sales
table and a single join between the sales and costs table is performed. The execution plan is
as follows:

--
| Id| Operation | Name |Rows |Bytes |TmpSp|Cost(%CPU)| Time | Pstart| Pstop |
--
0	SELECT STATEMENT		4	200		3556 (14)	00:00:43		
1	SORT ORDER BY		4	200		3556 (14)	00:00:43		
* 2	HASH JOIN		4	200		3555 (14)	00:00:43		
3	TABLE ACCESS FULL	PROMOTIONS	503	16599		16 (0)	00:00:01		
4	VIEW		4	68		3538 (14)	00:00:43		
5	HASH GROUP BY		4	164		3538 (14)	00:00:43		
6	PARTITION RANGE OR		314K	12M		3321 (9)	00:00:40	KEY(OR)	KEY(OR)
* 7	HASH JOIN		314K	12M	440K	3321 (9)	00:00:40		
* 8	TABLE ACCESS FULL	SALES	402K	7467K		400 (39)	00:00:05	KEY(OR)	KEY(OR)
9	TABLE ACCESS FULL	COSTS	82112	1764K		77 (24)	00:00:01	KEY(OR)	KEY(OR)
--
Predicate Information (identified by operation id):

 2 - access("S"."PROMO_ID"="P"."PROMO_ID")
 7 - access("SALES"."TIME_ID"="COSTS"."TIME_ID" AND "SALES"."PROD_ID"="COSTS"."PROD_ID")
 8 - filter("SALES"."TIME_ID"<=TO_DATE('1999-01-01 00:00:00', 'yyyy-mm-dd hh24:mi:ss') AND
 "SALES"."TIME_ID">=TO_DATE('1998-01-01 00:00:00', 'yyyy-mm-dd hh24:mi:ss') OR
 "SALES"."TIME_ID">=TO_DATE('2001-01-01 00:00:00', 'yyyy-mm-dd hh24:mi:ss') AND
 "SALES"."TIME_ID"<=TO_DATE('2002-01-01 00:00:00', 'yyyy-mm-dd hh24:mi:ss'))

The database also does additional pruning when a column is range-partitioned on multiple
columns. As long as the database can guarantee that a particular predicate cannot be
satisfied in a particular partition, the partition is skipped. This allows the database to optimize
cases where there are range predicates on multiple columns or in the case where there are
no predicates on a prefix of the partitioning columns.

For tips on partition pruning, refer to Partition Pruning Tips.

Chapter 6
Partitioning for Performance in a Data Warehouse

6-5

6.3.2 Partition-Wise Joins in a Data Warehouse
Partition-wise joins reduce query response time by minimizing the amount of data
exchanged among parallel execution servers when joins execute in parallel.

Using partition-wise joins significantly reduces response time and improves the use of
both CPU and memory resources. Parallel partition-wise joins are used commonly for
processing large joins efficiently and fast. Partition-wise joins can be full or partial.
Oracle Database decides which type of join to use.

In addition to parallel partition-wise joins, queries using the SELECT DISTINCT clause
and SQL window functions can perform parallel partition-wise operations.

This section contains the following topics:

• Full Partition-Wise Joins

• Partial Partition-Wise Joins

• Benefits of Partition-Wise Joins

• Performance Considerations for Parallel Partition-Wise Joins

See Also:

• Partition-Wise Operations for additional information about partition-wise
operations

• Oracle Database Data Warehousing Guide for information about data
warehousing and optimization techniques

6.3.2.1 Full Partition-Wise Joins
Full partition-wise joins can occur if two tables that are co-partitioned on the same key
are joined in a query.

The tables can be co-partitioned at the partition level, or at the subpartition level, or at
a combination of partition and subpartition levels. Reference partitioning is an easy
way to guarantee co-partitioning. Full partition-wise joins can be executed serially and
in parallel.

For more information about partition-wise joins, refer to Partitioning for Availability,
Manageability, and Performance.

The following example shows a full partition-wise join on the orders and order_items
tables, in which the order_items table is reference-partitioned.

CREATE TABLE orders
(order_id NUMBER(12) NOT NULL
, order_date DATE NOT NULL
, order_mode VARCHAR2(8)
, order_status VARCHAR2(1)
, CONSTRAINT orders_pk PRIMARY KEY (order_id)
)
PARTITION BY RANGE (order_date)
(PARTITION p_before_jan_2006 VALUES LESS THAN (TO_DATE('01-JAN-2006','dd-MON-

Chapter 6
Partitioning for Performance in a Data Warehouse

6-6

yyyy'))
, PARTITION p_2006_jan VALUES LESS THAN (TO_DATE('01-FEB-2006','dd-MON-yyyy'))
, PARTITION p_2006_feb VALUES LESS THAN (TO_DATE('01-MAR-2006','dd-MON-yyyy'))
, PARTITION p_2006_mar VALUES LESS THAN (TO_DATE('01-APR-2006','dd-MON-yyyy'))
, PARTITION p_2006_apr VALUES LESS THAN (TO_DATE('01-MAY-2006','dd-MON-yyyy'))
, PARTITION p_2006_may VALUES LESS THAN (TO_DATE('01-JUN-2006','dd-MON-yyyy'))
, PARTITION p_2006_jun VALUES LESS THAN (TO_DATE('01-JUL-2006','dd-MON-yyyy'))
, PARTITION p_2006_jul VALUES LESS THAN (TO_DATE('01-AUG-2006','dd-MON-yyyy'))
, PARTITION p_2006_aug VALUES LESS THAN (TO_DATE('01-SEP-2006','dd-MON-yyyy'))
, PARTITION p_2006_sep VALUES LESS THAN (TO_DATE('01-OCT-2006','dd-MON-yyyy'))
, PARTITION p_2006_oct VALUES LESS THAN (TO_DATE('01-NOV-2006','dd-MON-yyyy'))
, PARTITION p_2006_nov VALUES LESS THAN (TO_DATE('01-DEC-2006','dd-MON-yyyy'))
, PARTITION p_2006_dec VALUES LESS THAN (TO_DATE('01-JAN-2007','dd-MON-yyyy'))
)
PARALLEL;

CREATE TABLE order_items
(order_id NUMBER(12) NOT NULL
, product_id NUMBER NOT NULL
, quantity NUMBER NOT NULL
, sales_amount NUMBER NOT NULL
, CONSTRAINT order_items_orders_fk FOREIGN KEY (order_id) REFERENCES
orders(order_id)
)
PARTITION BY REFERENCE (order_items_orders_fk)
PARALLEL;

A typical data warehouse query would scan a large amount of data. In the underlying
execution plan, the columns Rows, Bytes, Cost (%CPU), Time, and TQ have been removed.

EXPLAIN PLAN FOR
SELECT o.order_date
, sum(oi.sales_amount) sum_sales
FROM orders o
, order_items oi
WHERE o.order_id = oi.order_id
AND o.order_date BETWEEN TO_DATE('01-FEB-2006','DD-MON-YYYY')
 AND TO_DATE('31-MAY-2006','DD-MON-YYYY')
GROUP BY o.order_id
, o.order_date
ORDER BY o.order_date;

| Id | Operation | Name | Pstart| Pstop |IN-OUT| PQ Distrib |

0	SELECT STATEMENT					
1	PX COORDINATOR					
2	PX SEND QC (ORDER)	:TQ10001			P->S	QC (ORDER)
3	SORT GROUP BY				PCWP	
4	PX RECEIVE				PCWP	
5	PX SEND RANGE	:TQ10000			P->P	RANGE
6	SORT GROUP BY				PCWP	
7	PX PARTITION RANGE ITERATOR		3	6	PCWC	
* 8	HASH JOIN				PCWP	
* 9	TABLE ACCESS FULL	ORDERS	3	6	PCWP	
10	TABLE ACCESS FULL	ORDER_ITEMS	3	6	PCWP	

Predicate Information (identified by operation id):

Chapter 6
Partitioning for Performance in a Data Warehouse

6-7

 8 - access("O"."ORDER_ID"="OI"."ORDER_ID")
 9 - filter("O"."ORDER_DATE"<=TO_DATE(' 2006-05-31 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))

6.3.2.2 Partial Partition-Wise Joins
Oracle Database can perform partial partition-wise joins only in parallel.

Unlike full partition-wise joins, partial partition-wise joins require you to partition only
one table on the join key, not both tables. The partitioned table is referred to as the
reference table. The other table may or may not be partitioned. Partial partition-wise
joins are more common than full partition-wise joins.

To execute a partial partition-wise join, the database dynamically partitions or
repartitions the other table based on the partitioning of the reference table. After the
other table is repartitioned, the execution is similar to a full partition-wise join.

The following example shows a call detail records table, cdrs, in a typical data
warehouse scenario. The table is interval-hash partitioned.

CREATE TABLE cdrs
(id NUMBER
, cust_id NUMBER
, from_number VARCHAR2(20)
, to_number VARCHAR2(20)
, date_of_call DATE
, distance VARCHAR2(1)
, call_duration_in_s NUMBER(4)
) PARTITION BY RANGE(date_of_call)
INTERVAL (NUMTODSINTERVAL(1,'DAY'))
SUBPARTITION BY HASH(cust_id)
SUBPARTITIONS 16
(PARTITION p0 VALUES LESS THAN (TO_DATE('01-JAN-2005','dd-MON-yyyy')))
PARALLEL;

The cdrs table is joined with the nonpartitioned callers table on the cust_id column
to rank the customers who spent the most time making calls.

EXPLAIN PLAN FOR
SELECT c.cust_id
, c.cust_last_name
, c.cust_first_name
, AVG(call_duration_in_s)
, COUNT(1)
, DENSE_RANK() OVER
 (ORDER BY (AVG(call_duration_in_s) * COUNT(1)) DESC) ranking
FROM callers c
, cdrs cdr
WHERE cdr.cust_id = c.cust_id
AND cdr.date_of_call BETWEEN TO_DATE('01-JAN-2006','dd-MON-yyyy')
 AND TO_DATE('31-DEC-2006','dd-MON-yyyy')
GROUP BY c.cust_id
, c.cust_last_name
, c.cust_first_name
ORDER BY ranking;

The execution plans shows a partial partition-wise join. In the plan, the columns Rows,
Bytes, Cost (%CPU), Time, and TQ have been removed.

--
| Id | Operation | Name | Pstart| Pstop |IN-OUT| PQ Distrib |

Chapter 6
Partitioning for Performance in a Data Warehouse

6-8

--
0	SELECT STATEMENT					
1	WINDOW NOSORT					
2	PX COORDINATOR					
3	PX SEND QC (ORDER)	:TQ10002			P->S	QC (ORDER)
4	SORT ORDER BY				PCWP	
5	PX RECEIVE				PCWP	
6	PX SEND RANGE	:TQ10001			P->P	RANGE
7	HASH GROUP BY				PCWP	
* 8	HASH JOIN				PCWP	
9	PART JOIN FILTER CREATE	:BF0000			PCWP	
10	BUFFER SORT				PCWC	
11	PX RECEIVE				PCWP	
12	PX SEND PARTITION (KEY)	:TQ10000			S->P	PART (KEY)
13	TABLE ACCESS FULL	CALLERS				
14	PX PARTITION RANGE ITERATOR		367	731	PCWC	
15	PX PARTITION HASH ALL		1	16	PCWC	
* 16	TABLE ACCESS FULL	CDRS	5857	11696	PCWP	
--

Predicate Information (identified by operation id):

 8 - access("CDR"."CUST_ID"="C"."CUST_ID")
 16 - filter("CDR"."DATE_OF_CALL">=TO_DATE(' 2006-01-01 00:00:00', 'syyyy-mm-dd
hh24:mi:ss') AND "CDR"."DATE_OF_CALL"<=TO_DATE('
 2006-12-31 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))

6.3.2.3 Benefits of Partition-Wise Joins
Partition-wise joins offers several benefits.

These benefits are described in the following topics:

• Reduction of Communications Overhead

• Reduction of Memory Requirements

6.3.2.3.1 Reduction of Communications Overhead
When executed in parallel, partition-wise joins reduce communications overhead.

This reduction, in the default case, occurs because parallel execution of a join operation by a
set of parallel execution servers requires the redistribution of each table on the join column
into disjoint subsets of rows. These disjoint subsets of rows are then joined pair-wise by a
single parallel execution server.

The database can avoid redistributing the partitions because the two tables are partitioned on
the join column. This functionality enables each parallel execution server to join a pair of
matching partitions. This improved performance from using parallel execution is even more
noticeable in Oracle Real Application Clusters configurations with internode parallel
execution.

Partition-wise joins dramatically reduce interconnect traffic. Using this feature is key for large
decision support systems (DSS) configurations that use Oracle Real Application Clusters.
Currently, most Oracle Real Application Clusters platforms, such as massively parallel
processing (MPP) and symmetric multiprocessing (SMP) clusters, provide limited
interconnect bandwidths compared to their processing powers. Ideally, interconnect
bandwidth should be comparable to disk bandwidth, but this is seldom the case.

Chapter 6
Partitioning for Performance in a Data Warehouse

6-9

Consequently, most join operations in Oracle Real Application Clusters experience
high interconnect latencies without parallel execution of partition-wise joins.

6.3.2.3.2 Reduction of Memory Requirements
Partition-wise joins require less memory than the equivalent join operation of the
complete data set of the tables being joined.

For serial joins, the join is performed at the same time on a pair of matching partitions.
If data is evenly distributed across partitions, then the memory requirement is divided
by the number of partitions and there is no skew to the data distribution among the
parallel servers.

For parallel joins, memory requirements depend on the number of partition pairs that
are joined in parallel. For example, if the degree of parallelism is 20 and the number of
partitions is 100, then 5 times less memory is required because only 20 joins of two
partitions each are performed at the same time. The fact that partition-wise joins
require less memory has a direct beneficial effect on performance. For example, the
join probably does not need to write blocks to disk during the build phase of a hash
join.

6.3.2.4 Performance Considerations for Parallel Partition-Wise Joins
The optimizer weighs the advantages and disadvantages when deciding whether to
use partition-wise joins.

The optimizer chooses whether to use partition-wise joins based on the following:

• In range partitioning where partition sizes differ, data skew increases response
time; some parallel execution servers take longer than others to finish their joins.
Oracle recommends the use of hash partitioning and subpartitioning to enable
partition-wise joins because hash partitioning, if the number of partitions is a power
of two, limits the risk of skew. Ideally, the hash partitioning key is unique to
minimize the risk of skew.

• The number of partitions used for partition-wise joins should, if possible, be a
multiple of the number of query servers. With a degree of parallelism of 16, for
example, you can have 16, 32, or even 64 partitions. If there is an odd number of
partitions, then some parallel execution servers are used less than others. For
example, if there are 17 evenly distributed partition pairs, only one pair works on
the last join, while the other pair has to wait. This is because, in the beginning of
the execution, each parallel execution server works on a different partition pair.
After this first phase, only one pair remains. Thus, a single parallel execution
server joins this remaining pair while all other parallel execution servers are idle.

In some situations, parallel joins can cause remote I/O operations. For example, on
Oracle Real Application Clusters environments running on MPP configurations, if a
pair of matching partitions is not collocated on the same node, a partition-wise join
requires extra internode communication due to remote I/O. This is because Oracle
Database must transfer at least one partition to the node where the join is performed.
In this case, it is better to explicitly redistribute the data than to use a partition-wise
join.

6.3.3 Indexes and Partitioned Indexes in a Data Warehouse
Indexes are optional structures associated with tables that allow SQL statements to
execute more quickly against a table.

Chapter 6
Partitioning for Performance in a Data Warehouse

6-10

Even though table scans are very common in many data warehouses, indexes can often
speed up queries.

Both B-tree and bitmap indexes can be created as local indexes on a partitioned table, in
which case they inherit the table's partitioning strategy. B-tree indexes can be created as
global partitioned indexes on partitioned and nonpartitioned tables.

This section contains the following topics:

• Local Partitioned Indexes

• Nonpartitioned Indexes

• Global Partitioned Indexes

For more information about partitioned indexes, refer to Partitioning for Availability,
Manageability, and Performance.

6.3.3.1 Local Partitioned Indexes
In a local index, all keys in a particular index partition refer only to rows stored in a single
underlying table partition.

A local index is equipartitioned with the underlying table. Oracle Database partitions the index
on the same columns as the underlying table, creates the same number of partitions or
subpartitions, and gives them the same partition boundaries as corresponding partitions of
the underlying table.

Oracle Database also maintains the index partitioning automatically when partitions in the
underlying table are added, dropped, merged, or split, or when hash partitions or
subpartitions are added or coalesced. This ensures that the index remains equipartitioned
with the table.

For data warehouse applications, local nonprefixed indexes can improve performance
because many index partitions can be scanned in parallel by range queries on the index key.
The following example creates a local B-tree index on a partitioned customers_dw table:

CREATE INDEX cust_last_name_ix
 ON customers_dw(last_name) LOCAL
 PARALLEL NOLOGGING ;

Bitmap indexes use a very efficient storage mechanism for low cardinality columns. Bitmap
indexes are used in data warehouses, and especially common in data warehouses that
implement star schemas. A single star schema consists of a central large fact table and
multiple smaller dimension tables that describe the data in the fact table.

For example, consider a sales table that is a fact table, described by dimension tables
customers, products, promotions, times, and channels. Bitmap indexes enable the star
transformation, an optimization for fast query retrieval against star or star look-a-like
schemas.

Fact table foreign key columns are ideal candidates for bitmap indexes, because generally
there are few distinct values relative to the total number of rows. Fact tables are often range
or range-* partitioned, in which case you must create local bitmap indexes. Global bitmap
indexes on partitioned tables are not supported.

The following example creates a local partitioned bitmap index on the sales table:

CREATE BITMAP INDEX prod_id_ix
ON sales(prod_id) LOCAL
PARALLEL NOLOGGING;

Chapter 6
Partitioning for Performance in a Data Warehouse

6-11

See Also:

Oracle Database Data Warehousing Guide for more information about the
star transformation

6.3.3.2 Nonpartitioned Indexes
You can create nonpartitioned indexes on nonpartitioned and partitioned tables.

Nonpartitioned indexes are primarily used on nonpartitioned tables in data warehouse
environments and in general to enforce uniqueness if the status of a unique constraint
is required to be enforced in a data warehousing environment. You can use a
nonpartitioned global index on a partitioned table to enforce a primary or unique key. A
nonpartitioned (global) index can be useful for queries that commonly retrieve very few
rows based on equality predicates or IN-list on a column or set of columns that is not
included in the partitioning key. In those cases, it can be faster to scan a single index
than to scan many index partitions to find all matching rows.

Unique indexes on columns other than the partitioning columns must be global
because unique local nonprefixed indexes whose keys do not contain the partitioning
keys are not supported. Unique keys are not always enforced in data warehouses due
to the controlled data load processes and the performance cost of enforcing the
unique constraint. Global indexes can grow very large on tables with billions of rows.

The following example creates a global unique index on the sales table:

CREATE UNIQUE INDEX sales_unique_ix
 ON sales(cust_id, prod_id, promo_id, channel_id, time_id)
 PARALLEL NOLOGGING;

Very few queries benefit from this index. In systems with a very limited data load
window, consider not creating and maintaining it.

6.3.3.3 Global Partitioned Indexes
You can create global partitioned indexes on nonpartitioned and partitioned tables.

In a global partitioned index, the keys in a particular index partition may refer to rows
stored in multiple underlying table partitions or subpartitions. A global index can be
range or hash partitioned, though it can be defined on any type of partitioned table.

A global index is created by specifying the GLOBAL attribute. The database
administrator is responsible for defining the initial partitioning of a global index at
creation and for maintaining the partitioning over time. Index partitions can be merged
or split as necessary.

Global indexes can be useful if there is a class of queries that uses an access path to
the table to retrieve a few rows through an index, and by partitioning the index you can
eliminate large portions of the index for the majority of its queries. On a partitioned
table, you would consider a global partitioned index if the column or columns included
to achieve partition pruning do not include the table partitioning key.

The following example creates a global hash partitioned index on the sales table:

Chapter 6
Partitioning for Performance in a Data Warehouse

6-12

CREATE INDEX cust_id_prod_id_global_ix
ON sales(cust_id,prod_id)
GLOBAL PARTITION BY HASH (cust_id)
(PARTITION p1 TABLESPACE tbs1
, PARTITION p2 TABLESPACE tbs2
, PARTITION p3 TABLESPACE tbs3
, PARTITION p4 TABLESPACE tbs4
)
PARALLEL NOLOGGING;

6.3.4 Materialized Views and Partitioning in a Data Warehouse
One technique employed in data warehouses to improve performance is the creation of
summaries. Summaries are special types of aggregate views that improve query execution
times by precalculating expensive joins and aggregation operations before execution and
storing the results in a table in the database.

For example, you can create a summary table to contain the sums of sales by region and by
product.

The summaries or aggregates that are referred to in this guide and in literature on data
warehousing are created in Oracle Database using a schema object called a materialized
view. Materialized views in a data warehouse speed up query performance.

The database supports transparent rewrites against materialized views, so that you do not
need to modify the original queries to take advantage of precalculated results in materialized
views. Instead of executing the query, the database retrieves precalculated results from one
or more materialized views, performs any necessary additional operations on the data, and
returns the query results.

See Also:

Oracle Database Data Warehousing Guide for information about data warehousing
and materialized views

6.3.4.1 Partitioned Materialized Views
The underlying storage for a materialized view is a table structure. You can partition
materialized views like you can partition tables.

When the database rewrites a query to run against materialized views, the query can take
advantage of the same performance features from which queries running against tables
directly benefit. The rewritten query may eliminate materialized view partitions. If joins back to
tables or with other materialized views are necessary to retrieve the query result, then the
rewritten query can take advantage of partition-wise joins.

Example 6-1 shows how to create a compressed partitioned materialized view that
aggregates sales results to country level. This materialized view benefits from queries that
summarize sales numbers by country level or higher to subregion or region level.

Example 6-1 Creating a compressed partitioned materialized view

CREATE MATERIALIZED VIEW country_sales
PARTITION BY HASH (country_id)
PARTITIONS 16

Chapter 6
Partitioning for Performance in a Data Warehouse

6-13

COMPRESS FOR OLTP
PARALLEL NOLOGGING
ENABLE QUERY REWRITE
AS SELECT co.country_id
, co.country_name
, co.country_subregion
, co.country_region
, sum(sa.quantity_sold) country_quantity_sold
, sum(sa.amount_sold) country_amount_sold
FROM sales sa
, customers cu
, countries co
WHERE sa.cust_id = cu.cust_id
AND cu.country_id = co.country_id
GROUP BY co.country_id
, co.country_name
, co.country_subregion
, co.country_region;

See Also:

Oracle Database Data Warehousing Guide for information about data
warehousing and materialized views

6.4 Manageability in a Data Warehouse
Data warehouses store historical data. Important parts of a data warehouse are the
data loading and purging. Partitioning is powerful technology that can help data
management for data warehouses.

This section contains the following topics:

• Partition Exchange Load

• Partitioning and Indexes

• Removing Data from Tables

• Partitioning and Data Compression

See Also:

Oracle Database SQL Tuning Guide for information about collecting and
managing statistics on partitioned indexes, exchanges, and tables

6.4.1 Partition Exchange Load
Partitions can be added using partition exchange load (PEL).

When you use PEL, you create a separate table that looks exactly like a single
partition, including the same indexes and constraints, if any. If you use a composite
partitioned table, then your separate table must use a partitioning strategy that
matches the subpartitioning strategy of your composite partitioned table. You can then

Chapter 6
Manageability in a Data Warehouse

6-14

exchange an existing table partition with this separate table. In a data load scenario, data can
be loaded into the separate table. Build indexes and implement constraints on the separate
table, without impacting the table users query. Then perform the PEL, which is a very low-
impact transaction compared to the data load. Daily loads, with a range partition strategy by
day, are common in data warehouse environments.

The following example shows a partition exchange load for the sales table:

ALTER TABLE sales ADD PARTITION p_sales_jun_2007
VALUES LESS THAN (TO_DATE('01-FEB-2007','dd-MON-yyyy'));

CREATE TABLE sales_jun_2007 COMPRESS FOR OLTP
AS SELECT * FROM sales WHERE 1=0;

Next, populate table sales_jun_2007 with sales numbers for June 2007, and create the
equivalent bitmap indexes and constraints that have been implemented on the sales table:

CREATE BITMAP INDEX time_id_jun_2007_bix ON sales_jun_2007(time_id) NOLOGGING;
CREATE BITMAP INDEX cust_id_jun_2007_bix ON sales_jun_2007(cust_id) NOLOGGING;
CREATE BITMAP INDEX prod_id_jun_2007_bix ON sales_jun_2007(prod_id) NOLOGGING;
CREATE BITMAP INDEX promo_id_jun_2007_bix ON sales_jun_2007(promo_id) NOLOGGING;
CREATE BITMAP INDEX channel_id_jun_2007_bix ON sales_jun_2007(channel_id) NOLOGGING;

ALTER TABLE sales_jun_2007 ADD CONSTRAINT prod_id_fk FOREIGN KEY (prod_id) REFERENCES products(prod_id);
ALTER TABLE sales_jun_2007 ADD CONSTRAINT cust_id_fk FOREIGN KEY (cust_id) REFERENCES
customers(cust_id);
ALTER TABLE sales_jun_2007 ADD CONSTRAINT promo_id_fk FOREIGN KEY (promo_id) REFERENCES
promotions(promo_id);
ALTER TABLE sales_jun_2007 ADD CONSTRAINT time_id_fk FOREIGN KEY (time_id) REFERENCES times(time_id);
ALTER TABLE sales_jun_2007 ADD CONSTRAINT channel_id_fk FOREIGN KEY (channel_id) REFERENCES
channels(channel_id);

Next, exchange the partition:

ALTER TABLE sales
EXCHANGE PARTITION p_sales_jun_2007
WITH TABLE sales_jun_2007
INCLUDING INDEXES;

For more information about partition exchange load, refer to Partition Administration.

6.4.2 Partitioning and Indexes
Partition maintenance operations are most easily performed on local indexes.

Local indexes do not invalidate a global index when partition management takes place. Use
INCLUDING INDEXES in the PEL statement to exchange the local indexes with the equivalent
indexes on the separate table so that no index partitions get invalidated. For PEL, you can
update global indexes as part of the load. Use the UPDATE GLOBAL INDEXES extension to the
PEL statement. If an index requires updating, then the PEL takes much longer.

6.4.3 Removing Data from Tables
Data warehouses commonly keep a time window of data. For example, three years of
historical data is stored.

Partitioning makes it very easy to purge data from a table. You can use the DROP PARTITION
or TRUNCATE PARTITION statements to purge data. Common strategies also include using a
partition exchange load to unload the data from the table and replacing the partition with an

Chapter 6
Manageability in a Data Warehouse

6-15

empty table before dropping the partition. Archive the separate table you exchanged
before emptying or dropping it.

A drop or truncate operation would invalidate a global index or a global partitioned
index. Local indexes remain valid. The local index partition is dropped when you drop
the table partition.

The following example shows how to drop partition sales_1995 from the sales table:

ALTER TABLE sales
 DROP PARTITION sales_1995
 UPDATE GLOBAL INDEXES PARALLEL;

6.4.4 Partitioning and Data Compression
Data in a partitioned table can be compressed on a partition-by-partition basis.

Using compressed data is most efficient for data that does not change frequently.
Common data warehouse scenarios often see few data changes as data ages and
other scenarios only insert data. Using the partition management features, you can
compress data on a partition-by-partition basis. Although Oracle Database supports
compression for all DML operations, it is still more efficient to modify data in a
noncompressed table.

Altering a partition to enable compression applies only to future data to be inserted into
the partition. To compress the existing data in the partition, you must move the
partition. Enabling compression and moving a partition can be done in a single
operation.

To use table compression on partitioned tables with bitmap indexes, you must do the
following before you introduce the compression attribute for the first time:

1. Mark bitmap indexes UNUSABLE.

2. Set the compression attribute.

3. Rebuild the indexes.

The first time you make a compressed partition part of an existing, fully uncompressed
partitioned table, you must either drop all existing bitmap indexes or mark them
UNUSABLE before adding a compressed partition. This must be done regardless of
whether any partition contains data. It is also independent of the operation that causes
one or more compressed partitions to become part of the table. This does not apply to
a partitioned table having only B-tree indexes.

The following example shows how to compress the SALES_1995 partition in the sales
table:

ALTER TABLE sales
 MOVE PARTITION sales_1995
 COMPRESS FOR OLTP
 PARALLEL NOLOGGING;

If a table or a partition takes less space on disk, then the performance of large table
scans in an I/O-constraint environment may improve.

Chapter 6
Manageability in a Data Warehouse

6-16

7
Using Partitioning in an Online Transaction
Processing Environment

Partitioning features are very useful for OLTP systems.

Due to the explosive growth of online transaction processing (OLTP) systems and their user
populations, partitioning is particularly useful for OLTP systems in addition to data
warehousing environments

Partitioning is often used for OLTP systems to reduce contention while supporting a very
large user population. It also helps to address regulatory requirements facing OLTP systems,
including storing larger amounts of data in a cost-effective manner.

This chapter contains the following sections:

• What Is an Online Transaction Processing System?

• Performance in an Online Transaction Processing Environment

• Manageability in an Online Transaction Processing Environment

7.1 What Is an Online Transaction Processing System?
An Online Transaction Processing (OLTP) system is a common data processing system in
today's enterprises. Classic examples of OLTP systems are order entry, retail sales, and
financial transaction systems.

OLTP systems are primarily characterized through a specific data usage that is different from
data warehouse environments, yet some characteristics, such as having large volumes of
data and lifecycle-related data usage and importance, are identical.

The main characteristics of an OLTP environment are:

• Short response time

The nature of OLTP environments is predominantly any kind of interactive ad hoc usage,
such as telemarketers entering telephone survey results. OLTP systems require short
response times in order for users to remain productive.

• Small transactions

OLTP systems typically read and manipulate highly selective, small amounts of data; the
data processing is mostly simple and complex joins are relatively rare. There is always a
mix of queries and DML workload. For example, one of many call center employees
retrieves customer details for every call and enters customer complaints while reviewing
past communications with the customer.

• Data maintenance operations

It is not uncommon to have reporting programs and data updating programs that must
run either periodically or on an ad hoc basis. These programs, which run in the
background while users continue to work on other tasks, may require a large number of
data-intensive computations. For example, a university may start batch jobs assigning
students to classes while students can still sign up online for classes themselves.

7-1

• Large user populations

OLTP systems can have enormously large user populations where many users are
trying to access the same data at the same time. For example, an online auction
website can have hundreds of thousands (if not millions) of users accessing data
on its website at the same time.

• High concurrency

Due to the large user population, the short response times, and small transactions,
the concurrency in OLTP environments is very high. A requirement for thousands
of concurrent users is not uncommon.

• Large data volumes

Depending on the application type, the user population, and the data retention
time, OLTP systems can become very large. For example, every customer of a
bank could have access to the online banking system which shows all their
transactions for the last 12 months.

• High availability

The availability requirements for OLTP systems are often extremely high. An
unavailable OLTP system can impact a very large user population, and
organizations can suffer major losses if OLTP systems are unavailable. For
example, a stock exchange system has extremely high availability requirements
during trading hours.

• Lifecycle-related data usage

Similar to data warehousing environments, OLTP systems often experience
different data access patterns over time. For example, at the end of the month,
monthly interest is calculated for every active account.

The following are benefits of partitioning for OLTP environments:

• Support for bigger databases

Backup and recovery, as part of a high availability strategy, can be performed on a
low level of granularity to efficiently manage the size of the database. OLTP
systems usually remain online during backups and users may continue to access
the system while the backup is running. The backup process should not introduce
major performance degradation for the online users.

Partitioning helps to reduce the space requirements for the OLTP system because
part of a database object can be stored compressed while other parts can remain
uncompressed. Update transactions against uncompressed rows are more
efficient than updates on compressed data.

Partitioning can store data transparently on different storage tiers to lower the cost
of retaining vast amounts of data.

• Partition maintenance operations for data maintenance (instead of DML)

For data maintenance operations (purging being the most common operation), you
can leverage partition maintenance operations with the Oracle Database capability
of online index maintenance. A partition management operation generates less
redo than the equivalent DML operations.

• Potential higher concurrency through elimination of hot spots

A common scenario for OLTP environments is to have monotonically increasing
index values that are used to enforce primary key constraints, thus creating areas
of high concurrency and potential contention: every new insert tries to update the

Chapter 7
What Is an Online Transaction Processing System?

7-2

same set of index blocks. Partitioned indexes, in particular hash partitioned indexes, can
help alleviate this situation.

7.2 Performance in an Online Transaction Processing
Environment

Performance in OLTP environments heavily relies on efficient index access, thus the choice
of the most appropriate index strategy becomes crucial.

The following sections discuss best practices for deciding whether to partition indexes in an
OLTP environment.

• Deciding Whether to Partition Indexes

• How to Use Partitioning on Index-Organized Tables

7.2.1 Deciding Whether to Partition Indexes
Due to the selectivity of queries and high concurrency of OLTP applications, the choice of the
right index strategy is indisputably an important decision for the use of partitioning in an OLTP
environment. With less contention, the application can support a larger user population.

The following basic rules explain the main benefits and trade-offs for the various possible
index structures:

• A nonpartitioned index, while larger than individual partitioned index segments, always
leads to a single index probe (or scan) if an index access path is chosen; there is only
one segment for a table. The data access time and number of blocks being accessed are
identical for both a partitioned and a nonpartitioned table.

A nonpartitioned index does not provide partition autonomy and requires an index
maintenance operation for every partition maintenance operation that affects rowids (for
example, drop, truncate, move, merge, coalesce, or split operations).

• With partitioned indexes, there are always multiple segments. Whenever Oracle
Database cannot prune down to a single index segment, the database has to access
multiple segments. This potentially leads to higher I/O requirements (n index segment
probes compared with one probe for a nonpartitioned index) and can have an impact
(measurable or not) on the run-time performance. This is true for all partitioned indexes.

Partitioned indexes can either be local partitioned indexes or global partitioned indexes.
Local partitioned indexes always inherit the partitioning key from the table and are fully
aligned with the table partitions. Consequently, any kind of partition maintenance
operation requires little to no index maintenance work. For example, dropping or
truncating a partition does not incur any measurable overhead for index maintenance; the
local index partitions are either dropped or truncated.

Partitioned indexes that are not aligned with the table are called global partitioned
indexes. Unlike local indexes, there is no relation between a table and an index partition.
Global partitioned indexes give the flexibility to choose a partitioning key that is optimal
for an efficient partition index access. Partition maintenance operations normally affect
more (if not all) partitions of a global partitioned index, depending on the operation and
partitioning key of the index.

• Under some circumstances, having multiple segments for an index can be beneficial for
performance. It is very common in OLTP environments to use sequences to create
artificial keys. Consequently, you create key values that are monotonically increasing,

Chapter 7
Performance in an Online Transaction Processing Environment

7-3

which results in many insertion processes competing for the same index blocks.
Introducing a global partitioned index (for example, using global hash partitioning
on the key column) can alleviate this situation. If you have, for example, four hash
partitions for such an index, then you now have four index segments into which
you are inserting data, reducing the concurrency on these segments by a factor of
four for the insertion processes.

Enforcing uniqueness is important database functionality for OLTP environments.
Uniqueness can be enforced with nonpartitioned and partitioned indexes. However,
because partitioned indexes provide partition autonomy, the following requirements
must be met to implement unique indexes:

• A nonpartitioned index can enforce uniqueness for any given column or
combination of columns. The behavior of a nonpartitioned index is no different for
a partitioned table compared to a nonpartitioned table.

• Each partition of a partitioned index is considered an autonomous segment. To
enforce the autonomy of these segments, you always have to include the
partitioning key columns as a subset of the unique key definition.

– Global partitioned indexes must always be prefixed with at least the first
leading column of the index column (the partitioning column of the partitioned
global index).

– Unique local indexes must have the partitioning key of the table as a subset of
the unique key definition.

Example 7-1 shows the creation of a unique index on the order_id column of the
orders_oltp table. The order_id in the OLTP application is filled using a sequence
number. The unique index uses hash partitioning to reduce contention for the
monotonically increasing order_id values. The unique key is then used to create the
primary key constraint.

Example 7-1 Creating a unique index and primary key constraint

CREATE UNIQUE INDEX orders_pk
 ON orders_oltp(order_id)
 GLOBAL PARTITION BY HASH (order_id)
 (PARTITION p1 TABLESPACE tbs1
 , PARTITION p2 TABLESPACE tbs2
 , PARTITION p3 TABLESPACE tbs3
 , PARTITION p4 TABLESPACE tbs4
) NOLOGGING;

ALTER TABLE orders_oltp ADD CONSTRAINT orders_pk
 PRIMARY KEY (order_id)
 USING INDEX;

7.2.2 How to Use Partitioning on Index-Organized Tables
When your workload fits the use of index-organized tables, then you must consider
how to use partitioning on your index-organized table and on any secondary indexes.

You must decide whether to partition secondary indexes on index-organized tables
based on the same considerations as indexes on regular heap tables. You can
partition an index-organized table, but the partitioning key must be a subset of the
primary key. A common reason to partition an index-organized table is to reduce
contention; this is typically achieved using hash partitioning.

Chapter 7
Performance in an Online Transaction Processing Environment

7-4

Another reason to partition an index-organized table is to be able to physically separate data
sets based on a primary key column. For example, an application-hosting company can
physically separate application instances for different customers by list partitioning on the
company identifier. Queries in such a scenario can often take advantage of index partition
pruning, shortening the time for the index scan. ILM scenarios with index-organized tables
and partitioning are less common because they require a date column to be part of the
primary key.

For more information about how to create partitioned index-organized tables, refer to Partition
Administration.

See Also:

Oracle Database Administrator’s Guide for more information about index-organized
tables

7.3 Manageability in an Online Transaction Processing
Environment

In addition to the performance benefits, partitioning also enables the optimal data
management for large objects in an OLTP environment.

Every partition maintenance operation in Oracle Database can be extended to atomically
include global and local index maintenance, enabling the execution of any partition
maintenance operation without affecting the 24x7 availability of an OLTP environment.

Partition maintenance operations in OLTP systems occur often because of ILM scenarios. In
these scenarios, [range | interval] partitioned tables, or [range | interval]-* composite
partitioned tables, are common.

Some business cases for partition maintenance operations include scenarios surrounding the
separation of application data. For example, a retail company runs the same application for
multiple branches in a single schema. Depending on the branch revenues, the application (as
separate partitions) is stored on more efficient storage. List partitioning, or list-* composite
partitioning, is a common partitioning strategy for this type of business case.

You can use hash partitioning, or hash subpartitioning for tables, in OLTP systems to obtain
similar performance benefits to the performance benefits achieved in data warehouse
environments. The majority of the daily OLTP workload consists of relatively small operations,
executed serially. Periodic batch operations, however, may execute in parallel and benefit
from the distribution improvements that hash partitioning and subpartitioning can provide for
partition-wise joins. For example, end-of-the-month interest calculations may be executed in
parallel to complete within a nightly batch window.

This section contains the following topics:

• Impact of a Partition Maintenance Operation on a Partitioned Table with Local Indexes

• Impact of a Partition Maintenance Operation on Global Indexes

• Common Partition Maintenance Operations in OLTP Environments

For more information about the performance benefits of partitioning, refer to Partitioning for
Availability, Manageability, and Performance.

Chapter 7
Manageability in an Online Transaction Processing Environment

7-5

7.3.1 Impact of a Partition Maintenance Operation on a Partitioned
Table with Local Indexes

When a partition maintenance operation takes place, Oracle Database locks the
affected table partitions for any DML operation, except in the case of an ONLINE MOVE.

Data in the affected partitions, except a DROP or TRUNCATE operation, is still fully
accessible for any SELECT operation. Because local indexes are logically coupled with
the table (data) partitions, only the local index partitions of the affected table partitions
have to be maintained as part of a partition maintenance operation, enabling optimal
processing for the index maintenance.

For example, when you move an older partition from a high-end storage tier to a low-
cost storage tier using the ALTER TABLE MOVE ONLINE functionality, the data and the
index are always available for SELECT and DML operations; the necessary index
maintenance is to update the existing index partition to reflect the new physical
location of the data. If you drop an older partition after you have archived it, then its
local index partitions get dropped as well, and for global indexes the orphaned entries
for the removed partitions get marked, enabling a split-second partition maintenance
operation that affects only the data dictionary.

7.3.2 Impact of a Partition Maintenance Operation on Global Indexes
Whenever a global index is defined on a partitioned or nonpartitioned table, there is no
correlation between a distinct table partition and the index. Consequently, any partition
maintenance operation affects all global indexes or index partitions.

The partitions of tables containing local indexes are locked to prevent DML operations
against the affect table partitions, except for an ONLINE MOVE operation. However,
unlike the index maintenance for local indexes, any global index is still fully available
for DML operations and does not affect the online availability of the OLTP system.

Conceptually and technically, the index maintenance for global indexes for a partition
maintenance operation is comparable to the index maintenance that would become
necessary for a semantically identical DML operation, except for DROP and TRUNCATE
where the global index maintenance gets delayed to a later point in time. For more
information about managing global indexes, refer to Management of Global Partitioned
Indexes.

For example, dropping an old partition is semantically equivalent to deleting all the
records of the old partition using the SQL DELETE statement. In the DML case, all index
entries of the deleted data set have to be removed from any global index as a
standard index maintenance operation, which does not affect the availability of an
index for SELECT and DML operations.

The DROP PARTITION also does not affect the index availability, but enables you to
decouple the necessary index maintenance from the initial data removal without
affecting the availability of the global indexes. In this scenario, a drop operation
represents the optimal approach: data is removed without the overhead of a
conventional DELETE operation and the global indexes are maintained in a nonintrusive
manner.

Chapter 7
Manageability in an Online Transaction Processing Environment

7-6

7.3.3 Common Partition Maintenance Operations in OLTP Environments
The two most common partition maintenance operations are the removal of data and the
relocation of data onto lower-cost storage tier devices.

• Removing (Purging) Old Data

• Moving or Merging Older Partitions to a Low-Cost Storage Tier Device

7.3.3.1 Removing (Purging) Old Data
Using either a DROP or TRUNCATE operation removes older data based on the partitioning key
criteria.

The drop operation removes the data and the partition metadata, while a TRUNCATE operation
removes only the data but preserve the metadata. All local index partitions are dropped
respectively, and truncated. Asynchronous global index maintenance is done for partitioned
or nonpartitioned global indexes and is fully available for select and DML operations.

The following example drops all data older than January 2006 from the orders_oltp table. As
part of the drop statement, an UPDATE GLOBAL INDEXES statement is executed, so that the
global index remains usable throughout the maintenance operation. Any local index partitions
are dropped as part of this operation.

ALTER TABLE orders_oltp DROP PARTITION p_before_jan_2006
 UPDATE GLOBAL INDEXES;

7.3.3.2 Moving or Merging Older Partitions to a Low-Cost Storage Tier Device
Using a MOVE or MERGE operation as part of an Information Lifecycle Management (ILM)
strategy, you can relocate older partitions to the most cost-effective storage tier.

Using the ALTER TABLE ONLINE MOVE functionality enables the data to be available for both
queries and DML operations. Local indexes are maintained and likely relocated as part of the
merge or move operation. The standard index maintenance is done for partitioned or
nonpartitioned global indexes and is fully available for select and DML operations.

The following example shows how to merge the January 2006 and February 2006 partitions
in the orders_oltp table, and store them in a different tablespace. Any local index partitions
are also moved to the ts_low_cost tablespace as part of this operation. The UPDATE INDEXES
clause ensures that all indexes remain usable throughout and after the operation, without
additional rebuilds.

ALTER TABLE orders_oltp
 MERGE PARTITIONS p_2006_jan,p_2006_feb
 INTO PARTITION p_before_mar_2006 COMPRESS
 TABLESPACE ts_low_cost
 UPDATE INDEXES;

For more information about the benefits of partition maintenance operations for Information
Lifecycle Management, see Managing and Maintaining Time-Based Information.

Chapter 7
Manageability in an Online Transaction Processing Environment

7-7

8
Using Parallel Execution

Parallel execution is the ability to apply multiple CPU and I/O resources to the execution of a
single SQL statement by using multiple processes.

This chapter explains how parallel execution works, and how to control, manage, and monitor
parallel execution in the Oracle Database.

This chapter contains the following sections:

• Parallel Execution Concepts

• Setting the Degree of Parallelism

• In-Memory Parallel Execution

• Parallel Statement Queuing

• Types of Parallelism

• About Initializing and Tuning Parameters for Parallel Execution

• Monitoring Parallel Execution Performance

• Tips for Tuning Parallel Execution

See Also:

http://www.oracle.com/technetwork/database/database-technologies/
parallel-execution/overview/index.html for information about the parallel
execution with Oracle Database

8.1 Parallel Execution Concepts
Parallel execution enables the application of multiple CPU and I/O resources to the execution
of a single SQL statement.

Parallel execution dramatically reduces response time for data-intensive operations on large
databases typically associated with a decision support system (DSS) and data warehouses.
You can also implement parallel execution on an online transaction processing (OLTP)
system for batch processing or schema maintenance operations, such as index creations.

Parallel execution is sometimes called parallelism. Parallelism is the idea of breaking down a
task so that, instead of one process doing all of the work in a query, many processes do part
of the work at the same time. An example of this is when four processes combine to calculate
the total sales for a year, each process handles one quarter of the year instead of a single
process handling all four quarters by itself. The improvement in performance can be quite
significant.

Parallel execution improves processing for:

• Queries requiring large table scans, joins, or partitioned index scans

8-1

http://www.oracle.com/technetwork/database/database-technologies/parallel-execution/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/parallel-execution/overview/index.html

• Creation of large indexes

• Creation of large tables, including materialized views

• Bulk insertions, updates, merges, and deletions

This section contains the following topics:

• When to Implement Parallel Execution

• When Not to Implement Parallel Execution

• Fundamental Hardware Requirements

• How Parallel Execution Works

• Parallel Execution Server Pool

• Balancing the Workload to Optimize Performance

• Multiple Parallelizers

• Parallel Execution on Oracle RAC

8.1.1 When to Implement Parallel Execution
Parallel execution is used to reduce the execution time of queries by exploiting the
CPU and I/O capabilities in the hardware.

Parallel execution is a better choice than serial execution when:

• The query references a large data set.

• There is low concurrency.

• Elapsed time is important.

Parallel execution enables many processes working together to execute single
operation, such as a SQL query. Parallel execution benefits systems with all of the
following characteristics:

• Symmetric multiprocessors (SMPs), clusters, or massively parallel systems

• Sufficient I/O bandwidth

• Underutilized or intermittently used CPUs (for example, systems where CPU
usage is typically less than 30%)

• Sufficient memory to support additional memory-intensive processes, such as
sorting, hashing, and I/O buffers

If your system lacks any of these characteristics, parallel execution might not
significantly improve performance. In fact, parallel execution may reduce system
performance on overutilized systems or systems with small I/O bandwidth.

The benefits of parallel execution can be observed in DSS and data warehouse
environments. OLTP systems can also benefit from parallel execution during batch
processing and during schema maintenance operations such as creation of indexes.
The average simple DML or SELECT statements that characterize OLTP applications
would not experience any benefit from being executed in parallel.

Chapter 8
Parallel Execution Concepts

8-2

8.1.2 When Not to Implement Parallel Execution
Serial execution is different than parallel execution in that only one process executes a single
database operation, such as a SQL query.

Serial execution is a better choice than parallel execution when:

• The query references a small data set.

• There is high concurrency.

• Efficiency is important.

Parallel execution is not typically useful for:

• Environments in which the typical query or transaction is very short (a few seconds or
less).

This includes most online transaction systems. Parallel execution is not useful in these
environments because there is a cost associated with coordinating the parallel execution
servers; for short transactions, the cost of this coordination may outweigh the benefits of
parallelism.

• Environments in which the CPU, memory, or I/O resources are heavily used.

Parallel execution is designed to exploit additional available hardware resources; if no
such resources are available, then parallel execution does not yield any benefits and
indeed may be detrimental to performance.

8.1.3 Fundamental Hardware Requirements
Parallel execution is designed to effectively use multiple CPUs and disks to answer queries
quickly.

It is very I/O intensive by nature. To achieve optimal performance, each component in the
hardware configuration must be sized to sustain the same level of throughput: from the CPUs
and the Host Bus Adapters (HBAs) in the compute nodes, to the switches, and on into the I/O
subsystem, including the storage controllers and the physical disks. If the system is an Oracle
Real Application Clusters (Oracle RAC) system, then the interconnection also has to be sized
appropriately. The weakest link is going to limit the performance and scalability of operations
in a configuration.

It is recommended to measure the maximum I/O performance that a hardware configuration
can achieve without Oracle Database. You can use this measurement as a baseline for the
future system performance evaluations. Remember, it is not possible for parallel execution to
achieve better I/O throughput than the underlying hardware can sustain. Oracle Database
provides a free calibration tool called Orion, which is designed to measure the I/O
performance of a system by simulating Oracle I/O workloads. A parallel execution typically
performs large random I/Os.

See Also:

Oracle Database Performance Tuning Guide for information about I/O configuration
and design

Chapter 8
Parallel Execution Concepts

8-3

8.1.4 How Parallel Execution Works
Parallel execution breaks down a task so that, instead of one process doing all of the
work in a query, many processes do part of the work at the same time.

This section contains the following topics:

• Parallel Execution of SQL Statements

• Producer/Consumer Model

• Granules of Parallelism

• Distribution Methods Between Producers and Consumers

• How Parallel Execution Servers Communicate

8.1.4.1 Parallel Execution of SQL Statements
Each SQL statement undergoes an optimization and parallelization process when it is
parsed.

If the statement is determined to be executed in parallel, then the following steps occur
in the execution plan:

1. The user session or shadow process takes on the role of a coordinator, often
called the query coordinator (QC) or the parallel execution (PX) coordinator. The
QC is the session that initiates the parallel SQL statement.

2. The PX coordinator obtains the necessary number of processes called parallel
execution (PX) servers. The PX servers are the individual processes that perform
work in parallel on behalf of the initiating session.

3. The SQL statement is executed as a sequence of operations, such as a full table
scan or an ORDER BY clause. Each operation is performed in parallel if possible.

4. When the PX servers are finished executing the statement, the PX coordinator
performs any portion of the work that cannot be executed in parallel. For example,
a parallel query with a SUM() operation requires adding the individual subtotals
calculated by each PX server.

5. Finally, the PX coordinator returns the results to the user.

8.1.4.2 Producer/Consumer Model
Parallel execution uses the producer/consumer model.

A parallel execution plan is carried out as a series of producer/consumer operations.
Parallel execution (PX) servers that produce data for subsequent operations are called
producers, PX servers that require the output of other operations are called
consumers. Each producer or consumer parallel operation is performed by a set of PX
servers called PX server sets. The number of PX servers in PX server set is called
Degree of Parallelism (DOP). The basic unit of work for a PX server set is called a
data flow operation (DFO).

A PX coordinator can have multiple levels of producer/consumer operations (multiple
DFOs), but the number of PX servers sets for a PX coordinator is limited to two.
Therefore, at one point in time only two PX server sets can be active for a PX

Chapter 8
Parallel Execution Concepts

8-4

coordinator. As a result, there is parallelism in both the operations in a DFO and between
DFOs. The parallelism of an individual DFO is called intra-operation parallelism and the
parallelism between DFOs is called inter-operation parallelism. To illustrate intra- and inter-
operation parallelism, consider the following statement:

SELECT * FROM employees ORDER BY last_name;

The execution plan implements a full scan of the employees table. This operation is followed
by a sorting of the retrieved rows, based on the value of the last_name column. For the sake
of this example, assume the last_name column is not indexed. Also assume that the DOP for
the query is set to 4, which means that four parallel execution servers can be active for any
given operation.

Figure 8-1 illustrates the parallel execution of the example query.

Figure 8-1 Inter-operation Parallelism and Dynamic Partitioning

SELECT *

 from employees

 ORDER BY last_name;

employees Table

Parallel
Execution

Coordinator

T - Z

H - M

N - S

A - G

User
Process

Parallel execution
servers for
ORDER BY
operation

Parallel execution
servers for full
table scan

Intra-
Operation
parallelism

Inter-
Operation
parallelism

Intra-
Operation
parallelism

As illustrated in Figure 8-1, there are actually eight PX servers involved in the query even
though the DOP is 4. This is because a producer and consumer operator can be performed at
the same time (inter-operation parallelism).

Also all of the PX servers involved in the scan operation send rows to the appropriate PX
server performing the SORT operation. If a row scanned by a PX server contains a value for
the last_name column between A and G, that row is sent to the first ORDER BY parallel
execution server. When the scan operation is complete, the sorting processes can return the
sorted results to the query coordinator, which returns the complete query results to the user.

8.1.4.3 Granules of Parallelism
The basic unit of work in parallelism is a called a granule.

Oracle Database divides the operation executed in parallel, such as a table scan or index
creation, into granules. Parallel execution (PX) servers execute the operation one granule at
a time. The number of granules and their sizes correlate with the degree of parallelism
(DOP). The number of granules also affect how well the work is balanced across PX servers.

Chapter 8
Parallel Execution Concepts

8-5

8.1.4.3.1 Block Range Granules
Block range granules are the basic unit of most parallel operations, even on partitioned
tables. From an Oracle Database perspective, the degree of parallelism is not related
to the number of partitions.

Block range granules are ranges of physical blocks from a table. Oracle Database
computes the number and the size of the granules during run-time to optimize and
balance the work distribution for all affected parallel execution (PX) servers. The
number and size of granules are dependent upon the size of the object and the DOP.
Block range granules do not depend on static preallocation of tables or indexes.
During the computation of the granules, Oracle Database takes the DOP into account
and tries to assign granules from different data files to each of the PX servers to avoid
contention whenever possible. Additionally, Oracle Database considers the disk affinity
of the granules on massive parallel processing (MPP) systems to take advantage of
the physical proximity between PX servers and disks.

8.1.4.3.2 Partition Granules
When partition granules are used, a parallel execution (PX) server works on an entire
partition or subpartition of a table or index.

Because partition granules are statically determined by the structure of the table or
index when a table or index is created, partition granules do not give you the flexibility
in executing an operation in parallel that block granules do. The maximum allowable
degree of parallelism (DOP) is the number of partitions. This might limit the utilization
of the system and the load balancing across PX servers.

When partition granules are used for parallel access to a table or index, you should
use a relatively large number of partitions, ideally three times the DOP, so that Oracle
Database can effectively balance work across the PX servers.

Partition granules are the basic unit of parallel index range scans, joins between two
equipartitioned tables where the query optimizer has chosen to use partition-wise
joins, and parallel operations that modify multiple partitions of a partitioned object.
These operations include parallel creation of partitioned indexes, and parallel creation
of partitioned tables.

You can tell which types of granules were used by looking at the execution plan of a
statement. The line PX BLOCK ITERATOR above the table or index access indicates that
block range granules have been used. In the following example, you can see this on
line 7 of the explain plan output just above the TABLE FULL ACCESS on the SALES table.

|Id| Operation | Name |Rows|Bytes|Cost%CPU| Time |Pst|Pst| TQ |INOUT|PQDistri|

0	SELECT STATEMENT		17	153	565(100)	00:00:07					
1	PX COORDINATOR										
2	PX SEND QC(RANDOM)	:TQ10001	17	153	565(100)	00:00:07			Q1,01	P->S	QC(RAND)
3	HASH GROUP BY		17	153	565(100)	00:00:07			Q1,01	PCWP	
4	PX RECEIVE		17	153	565(100)	00:00:07			Q1,01	PCWP	
5	PX SEND HASH	:TQ10000	17	153	565(100)	00:00:07			Q1,00	P->P	HASH
6	HASH GROUP BY		17	153	565(100)	00:00:07			Q1,00	PCWP	
7	PX BLOCK ITERATOR		10M	85M	60(97)	00:00:01	1	16	Q1,00	PCWC	
*8	TABLE ACCESS FULL	SALES	10M	85M	60(97)	00:00:01	1	16	Q1,00	PCWP	

Predicate Information (identified by operation id):

8 - filter("CUST_ID"<=22810 AND "CUST_ID">=22300)

Chapter 8
Parallel Execution Concepts

8-6

When partition granules are used, you see the line PX PARTITION RANGE above the table or
index access in the explain plan output. On line 6 of the example that follows, the plan has PX
PARTITION RANGE ALL because this statement accesses all of the 16 partitions in the table. If
not all of the partitions are accessed, it simply shows PX PARTITION RANGE.

|Id| Operation | Name |Rows|Byte|Cost%CPU| Time |Ps|Ps| TQ |INOU|PQDistri|

0	SELECT STATEMENT		17	153	2(50)	00:00:01					
1	PX COORDINATOR										
2	PX SEND QC(RANDOM)	:TQ10001	17	153	2(50)	00:00:01			Q1,01	P->S	QC(RAND)
3	HASH GROUP BY		17	153	2(50)	00:00:01			Q1,01	PCWP	
4	PX RECEIVE		26	234	1(0)	00:00:01			Q1,01	PCWP	
5	PX SEND HASH	:TQ10000	26	234	1(0)	00:00:01			Q1,00	P->P	HASH
6	PX PARTITION RANGE ALL		26	234	1(0)	00:00:01			Q1,00	PCWP	
7	TABLEACCESSLOCAL INDEX ROWID	SALES	26	234	1(0)	00:00:01	1	16	Q1,00	PCWC	
*8	INDEX RANGE SCAN	SALES_CUST	26		1(0)	00:00:01	1	16	Q1,00	PCWP	

Predicate Information (identified by operation id):

8 - access("CUST_ID"<=22810 AND "CUST_ID">=22300)

8.1.4.4 Distribution Methods Between Producers and Consumers
A distribution method is the method by which data is sent (or redistributed) from one parallel
execution (PX) server set to another.

The following are the most commonly used distribution methods in parallel execution.

• Hash Distribution

The hash distribution method uses a hash function on one or more columns in the row
which then determines the consumer where the producer should send the row. This
distribution attempts to divide the work equally among consumers based on hash values.

• Broadcast Distribution

In the broadcast distribution method, each producer sends all rows to all consumers. This
method is used when the result set of the left side in a join operation is small and the cost
of broadcasting all rows is not high. The result set from the right side of the join does not
need to be distributed in this case; consumer PX servers assigned to the join operation
can scan the right side and perform the join.

• Range Distribution

Range distribution is mostly used in parallel sort operations. In this method each
producer sends rows that have a range of values to the same consumer. This is the
method used in Figure 8-1.

• Hybrid Hash Distribution

Hybrid hash is an adaptive distribution method used in join operations. The actual
distribution method is decided at runtime by the optimizer depending on the size of the
result set of the left side of the join. The number of rows returned from the left side is
counted and checked against a threshold value. When the number of rows is less than or
equal to the threshold value, broadcast distribution is used for the left side of the join, and
the right side is not distributed as the same consumer PX servers assigned to the join
operation scan the right side and perform the join. When the number of rows returned
from the left side is higher than the threshold value, hash distribution is used for both
sides of the join.

To determine the distribution method, the parallel execution (PX) coordinator examines each
operation in a SQL statement's execution plan and then determines the way in which the
rows operated on by the operation must be redistributed among the PX servers. As an

Chapter 8
Parallel Execution Concepts

8-7

example of parallel query, consider the query in Example 8-1. Figure 8-2 illustrates the
data flow or query plan for the query in Example 8-1, and Example 8-2 shows the
explain plan output for the same query.

The query plan shows that an adaptive distribution methods was picked by the PX
coordinator. Assuming the optimizer picks hash distribution at runtime, the execution
proceeds as follows: two sets of PX servers, SS1 and SS2, are allocated for the query,
each server set has four PX servers because of the PARALLEL hint that specifies the
DOP of the statement.

PX set SS1 first scans the table customers and sends rows to SS2, which builds a
hash table on the rows. In other words, the consumers in SS2 and the producers in
SS1 work concurrently: one in scanning customers in parallel, the other is consuming
rows and building the hash table to enable the hash join in parallel. This is an example
of inter-operation parallelism.

After a PX server process in SS1 scans a row from the customers table, which PX
server process in SS2 should it send it to? In this case, the redistribution of rows
flowing up from SS1 performing the parallel scan of customers into SS2 performing the
parallel hash-join is done by hash distribution on the join column. That is, a PX server
process scanning customers computes a hash function on the value of the column
customers.cust_id to decide which PX server process in SS2 to send it to. The
redistribution method used is explicitly shown in the Distrib column in the EXPLAIN PLAN
of the query. In Figure 8-2, this can be seen on lines 5, 9, and 14 of the EXPLAIN PLAN.

After SS1 has finished scanning the entire customers table, it scans the sales table in
parallel. It sends its rows to PX servers in SS2, which then perform the probes to finish
the hash join in parallel. These PX servers also perform a GROUP BY operation after the
join. After SS1 has scanned the sales table in parallel and sent the rows to SS2, it
switches to performing the final group by operation in parallel. At this point the PX
servers in SS2 send their rows using hash distribution to PX servers on SS1 for the
group by operation. This is how two server sets run concurrently to achieve inter-
operation parallelism across various operators in the query tree.

Chapter 8
Parallel Execution Concepts

8-8

Figure 8-2 Data Flow Diagram for Joining Tables

Parallel

Execution

Coordinator

GROUP

BY

SORT

HASH JOIN

and

GROUP BY

FULL SCAN

sales

FULL SCAN

customers

Example 8-1 Running an Explain Plan for a Query on Customers and Sales

EXPLAIN PLAN FOR
SELECT /*+ PARALLEL(4) */ customers.cust_first_name, customers.cust_last_name,
 MAX(QUANTITY_SOLD), AVG(QUANTITY_SOLD)
 FROM sales, customers
 WHERE sales.cust_id=customers.cust_id
 GROUP BY customers.cust_first_name, customers.cust_last_name;

Explained.

Example 8-2 Explain Plan Output for a Query on Customers and Sales
PLAN_TABLE_OUTPUT

Plan hash value: 3260900439

|Id |Operation |Name |Rows | Bytes |TempSpc|Cost (%CPU)| Time |Pstart|Pstop | TQ |IN-OUT|PQ Distrib |

0	SELECT STATEMENT		960	26880		6 (34)	00:00:01					
1	PX COORDINATOR											
2	PX SEND QC (RANDOM)	:TQ10003	960	26880		6 (34)	00:00:01			Q1,03	P->S	QC (RAND)
3	HASH GROUP BY		960	26880	50000	6 (34)	00:00:01			Q1,03	PCWP	
4	PX RECEIVE		960	26880		6 (34)	00:00:01			Q1,03	PCWP	
5	PX SEND HASH	:TQ10002	960	26880		6 (34)	00:00:01			Q1,02	P->P	HASH
6	HASH GROUP BY		960	26880	50000	6 (34)	00:00:01			Q1,02	PCWP	
* 7	HASH JOIN		960	26880		5 (20)	00:00:01			Q1,02	PCWP	
8	PX RECEIVE		630	12600		2 (0)	00:00:01			Q1,02	PCWP	
9	PX SEND HYBRID HASH	:TQ10000	630	12600		2 (0)	00:00:01			Q1,00	P->P	HYBRID HASH
10	STATISTICS COLLECTOR									Q1,00	PCWC	
11	PX BLOCK ITERATOR		630	12600		2 (0)	00:00:01			Q1,00	PCWC	
12	TABLE ACCESS FULL	CUSTOMERS	630	12600		2 (0)	00:00:01			Q1,00	PCWP	
13	PX RECEIVE		960	7680		2 (0)	00:00:01			Q1,02	PCWP	
14	PX SEND HYBRID HASH	:TQ10001	960	7680		2 (0)	00:00:01			Q1,01	P->P	HYBRID HASH
15	PX BLOCK ITERATOR		960	7680		2 (0)	00:00:01	1	16	Q1,01	PCWC	
16	TABLE ACCESS FULL	SALES	960	7680		2 (0)	00:00:01	1	16	Q1,01	PCWP	

Predicate Information (identified by operation id):

7 - access("SALES"."CUST_ID"="CUSTOMERS"."CUST_ID")
Note

Chapter 8
Parallel Execution Concepts

8-9

 - Degree of Parallelism is 4 because of hint

8.1.4.5 How Parallel Execution Servers Communicate
To execute a query in parallel, Oracle Database generally creates a set of producer
parallel execution servers and a set of consumer parallel execution servers.

The producer server retrieves rows from tables and the consumer server performs
operations such as join, sort, DML, and DDL on these rows. Each server in the
producer set has a connection to each server in the consumer set. The number of
virtual connections between parallel execution servers increases as the square of the
degree of parallelism.

Each communication channel has at least one, and sometimes up to four memory
buffers, which are allocated from the shared pool. Multiple memory buffers facilitate
asynchronous communication among the parallel execution servers.

A single-instance environment uses at most three buffers for each communication
channel. An Oracle Real Application Clusters environment uses at most four buffers
for each channel. Figure 8-3 illustrates message buffers and how producer parallel
execution servers connect to consumer parallel execution servers.

Figure 8-3 Parallel Execution Server Connections and Buffers

connections

message
buffer

DOP = 1 DOP = 2

. . .

. . .

DOP = n

Parallel
execution
server set 1

Parallel
execution
server set 2

When a connection is between two processes on the same instance, the servers
communicate by passing the buffers back and forth in memory (in the shared pool).
When the connection is between processes in different instances, the messages are
sent using external high-speed network protocols over the interconnect. In Figure 8-3,
the DOP equals the number of parallel execution servers, which in this case is n.
Figure 8-3 does not show the parallel execution coordinator. Each parallel execution
server actually has an additional connection to the parallel execution coordinator. It is
important to size the shared pool adequately when using parallel execution. If there is
not enough free space in the shared pool to allocate the necessary memory buffers for
a parallel server, it fails to start.

Chapter 8
Parallel Execution Concepts

8-10

8.1.5 Parallel Execution Server Pool
When an instance starts, Oracle Database creates a pool of parallel execution servers, which
are available for any parallel operation.

The initialization parameter PARALLEL_MIN_SERVERS specifies the number of parallel execution
servers that Oracle Database creates at instance startup.

When executing a parallel operation, the parallel execution coordinator obtains parallel
execution servers from the pool and assigns them to the operation. If necessary, Oracle
Database can create additional parallel execution servers for the operation. These parallel
execution servers remain with the operation throughout execution. After the statement has
been processed, the parallel execution servers return to the pool.

If the number of parallel operations increases, Oracle Database creates additional parallel
execution servers to handle incoming requests. However, Oracle Database never creates
more parallel execution servers for an instance than the value specified by the initialization
parameter PARALLEL_MAX_SERVERS.

If the number of parallel operations decreases, Oracle Database terminates any parallel
execution servers that have been idle for a threshold interval. Oracle Database does not
reduce the size of the pool less than the value of PARALLEL_MIN_SERVERS, no matter how long
the parallel execution servers have been idle.

8.1.5.1 Processing without Enough Parallel Execution Servers
Oracle Database can process a parallel operation with fewer than the requested number of
processes.

If all parallel execution servers in the pool are occupied and the maximum number of parallel
execution servers has been started, the parallel execution coordinator switches to serial
processing.

See Also:

• Tuning General Parameters for Parallel Execution for information about the
PARALLEL_MIN_PERCENT and PARALLEL_MAX_SERVERS initialization parameters

• Oracle Database Reference for information about using the initialization
parameter PARALLEL_MIN_PERCENT

8.1.6 Balancing the Workload to Optimize Performance
To optimize performance, all parallel execution servers should have equal workloads.

For SQL statements run in parallel by block range or by parallel execution servers, the
workload is dynamically divided among the parallel execution servers. This minimizes
workload skewing, which occurs when some parallel execution servers perform significantly
more work than the other processes.

For the relatively few SQL statements executed in parallel by partitions, if the workload is
evenly distributed among the partitions, you can optimize performance by matching the

Chapter 8
Parallel Execution Concepts

8-11

number of parallel execution servers to the number of partitions or by choosing a DOP
in which the number of partitions is a multiple of the number of processes. This applies
to partition-wise joins and parallel DML on tables created before Oracle9i. Refer to
Limitation on the Degree of Parallelism for more information.

For example, suppose a table has 16 partitions, and a parallel operation divides the
work evenly among them. You can use 16 parallel execution servers (DOP equals 16)
to do the work in approximately one-tenth the time that one process would take. You
might also use five processes to do the work in one-fifth the time, or two processes to
do the work in one-half the time.

If, however, you use 15 processes to work on 16 partitions, the first process to finish its
work on one partition then begins work on the 16th partition; and as the other
processes finish their work, they become idle. This configuration does not provide
good performance when the work is evenly divided among partitions. When the work is
unevenly divided, the performance varies depending on whether the partition that is
left for last has more or less work than the other partitions.

Similarly, suppose you use six processes to work on 16 partitions and the work is
evenly divided. In this case, each process works on a second partition after finishing
its first partition, but only four of the processes work on a third partition while the other
two remain idle.

In general, you cannot assume that the time taken to perform a parallel operation on a
given number of partitions (N) with a given number of parallel execution servers (P)
equals N divided by P. This formula does not consider the possibility that some
processes might have to wait while others finish working on the last partitions. By
choosing an appropriate DOP, however, you can minimize the workload skew and
optimize performance.

8.1.7 Multiple Parallelizers
Each parallel execution (PX) coordinator in an execution plan is called a parallelizer.

The number of PX servers used by a SQL statement is determined by the statement
degree of parallelism (DOP) and the number of parallelizers. Because the number of
PX server sets for a parallelizer is limited to two, the number of PX servers for most
statements is DOP*2. Some statements can have more than one parallelizer. Because
each parallelizer can use two PX server sets, the number of PX servers for these
statements can be more than DOP*2. You can identify these statements by looking at
the EXPLAIN PLAN. If the plan has multiple PX coordinators it means the statement has
multiple parallelizers.

A few example cases where SQL statements use multiple parallelizers are subquery
factoring, grouping sets, star queries, in-memory aggregation, and noncorrelated
subqueries.

Multiple parallelizers in a SQL statement can be active concurrently or one after the
other depending on the execution plan.

A statement with a single parallelizer allocates the required number of PX servers at
the start of execution and holds these allocated PX servers without releasing until the
statement completes. This ensures that the number of PX servers throughout the
execution is constant. Statements with multiple parallelizers are different as they
allocate PX servers when each parallelizer starts. Because parallelizers can start at
different times during the execution, each parallelizer may be running with a different
number of PX servers based on the number of available processes in the system.

Chapter 8
Parallel Execution Concepts

8-12

If multiple parallelizers are executed concurrently the statement can use more PX servers
than DOP*2.

The view V$PQ_SESSTAT shows the number of parallelizers in the STATISTIC column. The data
flow operation statistic,DFO Trees , shows the number of parallelizers. The Server Threads
statistic shows the maximum number of PX servers used concurrently for a SQL statement.

See Also:

Oracle Database Reference for information about V$PQ_SESSTAT and other dynamic
views

8.1.8 Parallel Execution on Oracle RAC
By default in an Oracle RAC environment, a SQL statement executed in parallel can run
across all the nodes in the cluster.

For this cross-node or inter-node parallel execution to perform, the interconnect in the Oracle
RAC environment must be sized appropriately because inter-node parallel execution may
result in heavy interconnect traffic. Inter-node parallel execution does not scale with an
undersized interconnect.

Limiting the Number of Available Instances

In an Oracle RAC environment, you can use services to limit the number of instances that
participate in the execution of a parallel SQL statement. The default service includes all
available instances. You can create any number of services, each consisting of one or more
instances. When a user connects to the database using a service, only PX servers on the
instances that are members of the service can participate in the execution of a parallel
statement.

To limit parallel execution to a single node, you can set the PARALLEL_FORCE_LOCAL
initialization parameter to TRUE. In this case, only PX servers on the instance that a session
connects to is used to execute parallel statements from that session. Note that when this
parameter is set to TRUE, all parallel statements running on that instance are executed locally,
whether the session connects to the instance directly or connects using a service.

Parallel Execution on Flex Clusters

Parallel statements executed on flex clusters can use both hub and leaf nodes. As user
sessions are only allowed to connect to the hub nodes, the coordinator process (Query
Coordinator or PX Coordinator) resides on hub nodes and can use PX server processes from
any node in the cluster. For parallel queries any PX server on any node can participate in the
execution of the statement. For parallel DML operations only PX servers on hub nodes can
participate in the execution of the DML part of the statement as only hub nodes are allowed
to perform DML operations.

When there is data distribution from the leaf nodes to the hub nodes for DML operations, the
execution plan indicates this distribution. In the following example, data is distributed to hub
nodes in line Id 5, indicating the load operation in line Id 3 is executed only on hub nodes.

--
| Id | Operation | Name |
--

Chapter 8
Parallel Execution Concepts

8-13

0	CREATE TABLE STATEMENT	
1	PX COORDINATOR	
2	PX SEND QC (RANDOM)	:TQ10001
3	LOAD AS SELECT (HYBRID TSM/HWMB)	SALESTEMP
4	PX RECEIVE	
5	PX SEND ROUND-ROBIN (HUB)	:TQ10000
6	PX BLOCK ITERATOR	
7	TABLE ACCESS FULL	SALES
--

See Also:

• Oracle Clusterware Administration and Deployment Guide for
information about nodes in hub, leaf, and flex cluster architecture

• Oracle Grid Infrastructure Installation and Upgrade Guide for Linux for
information about cluster installation options for Grid Infrastructure

• Oracle Real Application Clusters Administration and Deployment Guide
for more information about instance groups

8.2 Setting the Degree of Parallelism
The degree of parallelism (DOP) is the number of parallel execution servers
associated with a single operation.

Parallel execution is designed to effectively use multiple CPUs. Oracle Database
parallel execution framework enables you to either explicitly choose a specific degree
of parallelism or to rely on Oracle Database to automatically control it.

This section contains the following topics:

• Manually Specifying the Degree of Parallelism

• Default Degree of Parallelism

• Automatic Degree of Parallelism

• Determining Degree of Parallelism in Auto DOP

• Controlling Automatic Degree of Parallelism

• Adaptive Parallelism

8.2.1 Manually Specifying the Degree of Parallelism
A specific degree of parallelism (DOP) can be requested from Oracle Database for
both tables and indexes.

For example, you can set a fixed DOP at a table level with the following:

ALTER TABLE sales PARALLEL 8;
ALTER TABLE customers PARALLEL 4;

In this example, queries accessing just the sales table request a DOP of 8 and
queries accessing the customers table request a DOP of 4. A query accessing both
the sales and the customers tables is processed with a DOP of 8 and potentially

Chapter 8
Setting the Degree of Parallelism

8-14

allocates 16 parallel execution servers (because of the producer/consumer model).
Whenever different DOPs are specified, Oracle Database uses the higher DOP.

You can also request a specific DOP by using statement level or object level parallel hints.

The DOP specified in the PARALLEL clause of a table or an index takes effect only when
PARALLEL_DEGREE_POLICY is set to MANUAL or LIMITED.

The actual runtime DOP of a statement can be limited by Oracle Database Resource
Manager.

See Also:

• Oracle Database SQL Language Reference for information about hints for
parallel processing

• Oracle Database Administrator’s Guide for more information about Oracle
Database Resource Manager

8.2.2 Default Degree of Parallelism
If the PARALLEL clause is specified but no degree of parallelism (DOP) is listed, then the
object gets the default DOP.

For example, you can set a table to the default DOP with the following SQL statement.

ALTER TABLE sales PARALLEL;

Default parallelism uses a formula to determine the DOP based on the system configuration,
as in the following:

• For a single instance, DOP = PARALLEL_THREADS_PER_CPU x CPU_COUNT

• For an Oracle RAC configuration, DOP = PARALLEL_THREADS_PER_CPU x sum(CPU_COUNT)

By default, sum(CPU_COUNT) is the total number of CPUs in the cluster. However, if you have
used Oracle RAC services to limit the number of nodes across which a parallel operation can
execute, then sum(CPU_COUNT) is the total number of CPUs across the nodes belonging to
that service. For example, on a 4-node Oracle RAC cluster, with each node having 8 CPU
cores and no Oracle RAC services, the default DOP would be 2 x (8+8+8+8) = 64.

You can also request the default DOP by using statement level or object level parallel hints.

The default DOP specified in the PARALLEL clause of a table or an index takes effect only
when PARALLEL_DEGREE_POLICY is set to MANUAL.

The default DOP algorithm is designed to use maximum resources and assumes that the
operation finishes faster if it can use more resources. Default DOP targets the single-user
workload and it is not recommended in a multiuser environment.

The actual runtime DOP of a SQL statement can be limited by Oracle Database Resource
Manager.

Chapter 8
Setting the Degree of Parallelism

8-15

See Also:

• Oracle Database SQL Language Reference for information about hints
for parallel processing

• Oracle Database Administrator’s Guide for more information about
Oracle Database Resource Manager

8.2.3 Automatic Degree of Parallelism
Automatic Degree of Parallelism (Auto DOP) enables Oracle Database to
automatically decide if a statement should execute in parallel and what DOP it should
use.

The following is a summary of parallel statement processing when Auto DOP is
enabled.

1. A SQL statement is issued.

2. The statement is parsed and the optimizer determines the execution plan.

3. The threshold limit specified by the PARALLEL_MIN_TIME_THRESHOLD initialization
parameter is checked.

a. If the expected execution time is less than the threshold limit, the SQL
statement is run serially.

b. If the expected execution time is greater than the threshold limit, the statement
is run in parallel based on the DOP that the optimizer calculates, including
factoring for any defined resource limitations.

8.2.4 Determining Degree of Parallelism in Auto DOP
With automatic degree of parallelism (DOP), the optimizer automatically determines
the DOP for a statement based on the resource requirements of that statement.

The optimizer uses the cost of all scan operations, such as a full table scan or index
fast full scan, and the cost of all CPU operations in the execution plan to determine the
necessary DOP.

However, the optimizer limits the actual maximum DOP to ensure parallel execution
servers do not overwhelm the system. This limit is set by the parameter
PARALLEL_DEGREE_LIMIT. The default value for this parameter is CPU, which means the
DOP is limited by the number of CPUs on the system (PARALLEL_THREADS_PER_CPU *
sum(CPU_COUNT)) also known as the default DOP. This default DOP ensures that a
single user operation cannot overwhelm the system. By adjusting this parameter
setting, you can control the maximum DOP the optimizer can choose for a SQL
statement. The optimizer can further limit the maximum DOP that can be chosen if
Oracle Database Resource Manager is used to limit the DOP.

Chapter 8
Setting the Degree of Parallelism

8-16

Note:

The value AUTO for PARALLEL_DEGREE_LIMIT has the same functionality as the value
CPU.

To calculate the cost of operations for a SQL statement, Auto DOP uses information about
the hardware characteristics of the system. The hardware characteristics include I/O
calibration statistics so these statistics should be gathered.

If I/O calibration is not run to gather the required statistics, a default calibration value is used
to calculate the cost of operations and the DOP.

I/O calibration statistics can be gathered with the PL/SQL
DBMS_RESOURCE_MANAGER.CALIBRATE_IO procedure. I/O calibration is a one-time
action if the physical hardware does not change.

The DOP determined by the optimizer is shown in the notes section of an explain plan output,
as shown in the following explain plan output, visible either using the explain plan statement
or V$SQL_PLAN.

EXPLAIN PLAN FOR
SELECT SUM(AMOUNT_SOLD) FROM SH.SALES;

PLAN TABLE OUTPUT
Plan hash value: 1763145153

--
|Id| Operation | Name | Rows | Bytes| Cost (%CPU)| Time | Pstart| Pstop| TQ |IN-OUT| PQ Distrib |
--
0	SELECT STATEMENT		1	4	2 (0)	00:00:01					
1	SORT AGGREGATE		1	4							
2	PX COORDINATOR										
3	PX SEND QC (RANDOM)	:TQ10000	1	4					Q1,00	P->S	QC (RAND)
4	SORT AGGREGATE		1	4					Q1,00	PCWP	
5	PX BLOCK ITERATOR		960	3840	2 (0)	00:00:01	1	16	Q1,00	PCWC	
6	TABLE ACCESS FULL	SALES	960	3840	2 (0)	00:00:01	1	16	Q1,00	PCWP	
--
Note

 - automatic DOP: Computed Degree of Parallelism is 4

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
DBMS_RESOURCE_MANAGER package

8.2.5 Controlling Automatic Degree of Parallelism
There are several initialization parameters that control automatic degree of parallelism (auto
DOP). These initialization parameters include PARALLEL_DEGREE_POLICY,
PARALLEL_DEGREE_LIMIT, PARALLEL_MIN_TIME_THRESHOLD, and PARALLEL_MIN_DEGREE.

The initialization parameter PARALLEL_DEGREE_POLICY controls whether Auto DOP, parallel
statement queuing, and in-memory parallel execution are enabled. This parameter has the
following possible values:

• MANUAL

Chapter 8
Setting the Degree of Parallelism

8-17

This setting disables Auto DOP, parallel statement queuing and in-memory parallel
execution. It reverts the behavior of parallel execution to what it was previous to
Oracle Database 11g Release 2 (11.2), which is the default.

With the default setting of MANUAL for PARALLEL_DEGREE_POLICY, the system only
uses parallel execution when a DOP has been explicitly set on an object or if a
parallel hint is specified in the SQL statement. The DOP used is exactly what was
specified. No parallel statement queuing and in-memory parallel execution occurs.

• LIMITED

This setting enables Auto DOP for some statements but parallel statement
queuing and in-memory parallel execution are disabled. Automatic DOP is applied
only to statements that access tables or indexes declared explicitly with the
PARALLEL clause without an explicit DOP specified. Tables and indexes that have a
DOP specified use that explicit DOP setting.

If you want Oracle Database to automatically decide the DOP only for a subset of
SQL statements that touch a specific subset of objects, then set
PARALLEL_DEGREE_POLICY to LIMITED and set the parallel property without
specifying an explicit DOP on that subset of objects.

• AUTO

This setting enables Auto DOP for all statements, also enables parallel statement
queuing and in-memory parallel execution.

If you want Oracle Database to automatically decide the DOP for all SQL
statements, then set PARALLEL_DEGREE_POLICY to AUTO.

• ADAPTIVE

This setting enables Auto DOP, parallel statement queuing, and in-memory parallel
execution, similar to the AUTO value. In addition, performance feedback is enabled.

The PARALLEL_DEGREE_LIMIT initialization parameter specifies the maximum DOP that
Auto DOP can use systemwide. For a more fine grained control of the maximum DOP,
you can use Oracle Database Resource Manager.

The PARALLEL_MIN_TIME_THRESHOLD initialization parameter specifies the minimum
estimated execution time for a statement to be considered for Auto DOP. First the
optimizer calculates a serial execution plan for the SQL statement. If the estimated
execution time is greater than the value of PARALLEL_MIN_TIME_THRESHOLD, the
statement becomes a candidate for Auto DOP.

The PARALLEL_MIN_ DEGREE initialization parameter controls the minimum degree of
parallelism computed by automatic degree of parallelism. However,
PARALLEL_MIN_DEGREE has no impact if the value of PARALLEL_MIN_DEGREE is greater
than the value of CPU_COUNT or if an object is Oracle-owned, such as a dictionary table
or view created on a dictionary table.

You can also request Auto DOP by specifying the appropriate statement level or object
level SQL hints.

Chapter 8
Setting the Degree of Parallelism

8-18

See Also:

• Automatic Degree of Parallelism for additional information about Auto DOP

• Parallel Statement Queuing for information about parallel statement queuing

• In-Memory Parallel Execution for information about in-memory parallel
execution

• Tips for Tuning Parallel Execution for information about other techniques that
you can use to control parallelism

• Oracle Database Reference for information about settings for the
PARALLEL_DEGREE_POLICY initialization parameter

• Oracle Database SQL Language Reference for information about the PARALLEL
hint

8.2.6 Adaptive Parallelism
The adaptive multiuser algorithm reduces the degree of parallelism as the load on the system
increases.

When using Oracle Database adaptive parallelism capabilities, the database uses an
algorithm at SQL execution time to determine whether a parallel operation should receive the
requested DOP or have its DOP lower to ensure the system is not overloaded.

In a system that makes aggressive use of parallel execution by using a high DOP, the
adaptive algorithm adjusts the DOP down when only a few operations are running in parallel.
While the algorithm still ensures optimal resource utilization, users may experience
inconsistent response times. Using solely the adaptive parallelism capabilities in an
environment that requires deterministic response times is not advised. Adaptive parallelism is
controlled through the database initialization parameter PARALLEL_ADAPTIVE_MULTI_USER.

Note:

Because the initialization parameter PARALLEL_ADAPTIVE_MULTI_USER is deprecated
in Oracle Database 12c Release 2 (12.2.0.1) and to be desupported in a future
release, Oracle recommends using parallel statement queuing instead.

8.3 In-Memory Parallel Execution
In-memory features provide techniques for parallel execution.

This section discusses in-memory parallel execution.

• Buffer Cache Usage in Parallel Execution

• Automatic Big Table Caching

Chapter 8
In-Memory Parallel Execution

8-19

8.3.1 Buffer Cache Usage in Parallel Execution
By default parallel execution does not use the SGA (buffer cache) to cache the
scanned blocks unless the object is very small or is declared as CACHE.

In-Memory Parallel Execution, enabled by setting the parameter
PARALLEL_DEGREE_POLICY is set to AUTO, enables parallel statements to leverage the
SGA to cache object blocks. Oracle Database decides if an object that is accessed
using parallel execution would benefit from being cached in the SGA. The decision to
cache an object is based on a well-defined set of heuristics including the size of the
object and frequency on which it is accessed. In an Oracle Real Applications Cluster
(Oracle RAC) environment, Oracle Database maps pieces of the object into each of
the buffer caches on the active instances. By creating this mapping, Oracle Database
automatically knows which buffer cache to access to find different parts or pieces of
the object. Using this information, Oracle Database prevents multiple instances from
reading the same information from disk over and over again, thus maximizing the
amount of memory that can cache objects. It does this by using PX servers on the
instances where the blocks are cached.

If the size of the object is larger than a specific threshold value based on the total size
of the buffer cache (single instance) or the size of the buffer cache multiplied by the
number of active instances in an Oracle RAC cluster, then the object is read using
direct-path reads and not cached in the SGA.

8.3.2 Automatic Big Table Caching
Automatic big table caching integrates queries with the buffer cache to enhance the in-
memory query capabilities of Oracle Database, in both single instance and Oracle
RAC environments.

In Oracle Real Application Clusters (Oracle RAC) environments, this feature is
supported only with parallel queries. In single instance environments, this feature is
supported with both parallel and serial queries.

The cache section reserved for the big table cache is used for caching data for table
scans. While the big table cache is primarily designed to enhance performance for
data warehouse workloads, it also improves performance in Oracle Database running
mixed workloads.

Automatic big table caching uses temperature and object based algorithms to track
medium and big tables. Oracle does cache very small tables, but automatic big table
caching does not track these tables.

To enable automatic big table caching for serial queries, you must set a value
(percentage) for the DB_BIG_TABLE_CACHE_PERCENT_TARGET initialization parameter.
Additionally, you must set the PARALLEL_DEGREE_POLICY initialization parameter to AUTO
or ADAPTIVE to enable parallel queries to use automatic big table caching. In Oracle
RAC environments, automatic big table caching is only supported in parallel queries so
both settings are required.

If a large table is approximately the size of the combined size of the big table cache of
all instances, then the table is partitioned and cached, or mostly cached, on all
instances. An in-memory query could eliminate most disk reads for queries on the
table, or the database could intelligently read from disk only for that portion of the table
that does not fit in the big table cache. If the big table cache cannot cache all the

Chapter 8
In-Memory Parallel Execution

8-20

tables to be scanned, only the most frequently accessed table are cached, and the rest are
read through direct read automatically.

The DB_BIG_TABLE_CACHE_PERCENT_TARGET parameter determines the percentage of the
buffer cache size used for scans. If DB_BIG_TABLE_CACHE_PERCENT_TARGET is set to 80 (%),
then 80 (%) of the buffer cache is used for scans and the remaining 20 (%) is used for OLTP
workloads.

The DB_BIG_TABLE_CACHE_PERCENT_TARGET parameter is only enabled in an Oracle RAC
environment if PARALLEL_DEGREE_POLICY is set to AUTO or ADAPTIVE. The default for
DB_BIG_TABLE_CACHE_PERCENT_TARGET is 0 (disabled) and the upper limit is 90 (%) reserving
at least 10% buffer cache for usage besides table scans. When the value is 0, in-memory
queries run with the existing least recently used (LRU) mechanism. You can adjust the
DB_BIG_TABLE_CACHE_PERCENT_TARGET parameter dynamically.

Use the following guidelines when setting the DB_BIG_TABLE_CACHE_PERCENT_TARGET
parameter:

• If you do not enable automatic degree of parallelism (DOP) in an Oracle RAC
environment, then you should not set this parameter because the big table cache section
is not used in that situation.

• When setting this parameter, you should consider the workload mix: how much of the
workload is for OLTP; insert, update, and random access; and how much of the workload
involves table scans. Because data warehouse workloads often perform large table
scans, you may consider giving big table cache section a higher percentage of buffer
cache space for data warehouses.

• This parameter can be dynamically changed if the workload changes. The change could
take some time depending on the current workload to reach the target, because buffer
cache memory might be actively used at the time.

When PARALLEL_DEGREE_POLICY is set to AUTO or ADAPTIVE, additional object-level statistics
for a data warehouse load and scan buffers are added to represent the number of parallel
queries (PQ) scans on the object on the particular (helper) instance.

The V$BT_SCAN_CACHE and V$BT_SCAN_OBJ_TEMPS views provide information about the big
table cache.

See Also:

• Oracle Database Administrator’s Guide for information about automatic big
table caching

• Oracle Database Concepts for information about automatic big table caching

• Oracle Database Reference for information about the
DB_BIG_TABLE_CACHE_PERCENT_TARGET initialization parameter

• Oracle Database Reference for information about the V$BT_SCAN* views

8.4 Parallel Statement Queuing
In some situations, parallel statements are queued while waiting for resources.

Chapter 8
Parallel Statement Queuing

8-21

When the parameter PARALLEL_DEGREE_POLICY is set to AUTO, Oracle Database
queues SQL statements that require parallel execution if the necessary number of
parallel execution server processes are not available. After the necessary resources
become available, the SQL statement is dequeued and allowed to execute. The
default dequeue order is a simple first in, first out queue based on the time a statement
was issued.

The following is a summary of parallel statement processing.

1. A SQL statements is issued.

2. The statement is parsed and the DOP is automatically determined.

3. Available parallel resources are checked.

a. If there are sufficient parallel execution servers available and there are no
statements ahead in the queue waiting for the resources, the SQL statement is
executed.

b. If there are not sufficient parallel execution servers available, the SQL
statement is queued based on specified conditions and dequeued from the
front of the queue when specified conditions are met.

Parallel statements are queued if running the statements would increase the number
of active parallel servers above the value of the PARALLEL_SERVERS_TARGET
initialization parameter. For example, if PARALLEL_SERVERS_TARGET is set to 64, the
number of current active servers is 60, and a new parallel statement needs 16 parallel
servers, it would be queued because 16 added to 60 is greater than 64, the value of
PARALLEL_SERVERS_TARGET.

This value is not the maximum number of parallel server processes allowed on the
system, but the number available to run parallel statements before parallel statement
queuing is used. It is set lower than the maximum number of parallel server processes
allowed on the system (PARALLEL_MAX_SERVERS) to ensure each parallel statement gets
all of the parallel server resources required and to prevent overloading the system with
parallel server processes. Note all serial (nonparallel) statements execute immediately
even if parallel statement queuing has been activated.

If a statement has been queued, it is identified by the resmgr:pq queued wait event.

This section discusses the following topics:

• About Managing Parallel Statement Queuing with Oracle Database Resource
Manager

• Grouping Parallel Statements with BEGIN_SQL_BLOCK END_SQL_BLOCK

• About Managing Parallel Statement Queuing with Hints

See Also:

• V$RSRC_SESSION_INFO and V$RSRCMGRMETRIC for information
about views for monitoring and analyzing parallel statement queuing

• Oracle Database Reference for more information about the
PARALLEL_SERVERS_TARGET initialization parameter

Chapter 8
Parallel Statement Queuing

8-22

8.4.1 About Managing Parallel Statement Queuing with Oracle Database
Resource Manager

By default, the parallel statement queue operates as a first-in, first-out queue, but you can
modify the default behavior with a resource plan.

By configuring and setting a resource plan, you can control the order in which parallel
statements are dequeued and the number of parallel execution servers used by each
workload or consumer group.

Oracle Database Resource Manager operates based on the concept of consumer groups and
resource plans. Consumer groups identify groups of users with identical resource privileges
and requirements. A resource plan consists of a collection of directives for each consumer
group which specify controls and allocations for various database resources, such as parallel
servers. For multitenant container databases (CDBs) and pluggable databases (PDBs), the
order of the parallel statement queue is managed by the directive called shares.

A resource plan is enabled by setting the RESOURCE_MANAGER_PLAN parameter to the name of
the resource plan.

You can use the directives described in the following sections to manage the processing of
parallel statements for consumer groups when the parallel degree policy is set to AUTO.

• About Managing the Order of the Parallel Statement Queue

• About Limiting the Parallel Server Resources for a Consumer Group

• Specifying a Parallel Statement Queue Timeout for Each Consumer Group

• Specifying a Degree of Parallelism Limit for Consumer Groups

• Critical Parallel Statement Prioritization

• A Sample Scenario for Managing Statements in the Parallel Queue

In all cases, the parallel statement queue of a given consumer group is managed as a single
queue on an Oracle RAC database. Limits for each consumer group apply to all sessions
across the Oracle RAC database that belong to that consumer group. The queuing of parallel
statements occurs based on the sum of the values of the PARALLEL_SERVERS_TARGET
initialization parameter across all database instances.

You can also manage parallel statement queuing for multitenant container databases (CDBs)
and pluggable databases (PDBs).

Chapter 8
Parallel Statement Queuing

8-23

See Also:

• Oracle Database Administrator’s Guide for information about managing
Oracle Database resources with Oracle Database Resource Manager

• Oracle Multitenant Administrator's Guide for information about parallel
execution (PX) servers and utilization limits for for multitenant container
databases (CDBs) and pluggable databases (PDBs)

• Oracle Database Reference for information about V$RSRC* views, the
DBA_HIST_RSRC_CONSUMER_GROUP view, and parallel query wait events

• Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_RESOURCE_MANAGER package

8.4.1.1 About Managing the Order of the Parallel Statement Queue
You can use Oracle Database Resource Manager to manage the priority for dequeuing
parallel statements from the parallel statement queue across multiple consumer
groups.

The parallel statements for a particular consumer group are dequeued in FIFO order
by default. With the directives shares, you can determine the order in which the
parallel statements of a consumer group are dequeued. You configure these directives
with the CREATE_PLAN_DIRECTIVE or UPDATE_PLAN_DIRECTIVE procedure of the
DBMS_RESOURCE_MANAGER PL/SQL package. You can also set shares in a CDB resource
plan to manage the order of parallel statements among PDBs.

For example, you can create the PQ_HIGH, PQ_MEDIUM, and PQ_LOW consumer groups
and map parallel statement sessions to these consumer groups based on priority. You
then create a resource plan that sets shares=14 for PQ_HIGH, shares=5 for PQ_MEDIUM,
and shares=1 for PQ_LOW. This indicates that PQ_HIGH statements are dequeued with a
probability of 70% (14/(14+5+1)=.70) of the time, PQ_MEDIUM dequeued with a
probability of 25% (5/(14+5+1)=.25) of the time, and PQ_LOW dequeued with a probability
of 5% (1/(14+5+1)=.05) of the time.

If a parallel statement has been queued and you determine that the parallel statement
must be run immediately, then you can run the
DBMS_RESOURCE_MANAGER.DEQUEUE_PARALLEL_STATEMENT PL/SQL procedure to
dequeue the parallel statement.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about procedures in the DBMS_RESOURCE_MANAGER package

• Oracle Database Administrator’s Guide for information about creating
resource plan directives

Chapter 8
Parallel Statement Queuing

8-24

8.4.1.2 About Limiting the Parallel Server Resources for a Consumer Group
You can use Oracle Database Resource Manager to limit the number of parallel servers that
parallel statements from lower priority consumer groups can use for parallel statement
processing.

Using Oracle Database Resource Manager you can map parallel statement sessions to
different consumer groups that each have specific limits on the number of the parallel servers
that can be used. Every consumer group has its own individual parallel statement queue.
When these limits for consumer groups are specified, parallel statements from a consumer
group are queued when its limit would be exceeded.

This limitation becomes useful when a database has high priority and low priority consumer
groups. Without limits, a user may issue a large number of parallel statements from a low-
priority consumer group that uses all parallel servers. When a parallel statement from a high
priority consumer group is issued, the resource allocation directives can ensure that the high
priority parallel statement is dequeued first. By limiting the number of parallel servers a low-
priority consumer group can use, you can ensure that there are always some parallel servers
available for a high priority consumer group.

To limit the parallel servers used by a consumer group, use the parallel_server_limit
parameter with the CREATE_PLAN_DIRECTIVE procedure or the new_parallel_server_limit
parameter with the UPDATE_PLAN_DIRECTIVE procedure in the DBMS_RESOURCE_MANAGER
package. The parallel_server_limit parameter specifies the maximum percentage of the
Oracle RAC-wide parallel server pool that is specified by PARALLEL_SERVERS_TARGET that a
consumer group can use.

For multitenant container database (CDB) resource plans, the parallel server limit applies to
pluggable databases (PDBs). For PDB resource plans or non-CDB resource plans, this limit
applies to consumer groups.

For example, on an Oracle RAC database in nonmultitenant configuration, the initialization
parameter PARALLEL_SERVERS_TARGET is set to 32 on two nodes so there are a total of 32 x 2
= 64 parallel servers that can be used before queuing begins. You can set up the consumer
group PQ_LOW to use 50% of the available parallel servers (parallel_server_limit = 50) and
low priority statements can then be mapped to the PQ_LOW consumer group. This scenario
limits any parallel statements from the PQ_LOW consumer group to 64 x 50% = 32 parallel
servers, even though there are more inactive or unused parallel servers. In this scenario,
after the statements from the PQ_LOW consumer group have used 32 parallel servers,
statements from that consumer group are queued.

It is possible in one database to have some sessions with the parallelism degree policy set to
MANUAL and some sessions set to AUTO. In this scenario, only the sessions with parallelism
degree policy set to AUTO can be queued. However, the parallel servers used in sessions
where the parallelism degree policy is set to MANUAL are included in the total of all parallel
servers used by a consumer group.

See Also:

PARALLEL_SERVERS_TARGET for information about limiting parallel resources
for users

Chapter 8
Parallel Statement Queuing

8-25

8.4.1.3 Specifying a Parallel Statement Queue Timeout for Each Consumer
Group

You can use Oracle Database Resource Manager to set specific maximum queue
timeouts for consumer groups so that parallel statements do not stay in the queue for
long periods of time.

To manage the queue timeout, the parallel_queue_timeout parameter is used with
the CREATE_PLAN_DIRECTIVE procedure or the new_parallel_queue_timeout
parameter is used with the UPDATE_PLAN_DIRECTIVE procedure in the
DBMS_RESOURCE_MANAGER package. The parallel_queue_timeout and
new_parallel_queue_timeout parameters specify the time in seconds that a
statement can remain in a consumer group parallel statement queue. After the timeout
period expires, the statement is either terminated with error ORA-7454 or removed from
the parallel statement queue and enabled to run based on the value for the
PQ_TIMEOUT_ACTION directive in the resource manager plan.

You can specify queue timeout actions for parallel statements using the
PQ_TIMEOUT_ACTION resource manager directive. Setting this directive to CANCEL
terminates the statement with the error ORA-7454. Setting this directive to RUN enables
the statement to run.

8.4.1.4 Specifying a Degree of Parallelism Limit for Consumer Groups
You can use Oracle Database Resource Manager to the limit the degree of parallelism
for specific consumer groups.

Using Oracle Database Resource Manager you can map parallel statement sessions
to different consumer groups that each have specific limits for the degree of parallelism
in a resource plan.

To manage the limit of parallelism in consumer groups, use the
parallel_degree_limit_p1 parameter with the CREATE_PLAN_DIRECTIVE procedure in
the DBMS_RESOURCE_MANAGER package or the new_parallel_degree_limit_p1
parameter with the UPDATE_PLAN_DIRECTIVE procedure in the DBMS_RESOURCE_MANAGER
package. The parallel_degree_limit_p1 and new_parallel_degree_limit_p1
parameters specify a limit on the degree of parallelism for any operation.

For example, you can create the PQ_HIGH, PQ_MEDIUM, and PQ_LOW consumer
groups and map parallel statement sessions to these consumer groups based on
priority. You then create a resource plan that specifies degree of parallelism limits so
that the PQ_HIGH limit is set to 16, the PQ_MEDIUM limit is set to 8, and the
PQ_LOW limit is set to 2.

The degree of parallelism limit is enforced, even if PARALLEL_DEGREE_POLICY is not set
to AUTO.

8.4.1.5 Critical Parallel Statement Prioritization
The setting of the PARALLEL_STMT_CRITICAL parameter affects the critical designation
of parallel statements in the plan directive with respect to the parallel statement queue.

• If the PARALLEL_STMT_CRITICAL parameter is set to QUEUE, then parallel statements
that have PARALLEL_DEGREE_POLICY set to MANUAL are queued.

Chapter 8
Parallel Statement Queuing

8-26

• If the PARALLEL_STMT_CRITICAL parameter is set to BYPASS_QUEUE, then parallel
statements bypass the parallel statement queue and execute immediately.

• If PARALLEL_STMT_CRITICAL is set to FALSE, then that specifies the default behavior and
no statement is designated as critical.

Because critical parallel statements bypass the parallel statement queue, the system may
encounter more active parallel servers than specified by the PARALLEL_SERVERS_TARGET
parameter. Critical parallel statements are allowed to run after the number of parallel servers
reaches PARALLEL_MAX_SERVERS, so some critical parallel statements may be downgraded.

The PARALLEL_STMT_CRITICAL column in the DBA_RSRC_PLAN_DIRECTIVES view indicates
whether parallel statements are from a consumer group that has been marked critical.

8.4.1.6 A Sample Scenario for Managing Statements in the Parallel Queue
This scenario discusses how to manage statements in the parallel queue with consumer
groups set up with Oracle Database Resource Manager.

For this scenario, consider a data warehouse workload that consists of three types of SQL
statements:

• Short-running SQL statements

Short-running identifies statements running less than one minute. You expect these
statements to have very good response times.

• Medium-running SQL statements

Medium-running identifies statements running more than one minute, but less than 15
minutes. You expect these statements to have reasonably good response times.

• Long-running SQL statements

Long-running identifies statements that are ad-hoc or complex queries running more than
15 minutes. You expect these statements to take a long time.

For this data warehouse workload, you want better response times for the short-running
statements. To achieve this goal, you must ensure that:

• Long-running statements do not use all of the parallel server resources, forcing shorter
statements to wait in the parallel statement queue.

• When both short-running and long-running statements are queued, short-running
statements should be dequeued ahead of long-running statements.

• The DOP for short-running queries is limited because the speedup from a very high DOP
is not significant enough to justify the use of a large number of parallel servers.

Example 8-3 shows how to set up consumer groups using Oracle Database Resource
Manager to set priorities for statements in the parallel statement queue. Note the following for
this example:

• By default, users are assigned to the OTHER_GROUPS consumer group. If the estimated
execution time of a SQL statement is longer than 1 minute (60 seconds), then the user
switches to MEDIUM_SQL_GROUP. Because switch_for_call is set to TRUE, the user returns
to OTHER_GROUPS when the statement has completed. If the user is in MEDIUM_SQL_GROUP
and the estimated execution time of the statement is longer than 15 minutes (900
seconds), the user switches to LONG_SQL_GROUP. Similarly, because switch_for_call is
set to TRUE, the user returns to OTHER_GROUPS when the query has completed. The

Chapter 8
Parallel Statement Queuing

8-27

directives used to accomplish the switch process are switch_time,
switch_estimate, switch_for_call, and switch_group.

• After the number of active parallel servers reaches the value of the
PARALLEL_SERVERS_TARGET initialization parameter, subsequent parallel statements
are queued. The shares directives control the order in which parallel statements
are dequeued when parallel servers become available. Because shares is set to
100% for SYS_GROUP in this example, parallel statements from SYS_GROUP are always
dequeued first. If no parallel statements from SYS_GROUP are queued, then parallel
statements from OTHER_GROUPS are dequeued with probability 70%, from
MEDIUM_SQL_GROUP with probability 20%, and LONG_SQL_GROUP with probability
10%.

• Parallel statements issued from OTHER_GROUPS are limited to a DOP of 4 with the
setting of the parallel_degree_limit_p1 directive.

• To prevent parallel statements of the LONG_SQL_GROUP group from using all of the
parallel servers, which could potentially cause parallel statements from
OTHER_GROUPS or MEDIUM_SQL_GROUP to wait for long periods of time, its
parallel_server_limit directive is set to 50%. This setting means that after
LONG_SQL_GROUP has used up 50% of the parallel servers set with the
PARALLEL_SERVERS_TARGET initialization parameter, its parallel statements are
forced to wait in the queue.

• Because parallel statements of the LONG_SQL_GROUP group may be queued for a
significant amount of time, a timeout is configured for 14400 seconds (4 hours).
When a parallel statement from LONG_SQL_GROUP has waited in the queue for 4
hours, the statement is terminated with the error ORA-7454.

Example 8-3 Using consumer groups to set priorities in the parallel statement
queue

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

 /* Create consumer groups.
 * By default, users start in OTHER_GROUPS, which is automatically
 * created for every database.
 */
 DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(
 'MEDIUM_SQL_GROUP',
 'Medium-running SQL statements, between 1 and 15 minutes. Medium
priority.');

 DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(
 'LONG_SQL_GROUP',
 'Long-running SQL statements of over 15 minutes. Low priority.');

 /* Create a plan to manage these consumer groups */
 DBMS_RESOURCE_MANAGER.CREATE_PLAN(
 'REPORTS_PLAN',
 'Plan for daytime that prioritizes short-running queries');

 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(
 'REPORTS_PLAN', 'SYS_GROUP', 'Directive for sys activity',
 shares => 100);

 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(
 'REPORTS_PLAN', 'OTHER_GROUPS', 'Directive for short-running queries',
 shares => 70,

Chapter 8
Parallel Statement Queuing

8-28

 parallel_degree_limit_p1 => 4,
 switch_time => 60, switch_estimate => TRUE, switch_for_call => TRUE,
 switch_group => 'MEDIUM_SQL_GROUP');

 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(
 'REPORTS_PLAN', 'MEDIUM_SQL_GROUP', 'Directive for medium-running queries',
 shares => 20,
 parallel_server_limit => 80,
 switch_time => 900, switch_estimate => TRUE, switch_for_call => TRUE,
 switch_group => 'LONG_SQL_GROUP');

 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(
 'REPORTS_PLAN', 'LONG_SQL_GROUP', 'Directive for medium-running queries',
 shares => 10,
 parallel_server_limit => 50,
 parallel_queue_timeout => 14400);

 DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();
END;
/

/* Allow all users to run in these consumer groups */
EXEC DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SWITCH_CONSUMER_GROUP(
 'public', 'MEDIUM_SQL_GROUP', FALSE);

EXEC DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SWITCH_CONSUMER_GROUP(
 'public', 'LONG_SQL_GROUP', FALSE);

8.4.2 Grouping Parallel Statements with BEGIN_SQL_BLOCK
END_SQL_BLOCK

Often it is important for a report or batch job that consists of multiple parallel statements to
complete as quickly as possible.

For example, when many reports are launched simultaneously, you may want all of the
reports to complete as quickly as possible. However, you also want some specific reports to
complete first, rather than all reports finishing at the same time.

If a report contains multiple parallel statements and PARALLEL_DEGREE_POLICY is set to AUTO,
then each parallel statement may be forced to wait in the queue on a busy database. For
example, the following steps describe a scenario in SQL statement processing:

serial statement
parallel query - dop 8
 -> wait in queue
serial statement
parallel query - dop 32
 -> wait in queue
parallel query - dop 4
 -> wait in queue

For a report to be completed quickly, the parallel statements must be grouped to produce the
following behavior:

start SQL block
serial statement
parallel query - dop 8
 -> first parallel query: ok to wait in queue
serial statement

Chapter 8
Parallel Statement Queuing

8-29

parallel query - dop 32
 -> avoid or minimize wait
parallel query - dop 4
 -> avoid or minimize wait
end SQL block

To group the parallel statements, you can use the BEGIN_SQL_BLOCK and
END_SQL_BLOCK procedures in the DBMS_RESOURCE_MANAGER PL/SQL package. For each
consumer group, the parallel statement queue is ordered by the time associated with
each of the consumer group's parallel statements. Typically, the time associated with a
parallel statement is the time that the statement was enqueued, which means that the
queue appears to be FIFO. When parallel statements are grouped in a SQL block with
the BEGIN_SQL_BLOCK and END_SQL_BLOCK procedures, the first queued parallel
statement also uses the time that it was enqueued. However, the second and all
subsequent parallel statements receive special treatment and are enqueued using the
enqueue time of the first queued parallel statement within the SQL block. With this
functionality, the statements frequently move to the front of the parallel statement
queue. This preferential treatment ensures that their wait time is minimized.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_RESOURCE_MANAGER package

8.4.3 About Managing Parallel Statement Queuing with Hints
You can use the NO_STATEMENT_QUEUING and STATEMENT_QUEUING hints in SQL
statements to influence whether or not a statement is queued with parallel statement
queuing.

• NO_STATEMENT_QUEUING

When PARALLEL_DEGREE_POLICY is set to AUTO, this hint enables a statement to
bypass the parallel statement queue. However, a statement that bypasses the
statement queue can potentially cause the system to exceed the maximum
number of parallel execution servers defined by the value of the
PARALLEL_SERVERS_TARGET initialization parameter, which determines the limit at
which parallel statement queuing is initiated.

There is no guarantee that the statement that bypasses the parallel statement
queue receives the number of parallel execution servers requested because only
the number of parallel execution servers available on the system, up to the value
of the PARALLEL_MAX_SERVERS initialization parameter, can be allocated.

For example:

SELECT /*+ NO_STATEMENT_QUEUING */ last_name, department_name
 FROM employees e, departments d
 WHERE e.department_id = d.department_id;

• STATEMENT_QUEUING

When PARALLEL_DEGREE_POLICY is not set to AUTO, this hint enables a statement to
be considered for parallel statement queuing, but to run only when enough parallel
processes are available to run at the requested DOP. The number of available
parallel execution servers, before queuing is enabled, is equal to the difference

Chapter 8
Parallel Statement Queuing

8-30

between the number of parallel execution servers in use and the maximum number
allowed in the system, which is defined by the PARALLEL_SERVERS_TARGET initialization
parameter.

For example:

SELECT /*+ STATEMENT_QUEUING */ last_name, department_name
 FROM employees e, departments d
 WHERE e.department_id = d.department_id;

8.5 Types of Parallelism
There are multiple types of parallelism.

This section discusses the types of parallelism in the following topics:

• About Parallel Queries

• About Parallel DDL Statements

• About Parallel DML Operations

• About Parallel Execution of Functions

• About Other Types of Parallelism

• Degree of Parallelism Rules for SQL Statements

8.5.1 About Parallel Queries
You can use parallel queries and parallel subqueries in SELECT statements and execute in
parallel the query portions of DDL statements and DML statements (INSERT, UPDATE, and
DELETE).

You can also query external tables in parallel.

The parallelization decision for SQL queries has two components: the decision to parallelize
and the degree of parallelism (DOP). These components are determined differently for
queries, DDL operations, and DML operations. To determine the DOP, Oracle Database looks
at the reference objects:

• Parallel query looks at each table and index, in the portion of the query to be executed in
parallel, to determine which is the reference table. The basic rule is to pick the table or
index with the largest DOP.

• For parallel DML (INSERT, UPDATE, MERGE, and DELETE), the reference object that
determines the DOP is the table being modified by an insert, update, or delete operation.
Parallel DML also adds some limits to the DOP to prevent deadlock. If the parallel DML
statement includes a subquery, the subquery's DOP is equivalent to that for the DML
operation.

• For parallel DDL, the reference object that determines the DOP is the table, index, or
partition being created, rebuilt, split, or moved. If the parallel DDL statement includes a
subquery, the subquery's DOP is equivalent to the DDL operation.

This section contains the following topics:

• Parallel Queries on Index-Organized Tables

• Nonpartitioned Index-Organized Tables

• Partitioned Index-Organized Tables

Chapter 8
Types of Parallelism

8-31

• Parallel Queries on Object Types

• Rules for Parallelizing Queries

See Also:

• Parallel Execution of SQL Statements for an explanation of how the
processes perform parallel queries

• Distributed Transaction Restrictions for examples of queries that
reference a remote object

• Rules for Parallelizing Queries for information about the conditions for
executing a query in parallel and the factors that determine the DOP

8.5.1.1 Parallel Queries on Index-Organized Tables
There are several parallel scan methods that are supported on index-organized tables.

These parallel scan methods include:

• Parallel fast full scan of a nonpartitioned index-organized table

• Parallel fast full scan of a partitioned index-organized table

• Parallel index range scan of a partitioned index-organized table

You can use these scan methods for index-organized tables with overflow areas and
for index-organized tables that contain LOBs.

8.5.1.2 Nonpartitioned Index-Organized Tables
Parallel query on a nonpartitioned index-organized table uses parallel fast full scan.

Work is allocated by dividing the index segment into a sufficiently large number of
block ranges and then assigning the block ranges to parallel execution servers in a
demand-driven manner. The overflow blocks corresponding to any row are accessed
in a demand-driven manner only by the process, which owns that row.

8.5.1.3 Partitioned Index-Organized Tables
Both index range scan and fast full scan can be performed in parallel.

For parallel fast full scan, parallelization is the same as for nonpartitioned index-
organized tables. Depending on the DOP, each parallel execution server gets one or
more partitions, each of which contains the primary key index segment and the
associated overflow segment, if any.

8.5.1.4 Parallel Queries on Object Types
Parallel queries can be performed on object type tables and tables containing object
type columns.

Parallel query for object types supports all of the features that are available for
sequential queries on object types, including:

Chapter 8
Types of Parallelism

8-32

• Methods on object types

• Attribute access of object types

• Constructors to create object type instances

• Object views

• PL/SQL and Oracle Call Interface (OCI) queries for object types

There are no limitations on the size of the object types for parallel queries.

The following restrictions apply to using parallel query for object types:

• A MAP function is needed to execute queries in parallel for queries involving joins and
sorts (through ORDER BY, GROUP BY, or set operations). Without a MAP function, the query is
automatically executed serially.

• Parallel DML and parallel DDL are not supported with object types, and such statements
are always performed serially.

In all cases where the query cannot execute in parallel because of any of these restrictions,
the whole query executes serially without giving an error message.

8.5.1.5 Rules for Parallelizing Queries
A SQL query can only be executed in parallel under certain conditions.

A SELECT statement can be executed in parallel only if one of the following conditions is
satisfied:

• The query includes a statement level or object level parallel hint specification (PARALLEL
or PARALLEL_INDEX).

• The schema objects referred to in the query have a PARALLEL declaration associated with
them.

• Automatic Degree of Parallelism (Auto DOP) has been enabled.

• Parallel query is forced using the ALTER SESSION FORCE PARALLEL QUERY statement.

In addition, the execution plan should have at least one of the following:

• A full table scan

• An index range scan spanning multiple partitions

• An index fast full scan

• A parallel table function

See Also:

• Automatic Degree of Parallelismfor information about Auto DOP

• Degree of Parallelism Rules for SQL Statements for information about the rules
for determining the degree of parallelism (DOP)

• Oracle Database SQL Language Reference for more information about the
ALTER SESSION SQL statement

Chapter 8
Types of Parallelism

8-33

8.5.2 About Parallel DDL Statements
Parallelism for DDL statements is introduced in this topic.

This section about parallelism for DDL statements contains the following topics:

• DDL Statements That Can Be Parallelized

• About Using CREATE TABLE AS SELECT in Parallel

• Recoverability and Parallel DDL

• Space Management for Parallel DDL

• Storage Space When Using Dictionary-Managed Tablespaces

• Free Space and Parallel DDL

• Rules for DDL Statements

• Rules for CREATE TABLE AS SELECT

8.5.2.1 DDL Statements That Can Be Parallelized
You can execute DDL statements in parallel for tables and indexes that are
nonpartitioned or partitioned.

The parallel DDL statements for nonpartitioned tables and indexes are:

• CREATE INDEX

• CREATE TABLE AS SELECT

• ALTER TABLE MOVE

• ALTER INDEX REBUILD

The parallel DDL statements for partitioned tables and indexes are:

• CREATE INDEX

• CREATE TABLE AS SELECT

• ALTER TABLE {MOVE|SPLIT|COALESCE} PARTITION

• ALTER INDEX {REBUILD|SPLIT} PARTITION

– This statement can be executed in parallel only if the (global) index partition
being split is usable.

All of these DDL operations can be performed in NOLOGGING mode for either parallel or
serial execution.

The CREATE TABLE statement for an index-organized table can be executed in parallel
either with or without an AS SELECT clause.

Parallel DDL cannot occur on tables with object columns. Parallel DDL cannot occur
on nonpartitioned tables with LOB columns.

8.5.2.2 About Using CREATE TABLE AS SELECT in Parallel
Parallel execution enables you execute the query in parallel and create operations of
creating a table as a subquery from another table or set of tables.

Chapter 8
Types of Parallelism

8-34

This parallel functionality can be extremely useful in the creation of summary or rollup tables.

Note that clustered tables cannot be created and populated in parallel.

Figure 8-4 illustrates creating a summary table from a subquery in parallel.

Figure 8-4 Creating a Summary Table in Parallel

CREATE TABLE summary

 (C1, AVGC2, SUMC3)

PARALLEL 5

AS

SELECT

C1, AVG(C2), SUM(C3)

FROM DAILY_SALES

GROUP BY (C1);

DAILY_SALES

Table

SUMMARY

Table

Parallel Execution
Coordinator

Parallel Execution
Servers

Parallel Execution
Servers

8.5.2.3 Recoverability and Parallel DDL
Parallel DDL is often used to create summary tables or do massive data loads that are
standalone transactions, which do not always need to be recoverable.

By switching off Oracle Database logging, no undo or redo log is generated, so the parallel
DML operation is likely to perform better, but becomes an all or nothing operation. In other
words, if the operation fails, for whatever reason, you must redo the operation, it is not
possible to restart it.

If you disable logging during parallel table creation (or any other parallel DDL operation), you
should back up the tablespace containing the table after the table is created to avoid loss of
the table due to media failure.

Use the NOLOGGING clause of the CREATE TABLE, CREATE INDEX, ALTER TABLE, and ALTER INDEX
statements to disable undo and redo log generation.

8.5.2.4 Space Management for Parallel DDL
Creating a table or index in parallel has space management implications.

These space management implications affect both the storage space required during a
parallel operation and the free space available after a table or index has been created.

Chapter 8
Types of Parallelism

8-35

8.5.2.5 Storage Space When Using Dictionary-Managed Tablespaces
When creating a table or index in parallel, each parallel execution server uses the
values in the STORAGE clause of the CREATE statement to create temporary segments to
store the rows.

A table created with a NEXT setting of 4 MB and a PARALLEL DEGREE of 16 consumes at
least 64 megabytes (MB) of storage during table creation because each parallel server
process starts with an extent of 4 MB. When the parallel execution coordinator
combines the segments, some segments may be trimmed, and the resulting table may
be smaller than the requested 64 MB.

8.5.2.6 Free Space and Parallel DDL
When you create indexes and tables in parallel, each parallel execution server
allocates a new extent and fills the extent with the table or index data.

For example, if you create an index with a DOP of 4, then the index has at least four
extents initially. This allocation of extents is the same for rebuilding indexes in parallel
and for moving, splitting, or rebuilding partitions in parallel.

Serial operations require the schema object to have at least one extent. Parallel
creations require that tables or indexes have at least as many extents as there are
parallel execution servers creating the schema object.

When you create a table or index in parallel, it is possible to create areas of free
space. This occurs when the temporary segments used by the parallel execution
servers are larger than what is needed to store the rows.

• If the unused space in each temporary segment is larger than the value of the
MINIMUM EXTENT parameter set at the tablespace level, then Oracle Database trims
the unused space when merging rows from all of the temporary segments into the
table or index. The unused space is returned to the system free space and can be
allocated for new extents, but it cannot be coalesced into a larger segment
because it is not contiguous space (external fragmentation).

• If the unused space in each temporary segment is smaller than the value of the
MINIMUM EXTENT parameter, then unused space cannot be trimmed when the rows
in the temporary segments are merged. This unused space is not returned to the
system free space; it becomes part of the table or index (internal fragmentation)
and is available only for subsequent insertions or for updates that require
additional space.

For example, if you specify a DOP of 3 for a CREATE TABLE AS SELECT statement, but
there is only one data file in the tablespace, then internal fragmentation may occur, as
shown in Figure 8-5. The areas of free space within the internal table extents of a data
file cannot be coalesced with other free space and cannot be allocated as extents.

Chapter 8
Types of Parallelism

8-36

Figure 8-5 Unusable Free Space (Internal Fragmentation)

DATA1.ORA

CREATE TABLE emp

 AS SELECT ...

USERS Tablespace

EXTENT 1

Free space
for INSERTs

Free space
for INSERTs

Free space

EXTENT 2

EXTENT 3

for INSERTs

Parallel
Execution

Server

Parallel
Execution

Server

Parallel
Execution

Server

See Also:

Oracle Database SQL Tuning Guide for more information about creating tables and
indexes in parallel

8.5.2.7 Rules for DDL Statements
DDL operations can be executed in parallel under certain conditions.

DDL operations can be executed in parallel only if at least one of the following conditions is
satisfied:

• A PARALLEL clause (declaration) is specified in the syntax. For CREATE TABLE, CREATE
INDEX , ALTER INDEX REBUILD, and ALTER INDEX REBUILD PARTITION, the parallel
declaration is stored in the data dictionary.

• Automatic Degree of Parallelism (Auto DOP) has been enabled.

• Parallel DDL is forced using the ALTER SESSION FORCE PARALLEL DDL statement.

Chapter 8
Types of Parallelism

8-37

See Also:

• Automatic Degree of Parallelism for information about Auto DOP

• Degree of Parallelism Rules for SQL Statements for information about
the rules for determining the degree of parallelism (DOP)

• Oracle Database SQL Language Reference for more information about
the ALTER SESSION SQL statement

8.5.2.8 Rules for CREATE TABLE AS SELECT
The CREATE operation of the CREATE TABLE AS SELECT statement is parallelized based
on the rules for parallelizing DDL statements.

In addition, a statement level PARALLEL hint specified in the SELECT part of the
statement can also parallelize the DDL operation. For information about rules for
parallelizing DDL statements, refer to Rules for DDL Statements.

When the CREATE operation of CREATE TABLE AS SELECT is parallelized, Oracle
Database also parallelizes the scan operation if possible.

Even if the DDL part is not parallelized, the SELECT part can be parallelized based on
the rules for parallelizing queries.

Automatic Degree of Parallelism (Auto DOP) parallelizes both the DDL and the query
parts of the statement.

For information about the rules for determining the degree of parallelism (DOP), refer
to Degree of Parallelism Rules for SQL Statements.

8.5.3 About Parallel DML Operations
Parallel DML operations are introduced in the topic.

Parallel DML (PARALLEL INSERT, UPDATE, DELETE, and MERGE) uses parallel execution
mechanisms to speed up or scale up large DML operations against large database
tables and indexes.

Note:

Although DML generally includes queries, in this chapter the term DML refers
only to INSERT, UPDATE, MERGE, and DELETE operations.

This section discusses the following parallel DML topics:

• When to Use Parallel DML

• Enable Parallel DML Mode

• Rules for UPDATE, MERGE, and DELETE

• Rules for INSERT SELECT

Chapter 8
Types of Parallelism

8-38

• Transaction Restrictions for Parallel DML

• Rollback Segments

• Recovery for Parallel DML

• Space Considerations for Parallel DML

• Restrictions on Parallel DML

• Data Integrity Restrictions

• Trigger Restrictions

• Distributed Transaction Restrictions

• Examples of Distributed Transaction Parallelization

• Concurrent Execution of Union All

8.5.3.1 When to Use Parallel DML
Parallel DML is useful in a decision support system (DSS) environment where the
performance and scalability of accessing large objects are important. Parallel DML
complements parallel query in providing you with both querying and updating capabilities for
your DSS databases.

The overhead of setting up parallelism makes parallel DML operations not feasible for short
OLTP transactions. However, parallel DML operations can speed up batch jobs running in an
OLTP database.

Several scenarios where parallel DML is used include:

• Refreshing Tables in a Data Warehouse System

• Creating Intermediate Summary Tables

• Using Scoring Tables

• Updating Historical Tables

• Running Batch Jobs

8.5.3.1.1 Refreshing Tables in a Data Warehouse System
In a data warehouse system, large tables must be refreshed (updated) periodically with new
or modified data from the production system.

You can do this efficiently by using the MERGE statement.

8.5.3.1.2 Creating Intermediate Summary Tables
In a DSS environment, many applications require complex computations that involve
constructing and manipulating many large intermediate summary tables.

These summary tables are often temporary and frequently do not need to be logged. Parallel
DML can speed up the operations against these large intermediate tables. One benefit is that
you can put incremental results in the intermediate tables and perform parallel updates.

In addition, the summary tables may contain cumulative or comparative information which
has to persist beyond application sessions; thus, temporary tables are not feasible. Parallel
DML operations can speed up the changes to these large summary tables.

Chapter 8
Types of Parallelism

8-39

8.5.3.1.3 Using Scoring Tables
Many DSS applications score customers periodically based on a set of criteria.

The scores are usually stored in large DSS tables. The score information is then used
in making a decision, for example, inclusion in a mailing list.

This scoring activity queries and updates a large number of rows in the table. Parallel
DML can speed up the operations against these large tables.

8.5.3.1.4 Updating Historical Tables
Historical tables describe the business transactions of an enterprise over a recent time
interval.

Periodically, the DBA deletes the set of oldest rows and inserts a set of new rows into
the table. Parallel INSERT SELECT and parallel DELETE operations can speed up this
rollover task.

Dropping a partition can also be used to delete old rows. However, the table has to be
partitioned by date and with the appropriate time interval.

8.5.3.1.5 Running Batch Jobs
Batch jobs executed in an OLTP database during off hours have a fixed time during
which the jobs must complete. A good way to ensure timely job completion is to
execute their operations in parallel.

As the workload increases, more computer resources can be added; the scaleup
property of parallel operations ensures that the time constraint can be met.

8.5.3.2 Enable Parallel DML Mode
A DML statement can be parallelized only if you have explicitly enabled parallel DML
in the session or in the SQL statement.

To enable this mode in a session, run the following SQL statement:

ALTER SESSION ENABLE PARALLEL DML;

To enable parallel DML mode in a specific SQL statement, include the
ENABLE_PARALLEL_DML SQL hint. For example:

INSERT /*+ ENABLE_PARALLEL_DML */ …

This mode is required because parallel DML and serial DML have different locking,
transaction, and disk space requirements and parallel DML is disabled for a session by
default.

When parallel DML is disabled, no DML is executed in parallel even if the PARALLEL
hint is used.

When parallel DML is enabled in a session, all DML statements in this session are
considered for parallel execution. When parallel DML is enabled in a SQL statement
with the ENABLE_PARALLEL_DML hint, only that specific statement is considered for
parallel execution. However, even if parallel DML is enabled, the DML operation may

Chapter 8
Types of Parallelism

8-40

still execute serially if there are no parallel hints or no tables with a parallel attribute or if
restrictions on parallel operations are violated.

The session's PARALLEL DML mode does not influence the parallelism of SELECT statements,
DDL statements, and the query portions of DML statements. If this mode is not set, the DML
operation is not parallelized, but scans or join operations within the DML statement may still
be parallelized.

When the parallel DML mode has been enabled for a session, you can disable the mode for a
specific SQL statement with the DISABLE_PARALLEL_DML SQL hint.

For more information, refer to Space Considerations for Parallel DML and Restrictions on
Parallel DML.

8.5.3.3 Rules for UPDATE, MERGE, and DELETE
An update, merge, or delete operation is parallelized only under certain conditions.

An UPDATE, MERGE, and DELETE operation is parallelized only if at least one of the following
conditions is satisfied:

• The table being updated, merged, or deleted has a PARALLEL declaration set by a
previous CREATE TABLE or ALTER TABLE statement.

• A statement level or object level PARALLEL hint is specified in the DML statement.

• Automatic Degree of Parallelism (Auto DOP) has been enabled.

• Parallel DML is forced using the ALTER SESSION FORCE PARALLEL DML statement.

If the statement contains subqueries or updatable views, then they may also be executed in
parallel based on the rules for parallelizing queries. The decision to parallelize the UPDATE,
MERGE, and DELETE portion is independent of the query portion, and vice versa. Statement
level PARALLEL hints or Auto DOP parallelize both the DML and the query portions.

See Also:

• Automatic Degree of Parallelism for information about Auto DOP

• Limitation on the Degree of Parallelism for possible limitations on update,
merge, or delete operations

• Degree of Parallelism Rules for SQL Statements for information about the rules
for determining the degree of parallelism (DOP)

• Oracle Database SQL Language Reference for more information about the
ALTER SESSION SQL statement

8.5.3.4 Rules for INSERT SELECT
An insert operation is executed in parallel only under certain conditions.

An INSERT operation is executed in parallel only if at least one of the following conditions is
satisfied:

• The table being inserted into (the reference object) has a PARALLEL declaration set by a
previous CREATE TABLE or ALTER TABLE statement.

Chapter 8
Types of Parallelism

8-41

• A statement level or object level PARALLEL hint is specified after the INSERT in the
DML statement.

• Automatic Degree of Parallelism (Auto DOP) has been enabled.

• Parallel DML is forced using the ALTER SESSION FORCE PARALLEL DML statement.

The decision to parallelize the INSERT operation is independent of the SELECT
operation, and vice versa. The SELECT operation can be parallelized based on the rules
for parallelizing queries. Statement level PARALLEL hints or Auto DOP parallelize both
the INSERT and the SELECT operations.

See Also:

• Automatic Degree of Parallelism for information about Auto DOP

• Degree of Parallelism Rules for SQL Statements for information about
the rules for determining the degree of parallelism (DOP)

• Oracle Database SQL Language Reference for more information about
the ALTER SESSION SQL statement

8.5.3.5 Transaction Restrictions for Parallel DML
To execute a DML operation in parallel, the parallel execution coordinator acquires
parallel execution servers, and each parallel execution server executes a portion of the
work under its own parallel process transaction.

Note the following conditions:

• Each parallel execution server creates a different parallel process transaction.

• If you use rollback segments instead of Automatic Undo Management, you may
want to reduce contention on the rollback segments by limiting the number of
parallel process transactions residing in the same rollback segment. Refer to
Oracle Database SQL Language Reference for more information.

The coordinator also has its own coordinator transaction, which can have its own
rollback segment. To ensure user-level transactional atomicity, the coordinator uses a
two-phase commit protocol to commit the changes performed by the parallel process
transactions.

A session that is enabled for parallel DML may put transactions in the session in a
special mode: If any DML statement in a transaction modifies a table in parallel, no
subsequent serial or parallel query or DML statement can access the same table again
in that transaction. The results of parallel modifications cannot be seen during the
transaction.

Serial or parallel statements that attempt to access a table that has been modified in
parallel within the same transaction are rejected with an error message.

If a PL/SQL procedure or block is executed in a parallel DML-enabled session, then
this rule applies to statements in the procedure or block.

Chapter 8
Types of Parallelism

8-42

8.5.3.6 Rollback Segments
If you use rollback segments instead of Automatic Undo Management, there are some
restrictions when using parallel DML.

See Also:

Oracle Database SQL Language Reference for information about restrictions for
parallel DML and rollback segments

8.5.3.7 Recovery for Parallel DML
The time required to roll back a parallel DML operation is roughly equal to the time it takes to
perform the forward operation.

Oracle Database supports parallel rollback after transaction and process failures, and after
instance and system failures. Oracle Database can parallelize both the rolling forward stage
and the rolling back stage of transaction recovery.

See Also:

Oracle Database Backup and Recovery User’s Guide for details about parallel
rollback

8.5.3.7.1 Transaction Recovery for User-Issued Rollback
A user-issued rollback in a transaction failure due to statement error is performed in parallel
by the parallel execution coordinator and the parallel execution servers.

The rollback takes approximately the same amount of time as the forward transaction.

8.5.3.7.2 Process Recovery
Recovery from the failure of a parallel execution coordinator or parallel execution server is
performed by the PMON process.

If a parallel execution server or a parallel execution coordinator fails, then PMON rolls back
the work from that process and all other processes in the transaction roll back their changes.

8.5.3.7.3 System Recovery
Recovery from a system failure requires a new startup.

Recovery is performed by the SMON process and any recovery server processes spawned
by SMON. Parallel DML statements may be recovered using parallel rollback. If the
initialization parameter COMPATIBLE is set to 8.1.3 or greater, Fast-Start On-Demand Rollback
enables terminated transactions to be recovered, on demand, one block at a time.

Chapter 8
Types of Parallelism

8-43

8.5.3.8 Space Considerations for Parallel DML
Parallel UPDATE uses the existing free space in the object, while direct-path INSERT
gets new extents for the data.

Space usage characteristics may be different in parallel than serial execution because
multiple concurrent child transactions modify the object.

8.5.3.9 Restrictions on Parallel DML
There are several restrictions that apply to parallel DM.

The following restrictions apply to parallel DML (including direct-path INSERT):

• Intra-partition parallelism for UPDATE, MERGE, and DELETE operations require that the
COMPATIBLE initialization parameter be set to 9.2 or greater.

• The INSERT VALUES statement is never executed in parallel.

• A transaction can contain multiple parallel DML statements that modify different
tables, but after a parallel DML statement modifies a table, no subsequent serial or
parallel statement (DML or query) can access the same table again in that
transaction.

– This restriction also exists after a serial direct-path INSERT statement: no
subsequent SQL statement (DML or query) can access the modified table
during that transaction.

– Queries that access the same table are allowed before a parallel DML or
direct-path INSERT statement, but not after.

– Any serial or parallel statements attempting to access a table that has been
modified by a parallel UPDATE, DELETE, or MERGE, or a direct-path INSERT during
the same transaction are rejected with an error message.

• Parallel DML operations cannot be done on tables with triggers.

• Replication functionality is not supported for parallel DML.

• Parallel DML cannot occur in the presence of certain constraints: self-referential
integrity, delete cascade, and deferred integrity. In addition, for direct-path INSERT,
there is no support for any referential integrity.

• Parallel DML can be done on tables with object columns provided the object
columns are not accessed.

• Parallel DML can be done on tables with LOB columns provided the table is
partitioned. However, intra-partition parallelism is not supported.

For non-partitioned tables with LOB columns, parallel INSERT operations are
supported provided that the LOB columns are declared as SecureFiles LOBs.
Parallel UPDATE, DELETE, and MERGE operations on such tables are not supported.

• A DML operation cannot be executed in parallel if it is in a distributed transaction
or if the DML or the query operation is on a remote object.

• Clustered tables are not supported.

• Parallel UPDATE, DELETE, and MERGE operations are not supported for temporary
tables.

Chapter 8
Types of Parallelism

8-44

• Parallel DML is not supported on a table with bitmap indexes if the table is not
partitioned.

Violations of these restrictions cause the statement to execute serially without warnings or
error messages (except for the restriction on statements accessing the same table in a
transaction, which can cause error messages).

8.5.3.9.1 Partitioning Key Restriction
You can only update the partitioning key of a partitioned table to a new value if the update
does not cause the row to move to a new partition.

The update is possible if the table is defined with the row movement clause enabled.

8.5.3.9.2 Function Restrictions
The function restrictions for parallel DML are the same as those for parallel DDL and parallel
query.

See About Parallel Execution of Functions for more information.

8.5.3.10 Data Integrity Restrictions
The interactions of integrity constraints and parallel DML statements are introduced in the
topic.

This section contains following topics:

• NOT NULL and CHECK

• UNIQUE and PRIMARY KEY

• FOREIGN KEY (Referential Integrity)

• Delete Cascade

• Self-Referential Integrity

• Deferrable Integrity Constraints

8.5.3.10.1 NOT NULL and CHECK
The integrity constraints for NOT NULL and CHECK are discussed in this topic.

NOT NULL and CHECK integrity constraints are allowed. They are not a problem for parallel DML
because they are enforced on the column and row level, respectively.

8.5.3.10.2 UNIQUE and PRIMARY KEY
The integrity constraints for UNIQUE and PRIMARY KEY are discussed in this topic.

UNIQUE and PRIMARY KEY integrity constraints are allowed.

8.5.3.10.3 FOREIGN KEY (Referential Integrity)
Restrictions for referential integrity occur whenever a DML operation on one table could
cause a recursive DML operation on another table.

These restrictions also apply when, to perform an integrity check, it is necessary to see
simultaneously all changes made to the object being modified.

Chapter 8
Types of Parallelism

8-45

Table 8-1 lists all of the operations that are possible on tables that are involved in
referential integrity constraints.

Table 8-1 Referential Integrity Restrictions

DML Statement Issued on Parent Issued on Child Self-Referential

INSERT (Not applicable) Not parallelized Not parallelized

MERGE (Not applicable) Not parallelized Not parallelized

UPDATE No Action Supported Supported Not parallelized

DELETE No Action Supported Supported Not parallelized

DELETE Cascade Not parallelized (Not applicable) Not parallelized

8.5.3.10.4 Delete Cascade
The delete cascade data integrity restrictions are discussed in this topic.

Deletion on tables having a foreign key with delete cascade is not parallelized because
parallel execution servers attempt to delete rows from multiple partitions (parent and
child tables).

8.5.3.10.5 Self-Referential Integrity
DML on tables with self-referential integrity constraints is not parallelized if the
referenced keys (primary keys) are involved.

For DML on all other columns, parallelism is possible.

8.5.3.10.6 Deferrable Integrity Constraints
The deferrable integrity constraints are discussed in this topic.

If any deferrable constraints apply to the table being operated on, the DML operation is
not executed in parallel.

8.5.3.11 Trigger Restrictions
A DML operation is not executed in parallel if the affected tables contain enabled
triggers that may get invoked as a result of the statement.

This implies that DML statements on tables that are being replicated are not
parallelized.

Relevant triggers must be disabled to parallelize DML on the table. If you enable or
disable triggers, then the dependent shared cursors are invalidated.

8.5.3.12 Distributed Transaction Restrictions
The distributed transaction restrictions are discussed in this topic.

A DML operation cannot be executed in parallel if it is in a distributed transaction or if
the DML or the query operation is on a remote object.

Chapter 8
Types of Parallelism

8-46

8.5.3.13 Examples of Distributed Transaction Parallelization
Several examples of distributed transaction processing are shown in this topic.

In the first example, the DML statement queries a remote object. The DML operation is
executed serially without notification because it references a remote object.

INSERT /*+ APPEND PARALLEL (t3,2) */ INTO t3 SELECT * FROM t4@dblink;

In the next example, the DML operation is applied to a remote object. The DELETE operation is
not parallelized because it references a remote object.

DELETE /*+ PARALLEL (t1, 2) */ FROM t1@dblink;

In the last example, the DML operation is in a distributed transaction. The DELETE operation is
not executed in parallel because it occurs in a distributed transaction (which is started by the
SELECT statement).

SELECT * FROM t1@dblink;
 DELETE /*+ PARALLEL (t2,2) */ FROM t2;
 COMMIT;

8.5.3.14 Concurrent Execution of Union All
Set operators like UNION or UNION ALL consist of multiple queries (branches) combined to a
single SQL statement.

Traditionally, set operators are processed in a sequential manner. Individual branches can be
processed in serial or parallel, but only one branch at a time, one branch after another. While
this approach satisfies many use cases, there are situations where the processing of multiple
branches of a UNION or UNION ALL statement should occur concurrently. The most typical
situation is when several or all branches are remote SQL statements. In this situation,
concurrent processing on all participating remote systems is desired to speed up the overall
processing time without increasing the workload of any participating system.

The default behavior of concurrent execution for UNION or UNION ALL statements is controlled
by the setting of the OPTIMIZER_FEATURES_ENABLE initialization parameter. When set to
12.1.0.1 or higher, concurrent execution is enabled by default. Any statement where at least
one branch of the statement is local and is considered being processed in parallel, the entire
UNION or UNION ALL statement is also processed concurrently. The system calculates the DOP
for every individual local branch of the statement and chooses the highest DOP for the
execution of the entire UNION or UNION ALL statement. The system then works concurrently on
as many branches as possible, using the chosen DOP both for parallelization of the branches
that are processed in parallel, and as concurrent workers on serial and remote statements.

When the OPTIMIZER_FEATURES_ENABLE initialization parameter is set to a value less than
12.1.0.1, concurrent execution of UNION or UNION ALL statements must be enabled explicitly
by using the PQ_CONCURRENT_UNION hint.

However, unlike the sequential processing of one branch after another, the concurrent
processing does not guarantee an ordered return of the results of the individual branches. If
an ordered return of one branch after another is required, then you either must disable
concurrent processing using the NO_PQ_CONCURRENT_UNION hint or you must augment the SQL
statement to uniquely identify individual branches of the statement and to sort on this
specified identifier.

Chapter 8
Types of Parallelism

8-47

UNION or UNION ALL statements that only consist of serial or remote branches are not
processed concurrently unless specifically using the PQ_CONCURRENT_UNION hint. The
DOP of this SQL statement is at most the number of serial and remote inputs.

Whether or not concurrent processing of a UNION or UNION ALL statement occurs can
be easily identified with the execution plan of the SQL statements. When executed in
parallel, the execution of serial and remote branches is managed with a row source
identifiable as PX SELECTOR. Statements that are not processed concurrently show the
query coordinator (QC) as coordinator of serial and remote branches.

In Example 8-4, the SQL statement consists of local and remote branches. The SQL
statement loads information about gold and platinum customers from the local
database, and the information about customers from three major cities from remote
databases. Because the local select statements occur in parallel, this processing is
automatically performed in parallel. Each serial branch is executed by only one parallel
execution server process. Because each parallel execution server can execute one
serial branch, they are executed concurrently.

Example 8-4 Explain Plan for UNION ALL

SQL> EXPLAIN PLAN FOR INSERT INTO all_customer
 SELECT * FROM GOLD_customer UNION ALL
 SELECT * FROM PLATINUM_customer UNION ALL
 SELECT * FROM SF_customer@san_francisco UNION ALL
 SELECT * FROM LA_customer@los_angeles UNION ALL
 SELECT * FROM LV_customer@las_vegas;

| Id | Operation | Name | TQ/Ins |IN-OUT | PQ Distrib|

0	INSERT STATEMENT				
1	LOAD TABLE CONVENTIONAL	ALL_CUSTOMER			
2	PX COORDINATOR				
3	PX SEND QC (RANDOM)	:TQ10003		P->S	QC (RAND)
4	UNION-ALL			PCWP	
5	PX BLOCK ITERATOR			PCWC	
6	TABLE ACCESS FULL	GOLD_CUSTOMER		PCWP	
7	PX BLOCK ITERATOR			PCWC	
8	TABLE ACCESS FULL	PLATINUM_CUST		PCWP	
9	PX SELECTOR			PCWP	
10	REMOTE	SF_CUSTOMER		PCWP	
11	PX SELECTOR			PCWP	
12	REMOTE	LA_CUSTOMER		PCWP	
13	PX SELECTOR			PCWP	
14	REMOTE	LV_CUSTOMER		PCWP	

8.5.4 About Parallel Execution of Functions
SQL statements can contain user-defined functions written in PL/SQL, in Java, or as
external procedures in C that can appear as part of the SELECT list, SET clause, or
WHERE clause.

When the SQL statement is parallelized, these functions are executed on a per-row
basis by the parallel execution server process. Any PL/SQL package variables or Java
static attributes used by the function are entirely private to each individual parallel
execution process and are newly initialized when each row is processed, rather than
being copied from the original session. Because of this process, not all functions
generate correct results if executed in parallel.

Chapter 8
Types of Parallelism

8-48

User-written table functions can appear in the statement's FROM list. These functions act like
source tables in that they produce row output. Table functions are initialized once during the
statement at the start of each parallel execution process. All variables are entirely private to
the parallel execution process.

This section contains the following topics:

• Functions in Parallel Queries

• Functions in Parallel DML and DDL Statements

8.5.4.1 Functions in Parallel Queries
User functions can be executed in parallel in a SQL query statement, or a subquery in a DML
or DDL statement.

In a SELECT statement or a subquery in a DML or DDL statement, a user-written function may
be executed in parallel in any of the following cases:

• If it has been declared with the PARALLEL_ENABLE keyword

• If it is declared in a package or type and has a PRAGMA RESTRICT_REFERENCES clause that
indicates all of WNDS, RNPS, and WNPS

• If it is declared with CREATE FUNCTION and the system can analyze the body of the
PL/SQL code and determine that the code neither writes to the database nor reads or
modifies package variables

Other parts of a query or subquery can sometimes execute in parallel even if a given function
execution must remain serial.

See Also:

• Oracle Database Development Guide for information about the PRAGMA
RESTRICT_REFERENCES clause

• Oracle Database SQL Language Reference for information about the CREATE
FUNCTION statement

8.5.4.2 Functions in Parallel DML and DDL Statements
A user function can be executed in a parallel DML or DDL statement under certain conditions.

In a parallel DML or DDL statement, as in a parallel query, a user-written function may be
executed in parallel in any of the following cases:

• If it has been declared with the PARALLEL_ENABLE keyword

• If it is declared in a package or type and has a PRAGMA RESTRICT_REFERENCES clause that
indicates all of RNDS, WNDS, RNPS, and WNPS

• If it is declared with the CREATE FUNCTION statement and the system can analyze the body
of the PL/SQL code and determine that the code neither reads nor writes to the database
or reads or modifies package variables

For a parallel DML statement, any function call that cannot be executed in parallel causes the
entire DML statement to be executed serially. For an INSERT SELECT or CREATE TABLE AS

Chapter 8
Types of Parallelism

8-49

SELECT statement, function calls in the query portion are parallelized according to the
parallel query rules described in this section. The query may be parallelized even if the
remainder of the statement must execute serially, or vice versa.

8.5.5 About Other Types of Parallelism
An Oracle Database can use parallelism in multiple types of operations.

In addition to parallel SQL execution, Oracle Database can use parallelism for the
following types of operations:

• Parallel recovery

• Parallel propagation (replication)

• Parallel load (external tables and the SQL*Loader utility)

Like parallel SQL, parallel recovery, propagation, and external table loads are
performed by a parallel execution coordinator and multiple parallel execution servers.
Parallel load using SQL*Loader, however, uses a different mechanism.

The behavior of the parallel execution coordinator and parallel execution servers may
differ, depending on what kind of operation they perform (SQL, recovery, or
propagation). For example, if all parallel execution servers in the pool are occupied
and the maximum number of parallel execution servers has been started:

• In parallel SQL and external table loads, the parallel execution coordinator
switches to serial processing.

• In parallel propagation, the parallel execution coordinator returns an error.

For a given session, the parallel execution coordinator coordinates only one kind of
operation. A parallel execution coordinator cannot coordinate, for example, parallel
SQL and parallel recovery or propagation at the same time.

See Also:

• Oracle Database Utilities for information about parallel load and
SQL*Loader

• Oracle Database Backup and Recovery User’s Guide for information
about parallel media recovery

• Oracle Database Performance Tuning Guide for information about
parallel instance recovery

8.5.6 Degree of Parallelism Rules for SQL Statements
The parallelization decision for SQL statements has two components: the decision to
parallelize and the degree of parallelism (DOP).

These components are determined differently for queries, DDL operations, and DML
operations.

The decision to parallelize is discussed in the following sections:

• Rules for Parallelizing Queries

Chapter 8
Types of Parallelism

8-50

• Rules for DDL Statements

• Rules for CREATE TABLE AS SELECT

• Rules for UPDATE, MERGE, and DELETE

• Rules for INSERT SELECT

The degree of parallelism for various types of SQL statements can be determined by
statement or object level PARALLEL hints, PARALLEL clauses, ALTER SESSION FORCE PARALLEL
statements, automatic degree of parallelism (Auto DOP), or table or index PARALLEL
declarations. When more than one of these methods are used, the Oracle Database uses
precedence rules to determine which method is used to determine the DOP.

Table 8-2 shows the precedence rules for determining the degree of parallelism (DOP) for
various types of SQL statements. In the table, the smaller priority number indicates that the
method takes precedence over higher numbers. For example, priority (1) takes precedence
over priority (2), priority (3), priority (4), and priority (5).

Table 8-2 Parallelization Priority Order

Parallel Operation Statement
Level
PARALLEL
Hint

Object
Level
PARALLEL
Hint

PARALLE
L Clause

ALTER
SESSION

Auto DOP Parallel
Declaration

Parallel query table/
index scan. For more
information, refer to
Rules for Parallelizing
Queries.

Priority (1) Priority (2) N/A Priority (3)
FORCE
PARALLEL
QUERY

Priority (4) Priority (5)

Parallel
UPDATE ,DELETE, or
MERGE. For more
information, refer to
Rules for UPDATE,
MERGE, and DELETE.

Priority (1) Priority (2) N/A Priority (3)
FORCE
PARALLEL
DML

Priority (4) Priority (5) of
the target
table

INSERT operation of
parallel INSERT...
SELECT . For more
information, refer to
Rules for INSERT
SELECT.

Priority (1) Priority (2) N/A Priority (3)
FORCE
PARALLEL
DML

Priority (4) Priority (5) of
table being
inserted into

SELECT operation of
INSERT SELECT when
INSERT is serial. For
more information, refer
to Rules for INSERT
SELECT.

Priority (1) Priority (2) N/A Priority (3)
FORCE
PARALLEL
QUERY

Priority (4) Priority (5) of
table being
selected from

CREATE operation of
parallel CREATE TABLE
AS SELECT (partitioned
or nonpartitioned table).
For more information,
refer to Rules for
CREATE TABLE AS
SELECT.

Priority (1) N/A Priority (4) Priority (2)
FORCE
PARALLEL
DDL

Priority (3) N/A

Chapter 8
Types of Parallelism

8-51

Table 8-2 (Cont.) Parallelization Priority Order

Parallel Operation Statement
Level
PARALLEL
Hint

Object
Level
PARALLEL
Hint

PARALLE
L Clause

ALTER
SESSION

Auto DOP Parallel
Declaration

SELECT operation of
CREATE TABLE AS
SELECT when CREATE is
serial. For more
information, refer to
Rules for CREATE
TABLE AS SELECT.

Priority (1) Priority (2) N/A Priority (3)
FORCE
PARALLEL
QUERY

Priority (4) Priority (5)

Other DDL operations.
For more information,
refer to Rules for DDL
Statements.

N/A N/A Priority (3) Priority (1)
FORCE
PARALLEL
DDL

Priority (2) N/A

See Also:

• Oracle Database SQL Language Reference for information about the
PARALLEL hint

• Oracle Database SQL Language Reference for information about the
PARALLEL clause

• Oracle Database SQL Language Reference for more information about
the ALTER SESSION SQL statement

8.6 About Initializing and Tuning Parameters for Parallel
Execution

You can use parameters to initialize and tune parallel execution.

Oracle Database computes defaults for the parallel execution parameters based on
the value at database startup of CPU_COUNT and PARALLEL_THREADS_PER_CPU. The
parameters can also be manually tuned, increasing or decreasing their values to suit
specific system configurations or performance goals. For example, on systems where
parallel execution is never used, PARALLEL_MAX_SERVERS can be set to zero.

You can also manually tune parallel execution parameters. Parallel execution is
enabled by default.

Initializing and tuning parallel execution is discussed in the following topics:

• Default Parameter Settings

• Forcing Parallel Execution for a Session

• Tuning General Parameters for Parallel Execution

Chapter 8
About Initializing and Tuning Parameters for Parallel Execution

8-52

8.6.1 Default Parameter Settings
Oracle Database automatically sets parallel execution parameters by default.

The parallel execution parameters are shown in Table 8-3.

Table 8-3 Parameters and Their Defaults

Parameter Default Comments

PARALLEL_ADAPTIVE_M
ULTI_USER

FALSE Causes parallel execution SQL to throttle degree of
parallelism (DOP) requests to prevent system overload.

PARALLEL_ADAPTIVE_MULTI_USER is deprecated in
Oracle Database 12c Release 2 (12.2.0.1) to be
desupported in a future release. Oracle recommends
using parallel statement queuing instead.

PARALLEL_DEGREE_LIM
IT

CPU Controls the maximum DOP a statement can have when
automatic DOP is in use. The maximum DOP is

SUM(CPU_COUNT)*PARALLEL_THREADS_PER_CPU

The value AUTO for PARALLEL_DEGREE_LIMIT has the
same functionality as the value CPU.

PARALLEL_DEGREE_POL
ICY

MANUAL Controls whether auto DOP, parallel statement queuing
and in-memory parallel execution are used. By default, all
of these features are disabled.

PARALLEL_EXECUTION_
MESSAGE_SIZE

16 KB Specifies the size of the buffers used by the parallel
execution servers to communicate among themselves and
with the query coordinator. These buffers are allocated out
of the shared pool.

PARALLEL_FORCE_LOCA
L

FALSE Restricts parallel execution to the current Oracle RAC
instance.

PARALLEL_INSTANCE_G
ROUP

None. By default, parallel
execution is enabled across
all currently active
instances.

Lets you restrict parallel query operations to a limited
number of instances. Used in conjunction with services
and also with the deprecated parameter
INSTANCE_GROUPS.

PARALLEL_MAX_
SERVERS

See
PARALLEL_MAX_SERVER
S.

Specifies the maximum number of parallel execution
processes and parallel recovery processes for an
instance. As demand increases, Oracle Database
increases the number of processes from the number
created at instance startup up to this value.

If you set this parameter too low, some queries may not
have a parallel execution process available to them during
query processing. If you set it too high, memory resource
shortages may occur during peak periods, which can
degrade performance.

PARALLEL_MIN_DEGREE 1 Controls the minimum degree of parallelism computed by
automatic degree of parallelism.

PARALLEL_MIN_SERVER
S

CPU_COUNT *
PARALLEL_THREADS_PER_C
PU * 2

Specifies the number of parallel execution processes to be
started and reserved for parallel operations, when Oracle
Database is started up. Increasing this setting can help
balance the startup cost of a parallel statement, but
requires greater memory usage as these parallel
execution processes are not removed until the database is
shut down.

Chapter 8
About Initializing and Tuning Parameters for Parallel Execution

8-53

Table 8-3 (Cont.) Parameters and Their Defaults

Parameter Default Comments

PARALLEL_MIN_PERCEN
T

0 Specifies the minimum percentage of requested parallel
execution processes required for parallel execution. With
the default value of 0, a parallel statement executes
serially if no parallel server processes are available.

PARALLEL_MIN_TIME_T
HRESHOLD

AUTO Specifies the execution time, as estimated by the
optimizer, above which a statement is considered for
automatic parallel query and automatic derivation of DOP.
Note that the interpretation of AUTO is dependent on
whether or not Database In-Memory is used.

PARALLEL_SERVERS_TA
RGET

See
PARALLEL_SERVERS_TA
RGET.

Specifies the number of parallel execution server
processes available to run queries before parallel
statement queuing is used. Note that parallel statement
queuing is only active if PARALLEL_DEGREE_POLICY is set
to AUTO.

PARALLEL_THREADS_PE
R_CPU

1 Describes the number of parallel execution processes or
threads that a CPU can handle during parallel execution.

You can set some parameters in such a way that Oracle Database is constrained. For
example, if you set PROCESSES to 20, you are not be able to get 25 child processes.

See Also:

Oracle Database Reference for more information about initialization
parameters

8.6.2 Forcing Parallel Execution for a Session
Youu can force parallelism for a session.

If you are sure you want to execute in parallel and want to avoid setting the DOP for a
table or modifying the queries involved, you can force parallelism with the following
statement:

ALTER SESSION FORCE PARALLEL QUERY;

All subsequent queries are executed in parallel provided no restrictions are violated.
You can also force DML and DDL statements. This clause overrides any parallel
clause specified in subsequent statements in the session, but is overridden by a
parallel hint.

In typical OLTP environments, for example, the tables are not set parallel, but nightly
batch scripts may want to collect data from these tables in parallel. By setting the DOP
in the session, the user avoids altering each table in parallel and then altering it back
to serial when finished.

Chapter 8
About Initializing and Tuning Parameters for Parallel Execution

8-54

8.6.3 Tuning General Parameters for Parallel Execution
The discussion about tuning general parameters for parallel execution is introduced in the
topic.

This section discusses the following topics:

• Parameters Establishing Resource Limits for Parallel Operations

• Parameters Affecting Resource Consumption

• Parameters Related to I/O

8.6.3.1 Parameters Establishing Resource Limits for Parallel Operations
You can set initialization parameters to determine resource limits.

The parameters that establish resource limits are discussed in the following topics:

• PARALLEL_FORCE_LOCAL

• PARALLEL_MAX_SERVERS

• PARALLEL_MIN_PERCENT

• PARALLEL_MIN_SERVERS

• PARALLEL_MIN_TIME_THRESHOLD

• PARALLEL_SERVERS_TARGET

• SHARED_POOL_SIZE

• Additional Memory Requirements for Message Buffers

• Monitor Memory Usage After Processing Begins

See Also:

Oracle Database Reference for information about initialization parameters

8.6.3.1.1 PARALLEL_FORCE_LOCAL
The PARALLEL_FORCE_LOCAL parameter specifies whether a SQL statement executed in
parallel is restricted to a single instance in an Oracle RAC environment.

By setting this parameter to TRUE, you restrict the scope of the parallel server processed to
the single Oracle RAC instance where the query coordinator is running.

The recommended value for the PARALLEL_FORCE_LOCAL parameter is FALSE.

See Also:

Oracle Database Reference for information about the PARALLEL_FORCE_LOCAL
initialization parameter

Chapter 8
About Initializing and Tuning Parameters for Parallel Execution

8-55

8.6.3.1.2 PARALLEL_MAX_SERVERS
The PARALLEL_MAX_SERVERS parameter specifies the maximum number of parallel
execution processes and parallel recovery processes for an instance.

As demand increases, Oracle Database increases the number of processes from the
number created at instance startup up to this value.

For example, setting the value to 64 enables you to run four parallel queries
simultaneously, if each query is using two worker sets with a DOP of 8 for each set.

When Users Have Too Many Processes

When concurrent users have too many query server processes, memory contention
(paging), I/O contention, or excessive context switching can occur.

This contention can reduce system throughput to a level lower than if parallel
execution were not used. Increase the PARALLEL_MAX_SERVERS value only if the system
has sufficient memory and I/O bandwidth for the resulting load.

You can use performance monitoring tools of the operating system to determine how
much memory, swap space and I/O bandwidth are free. Look at the run queue lengths
for both your CPUs and disks, and the service time for I/O operations on the system.
Verify that the system has sufficient swap space to add more processes. Limiting the
total number of query server processes might restrict the number of concurrent users
who can execute parallel operations, but system throughput tends to remain stable.

When to Limit the Number of Resources for a User using a Consumer Group

When necessary, you can limit the amount of parallelism available to a given user by
establishing a resource consumer group for the user.

Do this to limit the number of sessions, concurrent logons, and the number of parallel
processes that any one user or group of users can have.

Each query server process working on a parallel execution statement is logged on with
a session ID. Each process counts against the user's limit of concurrent sessions. For
example, to limit a user to 10 parallel execution processes, set the user's limit to 11.
One process is for the parallel execution coordinator and the other 10 consist of two
sets of query servers. This would allow one session for the parallel execution
coordinator and 10 sessions for the parallel execution processes.

See Also:

• Oracle Database Reference for information about the
PARALLEL_MAX_SERVERS initialization parameter

• Oracle Database Administrator’s Guide for more information about
managing resources with user profiles

• Oracle Real Application Clusters Administration and Deployment Guide
for more information about querying GV$ views

Chapter 8
About Initializing and Tuning Parameters for Parallel Execution

8-56

8.6.3.1.3 PARALLEL_MIN_PERCENT
The PARALLEL_MIN_PERCENT parameter enables users to wait for an acceptable DOP,
depending on the application in use.

The recommended value for the PARALLEL_MIN_PERCENT parameter is 0 (zero). Setting this
parameter to values other than 0 (zero) causes Oracle Database to return an error when the
requested DOP cannot be satisfied by the system at a given time. For example, if you set
PARALLEL_MIN_PERCENT to 50, which translates to 50 percent, and the DOP is reduced by 50
percent or greater because of the adaptive algorithm or because of a resource limitation, then
Oracle Database returns ORA-12827. For example:

SELECT /*+ FULL(e) PARALLEL(e, 8) */ d.department_id, SUM(SALARY)
 FROM employees e, departments d WHERE e.department_id = d.department_id
 GROUP BY d.department_id ORDER BY d.department_id;

Oracle Database responds with this message:

ORA-12827: insufficient parallel query slaves available

See Also:

Oracle Database Reference for information about the PARALLEL_MIN_PERCENT
initialization parameter

8.6.3.1.4 PARALLEL_MIN_SERVERS
The PARALLEL_MIN_SERVERS parameter specifies the number of processes to be started in a
single instance that are reserved for parallel operations.

Setting PARALLEL_MIN_SERVERS balances the startup cost against memory usage. Processes
started using PARALLEL_MIN_SERVERS do not exit until the database is shut down. This way,
when a query is issued, the processes are likely to be available.

See Also:

Oracle Database Reference for information about the PARALLEL_MIN_SERVERS
initialization parameter

Chapter 8
About Initializing and Tuning Parameters for Parallel Execution

8-57

8.6.3.1.5 PARALLEL_MIN_TIME_THRESHOLD
The PARALLEL_MIN_TIME_THRESHOLD parameter specifies the minimum execution time
a statement should have before the statement is considered for automatic degree of
parallelism.

See Also:

Oracle Database Reference for information about the
PARALLEL_MIN_TIME_THRESHOLD initialization parameter

8.6.3.1.6 PARALLEL_SERVERS_TARGET
The PARALLEL_DEGREE_POLICY parameter specifies the number of parallel server
processes allowed to run parallel statements before statement queuing is used.

When PARALLEL_DEGREE_POLICY is set to AUTO, statements that require parallel
execution are queued if the number of parallel processes currently in use on the
system equals or is greater than PARALLEL_SERVERS_TARGET. This is not the maximum
number of parallel server processes allowed on a system (that is controlled by
PARALLEL_MAX_SERVERS). However, PARALLEL_SERVERS_TARGET and parallel statement
queuing is used to ensure that each statement that requires parallel execution is
allocated the necessary parallel server resources and the system is not flooded with
too many parallel server processes.

See Also:

Oracle Database Reference for information about the
PARALLEL_SERVERS_TARGET initialization parameter

8.6.3.1.7 SHARED_POOL_SIZE
The SHARED_POOL_SIZE parameter specifies the memory size of the shared pool.

Parallel execution requires memory resources in addition to those required by serial
SQL execution. Additional memory is used for communication and passing data
between query server processes and the query coordinator.

Oracle Database allocates memory for query server processes from the shared pool.
Tune the shared pool as follows:

• Allow for other clients of the shared pool, such as shared cursors and stored
procedures.

• Remember that larger values improve performance in multiuser systems, but
smaller values use less memory.

• You can then monitor the number of buffers used by parallel execution and
compare the shared pool PX msg pool to the current high water mark reported in
output from the view V$PX_PROCESS_SYSSTAT.

Chapter 8
About Initializing and Tuning Parameters for Parallel Execution

8-58

Note:

If you do not have enough memory available, error message 12853 occurs
(insufficient memory for PX buffers: current stringK, max needed stringK). This
is caused by having insufficient SGA memory available for PX buffers. You must
reconfigure the SGA to have at least (MAX - CURRENT) bytes of additional
memory.

By default, Oracle Database allocates parallel execution buffers from the shared pool.

If Oracle Database displays the following error on startup, you should reduce the value for
SHARED_POOL_SIZE low enough so your database starts:

ORA-27102: out of memory
SVR4 Error: 12: Not enough space

After reducing the value of SHARED_POOL_SIZE, you might see the error:

ORA-04031: unable to allocate 16084 bytes of shared memory
 ("SHARED pool","unknown object","SHARED pool heap","PX msg pool")

If so, execute the following query to determine why Oracle Database could not allocate the
16,084 bytes:

SELECT NAME, SUM(BYTES) FROM V$SGASTAT WHERE UPPER(POOL)='SHARED POOL'
 GROUP BY ROLLUP (NAME);

Your output should resemble the following:

NAME SUM(BYTES)
-------------------------- ----------
PX msg pool 1474572
free memory 562132
 2036704

If you specify SHARED_POOL_SIZE and the amount of memory you specify to reserve is bigger
than the pool, Oracle Database does not allocate all the memory it can get. Instead, it leaves
some space. When the query runs, Oracle Database tries to get what it needs. Oracle
Database uses the 560 KB and needs another 16 KB when it fails. The error does not report
the cumulative amount that is needed. The best way of determining how much more memory
is needed is to use the formulas in Additional Memory Requirements for Message Buffers.

To resolve the problem in the current example, increase the value for SHARED_POOL_SIZE. As
shown in the sample output, the SHARED_POOL_SIZE is about 2 MB. Depending on the amount
of memory available, you could increase the value of SHARED_POOL_SIZE to 4 MB and attempt
to start your database. If Oracle Database continues to display an ORA-4031 message,
gradually increase the value for SHARED_POOL_SIZE until startup is successful.

See Also:

Oracle Database Reference for information about the SHARED_POOL_SIZE
initialization parameter

Chapter 8
About Initializing and Tuning Parameters for Parallel Execution

8-59

8.6.3.1.8 Additional Memory Requirements for Message Buffers
Additional memory requirements for message buffers and cursors when using parallel
execution plans are discussed in this topic.

After you determine the initial setting for the shared pool, you must calculate additional
memory requirements for message buffers and determine how much additional space
you need for cursors.

Required Memory for Message Buffers

You must increase the value for the SHARED_POOL_SIZE parameter to accommodate
message buffers. The message buffers allow query server processes to communicate
with each other.

Oracle Database uses a fixed number of buffers for each virtual connection between
producer query servers and consumer query servers. Connections increase as the
square of the DOP increases. For this reason, the maximum amount of memory used
by parallel execution is bound by the highest DOP allowed on your system. You can
control this value by using either the PARALLEL_MAX_SERVERS parameter or by using
policies and profiles.

To calculate the amount of memory required, use one of the following formulas:

• For SMP systems:

mem in bytes = (3 x size x users x groups x connections)

• For Oracle Real Application Clusters and MPP systems:

mem in bytes = ((3 x local) + (2 x remote)) x (size x users x groups)
 / instances

Each instance uses the memory computed by the formula.

The terms are:

• SIZE = PARALLEL_EXECUTION_MESSAGE_SIZE

• USERS = the number of concurrent parallel execution users that you expect to have
running with the optimal DOP

• GROUPS = the number of query server process groups used for each query

A simple SQL statement requires only one group. However, if your queries involve
subqueries which are processed in parallel, then Oracle Database uses an
additional group of query server processes.

• CONNECTIONS = (DOP2 + 2 x DOP)

If your system is a cluster or MPP, then you should account for the number of
instances because this increases the DOP. In other words, using a DOP of 4 on a
two-instance cluster results in a DOP of 8. A value of PARALLEL_MAX_SERVERS
times the number of instances divided by four is a conservative estimate to use as
a starting point.

• LOCAL = CONNECTIONS/INSTANCES

• REMOTE = CONNECTIONS - LOCAL

Chapter 8
About Initializing and Tuning Parameters for Parallel Execution

8-60

Add this amount to your original setting for the shared pool. However, before setting a value
for either of these memory structures, you must also consider additional memory for cursors,
as explained in the following section.

Additional Memory for Cursors

Parallel execution plans consume more space in the SQL area than serial execution plans.
You should regularly monitor shared pool resource use to ensure that the memory used by
both messages and cursors can accommodate your system's processing requirements.

8.6.3.1.9 Monitor Memory Usage After Processing Begins
Whether you are using automated or manual tuning, you should monitor usage on an on-
going basis to ensure the size of memory is not too large or too small.

The formulas in this section are just starting points. To ensure the correct memory size, tune
the shared pool using the following query:

SELECT POOL, NAME, SUM(BYTES) FROM V$SGASTAT WHERE POOL LIKE '%pool%'
 GROUP BY ROLLUP (POOL, NAME);

Your output should resemble the following:

POOL NAME SUM(BYTES)
----------- -------------------------- ----------
shared pool Checkpoint queue 38496
shared pool KGFF heap 1964
shared pool KGK heap 4372
shared pool KQLS heap 1134432
shared pool LRMPD SGA Table 23856
shared pool PLS non-lib hp 2096
shared pool PX subheap 186828
shared pool SYSTEM PARAMETERS 55756
shared pool State objects 3907808
shared pool character set memory 30260
shared pool db_block_buffers 200000
shared pool db_block_hash_buckets 33132
shared pool db_files 122984
shared pool db_handles 52416
shared pool dictionary cache 198216
shared pool dlm shared memory 5387924
shared pool event statistics per sess 264768
shared pool fixed allocation callback 1376
shared pool free memory 26329104
shared pool gc_* 64000
shared pool latch nowait fails or sle 34944
shared pool library cache 2176808
shared pool log_buffer 24576
shared pool log_checkpoint_timeout 24700
shared pool long op statistics array 30240
shared pool message pool freequeue 116232
shared pool miscellaneous 267624
shared pool processes 76896
shared pool session param values 41424
shared pool sessions 170016
shared pool sql area 9549116
shared pool table columns 148104
shared pool trace_buffers_per_process 1476320
shared pool transactions 18480
shared pool trigger inform 24684

Chapter 8
About Initializing and Tuning Parameters for Parallel Execution

8-61

shared pool 52248968
 90641768

Evaluate the memory used as shown in your output, and alter the setting for
SHARED_POOL_SIZE based on your processing needs.

To obtain more memory usage statistics, execute the following query:

SELECT * FROM V$PX_PROCESS_SYSSTAT WHERE STATISTIC LIKE 'Buffers%';

Your output should resemble the following:

STATISTIC VALUE
------------------- -----
Buffers Allocated 23225
Buffers Freed 23225
Buffers Current 0
Buffers HWM 3620

The amount of memory used appears in the Buffers Current and Buffers HWM
statistics. Calculate a value in bytes by multiplying the number of buffers by the value
for PARALLEL_EXECUTION_MESSAGE_SIZE. Compare the high water mark to the parallel
execution message pool size to determine if you allocated too much memory. For
example, in the first output, the value for large pool as shown in px msg pool is
38,092,812 or 38 MB. The Buffers HWM from the second output is 3,620, which when
multiplied by a parallel execution message size of 4,096 is 14,827,520, or
approximately 15 MB. In this case, the high water mark has reached approximately 40
percent of its capacity.

8.6.3.2 Parameters Affecting Resource Consumption
The parameters affecting resource consumption are discussed in the topic.

Note:

Before considering the following section, you should read the descriptions of
the MEMORY_TARGET and MEMORY_MAX_TARGET initialization parameters for
details. The PGA_AGGREGATE_TARGET initialization parameter need not be set
as MEMORY_TARGET autotunes the SGA and PGA components.

The first group of parameters discussed in this section affects memory and resource
consumption for all parallel operations, in particular, for parallel execution. These
parameters are:

• PGA_AGGREGATE_TARGET

• PARALLEL_EXECUTION_MESSAGE_SIZE

A second subset of parameters are discussed in Parameters Affecting Resource
Consumption for Parallel DML and Parallel DDL.

To control resource consumption, you should configure memory at two levels:

• At the database level, so the system uses an appropriate amount of memory from
the operating system.

• At the operating system level for consistency.

Chapter 8
About Initializing and Tuning Parameters for Parallel Execution

8-62

On some platforms, you might need to set operating system parameters that control the
total amount of virtual memory available, totalled across all processes.

A large percentage of the memory used in data warehousing operations (compared to OLTP)
is more dynamic. This memory comes from Process Global Area (PGA), and both the size of
process memory and the number of processes can vary greatly. Use the
PGA_AGGREGATE_TARGET initialization parameter to control both the process memory and the
number of processes in such cases. Explicitly setting PGA_AGGREGATE_TARGET along with
MEMORY_TARGET ensures that autotuning still occurs but PGA_AGGREGATE_TARGET is not tuned
below the specified value.

See Also:

• Oracle Database Performance Tuning Guide for descriptions of the
MEMORY_TARGET and MEMORY_MAX_TARGET initialization parameters

• Oracle Database Administrator’s Guide for additional information about the use
of the MEMORY_TARGET and MEMORY_MAX_TARGET initialization parameters

8.6.3.2.1 PGA_AGGREGATE_TARGET
You can enable automatic PGA memory management with the setting of initialization
parameters, such as PGA_AGGREGATE_TARGET.

You can simplify and improve the way PGA memory is allocated by enabling automatic PGA
memory management. In this mode, Oracle Database dynamically adjusts the size of the
portion of the PGA memory dedicated to work areas, based on an overall PGA memory
target explicitly set by the DBA. To enable automatic PGA memory management, you must
set the initialization parameter PGA_AGGREGATE_TARGET. For new installations,
PGA_AGGREGATE_TARGET and SGA_TARGET are set automatically by the database configuration
assistant (DBCA), and MEMORY_TARGET is zero. That is, automatic memory management is
disabled. Therefore, automatic tuning of the aggregate PGA is enabled by default. However,
the aggregate PGA does not grow unless you enable automatic memory management by
setting MEMORY_TARGET to a nonzero value.

See Also:

• Oracle Database Reference for more information about the
PGA_AGGREGATE_TARGET initialization parameter

• Oracle Database Performance Tuning Guide for descriptions of how to use
PGA_AGGREGATE_TARGET in different scenarios

8.6.3.2.1.1 HASH_AREA_SIZE

This parameter has been deprecated.

HASH_AREA_SIZE has been deprecated and you should use PGA_AGGREGATE_TARGET instead.
For information, refer to PGA_AGGREGATE_TARGET.

Chapter 8
About Initializing and Tuning Parameters for Parallel Execution

8-63

8.6.3.2.1.2 SORT_AREA_SIZE

This parameter has been deprecated.

SORT_AREA_SIZE has been deprecated and you should use PGA_AGGREGATE_TARGET
instead. For information, refer to PGA_AGGREGATE_TARGET.

8.6.3.2.2 PARALLEL_EXECUTION_MESSAGE_SIZE
The PARALLEL_EXECUTION_MESSAGE_SIZE parameter specifies the size of the buffer
used for parallel execution messages.

The default value of PARALLEL_EXECUTION_MESSAGE_SIZE is operating system-specific,
but is typically 16 K. This value should be adequate for most applications.

See Also:

Oracle Database Reference for information about the
PARALLEL_EXECUTION_MESSAGE_TIME initialization parameter

8.6.3.2.3 Parameters Affecting Resource Consumption for Parallel DML and Parallel DDL
The parameters affecting resource consumption for parallel DML and parallel DDL
operations are introduced in this topic.

The parameters that affect parallel DML and parallel DDL resource consumption are:

• TRANSACTIONS

• FAST_START_PARALLEL_ROLLBACK

• DML_LOCKS

Parallel insert, update, and delete operations require more resources than serial DML
operations. Similarly, PARALLEL CREATE TABLE AS SELECT and PARALLEL CREATE INDEX
can require more resources. For this reason, you may need to increase the value of
several additional initialization parameters. These parameters do not affect resources
for queries.

See Also:

Oracle Database Reference for information about initialization parameters

8.6.3.2.3.1 TRANSACTIONS

The TRANSACTIONS parameter affects the number of transactions under parallel DML
and DDL.

For parallel DML and DDL, each query server process starts a transaction. The
parallel execution coordinator uses the two-phase commit protocol to commit
transactions; therefore, the number of transactions being processed increases by the

Chapter 8
About Initializing and Tuning Parameters for Parallel Execution

8-64

DOP. Consequently, you might need to increase the value of the TRANSACTIONS initialization
parameter.

The TRANSACTIONS parameter specifies the maximum number of concurrent transactions. The
default value of TRANSACTIONS assumes no parallelism. For example, if you have a DOP of
20, you have 20 more new server transactions (or 40, if you have two server sets) and 1
coordinator transaction. In this case, you should increase TRANSACTIONS by 21 (or 41) if the
transactions are running in the same instance. If you do not set this parameter, Oracle
Database sets it to a value equal to 1.1 x SESSIONS. This discussion does not apply if you are
using server-managed undo.

8.6.3.2.3.2 FAST_START_PARALLEL_ROLLBACK

If a system fails when there are uncommitted parallel DML or DDL transactions, you can
speed up transaction recovery during startup by using the FAST_START_PARALLEL_ROLLBACK
parameter.

The FAST_START_PARALLEL_ROLLBACK parameter controls the DOP used when recovering
terminated transactions. Terminated transactions are transactions that are active before a
system failure. By default, the DOP is chosen to be at most two times the value of the
CPU_COUNT parameter.

If the default DOP is insufficient, set the parameter to HIGH. This gives a maximum DOP of at
most four times the value of the CPU_COUNT parameter. This feature is available by default.

8.6.3.2.3.3 DML_LOCKS

The DML_LOCKS parameter should be set to account for the number of locks held by a parallel
DML operation.

The DML_LOCKS parameter specifies the maximum number of DML locks. Its value should
equal the total number of locks on all tables referenced by all users. A parallel DML
operation's lock requirement is very different from serial DML. Parallel DML holds many more
locks, so you should increase the value of the DML_LOCKS parameter by equal amounts.

Note:

Parallel DML operations are not performed when the table lock of the target table is
disabled.

Table 8-4 shows the types of locks acquired by coordinator and parallel execution server
processes for different types of parallel DML statements. Using this information, you can
determine the value required for these parameters.

Chapter 8
About Initializing and Tuning Parameters for Parallel Execution

8-65

Table 8-4 Locks Acquired by Parallel DML Statements

Type of Statement Coordinator Process
Acquires:

Each Parallel Execution Server
Acquires:

Parallel UPDATE or DELETE into
partitioned table; WHERE clause
pruned to a subset of partitions or
subpartitions

1 table lock SX

1 partition lock X for each pruned
partition or subpartition

1 table lock SX

1 partition lock NULL for each pruned
partition or subpartition owned by the
query server process

1 partition-wait lock S for each pruned
partition or subpartition owned by the
query server process

Parallel row-migrating UPDATE into
partitioned table; WHERE clause
pruned to a subset of partitions or
subpartitions

1 table lock SX

1 partition X lock for each pruned
partition or subpartition

1 partition lock SX for all other
partitions or subpartitions

1 table lock SX

1 partition lock NULL for each pruned
partition or subpartition owned by the
query server process

1 partition-wait lock S for each pruned
partition owned by the query server
process

1 partition lock SX for all other partitions
or subpartitions

Parallel UPDATE, MERGE, DELETE, or
INSERT into partitioned table

1 table lock SX

Partition locks X for all partitions
or subpartitions

1 table lock SX

1 partition lock NULL for each partition
or subpartition

1 partition-wait lock S for each partition
or subpartition

Parallel INSERT into partitioned table;
destination table with partition or
subpartition clause

1 table lock SX

1 partition lock X for each
specified partition or subpartition

1 table lock SX

1 partition lock NULL for each specified
partition or subpartition

1 partition-wait lock S for each specified
partition or subpartition

Parallel INSERT into nonpartitioned
table

1 table lock X None

Note:

Table, partition, and partition-wait DML locks all appear as TM locks in the
V$LOCK view.

Consider a table with 600 partitions running with a DOP of 100. Assume all partitions
are involved in a parallel UPDATE or DELETE statement with no row-migrations.

The coordinator acquires:

• 1 table lock SX

• 600 partition locks X

Total server processes acquire:

• 100 table locks SX

Chapter 8
About Initializing and Tuning Parameters for Parallel Execution

8-66

• 600 partition locks NULL

• 600 partition-wait locks S

8.6.3.3 Parameters Related to I/O
The parameters that affect I/O are introduced in this topic:

The parameters that affect I/O are:

• DB_CACHE_SIZE

• DB_BLOCK_SIZE

• DB_FILE_MULTIBLOCK_READ_COUNT

• DISK_ASYNCH_IO and TAPE_ASYNCH_IO

These parameters also affect the optimizer, which ensures optimal performance for parallel
execution of I/O operations.

See Also:

Oracle Database Reference for information about initialization parameters

8.6.3.3.1 DB_CACHE_SIZE
The DB_CACHE_SIZE parameter sets the size of the DEFAULT buffer pool for buffers with the
primary block size.

When you perform parallel update, merge, and delete operations, the buffer cache behavior
is very similar to any OLTP system running a high volume of updates.

8.6.3.3.2 DB_BLOCK_SIZE
The DB_BLOCK_SIZE parameter sets the size of Oracle database blocks.

The recommended value for this parameter is 8 KB or 16 KB.

Set the database block size when you create the database. If you are creating a new
database, use a large block size such as 8 KB or 16 KB.

8.6.3.3.3 DB_FILE_MULTIBLOCK_READ_COUNT
The DB_FILE_MULTIBLOCK_READ_COUNT parameter determines how many database blocks are
read with a single operating system READ call.

The default value of this parameter is a value that corresponds to the maximum I/O size that
can be performed efficiently. The maximum I/O size value is platform-dependent and is 1 MB
for most platforms. If you set DB_FILE_MULTIBLOCK_READ_COUNT to an excessively high value,
your operating system lowers the value to the highest allowable level when you start your
database.

Chapter 8
About Initializing and Tuning Parameters for Parallel Execution

8-67

8.6.3.3.4 DISK_ASYNCH_IO and TAPE_ASYNCH_IO
The DISK_ASYNCH_IO and TAPE_ASYNCH_IO parameters enable or disable the operating
system's asynchronous I/O facility.

The recommended value for the both DISK_ASYNCH_IO and
TAPE_ASYNCH_IOparameters is TRUE. These parameters enable query server processes
to overlap I/O requests with processing when performing table scans. If the operating
system supports asynchronous I/O, leave these parameters at the default value of
TRUE. Figure 8-6 illustrates how asynchronous read works.

Figure 8-6 Asynchronous Read

I/O:
read block #1

CPU:
process block #1

I/O:
read block #2

CPU:
process block #2

Synchronous read

I/O:
read block #1

CPU:
process block #1

I/O:
read block #2

CPU:
process block #2

Asynchronous read

Asynchronous operations are currently supported for parallel table scans, hash joins,
sorts, and serial table scans. However, this feature can require operating system-
specific configuration and may not be supported on all platforms.

8.7 Monitoring Parallel Execution Performance
You should perform the following types of monitoring when trying to diagnose parallel
execution performance problems.

These types of monitoring include:

• Monitoring Parallel Execution Performance with Dynamic Performance Views

• Monitoring Session Statistics

• Monitoring System Statistics

• Monitoring Operating System Statistics

Chapter 8
Monitoring Parallel Execution Performance

8-68

See Also:

Oracle Database Reference for information about dynamic views

8.7.1 Monitoring Parallel Execution Performance with Dynamic
Performance Views

You can monitor parallel execution performance with dynamic performance views.

Oracle Database real-time monitoring feature enables you to monitor the performance of SQL
statements while they are executing. SQL monitoring is automatically started when a SQL
statement runs parallel or when it has consumed at least 5 seconds of CPU or I/O time for a
single execution.

After your system has run for a few days, you should monitor parallel execution performance
statistics to determine whether your parallel processing is optimal. Do this using any of the
views discussed in this section.

In Oracle Real Application Clusters, global versions of the views described in this section
aggregate statistics from multiple instances. The global views have names beginning with G,
such as GV$FILESTAT for V$FILESTAT, and so on.

See Also:

Oracle Database SQL Tuning Guide for more information about monitoring
performance

8.7.1.1 V$PX_BUFFER_ADVICE
You can monitor parallel execution performance with the V$PX_BUFFER_ADVICE dynamic
performance view.

The V$PX_BUFFER_ADVICE view provides statistics on historical and projected maximum buffer
usage by all parallel queries. You can consult this view to reconfigure SGA size in response
to insufficient memory problems for parallel queries.

8.7.1.2 V$PX_SESSION
You can monitor parallel execution performance with the V$PX_SESSION dynamic performance
view.

The V$PX_SESSION view shows data about query server sessions, groups, sets, and server
numbers. It also displays real-time data about the processes working on behalf of parallel
execution. This table includes information about the requested degree of parallelism (DOP)
and the actual DOP granted to the operation.

Chapter 8
Monitoring Parallel Execution Performance

8-69

8.7.1.3 V$PX_SESSTAT
You can monitor parallel execution performance with the V$PX_SESSTAT dynamic
performance view.

The V$PX_SESSTAT view provides a join of the session information from V$PX_SESSION
and the V$SESSTAT table. Thus, all session statistics available to a standard session
are available for all sessions performed using parallel execution.

8.7.1.4 V$PX_PROCESS
You can monitor parallel execution performance with the V$PX_PROCESS dynamic
performance view.

The V$PX_PROCESS view contains information about the parallel processes, including
status, session ID, process ID, and other information.

8.7.1.5 V$PX_PROCESS_SYSSTAT
You can monitor parallel execution performance with the V$PX_PROCESS_SYSSTAT
dynamic performance view.

The V$PX_PROCESS_SYSSTAT view shows the status of query servers and provides
buffer allocation statistics.

8.7.1.6 V$PQ_SESSTAT
You can monitor parallel execution performance with the V$PQ_SESSTAT dynamic
performance view.

The V$PQ_SESSTAT view shows the status of all current server groups in the system
such as data about how queries allocate processes and how the multiuser and load
balancing algorithms are affecting the default and hinted values.

You might need to adjust some parameter settings to improve performance after
reviewing data from these views. In this case, refer to the discussion of Tuning
General Parameters for Parallel Execution. Query these views periodically to monitor
the progress of long-running parallel operations.

For many dynamic performance views, you must set the parameter TIMED_STATISTICS
to TRUE in order for Oracle Database to collect statistics for each view. You can use the
ALTER SYSTEM or ALTER SESSION statements to turn TIMED_STATISTICS on and off.

8.7.1.7 V$PQ_TQSTAT
You can monitor parallel execution performance with the V$PQ_TQSTAT dynamic
performance view.

As a simple example, consider a hash join between two tables, with a join on a column
with only two distinct values. At best, this hash function has one hash value to parallel
execution server A and the other to parallel execution server B. A DOP of two is fine,
but, if it is four, then at least two parallel execution servers have no work. To discover
this type of deviation, use a query similar to the following example:

Chapter 8
Monitoring Parallel Execution Performance

8-70

SELECT dfo_number, tq_id, server_type, process, num_rows
FROM V$PQ_TQSTAT ORDER BY dfo_number DESC, tq_id, server_type, process;

The best way to resolve this problem might be to choose a different join method; a nested
loop join might be the best option. Alternatively, if one join table is small relative to the other, a
BROADCAST distribution method can be hinted using PQ_DISTRIBUTE hint. The optimizer
considers the BROADCAST distribution method, but requires OPTIMIZER_FEATURES_ENABLE set to
9.0.2 or higher.

Now, assume that you have a join key with high cardinality, but one value contains most of
the data, for example, lava lamp sales by year. The only year that had big sales was 1968,
and the parallel execution server for the 1968 records is overwhelmed. You should use the
same corrective actions as described in the previous paragraph.

The V$PQ_TQSTAT view provides a detailed report of message traffic at the table queue level.
V$PQ_TQSTAT data is valid only when queried from a session that is executing parallel SQL
statements. A table queue is the pipeline between query server groups, between the parallel
execution coordinator and a query server group, or between a query server group and the
coordinator. The table queues are represented explicitly in the operation column by PX SEND
<partitioning type> (for example, PX SEND HASH) and PX RECEIVE.

V$PQ_TQSTAT has a row for each query server process that it reads from or writes to in each
table queue. A table queue connecting 10 consumer processes to 10 producer processes
has 20 rows in the view. Total the bytes column and group by TQ_ID, and the table queue
identifier, to obtain the total number of bytes sent through each table queue. Compare this to
the optimizer estimates; large variations might indicate a need to analyze the data using a
larger sample.

Compute the variance of bytes grouped by TQ_ID. Large variances indicate workload
imbalances. You should investigate large variances to determine whether the producers start
out with unequal distributions of data, or whether the distribution itself is skewed. If the data
itself is skewed, this might indicate a low cardinality, or low number of distinct values.

8.7.1.8 V$RSRC_CONS_GROUP_HISTORY
You can monitor parallel execution performance with the V$RSRC_CONS_GROUP_HISTORY
dynamic performance view.

The V$RSRC_CONS_GROUP_HISTORY view displays a history of consumer group statistics for
each entry in V$RSRC_PLAN_HISTORY that has a non-NULL plan, including information about
parallel statement queuing.

8.7.1.9 V$RSRC_CONSUMER_GROUP
You can monitor parallel execution performance with the V$RSRC_CONSUMER_GROUP dynamic
performance view.

The V$RSRC_CONSUMER_GROUP view displays data related to currently active resource
consumer groups, including information about parallel statements.

Chapter 8
Monitoring Parallel Execution Performance

8-71

8.7.1.10 V$RSRC_PLAN
You can monitor parallel execution performance with the V$RSRC_PLAN dynamic
performance view.

The V$RSRC_PLAN view displays the names of all currently active resource plans,
including the state of parallel statement queuing.

8.7.1.11 V$RSRC_PLAN_HISTORY
You can monitor parallel execution performance with the V$RSRC_PLAN_HISTORY
dynamic performance view.

The V$RSRC_PLAN_HISTORY displays a history of when a resource plan was enabled,
disabled, or modified on the instance. The history includes the state of parallel
statement queuing

8.7.1.12 V$RSRC_SESSION_INFO
You can monitor parallel execution performance with the V$RSRC_SESSION_INFO
dynamic performance view.

The V$RSRC_SESSION_INFO view displays resource manager statistics per session,
including parallel statement queue statistics. Columns include PQ_SERVERS and
PQ_STATUS.

The PQ_SERVERS column of the V$RSRC_SESSION_INFO view contains the number of
active parallel servers if the session is active and running the parallel query. If the
query is queued, the number of parallel servers that this query is trying to run with is
shown.

The PQ_STATUS column maintains the reason that a parallel statement is queued

See Also:

Oracle Database Reference for information about the V$RSRC_SESSION_INFO
view

8.7.1.13 V$RSRCMGRMETRIC
You can monitor parallel execution performance with the V$RSRCMGRMETRIC dynamic
performance view.

The V$RSRCMGRMETRIC view displays statistics related to parallel statement queuing.

Statistics related to parallel statement queuing are added to the resource manager
metrics that takes statistics for a given one-minute window and retains them for
approximately one hour.

Columns include AVG_ACTIVE_PARALLEL_STMTS, AVG_QUEUED_PARALLEL_STMTS,
AVG_ACTIVE_PARALLEL_SERVERS, AVG_QUEUED_PARALLEL_SERVERS, and
PARALLEL_SERVERS_LIMIT.

Chapter 8
Monitoring Parallel Execution Performance

8-72

See Also:

Oracle Database Reference for information about the V$RSRCMGRMETRIC view

8.7.2 Monitoring Session Statistics
You can monitor session statistics with the dynamic performance views to diagnose parallel
execution performance.

Use GV$PX_SESSION to determine the configuration of the server group executing in parallel.
In this example, session 9 is the query coordinator, while sessions 7 and 21 are in the first
group, first set. Sessions 18 and 20 are in the first group, second set. The requested and
granted DOP for this query is 2, as shown by the output from the following query:

SELECT QCSID, SID, INST_ID "Inst", SERVER_GROUP "Group", SERVER_SET "Set",
 DEGREE "Degree", REQ_DEGREE "Req Degree"
FROM GV$PX_SESSION ORDER BY QCSID, QCINST_ID, SERVER_GROUP, SERVER_SET;

Your output should resemble the following:

QCSID SID Inst Group Set Degree Req Degree
---------- ---------- ---------- ---------- ---------- ---------- ----------
 9 9 1
 9 7 1 1 1 2 2
 9 21 1 1 1 2 2
 9 18 1 1 2 2 2
 9 20 1 1 2 2 2

For a single instance, use SELECT FROM V$PX_SESSION and do not include the column name
Instance ID.

The processes shown in the output from the previous example using GV$PX_SESSION
collaborate to complete the same task. The next example shows the execution of a join query
to determine the progress of these processes in terms of physical reads. Use this query to
track any specific statistic:

SELECT QCSID, SID, INST_ID "Inst", SERVER_GROUP "Group", SERVER_SET "Set",
 NAME "Stat Name", VALUE
FROM GV$PX_SESSTAT A, V$STATNAME B
WHERE A.STATISTIC# = B.STATISTIC# AND NAME LIKE 'PHYSICAL READS'
 AND VALUE > 0 ORDER BY QCSID, QCINST_ID, SERVER_GROUP, SERVER_SET;

Your output should resemble the following:

QCSID SID Inst Group Set Stat Name VALUE
------ ----- ------ ------ ------ ------------------ ----------
 9 9 1 physical reads 3863
 9 7 1 1 1 physical reads 2
 9 21 1 1 1 physical reads 2
 9 18 1 1 2 physical reads 2
 9 20 1 1 2 physical reads 2

Use the previous type of query to track statistics in V$STATNAME. Repeat this query as often as
required to observe the progress of the query server processes.

The next query uses V$PX_PROCESS to check the status of the query servers.

Chapter 8
Monitoring Parallel Execution Performance

8-73

SELECT * FROM V$PX_PROCESS;

Your output should resemble the following:

SERV STATUS PID SPID SID SERIAL# IS_GV CON_ID
---- --------- ------ --------- ------ ------- ----- -------
P002 IN USE 16 16955 21 7729 FALSE 0
P003 IN USE 17 16957 20 2921 FALSE 0
P004 AVAILABLE 18 16959 FALSE 0
P005 AVAILABLE 19 16962 FALSE 0
P000 IN USE 12 6999 18 4720 FALSE 0
P001 IN USE 13 7004 7 234 FALSE 0

See Also:

Monitoring Parallel Execution Performance with Dynamic Performance Views
for descriptions of the dynamic performance views used in the examples

8.7.3 Monitoring System Statistics
You can monitor system statistics with the dynamic performance views to diagnose
parallel execution performance.

The V$SYSSTAT and V$SESSTAT views contain several statistics for monitoring parallel
execution. Use these statistics to track the number of parallel queries, DMLs, DDLs,
data flow operators (DFOs), and operations. Each query, DML, or DDL can have
multiple parallel operations and multiple DFOs.

In addition, statistics also count the number of query operations for which the DOP
was reduced, or downgraded, due to either the adaptive multiuser algorithm or the
depletion of available parallel execution servers.

Finally, statistics in these views also count the number of messages sent on behalf of
parallel execution. The following syntax is an example of how to display these
statistics:

SELECT NAME, VALUE FROM GV$SYSSTAT
 WHERE UPPER (NAME) LIKE '%PARALLEL OPERATIONS%'
 OR UPPER (NAME) LIKE '%PARALLELIZED%' OR UPPER (NAME) LIKE '%PX%';

Your output should resemble the following:

NAME VALUE
-- ----------
queries parallelized 347
DML statements parallelized 0
DDL statements parallelized 0
DFO trees parallelized 463
Parallel operations not downgraded 28
Parallel operations downgraded to serial 31
Parallel operations downgraded 75 to 99 pct 252
Parallel operations downgraded 50 to 75 pct 128
Parallel operations downgraded 25 to 50 pct 43
Parallel operations downgraded 1 to 25 pct 12
PX local messages sent 74548
PX local messages recv'd 74128

Chapter 8
Monitoring Parallel Execution Performance

8-74

PX remote messages sent 0
PX remote messages recv'd 0

The following query shows the current wait state of each worker (child process) and query
coordinator process on the system:

SELECT px.SID "SID", p.PID, p.SPID "SPID", px.INST_ID "Inst",
 px.SERVER_GROUP "Group", px.SERVER_SET "Set",
 px.DEGREE "Degree", px.REQ_DEGREE "Req Degree", w.event "Wait Event"
FROM GV$SESSION s, GV$PX_SESSION px, GV$PROCESS p, GV$SESSION_WAIT w
WHERE s.sid (+) = px.sid AND s.inst_id (+) = px.inst_id AND
 s.sid = w.sid (+) AND s.inst_id = w.inst_id (+) AND
 s.paddr = p.addr (+) AND s.inst_id = p.inst_id (+)
ORDER BY DECODE(px.QCINST_ID, NULL, px.INST_ID, px.QCINST_ID), px.QCSID,
DECODE(px.SERVER_GROUP, NULL, 0, px.SERVER_GROUP), px.SERVER_SET, px.INST_ID;

8.7.4 Monitoring Operating System Statistics
There is considerable overlap between information available in Oracle Database and
information available though operating system utilities, such as sar and vmstat on UNIX-
based systems.

Operating systems provide performance statistics on I/O, communication, CPU, memory and
paging, scheduling, and synchronization primitives. The V$SESSTAT view provides the major
categories of operating system statistics as well.

Typically, operating system information about I/O devices and semaphore operations is
harder to map back to database objects and operations than is Oracle Database information.
However, some operating systems have good visualization tools and efficient means of
collecting the data.

Operating system information about CPU and memory usage is very important for assessing
performance. Probably the most important statistic is CPU usage. The goal of low-level
performance tuning is to become CPU bound on all CPUs. After this is achieved, you can
work at the SQL level to find an alternate plan that might be more I/O intensive but use less
CPU.

Operating system memory and paging information is valuable for fine tuning the many system
parameters that control how memory is divided among memory-intensive data warehouse
subsystems like parallel communication, sort, and hash join.

8.8 Tips for Tuning Parallel Execution
Various ideas for improving performance in a parallel execution environment are discussed
under this section.

This section contains the following topics:

• Implementing a Parallel Execution Strategy

• Optimizing Performance by Creating and Populating Tables in Parallel

• Using EXPLAIN PLAN to Show Parallel Operations Plans

• Additional Considerations for Parallel DML

• Optimizing Performance by Creating Indexes in Parallel

• Parallel DML Tips

Chapter 8
Tips for Tuning Parallel Execution

8-75

• Incremental Data Loading in Parallel

8.8.1 Implementing a Parallel Execution Strategy
Implementing a good parallel execution strategy is important to ensure high
performance.

Recommendations for a good strategy include:

• Implement a simple setup to understand what is happening in your system.

• Use resource manager to specify the maximum degree of parallelism (DOP) for
consumer groups so that each group is allotted a specific amount of processing
resources without overwhelming the system. A resource management policy is
needed when using parallel execution to keep the system under control, and to
ensure SQL statements are able to execute in parallel.

• Base your strategy on the amount of system resources you want to make available
for parallel execution. Adjust the values of the parameters PARALLEL_MAX_SERVERS
and PARALLEL_SERVERS_TARGET to limit the number of parallel execution (PX)
servers running in the system.

• Consider taking an ELT (Extract, Load, and Transform) strategy rather than an
ETL (Extract, Transform, and Load) strategy.

• Use external tables with a parallel SQL statement, such as CTAS or IAS, for faster
data loads

8.8.2 Optimizing Performance by Creating and Populating Tables in
Parallel

To optimize parallel execution performance for queries that retrieve large result sets,
create and populate tables in parallel.

Oracle Database cannot return results to a user process in parallel. If a query returns a
large number of rows, execution of the query might indeed be faster. However, the
user process can receive the rows only serially. To optimize parallel execution
performance for queries that retrieve large result sets, use PARALLEL CREATE TABLE AS
SELECT or direct-path INSERT to store the result set in the database. At a later time,
users can view the result set serially.

Performing the SELECT in parallel does not influence the CREATE statement. If the
CREATE statement is executed in parallel, however, the optimizer tries to make the
SELECT run in parallel also.

When combined with the NOLOGGING option, the parallel version of CREATE TABLE AS
SELECT provides a very efficient intermediate table facility, for example:

CREATE TABLE summary PARALLEL NOLOGGING AS SELECT dim_1, dim_2 ...,
SUM (meas_1)
FROM facts GROUP BY dim_1, dim_2;

These tables can also be incrementally loaded with parallel INSERT. You can take
advantage of intermediate tables using the following techniques:

• Common subqueries can be computed once and referenced many times. This can
allow some queries against star schemas (in particular, queries without selective
WHERE-clause predicates) to be better parallelized. Star queries with selective

Chapter 8
Tips for Tuning Parallel Execution

8-76

WHERE-clause predicates using the star-transformation technique can be effectively
parallelized automatically without any modification to the SQL.

• Decompose complex queries into simpler steps to provide application-level checkpoint or
restart. For example, a complex multitable join on a one terabyte database could run for
dozens of hours. A failure during this query would mean starting over from the beginning.
Using CREATE TABLE AS SELECT or PARALLEL INSERT AS SELECT, you can rewrite the query
as a sequence of simpler queries that run for a few hours each. If a system failure occurs,
the query can be restarted from the last completed step.

• Implement manual parallel delete operations efficiently by creating a new table that omits
the unwanted rows from the original table, and then dropping the original table.
Alternatively, you can use the convenient parallel delete feature, which directly deletes
rows from the original table.

• Create summary tables for efficient multidimensional drill-down analysis. For example, a
summary table might store the sum of revenue grouped by month, brand, region, and
salesman.

• Reorganize tables, eliminating chained rows, compressing free space, and so on, by
copying the old table to a new table. This is much faster than export/import and easier
than reloading.

Be sure to use the DBMS_STATS package to gather optimizer statistics on newly created tables.
To avoid I/O bottlenecks, specify a tablespace that is striped across at least as many physical
disks as CPUs. To avoid fragmentation in allocating space, the number of files in a
tablespace should be a multiple of the number of CPUs.

See Also:

Oracle Database Data Warehousing Guide for information about parallel execution
in data warehouses

8.8.3 Using EXPLAIN PLAN to Show Parallel Operations Plans
Use the EXPLAIN PLAN statement to see the execution plans for parallel queries.

The EXPLAIN PLAN output shows optimizer information in the COST, BYTES, and CARDINALITY
columns. You can also use the utlxplp.sql script to present the EXPLAIN PLAN output with all
relevant parallel information.

There are several ways to optimize the parallel execution of join statements. You can alter
system configuration, adjust parameters as discussed earlier in this chapter, or use hints,
such as the DISTRIBUTION hint.

The key points when using EXPLAIN PLAN are to:

• Verify optimizer selectivity estimates. If the optimizer thinks that only one row is produced
from a query, it tends to favor using a nested loop. This could be an indication that the
tables are not analyzed or that the optimizer has made an incorrect estimate about the
correlation of multiple predicates on the same table. Extended statistics or a hint may be
required to provide the optimizer with the correct selectivity or to force the optimizer to
use another join method.

• Use hash join on low cardinality join keys. If a join key has few distinct values, then a
hash join may not be optimal. If the number of distinct values is less than the degree of

Chapter 8
Tips for Tuning Parallel Execution

8-77

parallelism (DOP), then some parallel query servers may be unable to work on the
particular query.

• Consider data skew. If a join key involves excessive data skew, a hash join may
require some parallel query servers to work more than others. Consider using a
hint to cause a BROADCAST distribution method if the optimizer did not choose it.
The optimizer considers the BROADCAST distribution method only if the
OPTIMIZER_FEATURES_ENABLE is set to 9.0.2 or higher. See V$PQ_TQSTAT for
more information.

8.8.3.1 Example: Using EXPLAIN PLAN to Show Parallel Operations
You can use EXPLAIN PLAN to show parallel operations.

The following example illustrates how the optimizer intends to execute a parallel query:

explain plan for
 SELECT /*+ PARALLEL */ cust_first_name, cust_last_name
 FROM customers c, sales s WHERE c.cust_id = s.cust_id;

--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	PX COORDINATOR	
2	PX SEND QC (RANDOM)	:TQ10000
3	NESTED LOOPS	
4	PX BLOCK ITERATOR	
5	TABLE ACCESS FULL	CUSTOMERS
6	PARTITION RANGE ALL	
7	BITMAP CONVERSION TO ROWIDS	
8	BITMAP INDEX SINGLE VALUE	SALES_CUST_BIX
--

Note

 - automatic DOP: Computed Degree of Parallelism is 2

8.8.4 Additional Considerations for Parallel DML
Additional considerations when using parallel DML operations are introduced in this
topic.

When you want to refresh your data warehouse database using parallel insert, update,
or delete operations on a data warehouse, there are additional issues to consider
when designing the physical database. These considerations do not affect parallel
execution operations. These issues are:

• Parallel DML and Direct-Path Restrictions

• Limitation on the Degree of Parallelism

• When to Increase INITRANS

• Limitation on Available Number of Transaction Free Lists for Segments

• Multiple Archivers for Large Numbers of Redo Logs

• Database Writer Process (DBWn) Workload

• [NO]LOGGING Clause

Chapter 8
Tips for Tuning Parallel Execution

8-78

8.8.4.1 Parallel DML and Direct-Path Restrictions
The restrictions for parallel DML and direct-path operations are identified in this topic.

If a parallel restriction is violated, then the operation is simply performed serially. If a direct-
path INSERT restriction is violated, then the APPEND hint is ignored and a conventional insert
operation is performed. No error message is returned.

8.8.4.2 Limitation on the Degree of Parallelism
There are certain limitations on the degree of parallelism based on the software level of
Oracle Database in use.

For tables that do not have the parallel DML itl invariant property (tables created before
Oracle9i Release 2 (9.2) or tables that were created with the COMPATIBLE initialization
parameter set to less than 9.2), the degree of parallelism (DOP) equals the number of
partitions or subpartitions. That means that, if the table is not partitioned, the query runs
serially. To determine which tables do not have this property, issue the following statement:

SELECT u.name, o.name FROM obj$ o, tab$ t, user$ u
 WHERE o.obj# = t.obj# AND o.owner# = u.user#
 AND bitand(t.property,536870912) != 536870912;

See Also:

Oracle Database Concepts for information about the interested transaction list (ITL),
also called the transaction table

8.8.4.3 When to Increase INITRANS
You should increase the value of INITRANS under certain situations.

If you have global indexes, a global index segment and global index blocks are shared by
server processes of the same parallel DML statement. Even if the operations are not
performed against the same row, the server processes can share the same index blocks.
Each server transaction needs one transaction entry in the index block header before it can
make changes to a block.

In this situation, when using the CREATE INDEX or ALTER INDEX statements, you should set
INITRANS, the initial number of transactions allocated within each data block, to a large value,
such as the maximum DOP against this index.

8.8.4.4 Limitation on Available Number of Transaction Free Lists for Segments
There is a limitation on the available number of transaction free lists for segments in
dictionary-managed tablespaces.

After a segment has been created, the number of process and transaction free lists is fixed
and cannot be altered. If you specify a large number of process free lists in the segment
header, you might find that this limits the number of transaction free lists that are available.
You can abate this limitation the next time you re-create the segment header by decreasing

Chapter 8
Tips for Tuning Parallel Execution

8-79

the number of process free lists; this leaves more room for transaction free lists in the
segment header.

For UPDATE and DELETE operations, each server process can require its own
transaction free list. The parallel DML DOP is thus effectively limited by the smallest
number of transaction free lists available on the table and on any of the global indexes
the DML statement must maintain. For example, if the table has 25 transaction free
lists and the table has two global indexes, one with 50 transaction free lists and one
with 30 transaction free lists, the DOP is limited to 25. If the table had 40 transaction
free lists, the DOP would have been limited to 30.

The FREELISTS parameter of the STORAGE clause is used to set the number of process
free lists. By default, no process free lists are created.

The default number of transaction free lists depends on the block size. For example, if
the number of process free lists is not set explicitly, a 4 KB block has about 80
transaction free lists by default. The minimum number of transaction free lists is 25.

8.8.4.5 Multiple Archivers for Large Numbers of Redo Logs
Multiple archiver processes are needed for archiving large numbers of redo logs.

Parallel DDL and parallel DML operations can generate a large number of redo logs. A
single ARCH process to archive these redo logs might not be able to keep up. To avoid
this problem, you can spawn multiple archiver processes manually or by using a job
queue.

8.8.4.6 Database Writer Process (DBWn) Workload
There are situations when you should increase the number of database writer
processes.

Parallel DML operations use a large number of data, index, and undo blocks in the
buffer cache during a short interval. For example, suppose you see a high number of
free_buffer_waits after querying the V$SYSTEM_EVENT view, as in the following
syntax:

SELECT TOTAL_WAITS FROM V$SYSTEM_EVENT WHERE EVENT = 'FREE BUFFER WAITS';

In this case, you should consider increasing the DBWn processes. If there are no waits
for free buffers, the query does not return any rows.

8.8.4.7 [NO]LOGGING Clause
Understand the considerations when setting the [NO]LOGGING clause.

The [NO]LOGGING clause applies to tables, partitions, tablespaces, and indexes.
Virtually no log is generated for certain operations (such as direct-path INSERT) if the
NOLOGGING clause is used. The NOLOGGING attribute is not specified at the INSERT
statement level but is instead specified when using the ALTER or CREATE statement for
a table, partition, index, or tablespace.

When a table or index has NOLOGGING set, neither parallel nor serial direct-path INSERT
operations generate redo logs. Processes running with the NOLOGGING option set run
faster because no redo is generated. However, after a NOLOGGING operation against a
table, partition, or index, if a media failure occurs before a backup is performed, then
all tables, partitions, and indexes that have been modified might be corrupted.

Chapter 8
Tips for Tuning Parallel Execution

8-80

Direct-path INSERT operations (except for dictionary updates) never generate redo logs if the
NOLOGGING clause is used. The NOLOGGING attribute does not affect undo, only redo. To be
precise, NOLOGGING allows the direct-path INSERT operation to generate a negligible amount of
redo (range-invalidation redo, as opposed to full image redo).

For backward compatibility, [UN]RECOVERABLE is still supported as an alternate keyword with
the CREATE TABLE statement. This alternate keyword might not be supported, however, in
future releases.

At the tablespace level, the logging clause specifies the default logging attribute for all tables,
indexes, and partitions created in the tablespace. When an existing tablespace logging
attribute is changed by the ALTER TABLESPACE statement, then all tables, indexes, and
partitions created after the ALTER statement have the new logging attribute; existing ones do
not change their logging attributes. The tablespace-level logging attribute can be overridden
by the specifications at the table, index, or partition level.

The default logging attribute is LOGGING. However, if you have put the database in
NOARCHIVELOG mode, by issuing ALTER DATABASE NOARCHIVELOG, then all operations that can
be done without logging do not generate logs, regardless of the specified logging attribute.

8.8.5 Optimizing Performance by Creating Indexes in Parallel
You can optimize performance by creating indexes in parallel.

Multiple processes can work simultaneously to create an index. By dividing the work
necessary to create an index among multiple server processes, Oracle Database can create
the index more quickly than if a single server process created the index serially.

Parallel index creation works in much the same way as a table scan with an ORDER BY clause.
The table is randomly sampled and a set of index keys is found that equally divides the index
into the same number of pieces as the DOP. A first set of query processes scans the table,
extracts key-rowid pairs, and sends each pair to a process in a second set of query
processes based on a key. Each process in the second set sorts the keys and builds an index
in the usual fashion. After all index pieces are built, the parallel execution coordinator simply
concatenates the pieces (which are ordered) to form the final index.

Parallel local index creation uses a single server set. Each server process in the set is
assigned a table partition to scan and for which to build an index partition. Because half as
many server processes are used for a given DOP, parallel local index creation can be run
with a higher DOP. However, the DOP is restricted to be less than or equal to the number of
index partitions you want to create. To avoid this limitation, you can use the DBMS_PCLXUTIL
package.

You can optionally specify that no redo and undo logging should occur during index creation.
This can significantly improve performance but temporarily renders the index unrecoverable.
Recoverability is restored after the new index is backed up. If your application can tolerate a
window where recovery of the index requires it to be re-created, then you should consider
using the NOLOGGING clause.

The PARALLEL clause in the CREATE INDEX statement is the only way in which you can specify
the DOP for creating the index. If the DOP is not specified in the parallel clause of the CREATE
INDEX statement, then the number of CPUs is used as the DOP. If there is no PARALLEL
clause, index creation is done serially.

When creating an index in parallel, the STORAGE clause refers to the storage of each of the
subindexes created by the query server processes. Therefore, an index created with an
INITIAL value of 5 MB and a DOP of 12 consumes at least 60 MB of storage during index

Chapter 8
Tips for Tuning Parallel Execution

8-81

creation because each process starts with an extent of 5 MB. When the query
coordinator process combines the sorted subindexes, some extents might be trimmed,
and the resulting index might be smaller than the requested 60 MB.

When you add or enable a UNIQUE or PRIMARY KEY constraint on a table, you cannot
automatically create the required index in parallel. Instead, manually create an index
on the desired columns, using the CREATE INDEX statement and an appropriate
PARALLEL clause, and then add or enable the constraint. Oracle Database then uses
the existing index when enabling or adding the constraint.

Multiple constraints on the same table can be enabled concurrently and in parallel if all
the constraints are in the ENABLE NOVALIDATE state. In the following example, the ALTER
TABLE ENABLE CONSTRAINT statement performs the table scan that checks the
constraint in parallel:

CREATE TABLE a (a1 NUMBER CONSTRAINT ach CHECK (a1 > 0) ENABLE NOVALIDATE)
PARALLEL;
INSERT INTO a values (1);
COMMIT;
ALTER TABLE a ENABLE CONSTRAINT ach;

8.8.6 Parallel DML Tips
The tips for parallel DML functionality are introduced in this topic.

The topics covered include:

• Parallel DML Tip 1: INSERT

• Parallel DML Tip 2: Direct-Path INSERT

• Parallel DML Tip 3: Parallelizing INSERT, MERGE, UPDATE, and DELETE

See Also:

• Oracle Database Administrator’s Guide for information about improving
load performance with direct-path insert

• Oracle Database SQL Language Reference for information about the
INSERT statement

8.8.6.1 Parallel DML Tip 1: INSERT
Parallel DML when using the SQL INSERT statement is discussed in this topic.

The functionality available using an INSERT statement can be summarized as shown in
Table 8-5:

Chapter 8
Tips for Tuning Parallel Execution

8-82

Table 8-5 Summary of INSERT Features

Insert Type Parallel Serial NOLOGGING

Conventional No

See text in this section for information about
using the NOAPPEND hint with parallel DML
enabled to perform a parallel conventional
insert.

Yes No

Direct-path

INSERT

(APPEND)

Yes, but requires

ALTER SESSION ENABLE PARALLEL DML or the
ENABLE_PARALLEL_DML SQL hint to enable
PARALLEL DML mode

and one of the following:

• Table PARALLEL attribute or PARALLEL hint
to explicitly set parallelism

• APPEND hint to explicitly set mode
Or the following

ALTER SESSION FORCE PARALLEL DML to force
PARALLEL DML mode

Yes, but requires:

APPEND hint

Yes, but requires:

NOLOGGING attribute set
for partition or table

If parallel DML is enabled and there is a PARALLEL hint or PARALLEL attribute set for the table
in the data dictionary, then insert operations are parallel and appended, unless a restriction
applies. If either the PARALLEL hint or PARALLEL attribute is missing, the insert operation is
performed serially. Automatic DOP only parallelizes the DML part of a SQL statement if and
only if parallel DML is enabled or forced.

If parallel DML is enabled, then you can use the NOAPPEND hint to perform a parallel
conventional insert operation. For example, you can use /*+ noappend parallel */ with the
SQL INSERT statement to perform a parallel conventional insert.

SQL> INSERT /*+ NOAPPEND PARALLEL */ INTO sales_hist SELECT * FROM sales;

The advantage of the parallel conventional insert operation is the ability to perform online
operations with none of the restrictions of direct-path INSERT. The disadvantage of the parallel
conventional insert operation is that this process may be slower than direct-path INSERT.

8.8.6.2 Parallel DML Tip 2: Direct-Path INSERT
Parallel DML when using Direct-Path INSERT operations is discussed in this topic.

The append mode is the default during a parallel insert operation. Data is always inserted into
a new block, which is allocated to the table. Using the APPEND hint is optional. You should use
append mode to increase the speed of INSERT operations, but not when space utilization
must be optimized. You can use NOAPPEND to override append mode.

The APPEND hint applies to both serial and parallel insert operation. Serial insertions are also
faster if you use this hint. The APPEND hint, however, does require more space and locking
overhead.

You can use NOLOGGING with APPEND to make the process even faster. NOLOGGING means that
no redo log is generated for the operation. NOLOGGING is never the default; use it when you
want to optimize performance. It should not typically be used when recovery is needed for the

Chapter 8
Tips for Tuning Parallel Execution

8-83

table or partition. If recovery is needed, be sure to perform a backup immediately after
the operation. Use the ALTER TABLE [NO]LOGGING statement to set the appropriate
value.

8.8.6.3 Parallel DML Tip 3: Parallelizing INSERT, MERGE, UPDATE, and
DELETE

Parallel DML when using insert, merge, update, and delete operations is discussed in
this topic.

When the table or partition has the PARALLEL attribute in the data dictionary, that
attribute setting is used to determine parallelism of INSERT, UPDATE, and DELETE
statements and queries. An explicit PARALLEL hint for a table in a statement overrides
the effect of the PARALLEL attribute in the data dictionary.

You can use the NO_PARALLEL hint to override a PARALLEL attribute for the table in the
data dictionary. In general, hints take precedence over attributes.

DML operations are considered for parallelization if the session has been enabled in
the PARALLEL DML mode with the ALTER SESSION ENABLE PARALLEL DML statement or a
specific SQL statement has been enabled in the PARALLEL DML mode with the
ENABLE_PARALLEL_DML hint. The mode does not affect parallelization of queries or of
the query portions of a DML statement.

8.8.6.3.1 Parallelizing INSERT SELECT
In the INSERT ... SELECT statement, you can specify a PARALLEL hint after the INSERT
keyword, in addition to the hint after the SELECT keyword.

The PARALLEL hint after the INSERT keyword applies to the INSERT operation only, and
the PARALLEL hint after the SELECT keyword applies to the SELECT operation only. Thus,
parallelism of the INSERT and SELECT operations are independent of each other. If one
operation cannot be performed in parallel, it has no effect on whether the other
operation can be performed in parallel.

The ability to parallelize insert operations causes a change in existing behavior if the
user has explicitly enabled the session for parallel DML and if the table in question has
a PARALLEL attribute set in the data dictionary entry. In that case, existing INSERT
SELECT statements that have the select operation parallelized can also have their insert
operation parallelized.

If you query multiple tables, you can specify multiple SELECT PARALLEL hints and
multiple PARALLEL attributes.

Example 8-5 shows the addition of the new employees who were hired after the
acquisition of ACME.

Example 8-5 Parallelizing INSERT SELECT

INSERT /*+ PARALLEL(employees) */ INTO employees
SELECT /*+ PARALLEL(ACME_EMP) */ * FROM ACME_EMP;

The APPEND keyword is not required in this example because it is implied by the
PARALLEL hint.

Chapter 8
Tips for Tuning Parallel Execution

8-84

8.8.6.3.2 Parallelizing UPDATE and DELETE
The PARALLEL hint (placed immediately after the UPDATE or DELETE keyword) applies not only
to the underlying scan operation, but also to the UPDATE or DELETE operation.

Alternatively, you can specify UPDATE or DELETE parallelism in the PARALLEL clause specified in
the definition of the table to be modified.

If you have explicitly enabled parallel DML for the session or transaction, UPDATE or DELETE
statements that have their query operation parallelized can also have their UPDATE or DELETE
operation parallelized. Any subqueries or updatable views in the statement can have their
own separate PARALLEL hints or clauses, but these parallel directives do not affect the
decision to parallelize the update or delete. If these operations cannot be performed in
parallel, it has no effect on whether the UPDATE or DELETE portion can be performed in parallel.

Example 8-6 shows the update operation to give a 10 percent salary raise to all clerks in
Dallas.

Example 8-6 Parallelizing UPDATE and DELETE

UPDATE /*+ PARALLEL(employees) */ employees
 SET salary=salary * 1.1 WHERE job_id='CLERK' AND department_id IN
 (SELECT department_id FROM DEPARTMENTS WHERE location_id = 'DALLAS');

The PARALLEL hint is applied to the UPDATE operation and to the scan.

Example 8-7 shows the removal of all products of category 39 because that business line was
recently spun off into a separate company.

Example 8-7 Parallelizing UPDATE and DELETE

DELETE /*+ PARALLEL(PRODUCTS) */ FROM PRODUCTS
 WHERE category_id = 39;

Again, the parallelism is applied to the scan and UPDATE operations on the table employees.

8.8.7 Incremental Data Loading in Parallel
Parallel DML combined with the updatable join views facility provides an efficient solution for
refreshing the tables of a data warehouse system.

To refresh tables is to update them with the differential data generated from the OLTP
production system.

In the following example, assume a refresh of a table named customers that has columns
c_key, c_name, and c_addr. The differential data contains either new rows or rows that have
been updated since the last refresh of the data warehouse. In this example, the updated data
is shipped from the production system to the data warehouse system by means of ASCII
files. These files must be loaded into a temporary table, named diff_customer, before
starting the refresh process. You can use SQL*Loader with both the parallel and direct
options to efficiently perform this task. You can use the APPEND hint when loading in parallel
as well.

After diff_customer is loaded, the refresh process can be started. It can be performed in two
phases or by merging in parallel, as demonstrated in the following:

• Optimizing Performance for Updating the Table in Parallel

Chapter 8
Tips for Tuning Parallel Execution

8-85

• Efficiently Inserting the New Rows into the Table in Parallel

• Optimizing Performance by Merging in Parallel

8.8.7.1 Optimizing Performance for Updating the Table in Parallel
How to optimize performance for updating a table in parallel is discussed in this topic.

The following statement is a straightforward SQL implementation of the update using
subqueries:

UPDATE customers SET(c_name, c_addr) = (SELECT c_name, c_addr
 FROM diff_customer WHERE diff_customer.c_key = customer.c_key)
 WHERE c_key IN(SELECT c_key FROM diff_customer);

Unfortunately, the two subqueries in this statement affect performance.

An alternative is to rewrite this query using updatable join views. To rewrite the query,
you must first add a primary key constraint to the diff_customer table to ensure that
the modified columns map to a key-preserved table:

CREATE UNIQUE INDEX diff_pkey_ind ON diff_customer(c_key) PARALLEL NOLOGGING;

ALTER TABLE diff_customer ADD PRIMARY KEY (c_key);

You can then update the customers table with the following SQL statement:

UPDATE /*+ PARALLEL(cust_joinview) */
 (SELECT /*+ PARALLEL(customers) PARALLEL(diff_customer) */
 CUSTOMER.c_name AS c_name CUSTOMER.c_addr AS c_addr,
 diff_customer.c_name AS c_newname, diff_customer.c_addr AS c_newaddr
 FROM diff_customer
 WHERE customers.c_key = diff_customer.c_key) cust_joinview
 SET c_name = c_newname, c_addr = c_newaddr;

The underlying scans feeding the join view cust_joinview are done in parallel. You
can then parallelize the update to further improve performance, but only if the
customers table is partitioned.

8.8.7.2 Efficiently Inserting the New Rows into the Table in Parallel
How to efficiently insert new rows into a table in parallel is discussed in this topic.

The last phase of the refresh process consists of inserting the new rows from the
diff_customer temporary table to the customers table. Unlike the update case, you
cannot avoid having a subquery in the INSERT statement:

INSERT /*+PARALLEL(customers)*/ INTO customers SELECT * FROM diff_customer s);

However, you can guarantee that the subquery is transformed into an anti-hash join by
using the HASH_AJ hint. Doing so enables you to use parallel INSERT to execute the
preceding statement efficiently. Parallel INSERT is applicable even if the table is not
partitioned.

8.8.7.3 Optimizing Performance by Merging in Parallel
How to optimize performance by merging in parallel is discussed in this topic.

Chapter 8
Tips for Tuning Parallel Execution

8-86

You can combine update and insert operations into one statement, commonly known as a
merge, as shown in the following example.

MERGE INTO customers USING diff_customer
ON (diff_customer.c_key = customer.c_key) WHEN MATCHED THEN
 UPDATE SET (c_name, c_addr) = (SELECT c_name, c_addr
 FROM diff_customer WHERE diff_customer.c_key = customers.c_key)
WHEN NOT MATCHED THEN
 INSERT VALUES (diff_customer.c_key,diff_customer.c_data);

The SQL statement in the previous example achieves the same result as all of the
statements in Optimizing Performance for Updating the Table in Parallel and Efficiently
Inserting the New Rows into the Table in Parallel.

Chapter 8
Tips for Tuning Parallel Execution

8-87

9
Backing Up and Recovering VLDBs

Backup and recovery is a crucial and important job for a DBA to protect business data.

As data storage grows larger each year, DBAs are continually challenged to ensure that
critical data is backed up and that it can be recovered quickly and easily to meet business
needs. Very large databases are unique in that they are large and data may come from many
resources. OLTP and data warehouse systems have some distinct characteristics. Generally,
the availability considerations for a very large OLTP system are no different from the
considerations for a small OLTP system. Assuming a fixed allowed downtime, a large OLTP
system requires more hardware resources than a small OLTP system.

This chapter proposes an efficient backup and recovery strategy for very large databases to
reduce the overall resources necessary to support backup and recovery by using some
special characteristics that differentiate data warehouses from OLTP systems.

This chapter contains the following sections:

• Data Warehouses

• Oracle Backup and Recovery

• Data Warehouse Backup and Recovery

• The Data Warehouse Recovery Methodology

9.1 Data Warehouses
A data warehouse is a system that is designed to support analysis and decision-making.

In a typical enterprise, hundreds or thousands of users may rely on the data warehouse to
provide the information to help them understand their business and make better decisions.
Therefore, availability is a key requirement for data warehousing. This chapter discusses one
key aspect of data warehouse availability: the recovery of data after a data loss.

Before looking at the backup and recovery techniques in detail, it is important to discuss
specific techniques for backup and recovery of a data warehouse. In particular, one legitimate
question might be: Should a data warehouse backup and recovery strategy be just like that of
every other database system?

A DBA should initially approach the task of data warehouse backup and recovery by applying
the same techniques that are used in OLTP systems: the DBA must decide what information
to protect and quickly recover when media recovery is required, prioritizing data according to
its importance and the degree to which it changes. However, the issue that commonly arises
for data warehouses is that an approach that is efficient and cost-effective for a 100 GB OLTP
system may not be viable for a 10 TB data warehouse. The backup and recovery may take
100 times longer or require 100 times more storage.

9-1

See Also:

Oracle Database Data Warehousing Guide for more information about data
warehouses

9.1.1 Data Warehouse Characteristics
There are several key differences between data warehouses and OLTP systems that
have significant impacts on backup and recovery.

These differences are:

1. A data warehouse is typically much larger than an OLTP system. Data
warehouses over 10's of terabytes are not uncommon and the largest data
warehouses grow to orders of magnitude larger. Thus, scalability is a particularly
important consideration for data warehouse backup and recovery.

2. A data warehouse often has lower availability requirements than an OLTP system.
While data warehouses are critical to businesses, there is also a significant cost
associated with the ability to recover multiple terabytes in a few hours compared to
recovering in a day. Some organizations may determine that in the unlikely event
of a failure requiring the recovery of a significant portion of the data warehouse,
they may tolerate an outage of a day or more if they can save significant
expenditures in backup hardware and storage.

3. A data warehouse is typically updated through a controlled process called the ETL
(Extract, Transform, Load) process, unlike in OLTP systems where users are
modifying data themselves. Because the data modifications are done in a
controlled process, the updates to a data warehouse are often known and
reproducible from sources other than redo logs.

4. A data warehouse contains historical information, and often, significant portions of
the older data in a data warehouse are static. For example, a data warehouse may
track five years of historical sales data. While the most recent year of data may still
be subject to modifications (due to returns, restatements, and so on), the last four
years of data may be entirely static. The advantage of static data is that it does not
need to be backed up frequently.

These four characteristics are key considerations when devising a backup and
recovery strategy that is optimized for data warehouses.

9.2 Oracle Backup and Recovery
In general, backup and recovery refers to the various strategies and procedures
involved in protecting your database against data loss and reconstructing the database
after any kind of data loss.

A backup is a representative copy of data. This copy can include important parts of a
database such as the control file, archived redo logs, and data files. A backup protects
data from application error and acts as a safeguard against unexpected data loss, by
providing a way to restore original data.

This section contains the following topics:

• Physical Database Structures Used in Recovering Data

Chapter 9
Oracle Backup and Recovery

9-2

• Backup Type

• Backup Tools

9.2.1 Physical Database Structures Used in Recovering Data
Before you begin to think seriously about a backup and recovery strategy, the physical data
structures relevant for backup and recovery operations must be identified.

These components include the files and other structures that constitute data for an Oracle
data store and safeguard the data store against possible failures. Three basic components
are required for the recovery of Oracle Database:

• Data files

• Redo Logs

• Control Files

9.2.1.1 Data files
Oracle Database consists of one or more logical storage units called tablespaces. Each
tablespace in Oracle Database consists of one or more files called data files, which are
physical files located on or attached to the host operating system in which Oracle Database is
running.

The data in a database is collectively stored in the data files that constitute each tablespace
of the database. The simplest Oracle Database would have one tablespace, stored in one
data file. Copies of the data files of a database are a critical part of any backup strategy. The
sheer size of the data files is the main challenge from a VLDB backup and recovery
perspective.

9.2.1.2 Redo Logs
Redo logs record all changes made to a database's data files.

With a complete set of redo logs and an older copy of a data file, Oracle can reapply the
changes recorded in the redo logs to re-create the database at any point between the backup
time and the end of the last redo log. Each time data is changed in Oracle Database, that
change is recorded in the online redo log first, before it is applied to the data files.

Oracle Database requires at least two online redo log groups. In each group, there is at least
one online redo log member, an individual redo log file where the changes are recorded. At
intervals, Oracle Database rotates through the online redo log groups, storing changes in the
current online redo log while the groups not in use can be copied to an archive location,
where they are called archived redo logs (or, collectively, the archived redo log). For high
availability reasons, production systems should always use multiple online redo members per
group, preferably on different storage systems. Preserving the archived redo log is a major
part of your backup strategy, as it contains a record of all updates to data files. Backup
strategies often involve copying the archived redo logs to disk or tape for longer-term storage.

9.2.1.3 Control Files
The control file contains a crucial record of the physical structures of the database and their
status.

Several types of information stored in the control file are related to backup and recovery:

Chapter 9
Oracle Backup and Recovery

9-3

• Database information required to recover from failures or to perform media
recovery

• Database structure information, such as data file details

• Redo log details

• Archived log records

• A record of past RMAN backups

Oracle Database data file recovery process is in part guided by status information in
the control file, such as the database checkpoints, current online redo log file, and the
data file header checkpoints. Loss of the control file makes recovery from a data loss
much more difficult. The control file should be backed up regularly, to preserve the
latest database structural changes, and to simplify recovery.

9.2.2 Backup Type
Backups are divided into physical backups and logical backups.

• Physical backups are backups of the physical files used in storing and recovering
your database, such as data files, control files, and archived redo logs. Ultimately,
every physical backup is a copy of files storing database information to some other
location, whether on disk or offline storage, such as tape.

• Logical backups contain logical data (for example, tables or stored procedures)
extracted from a database with Oracle Data Pump (export/import) utilities. The
data is stored in a binary file that can be imported into Oracle Database.

Physical backups are the foundation of any backup and recovery strategy. Logical
backups are a useful supplement to physical backups in many circumstances but are
not sufficient protection against data loss without physical backups.

Reconstructing the contents of all or part of a database from a backup typically
involves two phases: retrieving a copy of the data file from a backup, and reapplying
changes to the file since the backup, from the archived and online redo logs, to bring
the database to the desired recovery point in time. To restore a data file or control file
from backup is to retrieve the file from the backup location on tape, disk, or other
media, and make it available to Oracle Database. To recover a data file, is to take a
restored copy of the data file and apply to it the changes recorded in the database's
redo logs. To recover a whole database is to perform recovery on each of its data files.

9.2.3 Backup Tools
Oracle Database provides several tools to manage backup and recovery of Oracle
Databases.

Each tool gives you a choice of several basic methods for making backups. The
methods include:

• Oracle Recovery Manager (RMAN)

RMAN reduces the administration work associated with your backup strategy by
maintaining an extensive record of metadata about all backups and needed
recovery-related files. In restore and recovery operations, RMAN uses this
information to eliminate the need for the user to identify needed files. RMAN is
efficient, supporting file multiplexing and parallel streaming, and verifies blocks for
physical and (optionally) logical corruptions, on backup and restore.

Chapter 9
Oracle Backup and Recovery

9-4

Backup activity reports can be generated using V$BACKUP views.

• Oracle Data Pump

Oracle Data Pump provides high speed, parallel, bulk data and metadata movement of
Oracle Database contents. This utility makes logical backups by writing data from Oracle
Database to operating system files. This data can later be imported into Oracle
Database.

• User-Managed Backups

The database is backed up manually by executing commands specific to your operating
system.

9.2.3.1 Oracle Recovery Manager (RMAN)
Oracle Recovery Manager (RMAN), a command-line is the Oracle-preferred method for
efficiently backing up and recovering Oracle Database.

RMAN is designed to work intimately with the server, providing block-level corruption
detection during backup and recovery. RMAN optimizes performance and space consumption
during backup with file multiplexing and backup set compression, and integrates with leading
tape and storage media products with the supplied Media Management Library (MML) API.

RMAN takes care of all underlying database procedures before and after backup or recovery,
freeing dependency on operating system and SQL*Plus scripts. It provides a common
interface for backup tasks across different host operating systems, and offers features not
available through user-managed methods, such as data file and tablespace-level backup and
recovery, parallelization of backup and recovery data streams, incremental backups,
automatic backup of the control file on database structural changes, backup retention policy,
and detailed history of all backups.

See Also:

Oracle Database Backup and Recovery User’s Guide for more information about
RMAN

9.2.3.2 Oracle Data Pump
Physical backups can be supplemented by using the Oracle Data Pump (export/import)
utilities to make logical backups of data.

Logical backups store information about the schema objects created for a database. Oracle
Data Pump loads data and metadata into a set of operating system files that can be imported
on the same system or moved to another system and imported there.

The dump file set is made up of one or more disk files that contain table data, database
object metadata, and control information. The files are written in a binary format. During an
import operation, the Data Pump Import utility uses these files to locate each database object
in the dump file set.

9.2.3.3 User-Managed Backups
If you do not want to use Recovery Manager, you can use operating system commands, such
as the UNIX dd or tar commands, to make backups.

Chapter 9
Oracle Backup and Recovery

9-5

To create a user-managed online backup, the database must manually be placed into
hot backup mode. Hot backup mode causes additional write operations to the online
log files, increasing their size.

Backup operations can also be automated by writing scripts. You can make a backup
of the entire database immediately, or back up individual tablespaces, data files,
control files, or archived logs. An entire database backup can be supplemented with
backups of individual tablespaces, data files, control files, and archived logs.

Operating system commands or third-party backup software can perform database
backups. Conversely, the third-party software must be used to restore the backups of
the database.

9.3 Data Warehouse Backup and Recovery
Data warehouse recovery is similar to that of an OLTP system.

However, a data warehouse may not require all of the data to be recovered from a
backup, or for a complete failure, restoring the entire database before user access can
commence. An efficient and fast recovery of a data warehouse begins with a well-
planned backup.

The next several sections help you to identify what data should be backed up and
guide you to the method and tools that enable you to recover critical data in the
shortest amount of time.

This section contains the following topics:

• Recovery Time Objective (RTO)

• Recovery Point Objective (RPO)

9.3.1 Recovery Time Objective (RTO)
A Recovery Time Objective (RTO) is the time duration in which you want to be able
to recover your data.

Your backup and recovery plan should be designed to meet RTOs your company
chooses for its data warehouse. For example, you may determine that 5% of the data
must be available within 12 hours, 50% of the data must be available after a complete
loss of the database within 2 days, and the remainder of the data be available within 5
days. In this case you have two RTOs. Your total RTO is 7.5 days.

To determine what your RTO should be, you must first identify the impact of the data
not being available. To establish an RTO, follow these four steps:

1. Analyze and identify: Understand your recovery readiness, risk areas, and the
business costs of unavailable data. In a data warehouse, you should identify
critical data that must be recovered in the n days after an outage.

2. Design: Transform the recovery requirements into backup and recovery strategies.
This can be accomplished by organizing the data into logical relationships and
criticality.

3. Build and integrate: Deploy and integrate the solution into your environment to
back up and recover your data. Document the backup and recovery plan.

Chapter 9
Data Warehouse Backup and Recovery

9-6

4. Manage and evolve: Test your recovery plans at regular intervals. Implement change
management processes to refine and update the solution as your data, IT infrastructure,
and business processes change.

9.3.2 Recovery Point Objective (RPO)
A Recovery Point Objective, or RPO, is the maximum amount of data that can be lost before
causing detrimental harm to the organization.

RPO indicates the data loss tolerance of a business process or an organization in general.
This data loss is often measured in terms of time, for example, 5 hours or 2 days worth of
data loss. A zero RPO means that no committed data should be lost when media loss occurs,
while a 24 hour RPO can tolerate a day's worth of data loss.

This section contains the following topics:

• More Data Means a Longer Backup Window

• Divide and Conquer

9.3.2.1 More Data Means a Longer Backup Window
The most obvious characteristic of the data warehouse is the size of the database.

This can be upward of 100's of terabytes. Hardware is the limiting factor to a fast backup and
recovery. However, today's tape storage continues to evolve to accommodate the amount of
data that must be offloaded to tape (for example, advent of Virtual Tape Libraries which use
disks internally with the standard tape access interface). RMAN can fully use, in parallel, all
available tape devices to maximize backup and recovery performance.

Essentially, the time required to back up a large database can be derived from the minimum
throughput among: production disk, host bus adapter (HBA) and network to tape devices, and
tape drive streaming specifications * the number of tape drives. The host CPU can also be a
limiting factor to overall backup performance, if RMAN backup encryption or compression is
used. Backup and recovery windows can be adjusted to fit any business requirements, given
adequate hardware resources.

9.3.2.2 Divide and Conquer
In a data warehouse, there may be times when the database is not being fully used.

While this window of time may be several contiguous hours, it is not enough to back up the
entire database. You may want to consider breaking up the database backup over several
days. RMAN enables you to specify how long a given backup job is allowed to run. When
using BACKUP DURATION, you can choose between running the backup to completion as
quickly as possible and running it more slowly to minimize the load the backup may impose
on your database.

In the following example, RMAN backs up all database files that have not been backed up in
the last 7 days first, runs for 4 hours, and reads the blocks as fast as possible.

BACKUP DATABASE NOT BACKED UP SINCE 'sysdate - 7'
 PARTIAL DURATION 4:00 MINIMIZE TIME;

Each time this RMAN command is run, it backs up the data files that have not been backed
up in the last 7 days first. You do not need to manually specify the tablespaces or data files to
be backed up each night. Over the course of several days, all of your database files are
backed up.

Chapter 9
Data Warehouse Backup and Recovery

9-7

While this is a simplistic approach to database backup, it is easy to implement and
provides more flexibility in backing up large amounts of data. During recovery, RMAN
may point you to multiple different storage devices to perform the restore operation.
Consequently, your recovery time may be longer.

9.4 The Data Warehouse Recovery Methodology
Devising a backup and recovery strategy can be a complicated and challenging task.

When you have hundreds of terabytes of data that must be protected and recovered
for a failure, the strategy can be very complex. This section contains several best
practices that can be implemented to ease the administration of backup and recovery.

This section contains the following topics:

• Best Practice 1: Use ARCHIVELOG Mode

• Best Practice 2: Use RMAN

• Best Practice 3: Use Block Change Tracking

• Best Practice 4: Use RMAN Multisection Backups

• Best Practice 5: Leverage Read-Only Tablespaces

• Best Practice 6: Plan for NOLOGGING Operations in Your Backup/Recovery
Strategy

• Best Practice 7: Not All Tablespaces Should Be Treated Equally

9.4.1 Best Practice 1: Use ARCHIVELOG Mode
Archived redo logs are crucial for recovery when no data can be lost because they
constitute a record of changes to the database.

Oracle Database can be run in either of two modes:

• ARCHIVELOG

Oracle Database archives the filled online redo log files before reusing them in the
cycle.

• NOARCHIVELOG

Oracle Database does not archive the filled online redo log files before reusing
them in the cycle.

Running the database in ARCHIVELOG mode has the following benefits:

• The database can be recovered from both instance and media failure.

• Backups can be performed while the database is open and available for use.

• Oracle Database supports multiplexed archive logs to avoid any possible single
point of failure on the archive logs.

• More recovery options are available, such as the ability to perform tablespace
point-in-time recovery (TSPITR).

• Archived redo logs can be transmitted and applied to the physical standby
database, which is an exact replica of the primary database.

Running the database in NOARCHIVELOG mode has the following consequences:

Chapter 9
The Data Warehouse Recovery Methodology

9-8

• The database can be backed up only while it is closed after a clean shutdown.

• Typically, the only media recovery option is to restore the whole database to the point-in-
time in which the full or incremental backups were made, which can result in the loss of
recent transactions.

9.4.1.1 Is Downtime Acceptable?
It is important to design a backup plan to minimize database interruptions.

Oracle Database backups can be made while the database is open or closed. Planned
downtime of the database can be disruptive to operations, especially in global enterprises
that support users in multiple time zones, up to 24-hours per day.

Depending on the business, some enterprises can afford downtime. If the overall business
strategy requires little or no downtime, then the backup strategy should implement an online
backup. The database never needs to be taken down for a backup. An online backup
requires the database to be in ARCHIVELOG mode.

Given the size of a data warehouse (and consequently the amount of time to back up a data
warehouse), it is generally not viable to make an offline backup of a data warehouse, which
would be necessitated if one were using NOARCHIVELOG mode.

9.4.2 Best Practice 2: Use RMAN
Many data warehouses, which were developed on earlier releases of Oracle Database, may
not have integrated RMAN for backup and recovery.

However, just as there are many reasons to leverage ARCHIVELOG mode, there is a similarly
compelling list of reasons to adopt RMAN. Consider the following:

1. Trouble-free backup and recovery

2. Corrupt block detection

3. Archive log validation and management

4. Block Media Recovery (BMR)

5. Easily integrates with Media Managers

6. Backup and restore optimization

7. Backup and restore validation

8. Downtime-free backups

9. Incremental backups

10. Extensive reporting

9.4.3 Best Practice 3: Use Block Change Tracking
Enabling block change tracking allows incremental backups to be completed faster, by
reading and writing only the changed blocks since the last full or incremental backup.

For data warehouses, this can be extremely helpful if the database typically undergoes a low
to medium percentage of changes.

Chapter 9
The Data Warehouse Recovery Methodology

9-9

See Also:

Oracle Database Backup and Recovery User’s Guide for more information
about block change tracking

9.4.4 Best Practice 4: Use RMAN Multisection Backups
With the advent of big file tablespaces, data warehouses have the opportunity to
consolidate a large number of data files into fewer, better managed data files.

For backing up very large data files, RMAN provides multisection backups as a way to
parallelize the backup operation within the file itself, such that sections of a file are
backed up in parallel, rather than backing up on a per-file basis.

For example, a one TB data file can be sectioned into ten 100 GB backup pieces, with
each section backed up in parallel, rather than the entire one TB file backed up as one
file. The overall backup time for large data files can be dramatically reduced.

See Also:

Oracle Database Backup and Recovery User’s Guide for more information
about configuring multisection backups

9.4.5 Best Practice 5: Leverage Read-Only Tablespaces
An important issue facing a data warehouse is the sheer size of a typical data
warehouse. Even with powerful backup hardware, backups may still take several
hours.

One important consideration in improving backup performance is minimizing the
amount of data to be backed up. Read-only tablespaces are the simplest mechanism
to reduce the amount of data to be backed up in a data warehouse. Even with
incremental backups, both backup and recovery are faster if tablespaces are set to
read-only.

The advantage of a read-only tablespace is that data must be backed up only one
time. If a data warehouse contains five years of historical data and the first four years
of data can be made read-only, then theoretically the regular backup of the database
would back up only 20% of the data. This can dramatically reduce the amount of time
required to back up the data warehouse.

Most data warehouses store their data in tables that have been range-partitioned by
time. In a typical data warehouse, data is generally active for a period ranging
anywhere from 30 days to one year. During this period, the historical data can still be
updated and changed (for example, a retailer may accept returns up to 30 days
beyond the date of purchase, so that sales data records could change during this
period). However, after data reaches a certain age, it is often known to be static.

By taking advantage of partitioning, users can make the static portions of their data
read-only. Currently, Oracle supports read-only tablespaces rather than read-only
partitions or tables. To take advantage of the read-only tablespaces and reduce the

Chapter 9
The Data Warehouse Recovery Methodology

9-10

backup window, a strategy of storing constant data partitions in a read-only tablespace
should be devised. Here are two strategies for implementing a rolling window:

1. When the data in a partition matures to the point where it is entirely static, implement a
regularly scheduled process to move the partition from the current read-write tablespace
to a tablespace that can then be made read-only.

2. Create a series of tablespaces, each containing a small number of partitions, and
regularly modify a tablespace from read-write to read-only as the data in that tablespace
ages.

One consideration is that backing up data is only half the recovery process. If you configure a
tape system so that it can back up the read-write portions of a data warehouse in 4 hours, the
corollary is that a tape system might take 20 hours to recover the database if a complete
recovery is necessary when 80% of the database is read-only.

9.4.6 Best Practice 6: Plan for NOLOGGING Operations in Your Backup/
Recovery Strategy

In general, a high priority for a data warehouse is performance. Not only must the data
warehouse provide good query performance for online users, but the data warehouse must
also be efficient during the extract, transform, and load (ETL) process so that large amounts
of data can be loaded in the shortest amount of time. One common optimization used by data
warehouses is to execute bulk-data operations using the NOLOGGING mode.

The database operations that support NOLOGGING modes are direct-path load and insert
operations, index creation, and table creation. When an operation runs in NOLOGGING mode,
data is not written to the redo log (or more precisely, only a small set of metadata is written to
the redo log). This mode is widely used within data warehouses and can improve the
performance of bulk data operations by up to 50%.

However, the tradeoff is that a NOLOGGING operation cannot be recovered using conventional
recovery mechanisms, because the necessary data to support the recovery was never written
to the log file. Moreover, subsequent operations to the data upon which a NOLOGGING
operation has occurred also cannot be recovered even if those operations were not using
NOLOGGING mode. Because of the performance gains provided by NOLOGGING operations, it is
generally recommended that data warehouses use NOLOGGING mode in their ETL process.

The presence of NOLOGGING operations must be taken into account when devising the backup
and recovery strategy. When a database is relying on NOLOGGING operations, the conventional
recovery strategy (of recovering from the latest tape backup and applying the archived log
files) is no longer applicable because the log files are not able to recover the NOLOGGING
operation.

The first principle to remember is, do not make a backup when a NOLOGGING operation is
occurring. Oracle Database does not currently enforce this rule, so DBAs must schedule the
backup jobs and the ETL jobs such that the NOLOGGING operations do not overlap with backup
operations.

There are two approaches to backup and recovery in the presence of NOLOGGING operations:
ETL or incremental backups. If you are not using NOLOGGING operations in your data
warehouse, then you do not have to choose either option: you can recover your data
warehouse using archived logs. However, the options may offer some performance benefits
over an archive log-based approach for a recovery. You can also use flashback logs and
guaranteed restore points to flashback your database to a previous point in time.

Chapter 9
The Data Warehouse Recovery Methodology

9-11

This section contains the following topics:

• Extract, Transform, and Load

• The Extract, Transform, and Load Strategy

• Incremental Backup

• The Incremental Approach

• Flashback Database and Guaranteed Restore Points

9.4.6.1 Extract, Transform, and Load
The ETL process uses several Oracle features and a combination of methods to load
(re-load) data into a data warehouse.

These features consist of:

• Transportable tablespaces

Transportable tablespaces allow users to quickly move a tablespace across Oracle
Databases. It is the most efficient way to move bulk data between databases.
Oracle Database provides the ability to transport tablespaces across platforms. If
the source platform and the target platform are of different endianness, then
RMAN converts the tablespace being transported to the target format.

• SQL*Loader

SQL*Loader loads data from external flat files into tables of Oracle Database. It
has a powerful data parsing engine that puts little limitation on the format of the
data in the data file.

• Data Pump (export/import)

Oracle Data Pump enables high-speed movement of data and metadata from one
database to another. This technology is the basis for the Oracle Data Pump Export
and Data Pump Import utilities.

• External tables

The external tables feature is a complement to existing SQL*Loader functionality.
It enables you to access data in external sources as if it were in a table in the
database. External tables can also be used with the Data Pump driver to export
data from a database, using CREATE TABLE AS SELECT * FROM, and then import data
into Oracle Database.

9.4.6.2 The Extract, Transform, and Load Strategy
One approach is to take regular database backups and also store the necessary data
files to re-create the ETL process for that entire week.

In the event where a recovery is necessary, the data warehouse could be recovered
from the most recent backup. Then, instead of rolling forward by applying the archived
redo logs (as would be done in a conventional recovery scenario), the data warehouse
could be rolled forward by rerunning the ETL processes. This paradigm assumes that
the ETL processes can be easily replayed, which would typically involve storing a set
of extract files for each ETL process.

A sample implementation of this approach is to make a backup of the data warehouse
every weekend, and then store the necessary files to support the ETL process each
night. At most, 7 days of ETL processing must be reapplied to recover a database.

Chapter 9
The Data Warehouse Recovery Methodology

9-12

The data warehouse administrator can easily project the length of time to recover the data
warehouse, based upon the recovery speeds from tape and performance data from previous
ETL runs.

Essentially, the data warehouse administrator is gaining better performance in the ETL
process with NOLOGGING operations, at a price of slightly more complex and a less automated
recovery process. Many data warehouse administrators have found that this is a desirable
trade-off.

One downside to this approach is that the burden is on the data warehouse administrator to
track all of the relevant changes that have occurred in the data warehouse. This approach
does not capture changes that fall outside of the ETL process. For example, in some data
warehouses, users may create their own tables and data structures. Those changes are lost
during a recovery.

This restriction must be conveyed to the end-users. Alternatively, one could also mandate
that end-users create all private database objects in a separate tablespace, and during
recovery, the DBA could recover this tablespace using conventional recovery while
recovering the rest of the database using the approach of rerunning the ETL process.

9.4.6.3 Incremental Backup
A more automated backup and recovery strategy in the presence of NOLOGGING operations
uses RMAN's incremental backup capability.

Incremental backups provide the capability to back up only the changed blocks since the
previous backup. Incremental backups of data files capture data changes on a block-by-block
basis, rather than requiring the backup of all used blocks in a data file. The resulting backup
sets are generally smaller and more efficient than full data file backups, unless every block in
the data file is changed.

When you enable block change tracking, Oracle Database tracks the physical location of all
database changes. RMAN automatically uses the change tracking file to determine which
blocks must be read during an incremental backup. The block change tracking file is
approximately 1/30000 of the total size of the database.

See Also:

Oracle Database Backup and Recovery User’s Guide for more information about
block change tracking and how to enable it

9.4.6.4 The Incremental Approach
A typical backup and recovery strategy using this approach is to back up the data warehouse
every weekend, and then take incremental backups of the data warehouse every night
following the completion of the ETL process.

Incremental backups, like conventional backups, must not be run concurrently with NOLOGGING
operations. To recover the data warehouse, the database backup would be restored, and
then each night's incremental backups would be reapplied.

Although the NOLOGGING operations were not captured in the archive logs, the data from the
NOLOGGING operations is present in the incremental backups. Moreover, unlike the previous
approach, this backup and recovery strategy can be managed using RMAN.

Chapter 9
The Data Warehouse Recovery Methodology

9-13

9.4.6.5 Flashback Database and Guaranteed Restore Points
Flashback Database is a fast, continuous point-in-time recovery method to repair
widespread logical errors.

Flashback Database relies on additional logging, called flashback logs, which are
created in the fast recovery area and retained for a user-defined time interval
according to the recovery needs. These logs track the original block images when they
are updated.

When a Flashback Database operation is executed, just the block images
corresponding to the changed data are restored and recovered, versus traditional data
file restore where all blocks from the backup must be restored before recovery can
start. Flashback logs are created proportionally to redo logs.

For very large and active databases, it may not be feasible to keep all needed
flashback logs for continuous point-in-time recovery. However, there may be a
requirement to create a specific point-in-time snapshot (for example, right before a
nightly batch job) for logical errors during the batch run. For this scenario, guaranteed
restore points can be created without enabling flashback logging.

When the guaranteed restore points are created, flashback logs are maintained just to
satisfy Flashback Database to the guaranteed restore points and no other point in
time, thus saving space. For example, guaranteed restore points can be created
followed by a nologging batch job. As long as there are no previous nologging
operations within the last hour of the creation time of the guaranteed restore points,
Flashback Database to the guaranteed restore points undoes the nologging batch job.
To flash back to a time after the nologging batch job finishes, then create the
guaranteed restore points at least one hour away from the end of the batch job.

Estimating flashback log space for guaranteed restore points in this scenario depends
on how much of the database changes over the number of days you intend to keep
guaranteed restore points. For example, to keep guaranteed restore points for 2 days
and you expect 100 GB of the database to change, then plan for 100 GB for the
flashback logs. The 100 GB refers to the subset of the database changed after the
guaranteed restore points are created and not the frequency of changes.

9.4.7 Best Practice 7: Not All Tablespaces Should Be Treated Equally
Not all of the tablespaces in a data warehouse are equally significant from a backup
and recovery perspective.

Database administrators can use this information to devise more efficient backup and
recovery strategies when necessary. The basic granularity of backup and recovery is a
tablespace, so different tablespaces can potentially have different backup and
recovery strategies.

On the most basic level, temporary tablespaces never need to be backed up (a rule
which RMAN enforces). Moreover, in some data warehouses, there may be
tablespaces dedicated to scratch space for users to store temporary tables and
incremental results. These tablespaces are not explicit temporary tablespaces but are
essentially functioning as temporary tablespaces. Depending upon the business
requirements, these tablespaces may not need to be backed up and restored; instead,
for a loss of these tablespaces, the users would re-create their own data objects.

Chapter 9
The Data Warehouse Recovery Methodology

9-14

In many data warehouses, some data is more important than other data. For example, the
sales data in a data warehouse may be crucial and in a recovery situation this data must be
online as soon as possible. But, in the same data warehouse, a table storing clickstream data
from the corporate website may be much less critical to businesses. The business may
tolerate this data being offline for a few days or may even be able to accommodate the loss of
several days of clickstream data if there is a loss of database files. In this scenario, the
tablespaces containing sales data must be backed up often, while the tablespaces containing
clickstream data need to be backed up only once every week or two weeks.

While the simplest backup and recovery scenario is to treat every tablespace in the database
the same, Oracle Database provides the flexibility for a DBA to devise a backup and recovery
scenario for each tablespace as needed.

Chapter 9
The Data Warehouse Recovery Methodology

9-15

10
Storage Management for VLDBs

Storage management for the database files in a VLDB environment includes high availability,
performance, and manageability aspects.

Storage performance in data warehouse environments often translates into I/O throughput
(MB/s). For online transaction processing (OLTP) systems, the number of I/O requests per
second (IOPS) is a key measure for performance.

This chapter discusses storage management for the database files in a VLDB environment
only. Nondatabase files, including Oracle Database software, are not discussed because
management of those files is no different from a non-VLDB environment. The focus is on the
high availability, performance, and manageability aspects of storage systems for VLDB
environments.

This chapter contains the following sections:

• High Availability

• Performance

• Scalability and Manageability

• Oracle ASM Settings Specific to VLDBs

Note:

Oracle Database supports the use of database files on raw devices and on file
systems, and supports the use of Oracle Automatic Storage Management (Oracle
ASM) on top of raw devices or logical volumes. Oracle ASM should be used
whenever possible.

10.1 High Availability
High availability can be achieved by implementing storage redundancy.

In storage terms, these are mirroring techniques. There are three options for mirroring in a
database environment:

• Hardware-based mirroring

• Using Oracle ASM for mirroring

• Software-based mirroring not using Oracle ASM

Oracle recommends against software-based mirroring that does not use Oracle ASM.

This section contains the following topics:

• Hardware-Based Mirroring

• Mirroring Using Oracle ASM

10-1

Note:

In a cluster configuration, the software you use must support cluster
capabilities. Oracle ASM is a cluster file system for Oracle Database files.

10.1.1 Hardware-Based Mirroring
Most external storage devices provide support for different RAID (Redundant Array of
Independent Disks) levels.

The most commonly used high availability hardware RAID levels in VLDB
environments are RAID 1 and RAID 5. Though less commonly used in VLDB
environments, other high availability RAID levels can also be used.

This section contains the following topics:

• RAID 1 Mirroring

• RAID 5 Mirroring

10.1.1.1 RAID 1 Mirroring
RAID 1 is a basic mirroring technique.

Every storage block that has been written to storage is stored twice on different
physical devices as defined by the RAID setup. RAID 1 provides fault tolerance
because if one device fails, then there is another, mirrored, device that can respond to
the request for data. The two write operations in a RAID 1 setup are generated at the
storage level. RAID 1 requires at least two physical disks to be effective.

Storage devices generally provide capabilities to read either the primary or the mirror
in case a request comes in, which may result in better performance compared to other
RAID configurations designed for high availability. RAID 1 is the simplest hardware
high availability implementation but requires double the amount of storage needed to
store the data. RAID 1 is often combined with RAID 0 (striping) in RAID 0+1
configurations. In the simplest RAID 0+1 configuration, individual stripes are mirrored
across two physical devices.

10.1.1.2 RAID 5 Mirroring
RAID 5 requires at least 3 storage devices, but commonly 4 to 6 devices are used in a
RAID 5 group.

When using RAID 5, for every data block written to a device, parity is calculated and
stored on a different device. On read operations, the parity is checked. The parity
calculation takes place in the storage layer. RAID 5 provides high availability for a
device failure because the device's contents can be rebuilt based on the parities
stored on other devices.

RAID 5 provides good read performance. Write performance may be slowed down by
the parity calculation in the storage layer. RAID 5 does not require double the amount
of storage but rather a smaller percentage depending on the number of devices in the
RAID 5 group. RAID 5 is relatively complex and consequently, not all storage devices
support a RAID 5 setup.

Chapter 10
High Availability

10-2

10.1.2 Mirroring Using Oracle ASM
Oracle Automatic Storage Management (Oracle ASM) provides software-based mirroring
capabilities.

Oracle ASM provides support for normal redundancy (mirroring) and high redundancy (triple
mirroring). Oracle ASM also supports the use of external redundancy, in which case Oracle
ASM does not perform additional mirroring. Oracle ASM normal redundancy can be
compared to RAID 1 hardware mirroring.

With Oracle ASM mirroring, the mirror is produced by the database servers. Consequently,
write operations require more I/O throughput when using Oracle ASM mirroring compared to
using hardware-based mirroring. Depending on your configuration and the speed of the
hardware RAID controllers, Oracle ASM mirroring or hardware RAID may introduce a
bottleneck for data loads.

In Oracle ASM, the definition of failure groups enables redundancy, as Oracle ASM mirrors
data across the boundaries of the failure group. For example, in a VLDB environment, you
can define one failure group per disk array, in which case Oracle ASM ensures that mirrored
data is stored on a different disk array. That way, you could not only survive a failure of a
single disk in a disk array, but you could even survive the failure of an entire disk array or
failure of all channels to that disk array. Hardware RAID configurations typically do not
support this kind of fault tolerance.

Oracle ASM using normal redundancy requires double the amount of disk space needed to
store the data. High redundancy requires triple the amount of disk space.

See Also:

Oracle Automatic Storage Management Administrator's Guide

10.2 Performance
To achieve the optimum throughput from storage devices, multiple disks must work in
parallel.

Optimum throughput can be achieved using a technique called striping, which stores data
blocks in equisized slices (stripes) across multiple devices. Striping enables storage
configurations for good performance and throughput.

Optimum storage device performance is a trade-off between seek time and accessing
consecutive blocks on disk. In a VLDB environment, a 1 MB stripe size provides a good
balance for optimal performance and throughput, both for OLTP systems and data warehouse
systems. There are three options for striping in a database environment:

• Hardware-based striping

• Software-based striping using Oracle ASM

• Software-based striping not using Oracle ASM

It is possible to use a combination of striping techniques, but you must ensure that you
physically store stripes on different devices to get the performance advantages out of striping.

Chapter 10
Performance

10-3

From a conceptual perspective, software-based striping not using Oracle ASM is very
similar to hardware-based striping.

This section contains the following topics:

• Hardware-Based Striping

• Striping Using Oracle ASM

• Information Lifecycle Management

• Partition Placement

• Bigfile Tablespaces

• Oracle Database File System (DBFS)

Note:

In a cluster configuration, the software you use must support cluster
capabilities. Oracle ASM is a cluster file system for Oracle Database files.

10.2.1 Hardware-Based Striping
Most external storage devices provide striping capabilities. The most commonly used
striping techniques to improve storage performance are RAID 0 and RAID 5.

This section contains the following topics:

• RAID 0 Striping

• RAID 5 Striping

10.2.1.1 RAID 0 Striping
RAID 0 requires at least two devices to implement.

Data blocks written to the devices are split up and alternatively stored across the
devices using the stripe size. This technique enables the use of multiple devices and
multiple channels to the devices.

RAID 0, despite its RAID name, is not redundant. Loss of a device in a RAID 0
configuration results in data loss, and should always be combined with some
redundancy in a critical environment. Database implementations using RAID 0 are
often combined with RAID 1, basic mirroring, in RAID 0+1 configurations.

10.2.1.2 RAID 5 Striping
RAID 5 configurations spread data across the available devices in the RAID group
using a hardware-specific stripe size.

Consequently, multiple devices and channels are used to read and write data. Due to
its more complex parity calculation, not all storage devices support RAID 5
configurations.

Chapter 10
Performance

10-4

10.2.2 Striping Using Oracle ASM
Oracle Automatic Storage Management (Oracle ASM) always stripes across all devices
presented to it as a disk group.

A disk group is a logical storage pool in which you create data files. The default Oracle ASM
stripe size generally is a good stripe size for a VLDB.

Use disks with the same performance characteristics in a disk group. All disks in a disk group
should also be the same size for optimum data distribution and hence optimum performance
and throughput. The disk group should span as many physical spindles as possible to get the
best performance. The disk group configuration for a VLDB does not have to be different from
the disk group configuration for a non-VLDB.

Oracle ASM can be used on top of previously striped storage devices. If you use such a
configuration, then ensure that you do not introduce hot spots by defining disk groups that
span logical devices which physically may be using the same resource (disk, controller, or
channel to disk) rather than other available resources. Always ensure that Oracle ASM
stripes are distributed equally across all physical devices.

See Also:

Oracle Automatic Storage Management Administrator's Guide for more information
about Oracle ASM striping

10.2.3 Information Lifecycle Management
In an Information Lifecycle Management (ILM) environment, you cannot use striping across
all devices, because all data would then be distributed across all storage pools.

In an ILM environment, different storage pools typically have different performance
characteristics. Tablespaces should not span storage pools, and data files for the same
tablespace should not be stored in multiple storage pools.

Storage in an ILM environment should be configured to use striping across all devices in a
storage pool. If you use Oracle ASM, then separate disk groups for different storage pools
should be created. Using this approach, tablespaces do not store data files in different disk
groups. Data can be moved online between tablespaces using partition movement operations
for partitioned tables, or using the DBMS_REDEFINITION package when the tables are not
partitioned.

See Also:

Managing and Maintaining Time-Based Information for information about
Information Lifecycle Management environment

Chapter 10
Performance

10-5

10.2.4 Partition Placement
Partition placement is not a concern if you stripe across all available devices and
distribute the load across all available resources.

If you cannot stripe data files across all available devices, then consider partition
placement to optimize the use of all available hardware resources (physical disk
spindles, disk controllers, and channels to disk).

I/O-intensive queries or DML operations should make optimal use of all available
resources. Storing database object partitions in specific tablespaces, each of which
uses a different set of hardware resources, enables you to use all resources for
operations against a single partitioned database object. Ensure that I/O-intensive
operations can use all resources by using an appropriate partitioning technique.

Hash partitioning and hash subpartitioning on a unique or almost unique column or set
of columns with the number of hash partitions equal to a power of 2 is the only
technique likely to result in an even workload distribution when using partition
placement to optimize I/O resource utilization. Other partitioning and subpartitioning
techniques may yield similar benefits depending on your application.

10.2.5 Bigfile Tablespaces
Oracle Database enables the creation of bigfile tablespaces.

A bigfile tablespace consists of a single data or temporary file which can be up to 128
TB. The use of bigfile tablespaces can significantly reduce the number of data files for
your database. Oracle Database supports parallel RMAN backup and restore on single
data files.

Consequently, there is no disadvantage to using bigfile tablespaces and you may
choose to use bigfile tablespaces to significantly reduce the number of data and
temporary files.

File allocation is a serial process. If you use automatic allocation for your tables and
automatically extensible data files, then a large data load can be impacted by the
amount of time it takes to extend the file, regardless of whether you use bigfile
tablespaces. However, if you preallocate data files and you use multiple data files,
then multiple processes are spawned to add data files concurrently.

See Also:

Oracle Database Backup and Recovery User’s Guide

10.2.6 Oracle Database File System (DBFS)
Oracle Database File System (DBFS) leverages the benefits of the database to store
files, and the strengths of the database in efficiently managing relational data to
implement a standard file system interface for files stored in the database.

With this interface, storing files in the database is no longer limited to programs
specifically written to use BLOB and CLOB programmatic interfaces. Files in the

Chapter 10
Performance

10-6

database can now be transparently accessed using any operating system (OS) program that
acts on files.

Oracle Database File System (DBFS) creates a standard file system interface on top of files
and directories that are stored in database tables. With DBFS, the server is the database.
Files are stored as Oracle SecureFiles LOBs in a database table. A set of PL/SQL
procedures implement the file system access primitives such as create, open, read, write,
and list directory. The implementation of the file system in the database is called the DBFS
Content Store. The DBFS Content Store allows each database user to create one or more file
systems that can be mounted by clients. Each file system has its own dedicated tables that
hold the file system content.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for information
about Oracle SecureFiles LOBs, stores, and Oracle Database File System

10.3 Scalability and Manageability
Storage scalability and management is an important factor in a VLDB environment.

A very important characteristic of a VLDB is its large size. The large size introduces the
following challenges:

• Simple statistics suggest that storage components are more likely to fail because VLDBs
use more components.

• A small relative growth in a VLDB may amount to a significant absolute growth, resulting
in possibly many devices to be added.

• Despite its size, performance and (often) availability requirements are not different from
smaller systems.

The storage configuration you choose should be able to handle these challenges. Regardless
of whether storage is added or removed, deliberately or accidentally, your system should
remain in an optimal state from a performance and high availability perspective.

This section contains the following topics:

• Stripe and Mirror Everything (SAME)

• SAME and Manageability

10.3.1 Stripe and Mirror Everything (SAME)
The stripe and mirror everything (SAME) methodology has been recommended by Oracle for
many years and is a means to optimize high availability, performance, and manageability.

To simplify the configuration further, a fixed stripe size of 1 MB is recommended in the SAME
methodology as a good starting point for both OLTP and data warehouse systems. Oracle
ASM implements the SAME methodology and adds automation on top of it.

Chapter 10
Scalability and Manageability

10-7

10.3.2 SAME and Manageability
To achieve maximum performance, the SAME methodology proposes to stripe across
as many physical devices as possible.

This can be achieved without Oracle ASM, but if the storage configuration changes, for
example, by adding or removing devices, then the layout of the database files on the
devices should change. Oracle ASM performs this task automatically in the
background. In most non-Oracle ASM environments, re-striping is a major task that
often involves manual intervention.

In an ILM environment, you apply the SAME methodology to every storage pool.

10.4 Oracle ASM Settings Specific to VLDBs
Configuration of Oracle Automatic Storage Management for VLDBs is similar to Oracle
ASM configuration for non-VLDBs.

Certain parameter values, such as the memory allocation to the Oracle ASM instance,
may need a higher value.

Oracle Database supports Oracle ASM variable allocation units. Large variable
allocation units are beneficial for environments that use large sequential I/O
operations. VLDBs in general, and large data warehouses in particular, are good
candidate environments to take advantage of large allocation units. Allocation units
can be set between 1 MB and 64 MB in powers of two (that is, 1, 2, 4, 8, 16, 32, and
64). If your workload contains a significant number of queries scanning large tables,
then you should use large Oracle ASM allocation units. Use 64 MB for a very large
data warehouse system. Large allocation units also reduce the memory requirements
for Oracle ASM and improve the Oracle ASM startup time.

See Also:

Oracle Automatic Storage Management Administrator's Guide for information
about how to set up and configure Oracle ASM

Chapter 10
Oracle ASM Settings Specific to VLDBs

10-8

Glossary

automatic data optimization
Automatic data optimization (ADO) is a component of Information Lifecycle Management
(ILM) that automates the compression and movement of data between different tiers of
storage within the database.

composite partitioning
Composite partitioning is a combination of the basic data distribution methods. After a table is
partitioned by a data distribution method, then each partition is subdivided into subpartitions
using the same or a different data distribution method.

degree of parallelism (DOP)
The degree of parallelism (DOP) is the number of parallel execution (PX) servers associated
with a single operation.

distribution method (parallel execution)
A distribution method is the method by which data is sent, or redistributed, from one parallel
execution (PX) server set to another.

hash partitioning
Hash partitioning maps data to partitions based on a hashing algorithm that Oracle applies to
the partitioning key that you identify.

heat map
Heat map is a component of Information Lifecycle Management (ILM) that tracks data access
at the segment-level and data modification at the segment and row level.

Information Lifecycle Management
Information Lifecycle Management (ILM) is a set of processes and policies for managing data
throughout its useful life.

Glossary-1

list partitioning
List partitioning maps rows to partitions by specifying a list of discrete values for the
partitioning key in the description for each partition.

parallel execution (PX)
Parallel execution (PX) is the ability to apply multiple CPU and I/O resources to the
execution of a single SQL statement with the use of multiple processes.

parallel execution server
The parallel execution (PX) servers are the individual processes that perform work in
parallel on behalf of the initiating session.

parallelism
Parallelism is breaking down a task so that many processes simultaneously do part of
the work in a query, rather than one process doing all of the work.

partition pruning
Partition pruning occurs when the results of a query can be achieved by accessing a
subset of partitions, rather than the entire table.

partitioning
Partitioning is the process of subdividing objects, such as tables and indexes, into
smaller and more manageable pieces.

partitioning key
The partitioning key consists of one or more columns that determine the partition
where each row is stored.

query coordinator (QC)
The query coordinator (QC), or also called the parallel execution (PX) coordinator, is
the session that initiates the parallel SQL statement.

range partitioning
Range partitioning maps data to partitions based on ranges of values of the
partitioning key that have been specified for each partition.

Glossary

Glossary-2

very large database (VLDB)
A very large database is a database that contains a very large number of rows, or occupies
an extremely large physical storage space.

Glossary

Glossary-3

Index

A
adaptive algorithm, 8-19
ADD PARTITION clause, 4-58
ADD SUBPARTITION clause, 4-60–4-62
adding ILM policies

for Automatic Data Optimization, 5-19
adding index partitions, 4-63
adding multiple partitions, 4-64
adding partitions

composite hash-partitioned tables, 4-60
composite list-partitioned tables, 4-61
composite range-partitioned tables, 4-62
hash-partitioned tables, 4-58
interval-partitioned tables, 4-59
list-partitioned tables, 4-59
partitioned tables, 4-57
range-partitioned tables, 4-58
reference-partitioned tables, 4-62

ALTER INDEX statement
partition attributes, 3-32

ALTER SESSION statement
ENABLE PARALLEL DML clause, 8-40
FORCE PARALLEL DDL clause, 8-33, 8-37
FORCE PARALLEL DML clause, 8-41

ALTER TABLE statement
MODIFY DEFAULT ATTRIBUTES clause,

4-90
MODIFY DEFAULT ATTRIBUTES FOR

PARTITION clause, 4-90
applications

decision support system (DSS)
parallel SQL, 8-34

direct-path INSERT, 8-40
parallel DML operations, 8-39

asynchronous communication
parallel execution servers, 8-10

asynchronous global index maintenance
for dropping and truncating partitions, 4-54

asynchronous I/O, 8-68
Automatic big table caching

about, 8-20
Automatic Data Optimization

adding ILM policies, 5-19
and heat map, 5-12

Automatic Data Optimization (continued)
DBMS_ILM package, 5-24
DBMS_ILM_ADMIN package, 5-24
deleting ILM policies, 5-20
disabling ILM policies, 5-20
ILM ADO parameters, 5-22
limitations, 5-26
managing ILM policies, 5-17
managing with Oracle Enterprise Manager,

5-35
monitoring DBA and ILM policy views, 5-25
row-level compression tiering, 5-21
segment-level compression tiering, 5-21
views for ILM policies, 5-25

Automatic Data Optimization (ADO)
for Information Lifecycle Management

strategy, 5-17
automatic list partitioning

creating tables using, 4-10

B
backing up and recovering

very large databases (VLDBs), 9-1
bigfile tablespaces

very large databases (VLDBs), 10-6
binary XML tables

partitioning of XMLIndex, 4-31

C
COALESCE PARTITION clause, 4-65
collection tables

performing PMOs on partitions, 4-30
collections

tables, 4-30
XMLType, 2-10, 4-29

composite hash partitioned tables
creating, 4-31

composite hash-hash partitioning, 2-16
composite hash-list partitioning, 2-16
composite hash-partitioned tables

adding partitions, 4-60
composite hash-range partitioning, 2-16

Index-1

composite interval partitioning
creating tables using, 4-32

composite list partitioning
creating tables using, 4-35

composite list-hash partitioning, 2-16
performance considerations, 3-42

composite list-list partitioning, 2-16
performance considerations, 3-42

composite list-partitioned tables
adding partitions, 4-61

composite list-range partitioning, 2-16
performance considerations, 3-43

composite partitioned tables
creating, 4-31

composite partitioning, 2-14
default partition, 4-42
interval-hash, 4-33
interval-list, 4-34
interval-range, 4-34
list-hash, 4-36
list-list, 4-36
list-range, 4-37
performance considerations, 3-39
range-hash, 4-39
range-list, 4-40
range-range, 4-43
subpartition template, modifying, 4-55

composite range-* partitioned tables
creating, 4-38

composite range-hash partitioning, 2-15
performance considerations, 3-39

composite range-interval partitioning
creating tables using, 4-32

composite range-list partitioned tables
creating, 4-41

composite range-list partitioning, 2-15
performance considerations, 3-40

composite range-partitioned tables
adding partitions, 4-62

composite range-range partitioning, 2-15
performance considerations, 3-41

compression
partitioning, 3-33

compression table
partitioning, 3-33

concurrent execution of union all, 8-47
constraints

parallel create table, 8-38
consumer operations, 8-4
CREATE INDEX statement

partition attributes, 3-32
partitioned indexes, 4-5

CREATE TABLE AS SELECT statement
decision support system, 8-34

CREATE TABLE statement
AS SELECT

rules of parallelism, 8-38
space fragmentation, 8-36
temporary storage space, 8-36

parallelism, 8-34
creating hash partitioned tables

examples, 4-6
creating indexes on partitioned tables

restrictions, 2-24
creating interval partitions

INTERVAL clause of CREATE TABLE, 4-5
creating partitions, 4-1
creating segments on demand

maintenance procedures, 4-25
critical consumer group

specifying for parallel statement queuing,
8-26

D
data

parallel DML restrictions and integrity rules,
8-45

data loading
incremental in parallel, 8-85

data manipulation language
parallel DML operations, 8-38
transaction model for parallel DML

operations, 8-42
data segment compression

bitmap indexes, 3-33
example, 3-34
partitioning, 3-33

data warehouses
about, 6-1
advanced partition pruning, 6-4
ARCHIVELOG mode for recovery, 9-8
backing up and recovering, 9-1
backing up and recovering characteristics,

9-2
backing up tables on individual basis, 9-14
backup and recovery, 9-6
basic partition pruning, 6-3
block change tracking for backups, 9-9
data compression and partitioning, 6-16
differences with online transaction

processing backups, 9-2
extract, transform, and load for backup and

recovery, 9-12
extract, transform, and load strategy, 9-12
flashback database and guaranteed restore

points, 9-14
incremental backup strategy, 9-13
incremental backups, 9-13

Index

Index-2

data warehouses (continued)
leverage read-only tablespaces for backups,

9-10
manageability, 6-14
manageability with partition exchange load,

6-14
materialized views and partitioning, 6-13
more complex queries, 6-2
more users querying the system, 6-2
NOLOGGING mode for backup and

recovery, 9-11
partition pruning, 6-3
partitioned tables, 3-35
partitioning, 6-1
partitioning and removing data from tables,

6-15
partitioning for large databases, 6-2
partitioning for large tables, 6-2
partitioning for scalability, 6-1
partitioning materialized views, 6-13
recovery methodology, 9-8
recovery point object (RPO), 9-7
recovery time object (RTO), 9-6
refreshing table data, 8-39
RMAN for backup and recovery, 9-9
RMAN multi-section backups, 9-10

database writer process (DBWn)
tuning, 8-80

databases
partitioning, and, 1-3
scalability, 8-39

DB_BLOCK_SIZE initialization parameter
parallel query, 8-67

DB_CACHE_SIZE initialization parameter
parallel query, 8-67

DB_FILE_MULTIBLOCK_READ_COUNT
initialization parameter

parallel query, 8-67
DBMS_HEAT_MAP package

subprograms for Heat MAP, 5-16
DBMS_ILM package

Automatic Data Optimization, 5-24
DBMS_ILM_ADMIN package

Automatic Data Optimization, 5-24
decision support system (DSS)

parallel DML operations, 8-39
parallel SQL, 8-34, 8-39
performance, 8-39
scoring tables, 8-40

default partitions, 4-9
default subpartition, 4-42
deferred segments

partitioning, 4-24
degree of parallelism

adaptive parallelism, 8-19

degree of parallelism (continued)
automatic, 8-16
between query operations, 8-4
controlling with initialization parameters and

hints, 8-17
determining for auto DOP, 8-16
in-memory parallel execution, 8-19
manually specifying, 8-14
parallel execution servers, 8-14
specifying a limit for a consumer group, 8-26

DELETE statement
parallel DELETE statement, 8-41

deleting ILM policies
for Automatic Data Optimization, 5-20

direct-path INSERT
restrictions, 8-44

DISABLE ROW MOVEMENT clause, 4-1
DISABLE_PARALLEL_DML SQL hint, 8-40
disabling ILM policies

for Automatic Data Optimization, 5-20
DISK_ASYNCH_IO initialization parameter

parallel query, 8-68
distributed transactions

parallel DML restrictions, 8-46
DML_LOCKS

parallel DML, 8-65
DROP PARTITION clause, 4-66
dropping multiple partitions, 4-70
dropping partitioned tables, 4-120
dropping partitions

asynchronous global index maintenance,
4-54

DSS database
partitioning indexes, 3-31

E
ENABLE ROW MOVEMENT clause, 4-1, 4-4
ENABLE_PARALLEL_DML SQL hint, 8-40
equipartitioning

examples, 3-26
local indexes, 3-25

EXCHANGE PARTITION clause, 4-78–4-80
EXCHANGE SUBPARTITION clause, 4-77
exchanging partitions

cascade option, 4-80
of a referenced-partition table, 4-75

extents
parallel DDL statements, 8-36

extract, transform, and load
data warehouses, 9-12

Index

Index-3

F
features

new for Information Lifecycle Management,
new for parallel execution,
new for partitioning,
new for VLDBs,

filtering
maintenance operations on partitions, 4-55

FOR PARTITION clause, 4-90
fragmentation

parallel DDL, 8-36
full partition-wise join

querying, 3-15
full partition-wise joins, 3-14, 6-6

composite - composite, 3-19
composite - single-level, 3-17
single-level - single-level, 3-15

full table scans
parallel execution, 8-3

functions
parallel DML and DDL statements, 8-49
parallel execution, 8-48
parallel queries, 8-49

G
global hash partitioned indexes

about, 2-22
global indexes

partitioning, 3-27, 3-28
summary of index types, 3-28

global nonpartitioned indexes
about, 2-23

global partitioned indexes
about, 2-21
maintenance, 2-22

global range partitioned indexes
about, 2-22

granuless
parallelism, 8-5

groups
instance, 8-13

H
hardware-based mirroring

very large databases (VLDBs), 10-2
hardware-based striping

very large databases (VLDBs), 10-4
hash partitioning, 2-13

creating global indexes, 4-7
creating tables examples, 4-6
creating tables using, 4-6
index-organized tables, 4-27

hash partitioning (continued)
multicolumn partitioning keys, 4-19
performance considerations, 3-37

hash partitions
splitting, 4-106

hash-partitioned tables
adding partitions, 4-58

heap-organized partitioned tables
table compression, 4-23

Heat Map
ALL, DBA, USER, and V$ views, 5-14
and automatic data optimization, 5-12
disabling, 5-13
enabling, 5-13
for Information Lifecycle Management

strategy, 5-13
limitations, 5-26
managing with DBMS_HEAT_MAP

subprograms, 5-16
managing with Oracle Enterprise Manager,

5-35
viewing tracking information, 5-14

heat map and automatic data optimization
implementing an ILM strategy, 5-12

HEAT_MAP initialization parameter
disabling, 5-13
enabling, 5-13

hints
parallel statement queuing, 8-30

Hybrid Columnar Compression
example, 3-34

hybrid partitioned tables
about, 2-7
converting from, 4-128
converting to, 4-127
creating, 4-125
exchanging a partition with a nonpartitioned

external table, 4-132
managing, 4-125
splitting partitions, 4-130
using with ADO, 4-129

I
I/O

asynchronous, 8-68
parallel execution, 8-2

ILM
See Information Lifecycle Management

ILM policies
for Automatic Data Optimization, 5-17

implementing an ILM system
manually with partitioning, 5-32
using Oracle Database, 5-4

Index

Index-4

In-Database Archiving
limitations, 5-32
managing data visibility, 5-27
ORA_ARCHIVE_STATE, 5-27
ROW ARCHIVAL VISIBILITY, 5-27

index partitions
adding, 4-63

index-organized tables
hash-partitioned, 4-27
list-partitioned, 4-28
parallel queries, 8-32
partitioning, 4-1, 4-26
partitioning secondary indexes, 4-27
range-partitioned, 4-27

indexes
advanced compression with partitioning, 3-30
creating in parallel, 8-81
global partitioned, 6-12
global partitioned indexes, 3-27

managing partitions, 3-28
local indexes, 3-25
local partitioned, 6-11
manageability with partitioning, 6-15
nonpartitioned, 6-12
parallel creation, 8-81
parallel DDL storage, 8-36
parallel local, 8-81
partitioned, 6-10
partitioning, 3-24
partitioning guidelines, 3-31
partitions, 1-1
updating automatically, 4-52
updating global indexes, 4-52
when to partition, 2-4

Information Lifecycle Management, 5-1, 5-12
about, 5-1
and HEAT_MAP initialization parameter, 5-13
application transparency, 5-2
assigning classes to storage tiers, 5-8
auditing, 5-11
benefits of an online archive, 5-3
controlling access to data, 5-10
creating data access, 5-9
creating migration policies, 5-9
creating storage tiers, 5-7
data retention, 5-11
defining compliance policies, 5-11
defining data classes, 5-4
enforceable compliance policies, 5-2
enforcing compliance policies, 5-11
expiration, 5-12
fine-grained, 5-2
heat map and automatic data optimization,

5-12
immutability, 5-11

Information Lifecycle Management (continued)
implemented with Automatic Data

Optimization, 5-17
implementing a system manually with

partitioning, 5-32
implementing using Oracle Database, 5-4
implementing with Heat Map, 5-13
introduction, 5-1
lifecycle of data, 5-7
limitations, 5-26
low-cost storage, 5-2
moving data using partitioning, 5-10
Oracle Database, and, 5-2
partitioning, 5-5
partitioning, and, 1-3
privacy, 5-11
regulatory requirements, 5-3
striping, 10-5
structured and unstructured data, 5-2
time-based information, 5-1

initialization parameters
MEMORY_MAX_TARGET, 8-62
MEMORY_TARGET, 8-62
PARALLEL_EXECUTION_MESSAGE_SIZE,

8-63, 8-64
PARALLEL_FORCE_LOCAL, 8-55
PARALLEL_MAX_SERVERS, 8-56
PARALLEL_MIN_PERCENT, 8-57
PARALLEL_MIN_SERVERS, 8-11, 8-57
PARALLEL_MIN_TIME_THRESHOLD, 8-58
PARALLEL_SERVERS_TARGET, 8-58
SHARED_POOL_SIZE, 8-58

INSERT statement
parallelizing INSERT SELECT, 8-41

instance groups
for parallel operations, 8-13
limiting the number of instances, 8-13

integrity rules
parallel DML restrictions, 8-45

interval partitioned tables
dropping partitions, 4-69

interval partitioning
creating tables using, 4-5
manageability, 2-17
performance considerations, 3-35, 3-44

interval-hash partitioning
creating tables using, 4-33
subpartitioning template, 4-45

interval-list partitioning
creating tables using, 4-34
subpartitioning template, 4-46

interval-partitioned tables
adding partitions, 4-59
splitting partitions, 4-106

Index

Index-5

interval-range partitioning
creating tables using, 4-34

interval-reference partitioned tables
creating, 4-15

J
joins

full partition-wise, 3-14
partial partition-wise, 3-20
partition-wise, 3-14

K
key compression

partitioning indexes, 4-23

L
list partitioning, 2-14

adding values to value list, 4-92
creating tables using, 4-8
dropping values from value-list, 4-93
index-organized tables, 4-28
modifying, 4-92
performance considerations, 3-38

list-hash partitioning
creating tables using, 4-36
subpartitioning template, 4-45

list-list partitioning
creating tables using, 4-36
subpartitioning template, 4-46

list-partitioned tables
adding partitions, 4-59
creating, 4-8
splitting partitions, 4-103, 4-107

list-range partitioning
creating tables using, 4-37

LOB data types
restrictions on parallel DDL statements, 8-34
restrictions on parallel DML operations, 8-44

local indexes, 3-25, 3-28
equipartitioning, 3-25

local partitioned indexes
about, 2-20

LOGGING clause, 8-80
logging mode

parallel DDL, 8-34, 8-35

M
maintenance operations

supported on index partitions, 4-47
supported on partitioned tables, 4-47

maintenance operations on partitions
filtering, 4-55

manageability
data warehouses, 6-14

managing data validity
Temporal Validity, 5-29

managing data visibility
In-Database Archiving, 5-27

managing ILM policies
for Automatic Data Optimization, 5-17

memory
configure at 2 levels, 8-62

MEMORY_MAX_TARGET initialization
parameter, 8-62

MEMORY_TARGET initialization parameter, 8-62
MERGE PARTITION clause, 4-81
MERGE statement

parallel MERGE statement, 8-41
MERGE SUBPARTITION clause, 4-81
merging multiple partitions, 4-88
MINIMUM EXTENT parameter, 8-36
mirroring with Oracle ASM

very large databases (VLDBs), 10-3
MODIFY DEFAULT ATTRIBUTES clause, 4-90

using for partitioned tables, 4-90
MODIFY DEFAULT ATTRIBUTES FOR

PARTITION clause, 4-90
of ALTER TABLE statement, 4-90

MODIFY PARTITION clause, 4-90, 4-91, 4-96,
4-99

MODIFY SUBPARTITION clause, 4-91
modifying

partitioning, 4-94
monitoring

parallel processing, 8-68, 8-69
MOVE PARTITION clause, 4-90, 4-96
MOVE SUBPARTITION clause, 4-90, 4-98
multi-column list partitioning

creating tables using, 4-12
multiple archiver processes, 8-80
multiple block sizes

restrictions on partitioning, 4-28
multiple parallelizers, 8-12
multiple partitions

adding, 4-64
dropping, 4-70
merging, 4-88
splitting, 4-111
truncating, 4-115

N
NO_STATEMENT_QUEUING

parallel statement queuing hint, 8-30
NOLOGGING clause, 8-80

Index

Index-6

NOLOGGING mode
parallel DDL, 8-34, 8-35

non-partitioned tables
converting to partitioned tables, 4-124

nonpartitioned indexes, 6-12
nonpartitioned tables

changing to partitioned tables, 4-121
nonprefixed indexes, 2-20, 3-26

global partitioned indexes, 3-27
nonprefixed indexes_importance, 3-29

O
object types

parallel queries, 8-32
restrictions on parallel DDL statements, 8-34
restrictions on parallel DML operations, 8-44
restrictions on parallel queries, 8-32

of ALTER TABLE statement, 4-90
OLTP database

batch jobs, 8-40
parallel DML operations, 8-39
partitioning indexes, 3-31

Online Transaction Processing (OLTP)
about, 7-1
common partition maintenance operations,

7-7
partitioning, and, 7-1
when to partition indexes, 7-3

operating system statistics
monitoring for parallel processing, 8-75

operations
partition-wise, 3-14

optimization
partition pruning and indexes, 3-29
partitioned indexes, 3-29

optimizations
parallel SQL, 8-4

ORA_ARCHIVE_STATE
In-Database Archiving, 5-27

Oracle Automatic Storage Management settings
very large databases (VLDBs), 10-8

Oracle Database File System
very large databases (VLDBs), 10-6

Oracle Database Resource Manager
managing parallel statement queue, 8-23

Oracle Real Application Clusters
instance groups, 8-13

P
PARALLEL clause, 8-82
parallel DDL statements, 8-34

extent allocation, 8-36
partitioned tables and indexes, 8-34

parallel DDL statements (continued)
restrictions on LOBs, 8-34
restrictions on object types, 8-32, 8-34

parallel delete, 8-41
parallel DELETE statement, 8-41
parallel DML

considerations for parallel execution, 8-78
parallel DML and DDL statements

functions, 8-49
parallel DML operations, 8-38

applications, 8-39
enabling PARALLEL DML, 8-40
recovery, 8-43
restrictions, 8-44
restrictions on LOB data types, 8-44
restrictions on object types, 8-32, 8-44
restrictions on remote transactions, 8-46
transaction model, 8-42

parallel execution
about, 8-1, 8-4
adaptive parallelism, 8-19
bandwidth, 8-2
benefits, 8-2
considerations for parallel DML, 8-78
CPU utilization, 8-2
CREATE TABLE AS SELECT statement,

8-76
DB_BLOCK_SIZE initialization parameter,

8-67
DB_CACHE_SIZE initialization parameter,

8-67
DB_FILE_MULTIBLOCK_READ_COUNT

initialization parameter, 8-67
default parameter settings, 8-53
DISK_ASYNCH_IO initialization parameter,

8-68
forcing for a session, 8-54
full table scans, 8-3
functions, 8-48
fundamental hardware requirements, 8-3
I/O, 8-2
I/O parameters, 8-67
in-memory, 8-19
index creation, 8-81
initializing parameters, 8-52
inter-operator parallelism, 8-4
intra-operator parallelism, 8-4
massively parallel systems, 8-2
new features, xxiv, xxv
Oracle RAC, 8-13
parallel load, 8-50
parallel propagation, 8-50
parallel recovery, 8-50
parallel replication, 8-50

Index

Index-7

parallel execution (continued)
parameters for establishing resource limits,

8-55
resource parameters, 8-62
symmetric multiprocessors, 8-2
TAPE_ASYNCH_IO initialization parameter,

8-68
tips for tuning, 8-75
tuning general parameters, 8-55
tuning parameters, 8-52
using, 8-1
when not to use, 8-3

parallel execution strategy
implementing, 8-76

PARALLEL hint
UPDATE, MERGE, and DELETE, 8-41

parallel partition-wise joins
performance considerations, 6-10

parallel processing
monitoring, 8-68
monitoring operating system statistics, 8-75
monitoring session statistics, 8-73
monitoring system statistics, 8-74
monitoring with GV$FILESTAT view, 8-69
monitoring with performance views, 8-69

parallel queries, 8-31
functions, 8-49
index-organized tables, 8-32
object types, 8-32
restrictions on object types, 8-32

parallel query
integrating with the automatic big table

caching, 8-20
parallelism type, 8-31

parallel server resources
limiting for a consumer group, 8-25

parallel servers
asynchronous communication, 8-10

parallel SQL
allocating rows to parallel execution servers,

8-7
distribution methods, 8-7
instance groups, 8-13
number of parallel execution servers, 8-11
optimizer, 8-4

parallel statement queue
about, 8-21
grouping parallel statements, 8-29
hints, 8-30
limiting parallel server resources, 8-25
managing for consumer groups, 8-23
managing the order of dequeuing, 8-24
managing with Oracle Database Resource

Manager, 8-23
NO_STATEMENT_QUEUING hint, 8-30

parallel statement queue (continued)
PARALLEL_DEGREE_POLICY, 8-21
sample scenario for managing parallel

statements, 8-27
setting order of parallel statements, 8-23
specifying a critical consumer group, 8-26
specifying a DOP limit for a consumer group,

8-26
specifying a timeout for a consumer group,

8-26
STATEMENT_QUEUING hint, 8-30
using BEGIN_SQL_BLOCK to group

statements, 8-29
parallel update, 8-41
parallel UPDATE statement, 8-41
PARALLEL_DEGREE_POLICY initialization

parameter
automatic degree of parallelism, 8-16
controlling automatic DOP, 8-17

PARALLEL_EXECUTION_MESSAGE_SIZE
initialization parameter, 8-63, 8-64

PARALLEL_FORCE_LOCAL initialization
parameter, 8-55

PARALLEL_MAX_SERVERS initialization
parameter, 8-56

parallel execution, 8-56
PARALLEL_MIN_PERCENT initialization

parameter, 8-57
PARALLEL_MIN_SERVERS initialization

parameter, 8-11, 8-57
PARALLEL_MIN_TIME_THRESHOLD

initialization parameter, 8-58
PARALLEL_SERVERS_TARGET initialization

parameter, 8-58
parallelism

about, 8-4
adaptive, 8-19
degree, 8-14
inter-operator, 8-4
intra-operator, 8-4
other types, 8-31
parallel DDL statements, 8-31
parallel DML operations, 8-31
parallel execution of functions, 8-31
parallel queries, 8-31
types, 8-31

parallelization
methods for specifying precedence, 8-50
rules for SQL operations, 8-50

parameters
Automatic Data Optimization, 5-22

partial indexes
on partitioned tables, 2-24

partial partition-wise joins, 6-8
about, 3-20

Index

Index-8

partial partition-wise joins (continued)
composite, 3-22
single-level, 3-20

Partition Advisor
manageability, 2-17

partition bound
range-partitioned tables, 4-3

PARTITION BY HASH clause, 4-6
PARTITION BY LIST clause, 4-8
PARTITION BY RANGE clause, 4-3

for composite-partitioned tables, 4-31
PARTITION BY REFERENCE clause, 4-14
PARTITION clause

for composite-partitioned tables, 4-31
for hash partitions, 4-6
for list partitions, 4-8
for range partitions, 4-3

partition exchange load
manageability, 6-14

partition granules, 8-6
partition maintenance operations, 7-6

merging older partitions, 7-7
moving older partitions, 7-7
Online Transaction Processing (OLTP), 7-7
removing old data, 7-7

partition pruning
about, 3-1
benefits, 3-1
collection tables, 3-13
data type conversions, 3-10
dynamic, 3-4
dynamic with bind variables, 3-4
dynamic with nested loop joins, 3-7
dynamic with star transformation, 3-6
dynamic with subqueries, 3-5
function calls, 3-12
identifying, 3-3
information for pruning, 3-2
PARTITION_START, 3-3
PARTITION_STOP, 3-3
static, 3-3
tips and considerations, 3-9
with zone maps, 3-8

PARTITION_START
partition pruning, 3-3

PARTITION_STOP
partition pruning, 3-3

partition-wise joins, 3-14
benefits, 6-6, 6-9
full, 3-14, 6-6
parallel execution, 6-10
partial, 3-20, 6-8

partition-wise operations, 3-14
partitioned external tables

creating, 4-18

partitioned indexes
about, 2-19
adding partitions, 4-63
administration, 4-1
composite partitions, 2-25
creating hash-partitioned global, 4-7
creating local index on composite partitioned

table, 4-40
creating local index on hash partitioned table,

4-6
creating range partitions, 4-5
dropping partitions, 4-69
key compression, 4-23
maintenance operations, 4-51, 4-56
maintenance operations that can be

performed, 4-47
modifying partition default attributes, 4-90
modifying real attributes of partitions, 4-92
moving partitions, 4-98
Online Transaction Processing (OLTP), 7-3
rebuilding index partitions, 4-98
renaming index partitions/subpartitions,

4-100
secondary indexes on index-organized

tables, 4-27
splitting partitions, 4-111
views, 4-136
which type to use, 2-20

partitioned tables
adding partitions, 4-57
adding subpartitions, 4-60–4-62
administration, 4-1
coalescing partitions, 4-65
converting to from non-partitioned tables,

4-124
creating automatic list partitions, 4-10
creating composite, 4-31
creating composite interval, 4-32
creating composite list, 4-35
creating hash partitions, 4-6
creating interval partitions, 4-5
creating interval-hash partitions, 4-33
creating interval-list partitions, 4-34
creating interval-range partitions, 4-34
creating list partitions, 4-8
creating list-hash partitions, 4-36
creating list-list partitions, 4-36
creating list-range partitions, 4-37
creating multi-column list partitions, 4-12
creating range partitions, 4-3, 4-5
creating range-hash partitions, 4-39
creating range-list partitions, 4-40
creating range-range partitions, 4-43
creating reference partitions, 4-14
data warehouses, 3-35

Index

Index-9

partitioned tables (continued)
DISABLE ROW MOVEMENT, 4-1
dropping, 4-120
dropping partitions, 4-66
ENABLE ROW MOVEMENT, 4-1
exchanging partitions and subpartitions, 4-70
exchanging partitions of a referenced-

partition table, 4-75
exchanging partitions with a cascade option,

4-80
exchanging subpartitions, 4-77, 4-78, 4-80
filtering maintenance operations, 4-55
FOR EXCHANGE WITH, 4-72
global indexes, 7-6
in-memory column store, 4-16
incremental statistics and partition exchange

operations, 4-70
index-organized tables, 4-1, 4-27, 4-28
INTERVAL clause of CREATE TABLE, 4-5
interval-reference, 4-15
local indexes, 7-6
maintenance operations, 4-56
maintenance operations that can be

performed, 4-47
maintenance operations with global indexes,

7-6
maintenance operations with local indexes,

7-6
marking indexes UNUSABLE, 4-101
merging partitions, 4-81
modifying default attributes, 4-89
modifying real attributes of partitions, 4-90
modifying real attributes of subpartitions,

4-91
moving partitions, 4-96
moving subpartitions, 4-98
multicolumn partitioning keys, 4-19
partition bound, 4-3
partitioning columns, 4-3
partitioning keys, 4-3
read-only status, 4-17
rebuilding index partitions, 4-98
redefining partitions online, 4-122
renaming partitions, 4-99
renaming subpartitions, 4-100
splitting partitions, 4-101
truncating partitions, 4-113
truncating partitions with the cascade option,

4-120
truncating subpartitions, 4-118
updating global indexes automatically, 4-52
views, 4-136

partitioning
about, 1-1
administration of indexes, 4-1

partitioning (continued)
administration of tables, 4-1
advanced index compression, 3-30
advantages, 1-1
availability, 2-12, 3-1
basics, 2-2
benefits, 2-10
bitmap indexes, 3-33
collections in XMLType and object data, 2-10
composite, 2-14
composite list-hash, 2-16
composite list-list, 2-16
composite list-range, 2-16
composite range-hash, 2-15
composite range-list, 2-15
composite range-range, 2-15
concepts, 2-1
creating a partitioned index, 4-1
creating a partitioned table, 4-1
creating indexes on partitioned tables, 2-24
data segment compression, 3-33
data segment compression example, 3-34
data warehouses, 6-1
data warehouses and scalability, 6-1
databases, and, 1-3
default partition, 4-9
default subpartition, 4-42
deferred segments, 4-24
EXCHANGE PARTITION clause, 4-73
exchanging a hash partitioned table, 4-77
exchanging a range partitioned table, 4-79
exchanging interval partitions, 4-75
extensions, 2-16
global hash partitioned indexes, 2-22
global indexes, 3-27
global nonpartitioned indexes, 2-23
global partitioned indexes, 2-21
global range partitioned indexes, 2-22
guidelines for indexes, 3-31
hash, 2-13
Hybrid Columnar Compression example,

3-34
index-organized tables, 2-5, 4-1, 4-27, 4-28
indexes, 2-4, 2-19, 3-24
Information Lifecycle Management, 2-5
Information Lifecycle Management, and, 1-3
interval, 2-17
interval-hash, 4-33
interval-list, 4-34
interval-range, 4-34
key, 2-3
key extensions, 2-17
list, 2-14, 4-92, 4-93
list-hash, 4-36
list-list, 4-36

Index

Index-10

partitioning (continued)
list-range, 4-37
LOB data, 2-6
local indexes, 3-25
local partitioned indexes, 2-20
maintaining partitions, 4-56
maintenance procedures for segment

creation, 4-25
manageability, 2-11, 3-1
manageability extensions, 2-17
manageability with indexes, 6-15
managing partitions, 3-28
modifying attributes, 4-89
modifying list partitions, 4-92
modifying the strategy, 4-94
new features, xxiv, xxv
nonprefixed indexes, 3-26, 3-27, 3-29
Online Transaction Processing (OLTP), 7-1
overview, 2-1
partial indexes on partitioned tables, 2-24
Partition Advisor, 2-17
partition-wise joins, 2-11
partitioned indexes on composite partitions,

2-25
performance, 2-11, 3-1, 3-35
performance considerations, 3-35
performance considerations for composite,

3-39
performance considerations for composite

list-hash, 3-42
performance considerations for composite

list-list, 3-42
performance considerations for composite

list-range, 3-43
performance considerations for composite

range-hash, 3-39
performance considerations for composite

range-list, 3-40
performance considerations for composite

range-range, 3-41
performance considerations for hash, 3-37
performance considerations for interval, 3-44
performance considerations for list, 3-38
performance considerations for range, 3-45
performance considerations for virtual

columns, 3-45
placement with striping, 10-6
prefixed indexes, 3-26, 3-27
pruning, 2-11, 3-1
range, 2-13
range-hash, 4-39
range-list, 4-40
range-range, 4-43
reference, 2-18
removing data from tables, 6-15

partitioning (continued)
restrictions for multiple block sizes, 4-28
segments, 4-24
single-level, 2-12
strategies, 2-12, 3-35
subpartition templates, 4-45
system, 2-5, 2-16, 2-17
tables, 2-4
truncating segments, 4-25
type of index to use, 2-20
very large databases (VLDBs), and, 1-2
virtual columns, 2-19

partitioning and data compression
data warehouses, 6-16

partitioning and materialized views
data warehouses, 6-13

partitioning columns
range-partitioned tables, 4-3

partitioning keys
range-partitioned tables, 4-3

partitioning materialized views
data warehouses, 6-13

partitioning of XMLIndex
binary XML tables, 4-31

partitions, 1-1
advanced index compression, 3-30
equipartitioning

examples, 3-26
local indexes, 3-25

global indexes, 3-27, 6-12
guidelines for partitioning indexes, 3-31
indexes, 3-24
local indexes, 3-25, 6-11
nonprefixed indexes, 2-20, 3-26, 3-29
on indexes, 6-10
parallel DDL statements, 8-34
physical attributes, 3-32
prefixed indexes, 3-26

PARTITIONS clause
for hash partitions, 4-6

performance
DSS database, 8-39
prefixed and nonprefixed indexes, 3-29
very large databases (VLDBs), 10-3

predicates
index partition pruning, 3-29

prefixed indexes, 3-26, 3-28
partition pruning, 3-29

process monitor process (PMON)
parallel DML process recovery, 8-43

processes
memory contention in parallel processing,

8-56
producer operations, 8-4

Index

Index-11

pruning partitions
about, 3-1
benefits, 3-1
indexes and performance, 3-29

Q
queries

ad hoc, 8-34
queuing

parallel statements, 8-21

R
range partitioning, 2-13

creating tables using, 4-3
index-organized tables, 4-27
multicolumn partitioning keys, 4-19
performance considerations, 3-35, 3-45

range-hash partitioning
creating tables using, 4-39
subpartitioning template, 4-45

range-list partitioning
creating tables using, 4-40
subpartitioning template, 4-46

range-partitioned tables
adding partitions, 4-58
splitting partitions, 4-102, 4-109

range-range partitioning
creating tables using, 4-43

read-only status
tables, partitions, and subpartitions, 4-17

read-only tablespaces
performance considerations, 3-46

REBUILD PARTITION clause, 4-98, 4-99
REBUILD UNUSABLE LOCAL INDEXES clause,

4-99
recovery

parallel DML operations, 8-43
reference partitioning

creating tables using, 4-14
key extension, 2-18

reference-partitioned tables
adding partitions, 4-62

RENAME PARTITION clause, 4-100
RENAME SUBPARTITION clause, 4-100
replication

restrictions on parallel DML, 8-44
resources

consumption, parameters affecting, 8-62,
8-64

limiting for users, 8-56
limits, 8-56
parallel query usage, 8-62

restrictions
direct-path INSERT, 8-44
parallel DDL statements, 8-34
parallel DML operations, 8-44
parallel DML operations and remote

transactions, 8-46
ROW ARCHIVAL VISIBILITY

In-Database Archiving, 5-27
row movement clause for partitioned tables, 4-1
row-level compression tiering

Automatic Data Optimization, 5-21

S
scalability

batch jobs, 8-40
parallel DML operations, 8-39

scalability and manageability
very large databases (VLDBs), 10-7

scans
parallel query on full table, 8-3

segment-level compression tiering
Automatic Data Optimization, 5-21

segments
creating on demand, 4-25
deferred, 4-24
partitioning, 4-24
truncating, 4-25

session statistics
monitoring for parallel processing, 8-73

sessions
enabling parallel DML operations, 8-40

SET INTERVAL clause, 4-59
SHARED_POOL_SIZE initialization parameter,

8-58
single-level partitioning, 2-12
skewing parallel DML workload, 8-11
SORT_AREA_SIZE initialization parameter

parallel execution, 8-64
space management

MINIMUM EXTENT parameter, 8-36
parallel DDL, 8-35

SPLIT PARTITION clause, 4-58, 4-101
SPLIT PARTITION operations

optimizing, 4-112
SPLIT SUBPARTITION operations

optimizing, 4-112
splitting multiple partitions, 4-111
splitting partitions and subpartitions, 4-101
SQL statementsSQL statements

data flow operations, 8-4
parallelizing, 8-4

STATEMENT_QUEUING
parallel statement queuing hint, 8-30

Index

Index-12

statistics
operating system, 8-75

storage
fragmentation in parallel DDL, 8-36
index partitions, 3-32

STORAGE clause
parallel execution, 8-36

storage management
very large databases (VLDBs), 10-1

STORE IN clause
partitions, 4-40

stripe and mirror everything
very large databases (VLDBs), 10-7

striping
Information Lifecycle Management, 10-5
partitioning placement, 10-6

striping with Oracle ASM
very large databases (VLDBs), 10-5

SUBPARTITION BY HASH clause
for composite-partitioned tables, 4-31

SUBPARTITION clause, 4-60–4-62, 4-106
for composite-partitioned tables, 4-31

subpartition templates, 4-45
modifying, 4-55

SUBPARTITIONS clause, 4-60, 4-106
for composite-partitioned tables, 4-31

subqueries
in DDL statements, 8-34

system monitor process (SMON)
parallel DML system recovery, 8-43

system partitioning, 2-5
system statistics

monitoring for parallel processing, 8-74

T
table compression

partitioning, 4-23
table queues

monitoring parallel processing, 8-70
tables

creating and populating in parallel, 8-76
creating composite partitioned, 4-31
full partition-wise joins, 3-14, 6-6
historical, 8-40
index-organized, partitioning, 4-26
parallel creation, 8-34
parallel DDL storage, 8-36
partial partition-wise joins, 3-20, 6-8
partitioning, 2-4
partitions, 1-1
refreshing in data warehouse, 8-39
STORAGE clause with parallel execution,

8-36
summary, 8-34

tables (continued)
when to partition, 2-4

tables for exchange
with partitioned tables, 4-72

TAPE_ASYNCH_IO initialization parameter
parallel query, 8-68

temporal validity
creating a table with, 5-30

Temporal Validity
DBMS_FLASHBACK_ARCHIVE package

ENABLE_AT_VALID_TIME
procedure, 5-29

limitations, 5-32
managing data validity, 5-29
valid-time period, 5-29

temporary segments
parallel DDL, 8-36

time-based information
Information Lifecycle Management, 5-1

transactions
distributed and parallel DML restrictions, 8-46

triggers
restrictions, 8-46
restrictions on parallel DML, 8-44

TRUNCATE PARTITION clause, 4-113, 4-114
TRUNCATE SUBPARTITION clause, 4-118
truncating multiple partitions, 4-115
truncating partitions

asynchronous global index maintenance,
4-54

cascade option, 4-120
marking indexes UNUSABLE, 4-113

truncating segments
partitioning, 4-25

two-phase commit, 8-64
types of parallelism, 8-31

U
UNION ALL

concurrent execution, 8-47
UPDATE GLOBAL INDEX clause

of ALTER TABLE, 4-52
UPDATE statement

parallel UPDATE statement, 8-41
updating indexes automatically, 4-52
user resources

limiting, 8-56

V
V$PQ_SESSTAT view

monitoring parallel processing, 8-70
V$PQ_TQSTAT view

monitoring parallel processing, 8-70

Index

Index-13

V$PX_BUFFER_ADVICE view
monitoring parallel processing, 8-69

V$PX_PROCESS view
monitoring parallel processing, 8-70

V$PX_PROCESS_SYSSTAT view
monitoring parallel processing, 8-70

V$PX_SESSION view
monitoring parallel processing, 8-69

V$PX_SESSTAT view
monitoring parallel processing, 8-70

V$RSRC_CONS_GROUP_HISTORY view
monitoring parallel processing, 8-71

V$RSRC_CONSUMER_GROUP view
monitoring parallel processing, 8-71

V$RSRC_PLAN view
monitoring parallel processing, 8-72

V$RSRC_PLAN_HISTORY view
monitoring parallel processing, 8-72

V$RSRC_SESSION_INFO view
parallel statement queuing metrics, 8-72

V$RSRCMGRMETRIC view
parallel statement queuing statistics, 8-72

V$SESSTAT view, 8-75
V$SYSSTAT view, 8-80
valid-time period

Temporal Validity, 5-29
very large databases (VLDBs)

about, 1-1
backing up and recovering, 9-1
backup tools, 9-4
backup types, 9-4
bigfile tablespaces, 10-6
database structures for recovering data, 9-3
hardware-based mirroring, 10-2
hardware-based striping, 10-4
high availability, 10-1
introduction, 1-1
mirroring with Oracle ASM, 10-3
new features, xxiv, xxv
Oracle Automatic Storage Management

settings, 10-8
Oracle Backup and Recovery, 9-2
Oracle Data Pump, 9-4, 9-5

very large databases (VLDBs) (continued)
Oracle Database File System, 10-6
Oracle Recovery Manager, 9-5
partitioning, and, 1-2
performance, 10-3
physical and logical backups, 9-4
RAID 0 striping, 10-4
RAID 1 mirroring, 10-2
RAID 5 mirroring, 10-2
RAID 5 striping, 10-4
RMAN, 9-4
scalability and manageability, 10-7
storage management, 10-1
stripe and mirror everything, 10-7
striping with Oracle ASM, 10-5
user-managed backups, 9-4, 9-5

views
parallel processing monitoring, 8-69
partitioned tables and indexes, 4-136
V$SESSTAT, 8-75
V$SYSSTAT, 8-80

views for ILM policies
Automatic Data Optimization, 5-25

virtual column partitioning
performance considerations, 3-45

virtual column-based partitioning
about, 4-22
key extension, 2-19
using for the subpartitioning key, 4-22

VLDBs
very large databases, 1-1

W
workloads

skewing, 8-11

X
XMLType collections

partitioning, 4-29
XMLType objects, 2-10

Index

Index-14

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Database VLDB and Partitioning Guide
	Changes for VLDB and Partitioning in Oracle Database 19c
	Changes for VLDB and Partitioning in Oracle Database Release 18c

	1 Introduction to Very Large Databases
	1.1 Introduction to Partitioning
	1.2 VLDB and Partitioning
	1.3 Partitioning As the Foundation for Information Lifecycle Management
	1.4 Partitioning for All Databases

	2 Partitioning Concepts
	2.1 Partitioning Overview
	2.1.1 Basics of Partitioning
	2.1.2 Partitioning Key
	2.1.3 Partitioned Tables
	2.1.3.1 When to Partition a Table
	2.1.3.2 When to Partition an Index

	2.1.4 Partitioned Index-Organized Tables
	2.1.5 System Partitioning
	2.1.6 Partitioning for Information Lifecycle Management
	2.1.7 Range Partitioning for Hash Clusters
	2.1.8 Partitioning and LOB Data
	2.1.9 Partitioning on External Tables
	2.1.10 Hybrid Partitioned Tables
	2.1.11 Collections in XMLType and Object Data

	2.2 Benefits of Partitioning
	2.2.1 Partitioning for Performance
	2.2.1.1 Partition Pruning for Performance
	2.2.1.2 Partition-Wise Joins for Performance

	2.2.2 Partitioning for Manageability
	2.2.3 Partitioning for Availability

	2.3 Partitioning Strategies
	2.3.1 Single-Level Partitioning
	2.3.1.1 Range Partitioning
	2.3.1.2 Hash Partitioning
	2.3.1.3 List Partitioning

	2.3.2 Composite Partitioning
	2.3.2.1 Composite Range-Range Partitioning
	2.3.2.2 Composite Range-Hash Partitioning
	2.3.2.3 Composite Range-List Partitioning
	2.3.2.4 Composite List-Range Partitioning
	2.3.2.5 Composite List-Hash Partitioning
	2.3.2.6 Composite List-List Partitioning
	2.3.2.7 Composite Hash-Hash Partitioning
	2.3.2.8 Composite Hash-List Partitioning
	2.3.2.9 Composite Hash-Range Partitioning

	2.4 Partitioning Extensions
	2.4.1 Manageability Extensions
	2.4.1.1 Interval Partitioning
	2.4.1.2 Partition Advisor

	2.4.2 Partitioning Key Extensions
	2.4.2.1 Reference Partitioning
	2.4.2.2 Virtual Column-Based Partitioning

	2.5 Indexing on Partitioned Tables
	2.5.1 Deciding on the Type of Partitioned Index to Use
	2.5.2 Local Partitioned Indexes
	2.5.3 Global Partitioned Indexes
	2.5.3.1 Global Range Partitioned Indexes
	2.5.3.2 Global Hash Partitioned Indexes
	2.5.3.3 Maintenance of Global Partitioned Indexes

	2.5.4 Global Nonpartitioned Indexes
	2.5.5 Miscellaneous Information about Creating Indexes on Partitioned Tables
	2.5.6 Partial Indexes for Partitioned Tables
	2.5.7 Partitioned Indexes on Composite Partitions

	3 Partitioning for Availability, Manageability, and Performance
	3.1 Partition Pruning
	3.1.1 Benefits of Partition Pruning
	3.1.2 Information That Can Be Used for Partition Pruning
	3.1.3 How to Identify Whether Partition Pruning Has Been Used
	3.1.4 Static Partition Pruning
	3.1.5 Dynamic Partition Pruning
	3.1.5.1 Dynamic Pruning with Bind Variables
	3.1.5.2 Dynamic Pruning with Subqueries
	3.1.5.3 Dynamic Pruning with Star Transformation
	3.1.5.4 Dynamic Pruning with Nested Loop Joins

	3.1.6 Partition Pruning with Zone Maps
	3.1.7 Partition Pruning Tips
	3.1.7.1 Data Type Conversions
	3.1.7.2 Function Calls
	3.1.7.3 Collection Tables

	3.2 Partition-Wise Operations
	3.2.1 Full Partition-Wise Joins
	3.2.1.1 Querying a Full Partition-Wise Join
	3.2.1.2 Full Partition-Wise Joins: Single-Level - Single-Level
	3.2.1.3 Full Partition-Wise Joins: Composite - Single-Level
	3.2.1.4 Full Partition-Wise Joins: Composite - Composite

	3.2.2 Partial Partition-Wise Joins
	3.2.2.1 Partial Partition-Wise Joins: Single-Level Partitioning
	3.2.2.2 Partial Partition-Wise Joins: Composite

	3.3 Index Partitioning
	3.3.1 Local Partitioned Indexes
	3.3.1.1 Local Prefixed Indexes
	3.3.1.2 Local Nonprefixed Indexes

	3.3.2 Global Partitioned Indexes
	3.3.2.1 Prefixed and Nonprefixed Global Partitioned Indexes
	3.3.2.2 Management of Global Partitioned Indexes

	3.3.3 Summary of Partitioned Index Types
	3.3.4 The Importance of Nonprefixed Indexes
	3.3.5 Performance Implications of Prefixed and Nonprefixed Indexes
	3.3.6 Advanced Index Compression With Partitioned Indexes
	3.3.7 Guidelines for Partitioning Indexes
	3.3.8 Physical Attributes of Index Partitions

	3.4 Partitioning and Table Compression
	3.4.1 Table Compression and Bitmap Indexes
	3.4.2 Example of Table Compression and Partitioning

	3.5 Recommendations for Choosing a Partitioning Strategy
	3.5.1 When to Use Range or Interval Partitioning
	3.5.2 When to Use Hash Partitioning
	3.5.3 When to Use List Partitioning
	3.5.4 When to Use Composite Partitioning
	3.5.4.1 When to Use Composite Range-Hash Partitioning
	3.5.4.2 When to Use Composite Range-List Partitioning
	3.5.4.3 When to Use Composite Range-Range Partitioning
	3.5.4.4 When to Use Composite List-Hash Partitioning
	3.5.4.5 When to Use Composite List-List Partitioning
	3.5.4.6 When to Use Composite List-Range Partitioning

	3.5.5 When to Use Interval Partitioning
	3.5.6 When to Use Reference Partitioning
	3.5.7 When to Partition on Virtual Columns
	3.5.8 Considerations When Using Read-Only Tablespaces

	4 Partition Administration
	4.1 Specifying Partitioning When Creating Tables and Indexes
	4.1.1 About Creating Range-Partitioned Tables and Global Indexes
	4.1.1.1 Creating a Range-Partitioned Table
	4.1.1.2 Creating a Range-Partitioned Table With More Complexity
	4.1.1.3 Creating a Range-Partitioned Global Index

	4.1.2 Creating Range-Interval-Partitioned Tables
	4.1.3 About Creating Hash Partitioned Tables and Global Indexes
	4.1.3.1 Creating a Hash Partitioned Table
	4.1.3.2 Creating a Hash Partitioned Global Index

	4.1.4 About Creating List-Partitioned Tables
	4.1.4.1 Creating a List-Partitioned Table
	4.1.4.2 Creating a List-Partitioned Table With a Default Partition
	4.1.4.3 Creating an Automatic List-Partitioned Table
	4.1.4.4 Creating a Multi-column List-Partitioned Table

	4.1.5 Creating Reference-Partitioned Tables
	4.1.6 Creating Interval-Reference Partitioned Tables
	4.1.7 Creating a Table Using In-Memory Column Store With Partitioning
	4.1.8 Creating a Table with Read-Only Partitions or Subpartitions
	4.1.9 Creating a Partitioned External Table
	4.1.10 Specifying Partitioning on Key Columns
	4.1.10.1 Creating a Multicolumn Range-Partitioned Table By Date
	4.1.10.2 Creating a Multicolumn Range-Partitioned Table to Enforce Equal-Sized Partitions

	4.1.11 Using Virtual Column-Based Partitioning
	4.1.12 Using Table Compression with Partitioned Tables
	4.1.13 Using Key Compression with Partitioned Indexes
	4.1.14 Specifying Partitioning with Segments
	4.1.14.1 Deferred Segment Creation for Partitioning
	4.1.14.2 Truncating Segments That Are Empty
	4.1.14.3 Maintenance Procedures for Segment Creation on Demand

	4.1.15 Specifying Partitioning When Creating Index-Organized Tables
	4.1.15.1 Creating Range-Partitioned Index-Organized Tables
	4.1.15.2 Creating Hash Partitioned Index-Organized Tables
	4.1.15.3 Creating List-Partitioned Index-Organized Tables

	4.1.16 Partitioning Restrictions for Multiple Block Sizes
	4.1.17 Partitioning of Collections in XMLType and Objects
	4.1.17.1 Performing PMOs on Partitions that Contain Collection Tables
	4.1.17.2 Partitioning of XMLIndex for Binary XML Tables

	4.2 Specifying Composite Partitioning When Creating Tables
	4.2.1 Creating Composite Hash-* Partitioned Tables
	4.2.2 Creating Composite Interval-* Partitioned Tables
	4.2.2.1 Creating Composite Interval-Hash Partitioned Tables
	4.2.2.2 Creating Composite Interval-List Partitioned Tables
	4.2.2.3 Creating Composite Interval-Range Partitioned Tables

	4.2.3 Creating Composite List-* Partitioned Tables
	4.2.3.1 Creating Composite List-Hash Partitioned Tables
	4.2.3.2 Creating Composite List-List Partitioned Tables
	4.2.3.3 Creating Composite List-Range Partitioned Tables

	4.2.4 Creating Composite Range-* Partitioned Tables
	4.2.4.1 About Creating Composite Range-Hash Partitioned Tables
	4.2.4.1.1 Creating a Composite Range-Hash Partitioned Table With the Same Tablespaces
	4.2.4.1.2 Creating a Composite Range-Hash Partitioned Table With Varying Tablespaces
	4.2.4.1.3 Creating a Local Index Across Multiple Tablespaces

	4.2.4.2 About Creating Composite Range-List Partitioned Tables
	4.2.4.2.1 Creating a Composite Range-List Partitioned Table
	4.2.4.2.2 Creating a Composite Range-List Partitioned Table Specifying Tablespaces

	4.2.4.3 Creating Composite Range-Range Partitioned Tables

	4.2.5 Specifying Subpartition Templates to Describe Composite Partitioned Tables
	4.2.5.1 Specifying a Subpartition Template for a *-Hash Partitioned Table
	4.2.5.2 Specifying a Subpartition Template for a *-List Partitioned Table

	4.3 Maintenance Operations Supported on Partitions
	4.3.1 Updating Indexes Automatically
	4.3.2 Asynchronous Global Index Maintenance for Dropping and Truncating Partitions
	4.3.3 Modifying a Subpartition Template
	4.3.4 Filtering Maintenance Operations

	4.4 Maintenance Operations for Partitioned Tables and Indexes
	4.4.1 About Adding Partitions and Subpartitions
	4.4.1.1 Adding a Partition to a Range-Partitioned Table
	4.4.1.2 Adding a Partition to a Hash-Partitioned Table
	4.4.1.3 Adding a Partition to a List-Partitioned Table
	4.4.1.4 Adding a Partition to an Interval-Partitioned Table
	4.4.1.5 About Adding Partitions to a Composite *-Hash Partitioned Table
	4.4.1.5.1 Adding a Partition to a *-Hash Partitioned Table
	4.4.1.5.2 Adding a Subpartition to a *-Hash Partitioned Table

	4.4.1.6 About Adding Partitions to a Composite *-List Partitioned Table
	4.4.1.6.1 Adding a Partition to a *-List Partitioned Table
	4.4.1.6.2 Adding a Subpartition to a *-List Partitioned Table

	4.4.1.7 About Adding Partitions to a Composite *-Range Partitioned Table
	4.4.1.7.1 Adding a Partition to a *-Range Partitioned Table
	4.4.1.7.2 Adding a Subpartition to a *-Range Partitioned Table

	4.4.1.8 About Adding a Partition or Subpartition to a Reference-Partitioned Table
	4.4.1.9 Adding Index Partitions
	4.4.1.10 Adding Multiple Partitions

	4.4.2 About Coalescing Partitions and Subpartitions
	4.4.2.1 Coalescing a Partition in a Hash Partitioned Table
	4.4.2.2 Coalescing a Subpartition in a *-Hash Partitioned Table
	4.4.2.3 Coalescing Hash Partitioned Global Indexes

	4.4.3 About Dropping Partitions and Subpartitions
	4.4.3.1 Dropping Table Partitions
	4.4.3.1.1 Dropping a Partition from a Table that Contains Data and Global Indexes
	4.4.3.1.2 Dropping a Partition Containing Data and Referential Integrity Constraints

	4.4.3.2 Dropping Interval Partitions
	4.4.3.3 Dropping Index Partitions
	4.4.3.4 Dropping Multiple Partitions

	4.4.4 About Exchanging Partitions and Subpartitions
	4.4.4.1 Creating a Table for Exchange With a Partitioned Table
	4.4.4.2 Exchanging a Range, Hash, or List Partition
	4.4.4.3 Exchanging a Partition of an Interval Partitioned Table
	4.4.4.4 Exchanging a Partition of a Reference-Partitioned Table
	4.4.4.5 About Exchanging a Partition of a Table with Virtual Columns
	4.4.4.6 Exchanging a Hash Partitioned Table with a *-Hash Partition
	4.4.4.7 Exchanging a Subpartition of a *-Hash Partitioned Table
	4.4.4.8 Exchanging a List-Partitioned Table with a *-List Partition
	4.4.4.9 About Exchanging a Subpartition of a *-List Partitioned Table
	4.4.4.10 Exchanging a Range-Partitioned Table with a *-Range Partition
	4.4.4.11 About Exchanging a Subpartition of a *-Range Partitioned Table
	4.4.4.12 About Exchanging a Partition with the Cascade Option

	4.4.5 About Merging Partitions and Subpartitions
	4.4.5.1 Merging Range Partitions
	4.4.5.2 Merging Interval Partitions
	4.4.5.3 Merging List Partitions
	4.4.5.4 Merging *-Hash Partitions
	4.4.5.5 About Merging *-List Partitions
	4.4.5.5.1 Merging Partitions in a *-List Partitioned Table
	4.4.5.5.2 Merging Subpartitions in a *-List Partitioned Table

	4.4.5.6 About Merging *-Range Partitions
	4.4.5.6.1 Merging Partitions in a *-Range Partitioned Table

	4.4.5.7 Merging Multiple Partitions

	4.4.6 About Modifying Attributes of Tables, Partitions, and Subpartitions
	4.4.6.1 About Modifying Default Attributes
	4.4.6.1.1 Modifying Default Attributes of a Table
	4.4.6.1.2 Modifying Default Attributes of a Partition
	4.4.6.1.3 Modifying Default Attributes of Index Partitions

	4.4.6.2 About Modifying Real Attributes of Partitions
	4.4.6.2.1 Modifying Real Attributes for a Range or List Partition
	4.4.6.2.2 Modifying Real Attributes for a Hash Partition
	4.4.6.2.3 Modifying Real Attributes of a Subpartition
	4.4.6.2.4 Modifying Real Attributes of Index Partitions

	4.4.7 About Modifying List Partitions
	4.4.7.1 About Modifying List Partitions: Adding Values
	4.4.7.1.1 Adding Values for a List Partition
	4.4.7.1.2 Adding Values for a List Subpartition

	4.4.7.2 About Modifying List Partitions: Dropping Values
	4.4.7.2.1 Dropping Values from a List Partition
	4.4.7.2.2 Dropping Values from a List Subpartition

	4.4.8 About Modifying the Partitioning Strategy
	4.4.9 About Moving Partitions and Subpartitions
	4.4.9.1 Moving Table Partitions
	4.4.9.2 Moving Subpartitions
	4.4.9.3 Moving Index Partitions

	4.4.10 About Rebuilding Index Partitions
	4.4.10.1 About Rebuilding Global Index Partitions
	4.4.10.2 About Rebuilding Local Index Partitions
	4.4.10.2.1 Using ALTER INDEX to Rebuild a Partition
	4.4.10.2.2 Using ALTER TABLE to Rebuild an Index Partition

	4.4.11 About Renaming Partitions and Subpartitions
	4.4.11.1 Renaming a Table Partition
	4.4.11.2 Renaming a Table Subpartition
	4.4.11.3 About Renaming Index Partitions
	4.4.11.3.1 Renaming an Index Partition
	4.4.11.3.2 Renaming an Index Subpartition

	4.4.12 About Splitting Partitions and Subpartitions
	4.4.12.1 Splitting a Partition of a Range-Partitioned Table
	4.4.12.2 Splitting a Partition of a List-Partitioned Table
	4.4.12.3 Splitting a Partition of an Interval-Partitioned Table
	4.4.12.4 Splitting a *-Hash Partition
	4.4.12.5 Splitting Partitions in a *-List Partitioned Table
	4.4.12.5.1 Splitting a *-List Partition
	4.4.12.5.2 Splitting a *-List Subpartition

	4.4.12.6 Splitting a *-Range Partition
	4.4.12.6.1 Splitting a *-Range Subpartition

	4.4.12.7 Splitting Index Partitions
	4.4.12.8 Splitting into Multiple Partitions
	4.4.12.9 Fast SPLIT PARTITION and SPLIT SUBPARTITION Operations

	4.4.13 About Truncating Partitions and Subpartitions
	4.4.13.1 About Truncating a Table Partition
	4.4.13.1.1 Truncating Table Partitions Containing Data and Global Indexes
	4.4.13.1.2 Truncating a Partition Containing Data and Referential Integrity Constraints

	4.4.13.2 Truncating Multiple Partitions
	4.4.13.3 Truncating Subpartitions
	4.4.13.4 Truncating a Partition with the Cascade Option

	4.5 About Dropping Partitioned Tables
	4.6 Changing a Nonpartitioned Table into a Partitioned Table
	4.6.1 Using Online Redefinition to Partition Collection Tables
	4.6.2 Converting a Non-Partitioned Table to a Partitioned Table

	4.7 Managing Hybrid Partitioned Tables
	4.7.1 Creating Hybrid Partitioned Tables
	4.7.2 Converting to Hybrid Partitioned Tables
	4.7.3 Converting Hybrid Partitioned Tables to Internal Partitioned Tables
	4.7.4 Using ADO With Hybrid Partitioned Tables
	4.7.5 Splitting Partitions in a Hybrid Partitioned Table
	4.7.6 Exchanging Data in Hybrid Partitioned Tables

	4.8 Viewing Information About Partitioned Tables and Indexes

	5 Managing and Maintaining Time-Based Information
	5.1 Managing Data in Oracle Database With ILM
	5.1.1 About Oracle Database for ILM
	5.1.1.1 Oracle Database Manages All Types of Data
	5.1.1.2 Regulatory Requirements
	5.1.1.3 The Benefits of an Online Archive

	5.1.2 Implementing ILM Using Oracle Database
	5.1.2.1 Step 1: Define the Data Classes
	5.1.2.1.1 Partitioning for ILM
	5.1.2.1.2 The Lifecycle of Data

	5.1.2.2 Step 2: Create Storage Tiers for the Data Classes
	5.1.2.2.1 Assigning Classes to Storage Tiers
	5.1.2.2.2 The Costs Savings of Using Tiered Storage

	5.1.2.3 Step 3: Create Data Access and Migration Policies
	5.1.2.3.1 Controlling Access to Data
	5.1.2.3.2 Moving Data using Partitioning

	5.1.2.4 Step 4: Define and Enforce Compliance Policies
	5.1.2.4.1 Data Retention
	5.1.2.4.2 Immutability
	5.1.2.4.3 Privacy
	5.1.2.4.4 Auditing
	5.1.2.4.5 Expiration

	5.2 Implementing an ILM Strategy With Heat Map and ADO
	5.2.1 Using Heat Map
	5.2.1.1 Enabling and Disabling Heat Map
	5.2.1.2 Displaying Heat Map Tracking Data With Views
	5.2.1.3 Managing Heat Map Data With DBMS_HEAT_MAP Subprograms

	5.2.2 Using Automatic Data Optimization
	5.2.2.1 Managing Policies for Automatic Data Optimization
	5.2.2.2 Creating a Table With an ILM ADO Policy
	5.2.2.3 Adding ILM ADO Policies
	5.2.2.4 Disabling and Deleting ILM ADO Policies
	5.2.2.5 Specifying Segment-Level Compression and Storage Tiering With ADO
	5.2.2.6 Specifying Row-Level Compression Tiering With ADO
	5.2.2.7 Managing ILM ADO Parameters
	5.2.2.8 Using PL/SQL Functions for Policy Management
	5.2.2.9 Using Views to Monitor Policies for ADO

	5.2.3 Limitations and Restrictions With ADO and Heat Map

	5.3 Controlling the Validity and Visibility of Data in Oracle Database
	5.3.1 Using In-Database Archiving
	5.3.2 Using Temporal Validity
	5.3.3 Creating a Table With Temporal Validity
	5.3.4 Limitations and Restrictions With In-Database Archiving and Temporal Validity

	5.4 Implementing an ILM System Manually Using Partitioning
	5.5 Managing ILM Heat Map and ADO with Oracle Enterprise Manager
	5.5.1 Accessing the Database Administration Menu
	5.5.2 Viewing Automatic Data Optimization Activity at the Tablespace Level
	5.5.3 Viewing the Segment Activity Details of Any Tablespace
	5.5.4 Viewing the Segment Activity Details of Any Object
	5.5.5 Viewing the Segment Activity History of Any Object
	5.5.6 Searching Segment Activity in Automatic Data Optimization
	5.5.7 Viewing Policies for a Segment
	5.5.8 Disabling Background Activity
	5.5.9 Changing Execution Frequency of Background Automatic Data Optimization
	5.5.10 Viewing Policy Executions In the Last 24 Hours
	5.5.11 Viewing Objects Moved In Last 24 Hours
	5.5.12 Viewing Policy Details
	5.5.13 Viewing Objects Associated With a Policy
	5.5.14 Evaluating a Policy Before Execution
	5.5.15 Executing a Single Policy
	5.5.16 Stopping a Policy Execution
	5.5.17 Viewing Policy Execution History

	6 Using Partitioning in a Data Warehouse Environment
	6.1 What Is a Data Warehouse?
	6.2 Scalability in a Data Warehouse
	6.2.1 Bigger Databases
	6.2.2 Bigger Individual Tables: More Rows in Tables
	6.2.3 More Users Querying the System
	6.2.4 More Complex Queries

	6.3 Partitioning for Performance in a Data Warehouse
	6.3.1 Partition Pruning in a Data Warehouse
	6.3.1.1 Basic Partition Pruning Techniques
	6.3.1.2 Advanced Partition Pruning Techniques

	6.3.2 Partition-Wise Joins in a Data Warehouse
	6.3.2.1 Full Partition-Wise Joins
	6.3.2.2 Partial Partition-Wise Joins
	6.3.2.3 Benefits of Partition-Wise Joins
	6.3.2.3.1 Reduction of Communications Overhead
	6.3.2.3.2 Reduction of Memory Requirements

	6.3.2.4 Performance Considerations for Parallel Partition-Wise Joins

	6.3.3 Indexes and Partitioned Indexes in a Data Warehouse
	6.3.3.1 Local Partitioned Indexes
	6.3.3.2 Nonpartitioned Indexes
	6.3.3.3 Global Partitioned Indexes

	6.3.4 Materialized Views and Partitioning in a Data Warehouse
	6.3.4.1 Partitioned Materialized Views

	6.4 Manageability in a Data Warehouse
	6.4.1 Partition Exchange Load
	6.4.2 Partitioning and Indexes
	6.4.3 Removing Data from Tables
	6.4.4 Partitioning and Data Compression

	7 Using Partitioning in an Online Transaction Processing Environment
	7.1 What Is an Online Transaction Processing System?
	7.2 Performance in an Online Transaction Processing Environment
	7.2.1 Deciding Whether to Partition Indexes
	7.2.2 How to Use Partitioning on Index-Organized Tables

	7.3 Manageability in an Online Transaction Processing Environment
	7.3.1 Impact of a Partition Maintenance Operation on a Partitioned Table with Local Indexes
	7.3.2 Impact of a Partition Maintenance Operation on Global Indexes
	7.3.3 Common Partition Maintenance Operations in OLTP Environments
	7.3.3.1 Removing (Purging) Old Data
	7.3.3.2 Moving or Merging Older Partitions to a Low-Cost Storage Tier Device

	8 Using Parallel Execution
	8.1 Parallel Execution Concepts
	8.1.1 When to Implement Parallel Execution
	8.1.2 When Not to Implement Parallel Execution
	8.1.3 Fundamental Hardware Requirements
	8.1.4 How Parallel Execution Works
	8.1.4.1 Parallel Execution of SQL Statements
	8.1.4.2 Producer/Consumer Model
	8.1.4.3 Granules of Parallelism
	8.1.4.3.1 Block Range Granules
	8.1.4.3.2 Partition Granules

	8.1.4.4 Distribution Methods Between Producers and Consumers
	8.1.4.5 How Parallel Execution Servers Communicate

	8.1.5 Parallel Execution Server Pool
	8.1.5.1 Processing without Enough Parallel Execution Servers

	8.1.6 Balancing the Workload to Optimize Performance
	8.1.7 Multiple Parallelizers
	8.1.8 Parallel Execution on Oracle RAC

	8.2 Setting the Degree of Parallelism
	8.2.1 Manually Specifying the Degree of Parallelism
	8.2.2 Default Degree of Parallelism
	8.2.3 Automatic Degree of Parallelism
	8.2.4 Determining Degree of Parallelism in Auto DOP
	8.2.5 Controlling Automatic Degree of Parallelism
	8.2.6 Adaptive Parallelism

	8.3 In-Memory Parallel Execution
	8.3.1 Buffer Cache Usage in Parallel Execution
	8.3.2 Automatic Big Table Caching

	8.4 Parallel Statement Queuing
	8.4.1 About Managing Parallel Statement Queuing with Oracle Database Resource Manager
	8.4.1.1 About Managing the Order of the Parallel Statement Queue
	8.4.1.2 About Limiting the Parallel Server Resources for a Consumer Group
	8.4.1.3 Specifying a Parallel Statement Queue Timeout for Each Consumer Group
	8.4.1.4 Specifying a Degree of Parallelism Limit for Consumer Groups
	8.4.1.5 Critical Parallel Statement Prioritization
	8.4.1.6 A Sample Scenario for Managing Statements in the Parallel Queue

	8.4.2 Grouping Parallel Statements with BEGIN_SQL_BLOCK END_SQL_BLOCK
	8.4.3 About Managing Parallel Statement Queuing with Hints

	8.5 Types of Parallelism
	8.5.1 About Parallel Queries
	8.5.1.1 Parallel Queries on Index-Organized Tables
	8.5.1.2 Nonpartitioned Index-Organized Tables
	8.5.1.3 Partitioned Index-Organized Tables
	8.5.1.4 Parallel Queries on Object Types
	8.5.1.5 Rules for Parallelizing Queries

	8.5.2 About Parallel DDL Statements
	8.5.2.1 DDL Statements That Can Be Parallelized
	8.5.2.2 About Using CREATE TABLE AS SELECT in Parallel
	8.5.2.3 Recoverability and Parallel DDL
	8.5.2.4 Space Management for Parallel DDL
	8.5.2.5 Storage Space When Using Dictionary-Managed Tablespaces
	8.5.2.6 Free Space and Parallel DDL
	8.5.2.7 Rules for DDL Statements
	8.5.2.8 Rules for CREATE TABLE AS SELECT

	8.5.3 About Parallel DML Operations
	8.5.3.1 When to Use Parallel DML
	8.5.3.1.1 Refreshing Tables in a Data Warehouse System
	8.5.3.1.2 Creating Intermediate Summary Tables
	8.5.3.1.3 Using Scoring Tables
	8.5.3.1.4 Updating Historical Tables
	8.5.3.1.5 Running Batch Jobs

	8.5.3.2 Enable Parallel DML Mode
	8.5.3.3 Rules for UPDATE, MERGE, and DELETE
	8.5.3.4 Rules for INSERT SELECT
	8.5.3.5 Transaction Restrictions for Parallel DML
	8.5.3.6 Rollback Segments
	8.5.3.7 Recovery for Parallel DML
	8.5.3.7.1 Transaction Recovery for User-Issued Rollback
	8.5.3.7.2 Process Recovery
	8.5.3.7.3 System Recovery

	8.5.3.8 Space Considerations for Parallel DML
	8.5.3.9 Restrictions on Parallel DML
	8.5.3.9.1 Partitioning Key Restriction
	8.5.3.9.2 Function Restrictions

	8.5.3.10 Data Integrity Restrictions
	8.5.3.10.1 NOT NULL and CHECK
	8.5.3.10.2 UNIQUE and PRIMARY KEY
	8.5.3.10.3 FOREIGN KEY (Referential Integrity)
	8.5.3.10.4 Delete Cascade
	8.5.3.10.5 Self-Referential Integrity
	8.5.3.10.6 Deferrable Integrity Constraints

	8.5.3.11 Trigger Restrictions
	8.5.3.12 Distributed Transaction Restrictions
	8.5.3.13 Examples of Distributed Transaction Parallelization
	8.5.3.14 Concurrent Execution of Union All

	8.5.4 About Parallel Execution of Functions
	8.5.4.1 Functions in Parallel Queries
	8.5.4.2 Functions in Parallel DML and DDL Statements

	8.5.5 About Other Types of Parallelism
	8.5.6 Degree of Parallelism Rules for SQL Statements

	8.6 About Initializing and Tuning Parameters for Parallel Execution
	8.6.1 Default Parameter Settings
	8.6.2 Forcing Parallel Execution for a Session
	8.6.3 Tuning General Parameters for Parallel Execution
	8.6.3.1 Parameters Establishing Resource Limits for Parallel Operations
	8.6.3.1.1 PARALLEL_FORCE_LOCAL
	8.6.3.1.2 PARALLEL_MAX_SERVERS
	8.6.3.1.3 PARALLEL_MIN_PERCENT
	8.6.3.1.4 PARALLEL_MIN_SERVERS
	8.6.3.1.5 PARALLEL_MIN_TIME_THRESHOLD
	8.6.3.1.6 PARALLEL_SERVERS_TARGET
	8.6.3.1.7 SHARED_POOL_SIZE
	8.6.3.1.8 Additional Memory Requirements for Message Buffers
	8.6.3.1.9 Monitor Memory Usage After Processing Begins

	8.6.3.2 Parameters Affecting Resource Consumption
	8.6.3.2.1 PGA_AGGREGATE_TARGET
	8.6.3.2.1.1 HASH_AREA_SIZE
	8.6.3.2.1.2 SORT_AREA_SIZE

	8.6.3.2.2 PARALLEL_EXECUTION_MESSAGE_SIZE
	8.6.3.2.3 Parameters Affecting Resource Consumption for Parallel DML and Parallel DDL
	8.6.3.2.3.1 TRANSACTIONS
	8.6.3.2.3.2 FAST_START_PARALLEL_ROLLBACK
	8.6.3.2.3.3 DML_LOCKS

	8.6.3.3 Parameters Related to I/O
	8.6.3.3.1 DB_CACHE_SIZE
	8.6.3.3.2 DB_BLOCK_SIZE
	8.6.3.3.3 DB_FILE_MULTIBLOCK_READ_COUNT
	8.6.3.3.4 DISK_ASYNCH_IO and TAPE_ASYNCH_IO

	8.7 Monitoring Parallel Execution Performance
	8.7.1 Monitoring Parallel Execution Performance with Dynamic Performance Views
	8.7.1.1 V$PX_BUFFER_ADVICE
	8.7.1.2 V$PX_SESSION
	8.7.1.3 V$PX_SESSTAT
	8.7.1.4 V$PX_PROCESS
	8.7.1.5 V$PX_PROCESS_SYSSTAT
	8.7.1.6 V$PQ_SESSTAT
	8.7.1.7 V$PQ_TQSTAT
	8.7.1.8 V$RSRC_CONS_GROUP_HISTORY
	8.7.1.9 V$RSRC_CONSUMER_GROUP
	8.7.1.10 V$RSRC_PLAN
	8.7.1.11 V$RSRC_PLAN_HISTORY
	8.7.1.12 V$RSRC_SESSION_INFO
	8.7.1.13 V$RSRCMGRMETRIC

	8.7.2 Monitoring Session Statistics
	8.7.3 Monitoring System Statistics
	8.7.4 Monitoring Operating System Statistics

	8.8 Tips for Tuning Parallel Execution
	8.8.1 Implementing a Parallel Execution Strategy
	8.8.2 Optimizing Performance by Creating and Populating Tables in Parallel
	8.8.3 Using EXPLAIN PLAN to Show Parallel Operations Plans
	8.8.3.1 Example: Using EXPLAIN PLAN to Show Parallel Operations

	8.8.4 Additional Considerations for Parallel DML
	8.8.4.1 Parallel DML and Direct-Path Restrictions
	8.8.4.2 Limitation on the Degree of Parallelism
	8.8.4.3 When to Increase INITRANS
	8.8.4.4 Limitation on Available Number of Transaction Free Lists for Segments
	8.8.4.5 Multiple Archivers for Large Numbers of Redo Logs
	8.8.4.6 Database Writer Process (DBWn) Workload
	8.8.4.7 [NO]LOGGING Clause

	8.8.5 Optimizing Performance by Creating Indexes in Parallel
	8.8.6 Parallel DML Tips
	8.8.6.1 Parallel DML Tip 1: INSERT
	8.8.6.2 Parallel DML Tip 2: Direct-Path INSERT
	8.8.6.3 Parallel DML Tip 3: Parallelizing INSERT, MERGE, UPDATE, and DELETE
	8.8.6.3.1 Parallelizing INSERT SELECT
	8.8.6.3.2 Parallelizing UPDATE and DELETE

	8.8.7 Incremental Data Loading in Parallel
	8.8.7.1 Optimizing Performance for Updating the Table in Parallel
	8.8.7.2 Efficiently Inserting the New Rows into the Table in Parallel
	8.8.7.3 Optimizing Performance by Merging in Parallel

	9 Backing Up and Recovering VLDBs
	9.1 Data Warehouses
	9.1.1 Data Warehouse Characteristics

	9.2 Oracle Backup and Recovery
	9.2.1 Physical Database Structures Used in Recovering Data
	9.2.1.1 Data files
	9.2.1.2 Redo Logs
	9.2.1.3 Control Files

	9.2.2 Backup Type
	9.2.3 Backup Tools
	9.2.3.1 Oracle Recovery Manager (RMAN)
	9.2.3.2 Oracle Data Pump
	9.2.3.3 User-Managed Backups

	9.3 Data Warehouse Backup and Recovery
	9.3.1 Recovery Time Objective (RTO)
	9.3.2 Recovery Point Objective (RPO)
	9.3.2.1 More Data Means a Longer Backup Window
	9.3.2.2 Divide and Conquer

	9.4 The Data Warehouse Recovery Methodology
	9.4.1 Best Practice 1: Use ARCHIVELOG Mode
	9.4.1.1 Is Downtime Acceptable?

	9.4.2 Best Practice 2: Use RMAN
	9.4.3 Best Practice 3: Use Block Change Tracking
	9.4.4 Best Practice 4: Use RMAN Multisection Backups
	9.4.5 Best Practice 5: Leverage Read-Only Tablespaces
	9.4.6 Best Practice 6: Plan for NOLOGGING Operations in Your Backup/Recovery Strategy
	9.4.6.1 Extract, Transform, and Load
	9.4.6.2 The Extract, Transform, and Load Strategy
	9.4.6.3 Incremental Backup
	9.4.6.4 The Incremental Approach
	9.4.6.5 Flashback Database and Guaranteed Restore Points

	9.4.7 Best Practice 7: Not All Tablespaces Should Be Treated Equally

	10 Storage Management for VLDBs
	10.1 High Availability
	10.1.1 Hardware-Based Mirroring
	10.1.1.1 RAID 1 Mirroring
	10.1.1.2 RAID 5 Mirroring

	10.1.2 Mirroring Using Oracle ASM

	10.2 Performance
	10.2.1 Hardware-Based Striping
	10.2.1.1 RAID 0 Striping
	10.2.1.2 RAID 5 Striping

	10.2.2 Striping Using Oracle ASM
	10.2.3 Information Lifecycle Management
	10.2.4 Partition Placement
	10.2.5 Bigfile Tablespaces
	10.2.6 Oracle Database File System (DBFS)

	10.3 Scalability and Manageability
	10.3.1 Stripe and Mirror Everything (SAME)
	10.3.2 SAME and Manageability

	10.4 Oracle ASM Settings Specific to VLDBs

	Glossary
	automatic data optimization
	composite partitioning
	degree of parallelism (DOP)
	distribution method (parallel execution)
	hash partitioning
	heat map
	Information Lifecycle Management
	list partitioning
	parallel execution (PX)
	parallel execution server
	parallelism
	partition pruning
	partitioning
	partitioning key
	query coordinator (QC)
	range partitioning
	very large database (VLDB)

	Index

