Oracle® Text
Application Developer's Guide

21c
F31234-02
January 2021

ORACLE"

Oracle Text Application Developer's Guide, 21c
F31234-02

Copyright © 2005, 2021, Oracle and/or its affiliates.
Primary Author: Binika Kumar

Contributors: Bharathi Jayathirtha, Roopesh Ashok Kumar, Drew Adams, Edwin Balthes, Aleksandra
Czarlinska, Mohammad Faisal, Roger Ford, Rahul Kadwe, George Krupka, Paul Lane, Padmaja Potineni,
Prakash Jashnani, Yiming Qi, Sanoop Sethumadhavan, Asha Makur, Gaurav Yadav, Bonnie Xia, Nilay
Panchal, Ce Wei, Saurabh Naresh Netravalkar

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not

be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience XV
Documentation Accessibility XV
Related Documents Y
Conventions XVi
1 Understanding Oracle Text Application Development

1.1 Introduction to Oracle Text 1-1
1.2 Document Collection Applications 1-1
1.2.1 About Document Collection Applications 1-1
1.2.2 Flowchart of Text Query Application 1-2
1.3 Catalog Information Applications 1-3
1.3.1 About Catalog Information Applications 1-3
1.3.2 Flowchart for Catalog Query Application 1-4
1.4 Document Classification Applications 1-5
1.5 XML Search Applications 1-6
1.5.1 The CONTAINS Operator with XML Search Applications 1-6

1.5.2 Combining Oracle Text Features with Oracle XML DB (XML Search
Index) 1-7
1.5.2.1 Using the xml_enable Method for an XML Search Index 1-8
1.5.2.2 Using the Text-on-XML Method 1-8
1.5.2.3 Indexing JSON Data 1-9

2 Getting Started with Oracle Text

2.1 Overview of Getting Started with Oracle Text 2-1
2.2 Creating an Oracle Text User 2-1
2.3 Query Application Quick Tour 2-2
2.3.1 Creating the Text Table 2-3
2.3.2 Using SQL*Loader to Load the Table 2-3
2.4 Catalog Application Quick Tour 2-5
2.4.1 Creating the Table 2-5

ORACLE iii

2.4.2 Using SQL*Loader to Load the Table 2-6
2.5 Classification Application Quick Tour 2-8
2.5.1 About Classification of a Document 2-8
2.5.2 Creating a Classification Application 2-9

3 Indexing with Oracle Text
3.1 About Oracle Text Indexes 3-1
3.1.1 Types of Oracle Text Indexes 3-2
3.1.2 Structure of the Oracle Text CONTEXT Index 3-4
3.1.3 Oracle Text Indexing Process 3-5
3.1.3.1 Datastore Object 3-6
3.1.3.2 Filter Object 3-6
3.1.3.3 Sectioner Object 3-6
3.1.3.4 Lexer Object 3-6
3.1.3.5 Indexing Engine 3-6
3.1.4 About Updates to Indexed Columns 3-7
3.1.5 Partitioned Tables and Indexes 3-7
3.1.6 Online Indexes 3-8
3.1.7 Parallel Indexing 3-8
3.1.8 Indexing and Views 3-9
3.2 Considerations for Oracle Text Indexing 3-9
3.2.1 Location of Text 3-10
3.2.2 Supported Column Types 3-11
3.2.3 Storing Text in the Text Table 3-11
3.2.4 Storing File Path Names 3-11
3.2.5 Storing URLs 3-11
3.2.6 Storing Associated Document Information 3-12
3.2.7 Format and Character Set Columns 3-12
3.2.8 Supported Document Formats 3-12
3.2.9 Summary of DATASTORE Types 3-12
3.2.10 Document Formats and Filtering 3-14
3.2.10.1 No Filtering for HTML 3-14
3.2.10.2 Mixed-Format Columns Filtering 3-14
3.2.10.3 Custom Filtering 3-15
3.2.11 Bypass Rows 3-15
3.2.12 Document Character Set 3-15
3.3 Document Language 3-16
3.4 Special Characters 3-16
3.5 Case-Sensitive Indexing and Querying 3-17
3.6 Improved Document Services Performance with a Forward Index 3-17
ORACLE v

3.6.1 Enabling Forward Index 3-18

3.6.2 Forward Index with Snippets 3-18
3.6.3 Forward Index with Save Copy 3-18
3.6.4 Forward Index Without Save Copy 3-19
3.6.5 Save Copy Without Forward Index 3-19
3.7 Language-Specific Features 3-20
3.7.1 Theme Indexing 3-20
3.7.2 Base-Letter Conversion for Characters with Diacritical Marks 3-20
3.7.3 Alternate Spelling 3-21
3.7.4 Composite Words 3-21
3.7.5 Korean, Japanese, and Chinese Indexing 3-21
3.8 About Entity Extraction and CTX_ENTITY 3-22
3.8.1 Basic Example of Using Entity Extraction 3-22
3.8.2 Example of Creating a New Entity Type by Using a User-Defined Rule 3-24
3.9 Fuzzy Matching and Stemming 3-25
3.9.1 Language Attribute Values for index_stems of BASIC_LEXER 3-26
3.9.2 Language Attribute Values for index_stems of AUTO_LEXER 3-27
3.10 Better Wildcard Query Performance 3-28
3.11 Document Section Searches 3-28
3.12 Stopwords and Stopthemes 3-29
3.13 Index Performance 3-29
3.14 Query Performance and Storage of Large Object (LOB) Columns 3-29
3.15 Mixed Query Performance 3-30
3.16 In-Memory Full Text Search and JSON Full Text Search 3-30
4 Creating Oracle Text Indexes
4.1 Summary of the Procedure for Creating an Oracle Text Index 4-1
4.2 Creating Preferences 4-2
4.3 Section Searching Example: Creating HTML Sections 4-2
4.4 Using Stopwords and Stoplists 4-3
4.4.1 Multilanguage Stoplists 4-3
4.4.2 Stopthemes and Stopclasses 4-3
4.4.3 PL/SQL Procedures for Managing Stoplists 4-4
4.5 Creating a CONTEXT Index 4-4
4.5.1 CONTEXT Index and DML 4-4
4.5.2 Default CONTEXT Index Example 4-5
4.5.3 Incrementally Creating an Index with ALTER INDEX and CREATE
INDEX 4-5
4.5.4 Incrementally Creating a CONTEXT Index with POPULATE_PENDING 4-6
455 Custom CONTEXT Index Example: Indexing HTML Documents 4-6

ORACLE Y

4.5.6 CONTEXT Index Example: Query Processing with FILTER BY and

ORDER BY 4-7
457 DATASTORE Triggers in Release 12c 4-7
4.6 Creating a CTXCAT Index 4-8
4.6.1 CTXCAT Index and DML Operations 4-8
4.6.2 About CTXCAT Subindexes and Their Costs 4-8
4.6.3 Creating CTXCAT Subindexes 4-9
4.6.4 Creating CTXCAT Index 4-10
4.7 Creating a CTXRULE Index 4-11
4.8 Creating a Search Index for JSON 4-12
4.9 Creating an Oracle Text Search Index 4-12
5 Maintaining Oracle Text Indexes
5.1 Viewing Index Errors 5-1
5.2 Dropping an Index 5-1
5.3 Resuming a Failed Index 5-2
5.4 Re-creating an Index 5-2
5.4.1 Re-creating a Global Index 5-2
5.4.2 Re-creating a Local Partitioned Index 5-4
5.5 Rebuilding an Index 5-5
5.6 Dropping a Preference 5-5
5.7 Managing DML Operations for a CONTEXT Index 5-5
5.7.1 Viewing Pending DML Operations 5-6
5.7.2 Synchronizing the Index 5-6
5.7.3 Optimizing the Index 5-8
5.7.3.1 Index Fragmentation 5-8
5.7.3.2 Document Invalidation and Garbage Collection 5-9
5.7.3.3 Single Token Optimization 5-9
5.7.3.4 Viewing Index Fragmentation and Garbage Data 5-9

6 Querying with Oracle Text

6.1 Overview of Queries 6-1
6.1.1 Querying with CONTAINS 6-1
6.1.1.1 CONTAINS SQL Example 6-2

6.1.1.2 CONTAINS PL/SQL Example 6-2

6.1.1.3 Structured Query with CONTAINS Example 6-2

6.1.2 Querying with CATSEARCH 6-3
6.1.2.1 CATSEARCH SQL Query Example 6-3

6.1.2.2 CATSEARCH Example 6-4

6.1.3 Querying with MATCHES 6-5

ORACLE vi

6.1.3.1 MATCHES SQL Query 6-5
6.1.3.2 MATCHES PL/SQL Examples 6-7
6.1.4 Word and Phrase Queries 6-8
6.1.5 Querying Stopwords 6-8
6.1.6 ABOUT Queries and Themes 6-9
6.2 Oracle Text Query Features 6-10
6.2.1 Query Expressions 6-10
6.2.1.1 CONTAINS Operators 6-11
6.2.1.2 CATSEARCH Operator 6-11
6.2.1.3 MATCHES Operator 6-11
6.2.2 Case-Sensitive Searching 6-12
6.2.3 Query Feedback 6-12
6.2.4 Query Explain Plan 6-13
6.2.5 Using a Thesaurus in Queries 6-13
6.2.6 Document Section Searching 6-14
6.2.7 Using Query Templates 6-14
6.2.7.1 Query Rewrite 6-14
6.2.7.2 Query Relaxation 6-15
6.2.7.3 Query Language 6-16
6.2.7.4 Ordering by SDATA Sections 6-16
6.2.7.5 Alternative and User-Defined Scoring 6-17
6.2.7.6 Alternative Grammar 6-18
6.2.8 Query Analysis 6-18
6.2.9 Other Query Features 6-19

7 Working with CONTEXT and CTXCAT Grammars in Oracle Text
7.1 The CONTEXT Grammar 7-1
7.1.1 ABOUT Query 7-2
7.1.2 Logical Operators 7-2
7.1.3 Section Searching and HTML and XML 7-3
7.1.4 Proximity Queries with NEAR, NEAR_ACCUM, and NEAR2 Operators 7-3
7.1.5 Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators 7-4
7.1.6 Using CTXCAT Grammar 7-4
7.1.7 Defined Stored Query Expressions 7-4
7.1.7.1 Defining a Stored Query Expression 7-5
7.1.7.2 SQE Example 7-5
7.1.8 Calling PL/SQL Functions in CONTAINS 7-5
7.1.9 Optimizing for Response Time 7-6
7.1.10 Counting Hits 7-7
7.1.11 Using DEFINESCORE and DEFINEMERGE for User-Defined Scoring 7-7
ORACLE Vii

7.2 The CTXCAT Grammar 7-8

8 Presenting Documents in Oracle Text
8.1 Highlighting Query Terms 8-1
8.1.1 Text highlighting 8-1
8.1.2 Theme Highlighting 8-1
8.1.3 CTX_DOC Highlighting Procedures 8-1
8.1.3.1 Markup Procedure 8-2
8.1.3.2 Highlight Procedure 8-3
8.1.3.3 Concordance 8-4
8.2 Obtaining Part-of-Speech Information for a Document 8-4
8.3 Obtaining Lists of Themes, Gists, and Theme Summaries 8-4
8.3.1 Lists of Themes 8-5
8.3.2 Gist and Theme Summary 8-6
8.4 Presenting and Highlighting Documents 8-7

O Classifying Documents in Oracle Text
9.1 Overview of Document Classification 9-1
9.2 Classification Applications 9-1
9.3 Classification Solutions 9-2
9.4 Rule-Based Classification 9-3
9.4.1 Rule-Based Classification Example 9-3
9.4.2 CTXRULE Parameters and Limitations 9-6
9.5 Supervised Classification 9-7
9.5.1 Decision Tree Supervised Classification 9-7
9.5.2 Decision Tree Supervised Classification Example 9-8
9.5.3 SVM-Based Supervised Classification 9-10
9.5.4 SVM-Based Supervised Classification Example 9-11
9.6 Unsupervised Classification (Clustering) 9-12
9.7 Unsupervised Classification (Clustering) Example 9-13

10 Tuning Oracle Text

10.1 Optimizing Queries with Statistics 10-1
10.1.1 Collecting Statistics 10-2
10.1.2 Query Optimization with Statistics Example 10-3
10.1.3 Re-Collecting Statistics 10-3
10.1.4 Deleting Statistics 10-4
10.2 Optimizing Queries for Response Time 10-4
10.2.1 Other Factors That Influence Query Response Time 10-4
ORACLE viii

10.2.2

10.2.3
10.2.4
10.2.5

10.2.6
10.2.7

10.2.8

10.2.9

Improved Response Time with the FIRST_ROWS(n) Hint for ORDER
BY Queries

Improved Response Time Using the DOMAIN_INDEX_SORT Hint
Improved Response Time Using the Local Partitioned CONTEXT Index

Improved Response Time with the Local Partitioned Index for Order by
Score

Improved Response Time with the Query Filter Cache

Improved Response Time Using the BIG_10 Option of CONTEXT
Index

Improved Response Time Using the SEPARATE_OFFSETS Option of
the CONTEXT Index

Improved Response Time Using the STAGE_ITAB,
STAGE_ITAB_MAX_ROWS, and STAGE_ITAB_PARALLEL Options of
CONTEXT Index

10.3 Optimizing Queries for Throughput

10.4 Composite Domain Index in Oracle Text

10.5 Performance Tuning with CDI

10.6 Solving Index and Query Bottlenecks by Using Tracing

10.7 Using Parallel Queries

10.7.1
10.7.2

Parallel Queries on a Local Context Index
Parallelizing Queries Across Oracle RAC Nodes

10.8 Tuning Queries with Blocking Operations

10.9 Frequently Asked Questions About Query Performance

10.9.1
10.9.2
10.9.3
10.9.4
10.9.5
10.9.6

10.9.7
10.9.8
10.9.9
10.9.10
10.9.11
10.9.12

10.9.13
10.9.14
10.9.15
10.9.16
10.9.17
10.9.18

ORACLE

What is query performance?

What is the fastest type of Oracle Text query?
Should | collect statistics on my tables?

How does the size of my data affect queries?
How does the format of my data affect queries?

What is the difference between an indexed lookup and a functional
lookup

What tables are involved in queries?

How is the $R table contention reduced?

Does sorting the results slow a text-only query?
How do | make an ORDER BY score query faster?
Which memory settings affect querying?

Does out-of-line LOB storage of wide base table columns improve
performance?

How can | speed up a CONTAINS query on more than one column?
Can | have many expansions in a query?

How can local partition indexes help?

Should I query in parallel?

Should | index themes?

When should | use a CTXCAT index?

10-5
10-6
10-6

10-7
10-8

10-9

10-10

10-11
10-14
10-14
10-15
10-15
10-16
10-16
10-17
10-17
10-18
10-19
10-19
10-19
10-20
10-20

10-20
10-20
10-21
10-21
10-21
10-22

10-22
10-22
10-23
10-23
10-24
10-24
10-25

10.9.19 When is a CTXCAT index NOT suitable? 10-25
10.9.20 What optimizer hints are available and what do they do? 10-25
10.10 Frequently Asked Questions About Indexing Performance 10-26
10.10.1 How long should indexing take? 10-26
10.10.2 Which index memory settings should | use? 10-26
10.10.3 How much disk overhead will indexing require? 10-27
10.10.4 How does the format of my data affect indexing? 10-27
10.10.5 Can parallel indexing improve performance? 10-27
10.10.6 How can | improve index performance when | create a local
partitioned index? 10-28
10.10.7 How can I tell how much indexing has completed? 10-28
10.11 Frequently Asked Questions About Updating the Index 10-29
10.11.1 How often should | index new or updated records? 10-29
10.11.2 How can | tell when my indexes are fragmented? 10-29
10.11.3 Does memory allocation affect index synchronization? 10-30
11 Searching Document Sections in Oracle Text
11.1 About Oracle Text Document Section Searching 11-1
11.1.1 Enabling Oracle Text Section Searching 11-1
11.1.1.1 Create a Section Group 11-1
11.1.1.2 Define Your Sections 11-3
11.1.1.3 Index Your Documents 11-3
11.1.1.4 Search Sections with the WITHIN Operator 11-4
11.1.1.5 Search Paths with INPATH and HASPATH Operators 11-4
11.1.1.6 Mark an SDATA Section to Be Searchable 11-4
11.1.2 Oracle Text Section Types 11-5
11.1.2.1 Zone Section 11-5
11.1.2.2 Field Section 11-7
11.1.2.3 Stop Section 11-8
11.1.2.4 MDATA Section 11-8
11.1.2.5 NDATA Section 11-11
11.1.2.6 SDATA Section 11-11
11.1.2.7 Attribute Section 11-14
11.1.2.8 Special Sections 11-14
11.1.3 Oracle Text Section Attributes 11-15
11.2 HTML Section Searching with Oracle Text 11-17
11.2.1 Creating HTML Sections 11-17
11.2.2 Searching HTML Meta Tags 11-17
11.3 XML Section Searching with Oracle Text 11-18
11.3.1 Automatic Sectioning 11-18
11.3.2 Attribute Searching 11-18

ORACLE

11.3.3 Document Type Sensitive Sections 11-19

11.3.4 Path Section Searching 11-20
11.3.4.1 Creating an Index with PATH_SECTION_GROUP 11-20
11.3.4.2 Top-Level Tag Searching 11-21
11.3.4.3 Any-Level Tag Searching 11-21
11.3.4.4 Direct Parentage Searching 11-21
11.3.4.5 Tag Value Testing 11-21
11.3.4.6 Attribute Searching 11-22
11.3.4.7 Attribute Value Testing 11-22
11.3.4.8 Path Testing 11-22
11.3.4.9 Section Equality Testing with HASPATH 11-22

12 Using Oracle Text Name Search

12.1 Overview of Name Search 12-1
12.2 Name Search Examples 12-1

13 Working with a Thesaurus in Oracle Text

13.1 Overview of Oracle Text Thesaurus Features 13-1
13.1.1 Oracle Text Thesaurus Creation and Maintenance 13-2
13.1.2 Using a Case-Sensitive Thesaurus 13-2
13.1.3 Using a Case-Insensitive Thesaurus 13-3
13.1.4 Default Thesaurus 13-3
13.1.5 Supplied Thesaurus 13-4

13.2 Defining Terms in a Thesaurus 13-4
13.2.1 Defining Synonyms 13-5
13.2.2 Defining Hierarchical Relations 13-5

13.3 Using a Thesaurus in a Query Application 13-5

13.4 Loading a Custom Thesaurus and Issuing Thesaurus-Based Queries 13-6

13.5 Augmenting the Knowledge Base with a Custom Thesaurus 13-6
13.5.1 Advantages 13-7
13.5.2 Limitations 13-7

13.6 Linking New Terms to Existing Terms 13-7

13.7 Example of Loading a Thesaurus with ctxload 13-8

13.8 Example of Loading a Thesaurus with the

CTX_THES.IMPORT_THESAURUS PL/SQL procedure 13-8

13.9 Compiling a Loaded Thesaurus 13-8

13.10 About the Supplied Knowledge Base 13-9
13.10.1 Adding a Language-Specific Knowledge Base 13-10
13.10.2 Limitations for Adding Knowledge Bases 13-10

ORACLE Xi

14 Using Faceted Navigation

14.1 About Faceted Navigation 14-1
14.2 Defining Sections As Facets 14-1
14.3 Querying Facets by Using the Result Set Interface 14-6
14.4 Refining Queries by Using Facets As Filters 14-10
14.5 Multivalued Facets 14-11
15 Using Result Set Interface
15.1 Overview of the XML Query Result Set Interface 15-1
15.2 Using the XML Query Result Set Interface 15-1
15.3 Creating XML-Only Applications with Oracle Text 15-4
15.4 Example of a Result Set Descriptor 15-4
15.5 Identifying Collocates 15-5
15.6 Overview of the JSON Result Set Interface 15-7
15.7 Using the JSON Result Set Interface 15-7
16 Performing Sentiment Analysis Using Oracle Text
16.1 Overview of Sentiment Analysis 16-1
16.1.1 About Sentiment Analysis 16-1
16.1.2 About Sentiment Classifiers 16-2
16.1.3 About Performing Sentiment Analysis 16-3
16.1.4 Sentiment Analysis Interfaces 16-3
16.2 Creating a Sentiment Classifier Preference 16-4
16.3 Training Sentiment Classifiers 16-5
16.4 Performing Sentiment Analysis with the CTX_DOC Package 16-6
16.5 Performing Sentiment Analysis with the RSI 16-9
17 Administering Oracle Text
17.1 Oracle Text Users and Roles 17-1
17.1.1 CTXSYS User 17-1
17.1.2 CTXAPP Role 17-2
17.1.3 Granting Roles and Privileges to Users 17-2
17.2 DML Queue 17-2
17.3 CTX_OUTPUT Package 17-3
17.4 CTX_REPORT Package 17-3
17.5 Text Manager in Oracle Enterprise Manager 17-6
17.5.1 Using Text Manager 17-7
17.5.2 Viewing General Information for an Oracle Text Index 17-7

ORACLE

Xii

17.5.3 Checking Oracle Text Index Health 17-8

17.6 Servers and Indexing 17-8
17.7 Tracking Database Feature Usage in Oracle Enterprise Manager 17-8
17.8 Oracle Text on Oracle Real Application Clusters 17-9
17.9 Configuring Oracle Text in Oracle Database Vault Environment 17-10
17.10 Unsupported Oracle Text Operations in Oracle Database Vault Realm 17-10
17.11 Export and Import of Schemas Containing Oracle Text Settings 17-10

18 Migrating Oracle Text Applications

18.1 Performing a Rolling Upgrade with a Logical Standby Database 18-1
18.1.1 CTX_DDL PL/SQL Procedures 18-2
18.1.2 CTX_OUTPUT PL/SQL Procedures 18-2
18.1.3 CTX_DOC PL/SQL Procedures 18-2

18.2 Identifying and Copying Oracle Text Files to a New Oracle Home 18-3

A CONTEXT Query Application

A.1 Web Query Application Overview A-1
A.2 The PL/SQL Server Pages (PSP) Web Application A-2
A.2.1 PSP Web Application Prerequisites A-3
A.2.2 Building the PSP Web Application A-3
A.2.3 PSP Web Application Sample Code A-5
A.2.3.1 loader.ctl A-5

A.2.3.2 loader.dat A-5

A.2.3.3 HTML Files for loader.dat Example A-5

A.2.3.4 search_htmlservices.sql A-10

A.2.3.5 search_html.psp A-11

A.3 The Java Server Pages (JSP) Web Application A-13
A.3.1 JSP Web Application Prerequisites A-13
A.3.2 JSP Web Application Sample Code A-13

B CATSEARCH Query Application

B.1 CATSEARCH Web Query Application Overview B-1
B.2 The JSP Web Application B-1
B.2.1 Building the JSP Web Application B-1
B.2.2 JSP Web Application Sample Code B-3
B.2.2.1 loader.ctl B-4

B.2.2.2 loader.dat B-4

ORACLE Xiii

B.2.2.3 catalogSearch.jsp B-4
C Custom Index Preference Examples
C.1 Datastore Examples C-1
C.2 NULL_FILTER Example: Indexing HTML Documents C-2
C.3 PROCEDURE_FILTER Example C-3
C.4 BASIC_LEXER Example: Setting Printjoin Characters C-3
C.5 MULTI_LEXER Example: Indexing a Multilanguage Table C-3
C.6 BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing C-4
C.7 BASIC_WORDLIST Example: Enabling Wildcard Index C-4
ORACLE Xiv

Preface

Audience

Welcome to Oracle Text Application Developer's Guide. This document provides
information for building applications with Oracle Text. This preface contains the

following topics:

This document is intended for users who perform the following tasks:

To use this document, you must have experience with the Oracle object relational
database management system, SQL, SQL*Plus, and PL/SQL.

Audience
Documentation Accessibility
Related Documents

Conventions

Develop Oracle Text applications

Administer Oracle Text installations

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?

ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/

lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

ORACLE

For more information, see these Oracle resources:

Oracle Text Reference
Oracle Database Concepts
Oracle Database Administrator's Guide

Oracle Database SQL Tuning Guide

XV

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

e Oracle Database SQL Language Reference
* Oracle Database Reference

* Oracle Database Development Guide

* Oracle Database Sample Schemas

* Oracle Database PL/SQL Language Reference

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE XVi

Understanding Oracle Text Application
Development

Oracle Text enables you to build text query applications and document classification
applications.

This chapter contains the following topics:

* Introduction to Oracle Text

e Document Collection Applications

e Catalog Information Applications

* Document Classification Applications

e XML Search Applications

1.1 Introduction to Oracle Text

Oracle Text provides indexing, word and theme searching, and viewing capabilities for
text in query applications and document classification applications.

To design an Oracle Text application, first determine the type of queries that you
expect to run. When you know the types, you can choose the most suitable index for
the task.

Oracle Text is used for the following categories of applications:

e Document Collection Applications
e Catalog Information Applications
e Document Classification Applications

e XML Search Applications

1.2 Document Collection Applications

A text query application enables users to search document collections, such as
websites, digital libraries, or document warehouses.

This section contains the following topics.

* About Document Collection Applications

» Flowchart of Text Query Application

1.2.1 About Document Collection Applications

The collection is typically static and has no significant change in content after the
initial indexing run. Documents can be any size and format, such as HTML, PDF,

ORACLE 1-1

Chapter 1
Document Collection Applications

or Microsoft Word. These documents are stored in a document table. Searching is
enabled by first indexing the document collection.

Queries usually consist of words or phrases. Application users specify logical
combinations of words and phrases by using operators such as OR and AND. Users
can apply other query operations to improve the search results, such as stemming,
proximity searching, and wildcarding.

For this type of application, you should retrieve documents that are most relevant to a
guery. The documents must rank high in the result list.

The queries are best served with a CONTEXT index on your document table. To query
this index, the application uses the SQL CONTAI NS operator in the WHERE clause of a
SELECT statement.

Figure 1-1 Overview of Text Query Application

SQL
CONTAINS
@ Query

Context l
Index | |DocTable Text Query

| Application

O

O

1.2.2 Flowchart of Text Query Application

A typical text query application on a document collection lets the user enter a
guery. The application enters a CONTAI NS query and returns a list, called a hitlist, of
documents that satisfy the query. The results are usually ranked by relevance. The
application enables the user to view one or more documents in the hitlist.

For example, an application might index URLs (HTML files) on the web and provide
guery capabilities across the set of indexed URLSs. Hitlists returned by the query
application are composed of URLs that the user can visit.

Figure 1-2 illustrates the flowchart of user interaction with a simple text query

application:

1. The user enters a query.

2. The application runs a CONTAI NS query.

3. The application presents a hitlist.

4. The user selects document from the hitlist.

5. The application presents a document to the user for viewing.

ORACLE 1-2

Chapter 1

Catalog Information Applicati

Figure 1-2 Flowchart of a Text Query Application

B
\lqeu—_ EnteiOuery <

Execute CONTAINS Query

v

Present Hitlist

e B '
\qeui— Select from Hitlist

‘ Application Action

Present Document .
CTX_DOC.HIGHLIGHT User Action

1.3 Catalog Information Applications

Catalog information consists of inventory type information, such as for an online book

store or auction site.
This section contains the following topics.

e About Catalog Information Applications

* Flowchart for Catalog Query Application

1.3.1 About Catalog Information Applications

ORACLE

The stored catalog information consists of text information, such as book titles, and
related structured information, such as price. The information is usually updated
regularly to keep the online catalog up-to-date with the inventory.

ons

Queries are usually a combination of a text component and a structured component.

Results are almost always sorted by a structured component, such as date or price.

Good response time is always an important factor with this type of query application.

Catalog applications are best served by a CTXCAT index. Query this index with the
CATSEARCH operator in the WHERE clause of a SELECT statement.

Figure 1-3 illustrates the relationship of the catalog table, its CTXCAT index, and the
catalog application that uses the CATSEARCH operator to query the index.

1-3

Chapter 1
Catalog Information Applications

Figure 1-3 A Catalog Query Application

Index O Catalog Table

CATSEARCH
CTXCAT 0

SQL

Catalog
—Ii Application

|

1.3.2 Flowchart for Catalog Query Application

A catalog application enables users to search for specific items in catalogs. For
example, an online store application enables users to search for and purchase items in
inventory. Typically, the user query consists of a text component that searches across
the textual descriptions plus some other ordering criteria, such as price or date.

ORACLE

Figure 1-4 illustrates the flowchart of a catalog query application for an online
electronics store.

1.

o M w DN

The user enters the query, consisting of a text component (for example, cd player)
and a structured component (for example, order by price).

The application executes the CATSEARCH query.
The application shows the results ordered accordingly.
The user browses the results.

The user enters another query or performs an action, such as purchasing the item.

1-4

Chapter 1
Document Classification Applications

Figure 1-4 Flowchart of a Catalog Query Application

e B
\lqeui_ Enter Query <
N

i

Text Component Structured Component S
'ed player' 'order by price' \

Execute cATSEARCH Query

v

Show Results

e B '
— New Quer
\qQU_— User Browses Results !

* Application Action

e B
\qui_ User Purchases Item User Action

1.4 Document Classification Applications

ORACLE

In a document classification application, an incoming stream or a set of documents is
compared to a predefined set of rules. If a document matches one or more rules, then
the application performs an action.

For example, assume an incoming stream of news articles. You define a rule to
represent the Finance category. The rule is essentially one or more queries that select
documents about the subject of Finance. The rule might have the form of 'stocks or
bonds or earnings.’

When a document arrives at a Wall Street earnings forecast and satisfies the rules
for this category, the application takes an action, such as tagging the document as
Finance or emailing one or more users.

To create a document classification application, create a table of rules and then create
a CTXRULE index. To classify an incoming stream of text, use the MATCHES operator

in the WHERE clause of a SELECT statement. See Figure 1-5 for the general flow of a
classification application.

1-5

Chapter 1
XML Search Applications

Figure 1-5 Overview of a Document Classification Application

Document 1 [——
from —
Database —
Document 2 [—— Document Perform
from File |— Stream Document Action
— Classification
System — Application
Document N[—— lSQL
fromWeb |— MATCHES Classif
f— y
— Query Document
CTXRULE
Index Rules Table
Database A Database B

1.5 XML Search Applications

An XML search application performs searches over XML documents. A regular
document search usually searches across a set of documents to return documents
that satisfy a text predicate; an XML search often uses the structure of the XML
document to restrict the search. Typically, only the document part that satisfies the
search is returned. For example, instead of finding all purchase orders that contain the
word electric, the user might need only purchase orders in which the comment field
contains electric.

Oracle Text enables you to perform XML searching by using the following approaches:

* The CONTAINS Operator with XML Search Applications
e Combining Oracle Text Features with Oracle XML DB (XML Search Index)

¢ See Also:

Using XML Query Result Set Interface

1.5.1 The CONTAINS Operator with XML Search Applications

ORACLE

The CONTAI NS operator is well suited to structured searching, enabling you to perform
restrictive searches with the W THI N, HASPATH, and | NPATH operators. If you use a
CONTEXT index, then you can also benefit from the following characteristics of Oracle
Text searches:

e Token-based, whitespace-normalized searches

e Hitlists ranked by relevance

1-6

Chapter 1
XML Search Applications

e Case-sensitive searching
* Section searching
* Linguistic features such as stemming and fuzzy searching

» Performance-optimized queries for large document sets

WARNING:

Starting with Oracle Database 12¢, Oracle XML Database (XML DB) is
automatically installed when you install the new Oracle Database software
or when you upgrade.

" See Also:

"XML Section Searching with Oracle Text"

1.5.2 Combining Oracle Text Features with Oracle XML DB (XML
Search Index)

When you want a full-text retrieval for applications, combine the features of Oracle
Text and Oracle XML DB to create an XML Search Index. In this case, leverage

the XML structure by entering queries such as "find all nodes that contain the

word Pentium." Oracle Database 12c extends Oracle's support for the W3C XQuery
specification by adding support for the XQuery full-text extension. This support lets you
perform XML-aware, full-text searches on XML content that is stored in the database.

The following topics explain how to use Oracle XML DB with Oracle Text applications:
e Using the xml_enable Method for an XML Search Index

e Using the Text-on-XML Method

e Indexing JSON Data

¢ See Also:

e "XML Section Searching with Oracle Text"

e Oracle Text Reference for information about the xm _enabl e variable of
SET _SEC GRP_ATTRto enable XML awareness

e Oracle XML DB Developer's Guide for more information about XML full-
text indexing and XML Search Index

ORACLE 1-7

Chapter 1
XML Search Applications

1.5.2.1 Using the xml_enable Method for an XML Search Index

An XML Search Index is an XML-enabled Oracle Text index (CTXSYS.CONTEXT).
This index type supports information-retrieval searching and structured searching in
one unified index. XML Search Index also stores a Binary Persistent Document Object
Model (PDOM) internally within an Oracle Text table, so that XML operations can be
functionally evaluated over the Binary PDOM. This XML Search Index is supported for
XMLTYPE datastores. XMLEXISTS is seamlessly rewritten to a CONTAI NS query in the
presence of such an XML Search Index.

When you create an XML Search Index, a Binary PDOM of the XML document is
materialized in an internal table of Oracle Text. Post evaluation from the Oracle Text
index is redirected to go against the PDOM stored in this internal table.

See Also:

Oracle Text Reference for information on xm _enabl e variable of
SET_SEC GRP_ATTRto enable XML awareness for XML Search Index

The following example creates an Oracle XML Search Index:

exec

CTX_DDL. CREATE_SECTI ON_GROUP(' secgroup', " PATH_SECTI ON_GROUP')
exec

CTX_DDL. SET_SEC_GRP_ATTR(' secgroup','xm _enable',"t");

CREATE | NDEX po_ctx_idx on T(X) indextype is ctxsys.context
parameters (‘section group SECGROUP');

1.5.2.2 Using the Text-on-XML Method

ORACLE

With Oracle Text, you can create a CONTEXT index on a column that contains XML data.
The column type can be XM.Type or any supported type, provided that you use the
correct index preference for XML data.

With the Text-on-XML method, use the standard CONTAI NS query and add a structured
constraint to limit the scope of a search to a particular section, field, tag, or attribute.
That is, specify the structure inside text operators, such as W THI N, HASPATH, and

| NPATH.

For example, set up your CONTEXT index to create sections with XML documents.
Consider the following XML document that defines a purchase order;

<?xm version="1.0"?>
<PURCHASECRDER pono="1">
<PNAME>Po_1</ PNAME>
<CUSTNAME>John</ CUSTNAME>
<SHI PADDR>
<STREET>1033 Mai n Street </ STREET>
<Cl TY>Sunnyval ue</ Cl TY>
<STATE>CA</ STATE>
</ SH PADDR>
<| TEMS>
<| TEM>
<I TEM_NAME> Del | Conputer </|TEM NAME>

1-8

Chapter 1
XML Search Applications

<DESC> Pentium 2.0 Ghz 500MB RAM </ DESC>

</ | TEM>

<| TEM>
<I TEM_NAME> Norel co R100 </|TEM NAME>
<DESC>El ectric Razor </DESC>

</ | TEM>

</ | TEMS>
</ PURCHASEORDER>

To query all purchase orders that contain Pentium within the item description section,
use the W THI N operator:

SELECT id from po_tab where CONTAINS(doc, 'Pentium WTH N desc') > 0;

Use the | NPATH operator to specify more complex criteria with XPATH expressions:

SELECT id from po_tab where CONTAINS(doc, 'Pentium | NPATH (/purchaseOrder/itens/
item desc') > 0O;

1.5.2.3 Indexing JSON Data

ORACLE

JavaScript Object Notation (JSON) is a language-independent data format that

is used for serializing structured data and exchanging this data over a network,
typically between a server and web applications. JSON provides a text-based way
of representing JavaScript object literals, arrays, and scalar data.

See Also:
e Oracle Text Reference for information about creating a search index on
JSON

e Oracle Database JSON Developer's Guide for more information about
JSON

1-9

Getting Started with Oracle Text

You can create an Oracle Text developer user account and build simple text query and
catalog applications.

This chapter contains the following topics:

* Overview of Getting Started with Oracle Text
e Creating an Oracle Text User

* Query Application Quick Tour

» Catalog Application Quick Tour

» Classification Application Quick Tour

2.1 Overview of Getting Started with Oracle Text

This chapter provides basic information about how to configure Oracle Text, how to
create an Oracle Text developer user account and how to build simple text query and
catalog applications. It also provides information about basic SQL statements for each
type of application to load, index, and query tables.

More complete application examples are given in the appendixes.

Note:

The SQL> prompt has been omitted in this chapter, in part to improve
readability and in part to make it easier for you to cut and paste text.

¢ See Also:

" Classifying Documents in Oracle Text" to learn more about building
document classification applications

2.2 Creating an Oracle Text User

ORACLE

Before you can create Oracle Text indexes and use Oracle Text PL/SQL packages,
you need to create a user with the CTXAPP role. This role enables you to do the
following:

e Create and delete Oracle Text indexing preferences

e Use the Oracle Text PL/SQL packages

2-1

Chapter 2
Query Application Quick Tour

To create an Oracle Text application developer user, perform the following steps as the
system administrator user:

1.

Create the user.

The following SQL statement creates a user called MYUSER with a password of
passwor d:

CREATE USER nyuser | DENTI FI ED BY passwor d;
Grant roles to the user.

The following SQL statement grants the required roles of RESOURCE, CONNECT, and
CTXAPP to MYUSER:

GRANT RESOURCE, CONNECT, CTXAPP TO MYUSER,
Grant EXECUTE privileges on the CTX PL/ SQL package.

Oracle Text includes several packages that let you perform actions ranging from
synchronizing an Oracle Text index to highlighting documents. For example,

the CTX_DDL package includes the SYNC_| NDEX procedure, which enables you to
synchronize your index. The Oracle Text Reference describes these packages.

To call any of these procedures from a stored procedure, your application requires
execute privileges on the packages. For example, to grant execut e privileges to
MYUSER on all Oracle Text packages, enter the following SQL statements:

GRANT EXECUTE ON CTXSYS. CTX_CLS TO nyuser;
GRANT EXECUTE ON CTXSYS. CTX_DDL TO nyuser;
GRANT EXECUTE ON CTXSYS. CTX_DOC TO nyuser;
GRANT EXECUTE ON CTXSYS. CTX_QUTPUT TO myuser;
GRANT EXECUTE ON CTXSYS. CTX_QUERY TO nyuser;
GRANT EXECUTE ON CTXSYS. CTX_REPORT TO myuser;
GRANT EXECUTE ON CTXSYS. CTX_THES TO nyuser;
GRANT EXECUTE ON CTXSYS. CTX_ULEXER TO nyuser;

Note:

These permissions are granted to the CTXAPP role. However, because
role permissions do not always work in PL/SQL procedures, it is safest to
explicitly grant these permissions to the user who already has the CTXAPP
role.

2.3 Query Application Quick Tour

In a basic text query application, users enter query words or phrases and expect the
application to return a list of documents that best match the query. Such an application
involves creating a CONTEXT index and querying it with CONTAI NS.

ORACLE

Typically, query applications require a user interface. An example of how to build
such a query application using the CONTEXT index type is given in CONTEXT Query

Application.

The examples in this section provide the basic SQL statements to load the text table,
index the documents, and query the index.

Creating the Text Table

2-2

Chapter 2
Query Application Quick Tour

Using SQL*Loader to Load the Table

2.3.1 Creating the Text Table

Perform the following steps to create and load documents into a table.

1.

Connect as the new user.

Before creating any tables, assume the identity of the user that you created.
CONNECT nyuser ;

Create your text table.

The following example creates a table called docs with two columns, i d and t ext,
by using the CREATE TABLE statement. This example makes the i d column the
primary key. The t ext column is VARCHAR2.

CREATE TABLE docs (i d NUVBER PRIMARY KEY, text VARCHAR2(200)):

" Note:

Primary keys of the following type are supported: NUMBER, VARCHARZ,
DATE, CHAR, VARCHAR and RAW

Load documents into the table.
Use the SQL | NSERT statement to load text into a table.
To populate the docs table, use the | NSERT statement:

I NSERT | NTO docs VALUES(1, '<HTM.>California is a state in the US. </HTM.>");
I NSERT | NTO docs VALUES(2, '<HTM.>Paris is a city in France.</HTM.>');
I NSERT | NTO docs VALUES(3, '<HTM.>France is in Europe.</HTM.>'");

2.3.2 Using SQL*Loader to Load the Table

You can use SQL*Loader to load a table in batches.

ORACLE

Perform the following steps to load your table in batches with SQL*Loader:

1.

2.

Create the CONTEXT index.

Index the HTML files by creating a CONTEXT index on the text column as follows.
Because you are indexing HTML, this example uses the NULL_FI LTER preference
type for no filtering and the HTM._SECTI ON_GROUP type. If you index PDF, Microsoft
Word, or other formatted documents, then use the CTXSYS. AUTO _FI LTER (the
default) as your FI LTER preference.

CREATE | NDEX i dx_docs ON docs(text)
I NDEXTYPE | S CTXSYS. CONTEXT PARAMETERS
(" FILTER CTXSYS. NULL_FI LTER SECTI ON GROUP CTXSYS. HTM._SECTI ON_GROUP') ;

This example also uses the HTM._SECTI ON_GROUP section group, which is
recommended for indexing HTML documents. Using HTM._SECTI ON_GROUP enables
you to search within specific HTML tags and eliminate unwanted markup, such as
font information, from the index.

Query your table with CONTAI NS.

2-3

ORACLE

Chapter 2
Query Application Quick Tour

First, set the format of the SELECT statement's output so that it is easily readable.
Set the width of the t ext column to 40 characters:

COLUWN text FORMAT a40;
Next, query the table with the SELECT statement with CONTAI NS. This query

retrieves the document IDs that satisfy the query. The following query looks for
all documents that contain the word France:

SELECT SCORE(1), id, text FROM docs WHERE CONTAINS(text, 'France', 1) > 0;

SCORE(1) I D TEXT
4 3 <HTM.L>France is in Europe. </ HTM.>
4 2 <HTM.>Paris is a city in France. </ HTM.>

Present the document.

In a real-world application, you could present the selected document with query
terms highlighted. Oracle Text enables you to mark up documents with the
CTX_DCOC package.

You can demonstrate HTML document markup with an anonymous PL/SQL block
in SQL*Plus. However, in a real-world application, you could present the document
in a browser.

This PL/SQL example uses the in-memory version of CTX_DOC. MARKUP to highlight
the word France in document 3. It allocates a temporary CLOB (character large
object data type) to store the markup text and reads it back to the standard output.
The CLOB is then deallocated before exiting:

SET SERVEROUTPUT ON,
DECLARE
2 nklob CLOB;
3 amt NUMBER : = 40;
4 line VARCHAR2(80);
5 BEGN

6 CTX_DOC. MARKUP("' i dx_docs'," 3" ," France', nklob);

7 DBMS_LOB. READ(kl ob, ant, 1, line);

8 DBMB_OUTPUT. PUT_LI NE(' FI RST 40 CHARS ARE:'||line);
9 DBMS_LOB. FREETEMPORARY(k! ob) ;
10 END,
11 1/

FI RST 40 CHARS ARE: <HTM_><<<France>>> is in Europe. </ HTM.>

PL/ SQL procedure successfully conpl et ed.
Synchronize the index after data manipulation.

When you create a CONTEXT index, you explicitly synchronize your index to update
it with any inserts, updates, or deletions to the text table.

Oracle Text enables you to do so with the CTX_DDL. SYNC_| NDEX procedure.
Add some rows to the docs table:

I NSERT | NTO docs VALUES(4, '<HTM.>Los Angeles is a city in California.</
HTML>') ;
I NSERT | NTO docs VALUES(5, '<HTM.>Mexico City is big.</HTM>");

Because the index is not synchronized, these new rows are not returned with a
query on city:

2-4

Chapter 2
Catalog Application Quick Tour

SELECT SCORE(1), id, text FROM docs WHERE CONTAINS(text, 'city', 1) > 0;

4 2 <HTM.>Paris is a city in France. </ HTM.>

Therefore, synchronize the index with 2 Mb of memory and rerun the query:

EXEC CTX_DDL. SYNC | NDEX('i dx_docs', '2M);
PL/ SQL procedure successful ly conpl eted.

COLUWN text FORMAT a50;
SELECT SCORE(1), id, text FROM docs WHERE CONTAINS(text, 'city', 1) > 0;

SCORE(1) | D TEXT
4 5 <HTM.>Mexico City is big.</HTM.>
4 4 <HTML>Los Angeles is a city in California.</HTM>
4 2 <HTM.>Paris is a city in France. </ HTM.>

See Also:

"Building the PSP Web Application” for an example of how to use
SQL*Loader to load a text table from a data file

2.4 Catalog Application Quick Tour

The examples in this section provide the basic SQL statements to create a catalog
index for an auction site that sells electronic equipment, such as cameras and CD
players. New inventory is added every day, and item descriptions, bid dates, and
prices must be stored together.

The application requires good response time for mixed queries. The key is to
determine what columns users frequently search to create a suitable CTXCAT index.
Queries on this type of index use the CATSEARCH operator.

e Creating the Table
» Using SQL*Loader to Load the Table

" Note:

Typically, query applications require a user interface. An example of how to
build such a query application using the CATSEARCH index type is given in
CATSEARCH Query Application .

2.4.1 Creating the Table

Perform the following steps to create and load the table:

1. Connect as the appropriate user.

ORACLE 2-5

Chapter 2
Catalog Application Quick Tour

Connect as the myuser with CTXAPP role:
CONNECT nyuser ;

2. Create your table.
Set up an auction table to store your inventory:

CREATE TABLE aucti on(
itemid NUMBER,

title VARCHAR2(100),
category_id NUMBER,
price NUVBER,

bi d_cl ose DATE);

3. Populate your table.

Populate the table with various items, each withanid, title, price and
bi d_date:

I NSERT | NTO AUCTI ON VALUES
I NSERT | NTO AUCTI ON VALUES
I NSERT | NTO AUCTI ON VALUES
I NSERT | NTO AUCTI ON VALUES

1, 'NIKON CAMERA', 1, 400, '24-CCT-2002');
2, "OLYMPUS CAMERA', 1, 300, '25-CCT-2002');
3, 'PENTAX CAMERA', 1, 200, '26-0OCT-2002");
4, ' CANON CAMERA', 1, 250, '27-CCT-2002');

2.4.2 Using SQL*Loader to Load the Table

You can use SQL*Loader to load a table in batches.

PP AP L9 Lq

Perform the following steps to load your table in batches with SQL*Loader:

1. Determine your queries.

Determine what criteria are likely to be retrieved. In this example, you determine
that all queries search the title column for item descriptions, and most queries
order by price. Later on, when you use the CATSEARCH operator, specify the terms
for the text column and the criteria for the structured clause.

2. Create the subindex to order by price.

For Oracle Text to serve these queries efficiently, you need a subindex for the
price column, because your queries are ordered by price.

Therefore, create an index set called aucti on_set and add a subindex for the
price column:

EXEC CTX_DDL. CREATE_| NDEX_SET(' auction_iset');
EXEC CTX_DDL. ADD_| NDEX(" auction_iset','price'); /* subindex At/

3. Create the CTXCAT index.

Create the combined catalog index on the AUCTI ON table with the CREATE | NDEX
statement:

CREATE | NDEX auction_titlex ON AUCTION(title) |NDEXTYPE IS CTXSYS. CTXCAT
PARAMETERS ('index set auction_iset');

The following figure shows how the CTXCAT index and its subindex relate to the
columns.

ORACLE 2-6

ORACLE

Chapter 2
Catalog Application Quick Tour

Figure 2-1 Auction table schema and CTXCAT index

Subindex A
CTXCAT
Index
Auction Table — f
item_id | title category_id | price bid_close '@
number | varchar (100) | number number | date

4. Query your table with CATSEARCH.

After you create the CTXCAT index on the AUCTI ON table, query this index with the
CATSEARCH operator.

First, set the output format to make the output readable:

COLUW title FORVAT a40;

Next, run the query:

SELECT title, price FROM auction WHERE CATSEARCH(title, 'CAMERA', 'order by
price')> 0;

TI'TLE PRI CE
PENTAX CAMERA 200
CANON CAMERA 250
CLYMPUS CAMERA 300
NI KON CAVERA 400

SELECT title, price FROM auction WHERE CATSEARCH(title, ' CAMERA',
"price <= 300")>0;

TITLE PRI CE
PENTAX CAMERA 200
CANON CAMERA 250
OLYMPUS CAMERA 300
Update your table.

Update your catalog table by adding new rows. When you do so, the CTXCAT index
is automatically synchronized to reflect the change.

For example, add the following new rows to the table and then rerun the query:

I NSERT | NTO AUCTI ON VALUES(5, 'FUJI CAMERA', 1, 350, '28-0CT-2002');
I NSERT | NTO AUCTI ON VALUES(6, ' SONY CAMERA', 1, 310, '28-0CT-2002');

SELECT title, price FROM auction WHERE CATSEARCH(title, 'CAMERA', 'order by
price')> 0;

TITLE PRI CE
PENTAX CAMERA 200
CANON CAMERA 250

2-7

Chapter 2
Classification Application Quick Tour

CLYMPUS CAMERA 300
SONY CAMERA 310
FUJI CAMERA 350
NI KON CAMERA 400

6 rows sel ected.

Note how the added rows show up immediately in the query.

" See Also:

"Building the PSP Web Application" for an example of how to use
SQL*Loader to load a text table from a data file

2.5 Classification Application Quick Tour

The function of a classification application is to perform some action based on
document content. These actions can include assigning a category ID to a document
or sending the document to a user. The result is classification of a document.

This section contains the following sections:

» About Classification of a Document

» Steps for Creating a Classification Application

2.5.1 About Classification of a Document

Documents are classified according to predefined rules. These rules select documents
for a category. For instance, a query rule of ‘presidential elections' selects documents
for a category about politics.

Oracle Text provides several types of classification. One type is simple, or rule-based
classification, discussed here, where you create document categories and the rules for
categorizing documents. With supervised classification, Oracle Text derives the rules
from a set of training documents that you provide. With clustering, Oracle Text does all
the work for you, deriving both rules and categories.

To create a simple classification application for document content using Oracle Text,
you create rules. Rules are essentially a table of queries that categorize document
content. You index these rules in a CTXRULE index. To classify an incoming stream of
text, use the MATCHES operator in the WHERE clause of a SELECT statement. See the
following image for the general flow of a classification application.

ORACLE 2-8

Chapter 2
Classification Application Quick Tour

Figure 2-2 Overview of a Document Classification Application

Document 1 [——

from —

Database —

Document 2 [—— Document Perform

from File |— Stream Document Action
— Classification

System Application

Document N[—— lSQL

from Web [— MATCHES Classif
f— y
— Query Document

CTXRULE
Index

Rules Table

Database A Database B

See Also:

"Overview of Document Classification”

2.5.2 Creating a Classification Application

The following example shows how to classify documents by using myuser with the
CTXAPP role. You define simple categories, create a CTXRULE index, and use MATCHES.

1. Connect as the appropriate user.
Connect as the myuser with CTXAPP role:
CONNECT nyuser ;

2. Create the rule table.

In this example, you create a table called queri es. Each row defines a category
with an ID and a rule that is a query string.

CREATE TABLE queries (

query_id NUMBER,
query_string VARCHAR2(80)
)s

I NSERT | NTO queries VALUES (1, 'oracle');

I NSERT I NTO queries VALUES (2, 'larry or ellison');
I NSERT | NTO queries VALUES (3, 'oracle and text');
I NSERT | NTO queries VALUES (4, 'market share');

3. Create your CTXRULE index.
CREATE | NDEX queryx ON queries(query_string) |NDEXTYPE | S CTXSYS. CTXRULE;

ORACLE 2-9

ORACLE

Chapter 2
Classification Application Quick Tour

Classify with MATCHES.

Use the MATCHES operator in the WHERE clause of a SELECT statement to match
documents to queries and then classify the documents.

COLUWN query_string FORMAT a35;

SELECT query_id, query_string FROM queries

VWHERE MATCHES(query_stri ng,
"Oracl e announced that its market share in databases
i ncreased over the last year.')>0;

QUERY_I D
QUERY_STRI NG

As shown, the document string matches categories 1 and 4. With this
classification, you can perform an action, such as writing the document to a
specific table or emailing a user.

¢ See Also:

Classifying Documents in Oracle Text for more extended classification
examples

2-10

Indexing with Oracle Text

Oracle Text provides several types of indexes, which you create depending on the type
of application that you develop.

This chapter contains the following topics:

About Oracle Text Indexes

Considerations for Oracle Text Indexing

Document Language

Indexing Special Characters

Case-Sensitive Indexing and Querying

Document Services Procedures Performance and Forward Index
Language-Specific Features

About Entity Extraction and CTX_ENTITY

Fuzzy Matching and Stemming

Better Wildcard Query Performance

Document Section Searching

Stopwords and Stopthemes

Index Performance

Query Performance and Storage of Large Object (LOB) Columns
Mixed Query Performance

In-Memory Full Text Search and JSON Full Text Search

3.1 About Oracle Text Indexes

ORACLE

The discussion of Oracle Text indexes includes the different types of indexes, their

structure, the indexing process, and limitations.

The following topics provide information about Oracle Text indexes:

Types of Oracle Text Indexes

Structure of the Oracle Text CONTEXT Index
The Oracle Text Indexing Process
Partitioned Tables and Indexes

Creating an Index Online

Parallel Indexing

Indexing and Views

3-1

3.1.1 Types of Oracle Text Indexes

With Oracle Text, you create indexes by using the CREATE | NDEX statement. Table 3-1
describes each index type.

Table 3-1 Oracle Text Index Types
|

Chapter 3
About Oracle Text Indexes

Index Type Description Supported Query Operator Notes
Preferences and
Parameters
CONTEXT Use this index to All CREATE | NDEX CONTAI NS Supports all
build a text retrieval preferences and The CONTEXT documents services
application when your parameters are grammar supports a and query services.
text consists of large, — supported, except for rjch set of operations. Supports indexing of
coherent documents in, | NDEX SET. partitioned text tables
Use the CTXCAT '
for example, MS Word, Supported |
HTML, or plain text. pp B grammar with query ~ Supports FI LTERBY
_ parameters: index templating. and ORDER BY clauses
_You can customize the partition clause of CREATE | NDEX
index in a variety of format, charset, and to index structured
ways. language columns column values for more
This index type requires efficient processing of
CTX_DDL. SYNC_| NDEX mixed queries.
after insert, update, and
delete operations to the
base table.
SEARCH | NDEX Use this index to All CREATE | NDEX CONTAI NS Supports all

ORACLE

build a text retrieval
application when your
text consists of large,
coherent documents in,
for example, MS Word,
HTML, or plain text.

You can customize the
index in a variety of
ways.

This index type requires
CTX _DDL. SYNC | NDEX
after insert, update, and
delete operations to the
base table.

preferences and
parameters are
supported, except for
| NDEX SET.

The SEARCH | NDEX
grammar supports a
rich set of operations.

Use the CONTEXT
Supportted . and CTXCAT
paf?{?‘e erls. Index grammar with query
partition clause templating.

format, charset, and
language columns

documents services
and query services.

Supports indexing of
partitioned text tables.

Supports sharded
databases and system
managed partitioning
for index storage
tables.

3-2

Table 3-1 (Cont.) Oracle Text Index Types
]

Chapter 3
About Oracle Text Indexes

Index Type Description Supported Query Operator Notes
Preferences and
Parameters
CTXCAT Use this index | NDEX SET CATSEARCH This index is larger and
for better mixed LEXER The CTXCAT takes longer to build
query performance of STOPLI ST grammar supports than a CONTEXT index.
small documents and logical operations, The size of a CTXCAT
Fext fragmgnts. To STORAGE phrase queries, and index is related to
|mpfrove mixed qLIJe(;y WORDLI ST (The wildcarding. the total amount of
g?ﬁ;ﬂ?ﬁié?ﬁ ;Jhee prefi x_i ndex Use the CONTEXT ~ textto be indexed,
base table. such as attribute is supported grammar with query f[he number of indexes
: ’ . only for Japanese templating. in the index set, and
gi?crr;atri]:)iss, prices, and data.) Theme querving is the number of columns
Thisi P ' Not supported: supportgd. ying indexed. Carefully
This |ndex_type Format, charset, and consider your queries
IS transa_ctlonal. It language columns and your re.soqrces
automatically updates . before adding indexes
itself after inserts, Tabl_e_ an_d index to the index set.
updates, or deletes partitioning The CTXCAT index
to the base table. .
does not support index
,CTX—DDL' SYNC_I NDEX partitioning, documents
IS not necessary. services (highlighting,
markup, themes, and
gists) or query
services (explain,
query feedback, and
browse words.)
CTXRULE Use this index to build a See "CTXRULE MATCHES Use the MATCHES
document classification ~Parameters and operator to classify
or routing application. Limitations". single documents
Create this index on a (plain text, HTML, or
table of queries, where XML). MATCHES turns a
the queries define the document into a set of
classification or routing queries and finds the
criteria.. matching rows in the
index.
To build a
document classification
application by using
simple or rule-based
classification, create
an index of type
CTXRULE. This index
classifies plain text,
HTML, or XML
documents by using
the MATCHES operator.
Store your defining
query set in the text
table that you index.
An Oracle Text index is an Oracle Database domain index. To build your query
application, you can create an index of type CONTEXT with a mixture of text and
structured data columns, and query it with the CONTAI NS operator.
ORACLE 3.3

Chapter 3
About Oracle Text Indexes

You create an index from a populated text table. In a query application, the table must
contain the text or pointers to the location of the stored text. Text is usually a collection
of documents, but it can also be small text fragments.

Note:

If you are building a new application that uses XML data, Oracle
recommends that you use XM.I ndex, not CTXRULE.

Create an Oracle Text index as a type of extensible index to Oracle Database by using
standard SQL. This means that an Oracle Text index operates like an Oracle Database
index. It has a name by which it is referenced and can be manipulated with standard
SQL statements.

The benefit of creating an Oracle Text index is fast response time for text queries with
the CONTAI NS, CATSEARCH, and MATCHES operators. These operators query the CONTEXT,
CTXCAT, and CTXRULE index types, respectively.

" Note:

Because a Transparent Data Encryption-enabled column does not support
domain indexes, do not use it with Oracle Text. However, you can create an
Oracle Text index on a column in a table that is stored in a Transparent Data
Encryption-enabled tablespace.

See Also:

e "Creating Oracle Text Indexes"

e Oracle XML DB Developer's Guide for information about XM.I ndex and
indexing XM_Type data

3.1.2 Structure of the Oracle Text CONTEXT Index

ORACLE

Oracle Text indexes text by converting all words into tokens. The general structure of
an Oracle Text CONTEXT index is an inverted index, where each token contains the list
of documents (rows) that contain the token.

For example, after a single initial indexing operation, the word DOG might have an
entry as follows:

Word Appears in Document
DOG DOC1 DOC3 DOC5

This means that the word DOG is contained in the rows that store documents one,
three, and five.

3-4

Chapter 3
About Oracle Text Indexes

Merged Word and Theme Indexing

By default in English and French, Oracle Text indexes theme information with word
information. You can query theme information with the ABOUT operator. You can also
enable and disable theme indexing.

¢ See Also:

"Creating Preferences " to learn more about indexing theme information

3.1.3 Oracle Text Indexing Process

This section describes the Oracle Text indexing process. Initiate the indexing process
by using the CREATE | NDEX statement to create an Oracle Text index of tokens,
organized according to your parameters and preferences.

Figure 3-1 shows the indexing process. This process is a data stream that is acted
upon by the different indexing objects. Each object corresponds to an indexing
preference type or section group that you can specify in the parameter string of CREATE
| NDEX or ALTER | NDEX.

Figure 3-1 Oracle Text Indexing Process

Internet Stoplist
O/S file
system
Wordlist
Markup I
v v
Marked-up
Documents) Text . Text Tokens Indexing
Datastore P | Filter |y [SecCtioONer fpy(LeXEr ey Engine
Oracle Text
Index
Oracle Text processes the data stream with the following objects and engine:
e Datastore Object
ORACLE 3-5

Chapter 3
About Oracle Text Indexes

* Filter Object
* Sectioner Object
* Lexer Object

* Indexing Engine

3.1.3.1 Datastore Object

The stream starts with the datastore reading in the documents as they are stored in
the system according to your datastore preference. For example, if you defined your
datastore as DI RECTORY_DATASTCRE, then the stream starts by reading the files from an
Oracle directory object. You can also store your documents on the internet or in Oracle
Database. Wherever your files reside physically, a text table in Oracle Database must
always point to the files.

3.1.3.2 Filter Object

The stream then passes through the filter. Your FI LTER preference determines what
happens. The stream can be acted upon in one of the following ways:

* No filtering takes place when you specify the NULL_FI LTER preference type or
when the value of the format column is | GNORE. Documents that are plain text,
HTML, or XML need no filtering.

e Formatted documents (binary) are filtered to marked-up text when you specify the
AUTO FI LTER preference type or when the value of the format column is Bl NARY.

3.1.3.3 Sectioner Object

After being filtered, the marked-up text passes through the sectioner, which separates
the stream into text and section information. Section information includes where
sections begin and end in the text stream. The type of sections that are extracted

is determined by your section group type.

The text is passed to the lexer. The section information is passed directly to the
indexing engine, which uses it later.

3.1.3.4 Lexer Object

You create a lexer preference by using one of the Oracle Text lexer types to specify
the language of the text to be indexed. The lexer breaks the text into tokens according
to your language. These tokens are usually words. To extract tokens, the lexer

uses the parameters that are defined in your lexer preference. These parameters
include the definitions for the characters that separate tokens, such as whitespace.
Parameters also include whether to convert the text to all uppercase or to leave it in
mixed case.

When you enable theme indexing, the lexer analyzes your text to create theme tokens
for indexing.

3.1.3.5 Indexing Engine

The indexing engine creates the inverted index that maps tokens to the documents
that contain them. In this phase, Oracle Text uses the stoplist that you specify
to exclude stopwords or stopthemes from the index. Oracle Text also uses the

ORACLE 3-6

Chapter 3
About Oracle Text Indexes

parameters that are defined in your WORDLI ST preference. Those parameters tell the
system how to create a prefix index or substring index, if enabled.

3.1.4 About Updates to Indexed Columns

In releases prior to Oracle Database 12¢ Release 2 (12.2), when there is an

update to the column on which an Oracle Text index is based, the document is
unavailable for search operations until the index is synchronized. User queries cannot
perform a search of this document. Starting with Oracle Database 12c Release 2
(12.2), you can specify that documents must be searchable after updates, without
immediately performing index synchronization. Before the index is synchronized,
gueries use the old index entries to fetch the contents of the old document. After
index synchronization, user queries fetch the contents of the updated document.

The ASYNCHRONOUS_UPDATE option for indexes enables you to retain the old contents of
a document after an update and then use this index to answer user queries.
See Also:

« ALTER | NDEX in the Oracle Text Reference
* CREATE | NDEX in the Oracle Text Reference

3.1.5 Partitioned Tables and Indexes

When you create a partitioned CONTEXT index on a partitioned text table, you must
partition the table by range. Hash, composite, and list partitions are not supported.

You can create a partitioned text table to partition your data by date. For example,
if your application maintains a large library of dated news articles, you can partition
your information by month or year. Partitioning simplifies the manageability of large
databases, because querying, insert, update, delete operations, and backup and
recovery can act on a single partition.

On local CONTEXT indexes with multiple table sets, Oracle Text supports the number of
partitions supported by Oracle Database.

" Note:

The number of partitions that are supported in Oracle Text is approximately
1024K-1. This limit, which should be more than adequate, is not applicable to
a CONTEXT index on partitioned tables.

¢ See Also:

Oracle Database Concepts for more information about partitioning

ORACLE .

Chapter 3
About Oracle Text Indexes

To query a partitioned table, use CONTAI NS in the WHERE clause of a SELECT statement
as you query a regular table. You can query the entire table or a single partition.
However, if you are using the ORDER BY SCORE clause, Oracle recommends that you
guery single partitions unless you include a range predicate that limits the query to a
single partition.

3.1.6 Online Indexes

When it is not practical to lock your base table for indexing because of ongoing
updates, you can create your index online with the ONLI NE parameter of CREATE | NDEX
statement. This way an application with frequent inserts, updates, or deletes does not
have to stop updating the base table for indexing.

There are short periods, however, when the base table is locked at the beginning and
end of the indexing process.

See Also:

Oracle Text Reference to learn more about creating an index online

3.1.7 Parallel Indexing

Oracle Text supports parallel indexing with the CREATE | NDEX statement.

When you enter a parallel indexing statement on a nonpartitioned table, Oracle Text
splits the base table into temporary partitions, spawns child processes, and assigns
a child to a partition. Each child then indexes the rows in its partition. The method of
slicing the base table into partitions is determined by Oracle and is not under your
direct control. This is true as well for the number of child processes actually spawned,
which depends on machine capabilities, system load, your i ni t. or a settings, and
other factors. Because of these variables, the actual parallel degree may not match
the degree of parallelism requested.

Because indexing is an intensive 1/O operation, parallel indexing is most effective in
decreasing your indexing time when you have distributed disk access and multiple
CPUs. Parallel indexing can affect the performance of an initial index only with the
CREATE | NDEX statement. It does not affect insert, update, and delete operations with
ALTER I NDEX, and has minimal effect on query performance.

Because parallel indexing decreases the initial indexing time, it is useful for the
following scenarios:

» Data staging, when your product includes an Oracle Text index
* Rapid initial startup of applications based on large data collections

* Application testing, when you need to test different index parameters and schemas
while developing your application

ORACLE 3-8

Chapter 3
Considerations for Oracle Text Indexing

" See Also:

— "Parallel Queries on a Local Context Index"

— "Frequently Asked Questions About Indexing Performance"

3.1.8 Indexing and Views

Oracle SQL standards do not support the creation of indexes on views. If you need
to index documents whose contents are in different tables, create a data storage
preference by using the USER_DATASTORE object. With this object, you can define a
procedure that synthesizes documents from different tables at index time.

" See Also:
Oracle Text Reference to learn more about USER DATASTORE

Oracle Text supports the creation of CONTEXT, CTXCAT, and CTXRULE indexes on
materialized views (M1 EW.

3.2 Considerations for Oracle Text Indexing

ORACLE

Use the CREATE | NDEX statement to create an Oracle Text index. When you create
an index but do not specify a parameter string, an index is created with default
parameters. You can create a CONTEXT index, a CTXCAT index, or a CTXRULE index.

You can also override the defaults and customize your index to suit your query
application. The parameters and preference types that you use to customize your
index with the CREATE | NDEX statement fall into the following general categories.

This section contains the following topics:

* Location of Text

e Supported Column Types

e Storing Text in the Text Table

e Storing File Path Names

e Storing URLs

e Storing Associated Document Information
* Format and Character Set Columns
e Supported Document Formats

¢ Summary of DATASTORE Types

* Document Formats and Filtering

* Bypass Rows

e Document Character Set

3-9

Chapter 3
Considerations for Oracle Text Indexing

3.2.1 Location of Text

The basic prerequisite for a text query application is a text table that is populated with
your document collection. The text table is required for indexing.

When you create a CONTEXT index, populate rows in your text table with one of the
following elements. CTXCAT and CTXRULE indexes support only the first method.

» Text information (Documents or text fragments. By default, the indexing operation
expects your document text to be directly loaded in your text table.)

» Path names of documents in your file system
* URLs of web documents

Figure 3-2 illustrates these different methods.

Figure 3-2 Different Ways of Storing Text

Document Collection

Text Table Document 1

author | date | text ——| Document 2 Documents are stored in
— — the text table.

Text Table

author |date |text
iy File 1 /my_path/my_system/doc1.doc File paths are stored in
=—> File 2 /my_path/my_system/doc2.doc the text column.

Text Table

author |date |text

d4——p URL 1 htip://www.mysite.com/mydoc1.html URLSs are stored in
=— URL 2 http://www.mysite.com/mydoc1.html the text column.

ORACLE 3-10

Chapter 3
Considerations for Oracle Text Indexing

3.2.2 Supported Column Types

With Oracle Text, you can create a CONTEXT index with columns of type VARCHARZ,
CLOB (limited to 4294967295 bytes), BLOB, CHAR, BFI LE, XM.Type, and URI Type.

" Note:

You cannot index the NCLOB, DATE, and NUMBER column types.

3.2.3 Storing Text in the Text Table

For CONTEXT data storage, use the following datastore types to store documents in
your text table:

e DI RECT_DATASTORE: In one column

e MILTI _COLUWMN_DATASTORE: In multiple columns (Oracle Text concatenates the
columns into a virtual document, one document for each row.)

o DETAI L_DATASTORE: Master-detail relationships (Store one document across a
number of rows.)

e NESTED DATASTORE: In a nested table

Oracle Text supports the indexing of the XM_Type data type, which you use to store
XML documents.

For CTXCAT data storage, you can store short text fragments, such as names,
descriptions, and addresses, over a number of columns. A CTXCAT index improves
performance for mixed queries.

3.2.4 Storing File Path Names

In your text table, store path names to files stored in your file system. During indexing,
use the FI LE_DATASTORE preference type. This method of data storage is supported
only for CONTEXT indexes.

¢ Note:

Starting with Oracle Database 21c, the Oracle Text type FI LE_DATASTORE is
deprecated. Use DI RECTORY_DATASTORE instead.

3.2.5 Storing URLs

Store URL names to index websites. During indexing, use the URL_DATASTORE
preference type. This method of data storage is supported only for CONTEXT indexes.

ORACLE 3-11

Chapter 3
Considerations for Oracle Text Indexing

< Note:

Starting with Oracle Database 21c, the Oracle Text type URL_DATASTORE is
deprecated. Use NETWORK DATASTORE instead.

3.2.6 Storing Associated Document Information

In your text table, create additional columns to store structured information that your
guery application might need, such as primary key, date, description, or author.

3.2.7 Format and Character Set Columns

If your documents consist of mixed formats or mixed character sets, create the
following additional columns:

e A format column to record the format (TEXT or Bl NARY) to help filtering during
indexing. You can also use the format column to ignore rows for indexing
by setting the format column to | GNCRE. | GNORE is useful for bypassing rows
containing data that is incompatible with Oracle Text indexing, such as images.

« A character set column to record the document character set for each row.

When you create your index, specify the name of the format or character set column in
the parameter clause of the CREATE | NDEX statement.

For all rows containing the AUTO or AUTOVATI C keywords in character set or language
columns, Oracle Text applies statistical techniques to determine the character set and
language of the documents and modify document indexing appropriately.

3.2.8 Supported Document Formats

Because the system can index most document formats, including HTML, PDF,
Microsoft Word, and plain text, you can load any supported type into the text column.

When your text column has mixed formats, you can include a format column to help
filtering during indexing, and you can specify whether a document is binary (formatted)
or text (nonformatted, such as HTML). If you mix HTML and XML documents in one
index, you might not be able to configure your index to your needs; you cannot prevent
style sheet information from being added to the index.

¢ See Also:

Oracle Text Reference for more information about the supported document
formats

3.2.9 Summary of DATASTORE Types

When you use CREATE | NDEX, specify the location that uses the datastore preference.
Use the appropriate datastore according to your application.

ORACLE 3-12

ORACLE

Chapter 3
Considerations for Oracle Text Indexing

Table 3-2 summarizes the different ways that you can store your text with the datastore

preference type.

Table 3-2 Summary of DATASTORE Types

Datastore Type

Use When

DI RECT_DATASTORE

MULTI _COLUWMN_DATAST
CRE

DETAI L_DATASTORE

FI LE_DATASTORE
DI RECTORY_DATASTORE

NESTED_DATASTORE
URL_DATASTORE

NETWORK_DATASTCRE

USER_DATASTORE

Data is stored internally in a text column. Each row is indexed as a
single document.

Your text column can be VARCHAR2, CLOB, BLOB, CHAR, or
BFI LE. XM_.Type columns are supported for the context index type.

Data is stored in a text table in more than one column. Columns are
concatenated to create a virtual document, one document for each
row.

Data is stored internally in a text column. Document consists of one
or more rows stored in a text column in a detail table, with header
information stored in a master table.

Data is stored externally in operating system files. File names are
stored in the text column, one for each row.

Data is stored externally in Oracle directory objects. File names are
stored in the text column, one for each row.

Data is stored in a nested table.

Data is stored externally in files located on an intranet or the internet.
URLs are stored in the text column.

Data is stored externally in files located on an intranet or the internet.
URLSs are stored in the text column.

Documents are synthesized at index time by a user-defined stored
procedure.

" Note:

e Starting with Oracle Database 21c, the Oracle Text type FI LE_DATASTORE
is deprecated. Use DI RECTORY_DATASTORE instead.

e Starting with Oracle Database 21c, the Oracle Text type URL_DATASTORE
is deprecated. Use NETWORK_DATASTORE instead.

Indexing time and document retrieval time increases for indexing URLS, because the
system must retrieve the document from the network.

< Note:

To troubleshoot issues with triggers and MJLTI _COLUMN_DATASTCRE or
USER_DATASTORE, refer to My Oracle Support document 1613741.1.

3-13

Chapter 3
Considerations for Oracle Text Indexing

¢ See Also:

e« MOS Document 1613741.1
e Oracle Text Reference for more information about datastore types

e "Datastore Examples"

3.2.10 Document Formats and Filtering

To index formatted documents, such as Microsoft Word and PDF, you must filter them
to text. The FI LTER preference type determines the type of filtering that the system
uses. By default, the system uses the AUTO_FI LTER filter type, which automatically
detects the format of your documents and filters them to text.

Oracle Text can index most formats. It can also index columns that contain mixed-
format documents.

* No Filtering for HTML
e Filtering Mixed-Format Columns

e Custom Filtering

¢ See Also:

Oracle Text Reference for information about AUTO FI LTER supported
document and graphics formats

3.2.10.1 No Filtering for HTML

If you are indexing HTML or plain-text files, do not use the AUTO_FI LTER type. For best
results, use the NULL_FI LTER preference type.

See Also:
"NULL_FILTER Example: Indexing HTML Documents"

3.2.10.2 Mixed-Format Columns Filtering

ORACLE

For a mixed-format column, such as one that contains Microsoft Word, plain text, and
HTML documents, you can bypass filtering for plain text or HTML by including a format
column in your text table. In the format column, tag each row TEXT or Bl NARY. Rows
that are tagged TEXT are not filtered.

For example, tag the HTML and plain text rows as TEXT and the Microsoft Word rows
as BI NARY. You specify the format column in the CREATE | NDEX parameter clause.

3-14

https://support.oracle.com/epmos/faces/DocumentDisplay?id=1613741.1

Chapter 3
Considerations for Oracle Text Indexing

When you do not want a document to be indexed, you can use a third format column
type, | GNORE. This column type is useful, for example, when a mixed-format table
includes plain-text documents in Japanese and English, but you only want to process
the English documents. This column type is also useful when a mixed-format table
includes plain-text documents and images. Because | GNORE is implemented at the
datastore level, you can use it with all filters.

3.2.10.3 Custom Filtering

You can create a custom filter to filter documents for indexing. You can create either an
external filter that is executed from the file system or an internal filter as a PL/SQL or
Java-stored procedure.

For external custom filtering, use the USER _FI LTER filter preference type.

For internal filtering, use the PROCEDURE_FI LTER filter type.

¢ See Also:
"PROCEDURE_FILTER Example"

3.2.11 Bypass Rows

In your text table, you can bypass rows that you do not want to index, such as rows
that contain image data. To bypass rows, you create a format column, set it to | GNORE,
and name the format column in the parameter clause of the CREATE | NDEX statement.

3.2.12 Document Character Set

ORACLE

The indexing engine expects filtered text to be in the database character set. When
you use the AUTO FI LTER filter type, formatted documents are converted to text in the
database character set.

If your source is text and your document character set is not the database character
set, then you can use the AUTO FI LTER filter type to convert your text for indexing.

Character Set Detection

When you set the CHARSET column to AUTO, the AUTO _FI LTER filter detects the
character set of the document and converts it from the detected character set to the
database character set, if there is a difference.

Mixed Character Set Columns

If your document set contains documents with different character sets, such as
JA16EUC and JA16SJIS, you can index the documents, provided that you create a
CHARSET column, populate this column with the name of the document character set
for each row, and name the column in the parameter clause of the CREATE | NDEX
statement.

3-15

Chapter 3
Document Language

3.3 Document Language

Oracle Text can index most languages. By default, Oracle Text assumes that the
language of the text to be indexed is the language that you specify in your database
setup. Depending on the language of your documents, use one of the following lexer

types:

e BASIC LEXER: To index whitespace-delimited languages such as English, French,
German, and Spanish. For some of these languages, you can enable alternate
spelling, composite word indexing, and base-letter conversion.

 MILTI _LEXER To index tables containing documents of different languages such
as English, German, and Japanese.

e USER LEXER To create your own lexer for indexing a particular language.

« WORLD LEXER: To index tables containing documents of different languages and to
autodetect the languages in the document.

With the BASI C_LEXER preference, Oracle Text provides a lexing solution for most
languages. For the Japanese, Chinese, and Korean languages, you can create your
own lexing solution in the user-defined lexer interface.

* Language Features Outside BASIC_LEXER: The user-defined lexer interface
enables you to create a PL/SQL or Java procedure to process your documents
during indexing and querying. With the user-defined lexer, you can also create
your own theme lexing solution or linguistic processing engine.

¢ Multilanguage Columns: Oracle Text can index text columns that contain
documents in different languages, such as a column that contains documents
written in English, German, and Japanese. To index a multilanguage column,
you add a language column to your text table and use the MULTI _LEXER
preference type. You can also incorporate a multilanguage stoplist when you index
multilanguage columns.

¢ See Also:

e Oracle Text Reference to learn more about indexing languages and lexer
types

e« "MULTI_LEXER Example: Indexing a Multi-Language Table"

3.4 Special Characters

ORACLE

When you use the BASI C_LEXER preference type, you can specify how
nonalphanumeric characters, such as hyphens and periods, are indexed in relation

to the tokens that contain them. For example, you can specify that Oracle Text include
or exclude the hyphen (-) when it indexes a word such as vice-president.

These characters fall into BASI C_LEXER categories according to the behavior that you
require during indexing. The way you set the lexer to behave for indexing is the way it
behaves for query parsing.

Some of the special characters you can set are as follows:

3-16

Chapter 3
Case-Sensitive Indexing and Querying

* Printjoin Characters: Define a nonalphanumeric character as pri ntj oi n when
you want this character to be included in the token during indexing. For example,
if you want your index to include hyphens and underscores, define them as
printjoins. This means that a word such as vice-president is indexed as vice-
president. A query on vicepresident does not find vice-president.

« Skipjoin Characters: Define a nonalphanumeric character as ski pj oi n when
you do not want this character to be indexed with the token that contains it.
For example, with the hyphen (-) defined as a skipjoin, vice-president is indexed
as vicepresident. A query on vice-president finds documents containing vice-
president and vicepresident.

» Other Characters: You can specify other characters to control other
tokenization behavior, such as token separation (startjoins, endjoins, whitespace),
punctuation identification (punctuations), number tokenization (numjoins), and
word continuation after line breaks (continuation). These categories of characters
have modifiable defaults.

¢ See Also:

e« "BASIC_LEXER Example: Setting Printjoin Characters"
e Oracle Text Reference to learn more about the BASI C_LEXER type

3.5 Case-Sensitive Indexing and Querying

By default, all text tokens are converted to uppercase and then indexed. This
conversion results in case-insensitive queries. For example, queries on cat, CAT, and
Cat return the same documents.

You can change the default and have the index record tokens as they appear in the
text. When you create a case-sensitive index, you must specify your queries with the
exact case to match documents. For example, if a document contains Cat, you must
specify your query as Cat to match this document. Specifying cat or CAT does not
return the document.

To enable or disable case-sensitive indexing, use the ni xed_case attribute of the
BASI C_LEXER preference.

¢ See Also:

Oracle Text Reference to learn more about the BASI C_ LEXER

3.6 Improved Document Services Performance with a
Forward Index

When it searches for a word in a document, Oracle Text uses an inverted index and
then displays the results by calculating the snippet from that document. For calculating

ORACLE 3-17

Chapter 3
Improved Document Services Performance with a Forward Index

the snippet, each document returned as part of the search result is reindexed. The
search operation slows down considerably when a document’s size is very large.

The forward index overcomes the performance problem of very large documents. It
uses a $0 mapping table that refers to the token offsets in the $I inverted index table.
Each token offset is translated into the character offset in the original document, and
the text surrounding the character offset is then used to generate the text snippet.

Because the forward index does not use in-memory indexing of the documents
while calculating the snippet, it provides considerable improved performance over the
inverted index while searching for a word in very large documents.

The forward index improves the performance of the following procedures in the Oracle
Text CTX_DCC package:

- CTX_DOC. SNI PPET
« CTX_DOC. HI GHLI GHT
« CTX_DOC. MARKUP

¢ See Also:

Oracle Text Reference for information about the f orwar d_i ndex parameter
clause of the BASI C_STORAGE indexing type

3.6.1 Enabling Forward Index

The following example enables the forward index feature by setting the f orwar d_i ndex
attribute value of the BASI C_STORAGE storage type to TRUE:

exec ctx_ddl.create_preference(' nystore', 'BASIC STORAGE');
exec ctx_ddl.set_attribute(' nystore', ' forward_index',' TRUE');

3.6.2 Forward Index with Snippets

In some cases, when you use the f orwar d_i ndex option, generated snippets may
be slightly different from the snippets that are generated when you do not use the
forward_i ndex option. The differences are generally minimal, do not affect snippet
quality, and are typically "few extra white spaces" and "newline."

3.6.3 Forward Index with Save Copy

ORACLE

Using Forward Index with Save Copy

To use the forward index effectively, you should store copies of the documents in

the $D table, either in plain-text format or filtered format, depending upon the CTX_DCC
package procedure that you use. For example, store the document in plain-text when
you use the SNI PPET procedure and store it in the filtered format when you use the
MARKUP or HI GHLI GHT procedure.

You should use the Save Copy feature of Oracle Text to store the copies of the
documents in the $D table. Implement the feature by using the save_copy attribute or
the save_copy column parameter.

3-18

Chapter 3
Improved Document Services Performance with a Forward Index

save_copy basic storage attribute:

The following example sets the save_copy attribute value of the BASI C_STORAGE
storage type to PLAI NTEXT. This example enables Oracle Text to save a copy of
the text document in the $D table while it searches for a word in that document.

exec ctx_ddl.create_preference(' nystore', 'BASIC STORAGE);
exec ctx_ddl.set_attribute(' nystore','save_copy',' PLAI NTEXT');

save_copy col um index parameter:

The following example uses the save_copy col unm index parameter to save a
copy of a text document into the $D table. The creat e i ndex statement creates
the $D table and copies document 1 ("hello world") into the $D table.

create table docs(

id nunber,
t xt var char 2(64),
save var char 2(10)

):

insert into docs values(1l, '"hello world , 'PLAINTEXT);

create index idx on docs(txt) indextype is ctxsys.context
paraneters(' save_copy col um save');

For the save_copy attribute or column parameter, you can specify one of the following
values:

PLAI NTEXT saves the copy of the document in a plain-text format in the $D index
table. The plain-text format is defined as the output format of the sectioner. Specify
this value when you use the SNI PPET procedure.

FI LTERED saves a copy of a document in a filtered format in the $D index table. The
filtered format is defined as the output format of the filter. Specify this value when
you use the MARKUP or HI GHLI GHT procedure.

NONE does not save the copy of the document in the $D index table. Specify this
value when you do not use the SNI PPET, MARKUP, or Hl GHLI GHT procedure and
when the indexed column is either VARCHAR2 or CLOB.

3.6.4 Forward Index Without Save Copy

In the following scenarios, you can take advantage of the performance enhancement
of forward index without saving copies of all documents in the $D table (that is, without
using the Save Copy feature):

The document set contains HTML and plain text: Store all documents in the base
table by using the DI RECT_DATASTORE or the MULTI _COLUWN DATASTORE datastore
type.

The document set contains HTML, plain text, and binary: Store all documents

in the base table by using the DI RECT_DATASTORE datastore type. Store only the
binary documents in the $D table in the filtered format.

3.6.5 Save Copy Without Forward Index

Even if you do not enable the forward index feature, the Save Copy feature improves
the performance of the following procedures of the CTX_DOC package:

ORACLE

3-19

Chapter 3
Language-Specific Features

. CTX_DCC. FILTER
. CTX_DCC. G ST

- CTX_DOC. THEMES
- CTX_DOC. TOKENS

3.7 Language-Specific Features

You can enable the following language-specific features:

e Indexing Themes

* Base-Letter Conversion for Characters with Diacritical Marks
e Alternate Spelling

e Composite Words

e Korean, Japanese, and Chinese Indexing

3.7.1 Theme Indexing

By default, themes are indexed in English and French, for which you can index
document theme information. A document theme is a concept that is sufficiently
developed in the document.

Search document themes with the ABOUT operator and retrieve document themes
programatically with the CTX_DOC PL/SQL package.

Enable and disable theme indexing with the i ndex_t henes attribute of the BASI C_LEXER
preference type.

You can also index theme information in other languages, provided that you loaded
and compiled a knowledge base for the language.

¢ See Also:

e Oracle Text Reference to learn more about the BASI C_LEXER
e "ABOUT Queries and Themes"

3.7.2 Base-Letter Conversion for Characters with Diacritical Marks

ORACLE

Some languages contain characters with diacritical marks, such as tildes, umlauts, and
accents. When your indexing operation converts words containing diacritical marks

to their base-letter form, queries do not have to contain diacritical marks to score
matches.

For example, in a Spanish base-letter index, a query of energia matches energia and
energia. However, if you disable base-letter indexing, a query of energia only matches
energia.

Enable and disable base-letter indexing for your language with the base | etter
attribute of the BASI C_LEXER preference type.

3-20

Chapter 3
Language-Specific Features

¢ See Also:

Oracle Text Reference to learn more about the BASI C_LEXER

3.7.3 Alternate Spelling

Languages such as German, Danish, and Swedish contain words that have more than
one accepted spelling. For example, in German, you can substitute ae for 4. The ae
character pair is known as the alternate form.

By default, Oracle Text indexes words in their alternate forms for these languages.
Query terms are also converted to their alternate forms. The result is that you can
guery these words with either spelling.

Enable and disable alternate spelling for your language with the al t ernat e_spel I i ng
attribute in the BASI C_LEXER preference type.

¢ See Also:

Oracle Text Reference to learn more about the BASI C_LEXER

3.7.4 Composite Words

German and Dutch text contains composite words. By default, Oracle Text creates
composite indexes for these languages. The result is that a query on a term returns
words that contain the term as a subcomposite.

For example, in German, a query on the term Bahnhof (train station) returns
documents that contain Bahnhof or any word containing Bahnhof as a subcomposite,
such as Hauptbahnhof, Nordbahnhof, or Ostbahnhof.

Enable and disable composite indexes with the conposi t e attribute of the BASI C_LEXER
preference.

¢ See Also:

Oracle Text Reference to learn more about the BASI C_ LEXER

3.7.5 Korean, Japanese, and Chinese Indexing

ORACLE

Index these languages with specific lexers:

Table 3-3 Lexers for Asian Languages

___|
Language Lexer

Korean KOREAN_MORPH_LEXER

3-21

Chapter 3
About Entity Extraction and CTX_ENTITY

Table 3-3 (Cont.) Lexers for Asian Languages

Language Lexer
Japanese JAPANESE LEXER, JAPANESE VGRAM LEXER
Chinese CHI NESE_LEXER, CHI NESE_VGRAM LEXER

These lexers have their own sets of attributes to control indexing.

¢ See Also:

Oracle Text Reference to learn more about these lexers

3.8 About Entity Extraction and CTX_ENTITY

Entity extraction is the identification and extraction of named entities within text.
Entities are mainly nouns and noun phrases, such as names, places, times, coded
strings (such as phone numbers and zip codes), percentages, and monetary amounts.
The CTX_ENTI TY package implements entity extraction by means of a built-in dictionary
and a set of rules for English text. You can extend the capabilities for English and other
languages with user-provided add-on dictionaries and rule sets.

¢ See Also:

e CTX_ENTI TY Package in Oracle Text Reference

e Entity Extraction User Dictionary Loader (ctxload) in Oracle Text
Reference

This section contains the following examples:

* Basic Example of Using Entity Extraction

* Example of Creating a New Entity Type Using a User-defined Rule

3.8.1 Basic Example of Using Entity Extraction

ORACLE

The example in this section provides a very basic example of entity extraction. The
example assumes that a CLOB contains the following text:

New York, United States of Anerica
The Dow Jones Industrial Average clinbed by 5% yesterday on news of a new
software rel ease from database gi ant Oracle Corporation.

The example uses CTX_ENTI TY. EXTRACT to find the entities in CLOB value. (For now,
do not worry about how the text got into the CLOB or how we provide the output
CLOB))

3-22

ORACLE

Chapter 3
About Entity Extraction and CTX_ENTITY

Entity extraction requires a new type of policy, an "extract policy," which enables you to
specify options. For now, create a default policy:

ctx_entity.create_extract_policy('nypolicy');

Now you can call ext ract to do the work. It needs four arguments: the policy name,
the document to process, the language, and the output CLOB (which you should have
initialized, for example, by calling dbns_| ob. cr eat et enpor ary).

ctx_entity.extract('mypolicy', nydoc, 'ENG.ISH, outclob)

In the previous example, out cl ob contains the XML that identifies extracted entities.
When you display the contents (preferably by selecting it as XMLTYPE so that it is
formatted nicely), here is what you see:

<entities>

<entity id="0" offset="0" |ength="8" source="SuppliedDictionary">
<t ext >New Yor k</t ext >
<type>city</type>

</entity>

<entity id="1" offset="150" |ength="18" source="SuppliedRul e">
<text>Cracl e Corporation</text>
<t ype>conpany</type>

</entity>

<entity id="2" offset="10" |ength="24" source="SuppliedDictionary">
<text>United States of America</text>
<type>count ry</type>

</entity>

<entity id="3" offset="83" |ength="2" source="SuppliedRule">
<t ext >5%/ t ext >
<type>percent </ type>

</entity>

<entity id="4" offset="113" |ength="8" source="SuppliedDictionary">
<t ext >sof t war e</ t ext >
<type>product </ type>

<entity>

<entity id="5" offset="0" |ength="8" source="SuppliedDictionary">
<t ext >New Yor k</t ext >
<type>st ate</type>

</entity>

<lentities>

This display is fine if you process it with an XML-aware program. However, if you want
it in a more "SQL friendly" view, use Oracle XML Database (XML DB) functions to
convert it as follows:

sel ect xtab.offset, xtab.text, xtab.type, xtab.source
fromxmtable('/entities/entity'
PASSI NG xnm t ype(out cl ob)

COLUWNS
of f set nunber PATH ' @f fset',
I ngt h nunmber PATH ' @ength',

text varchar2(50) PATH "text/text()',
type varchar2(50) PATH 'type/text()',
source varchar2(50) PATH ' @ource'

) as xtab order by of fset;

Here is the output:

COFFSET TEXT TYPE SQURCE

3-23

Chapter 3
About Entity Extraction and CTX_ENTITY

0 New York city Suppl i edDi ctionary

0 New York state Suppl i edDi ctionary

10 United States of America country Suppl i edDi ctionary
83 5% per cent Suppl i edRul e

113 sof tware product Suppl i edDi ctionary
150 Oracle Corporation conpany Suppl i edRul e

If you do not want to fetch all entity types, you can select the types by adding a fourth
argument to the "extract" procedure, with a comma-separated list of entity types. For
example:

ctx_entity.extract('nypolicy', nydoc, 'ENG.ISH, outclob, 'city, country')
That woul d give us the XM

<entities>
<entity id="0" offset="0" |ength="8" source="SuppliedDi ctionary">
<t ext >New Yor k</t ext >
<type>city</type>
</entity>
<entity id="2" offset="10" |ength="24" source="SuppliedDictionary">
<text>United States of America</text>
<type>country</type>
</entity>
</entities>

3.8.2 Example of Creating a New Entity Type by Using a User-Defined

Rule

ORACLE

The example in this section shows how to create a new entity type with a user-defined
rule. You define rules with a regular-expression-based syntax and add the rules to an
extraction policy. The policy is applied whenever it is used.

The following rule identifies increases in a stock index by matching any of the following
expressions:

clinmbed by 5%
i ncreased by over 30 percent
j umped 5. 5%

Therefore, you must create a new type of entity as well as a regular expression that
matches any of the expressions:

exec ctx_entity.add extract_rule("mypolicy', 1,
"<rul e>'
' <expressi on>'
"((clinbed| gai ned| j unped|increasing|increased|rallied)’
"((by|over|nearly|nore than))* \d+(\.\d+)?(percent|%)"
' </ expressi on>'
' <type>Posi tive Gain</type>'
"<[rule>);

In this case, you must compile the policy with CTX_ENTI TY. COWPI LE:

ctx_entity.conpile(' nypolicy');

Then you can use it as before:

ctx_entity.extract (' nypolicy', mydoc, null, nyresults)

3-24

Chapter 3
Fuzzy Matching and Stemming

Here is the (abbreviated) output:

<entities>

<entity id="6" offset="72" |ength="18" source="UserRul e">
<text>clinbed by over 5%/text>
<type>Posi tive Gain</type>
</entity>
</entities>

Finally, you add another user-defined entity, but this time it uses a dictionary. You want
to recognize "Dow Jones Industrial Average" as an entity of type | ndex. You also add
"S&P 500". To do that, create an XML file containing the following:

<di ctionary>
<entities>
<entity>
<val ue>dow j ones industrial average</val ue>
<type>l ndex</type>
</entity>
<entity>
<val ue>S&anp; P 500</ val ue>
<type>l ndex</type>
</entity>
</entities>
</ dictionary>

Case is not significant in this file, but notice how the "&" in "S&P" must be specified as
the XML entity &np; . Otherwise, the XML is not valid.

This XML file is loaded into the system with the CTXLQAD utility. If the file were called
di ct. | oad, you would use the following command:

ctxl oad -user usernane/ password -extract -name mypolicy -file dict.|oad

You must compile the policy with CTX_ENTI TY. COVPI LE.

3.9 Fuzzy Matching and Stemming

ORACLE

Fuzzy matching enables you to match similarly spelled words in queries. Oracle Text
provides entity extraction for multiple languages.

Stemming enables you to match words with the same linguistic root. For example a
guery on $speak, expands to search for all documents that contain speak, speaks,
spoke, and spoken.

Fuzzy matching and stemming are automatically enabled in your index if Oracle Text
supports this feature for your language.

Fuzzy matching is enabled with default parameters for its fuzzy score and for its
maximum number of expanded terms. Fuzzy score is a measure of how closely the
expanded word matches the query word. At index time, you can change these default
parameters.

To automatically detect the language of a document and to have the necessary
transformations performed, create a stem index by enabling the i ndex_st ens attribute
of the AUTO_LEXER. Use the stemmer that corresponds to the document language and
always configure the stemmer to maximize document recall. For compound words in
languages such as German, Finnish, Swedish, and Dutch, if you set i ndex_st ens to

3-25

Chapter 3
Fuzzy Matching and Stemming

YES, then compound word stemming is automatically performed in the documents.
Compounds are always separated into their component stems.

To improve the performance of stem queries, create a stem index by enabling the
i ndex_st ens attribute of BASI C_LEXER

* Values For Language Attribute for index_stems of AUTO_LEXER
* Values For Language Attribute for index_stems of BASIC_LEXER

See Also:

Oracle Text Reference to learn more about fuzzy matching and stemming

3.9.1 Language Attribute Values for index_stems of BASIC_LEXER

ORACLE

You can use the following values with the i ndex_st ens attribute of BASI C_LEXER:

* ARABIC

« BOKMAL

« CROATIAN
DANISH

* FINNISH

- HEBREW

« CATALAN

« CZECH

 DERIVATIONAL
 DERIVATIONAL_NEW

- DUTCH

« DUTCH_NEW

« ENGLISH

* ENGLISH_NEW
* FRENCH

* FRENCH_NEW
* GERMAN

* GERMAN_NEW
* GREEK

* NYNORSK

* PERSIAN

« SERBIAN

« SLOVAK

» SLOVENIAN

3-26

THAI
HUNGARIAN
ITALIAN
ITALIAN_NEW
NONE
POLISH

PORTUGUESE

ROMANIAN
RUSSIAN
SPANISH

SPANISH_NEW

SWEDISH
TURKISH

Chapter 3
Fuzzy Matching and Stemming

3.9.2 Language Attribute Values for index_stems of AUTO _LEXER

The values for the i ndex_st ens attribute of AUTO_LEXER is TRUE or FALSE. The
i ndex_st ens attribute of AUTO_LEXER supports the following languages:

ORACLE

ARABIC
BOKMAL
CROATIAN
DANISH
FINNISH
HEBREW
CATALAN
CZECH
DUTCH
ENGLISH
FRENCH
GERMAN
GREEK
HUNGARIAN
ITALIAN
JAPANESE
NYNORSK
PERSIAN
SERBIAN
SLOVAK

3-27

Chapter 3
Better Wildcard Query Performance

* SLOVENIAN

THAI
- KOREAN
« POLISH

» PORTUGUESE
* ROMANIAN

* RUSSIAN

* SIMPLIFIED CHINESE

* SPANISH

« SWEDISH

* TRADITIONAL CHINESE
* TURKISH

3.10 Better Wildcard Query Performance

Wildcard queries enable you to enter left-truncated, right-truncated, and double-
truncated queries, such as %ing, cos%, or %benz%. With normal indexing, these
gueries can sometimes expand into large word lists and degrade your query
performance.

Wildcard queries have better response time when token prefixes and substrings are
recorded in the index.

By default, token prefixes and substrings are not recorded in the Oracle Text index. If
your query application makes heavy use of wildcard queries, consider indexing token
prefixes and substrings. To do so, use the wordlist preference type. The trade-off is a
bigger index for improved wildcard searching.

" See Also:

* "BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing"

e Oracle Text Reference for more information on how to keep wildcard
query performance within an acceptable limit

3.11 Document Section Searches

For documents that have internal structure, such as HTML and XML, you can define
and index document sections. By indexing document sections, you can narrow the
scope of your queries to predefined sections. For example, you can specify a query to
find all documents that contain the term dog within a section defined as Headings.

Before indexing, you must define sections and specify them with the section group
preference.

ORACLE 3-28

Chapter 3
Stopwords and Stopthemes

Oracle Text provides section groups with system-defined section definitions for HTML
and XML. You can also specify that the system automatically create sections from
XML documents during indexing.

¢ See Also:

Searching Document Sections in Oracle Text

3.12 Stopwords and Stopthemes

A stopword is a word that you do not want indexed. Stopwords are typically low-
information words in a given language, such as this and that in English.

By default, Oracle Text provides a stoplist for indexing a given language. Modify this
list or create your own with the CTX_DDL package. Specify the stoplist in the parameter
string of the CREATE | NDEX statement.

A stoptheme is a word that is prevented from being theme-indexed or that is prevented
from contributing to a theme. Add stopthemes with the CTX_DDL package.

* Language detection and stoplists: At query time, the language of the query is
inherited from the query template or from the session language (if no language is
specified through the query template).

* Multilanguage stoplists: You create multilanguage stoplists to hold language-
specific stopwords. This stoplist is useful when you use MULTI _LEXER to index a
table that contains documents in different languages, such as English, German,
and Japanese. At index creation, the language column of each document is
examined, and only the stopwords for that language are eliminated. At query
time, the session language setting determines the active stopwords, just as it
determines the active lexer with the multi-lexer.

3.13 Index Performance

Factors that influence indexing performance include memory allocation, document
format, degree of parallelism, and partitioned tables.

¢ See Also:

"Frequently Asked Questions About Indexing Performance”

3.14 Query Performance and Storage of Large Object (LOB)

Columns

ORACLE

If your table contains large object (LOB) structured columns that are frequently
accessed in queries but rarely updated, you can improve query performance by
storing these columns out-of-line. However, you cannot map attributes to remote LOB
columns.

3-29

Chapter 3
Mixed Query Performance

¢ See Also:

"Does out-of-line LOB storage of wide base table columns improve
performance?"

3.15 Mixed Query Performance

If your CONTAI NS() query also has structured predicates on the nontext columns,
then consider indexing those column values. To do so, specify those columns in the
FI LTER BY clause of the CREATE | NDEX statement. Oracle Text can then determine
whether to have the structured predicates processed by the Oracle Text index for
better performance.

Additionally, if your CONTAI NS() query has ORDER BY criteria on one or more structured
columns, then the Oracle Text index can also index those column values. Specify
those columns in the ORDER BY clause of the CREATE | NDEX statement. Oracle Text can
then determine whether to push the sort into the Oracle Text index for better query
response time.

¢ See Also:

"CONTEXT Index Example: Query Processing with FILTER BY and ORDER
BY"

3.16 In-Memory Full Text Search and JSON Full Text Search

ORACLE

The queries using CONTAI NS() and JSON_TEXTCONTAI NS() can be evaluated in SQL
predicates when the underlying columns that store the full text documents or JSON
documents are enabled for In-Memory full text search.

Normally, to use full-text (keyword) searching against textual columns, you must create
an Oracle Text index on that column. For JSON data, you create a JSON search
index. Starting with Oracle Database Release 21c, instead of creating an index, you
can load the column into memory, using an In-Memory columnar format. This does not
require an index, but allows for fast scanning of the text using In-Memory techniques.
This is particularly valuable when running queries which combine text searches and
structured searches on other In-Memory columns.

You must declare the columns that must be loaded into memory during table creation
time, using the | NVEMORY TEXT clause. These columns can be searched using the
same CONTAI NS() and JSON_TEXTCONTAI NS() functions that are used with Oracle Text
or JSON search indexes, but there are limitations on the types of query operators that
can be used. Hence, In-Memory is not a replacement for Oracle Text or JSON search
indexes, but an alternative that can be used when required, and when the limitations
are not considered to be a problem.

It is possible to have a column which has an Oracle Text index on it and also uses
I NVEMORY TEXT clause. In this situation, the optimizer chooses the best method of
executing the query. If there is an Oracle Text index on the column, the query always

3-30

ORACLE

Chapter 3
In-Memory Full Text Search and JSON Full Text Search

uses the Oracle Text index. If there is no Oracle Text index, then the optimizer

checks if the table is marked as In-Memory. If the table is marked as In-Memory,

the In-Memory evaluation is used for the query. If there is no Oracle Text index and the
table is not marked as In-Memory, then "DRG-10599: column is not indexed" error is
returned.

Supported Data Types

The In-Memory full text search supports the following data types:

* CHAR
* VARCHARZ2
- CLOB
e BLOB
« JSON

Both JSON and text columns support a custom indexing policy created with
the CTX_DDL. CREATE_PQLI CY procedure. If the column data type is JSON, then
the In-Memory full text version of this column enables path-aware search using
JSON_TEXTCONTAI NS() when the column uses either of the following:

e A default policy

e A custom policy with a PATH _SECTI ON_GROUP having JSON_ENABLED attribute set to
TRUE

Usage

You specify an In-Memory full text search column with the | NVEMORY TEXT clause. Both
CREATE TABLE and ALTER TABLE statements support the | NVEMORY TEXT clause. You
can use the PRI ORI TY subclause to control the order of object population. The default
priority is NONE. The MEMCOVPRESS subclause is not valid with | NVEMORY TEXT. Specify
either the CREATE TABLE or ALTER TABLE statement with the | NVEMORY TEXT clause,
using either of the following forms:

e | NMEMORY TEXT (col 1, col2, .)
* | NMEMORY TEXT (col 1 USING policyl, col2 USING policy2, .)

Limitations

 BFILE, XM.Type, and URI Type data types are not supported in In-Memory full text
search columns.

e For querying a text column, only the following Oracle Text query operators are
supported:

— AND
- R

— NOT
— NEAR

e For querying a JSON column, the following Oracle Text query operators are also
supported:

— HASPATH

3-31

Chapter 3
In-Memory Full Text Search and JSON Full Text Search

— | NPATH

e Inthe CTX DDL. CREATE POLI CY procedure, filter and wordl i st parameters
are not supported. The secti on_group parameter must be set to either
NULL_SECTI ON_GROUP (default) or PATH_SECTI ON_GROUP with JSON_ENABLE set to
TRUE (for JSON path-aware search). The | exer parameter is supported only with
BASI C_LEXER lexer type.

* You can not disable and re-enable In-Memory full text search by using a single
ALTER TABLE statement. You must first disable the In-Memory full text search
before re-enabling it.

* JSON enabled indexing policies are supported only for JSON columns.

* You can only use your own custom indexing policy for In-Memory full text search
and JSON In-Memory full text search. Also, you can not use a JSON enabled
indexing policy for text columns with | S JSON check constraint.

Examples
Example 3-1 Using In-Memory Full Text Search

The following example shows you how to query from an In-Memory full text search
enabled column using the CONTAI NS operator. It also shows you how to create a
custom policy for text search and apply it on a column.

Create a table named t ext _docs that is loaded in memory and populate it with an
In-Memory full text search column named doc:

CREATE TABLE text docs(id NUMBER, docCreationTine DATE, doc CLOB)
| NVEMORY | NMEMORY TEXT(doc) ;

Query using the CONTAI NS operator with your condition:

SELECT id FROM text docs WHERE docCreationTime > to_date('2014-01-01",
"YYYY- MVt DD)
AND CONTAI NS(doc, "in menmory text processing');

You can also create a custom policy for text search, and then apply it to the doc
column:

EXEC CTX_DDL. CREATE_POLI CY(' first_policy');
ALTER TABLE text _docs | NMEMORY TEXT (doc USING 'first_policy');

You can replace an existing custom policy by disabling the In-Memory full text search
using the NO | NVEMORY TEXT clause and then enabling In-Memory full text search
using the | NVEMORY TEXT clause:

EXEC CTX _DDL. CREATE PQLI CY(' second_policy');
ALTER TABLE text _docs NO | NVEMORY TEXT(doc);
ALTER TABLE text _docs | NMEMORY TEXT (doc USING 'second_policy');

ORACLE 3-32

ORACLE

Chapter 3
In-Memory Full Text Search and JSON Full Text Search

Example 3-2 Using JSON In-Memory Full Text Search

The following example shows you how to query from an In-Memory full text search
enabled column using the JSON_TEXTCONTAI NS operator.

Create a table named j son_docs that is loaded in memory and populate it with an
In-Memory full text search column named doc:

CREATE TABLE json_docs(id NUMBER, docCreationTine DATE, doc JSON)
I NMEMORY | NMEMORY TEXT(doc) ;

Query using the JSON_TEXTCONTAI NS operator with your condition:

SELECT id FROM j son_docs WHERE docCreationTime > to_date('2014-01-01",
"YYYY- M\t DD')
AND JSON_TEXTCONTAI NS(doc, '$.abstract', 'in menory text processing');

Example 3-3 Prioritizing In-Memory Population in Full Text Search

The following example shows you how to set the priority level for data population using
the PRI ORI TY subclause.

Create a table named prioritized_docs that is loaded in memory and use the
PRI ORI TY subclause to set the priority level:

CREATE TABLE prioritized_docs(id NUMBER, docCreationTime DATE, doc
CLOB, json_doc CHECK(json_doc IS json))
I NVEMCRY PRI ORI TY CRITI CAL | NMEMORY TEXT(doc, json_doc);

¢ See Also:

e Oracle Database In-Memory Guide
for more information about In-Memory full text columns

e Oracle Database JSON Developer’s Guide for more information about
In-Memory full text search using JSON_TEXTCONTAI NS operator

3-33

Creating Oracle Text Indexes

Learn how to create Oracle Text indexes.
This chapter contains the following topics:

* Summary of the Procedure for Creating an Oracle Text Index
* Creating Preferences

e Section Searching Example: Creating HTML Sections

* Using Stopwords and Stoplists

e Creating a CONTEXT Index

* Creating a CTXCAT Index

e Creating a CTXRULE Index

e Creating a Search Index for JSON

* Creating an Oracle Text Search Index

4.1 Summary of the Procedure for Creating an Oracle Text

Index

ORACLE

With Oracle Text, you can create indexes of type CONTEXT, CTXCAT, and CTXRULE.

Starting with Oracle Database 12¢ Release 2 (12.2), you can choose to keep old index
entries to search on original content by using the ASYNCHRONOUS UPDATE parameter
string option.

By default, the system expects your documents to be stored in a text column. After
you satisfy this requirement, you can create an Oracle Text index by using the

CREATE | NDEX SQL statement as an extensible index of type CONTEXT, without explicitly
specifying preferences. The system automatically detects your language, the data type
of the text column, and the format of the documents. Next, the system sets indexing
preferences.

¢ See Also:
"Default CONTEXT Index Example"

To create an Oracle Text index:

1. (Optional) Determine your custom indexing preferences, section groups, or
stoplists if you do not use the defaults. The following table describes these
indexing classes:

4-1

Chapter 4
Creating Preferences

Class Description

Datastore How are your documents stored?

Filter How can the documents be converted to plaintext?
Lexer What language is being indexed?

Wordlist How should stem and fuzzy queries be expanded?
Storage How should the index data be stored?

Stoplist What words or themes are not to be indexed?
Section Group How are document sections defined?

2. (Optional) Create custom preferences, section groups, or stoplists.

3. Create the Oracle Text index with the CREATE | NDEX SQL statement. Name your
index and, if necessary, specify preferences.

See Also:

e "Considerations for Oracle Text Indexing" and CREATE INDEX in Oracle
Text Reference

e "Creating Preferences "
e "Creating a CONTEXT Index"

4.2 Creating Preferences

If you want, you can create custom index preferences to override the defaults. Use the
preferences to specify index information, such as where your files are stored and how
to filter your documents. You create the preferences and then set the attributes.

See Also:

"Custom Index Preference Examples"

4.3 Section Searching Example: Creating HTML Sections

ORACLE

When documents have internal structure such as in HTML and XML, you can define
document sections by using embedded tags before you index. This approach enables
you to query within the sections by using the W TH N operator. You define sections as
part of a section group.

This example defines a section group called ht ngr oup of type HTM._SECTI ON_GROUP. It
then creates a zone section in ht ngr oup called headi ng identified by the <H1> tag:

begi n

ctx_ddl . create_section_group(' htngroup', 'HTM._SECTI ON_GROUP');
ctx_ddl . add_zone_section(' htngroup', 'heading', "HL');

end;

4-2

Chapter 4
Using Stopwords and Stoplists

¢ See Also:

Searching Document Sections in Oracle Text

4.4 Using Stopwords and Stoplists

A stopword is a word that is not to be indexed, such as this or that in English.

The system supplies a stoplist for every language. By default during indexing, the
system uses the Oracle Text default stoplist for your language.

You can edit the default CTXSYS. DEFAULT_STOPLI ST or create your own with the
following PL/SQL procedures:

. CTX_DDL. CREATE_STCPLI ST
« CTX_DDL. ADD_STOPWORD
. CTX_DDL. REMOVE_STOPWORD

You specify your custom stoplists in the parameter clause of CREATE | NDEX.

You can also dynamically add stopwords after indexing with the ALTER | NDEX
statement.

* Multi-Language Stoplists
e Stopthemes and Stopclasses

* PL/SQL Procedures for Managing Stoplists

4.4.1 Multilanguage Stoplists

You can create multilanguage stoplists to hold language-specific stopwords. This
stoplist is useful when you use MULTI _LEXER to index a table that contains documents
in different languages, such as English, German, and Japanese.

To create a multilanguage stoplist, use the CTX_DDL. CREATE_STOPLI ST procedure and
specify a stoplist type of MULTI _STOPLI ST. You add language-specific stopwords with
CTX_DDL. ADD_STOPWORD.

4.4.2 Stopthemes and Stopclasses

In addition to defining your own stopwords, you can define stopthemes, which are
themes that are not indexed. This feature is available only for English and French.

You can also specify that numbers are not indexed. A class of alphanumeric
characters such a numbers that is not to be indexed is a stopclass.

You create a single stoplist, to which you add the stopwords, stopthemes, and
stopclasses, and specify the stoplist in the par anst ri ng for CREATE | NDEX.

ORACLE 4.3

Chapter 4
Creating a CONTEXT Index

4.4.3 PL/SQL Procedures for Managing Stoplists

Use the following procedures to manage stoplists, stopwords, stopthemes, and
stopclasses:

. CTX_DDL. CREATE_STOPLI ST
. CTX_DDL. ADD_STOPWORD

« CTX_DDL. ADD_STOPTHENE

« CTX_DDL. ADD_STOPCLASS

- CTX_DDL. REMOVE_STOPWORD
. CTX_DDL. REMOVE_STOPTHEME
« CTX_DDL. REMOVE_STOPCLASS
- CTX_DDL. DROP_STOPLI ST

¢ See Also:

Oracle Text Reference to learn more about using these procedures

4.5 Creating a CONTEXT Index

The CONTEXT index type is well suited for indexing large, coherent documents in
formats such as Microsoft Word, HTML, or plain text. With a CONTEXT index, you can
also customize your index in a variety of ways. The documents must be loaded in a
text table.

This section contains these topics:

¢ CONTEXT Index and DML

o Default CONTEXT Index Example

* Incrementally Creating an Index with ALTER INDEX and CREATE INDEX

* Creating a CONTEXT Index Incrementally with POPULATE_PENDING

e Custom CONTEXT Index Example: Indexing HTML Documents

¢ CONTEXT Index Example: Query Processing with FILTER BY and ORDER BY

4.5.1 CONTEXT Index and DML

ORACLE

A CONTEXT index is not transactional. When you delete a record, the index is changed
immediately. That is, your session no longer finds the record from the moment you
make the change, and other users cannot find the record after you commit. For
inserts and updates, the new information is not visible to text searches until an index
synchronization has occurred. Therefore, when you perform inserts or updates on the
base table, you must explicitly synchronize the index with CTX_DDL. SYNC_| NDEX.

4-4

Chapter 4
Creating a CONTEXT Index

¢ See Also:

"Synchronizing the Index"

4.5.2 Default CONTEXT Index Example

The following statement creates a default CONTEXT index called nyi ndex on the t ext
column in the docs table:

CREATE | NDEX nyi ndex ON docs(text) |NDEXTYPE IS CTXSYS. CONTEXT;

When you use the CREATE | NDEX statement without explicitly specifying parameters,
the system completes the following actions by default for all languages:

» Assumes that the text to be indexed is stored directly in a text column. The text
column can be of type CLOB, BLOB, BFI LE, VARCHAR2, or CHAR.

* Detects the column type and uses filtering for the binary column types of BLOB and
BFI LE. Most document formats are supported for filtering. If your column is plain
text, the system does not use filtering.

" Note:

For document filtering to work correctly in your system, you must ensure
that your environment is set up correctly to support the AUTO FI LTER
filter.

* Assumes that the language of the text to index is the language specified in your
database setup.

» Uses the default stoplist for the language specified in your database setup.
Stoplists identify the words that the system ignores during indexing.

* Enables fuzzy and stemming queries for your language, if this feature is available
for your language.

You can always change the default indexing behavior by customizing your preferences
and specifying those preferences in the parameter string of CREATE | NDEX.

" See Also:

Oracle Text Reference to learn more about configuring your environment to
use the AUTO FI LTER filter

4.5.3 Incrementally Creating an Index with ALTER INDEX and
CREATE INDEX

The ALTER | NDEX and CREATE | NDEX statements support incrementally creating a global
CONTEXT index.

ORACLE 4.5

Chapter 4
Creating a CONTEXT Index

» For a global index, use CREATE | NDEX to support the NOPOPULATE keyword in the
REPLACE parameter of the REBUI LD clause. By doing so, you can create indexes
incrementally. This keyword is valuable for creating Oracle Text indexes in large
installations that cannot afford to have the indexing process running continuously.

* For alocal index partition, modify the ALTER | NDEX ... REBUI LD partition ...
paranet er s ('REPLACE ...") parameter string to support the NOPOPULATE keyword.

* For a partition on a local index, CREATE | NDEX ... LOCAL ... (partition ...
par anmet er s ('NOPOPULATE")) is supported. The partition-level POPULATE or
NOPOPULATE keywords override any POPULATE or NOPOPULATE specified at the index
level.

See Also:

Oracle Text Reference to learn more about the syntax for the ALTER | NDEX
and CREATE | NDEX statements

4.5.4 Incrementally Creating a CONTEXT Index with
POPULATE_PENDING

For large installations that cannot afford to have the indexing process run continuously,
use the CTX_DDL. POPULATE_PENDI NG procedure. This procedure also provides finer
control over creation of the indexes. The preferred method is to create an empty
index, place all rowids into the pending queue, and build the index through

CTX_DDL. SYNC | NDEX.

This procedure populates the pending queue with every rowid in the base table or
table partition.

¢ See Also:
Oracle Text Reference for information about CTX_DDL. POPULATE PENDI NG

4.5.5 Custom CONTEXT Index Example: Indexing HTML Documents

ORACLE

To index an HTML document set located by URLSs, specify the system-defined
preference for the NULL_FI LTER in the CREATE | NDEX statement.

You can also specify your ht ngr oup section group that uses HTM._SECTI ON_GROUP and
nmy_url datastore that uses URL_DATASTORE:

begi n
ctx_ddl.create_preference(' my_url'," URL_DATASTORE');
ctx_ddl.set_attribute(' my_url', ' HTTP_PROXY', ' ww\ proxy. us. exanpl e. com);
ctx_ddl.set_attribute(' my_url'," NO PROXY', ' us.exanple.com);
ctx_ddl.set_attribute('my_url'," Timeout',"'300");

end;

begi n

4-6

Chapter 4
Creating a CONTEXT Index

ctx_ddl . create_section_group(' htngroup', 'HTM._SECTI ON_GROUP');
ctx_ddl . add_zone_section(' htngroup', 'heading', '"HL');
end;

You can then index your documents:

CREATE | NDEX nyi ndex on docs(htmfile) indextype is ctxsys.context
par anet er s(
"datastore ny_url filter ctxsys.null_filter section group htngroup'

);

Note:

Starting with Oracle Database 21c, the Oracle Text type URL_DATASTORE is
deprecated. Use NETWORK DATASTORE instead.

¢ See Also:

"Creating Preferences " for more examples on creating a custom CONTEXT
index

4.5.6 CONTEXT Index Example: Query Processing with FILTER BY
and ORDER BY

To enable more efficient query processing and better response time for mixed queries,
use FI LTER BY and ORDER BY clauses as shown in the following example:

CREATE | NDEX nyindex on docs(text) |NDEXTYPE is CTXSYS. CONTEXT
FI LTER BY category, publisher, pub_date
ORDER BY pub_dat e desc;

Because you specified the FI LTERBY cat egory, publ i sher, pub_dat e clause at
guery time, Oracle Text also considers pushing a relational predicate on any of these
columns into the Oracle Text index row source.

Also, when the query has matching ORDER BY criteria, by specifying ORDER BY pub_dat e
desc, Oracle Text determines whether to push SORT into the Oracle Text index row
source for better response time.

4.5.7 DATASTORE Triggers in Release 12¢

If you want to create an Oracle Text CONTEXT index on multiple columns, use

MULTI _COLUWN_DATASTORE or USER DATASTORE to bring in the various columns for
indexing. Oracle Text updates the index only when the contents of a specified column
changes.

ORACLE 47

Chapter 4
Creating a CTXCAT Index

4.6 Creating a CTXCAT Index

The CTXCAT index type is well-suited for indexing small text fragments and related
information. This index type provides better structured query performance than a
CONTEXT index.

¢ CTXCAT Index and DML

* About CTXCAT Sub-Indexes and Their Costs
e Creating CTXCAT Sub-indexes

e Creating CTXCAT Index

4.6.1 CTXCAT Index and DML Operations

A CTXCAT index is transactional. When you perform inserts, updates, and deletes on
the base table, Oracle Text automatically synchronizes the index. Unlike a CONTEXT
index, no CTX_DDL. SYNC | NDEX is necessary.

" Note:

Applications that insert without invoking triggers, such as SQL*Loader, do not
result in automatic index synchronization as described in this section.

4.6.2 About CTXCAT Subindexes and Their Costs

A CTXCAT index contains subindexes that you define as part of your index set. You
create a subindex on one or more columns to improve mixed query performance.
However, the time Oracle Text takes to create a CTXCAT index depends on its total size,
and the total size of a CTXCAT index is directly related to the following factors:

e Total text to be indexed
e Number of subindexes in the index set
e Number of columns in the base table that make up the subindexes

Many component indexes in your index set also degrade the performance of insert,
update, and delete operations, because more indexes must be updated.

Because of the added index time and disk space costs for creating a CTXCAT index,
before adding it to your index set, carefully consider the query performance benefit
that each component index gives your application.

¢ Note:

You can use | _RON D_| NDEX_CLAUSE of BASI C_STORACE to speed up creation
of a CTXCAT index. This clause is described in Oracle Text Reference.

ORACLE 4-8

Chapter 4
Creating a CTXCAT Index

4.6.3 Creating CTXCAT Subindexes

An online auction site that must store item descriptions, prices, and bid-close dates for
ordered look-up is a good example for creating a CTXCAT index.

Figure 4-1 Auction Table Schema and CTXCAT Index

Subindex A
CTXCAT
. Index
Auction Table — 1
item_id | title category_id | price bid_close @
number | varchar (100) | number number | date
>8]
Subindex B

Figure 4-1 shows a table called AUCTI ON with the following schema:

create table auction(
itemid nunber,

title varchar2(100),
category_id nunber,
price nunber,

bid_cl ose date);

To create your subindexes, create an index set to contain them:
begin

ctx_ddl . create_index_set('auction_iset');
end;

Next, determine the structured queries that you are likely to enter. The CATSEARCH
guery operator takes a mandatory text clause and optional structured clause.

In the example, this means that all queries include a clause for the titl e column,
which is the text column.

Assume that the structured clauses fall into the following categories:

Structured Clauses Subindex Definition to Category
Serve Query

'price < 200’ 'price’ A

'price = 150’

‘order by price'

ORACLE 4.9

Chapter 4
Creating a CTXCAT Index

Structured Clauses Subindex Definition to Category
Serve Query

'price = 100 order by bid_close' 'price, bid_close' B
‘order by price, bid_close’

Structured Query Clause Category A

The structured query clause contains an expression only for the pri ce column as
follows:

SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'price < 200')> 0;
SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'price = 150')> 0;
SELECT FROM auction WHERE CATSEARCH(title, 'canera’, 'order by price')> 0;

These queries can be served by using subindex B. However, for efficiency, you can
also create a subindex only on pri ce (subindex A):

begin
ctx_ddl . add_i ndex(' auction_iset', 'price'); /* sub-index A */
end;

Structured Query Clause Category B

The structured query clause includes an equivalent expression for pri ce ordered by
bi d_cl ose, and an expression for ordering by pri ce and bi d_cl ose, in that order:

SELECT FROM aucti on WHERE CATSEARCH(
title, "camera','price = 100
ORDER BY bi d_cl ose')> 0;
SELECT FROM auction
WHERE CATSEARCH(
title, "camera','order by price, bid_close)> 0;

These queries can be served with a subindex defined as follows:

begin
ctx_ddl . add_i ndex(' auction_iset', 'price, bid_close'); /* sub-index B */
end;

Like a combined b-tree index, the column order that you specify with

CTX_DDL. ADD_I NDEX affects the efficiency and viability of the index scan which Oracle
Text uses to serve specific queries. For example, if two structured columns p and g
have a b-tree index specified as ' p, q' , Oracle Text cannot scan this index to sort

' ORDERBY q, p' .

4.6.4 Creating CTXCAT Index

ORACLE

This example combines the previous examples and creates the index set preference
with the two subindexes:

begi n

ctx_ddl . create_index_set('auction_iset');

ctx_ddl . add_i ndex(' auction_iset','price'); /* sub-index A */

ctx_ddl . add_i ndex(' auction_iset', 'price, bid_close'); /* sub-index B */
end;

4-10

Chapter 4
Creating a CTXRULE Index

Figure 4-1 shows how the subindexes A and B are created from the auction table.
Each subindex is a b-tree index on the text column and the named structured columns.
For example, subindex A is an index on the tit| e column and the bi d_cl ose column.

You create the combined catalog index with the CREATE | NDEX statement as follows:

CREATE | NDEX auction_titlex ON AUCTION(title)
| NDEXTYPE | S CTXSYS. CTXCAT
PARAMETERS ('index set auction_iset")

" See Also:

Oracle Text Reference to learn more about creating a CTXCAT index with
CREATEI NDEX

4.7 Creating a CTXRULE Index

ORACLE

To build a document classification application, use the CTXRULE index on a table

or queries. The stream of incoming documents is classified by content, and the
gueries define your categories. You can use the MATCHES operator to classify single
documents.

To create a CTXRULE index and a simple document classification application:

1. Create a table of queries.

Create a nyquer i es table to hold the category name and query text, and then
populate the table with the classifications and the queries that define each
classification.

CREATE TABLE nyqueries (
queryi d NUMBER PRI MARY KEY,
category VARCHAR2(30),
query VARCHAR2(2000)

);

For example, consider a classification for the US Politics, Music, and Soccer
subjects:

I NSERT | NTO nyqueries VALUES(1, 'US Politics', 'denocrat or republican');
I NSERT | NTO nyqueries VALUES(2, 'Music', 'ABOUT(music)');
I NSERT | NTO nyqueries VALUES(3, 'Soccer', 'ABOUT(soccer)');

Tip:

You can also generate a table of rules (or queries) with the
CTX_CLS. TRAI N procedure, which takes as input a document training set.

2. Create the CTXRULE index.

Use the CREATE | NDEX statement to create the CTXRULE index and specify lexer,
storage, section group, and wordlist parameters if needed.

4-11

Chapter 4
Creating a Search Index for JSON

CREATE | NDEX nyrul ei ndex ON nyqueri es(query)
| NDEXTYPE | S CTXRULE PARAMETERS
(" lexer Iexer_pref
storage storage_pref
section group section_pref
wordlist wordlist_pref');

3. Classify a document.
Use the MATCHES operator to classify a document.
Assume that incoming documents are stored in the table news:

CREATE TABLE news (
newsi d NUMBER,
aut hor VARCHAR2(30),
sour ce VARCHAR2(30),
article CLOB);

If you want, create a "before insert" trigger with MATCHES to route each document to
a news_rout e table based on its classification:

BEG N

-- find matching queries

FOR c1 IN (select category

from nyqueries
where MATCHES(query, :new. article)>0)
LooP
I NSERT | NTO news_rout e(newsi d, category)
VALUES (:new. newsid, cl.category);

END LOOP;

END;

¢ See Also:

e Classifying Documents in Oracle Text for more information on document
classification and the CTXRULE index

e Oracle Text Reference for more information on CTX_CLS. TRAI N

4.8 Creating a Search Index for JSON

Oracle Text supports a simpler alternative syntax for creating a search index on
JavaScript Object Notation (JSON). The JSON search index is created on the table
column name.

¢ See Also:
Oracle Database JSON Developer's Guide

4.9 Creating an Oracle Text Search Index

You can create a CONTEXT index using a simplified SEARCH | NDEX syntax.

ORACLE 4-12

ORACLE

Chapter 4
Creating an Oracle Text Search Index

The Oracle Text SEARCH | NDEX is a new index type which supports CONTEXT index
functionality but also supports sharded databases and system managed partitioning
for index storage.

¢ See Also:
Oracle Text Reference for more information about CREATE SEARCH | NDEX

4-13

Maintaining Oracle Text Indexes

You can maintain your index for an error or indexing failure.
This chapter contains the following topics:

e Viewing Index Errors

* Dropping an Index

* Resuming Failed Index

* Re-creating an Index

e Rebuilding an Index

* Dropping a Preference

* Managing DML Operations for a CONTEXT Index

5.1 Viewing Index Errors

Sometimes an indexing operation might fail or it might not complete successfully.
When the system encounters an error during row indexing, it logs the error in an
Oracle Text view.

You can view errors on your indexes with CTX_USER | NDEX_ERRORS. View errors on all
indexes as CTXSYS with CTX_| NDEX_ERRORS.

For example, to view the most recent errors on your indexes, enter the following
statement:

SELECT err_timestanp, err_text
FROM ct x_user _i ndex_errors
ORDER BY err_timestanp DESC,

To clear the view of errors, enter:

DELETE FROM ct x_user _i ndex_errors;

This view is cleared automatically when you create a new index.

¢ See Also:

Oracle Text Reference to learn more about index error views

5.2 Dropping an Index

ORACLE

You must drop an existing index before you can re-create it with the CREATE | NDEX
statement.

5-1

Chapter 5
Resuming a Failed Index

Drop an index by using the DROP | NDEX statement in SQL.

If you try to create an index with an invalid PARAMETERS string, then you still need to
drop it before you can re-create it.

For example, to drop an index called newsi ndex, enter the following SQL statement:

DRCP | NDEX newsi ndex;

If Oracle Text cannot determine the state of the index (for example, because of an
indexing malfunction), you cannot drop the index. Instead use:

DROP | NDEX newsi ndex FORCE;

¢ See Also:

Oracle Text Reference to learn more about the DROP | NDEX statement

5.3 Resuming a Failed Index

You can sometimes resume a failed index by using the ALTER | NDEX statement. You
typically resume a failed index after you have investigated and corrected the index
failure. You cannot resume all index failures.

Index optimization commits at regular intervals. Therefore, if an optimization operation
fails, then all optimization work up to the commit point was already saved.

" See Also:

Oracle Text Reference to learn more about the ALTER | NDEX statement syntax

The following statement resumes the indexing operation on newsi ndex with 10
megabytes of memory:

ALTER | NDEX newsi ndex REBUI LD PARAMETERS('resume nmenory 10M);

5.4 Re-creating an Index

This section describes the procedures for re-creating an index. During the re-creation
process, you can query the index normally.

e Re-creating a Global Index

e Re-creating a Local Partitioned Index

5.4.1 Re-creating a Global Index

ORACLE

Oracle Text provides RECREATE | NDEX_ONLI NE to re-create a CONTEXT index with new
preferences, while preserving inserts, updates, and deletes on the base table. You can
use RECREATE_| NDEX_ONLI NE in a single-step procedure to re-create a CONTEXT index
online for global indexes. Because the new index is created alongside the existing

5-2

Chapter 5
Re-creating an Index

index, this operation requires storage that is roughly equal to the size of the existing
index. Also, because the RECREATE_| NDEX_ONLI NE operation is performed online, you
can perform inserts, updates, and deletes on the base table during the operation. All
insert, update, and delete operations that occur during the re-creation process are
logged into an online pending queue.

* After the re-creation operation is complete, new information may not be
immediately reflected. As with creating an index online, you should synchronize
the index after the re-creation operation is complete to bring it fully up-to-date.

* Synchronizations issued against the index during the re-creation operation are
processed against the existing data. Synchronizations are blocked when queries
return errors.

* Optimize commands issued against the index during the re-creation operation
return immediately without error and without processing.

* During RECREATE_| NDEX_ONLI NE, you can query the index normally most of the
time. Queries return results based on the existing index and policy until after the
final swap. Also, if you issue insert, update, and delete operations and synchronize
them, then you will be able to see the new rows when you query the existing
index.

Note:
Transactional queries are not supported with RECREATE_| NDEX_ONLI NE.

Re-creating a Global Index with Time Limit for Synch

You can control index re-creation to set a time limit for SYNC_| NDEX during nonbusiness
hours and incrementally re-create the index. Use the CREATE_SHADOW | NDEX procedure
with POPULATE _PENDI NG and maxtime.

Re-creating a Global Index with Scheduled Swap

With CTX_DDL. EXCHANGE_SHADOW | NDEX, you can perform index re-creation during
nonbusiness hours when query failures and DML blocking can be tolerated.

" See Also:

e Oracle Text Reference to learn more about the RECREATE | NDEX_ONLI NE
procedure

e Oracle Text Reference for information and examples for
CREATE_SHADOW | NDEX

e Oracle Text Reference for information and examples for
CTX_DDL. EXCHANGE_SHADOW | NDEX

ORACLE 5-3

Chapter 5
Re-creating an Index

5.4.2 Re-creating a Local Partitioned Index

If the index is locally partitioned, you cannot re-create the index in one step. You must
first create a shadow policy, and then run the RECREATE_| NDEX_ONLI NE procedure for
every partition. You can specify SWAP or NOSWAP, which indicates whether re-creating
the index for the partition swaps the index partition data and index partition metadata.

You can also use this procedure to update the metadata (for example, the storage
preference) of each partition when you specify NOPOPULATE in the parameter string.
This keyword is useful for incremental building of a shadow index through time-limited
synchronization. If you specify NOPOPULATE, then NOSWAP is silently enforced.

* When all partitions use NOSWAP, the storage requirement is approximately equal to
the size of the existing index. During re-creation of the index partition, because no
swapping is performed, queries on the partition are processed normally. Queries
spanning multiple partitions return consistent results across partitions until the
swapping stage is reached.

e When the partitions are rebuilt with SWAP, the storage requirement for the
operation is equal to the size of the existing index partition. Because index
partition data and metadata are swapped after re-creation, queries spanning
multiple partitions do not return consistent results from partition to partition, but
they will always be correct with respect to each index partition.

* If you specify SWAP, then insert, update, and delete operations and synchronization
on the partition are blocked during the swap process.

Re-creating a Local Index with All-at-Once Swap

You can re-create a local partitioned index online to create or change preferences.
The swapping of the index and partition metadata occurs at the end of the process.
Queries spanning multiple partitions return consistent results across partitions when
the re-creation is in process, except at the end when EXCHANGE_SHADOW | NDEX is
running.

Scheduling Local Index Re-creation with All-at-Once Swap

With RECREATE_| NDEX_ONLI NE of the CTX. DDL package, you can incrementally re-create
a local partitioned index, where partitions are all swapped at the end.

Re-creating a Local Index with Per-Partition Swap

Instead of swapping all partitions at once, you can re-create the index online with
new preferences, and each partition is swapped as it is completed. Queries across
all partitions may return inconsistent results during this process. This procedure uses
CREATE_SHADOW | NDEX with RECREATE_| NDEX_ONLI NE.

¢ See Also:

Oracle Text Reference for complete information about
RECREATE_| NDEX_ONLI NE

ORACLE 5-4

Chapter 5
Rebuilding an Index

5.5 Rebuilding an Index

You can rebuild a valid index by using ALTER | NDEX. Rebuilding an index does not
allow most index settings to be changed. You might rebuild an index when you want to
index with a new preference. Generally, there is no advantage in rebuilding an index
over dropping it and re-creating it with the CREATE | NDEX statement.

¢ See Also:

"Re-creating an Index" for information about changing index settings

The following statement rebuilds the index and replaces the lexer preference with
my_| exer:

ALTER | NDEX newsi ndex REBUI LD PARAMETERS(' repl ace | exer ny_lexer');

5.6 Dropping a Preference

You might drop a custom index preference when you no longer need it for indexing.
You drop index preferences with the CTX_DDL. DROP_PREFERENCE procedure.

Dropping a preference does not affect the index that is created from the preference.

¢ See Also:

Oracle Text Reference to learn more about the syntax for the
CTX_DDL. DROP_PREFERENCE procedure

The following code drops the ny_| exer preference:

begin
ctx_ddl . drop_preference(' ny_l exer');
end;

5.7 Managing DML Operations for a CONTEXT Index

ORACLE

DML operations refer to when documents are inserted, updated, or deleted from the
base table. This section describes how you can view, synchronize, and optimize the
Oracle Text CONTEXT index for DML operations. This section contains the following
topics:

* Viewing Pending DML
e Synchronizing the Index

e Optimizing the Index

5-5

Chapter 5
Managing DML Operations for a CONTEXT Index

< Note:

CTXCAT indexes are transactional and are updated immediately when the
base table changes. The manual synchronization as described in this section
is not necessary for a CTXCAT index.

5.7.1 Viewing Pending DML Operations

When you insert or update documents in the base table, their rowids are held in
a DML queue until you synchronize the index. You can view this queue in the
CTX_USER _PENDI NG view.

For example, to view pending DML operations on your indexes, enter the following
statement:

SELECT pnd_i ndex_nane, pnd_rowi d, to_char(

pnd_timestanp, 'dd-non-yyyy hh24:nm:ss'
) tinmestanmp FROM ctx_user_pendi ng;

This statement gives output in the following form:

PD_| NDEX_NANE PND_ROW D TI VESTAWP
MYI NDEX AAADXNAABAAAS3SAAC 06- oct - 1999 15: 56: 50
¢ See Also:

Oracle Text Reference to learn more about the CTX_USER_PENDI NG view

5.7.2 Synchronizing the Index

ORACLE

When you synchronize the index, you process all pending updates and inserts to the
base table. You can do this in PL/SQL with the CTX_DDL. SYNC | NDEX procedure. You
can also control the duration and locking behavior for index synchronization with the
CTX_DDL. SYNC_| NDEX procedure.

Synchronizing the Index with SYNC_INDEX

The following example synchronizes the index with 2 megabytes of memory:
begin

ctx_ddl . sync_i ndex(' nyi ndex', '2M);

end;

Maxtime Parameter for SYNC_INDEX

The SYNC_| NDEX procedure includes a maxt i me parameter that, like OPTI M ZE_| NDEX|
indicates a suggested time limit in minutes for the operation. The SYNC_| NDEX
procedure processes as many documents in the queue as possible within the given
time limit.

5-6

Chapter 5
Managing DML Operations for a CONTEXT Index

* NULL mextine is equivalent to CTX DDL. MAXTI ME_UNLI M TED.

e The time limit is approximate. The actual time may be less than, or greater than,
what you specify.

e The ALTERI NDEX... sync command has no changes because it is deprecated.

* The maxti nme parameter is ignored when SYNC | NDEX is invoked without an index
name.

e The maxti me parameter cannot be communicated for automatic synchronizations
(for example, sync on conmi t or sync every).

Locking Parameter for SYNC_INDEX

The locking parameter of SYNC_| NDEX enables you to configure how the
synchronization works when another synchronization is already running on the index.

* The locking parameter is ignored when SYNC_| NDEX is invoked without an index
name.

e The locking parameter cannot be communicated for automatic synchronizations
(that is, sync on commi t or sync every).

* When the locking mode is LOCK_WAI T, the mode waits forever and ignores the
maxtime setting if it cannot get a lock.

The options are as follows:

Option Description

CTX_DDL. LOCK WAI T If another SYNC_I NDEX is running, wait until the
running synchronization is complete, and then
begin the new synchronization.

CTX _DDL. LOCK_NOWAI' T If another SYNC_| NDEX is running, immediately
return without error.
CTX_DDL. LOCK_NOWAI T_ERRCR If another SYNC_| NDEX is running, immediately

generate an error (DRG-51313: timeout while
waiting for inserts, updates, or deletes or
optimize lock).

" Note:

Starting with Oracle Database 12¢ Release 2 (12.2.0.1), you automatically
merge rows from STAGE_| TAB back to the $| table by using SYNC_| NDEX.
This merging of rows happens when the number of rows in STAGE_| TAB ($G
exceeds the STAGE_| TAB_MAX_ROWS parameter (10K by default). Therefore,
you do not have to run merge optimization explicitly or schedule an auto
optimize job.

ORACLE .

Chapter 5
Managing DML Operations for a CONTEXT Index

¢ See Also:

Oracle Text Reference to learn more about the CTX_DDL. SYNC | NDEX
statement syntax

5.7.3 Optimizing the Index

The CONTEXT index is an inverted index where each word contains the list of
documents that contain that word. For example, after a single initial indexing
operation, the word DOG might have the following entry:

DOG DOCL DOC3 DOCh
Frequent index synchronization ultimately causes fragmentation of your CONTEXT
index. Index fragmentation can adversely affect query response time. Therefore, to

reduce fragmentation and index size and to ensure optimal query performance, allow
time to optimize your CONTEXT index.

To schedule an auto optimize job, you must explicitly set STAGE_| TAB_MAX_ROAS to 0 to
disable the automatic merging that now happens with SYNC | NDEX.

To optimize an index, Oracle recommends that you use CTX_DDL. OPTI M ZE_| NDEX. To
understand index optimization, you must understand the structure of the index and
what happens when it is synchronized. This section contains the following topics:

* Index Fragmentation
» Document Invalidation and Garbage Collection
* Single Token Optimization

* Viewing Index Fragmentation and Garbage Data

¢ See Also:

Oracle Text Reference for the CTX DDL. OPTI M ZE_| NDEX statement syntax
and examples

5.7.3.1 Index Fragmentation

ORACLE

When you add new documents to the base table, the index is synchronized by adding
new rows. For example, if you add the DOC 7 document with the word dog and
synchronize the index, you now have:

DOG DOC1 DOC3 DOCS
DOG DOC

Subsequent inserts, updates, or deletes also create new rows, as follows:

DOG DOC1 DOC3 DOCS
DOG DOC7
DOG DOC9
DOG DOCL1

5-8

Chapter 5
Managing DML Operations for a CONTEXT Index

Index fragmentation occurs when you add new documents and synchronize the index.
In particular, background inserts, updates, or deletes, which synchronize the index
frequently, generally produce more fragmentation than batch mode synchronization.

When you perform batch processing less frequently, you reduce fragmentation
because you produce longer document lists with a reduced number of rows in the
index.

You can reduce index fragmentation by optimizing the index in either FULL or FAST
mode with CTX _DDL. OPTI M ZE | NDEX.

5.7.3.2 Document Invalidation and Garbage Collection

When you remove documents from the base table, Oracle Text marks the document
as removed but does not immediately alter the index.

Because the old information takes up space and can cause extra overhead at query
time, you must remove the old information from the index by optimizing it in FULL
mode. This process is called garbage collection. Optimizing in FULL mode for
garbage collection is necessary when you perform frequent updates or deletes to the
base table.

5.7.3.3 Single Token Optimization

In addition to optimizing the entire index, you can optimize single tokens. You can use
token mode to optimize index tokens that are frequently searched, without spending
time on optimizing tokens that are rarely referenced.

For example, you can specify that only the token DOG be optimized in the index, if you
know that this token is updated and queried frequently.

An optimized token can improve query response time for the token.

To optimize an index in token mode, use CTX_DDL. OPTI M ZE_| NDEX.

5.7.3.4 Viewing Index Fragmentation and Garbage Data

With the CTX_REPORT. | NDEX_STATS procedure, you can create a statistical report on
your index. The report includes information on optimal row fragmentation, a list of most
fragmented tokens, and the amount of garbage data in your index. Although this report
might take a long time to run for large indexes, it can help you decide whether to
optimize your index.

¢ See Also:

Oracle Text Reference to learn more about using the
CTX_REPORT. | NDEX_STATS procedure

ORACLE 5-9

Querying with Oracle Text

Become familiar with Oracle Text querying and associated features.
This chapter contains the following topics:

e Overview of Queries

e Oracle Text Query Features

6.1 Overview of Queries

The basic Oracle Text query takes a query expression, usually a word with or without
operators, as input. Oracle Text returns all documents (previously indexed) that satisfy
the expression along with a relevance score for each document. You can use the
scores to order the documents in the result set.

To enter an Oracle Text query, use the SQL SELECT statement. Depending on the type
of index, you use either the CONTAI NS or CATSEARCH operator in the WHERE clause. You
can use these operators programatically wherever you can use the SELECT statement,
such as in PL/SQL cursors.

Use the MATCHES operator to classify documents with a CTXRULE index.

* Querying with CONTAINS

* Querying with CATSEARCH
* Querying with MATCHES

e Word and Phrase Queries

* Querying Stopwords

* ABOUT Queries and Themes

6.1.1 Querying with CONTAINS

ORACLE

When you create an index of type CONTEXT, you must use the CONTAI NS operator
to enter your query. This index is suitable for indexing collections of large coherent
documents.

With the CONTAI NS operator, you can use a humber of operators to define your search
criteria. These operators enable you to enter logical, proximity, fuzzy, stemming,
thesaurus, and wildcard searches. With a correctly configured index, you can also
enter section searches on documents that have internal structure such as HTML and
XML.

With CONTAI NS, you can also use the ABOUT operator to search on document themes.

* CONTAINS SQL Example
* CONTAINS PL/SQL Example
e Structured Query with CONTAINS

6-1

Chapter 6
Overview of Queries

6.1.1.1 CONTAINS SQL Example

In the SELECT statement, specify the query in the WHERE clause with the CONTAI NS
operator. Also specify the SCORE operator to return the score of each hit in the hitlist.
The following example shows how to enter a query:

SELECT SCORE(1), title fromnews WHERE CONTAINS(text, 'oracle', 1) > 0;

You can order the results from the highest scoring documents to the lowest scoring
documents by using the ORDER BY clause as follows:

SELECT SCORE(1), title from news
WHERE CONTAI NS(text, 'oracle', 1) >0
ORDER BY SCORE(1) DESC;

The CONTAI NS operator must always be followed by the > 0 syntax, which specifies that
the score value returned by the CONTAI NS operator must be greater than zero for the
row to be returned.

When the SCORE operator is called in the SELECT statement, the CONTAI NS operator
must reference the score label value in the third parameter, as shown in the previous
example.

6.1.1.2 CONTAINS PL/SQL Example

In a PL/SQL application, you can use a cursor to fetch the results of the query.

The following example enters a CONTAI NS query against the NEWS table to find all
articles that contain the word oracle. The titles and scores of the first ten hits are
output.

decl are
rowno nunber := 0;
begi n
for ¢l in (SELECT SCORE(1) score, title FROM news
WHERE CONTAINS(text, 'oracle', 1) >0
ORDER BY SCORE(1) DESC)

| oop
rowno := rowno + 1;
dbms_out put. put _line(cl.title||': "||cl.score);
exit when rowno = 10;
end | oop;
end;

This example uses a cursor FOR loop to retrieve the first ten hits. An alias score is
declared for the return value of the SCORE operator. The score and title are shown as
output by using the cursor dot notation.

6.1.1.3 Structured Query with CONTAINS Example

ORACLE

A structured query, also called a mixed query, is a query that has one CONTAI NS
predicate to query a text column and another predicate to query a structured data
column.

To enter a structured query, specify the structured clause in the WHERE condition of the
SELECT statement.

6-2

Chapter 6
Overview of Queries

For example, the following SELECT statement returns all articles that contain the word
oracle written on or after October 1, 1997:

SELECT SCORE(1), title, issue_date from news
WHERE CONTAINS(text, 'oracle', 1) >0
AND i ssue_date >= (' 01-QOCT-97")
ORDER BY SCORE(1) DESC;

< Note:

Although you can enter structured queries with CONTAI NS, consider creating
a CTXCAT index and issuing the query with CATSEARCH, which offers better
structured query performance.

6.1.2 Querying with CATSEARCH

When you create an index of type CTXCAT, you must use the CATSEARCH operator
to enter your query. This index is suitable when your application stores short text
fragments in the text column and associated information in related columns.

For example, an application serving an online auction site includes a table that stores
item descriptions in a text column and date and price information in other columns.
With a CTXCAT indeX, you can create b-tree indexes on one or more columns, so that
guery performance is generally faster for mixed queries.

The operators available for CATSEARCH queries are limited to logical operations such as
AND or OR. To define your structured criteria, use the following operators : greater than,
less than, equality, BETVEEN, and | N.

e CATSEARCH SQL Query
 CATSEARCH Example

6.1.2.1 CATSEARCH SQL Query Example

ORACLE

A typical query with CATSEARCH includes the following structured clause to find all rows
that contain the word camera ordered by the bi d_cl ose date:

SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'order by bid_close desc')>
0;

The type of structured query tht you can enter depends on how you create your
sub-indexes.

" See Also:
"Creating a CTXCAT Index"

As shown in the previous example, you specify the structured part of a CATSEARCH
guery with the third st ruct ured_query parameter. The columns in the structured
expression must have a corresponding subindex.

6-3

Chapter 6
Overview of Queries

For example, assuming that cat egory_i d and bi d_cl ose have a subindex in the
ctxcat index for the AUCTI ON table, enter the following structured query:

SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'category_i d=99 order by
bi d_cl ose desc')> 0;

6.1.2.2 CATSEARCH Example

The following example shows a field section search against a CTXCAT index. It uses
CONTEXT grammar by means of a query template in a CATSEARCH query.

-- Create and popul ate table
create table BOOKS (ID nunber, |NFO varchar?2(200), PUBDATE DATE);

insert into BOOKS val ues(1, '<author>NOAM CHOVBKY</ aut hor ><subj ect >Cl VI L
Rl GHTS</ subj ect ><I anguage>ENGL| SH</ | anguage><publ i sher>M T
PRESS</ publ i sher>", ' 01- NOV-2003');

insert into BOOKS val ues(2, '<author>N CANOR PARRA</ aut hor ><subj ect >PCEMS
AND ANTI POEMS</ subj ect ><I anguage>SPANI SH</ | anguage>
<publ i sher >VASQUEZ</ publ i sher>', '01-JAN-2001');

insert into BOOKS val ues(1, '<author>LUC SANTE</ aut hor ><subj ect >XM.
DATABASE</ subj ect ><I anguage>FRENCH</ | anguage><publ i sher >FREE
PRESS</ publ i sher>", ' 15- MAY-2002');

comit;

-- Create index set and section group
exec ctx_ddl.create_index_set (' BOOK_| NDEX_SET');
exec ctx_ddl.add_i ndex(' BOOK_| NDEX_SET' , ' PUBDATE') ;

exec ctx_ddl.create_section_group(' BOOK_SECTI ON_GROUP',
" BASI C_SECTI ON_GROUP') ;
exec ctx_ddl.add_field_section
exec ctx_ddl.add_field_section
exec ctx_ddl.add_field_section
exec ctx_ddl.add_field_section

(" BOOK_SECTI ON_GROUP' , ' AUTHOR , ' AUTHOR) ;

(" BOOK_SECTI ON_GROUP' , ' SUBJECT" , ' SUBJECT") ;

(" BOOK_SECTI ON_GROUP' , ' LANGUAGE' , ' LANGUAGE') ;

(" BOOK_SECTI ON_GROUP', ' PUBLI SHER', ' PUBLI SHER) ;

-- Create index

create index books_index on books(info) indextype is ctxsys.ctxcat
paraneters('index set book_index_set section group book_section_group');

-- Use the index

-- Note that: even though CTXCAT index can be created with field sections, it
-- cannot be accessed using CTXCAT grammar (default for CATSEARCH).

-- W need to use query tenplate with CONTEXT grammar to access field

-- sections with CATSEARCH

select id, info from books
where catsearch(info,
' <query>
<t ext query granmmar="context">
NOAM wi t hi n aut hor and english within | anguage
</textquery>
</ query>',
"order by pubdate')>0;

ORACLE 6-4

Chapter 6
Overview of Queries

6.1.3 Querying with MATCHES

When you create an index of type CTXRULE, you must use the MATCHES operator to
classify your documents. The CTXRULE index is essentially an index on the set of
gueries that define your classifications.

For example, if you have an incoming stream of documents that need to be routed
according to content, you can create a set of queries that define your categories. You
create the queries as rows in a text column. You can create this type of table with the
CTX_CLS. TRAI N procedure.

You then index the table to create a CTXRULE index. When documents arrive, you use
the MATCHES operator to classify each document

« MATCHES SQL Query
« MATCHES PL/SQL Example

See Also:

Classifying Documents in Oracle Text

6.1.3.1 MATCHES SQL Query

A MATCHES query finds all rows in a query table that match a given document.
Assuming that a quer yt abl e table is associated with a CTXRULE index, enter the
following query:

SELECT cl assification FROM querytabl e WHERE MATCHES(query_string,:doc_text) > 0;

The : doc_t ext bind variable contains the CLOB document to be classified.

Here is a simple example:

create table queries (
query_id nunber,
query_string varchar2(80)
)s

insert into queries values (1, 'oracle');

insert into queries values (2, 'larry or ellison');
insert into queries values (3, 'oracle and text');
insert into queries values (4, 'market share');

create index queryx on queries(query_string)
i ndextype is ctxsys.ctxrule;

select query_id fromqueries

where mat ches(query_string,
"Oracl e announced that its market share in databases
i ncreased over the last year.')>0

This query returns queries 1 (the word oracle appears in the document) and 4 (the
phrase market share appears in the document), but not 2 (neither the word larry nor

ORACLE 6-5

ORACLE

Chapter 6
Overview of Queries

the word ellison appears, and not 3 (there is no text in the document, so it does not
match the query).

In this example, the document was passed in as a string for simplicity. Your document
is typically passed in a bind variable.

The document text used in a MATCHES query can be VARCHAR2 or CLOB. It does not
accept BLOB input, so you cannot match filtered documents directly. Instead, you must
filter the binary content to CLOB by using AUTO FI LTER. The following example makes
two assumptions:

e The document data is in the : doc_bl ob bind variable.
* You have already defined ny_pol i cy that CTX_DCC. POLI CY_FI LTER can use.
For example:

decl are
doc_text clob;
begin
- create a tenporary CLOB to hold the document text
doc_text := dbns_| ob. createtenporary(doc_text, TRUE, DBMS_LOB. SESSION);

- create a sinple policy for this exanple

ctx_ddl.create_preference(preference_name => 'fast _filter',
obj ect _name => ' AUTO FILTER);

ctx_ddl.set_attribute(preference_name => 'fast filter',
attribute_nane => ' QUTPUT_FORMATTI NG ,
attribute_value =>"'FALSE);

ctx_ddl . create_policy(policy_name => 'ny_policy',
filter => 'fast_filter);

- call ctx_doc.policy filter to filter the BLOB to CLOB data
ctx_doc.policy filter('my_policy', :doc_blob, doc_text, FALSE);

- now do the matches query using the CLOB version
for ¢l in (select * fromqueries where matches(query_string, doc_text)>0)
| oop
- do what you need to do here
end | oop;

dbns_| ob. freet enporary(doc_text);
end;

The CTX_DCC. POLI CY_FI LTER procedure filters the BLOB into the CLOB data, because
you must get the text into a CLOB to enter a MATCHES query. It takes, as one argument,
the name of a policy that you already created with CTX_DDL. CREATE PQLI CY.

See Also:

Oracle Text Reference for information on CTX_DOC. POLI CY_FI LTER

If your file is text in the database character set, then you can create a BFI LE and load
it to a CLOB by using the DBM5S_LOB. LOADFROVFI LE function, or you can use UTL_FI LE to
read the file into a temp CLOB locator.

6-6

Chapter 6
Overview of Queries

If your file needs AUTO FI LTER filtering, then you can load the file into a BLOB instead
and call CTX_DCC. POLI CY_FI LTER, as previously shown.

¢ See Also:

Classifying Documents in Oracle Text for more extended classification
examples

6.1.3.2 MATCHES PL/SQL Examples

ORACLE

The following example assumes that the profi | es table of queries is associated with a
CTXRULE index. It also assumes that the newsf eed table contains a set of news articles
to be categorized.

This example loops through the newsf eed table, categorizing each article by using the
MATCHES operator. The results are stored in the resul t s table.

PROVPT Popul ate the category table based on newsfeed articles
PROVPT
set serveroutput on;
decl are

mypk nunber;

mytitle varchar2(1000);

myarticles clob;

mycat egory varchar2(100);

cursor doccur is select pk,title,articles from newsfeed;

cursor mycur is select category fromprofiles where matches(rule,
nyarticl es)>0;

cursor rescur is select category, pk, title fromresults order by category, pk;

begi n
dbns_out put . enabl e(1000000) ;
open doccur;
| oop
fetch doccur into nypk, nytitle, nmyarticles;
exit when doccur %ot f ound;
open nycur;
| oop
fetch nycur into mycategory;
exit when nycur %ot f ound;
insert into results val ues(nycategory, nypk, nytitle);
end | oop;
cl ose nycur;
commit;
end | oop;
cl ose doccur;
commit;

end;

The following example displays the categorized articles by category.

PROWT display the list of articles for every category
PROVPT
set serveroutput on;

decl are

6-7

Chapter 6
Overview of Queries

mypk nunber;

mytitle varchar2(1000);

mycat egory varchar2(100);

cursor catcur is select category fromprofiles order by category;

cursor rescur is select pk, title fromresults where category=nycategory order

by pk;

begin
dbns_out put . enabl e(1000000) ;
open catcur;
| oop
fetch catcur into nycategory;
exit when cat cur %ot f ound;
dbns_out put. put _|ine(' *******x*x* CATEGORY: '||mycategory||' **x*x*x*xkxsxt).
open rescur;
| oop
fetch rescur into nypk, nytitle;
exit when rescur %ot found;
dbns_out put. put _line("** ("||nypk||"). "||nmytitle);
end | oop;
cl ose rescur;
dbns_out put. put _line('**");
dbn-s_out put . put_l | ne(' ***');
end | oop;
cl ose catcur;
end;

See Also:

Classifying Documents in Oracle Text for more extended classification
examples

6.1.4 Word and Phrase Queries

A word query is a query on a word or phrase. For example, to find all the rows in your
text table that contain the word dog, enter a query specifying dog as your query term.

You can enter word queries with both CONTAI NS and CATSEARCH SQL operators.
However, phrase queries are interpreted differently.

e CONTAINS Phrase Queries: If multiple words are contained in a query
expression, separated only by blank spaces (no operators), the string of words
is considered a phrase. Oracle Text searches for the entire string during a query.
For example, to find all documents that contain the phrase international law, enter
your query with the phrase international law.

e CATSEARCH Phrase Queries: With the CATSEARCH operator, you insert the AND
operator between words in phrases. For example, a query such as international
law is interpreted as international AND law.

6.1.5 Querying Stopwords

Stopwords are words for which Oracle Text does not create an index entry. They are
usually common words in your language that are unlikely to be searched.

ORACLE 6-8

Chapter 6
Overview of Queries

Oracle Text includes a default list of stopwords for your language. This list is called

a stoplist. For example, in English, the words this and that are defined as stopwords

in the default stoplist. You can modify the default stoplist or create new stoplists with
the CTX_DDL package. You can also add stopwords after indexing with the ALTER | NDEX
statement.

You cannot query on a stopword itself or on a phrase composed of only stopwords. For
example, a query on the word this returns no hits when this is defined as a stopword.

Because the Oracle Text index records the position of stopwords even though it does
not create an index entry for them, you can query phrases that contain stopwords as
well as indexable words, such as this boy talks to that girl.

When you include a stopword within your query phrase, the stopword matches any
word. For example, the following query assumes that was is a stopword. It matches
phrases such as Jack is big and Jack grew big. It also matches grew, even though it is
not a stopword.

"Jack was big'

Starting with Oracle Database 12c Release 2 (12.2), stopwords and unary operators
on stopwords are ignored at the initial stages of a query result in different query results
than earlier releases. For example, the following query does not return documents
because t he is a stopword and the $ operator and the stopword are ignored during
guery processing:

SQ.> sel ect count(1) fromtabx where contains(text,'$the')>0;

The next query returns documents containing fir st because the t he stopword and
the $ operator are ignored.

SQL> select count(1l) fromtabx where contains(text, ' first and $the')>0;

6.1.6 ABOUT Queries and Themes

ORACLE

An ABOUT query is a query on a document theme. A document theme is a concept
that is sufficiently developed in the text. For example, an ABOUT query on US politics
might return documents containing information about US presidential elections and
US foreign policy. Documents need not contain the exact phrase US politics to be
returned.

During indexing, document themes are derived from the knowledge base, which is a
hierarchical list of categories and concepts that represents a view of the world. Some
examples of themes in the knowledge catalog are concrete concepts such as jazz
music, football, or Nelson Mandela. Themes can also be abstract concepts such as
happiness or honesty.

6-9

Chapter 6
Oracle Text Query Features

During indexing, the system can also identify and index document themes that are
sufficiently developed in the document but that do not exist in the knowledge base.

You can augment the knowledge base to define concepts and terms specific to your
industry or query application. When you do so, ABOUT queries are more precise for the
added concepts.

ABQUT queries perform best when you create a theme component in your index. Theme
components are created by default for English and French.

" See Also:

Oracle Text Reference

Querying Stopthemes

Oracle Text enables you to query on themes with the ABOUT operator. A stoptheme is a
theme that is not to be indexed. You can add and remove stopthemes with the CTX_DDL
package. You can add stopthemes after indexing with the ALTER | NDEX statement.

6.2 Oracle Text Query Features

Oracle Text has various query features. You can use these query features in your
query application.

* Query Expressions

* Case-Sensitive Searching

* Query Feedback

* Query Explain Plan

* Using a Thesaurus in Queries

* About Document Section Searching
* Using Query Templates

* Query Analysis

e Other Query Features

6.2.1 Query Expressions

ORACLE

A query expression is everything in between the single quotes in the t ext _query
argument of the CONTAI NS or CATSEARCH operator. The contents of a query expression
in a CONTAI NS query differs from the contents of a CATSEARCH operator.

* CONTAINS Operators
» CATSEARCH Operator
e MATCHES Operator

6-10

Chapter 6
Oracle Text Query Features

6.2.1.1 CONTAINS Operators

A CONTAI NS query expression can contain query operators that enable logical,
proximity, thesaural, fuzzy, and wildcard searching. Querying with stored expressions
is also possible. Within the query expression, you can use grouping characters to alter
operator precedence. This book refers to these operators as the CONTEXT grammar.

With CONTAI NS, you can also use the ABOUT query to query document themes.

¢ See Also:
"The CONTEXT Grammar"

6.2.1.2 CATSEARCH Operator

With the CATSEARCH operator, you specify your query expression with the t ext _query
argument and your optional structured criteria with the st ruct ur ed_query argument.
The t ext _query argument enables you to query words and phrases. You can use
logical operations, such as logical and, or, and not. This book refers to these operators
as the CTXCAT grammar.

If you want to use the much richer set of operators supported by the CONTEXT grammat,
you can use the query template feature with CATSEARCH.

With struct ured_query argument, you specify your structured criteria. You can use
the following SQL operations:

o« <=
o« >z

. >

. <

 IN

e BETWEEN

You can also use the ORDER BY clause to order your output.

¢ See Also:
"The CTXCAT Grammar"

6.2.1.3 MATCHES Operator

Unlike CONTAI NS and CATSEARCH, MATCHES does not take a query expression as input.

ORACLE 6-11

Chapter 6
Oracle Text Query Features

Instead, the MATCHES operator takes a document as input and finds all rows in a
query (rule) table that match it. As such, you can use MATCHES to classify documents
according to the rules they match.

¢ See Also:
"Querying with MATCHES"

6.2.2 Case-Sensitive Searching

Oracle Text supports case-sensitivity for word and ABOUT queries.

Word queries are not case-insensitive by default. This means that a query on the term
dog returns the rows in your text table that contain the word dog, but not Dog or DOG.

You can enable or disable case-sensitive searching with the M XED_CASE attribute in
your BASI C_LEXER index preference. With a case-sensitive index, your queries must be
entered in exact case. For example, a query on Dog matches only documents with
Dog. Documents with dog or DOG are not returned as hits.

To enable case-insensitive searching, set the M XED_CASE attribute in your
BASI C_LEXER index preference to NO.

" Note:

If you enable case-sensitivity for word queries and you query a phrase
containing stopwords and indexable words, then you must specify the correct
case for the stopwords. For example, a query on the dog does not return text
that contains The Dog, assuming that the is a stopword.

ABQUT queries give the best results when your query is formulated with proper case
because the normalization of your query is based on the knowledge catalog. The
knowledge catalog is case-sensitive. Attention to case is required, especially for words
that have different meanings depending on case, such as turkey the bird and Turkey
the country.

However, you do not have to enter your query in exact case to obtain relevant results
from an ABOUT query. The system does its best to interpret your query. For example,
if you enter a query of ORACLE and the system does not find this concept in the
knowledge catalog, the system might use Oracle as a related concept for lookup.

6.2.3 Query Feedback

ORACLE

Feedback provides broader-term, narrower term, and related term information for a
specified query with a CONTEXT index. You obtain this information programatically with
the CTX_QUERY. HFEEDBACK procedure.

Broader term, narrower term, and related term information is useful for suggesting
other query terms to the user in your query application.

6-12

Chapter 6
Oracle Text Query Features

The returned feedback information is obtained from the knowledge base and contains
only those terms that are also in the index. This process increases the chances that
terms returned from HFEEDBACK produce hits over the currently indexed document set.

¢ See Also:

Oracle Text Reference for more information about using
CTX_QUERY. HFEEDBACK

6.2.4 Query Explain Plan

Explain plan information provides a graphical representation of the parse tree for a
CONTAI NS query expression. You can obtain this information programatically with the
CTX_QUERY. EXPLAI N procedure.

Explain plan information tells you how a query is expanded and parsed without having
the system execute the query. Obtaining explain information is useful for knowing the
expansion for a particular stem, wildcard, thesaurus, fuzzy, soundex, or ABOUT query.
Parse trees also show the following information:

* Order of execution

e ABQUT query normalization

e Query expression optimization
e Stopword transformations

« Breakdown of composite-word tokens for supported languages

¢ See Also:

Oracle Text Reference for more information about using
CTX_QUERY. EXPLAIN

6.2.5 Using a Thesaurus in Queries

ORACLE

Oracle Text enables you to define a thesaurus for your query application and process
gueries more intelligently.

Because users might not know which words represent a topic, you can define
synonyms or narrower terms for likely query terms. You can use the thesaurus
operators to expand your query to include thesaurus terms.

" See Also:

Working With a Thesaurus in Oracle Text

6-13

Chapter 6
Oracle Text Query Features

6.2.6 Document Section Searching

Section searching enables you to narrow text queries down to sections within
documents.

You can implement section searching when your documents have internal structure,
such as HTML and XML documents. For example, you can define a section for the
<H1> tag that enables you to query within this section by using the W THI N operator.

You can set the system to automatically create sections from XML documents.

You can also define attribute sections to search attribute text in XML documents.

Note:

Section searching is supported for only word queries with a CONTEXT index.

See Also:

Searching Document Sections in Oracle Text

6.2.7 Using Query Templates

Query templates are an alternative to the existing query languages. Rather than
passing a query string to CONTAI NS or CATSEARCH, you pass a structured document
that contains the query string in a tagged element. Within this structured document, or
query template, you can enable additional query features.

* Query Rewrite

* Query Relaxation

* Query Language

e Ordering By SDATA Sections

* Alternative and User-defined Scoring

» Alternative Grammar

6.2.7.1 Query Rewrite

ORACLE

Query applications sometimes parse end-user queries, interpreting a query string in
one or more ways by using different operator combinations. For example, if a user
enters a query of kukui nut, your application enters the {kukui nut} and {kukui or nut}
gueries to increase recall.

The query rewrite feature enables you to submit a single query that expands the
original query into the rewritten versions. The results are returned with no duplication.

6-14

Chapter 6
Oracle Text Query Features

You specify your rewrite sequences with the query template feature. The rewritten
versions of the query are executed efficiently with a single call to CONTAI NS or
CATSEARCH.

The following template defines a query rewrite sequence. The query of {kukui nut} is
rewritten as follows:

{kukui} {nut}
{kukui} ; {nut}
{kukui} AND {nut}
{kukui} ACCUM {nut}
The following is the query rewrite template for these transformations:
select id fromdocs where CONTAINS (text,
' <query>

<textquery |ang="ENGLI SH' granmar =" CONTEXT"> kukui nut
<progr essi on>

<seg><rewrite>transforn{(TOKENS, "{", "}", " "))</rewite></seq>
<seg><rewrite>transforn{(TOKENS, "{", "}", " ; "))</rewite></seq>
<seg><rewrite>transforn{(TOKENS, "{", "}", "AND"))</rewite></seq>
<seg><rewrite>transforn{ (TOKENS, "{", "}", "ACCUM))</rewite></seq>

</ pr ogr essi on>
</text query>
<score datatype="1NTEGER" al gorit hm=" COUNT"/ >
</ query>")>0;

6.2.7.2 Query Relaxation

The query relaxation feature enables your application to execute the most restrictive
version of a query first and progressively relax the query until the required number of
hits are obtained.

For example, your application searches first on black pen and then the query is
relaxed to black NEAR pen to obtain more hits.

The following query template defines a query relaxation sequence. The query of black
pen is entered in sequence.

{black} {pen}

{black} NEAR {pen}

{black} AND {pen}

{black} ACCUM {pen}

The following is the query relaxation template for these transformations:

select id fromdocs where CONTAINS (text,
' <query>
<textquery |ang="ENGLI SH' granmar =" CONTEXT" >
<progr essi on>
<seq>{ bl ack} {pen}</seqg>
<seg>{ bl ack} NEAR {pen}</seq>
<seg>{bl ack} AND {pen}</seq>
<seq>{ bl ack} ACCUM {pen}</seq>
</ progressi on>
</text query>

ORACLE 6-15

Chapter 6
Oracle Text Query Features

<score datatype="INTEGER" al gorithm=" COUNT"/>
</ query>")>0;

Query hits are returned in this sequence with no duplication as long as the application
needs results.

Query relaxation is most effective when your application needs the top-N hits to a
query, which you can obtain with the DOVAI N_| NDEX_SORT hint or in a PL/SQL cursor.

Using query templating to relax a query is more efficient than reexecuting a query.

6.2.7.3 Query Language

When you use MILTI _LEXERto index a column containing documents in different
languages, you can specify which language lexer to use during querying. You do so

by using the | ang parameter in the query template, which specifies the document-level
lexer.

select id fromdocs where CONTAINS (text,
' <query><textquery lang="french">bon soir</textquery></query>')>0;

" See Also:

Oracle Text Reference for information on LANGUAGE and | ang with ALTER
INDEX and document sublexer

6.2.7.4 Ordering by SDATA Sections

You can order the query results according to the content of SDATA sections by using the
<or der > and <or der key> elements of the query template.

In the following example, the first level of ordering is performed on the SDATA pri ce
section, which is sorted in ascending order. The second and third level of ordering
are performed by the SDATA pub_dat e section and score, both of which are sorted in
descending order.

select id fromdocs where CONTAINS (text, '
<query>
<textquery |ang="ENGLI SH' granmar="CONTEXT"> Oracle </textquery>
<score datatype="1NTEGER" al gorithm=" COUNT"/>
<or der >
<or der key> SDATA(price) ASC </ orderkey>
<or der key> SDATA(pub_date) DESC </ or der Key>
<or der key> Score DESC </ order key>
</ order>
</ query>', 1)>0;

ORACLE 6-16

Chapter 6
Oracle Text Query Features

< Note:

* You can add additional SDATA sections to an index. Refer to the ADD
SDATA SECTI ON parameter string under ALTER | NDEX in Oracle Text
Reference.

« Documents that were indexed before adding an SDATA section do not
reflect this new preference. Rebuild the index in this case.

" See Also:

Oracle Text Reference for syntax of <or der > and <or der key> elements of the
query template

6.2.7.5 Alternative and User-Defined Scoring

ORACLE

You can use query templating to specify alternative scoring algorithms. Those
algorithms help you customize how CONTAI NS is scored. They also enable SDATA to

be used as part of the scoring expressions. In this way, you can mathematically define
the scoring expression by using not only predefined scoring components, but also
SDATA components.

With alternative user-defined scoring, you can specify:

e Scoring expressions of terms by defining arithmetic expressions that define how
the query should be scored, using

— predefined scoring algorithms: DI SCRETE, OCCURRENCE, RELEVANCE, and
COVPLETI ON

— arithmetic operations: plus, minus, multiply, divide

— arithmetic functions: ABS(n), finding the absolute value of n ; LOJ n), finding
the base-10 logarithmic value of n

— Numeric literals
e Scoring expressions at the term level
* Terms that should not be taken into account when calculating the score
* How the score from child elements of OR and AND operators should be merged
« Use

You can also use the SDATA that stores numeric or DATETI ME values to affect the final
score of the document.

The following example specifies an alternative scoring algorithm:

select id fromdocs where CONTAINS (text,

' <query>

<textquery granmmar="CONTEXT" |ang="english"> mustang </textquery>
<score datatype="float" al gorithnm="DEFAULT"/ >

</ query>')>0

6-17

Chapter 6
Oracle Text Query Features

The following query templating example includes SDATA values as part of the final
score:

select id fromdocs where CONTAINS (text,

' <query>

<textquery grammar="CONTEXT" |ang="english"> nustang </textquery>
<score datatype="float" al gorithm="DEFAULT" nornalization_expr
="doc_scor e+SDATA(price)"/>

</ query>"')>0"

" See Also:
"Using DEFINESCORE and DEFINEMERGE for User-defined Scoring"

6.2.7.6 Alternative Grammar

Query templating enables you to use the CONTEXT grammar with CATSEARCH queries
and vice versa.

select id fromdocs where CONTAINS (text,

' <query>
<textquery granmmar="CTXCAT">San Di ego</textquery>
<score datatype="integer"/>

</ query>")>0;

6.2.8 Query Analysis

Oracle Text enables you to create a log of queries and to analyze the queries. For
example, suppose you have an application that searches a database of large animals,
and your analysis of its queries shows that users search for the word mouse. This
analysis shows you that you should rewrite your application to avoid returning an
unsuccessful search. Instead, a search for mouse redirects users to a database of
small animals.

With query analysis, you can find out:

* Which queries were made

* Which queries were successful

* Which queries were unsuccessful

* How many times each query was made

You can combine these factors in various ways, such as determining the 50 most
frequent unsuccessful queries made by your application.

You start query logging with CTX_CUTPUT. START_QUERY_LOG The query log
contains all queries made to all CONTEXT indexes that the program

is using until a CTX_OUTPUT. END_QUERY_LOG procedure is entered. Use
CTX_REPORT. QUERY_LOG_SUMMARY to get a report of queries.

ORACLE 6-18

¢ See Also:

Chapter 6
Oracle Text Query Features

Oracle Text Reference for syntax and examples for these procedures

6.2.9 Other Query Features

In your query application, you can use other query features such as proximity
searching. Table 6-1 lists some of these features.

ORACLE

Table 6-1 Other Oracle Text Query Features

Feature

Description

Implement With

Case-Sensitive Searching

Base-Letter Conversion

Word Decompounding
(German and Dutch)

Alternate Spelling

(German, Dutch, and
Swedish)

Proximity Searching

Expanded operator
containing the functionality
of PHRASE, NEAR and AND

operators.

Stemming

Fuzzy Searching

Query Explain Plan

Enables you to search on words or

BASI C_LEXER when you

phrases exactly as they are entered create the index

in the query. For example, a search
on Roman returns documents that

contain Roman and not roman.

Queries words with or without
diacritical marks such as tildes,

accents, and umlauts. For example,

with a Spanish base-letter index,
a query of energia matches

documents containing both energia

and energia.

Enables searching on words that

contain the specified term as
subcomposite.

Searches on alternate spellings of

words.

Searches for words near one
another.

Breaks a document into clumps
based on the given query. Each
clump is classified based on a
primary feature, and is scored

based on secondary features. The
final document score adds clump

scores such that the ordering of
primary features determines the

initial ordering of document scores.

Searches for words with the same

root as the specified term.

Searches for words that have a
similar spelling as the specified
term.

Generates query parse information.

BASI C_LEXER when you
create the index

BASI C_LEXER when you
create the index

BASI C_LEXER when you
create the index

NEAR operator when you
enter the query

NEAR? operator when you
enter the query

$ operator at when you enter
the query

FUZZY operator when you
enter the query

CTX_QUERY. EXPLAI N
PL/SQL procedure after you
index

6-19

ORACLE

Table 6-1 (Cont.) Other Oracle Text Query Features

Chapter 6
Oracle Text Query Features

Feature

Description

Implement With

Hierarchical Query
Feedback

Browse index

Count hits

Stored Query Expression

Thesaural Queries

Generates broader term, narrower
term and related term information

for a query.

Browses the words around a seed

word in the index.

Counts the number of hits in a
query.

Stores the text of a query
expression for later reuse in
another query.

Uses a thesaurus to expand
queries.

CTX_QUERY. HFEEDBACK
PL/SQL procedure after you
index

CTX_QUERY. BROANSE_WORDS
PL/SQL after you index

CTX_QUERY. COUNT_HI TS
PL/SQL procedure after you
index

CTX_QUERY. STORE_SQE
PL/SQL procedure after you
index

Thesaurus operators such as
SYNand BT as well as the
ABQUT operator

(Use CTX_THES package to
maintain the thesaurus.)

6-20

Working with CONTEXT and CTXCAT
Grammars in Oracle Text

Become familiar with CONTEXT and CTXCAT grammars.
This chapter contains the following topics:

e The CONTEXT Grammar
e The CTXCAT Grammar

7.1 The CONTEXT Grammar

ORACLE

The CONTEXT grammar is the default grammar for CONTAI NS. With this grammar, you
can add complexity to your searches with operators. You use the query operators in
your query expression. For example, the AND logical operator enables you to search
for all documents that contain two different words. The ABOUT operator enables you to
search on concepts.

You can also use the W THI N operator for section searches; the NEAR operator for
proximity searches; and the stem, fuzzy, and thesaurus operators for expanding a
guery expression.

With CONTAI NS, you can also use the CTXCAT grammar with the query template feature.
The following sections describe some of the Oracle Text operators:
ABOUT Query

* Logical Operators

* Section Searching and HTML and XML

* Proximity Queries with NEAR, NEAR_ACCUM, and NEAR2 Operators
* Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators
e Using CTXCAT Grammar

e Stored Query Expressions

e Calling PL/SQL Functions in CONTAINS

e Optimizing for Response Time

* Counting Hits

* Using DEFINESCORE and DEFINEMERGE for User-defined Scoring

¢ See Also:

Oracle Text Reference for complete information about using query operators

7-1

Chapter 7
The CONTEXT Grammar

7.1.1 ABOUT Query

Use the ABQUT operator in English or French to query on a concept. The query string
is usually a concept or theme that represents the idea to be searched on. Oracle Text
returns the documents that contain the theme.

Word information and theme information are combined into a single index. To enter a
theme query in your index, you must include that is created by default in English and
French.

Enter a theme query by using the ABOUT operator inside the query expression. For
example, to retrieve all documents that are about politics, write your query as follows:

SELECT SCORE(1), title FROM news
WHERE CONTAI NS(text, 'about(politics)', 1) >0
ORDER BY SCORE(1) DESC;

¢ See Also:

Oracle Text Reference for more information about using the ABOUT operator

7.1.2 Logical Operators

ORACLE

Use logical operators to limit your search criteria in a number of ways. Table 7-1
describes some of these operators.

Table 7-1 Logical Operators

__|
Operator Symbol Description Example Expression

AND & Use to search for
documents that contain at
least one occurrence of
each of the query terms.

The returned score is the
minimum of the operands.

'cats AND dogs'
'cats & dogs'

(03 Use to search for
documents that contain at
least one occurrence of
any of the query terms.

The returned score is
the maximum of the
operands.

‘cats | dogs'
‘cats OR dogs'

NOT ~ Use to search for To obtain the documents that contain
documents that contain ~ the term animals but not dogs, use the
one query term and not following expression:

another. i
"animal s ~ dogs'

7-2

Chapter 7
The CONTEXT Grammar

Table 7-1 (Cont.) Logical Operators

__|
Operator Symbol Description Example Expression

ACCUM , Use to search for The following query returns all
documents that contain documents that contain the terms dogs,
at least one occurrence cats, and puppies, giving the highest
of any of the query scores to the documents that contain all
terms. The accumulate three terms:
operator ranks documents
according to the total term
weight of a document.

' dogs, cats, puppies’

EQUI V = Use to specify an The following example returns all
acceptable substitution for documents that contain either the
a word in a query. phrase alsatians are big dogs or

German shepherds are big dogs:

" German shepherds=al satians are
bi g dogs'

7.1.3 Section Searching and HTML and XML

Section searching is useful when your document set is HTML or XML. For HTML, you
can define sections by using embedded tags and then use the W THI N operator to
search these sections.

For XML, you can have the system automatically create sections. You can query with
the W THI N operator or with the | NPATH operator for path searching.

" See Also:

Searching Document Sections in Oracle Text

7.1.4 Proximity Queries with NEAR, NEAR_ACCUM, and NEAR2

Operators

ORACLE

Use the NEAR operator to search for terms that are near to one another in a document.

For example, to find all the documents where dog is within 6 words of cat, enter the
following query:

"near ((dog, cat), 6)'

The NEAR operator is now modified to change how the distance is measured between
phrases in NESTED NEAR

The NEAR_ACCUMoperator combines the functionality of the NEAR operator with that of
the ACCUMoperator. Like NEAR, it returns terms that are within a given proximity of each
other; however, if one term is not found, it ranks documents according to the frequency
of the occurrence of the term that is found.

7-3

Chapter 7
The CONTEXT Grammar

The NEAR2 operator combines the functionality of PHRASE, NEAR, and AND operators. In
addition, the NEAR2 operator can use position information to boost the scores of its hits.
That is, if one phrase hit occurs at the beginning of a document and another at the
end of the document, then a higher weight is given to the first hit as compared to the
second hit.

¢ See Also:

Oracle Text Reference for more information about using the NEAR,
NEAR_ACCUM and NEAR2 operators

7.1.5 Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion

Operators

Expand your queries into longer word lists with operators such as wildcard, fuzzy,
stem, soundex, and thesaurus.

¢ See Also:

e Oracle Text Reference for more information about using these operators

< "Is it OK to have many expansions in a query?"

7.1.6 Using CTXCAT Grammar

Use the CTXCAT grammar in CONTAI NS queries. To do so, use a query template
specification in the t ext _query parameter of CONTAI NS.

Take advantage of the CTXCAT grammar when you need an alternative and simpler
query grammar.

¢ See Also:

Oracle Text Reference for more information about using these operators

7.1.7 Defined Stored Query Expressions

ORACLE

Use the CTX_QUERY. STORE_SQE procedure to store the definition of a query without
storing any results. Referencing the query with the CONTAI NS SQL operator references
the definition of the query. In this way, stored query expressions make it easy to define
long or frequently used query expressions.

Stored query expressions are not attached to an index. When you call
CTX_QUERY. STORE_SCE, you specify only the name of the stored query expression and
the query expression.

7-4

Chapter 7
The CONTEXT Grammar

The query definitions are stored in the Text data dictionary. Any user can reference a
stored query expression.

» Defining a Stored Query Expression
* SQE Example

¢ See Also:

Oracle Text Reference to learn more about the syntax of
CTX_QUERY. STORE_SQE

7.1.7.1 Defining a Stored Query Expression

To define and use a stored query expression:

1. Call CTX_QUERY. STORE_SQE to store the queries for the text column. With
STORE_SQE, you specify a name for the stored query expression and a query
expression.

2. Use the SQE operator to call the stored query expression in a query expression.
Oracle Text returns the results of the stored query expression in the same way that
it returns the results of a regular query. The query is evaluated when the stored
guery expression is called.

You can delete a stored query expression by using REMOVE_SCE.

7.1.7.2 SQE Example

The following example creates a stored query expression called disaster that searches
for documents containing the words tornado, hurricane, or earthquake:

begin
ctx_query.store_sqe('disaster', '"tornado | hurricane | earthquake');
end;

To execute this query in an expression, write your query as follows:

SELECT SCORE(1), title from news
WHERE CONTAI NS(text, 'SQE(disaster)', 1) >0
ORDER BY SCORE(1);

¢ See Also:

Oracle Text Reference to learn more about the syntax of
CTX_QUERY. STORE_SQE

7.1.8 Calling PL/SQL Functions in CONTAINS

You can call user-defined functions directly in the CONTAI NS clause as long as the
function satisfies the requirements for being named in a SQL statement. The caller
must also have EXECUTE privilege on the function.

ORACLE e

Chapter 7
The CONTEXT Grammar

For example, if the f r ench function returns the French equivalent of an English word,
you can search on the French word for cat by writing:

SELECT SCORE(1), title from news
WHERE CONTAINS(text, french('cat'), 1) >0
ORDER BY SCORE(1);

See Also:

Oracle Database SQL Language Reference for more information about
creating user functions and calling user functions from SQL

7.1.9 Optimizing for Response Time

A CONTAI NS query optimized for response time provides a fast solution when you need
the highest scoring documents from a hitlist.

The following example returns the first twenty hits as output. This example uses the
FI RST_ROAS(n) hint and a cursor.

decl are
cursor cis
select /*+ FIRST_ROA5(20) */ title, score(l) score
fromnews where contains(txt_col, 'dog', 1) > 0 order by score(1l) desc;
begin
for clinc
| oop
dbns_out put. put _line(cl.score||"':"||substr(cl.title, 1,50));
exit when c% owcount = 21;
end | oop;
end;
/

The following factors can also influence query response time:
* Collection of table statistics

* Memory allocation

e Sorting

» Presence of large object columns in your base table

* Partitioning

e Parallelism

* Number of term expansions in your query

¢ See Also:

"Frequently Asked Questions About Query Performance"

ORACLE 7-6

Chapter 7
The CONTEXT Grammar

7.1.10 Counting Hits

Use CTX_QUERY. COUNT_HI TS in PL/SQL or COUNT(*) in a SQL SELECT statement to
count the number of hits returned from a query with only a CONTAI NS predicate.

If you want a rough hit count, use CTX_QUERY. COUNT_HI TS in estimate mode (EXACT
parameter set to FALSE). With respect to response time, this is the fastest count you
can get.

Use the COUNT(*) function in a SELECT statement to count the number of hits returned
from a query that contains a structured predicate.

To find the number of documents that contain the word oracle, enter the query with the
SQ. COUNT function.

SELECT count (*) FROM news WHERE CONTAINS(text, 'oracle', 1) > 0;

To find the number of documents returned by a query with a structured predicate, use
COUNT(*) .

SELECT COUNT(*) FROM news WHERE CONTAINS(text, 'oracle', 1) > 0 and author =
'jones';

To find the number of documents that contain the word oracle, use COUNT_H TS.

decl are count nunber;
begi n
count := ctx_query.count_hits(index_name => ny_index, text_query => 'oracle',
exact => TRUE);
dbns_out put . put _I'i ne(' Nunber of docs with oracle:');
dbns_out put . put _| i ne(count);
end;

¢ See Also:

Oracle Text Reference to learn more about the syntax of
CTX_QUERY. COUNT_HI TS

7.1.11 Using DEFINESCORE and DEFINEMERGE for User-Defined

Scoring

ORACLE

Use the DEFI NESCORE operator to define how the score for a term or phrase is to be
calculated. The DEFI NEMERGE operator defines how to merge scores of child elements
of AND and OR operators. You can also use the alternative scoring template with SDATA
to affect the final scoring of the document.

7-7

Chapter 7
The CTXCAT Grammar

¢ See Also:

e "Alternative and User-defined Scoring" for information about the
alternative scoring template

e Oracle Text Reference to learn more about the syntax of DEFI NESCORE
and DEFI NEVERGE

7.2 The CTXCAT Grammar

ORACLE

The CTXCAT grammar is the default grammar for CATSEARCH. This grammar supports
logical operations, such as AND and OR, as well as phrase queries.

The CATSEARCH query operators have the following syntax:

Table 7-2 CATSEARCH Query Operator Syntax

Operation Syntax Description of Operation

Logical AND abc Returns rows that contain a, b and c.
Logical OR albj|c Returns rows that contain a, b, or c.
Logical NOT a-b Returns rows that contain a and not b.
hyphen with no space a-b Hyphen treated as a regular character.

For example, if you define the hyphen as a
skipjoin, then words such as vice-president are
treated as the single query term vicepresident.

Likewise, if you define the hyphen as a
printjoin, then words such as vice-president
are treated as vice president with the space
in the CTXCAT query language.

"abc" Returns rows that contain the phrase "a b c."

For example, entering "Sony CD Player"
means return all rows that contain this
sequence of words.

) (AB)|C Parentheses group operations. This query is
equivalent to the CONTAI NS query (A &B) | C.

To use the CONTEXT grammar in CATSEARCH queries, use a query template specification
in the t ext _query parameter.

You might use the CONTAI NS grammar as such when you need to enter proximity,
thesaurus, or ABOUT queries with a CTXCAT index.

¢ See Also:

Oracle Text Reference for more information about using these operators

7-8

Presenting Documents in Oracle Text

Oracle Text provides various methods for presenting documents in results for query
applications.

This chapter contains the following topics:

* Highlighting Query Terms

e Obtaining Part-of-Speech Information for a Document

e Obtaining Lists of Themes, Gists, and Theme Summaries

* Document Presentation and Highlighting

8.1 Highlighting Query Terms

In text query applications, you can present selected documents with query terms
highlighted for text queries or with themes highlighted for ABOUT queries.

You can generate three types of output associated with highlighting:

* A marked-up version of the document
* Query offset information for the document

* A concordance of the document, in which occurrences of the query term are
returned with their surrounding text

This section contains the following topics:
* Text highlighting

e Theme Highlighting

e CTX_DOC Highlighting Procedures

8.1.1 Text highlighting

For text highlighting, you supply the query, and Oracle Text highlights words in the
document that satisfy the query. You can obtain plain-text or HTML highlighting.

8.1.2 Theme Highlighting

For ABOUT queries, the CTX_DCC procedures highlight and mark up words or phrases
that best represent the ABOUT query.

8.1.3 CTX _DOC Highlighting Procedures

These are the highlighting procedures in CTX_DOC;

. CTX_DOC. MARKUP and CTX_DOC. POLI CY_MARKUP
« CTX_DOC. Hl GHLI GHT and CTX_DOC. POLI CY_HI GHLI GHT

ORACLE

Chapter 8
Highlighting Query Terms

e CTX_DQOC. SNI PPET and CTX_DCC. POLI CY_SNI PPET

The PQLI CY and non-PQLI CY versions of the procedures are equivalent, except that the
PCLI CY versions do not require an index.

< Note:

SNI PPET can also be generated using the Result Set Interface.

¢ See Also:
Oracle Text Reference for information on CTX_QUERY. RESULT_SET

This section contains these topics:
* Markup Procedure
* Highlight Procedure

 Concordance

8.1.3.1 Markup Procedure

ORACLE

The CTX_DOC. MARKUP and CTX_DOC. POLI CY_MARKUP procedures take a document
reference and a query, and return a marked-up version of the document. The output
can be either marked-up plain text or marked-up HTML. For example, specify that a
marked-up document be returned with the query term surrounded by angle brackets
(<<<tansu>>>) or HTML (tansu).

CTX_DOC. MARKUP and CTX_DCC. POLI CY_MARKUP are equivalent, except that
CTX_DQC. POLI CY_MARKUP does not require an index.

You can customize the markup sequence for HTML navigation.

CTX_DOC.MARKUP Example

The following example is taken from the web application described in CONTEXT
Query Application. The showDoc procedure takes an HTML document and a query,
creates the highlight markup—in this case, the query term is displayed in red—and
outputs the result to an in-memory buffer. It then uses htp.print to display it in the
browser.

procedure showbDoc (p_id in varchar2, p_query in varchar2) is

v_clob_selected CLOB;

v_read_anmount i nteger;
v_read_of fset i nteger;
v_buffer varchar 2(32767) ;
v_query var char (2000) ;
v_cursor i nt eger;

begi n

htp. p(" <htm ><title>HTM. version with highlighted terns</title>");
htp. p(' <body bgcol or="#ffffff">");

8-2

Chapter 8
Highlighting Query Terms

htp. p(' HTM. version with highlighted terms");

begin
ctx_doc. markup (index_name => 'idx_search_table',
t ext key = p_id,
text_query => p_query,

restab => v_cl ob_sel ect ed,
starttag => '<i>',
endt ag = "</i>");
v_read_anount := 32767;
v_read_offset := 1;
begi n
| oop

dbns_| ob. read(v_cl ob_sel ected, v_read_amount,v_read_of fset,v_buffer);
htp. print(v_buffer);

v_read_offset := v_read_offset + v_read_amount;
v_read_anount := 32767,
end | oop;
exception
when no_data_found then
null;
end;
exception
when others then
nul'l; --showHTM.doc(p_id);
end;
end showDoc;
end;

/
show errors
set define on

See Also:

Oracle Text Reference for more information about CTX_DOC. MARKUP and
CTX_DOC. PQLI CY_SNI PPET

8.1.3.2 Highlight Procedure

ORACLE

CTX_DQC. Hl GHLI GHT and CTX_DQOC. POLI CY_HI GHLI GHT take a query and a document
and return offset information for the query in plain text or HTML format. You can use
this offset information to write your own custom routines for displaying documents.

CTX_DQOC. Hl GHLI GHT and CTX_DQOC. POLI CY_HI GHLI GHT are equivalent, except that
CTX_DQOC. POLI CY_HI GHLI GHT does not require an index.

With offset information, you can display a highlighted version of a document (such as
different font types or colors) instead of the standard plain-text markup obtained from
CTX_DOC. MARKUP.

8-3

Chapter 8
Obtaining Part-of-Speech Information for a Document

¢ See Also:

Oracle Text Reference for more information about using CTX_DCC. H GHLI GHT
and CTX_DOC. POLI CY_HI GHLI GHT

8.1.3.3 Concordance

CTX_DQOC. SNI PPET and CTX_DQOC. PCLI CY_SNI PPET produce a concordance of the
document, in which occurrences of the query term are returned with their surrounding
text. This result is sometimes known as Key Word in Context (KWIC) because, instead
of returning the entire document (with or without the query term highlighted), it returns
the query term in text fragments, allowing a user to see it in context. You can control
how the query term is highlighted in the returned fragments.

CTX_DOC. SNI PPET and CTX_DOC. PCLI CY_SNI PPET are equivalent, except that

CTX_DQC. POLI CY_SNI PPET does not require an index. CTX_DCC. PCLI CY_SNI PPET and
CTX_DQC. SNI PPET include two new attributes: r adi us specifies the approximate desired
length of each segment, whereas, nmax_| engt h puts an upper bound on the length of
the sum of all segments.

¢ See Also:

Oracle Text Reference for more information about CTX_DOC. SNI PPET and
CTX_DOC. POLI CY_SNI PPET

8.2 Obtaining Part-of-Speech Information for a Document

The CTX_DCC package contains procedures to create policies for obtaining part-
of-speech information for a given document. This approach is described under
PCLI CY_NOUN_PHRASES in Oracle Text Reference and POLI CY_PART _OF SPEECHin
Oracle Text Reference.

8.3 Obtaining Lists of Themes, Gists, and Theme
Summaries

ORACLE

The following table describes lists of themes, gists, and theme summaries.

Table 8-1 Lists of Themes, Gists, and Theme Summaries

Output Type Description

List of Themes A list of the main concepts of a document.

Each theme is a single word, a single phrase, or a hierarchical list of
parent themes.

Gist Text in a document that best represents what the document is about as a
whole.

8-4

Chapter 8
Obtaining Lists of Themes, Gists, and Theme Summaries

Table 8-1 (Cont.) Lists of Themes, Gists, and Theme Summaries

___|
Output Type Description

Theme Summary Text in a document that best represents a given theme in the document.

To obtain lists of themes, gists, and theme summaries, use procedures in the CTX_DCC
package to:

e ldentify documents by ROA D in addition to primary key

e Store results in-memory for improved performance

8.3.1 Lists of Themes

ORACLE

A list of themes is a list of the main concepts in a document. Use the CTX_DCC. THEMES
procedure to generate lists of themes.

¢ See Also:

Oracle Text Reference to learn more about the command syntax for
CTX_DCC. THEMES

The following in-memory theme example generates the top 10 themes for document
1 and stores them in an in-memory table called t he_t henes. The example then loops
through the table to display the document themes.

decl are
the_themes ctx_doc. thene_tab;

begin
ctx_doc. themes(' nyi ndex','1',the_thenes, nunthemes=>10);
for i in 1..the_themes.count |oop
dbns_out put . put _Iine(the_thenes(i).theme||"':"||the_themes(i).weight);
end | oop;
end;

The following example create a result table theme:

create table ctx_thenmes (query_id nunber,
t heme var char 2(2000),
wei ght nunber);

In this example, you obtain a list of themes where each element in the list is a single
theme:

begin

ctx_doc. t hemes(' newsi ndex', ' 34',"' CTX_THEMES', 1, ful | _themes => FALSE);
end;

In this example, you obtain a list of themes where each element in the list is a
hierarchical list of parent themes:

8-5

Chapter 8
Obtaining Lists of Themes, Gists, and Theme Summaries

begin
ctx_doc. t hemes(' newsi ndex', ' 34',"' CTX_THEMES', 1, ful | _themes => TRUE);
end;

8.3.2 Gist and Theme Summary

ORACLE

A gist is the text in a document that best represents what the document is about as a
whole. A theme summary is the text in a document that best represents a single theme
in the document.

Use the CTX _DOC. @ ST procedure to generate gists and theme summaries. You can
specify the size of the gist or theme summary when you call the procedure.

See Also:

Oracle Text Reference to learn about the command syntax for CTX_DOC. G ST

In-Memory Gist Example

The following example generates a nondefault size generic gist of at most 10
paragraphs. The result is stored in memory in a CLOB locator. The code then de-
allocates the returned CLOB locator after using it.

decl are
gkl ob cl ob;
ant nunber := 40;
l'ine varchar2(80);

begin
ctx_doc. gi st (' newsi ndex', ' 34',"'gklob',1,glevel =>"P ,pov => 'GENERIC,
nunPar agr aphs => 10);
-- gklob is NULL when passed-in, so ctx-doc.gist will allocate a tenporary
-- CLOB for us and place the results there.

dbns_| ob. read(gkl ob, ant, 1, line);
dbns_out put . put _Iine(' FI RST 40 CHARS ARE:'||line);
-- have to de-allocate the tenp | ob
dbns_| ob. freet enpor ar y(gkl ob) ;
end;

Result Table Gists Example
To create a gist table, enter the following:

create table ctx_gist (query_id nunber,
pov var char 2(80),
gi st CLOB);

The following example returns a default-sized paragraph gist for document 34:

begin
ctx_doc. gi st (' newsi ndex',"'34"',"' CTX_G ST', 1, ' PARAGRAPH , pov =>' GENERIC);
end;

The following example generates a nondefault size gist of 10 paragraphs:

8-6

Chapter 8
Presenting and Highlighting Documents

begin

ctx_doc. gi st (' newsi ndex',"'34"',' CTX_@ ST', 1,' PARAGRAPH , pov =>' GENERI C,
nunPar agr aphs => 10);

end;

The following example generates a gist whose number of paragraphs is 10 percent of
the total paragraphs in the document:

begin

ctx_doc. gi st (' newsi ndex',"'34',' CTX_A ST',1, 'PARAGRAPH , pov => GENERIC,
maxPer cent => 10);

end;

Theme Summary Example

The following example returns a theme summary on the theme of insects for document
with textkey 34. The default gist size is returned.

begi n

ctx_doc. gi st (' newsi ndex','34',' CTX_ G ST',1, 'PARAGRAPH , pov => 'insects');
end;

8.4 Presenting and Highlighting Documents

Typically, a query application enables the user to view the documents returned by a
guery. The user selects a document from the hitlist, and then the application presents
the document in some form.

With Oracle Text, you can display a document in different ways, such as highlighting
either the words of a word query or the themes of an ABOUT query in English.

You can also obtain gist (document summary) and theme information from documents
with the CTX_DOC PL/SQL package.

Table 8-2 describes the different output you can obtain and which procedure to use to
obtain each type.

Table 8-2 CTX_DOC Output
|

Output Procedure

Plain-text version, no highlights CTX_DCC. FI LTER
HTML version of document, no highlights CTX_DCC. FI LTER
Highlighted document, plain-text version CTX_DCC. MARKUP
Highlighted document, HTML version CTX_DCC. MARKUP
Highlighted offset information for plain-text version CTX_DCC. HI GHLI GHT
Highlighted offset information for HTML version CTX_DCC. HI GHLI GHT
Theme summaries and gist of document CTX_DCOC. G ST

List of themes in document CTX_DQOC. THEMES

ORACLE .

Chapter 8
Presenting and Highlighting Documents

See Also:

Oracle Text Reference

ORACLE" 8-8

Classifying Documents in Oracle Text

Oracle Text offers various approaches to document classification.
This chapter contains the following topics:

* Overview of Document Classification

* Classification Applications

» Classification Solutions

* Rule-Based Classification

* Supervised Classification

e Unsupervised Classification (Clustering)

e Unsupervised Classification (Clustering) Example

9.1 Overview of Document Classification

Each theme is a single word, a single phrase, or a hierarchical list of parent themes.

To sift through numerous documents you can use keyword search engines. Howevetr,
keyword searches have limitations. One major drawback is that keyword searches do
not discriminate by context. In many languages, a word or phrase may have multiple
meanings, so a search may result in many matches that are not about the specific
topic. For example, a query on the phrase river bank might return documents about
the Hudson River Bank & Trust Company, because the word bank has two meanings.

Alternatively, you can sort through documents and classify them by content. This
approach is not feasible for very large volumes of documents.

Oracle Text offers various approaches to document classification. Under rule-based
classification (sometimes called simple classification), you write the classification
rules yourself. With supervised classification, Oracle Text creates classification rules
based on a set of sample documents that you preclassify. Finally, with unsupervised
classification (also known as clustering), Oracle Text performs all steps, from writing
the classification rules to classifying the documents, for you.

9.2 Classification Applications

ORACLE

Oracle Text enables you to build document classification applications that perform
some action based on document content. Actions include assigning category IDs to

a document for future lookup or sending a document to a user. The result is a set or
stream of categorized documents. Figure 9-1 illustrates how the classification process
works.

Oracle Text enables you to create document classification applications in different
ways. This chapter defines a typical classification scenario and shows how you can
use Oracle Text to build a solution.

9-1

Chapter 9
Classification Solutions

Figure 9-1 Overview of a Document Classification Application

Document 1 [——
from —
Database —
Document 2 [—— Document Perform
from File |— Stream Document Action
— Classification
System — Application
Document N[—— lSQL
from Web [— MATCHES Classif
f— y
— Query Document
CTXRULE
Index Rules Table
Database A Database B

9.3 Classification Solutions

Oracle Text enables you to classify documents in the following ways:

ORACLE

Rule-Based Classification. For this solution, you group your documents, choose
categories, and formulate the rules that define those categories; these rules are
actually query phrases. You then index the rules and use the MATCHES operator to
classify documents.

Advantages: This solution is very accurate for small document sets. Results are
always based on what you define, because you write the rules.

Disadvantages: Defining rules can be tedious for large document sets with many
categories. As your document set grows, you may need to write correspondingly
more rules.

Supervised Classification. This solution is similar to rule-based classification, but
the rule-writing step is automated with CTX_CLS. TRAI N. This procedure formulates
a set of classification rules from a sample set of preclassified documents that you
provide. As with rule-based classification, you use the MATCHES operator to classify
documents.

Oracle Text offers two versions of supervised classification, one using the
RULE_CLASSI FI ER preference and one using the SVM CLASSI FI ER preference.
These preferences are discussed in "Supervised Classification".

Advantages: Rules are written for you automatically. This method is useful for
large document sets.

Disadvantages: You must assign documents to categories before generating the
rules. Rules may not be as specific or accurate as those you write yourself.

Unsupervised Classification (Clustering). All steps, from grouping your documents
to writing the category rules, are automated with CTX_CLS. CLUSTERI NG Oracle

9-2

Chapter 9
Rule-Based Classification

Text statistically analyzes your document set and correlates them with clusters
according to content.

Advantages:

— You do not need to provide the classification rules or the sample documents
as a training set.

— This solution helps to discover overlooked patterns and content similarities in
your document set.

In fact, you can use this solution when you do not have a clear idea of rules or
classifications. For example, use it to provide an initial set of categories and to
build on the categories through supervised classification.

Disadvantages:

— Clustering is based on an internal solution. It might result in unexpected
groupings, because the clustering operation is not user-defined.

— You do not see the rules that create the clusters.

— The clustering operation is CPU-intensive and can take at least the same time
as indexing.

9.4 Rule-Based Classification

Rule-based classification is the basic solution for creating an Oracle Text classification
application.

The basic steps for rule-based classification are as follows. Specific steps are explored
in greater detail in the example.

1.
2.

3.
4,

Create a table for the documents to be classified, and then populate it.

Create a rule table (also known as a category table). The rule table consists of
categories that you name, such as "medicine" or "finance," and the rules that sort
documents into those categories.

These rules are actually queries. For example, you define the "medicine" category
as documents that include the words "hospital,” "doctor," or "disease." Therefore,
you would set up a rule in the form of "hospital OR doctor OR disease.”

Create a CTXRULE index on the rule table.

Classify the documents.

¢ See Also:

"CTXRULE Parameters and Limitations" for information on which operators
are allowed for queries

9.4.1 Rule-Based Classification Example

In this example, you gather news articles about different subjects and then classify
them.

ORACLE

9-3

Chapter 9
Rule-Based Classification

After you create the rules, you can index them and then use the MATCHES statement to
classify documents.

To classify documents:

1. Create the schema to store the data.

The news_t abl e stores the documents to be classified. The news_cat egori es
table stores the categories and rules that define the categories. The news_i d_cat
table stores the document IDs and their associated categories after classification.

create table news_table (
tk nunber primary key not null,
title varchar2(1000),
text clob);

create table news_categories (
queryid nunber primry key not null,
cat egory varchar2(100),
query var char 2(2000));

create table news_id_cat (
tk nunber,
category_id nunber);

2. Load the documents with SQLLDR.

Use the SQLLDR program to load the HTML news articles into the news_t abl e. The
file names and titles are read from | oader . dat .

LOAD DATA
I NFI LE ' | oader. dat"'
I NTO TABLE news_t abl e

REPLACE
FI ELDS TERM NATED BY ' ;'
(tk | NTEGER EXTERNAL,
title CHAR,
text file FILLER CHAR
t ext LOBFI LE(text _file) TERM NATED BY EOF)

3. Create the categories and write the rules for each category.

The defined categories are Asia, Europe, Africa, Middle East, Latin America,
United States, Conflicts, Finance, Technology, Consumer Electronics, World
Politics, U.S. Politics, Astronomy, Paleontology, Health, Natural Disasters, Law,
and Music News.

A rule is a query that selects documents for the category. For example, the 'Asia’
category has a rule of 'China or Pakistan or India or Japan'. Insert the rules in the
news_cat egori es table.

insert into news_categories val ues
(1,"United States','Washington or George Bush or Colin Powell");

insert into news_categories val ues
(2," Europe','England or Britain or Germany');

insert into news_categories val ues
(3,"Mddle East','Israel or Iran or Palestine');

insert into news_categories values(4,'Asia',' China or Pakistan or India or Japan');

insert into news_categories values(5,' Africa',' Egypt or Kenya or Nigeria');

ORACLE 9-4

Chapter 9
Rule-Based Classification

nsert into news_categories val ues
(6," Conflicts',"war or soldiers or mlitary or troops');

nsert into news_categories values(7,'Finance','profit or loss or wall street');
nsert into news_categories val ues
(8, "' Technol ogy', "' software or conputer or Oracle
or Intel or IBMor Mcrosoft');

nsert into news_categories val ues
(9, "' Consumer el ectronics','HDTV or electronics');

nsert into news_categories val ues
(10,'Latin Anerica','Venezuela or Col onbia
or Argentina or Brazil or Chile');

nsert into news_categories val ues
(11,"World Politics',"'Hugo Chavez or George Bush
or Tony Blair or Saddam Hussein or United Nations');

nsert into news_categories val ues
(12,"US Politics',' George Bush or Denocrats or Republicans
or civil rights or Senate or Wite House');

nsert into news_categories val ues

(13," Astronony', " Jupiter or Earth or star or planet or Orion
or Venus or Mercury or Mars or MIky Wy
or Tel escope or astronomer
or NASA or astronaut');

nsert into news_categories val ues
(14, ' Pal eontol ogy',"' fossils or scientist
or pal eontol ogi st or dinosaur or Nature');

nsert into news_categories val ues

(15,"'Heal th','stemcells or embryo or health or medical
or nedicine or Wrld Health Organization or AIDS or HV
or virus or centers for disease control or vaccination');

nsert into news_categories val ues
(16,"' Natural Disasters','earthquake or hurricane or tornado');

nsert into news_categories val ues
(17," Law , " abortion or Suprenme Court or illegal
or legal or legislation');

nsert into news_categories val ues

(18," Music News','piracy or anti-piracy
or Recording Industry Association of Anerica
or copyright or copy-protection or CDs
or music or artist or song');

commi t;
4. Create the CTXRULE index on the news_cat egor i es query column.

create index news_cat_idx on news_categories(query)
i ndextype is ctxsys.ctxrule;

5. To classify the documents, use the CLASSI FI ER. THI S PL/SQL procedure (a simple
procedure designed for this example).

ORACLE 9-5

Chapter 9
Rule-Based Classification

The procedure scrolls through the news_t abl e, matches each document to a
category, and writes the categorized results into the news_i d_cat table.

create or replace package classifier asprocedure this;end;/
show errors
create or replace package body classifier as

procedure this

is
v_docunent cl ob;
v_item nunber;
v_doc nunber ;
begi n
for doc in (select tk, text fromnews_table)
| oop
v_docunent : = doc.text;
v_item:= 0;
v_doc := doc.tk;

for ¢ in (select queryid, category from news_categories
where matches(query, v_docunment) > 0)
| oop
vitem:=v_item+ 1;
insert into news_id_cat values (doc.tk,c.queryid);
end | oop;
end | oop;

end this;

end;

/

show errors

exec classifier.this

9.4.2 CTXRULE Parameters and Limitations

The following considerations apply to indexing a CTXRULE index:

ORACLE

If you use the SVM _CLASSI FI ER classifier, then you may use the BAS| C_LEXER,

CHI NESE_LEXER, JAPANESE LEXER, or KOREAN_MORPH_LEXER lexers. If you do not
use SVM CLASSI FI ER, then you can use only the BASI C_LEXER lexer type to index
your query set.

Filter, memory, datastore, and [no]populate parameters are not applicable to the
CTXRULE index type.

The CREATE | NDEX storage clause is supported for creating the index on the
queries.

Wordlists are supported for stemming operations on your query set.

Queries for CTXRULE are similar to the CONTAI NS queries. Basic phrasing ("dog
house") is supported, as are the following CONTAI NS operators: ABOUT, AND, NEAR,
NOT, OR, STEM W THI N, and THESAURUS. Section groups are supported for using
the MATCHES operator to classify documents. Field sections are also supported;
however, CTXRULE does not directly support field queries, so you must use a query
rewrite on a CONTEXT query.

You must drop the CTXRULE index before exporting or downgrading the database.

9-6

Chapter 9
Supervised Classification

¢ See Also:

* Oracle Text Reference for more information on lexer and classifier
preferences

e "Creating a CTXRULE Index"

9.5 Supervised Classification

With supervised classification, you use the CTX_CLS. TRAI N procedure to automate
the rule-writing step. CTX_CLS. TRAI N uses a training set of sample documents to
deduce classification rules. This training set is the major advantage over rule-based
classification, where you must write the classification rules.

However, before you can run the CTX_CLS. TRAI N procedure, you must manually create
categories and assign each document in the sample training set to a category.

See Also:

Oracle Text Reference for more information on CTX_CLS. TRAI N

When the rules are generated, you index them to create a CTXRULE index. You can
then use the MATCHES operator to classify an incoming stream of new documents.

You can select one of the following classification algorithms for supervised
classification:

» Decision Tree Supervised Classification

The advantage of this classification is that the generated rules are easily observed
(and modified).

» SVM-Based Supervised Classification

This classification uses the Support Vector Machine (SVM) algorithm for creating
rules. The advantage of this classification is that it is often more accurate than the
Decision Tree classification. The disadvantage is that it generates binary rules, so
the rules themselves are opaque.

¢ See Also:

e "Decision Tree Supervised Classification Example"

e "SVM-Based Supervised Classification Example"

9.5.1 Decision Tree Supervised Classification

To use Decision Tree classification, you set the preference argument of
CTX_CLS. TRAI Nto RULE_CLASSI FI ER.

ORACLE 9-7

Chapter 9
Supervised Classification

This form of classification uses a decision tree algorithm for creating rules. Generally
speaking, a decision tree is a method of deciding between two (or more, but usually
two) choices. In document classification, the choices are "the document matches the
training set" or "the document does not match the training set."

A decision tree has a set of attributes that can be tested. In this case, the attributes
include:

* words from the document
« stems of words from the document (for example, the stem of running is run)
e themes from the document (if themes are supported for the language in use)

The learning algorithm in Oracle Text builds one or more decision trees for each
category provided in the training set. These decision trees are then coded into queries
that are suitable for use by a CTXRULE index. For example, one category has a training
document for "Japanese beetle," and another category has a document for "Japanese
currency." The algorithm may create decision trees based on "Japanese,” "beetle," and
"currency," and then classify documents accordingly.

The decision trees include the concept of confidence. Each generated rule is allocated
a percentage value that represents the accuracy of the rule, given the current training
set. In trivial examples, the accuracy is almost always 100 percent, but this percentage
merely represents the limitations of the training set. Similarly, the rules generated

from a trivial training set may seem to be less than what you might expect, but they
sufficiently distinguish the different categories in the current training set.

The advantage of the Decision Tree classification is that it can generate rules that
users can easily inspect and modify. The Decision Tree classification makes sense
when you want to the computer to generate the bulk of the rules, but you want to
fine-tune them afterward by editing the rule sets.

9.5.2 Decision Tree Supervised Classification Example

ORACLE

The following SQL example steps through creating your document and classification
tables, classifying the documents, and generating the rules. It then goes on to
generate rules with CTX_CLS. TRAI N.

Rules are then indexed to create CTXRULE index and new documents are classified
with MATCHES.

The CTX_CLS. TRAI N procedure requires an input training document set. A training set
is a set of documents that have already been assigned a category.

After you generate the rules, you can test them by first indexing them and then using
MATCHES to classify new documents.
To create and index the category rules:

1. Create and load a table of training documents.

This example uses a simple set of three fast food documents and three computer
documents.

create table docs (
doc_i d number primary key,
doc_text clob);

insert into docs val ues

9-8

ORACLE

Chapter 9
Supervised Classification

(1, "MacTavishes is a fast-food chain specializing in burgers, fries and -
shakes. Burgers are clearly their nost inportant line.");

insert into docs val ues

(2, '"Burger Prince are an up-market chain of burger shops, who sell burgers -
and fries in conpetition with the Iikes of MacTavishes.');

insert into docs val ues

(3, '"Shakes 2 Go are a new venture in the |owcost restaurant arena,
specializing in sem-liquid frozen fruit-flavored vegetable oil products.');
insert into docs val ues

(4, "TCP/IP network engineers generally need to know about routers,
firewalI's, hosts, patch cables networking etc');

insert into docs val ues

(5, "Firewalls are used to protect a network fromattack by remte hosts,
general ly across TCP/IP');

Create category tables, category descriptions and IDs.

-- Create category tables

-- Note that "category_descriptions" isn't really needed for this denmo -
-- it just provides a descriptive nane for the category nunbers in

-- doc_categories

create table category_descriptions (
cd_category number,
cd_description varchar2(80));

create table doc_categories (
dc_category number ,
dc_doc_id number,
primry key (dc_category, dc_doc_id))
organi zation index;

-- descriptions for categories

insert into category_descriptions values (1, 'fast food');
insert into category_descriptions values (2, 'conputer networking');

Assign each document to a category.

In this case, the fast food documents all go into category 1, and the computer
documents go into category 2.

insert into doc_categories values (1, 1);
insert into doc_categories values (1, 2);
insert into doc_categories values (1, 3);
insert into doc_categories values (2, 4);
insert into doc_categories values (2, 5);

Create a CONTEXT index to be used by CTX_CLS. TRAI N.

To experiment with the effects of turning themes on and off, create an Oracle Text
preference for the index.

exec ctx_ddl.create_preference(' ny_lex',
exec ctx_ddl.set _attribute ("my_lex',
exec ctx_ddl.set _attribute ("my_lex',

basic_l exer');
i ndex_t hemes', 'no');
i ndex_text"', 'yes');

create index docsindex on docs(doc_text) indextype is ctxsys.context
parameters ('lexer ny_lex');

Create the rules table that will be populated by the generated rules.

9-9

Chapter 9
Supervised Classification

create table rul es(
rule_cat_id nunber,
rul e_text var char 2(4000),
rul e_confi dence nunber

)
6. Generate category rules.

All arguments are the names of tables, columns, or indexes previously created in
this example. The rul es table now contains the rules, which you can view.

begi n
ctx_cls.train(
i ndex_name => ' docsi ndex',

doci d => "doc_id",

cattab => 'doc_categories',
catdocid => 'dc_doc_id',
catid => 'dc_category',
restab => 'rul es',

rescatid =>'rule_cat_id',
resquery => 'rule_text',
resconfid => 'rule_confidence'
);
end;
/

7. Fetch the generated rules, viewed by category.

For convenience's sake, the r ul es table is joined with cat egory_descri ptions so
that you can see the category that each rule applies to.

sel ect cd_description, rule_confidence, rule_text fromrules,
category_descriptions where cd_category = rule_cat_id;

8. Use the CREATE | NDEX statement to create the CTXRULE index on the previously
generated rules.

create index rules_idx on rules (rule_text) indextype is ctxsys.ctxrule;
9. Test an incoming document by using MATCHES.

set serveroutput on;

decl are
i nconi ng_doc cl ob;
begi n
i nconi ng_doc
:= "1 have spent ny entire life managing restaurants selling burgers';
for cin
(select distinct cd_description fromrules, category_descriptions
where cd_category = rule_cat_id
and matches (rule_text, inconing_doc) > 0) |oop
dbns_out put . put _| i ne(" CATEGORY: ' || c.cd_description);
end | oop;
end;
/

9.5.3 SVM-Based Supervised Classification

The second method that you can use for training purposes is Support Vector Machine
(SVM) classification. SVM is a type of machine learning algorithm derived from

ORACLE 9-10

Chapter 9
Supervised Classification

statistical learning theory. A property of SVM classification is the ability to learn from a
very small sample set.

Using the SVM classifier is much the same as using the Decision Tree classifier,
except for the following differences:

e Inthe call to CTX_CLS. TRAI N, use the SVYM CLASSI FI ER preference instead of the
RULE_CLASSI FI ER preference. (If you do not want to modify any attributes, use the
predefined CTXSYS. SVM CLASSI FI ER preference.)

» Use the NOPOPULATE keyword if you do not want to populate the CONTEXT index on
the table. The classifier uses it only to find the source of the text, by means of
datastore and filter preferences, and to determine how to process the text through
lexer and sectioner preferences.

* Inthe generated rules table, use at least the following columns:

cat_id nunber,
type nunber,
rule bl ob;

As you can see, the generated rule is written into a BLOB column. It is therefore
opaque to the user, and unlike Decision Tree classification rules, it cannot be edited
or modified. The trade-off here is that you often get considerably better accuracy with
SVM than with Decision Tree classification.

With SVM classification, allocated memory has to be large enough to load the SVM
model; otherwise, the application built on SVM incurs an out-of-memory error. Here is
how to calculate the memory allocation:

M ni mum menory request (in bytes) = number of unique categories x nunber of features

exanpl e: (val ue of MAX FEATURES attributes) x 8

If necessary to meet the minimum memory requirements, increase one of the following
memories:

e SGA (if in shared server mode)

e PGA (if in dedicated server mode)

9.5.4 SVM-Based Supervised Classification Example

ORACLE

This example uses SVM-based classification. The steps are essentially the same as
the Decision Tree example, except for the following differences:

» Set the SYM CLASSI FI ER preference with CTX_DDL. CREATE _PREFERENCE rather than
setting it in CTX_CLS. TRAIN. (You can do it either way.)

* Include category descriptions in the category table. (You can do it either way.)
* Because rules are opaque to the user, use fewer arguments in CTX_CLS. TRAI N.
To create a SVM-based supervised classification:

1. Create and populate the training document table.

create table doc (id nunmber primary key, text varchar2(2000));

insert into doc values(1,'1 2 3 456');

insert into doc values(2,'347890');

insert into doc values(3,'abcdef');

insert into doc values(4,'ghi j kIl mnopqr');
insert into doc values(5,'g hi j kst uvwxyz);

9-11

Chapter 9
Unsupervised Classification (Clustering)

2. Create and populate the category table.

create table testcategory (

doc_i d nunber,

cat _i d nunber,

cat _nane varchar 2(100)

);
insert into testcategory values (1,1, nunber'
insert into testcategory values (2,1, nunber'
insert into testcategory values (3,2,'letter’
insert into testcategory values (4,2,'letter’
insert into testcategory values (5,2,'letter’

[l

— — — — —

[l

3. Create the CONTEXT index on the document table without populating it.

create index docx on doc(text) indextype is ctxsys.context
par amet er s(' nopopul ate');

4. Setthe SYM CLASSI FI ER
You can also set it in CTX. CLS_TRAI N.

exec ctx_ddl.create_preference(' ny_classifier','SYM CLASSI FIER);
exec ctx_ddl.set_attribute('ny_classifier',' MAX_FEATURES','100');

5. Create the result (rule) table.

create table restab (
cat _i d nunber,
type number(3) not null,
rul e bl ob

)s
6. Perform the training.

exec ctx_cls.train('docx', 'id','testcategory','doc_id,6'cat_id",
‘restab','ny_classifier');

7. Create a CTXRULE index on the rules table.

exec ctx_ddl.create_preference('ny_filter'," NULL_FILTER);
create index restabx on restab (rule)

i ndextype is ctxsys.ctxrule

parameters ('filter my_filter classifier ny_classifier');

Now you can classify two unknown documents, as follows:

select cat_id, match_score(1l) fromrestab
where matches(rule, '4 5 6',1)>50;

select cat_id, match_score(1l) fromrestab
where matches(rule, 'f hj',1)>50;

drop table doc;

drop table testcategory;

drop table restab;

exec ctx_ddl.drop_preference(' ny_classifier');
exec ctx_ddl.drop_preference('ny_filter');

9.6 Unsupervised Classification (Clustering)

With Rule-Based Classification, you write the rules for classifying documents yourself.
With Supervised Classification, Oracle Text writes the rules for you, but you
must provide a set of training documents that you preclassify. With unsupervised

ORACLE 9-12

Chapter 9
Unsupervised Classification (Clustering) Example

classification (also known as clustering), you do not have to provide a training set of
documents.

Clustering is performed with the CTX_CLS. CLUSTERI NG procedure. CTX_CLS. CLUSTERI NG
creates a hierarchy of document groups, known as clusters, and, for each document,
returns relevancy scores for all leaf clusters.

For example, suppose that you have a large collection of documents about animals.
CTX_CLS. CLUSTERI NG creates one leaf cluster about dogs, another about cats, another
about fish, and a fourth about bears. (The first three might be grouped under a node
cluster about pets.) Suppose further that you have a document about one breed

of dogs, such as Chihuahuas. CTX_CLS. CLUSTERI NG assigns the dog cluster to the
document with a very high relevancy score, whereas the cat cluster is assigned a
lower score and the fish and bear clusters are still assigned lower scores. After scores
for all clusters are assigned to all documents, an application can then take action
based on the scores.

As noted in "Decision Tree Supervised Classification”, attributes used for determining
clusters may consist of simple words (or tokens), word stems, and themes (where
supported).

CTX_CLS. CLUSTERI NG assigns output to two tables (which may be in-memory tables):

* A document assignment table showing the document’s similarity to each leaf
cluster. This information takes the form of document identification, cluster
identification, and a similarity score between the document and a cluster.

* A cluster description table containing information about a generated cluster. This
table contains cluster identification, cluster description text, a suggested cluster
label, and a quality score for the cluster.

CTX_CLS. CLUSTERI NG uses a K- MEAN algorithm to perform clustering. Use the
KMEAN_CLUSTERI NG preference to determine how CTX_CLS. CLUSTERI NG works.

See Also:

Oracle Text Reference for more information on cluster types and hierarchical
clustering

9.7 Unsupervised Classification (Clustering) Example

set serverout on

This SQL example creates a small collection of documents in the collection table
and creates a CONTEXT index. It then creates a document assignment and cluster
description table, which are populated with a call to the CLUSTERI NG procedure. The
output is then viewed with a select statement:

/* collect document into a table */

create table collection (id nunber primary key, text varchar2(4000));

insert into collection values (1, 'Oracle Text can index any docunent or textual content.');
insert into collection values (2, 'Utra Search uses a craw er to access docunents.');
insert into collection values (3, 'XM. is a tag-based markup | anguage.');

insert into collection values (4, 'Oracle Database 11g XM. DB treats XM

as a native datatype in the database.');

ORACLE

9-13

Chapter 9
Unsupervised Classification (Clustering) Example

insert into collection values (5, 'There are three Oracle Text index types to cover
all text search needs.');

insert into collection values (6, 'Utra Search also provides API

for content managenment solutions.');

create index collectionx on collection(text)
i ndextype is ctxsys.context parameters(' nopopul ate');

/* prepare result tables, if you omt this step, procedure will create table automatically */
create table restab (

doci d NUMBER,

clusterid NUVBER,

score NUMBER);

create table clusters (
clusterid NUVBER,
descript varchar2(4000),
| abel varchar2(200),
size nunber,
qual ity_score nunber,
parent nunber);

/* set the preference */

exec ctx_ddl.drop_preference(' ny_cluster');

exec ctx_ddl.create_preference(' ny_cluster',' KMEAN CLUSTERING);
exec ctx_ddl.set_attribute('ny_cluster',' CLUSTER NUM,'3");

/* do the clustering */
exec ctx_output.start _log('ny_log');

exec ctx_cls.clustering('collectionx',"id" 6 'restab','clusters', ' ny_cluster');
exec ctx_output.end_| og;

See Also:

Oracle Text Reference for CTX_CLS. CLUSTERI NG syntax and examples

ORACLE 9-14

Tuning Oracle Text

Oracle Text provides ways to improve your query and indexing performance.
This chapter contains the following topics:

e Optimizing Queries with Statistics

e Optimizing Queries for Response Time

e Optimizing Queries for Throughput

e Composite Domain Index in Oracle Text

e Performance Tuning with CDI

* Solving Index and Query Bottlenecks by Using Tracing

e Using Parallel Queries

e Tuning Queries with Blocking Operations

* Frequently Asked Questions About Query Performance

* Frequently Asked Questions About Indexing Performance

* Frequently Asked Questions About Updating the Index

10.1 Optimizing Queries with Statistics

ORACLE

Query optimization with statistics uses the collected statistics on the tables and
indexes in a query to select an execution plan that can process the query in the most
efficient manner. As a general rule, Oracle recommends that you collect statistics on
your base table if you are interested in improving your query performance. Optimizing
with statistics enables a more accurate estimation of the selectivity and costs of the
CONTAI NS predicate and thus a better execution plan.

The optimizer attempts to choose the best execution plan based on the following
parameters:

* The selectivity on the CONTAI NS predicate

e The selectivity of other predicates in the query

e The CPU and I/O costs of processing the CONTAI NS predicates

The following topics discuss how to use statistics with the extensible query optimizer:
e Collecting Statistics

e Query Optimization with Statistics Example

e Re-Collecting Statistics

e Deleting Statistics

10-1

Chapter 10
Optimizing Queries with Statistics

< Note:

Importing and exporting statistics on domain indexes, including Oracle
Text indexes, is not supported with the DBMS_STATS package. For more
information on importing and exporting statistics, see the Oracle Database
PL/SQL Packages and Types Reference.

¢ See Also:

Oracle Text Reference for information on the CONTAI NS query operator

10.1.1 Collecting Statistics

ORACLE

By default, Oracle Text uses the cost-based optimizer (CBO) to determine the best
execution plan for a query.

To enable the optimizer to better estimate costs, calculate the statistics on the table
you queried table:

ANALYZE TABLE <t abl e_name> COVPUTE STATI STI CS;

Alternatively, estimate the statistics on a sample of the table:

ANALYZE TABLE <t abl e_name> ESTI MATE STATI STI CS 1000 ROWS;

or

ANALYZE TABLE <t abl e_name> ESTI MATE STATI STI CS 50 PERCENT;

You can also collect statistics in parallel with the DBVS_STATS. GATHER TABLE STATS
procedure:

begin

DBVS_STATS. GATHER _TABLE_STATS(' owner', 'tabl e_name',
estimat e_per cent =>50,
bl ock_sampl e=>TRUE,
degree=>4) ;

end

These statements collect statistics on all objects associated with t abl e_nane,
including the table columns and any indexes (b-tree, bitmap, or Text domain)
associated with the table.

To re-collect the statistics on a table, enter the ANALYZE statement as many times as
necessary or use the DBMS_STATS package.

By collecting statistics on the Text domain index, the CBO in Oracle Database can
perform the following tasks:

e Estimate the selectivity of the CONTAI NS predicate

10-2

Chapter 10
Optimizing Queries with Statistics

» Estimate the I/O and CPU costs of using the Oracle Text index (that is, the cost of
processing the CONTAI NS predicate by using the domain index)

« Estimate the 1/O and CPU costs of each invocation of CONTAI NS

Knowing the selectivity of a CONTAI NS predicate is useful for queries that contain more
than one predicate, such as in structured queries. This way the CBO can better decide
whether to use the domain index to evaluate CONTAI NS or to apply the CONTAI NS
predicate as a post filter.

¢ See Also:

e Oracle Database SQL Language Reference for more information about
the ANALYZE statement

e Oracle Database PL/SQL Packages and Types Reference for
information about DBVS_STATS package

10.1.2 Query Optimization with Statistics Example

The following structured query provides an example for optimizing statistics:

sel ect score(l) fromtab where contains(txt, 'freedoni, 1) > 0 and author =
"King' and year > 1960;

Assume the following:

e The author column is of type VARCHAR2 and the year column is of type NUVMBER
* A b-tree index on the aut hor column.

e The structured aut hor predicate is highly selective with respect to the CONTAI NS
predicate and the year predicate. That is, the structured predicate (author =
'King') returns a much smaller number of rows with respect to the year and
CONTAI NS predicates individually, say 5 rows returned versus 1000 and 1500 rows,
respectively.

In this situation, Oracle Text can execute this query more efficiently by first scanning
a b-tree index range on the structured predicate (author = 'King'), then accessing a
table by rowid, and then applying the other two predicates to the rows returned from
the b-tree table access.

Note:

When statistics are not collected for a Oracle Text index, the CBO assumes
low selectivity and index costs for the CONTAI NS predicate.

10.1.3 Re-Collecting Statistics

After synchronizing your index, you can re-collect statistics on a single index to update
the cost estimates.

ORACLE 10-3

Chapter 10
Optimizing Queries for Response Time

If your base table was reanalyzed before the synchronization, it is sufficient to analyze
the index after the synchronization without reanalyzing the entire table.

To re-collect statistics, enter one of the following statements:

ANALYZE | NDEX <i ndex_name> COMPUTE STATI STI CS;

ANALYZE | NDEX <i ndex_name> ESTI MATE STATI STI CS SAMPLE 50 PERCENT;

10.1.4 Deleting Statistics

Delete the statistics associated with a table:

ANALYZE TABLE <t abl e_name> DELETE STATI STI CS;

Delete statistics on one index:

ANALYZE | NDEX <i ndex_name> DELETE STATI STI CS;

10.2 Optimizing Queries for Response Time

By default, Oracle Text optimizes queries for throughput so that queries return all rows
in the shortest time possible.

However, in many cases, especially in a web application, you must optimize queries
for response time, because you are only interested in obtaining the first few hits of a
potentially large hitlist in the shortest time possible.

The following sections describe some ways to optimize CONTAI NS queries for response
time:

e Other Factors that Influence Query Response Time

* Improved Response Time with FIRST_ROWS(n) Hint for ORDER BY Queries
e Improved Response Time Using the DOMAIN_INDEX_ SORT Hint

* Improved Response Time using Local Partitioned CONTEXT Index

* Improved Response Time with Local Partitioned Index for Order by Score

* Improved Response Time with Query Filter Cache

e Improved Response Time using BIG_IO Option of CONTEXT Index

* Improved Response Time using SEPARATE_OFFSETS Option of CONTEXT
Index

e Improved Response Time Using the STAGE_ITAB, STAGE_ITAB_MAX_ROWS,
and STAGE_ITAB_PARALLEL Options of CONTEXT Index

10.2.1 Other Factors That Influence Query Response Time

ORACLE

The following factors can influence query response time:
* Collection of table statistics

* Memory allocation

e Sorting

* Presence of large object (LOB) columns in your base table

10-4

Chapter 10
Optimizing Queries for Response Time

e Partitioning
e Parallelism

* The number term expansions in your query

See Also:

"Frequently Asked Questions About Query Performance"

10.2.2 Improved Response Time with the FIRST_ROWS(n) Hint for
ORDER BY Queries

ORACLE

When you need the first rows of an ORDER BY query, Oracle recommends that you use
the cost-based FI RST_ROAS(n) hint.

¢ Note:

As the FI RST_ROAS(n) hint is cost-based, Oracle recommends that you
collect statistics on your tables before you use this hint.

You use the FI RST_ROW(n) hint in cases where you want the first n number of rows in
the shortest possible time. For example, consider the following PL/SQL block that uses
a cursor to retrieve the first 10 hits of a query and the FI RST_ROAS(n) hint to optimize
the response time:

decl are
cursor c is

select /*+ FIRST_ROAS(10) */ article_id fromarticles_tab
where contains(article, 'Omphagia')>0 order by pub_date desc;

begin

for i inc

| oop

insert into t_s values(i.pk, i.col);
exit when c% owcount > 11;

end | oop;

end;
/

The ¢ cursor is a SELECT statement that returns the rowids that contain the word
omophagia in sorted order. The code loops through the cursor to extract the first 10
rows. These rows are stored in the temporary t _s table.

With the FI RST_ROAS(n) hint, the optimizer instructs the Oracle Text index to return
rowids in score-sorted order when the cost of returning the top-N hits is lower.

10-5

Chapter 10
Optimizing Queries for Response Time

Without the hint, Oracle Database sorts the rowids after the Oracle Text index returns
all rows in unsorted order that satisfy the CONTAI NS predicate. Retrieving the entire
result set takes time.

Because only the first 10 hits are needed in this query, using the hint results in better
performance.

¢ Note:

Use the FI RST_ROWS(n) hint when you need only the first few hits of a query.
When you need the entire result set, do not use this hint as it might result in
poor performance.

10.2.3 Improved Response Time Using the DOMAIN_INDEX_SORT

Hint

You can also optimize for response time by using the related DOVAI N_| NDEX_SORT
hint. Like FI RST_ROWS(n), when queries are optimized for response time, Oracle Text
returns the first rows in the shortest time possible.

For example, you can use this hint:

sel ect /*+ DOVAI N_I NDEX_SORT */ pk, score(l), col fromctx_tab
where contains(txt_col, '"test', 1) > 0 order by score(l) desc;

However, this hint is only rule-based. This means that Oracle Text always chooses
the index which satisfies the ORDER BY clause. This hint might result in suboptimal
performance for queries where the CONTAI NS clause is very selective. In these cases,
Oracle recommends that you use the FI RST_ROWS(n) hint, which is fully cost-based.

10.2.4 Improved Response Time Using the Local Partitioned
CONTEXT Index

ORACLE

Partitioning your data and creating local partitioned indexes can improve your query
performance. On a partitioned table, each partition has its own set of index tables.
Effectively, there are multiple indexes, but the results are combined as necessary to
produce the final result set.

Create the CONTEXT index with the LOCAL keyword:

CREATE | NDEX i ndex_nane ON tabl e_nane (col um_namne)
| NDEXTYPE | S ct xsys. cont ext

PARAMETERS ('...")

LOCAL

With partitioned tables and indexes, you can improve performance of the following
types of queries:

* Range Search on Partition Key Column: This query restricts the search to a
particular range of values on a column that is also the partition key. For example,
consider a query on a date range:

10-6

Chapter 10
Optimizing Queries for Response Time

SELECT storyid FROM storytab WHERE CONTAI NS(story, 'oliver')>0 and pub_date
BETWEEN ' 1- OCT- 93" AND ' 1- NOV-93';

If the date range is quite restrictive, it is very likely that the query can be satisfied
by only looking in a single partition.

* ORDER BY Partition Key Column: This query requires only the first n hits, and
the ORDER BY clause names the partition key. Consider an ORDER BY query on a
pri ce column to fetch the first 20 hits:

SELECT * FROM (

SELECT itemid FROM itemtab WHERE CONTAINS(item desc, 'cd player')
>0 ORDER BY price)
VWHERE ROWNUM < 20;

In this example, with the table partitioned by price, the query might only need to
get hits from the first partition to satisfy the query.

10.2.5 Improved Response Time with the Local Partitioned Index for
Order by Score

The DOVAI N_I NDEX_SORT hint on a local partitioned index might result in poor
performance, especially when you order by score. All hits to the query across all
partitions must be obtained before the results can be sorted.

Instead, use an inline view when you use the DOVAI N_| NDEX_SORT hint. Specifically,
use the DOVAI N_I NDEX_SORT hint to improve query performance on a local partitioned
index under the following conditions:

* The Oracle Text query itself, including the order by SCORE() clause, is expressed as
an in-line view.

* The Oracle Text query inside the in-line view contains the DOMAI N_| NDEX_SORT hint.

e The query on the in-line view has a ROANUM predicate that limits the number of
rows to fetch from the view.

For example, the following Oracle Text query and local Oracle Text index are created
on a partitioned doc_t ab table:

sel ect doc_id, score(l) fromdoc_tab
where contains(doc, 'oracle', 1)>0
order by score(1) desc;

If you are interested in fetching only the top 20 rows, you can rewrite the query as
follows:

select * from
(select /*+ DOMAIN_I NDEX SORT */ doc_id, score(l) fromdoc_tab
where contains(doc, 'oracle', 1)>0 order by score(1l) desc)
where rownum < 21;

ORACLE 10-7

Chapter 10
Optimizing Queries for Response Time

¢ See Also:

Oracle Database SQL Language Reference for more information about the
EXPLAI' N PLAN statement

10.2.6 Improved Response Time with the Query Filter Cache

Oracle Text provides a cache layer called the query filter cache that you can use to
cache the query results. The query filter cache is sharable across queries. Multiple
gueries can reuse cached query results to improve the query response time.

Use the ct xfil t er cache operator to specify which query results to cache. The
following example uses the operator to store the results of the cormon_pr edi cat e
query in the cache:

select * fromdocs where contains(txt, 'ctxfiltercache((common_predicate),
FALSE) ') >0;

In this example, the cached results of the cormon_pr edi cat e query are reused by the
new_query query, to improve the query response time.

select * fromdocs where contains(txt, 'new query &
ctxfiltercache((commn_predicate), FALSE)')>0;

< Note:

e You can specify the size of the query filter cache by using the basic
query _filter _cache_si ze storage attribute.

e Thectx_filter_cache_statistics view provides various statistics
about the query filter cache.

< Note:

The CTXFI LTERCACHE query operator was designed to speed up commonly-
used expressions in queries. In Oracle Database Release 21c, this
function is replaced by other internal improvements. The CTXFI LTERCACHE
operator is deprecated (and will pass through its operands to be run

as a normal query). Because they no longer have a function, the view
CTX_FI LTER _CACHE_STATI STI CS is also deprecated, and also the storage
attribute QUERY_FI LTER_CACHE_SI ZE.

ORACLE 10-8

Chapter 10
Optimizing Queries for Response Time

¢ See Also:
Oracle Text Reference for more information about:

e ctxfiltercache operator
e query_filter_cache_size basic storage attribute

e ctx filter_cache statistics view

10.2.7 Improved Response Time Using the BIG_|O Option of
CONTEXT Index

ORACLE

Oracle Text provides the Bl G_| Ooption for improving the query performance for
the CONTEXT indexes that extensively use |0 operations. The query performance
improvement is mainly for data stored on rotating disks, not for data stored on solid
state disks.

When you enable the Bl G_| Ooption, a CONTEXT index creates token type pairs with one
large object (LOB) data type for each unique token text. Tokens with the same text but
different token types correspond to different rows in the $I table.

The indexes with the Bl G_| Ooption enabled should have the token LOBs created
as SecureFile LOBs, so that the data is stored sequentially in multiple blocks. This
method improves the response time of the queries, because the queries can now
perform longer sequential reads instead of many short reads.

" Note:

If you use SecureFiles, you must set the COVPATI BLE setting to 11.0 or
higher. In addition, you must create the LOB on an automatic segment space
management (ASSM) tablespace. When you migrate the existing Oracle
Text indexes to SecureFiles, use an ASSM tablespace. To help migrate the
existing indexes to SecureFiles, you can extend ALTER | NDEX REBUI LD to
provide storage preferences that only affect the $I table.

To create a CONTEXT index with the Bl G_| Oindex option, first create a basic storage
preference by setting the value of its Bl G_| O storage attribute to YES, and then specify
this storage preference while creating the CONTEXT index.

The following example creates a basic nyst or e storage preference and sets the value
of its Bl G_| O storage attribute to YES:

exec ctx_ddl.create_preference(' nystore', 'BASIC STORAGE');
exec ctx_ddl.set_attribute(' nystore', 'BIGIO, "'YES);

To disable the Bl G_| Ooption, update the existing storage preference (nyst or e) by
setting the value of its Bl G_| Ostorage attribute to NO, and then rebuild the index.

exec ctx_ddl.set_attribute(' nystore', "BIGIO, "NO);
alter index idx rebuild('replace storage mystore');

10-9

Chapter 10
Optimizing Queries for Response Time

WARNING:

Do not use the replace metadata operation to disable the Bl G_| Oindex
option. It can leave the index in an inconsistent state.

To enable the Bl G_| Ooption for a partitioned index without rebuilding the index, modify
the basic storage preference by setting the value of its Bl G_| O storage attribute to YES,
replace the global index metadata using ct x_ddl . repl ace_i ndex_net adat a, and then
call opti mi ze_i ndex in REBU LD mode for each partition of the partitioned index table.

The following example enables the Bl G_| Ooption for the i dx partitioned index:

exec ctx_ddl.set_attribute(' nystore', 'BIGIO, 'YES);
exec ctx_ddl.replace_index_netadata('idx', 'replace netadata storage nystore');
exec ctx_ddl.optimze_index('idx', 'rebuild, part_name=>partl');

< Note:

If a procedure modifies the existing index tables with only the Bl G_| O option
enabled, then it will not result in reindexing of the data.

" Note:

Because the Bl G | Oindex option performs longer sequential reads, the
queries that use the Bl G_| Oindex option require a large program global area
(PGA) memory.

10.2.8 Improved Response Time Using the SEPARATE_OFFSETS
Option of the CONTEXT Index

ORACLE

Oracle Text provides the SEPARATE OFFSETS option to improve the query performance
for the CONTEXT indexes that use 10 operations, and whose queries are mainly single-
word or Boolean queries.

The SEPARATE_OFFSETS option creates a different postings list structure for the tokens
of type TEXT. Instead of interspersing docids, frequencies, info-length (length of the
offsets information), and the offsets in the postings list, the SEPARATE _OFFSETS option
stores all docids and frequencies at the beginning of the postings list, and all info-
lengths and offsets at the end of the postings list. The header at the beginning of

the posting contains the information about the boundary points between docids and
offsets. Because separation of docids and offsets reduces the time for the queries to
read the data, it improves the query response time.

Performance of the SEPARATE _OFFSETS option is best realized when you use it in
conjunction with the Bl G_| O option and for tokens with a very long posting.

10-10

Chapter 10
Optimizing Queries for Response Time

To create a CONTEXT index with the SEPARATE_OFFSETS option, first create a basic
storage preference by setting the value of its SEPARATE OFFSETS storage attribute to T.
Next, specify this storage preference when you create the CONTEXT index.

The following example creates a basic nyst or e storage preference and sets the value
of its SEPARATE _OFFSETS storage attribute to T:

exec ctx_ddl.create_preference(' nystore', 'BASIC STORAGE);
exec ctx_ddl.set_attribute(' nystore', 'SEPARATE_OFFSETS , 'T');

To disable the SEPARATE_OFFSETS option, update the existing storage preference
(nyst or e) by setting the value of its SEPARATE_OFFSETS storage attribute to F, and
then rebuild the index.

exec ctx_ddl.set_attribute(' nystore', 'SEPARATE OFFSETS , 'F');
alter index idx rebuild('replace storage nystore');

WARNING:

Do not use replace metadata operation to disable the SEPARATE OFFSETS
index option, as it can leave the index in an inconsistent state.

To enable the SEPARATE _OFFSETS option for a partitioned index without rebuilding

the index, modify the basic storage preference by setting the value of its
SEPARATE_OFFSETS storage attribute to T, replace the global index metadata by using
ctx_ddl . repl ace_i ndex_net adat a, and then call opti m ze_i ndex in REBUILD mode
for each partition in the partitioned index table.

The following example enables the SEPARATE _OFFSETS option for the partitioned i dx
index:

exec ctx_ddl.set_attribute(' nystore', 'SEPARATE OFFSETS , 'T');
exec ctx_ddl.replace_index_netadata('idx', 'replace storage nystore');
exec ctx_ddl.optimze_index('idx', 'rebuild , part_name=> partl');

Note:

If a procedure modifies the existing index tables with only the
SEPARATE_OFFSETS option enabled, then the data is not reindexed.

10.2.9 Improved Response Time Using the STAGE _ITAB,
STAGE _ITAB_MAX ROWS, and STAGE _ITAB_PARALLEL Options
of CONTEXT Index

ORACLE

Oracle Text provides the STAGE | TAB option for improving the query performance for
CONTEXT and search indexes that extensively use insert, update, and delete operations
for near real-time indexing. The STAGE | TAB option is the default index option only for
search indexes.

10-11

ORACLE

Chapter 10
Optimizing Queries for Response Time

If you do not use the STAGE | TAB index option, then when you add a new document to
the CONTEXT index, SYNC | NDEX is called to make the documents searchable. This call
creates new rows in the $I table, and increases the fragmentation in the $| table. The
result is deterioration of the query performance.

When you enable the STAGE_| TAB index option, the following happens:

* Information about the new documents is stored in the $G staging table, not in
the $I table. This storage ensures that the $I table is not fragmented and does not
deteriorate the query performance.

e The $Hb-tree index is created on the $Gtable. The $Gtable and $H b-tree index are
equivalent to the $I table and $X b-tree index.

Rows are merged automatically from the $Gtable to the $I table when the number
of rows in $G exceeds the storage setting, STAGE_| TAB_MAX_ROWS (10K by default).
You can also force an immediate merge of the rows from $Gto $I by running index
optimization in MERGE optimization mode.

Note:

The $Gtable is stored in the KEEP pool. To improve query performance, you
should allocate sufficient KEEP pool memory and maintain a large enough $G
table size by using the new st age_i t ab_max_r ows option.

To create a CONTEXT index with the STAGE_| TAB index option, first create a basic
storage preference by setting the value of its STAGE_| TAB storage attribute to YES.
Next, specify this storage preference when you create the CONTEXT index.

The following example creates a basic nyst or e storage preference and sets the value
of its STAGE_| TAB storage attribute to YES:

exec ctx_ddl.create_preference(' nystore', 'BASIC _STORAGE');
exec ctx_ddl.set_attribute(' nystore', 'STAGE ITAB', 'YES');

You can also enable the STAGE_| TAB index option for an existing nonpartitioned
CONTEXT index by using the rebuild option of the ALTER | NDEX statement.

alter index IDX rebuild paraneters('replace storage nmystore');

To disable the STAGE | TAB option for a nonpartitioned CONTEXT index, update the
existing storage preference (nyst or e) by setting the value of its STAGE_| TAB storage
attribute to NO, and then rebuild the index.

exec ctx_ddl.set_attribute(' nystore', 'STAGE_ITAB', 'NO);
alter index idx rebuild paranmeters('replace storage mystore');

This operation runs the optimization process by using the MERGE optimization mode
and then drops the $Gtable.

The rebuild option of the ALTER | NDEX statement does not work with the partitioned
CONTEXT index for enabling and disabling the STAGE | TAB option.

The following example enables the STAGE | TAB option for the partitioned CONTEXT i dx
index:

10-12

ORACLE

Chapter 10
Optimizing Queries for Response Time

alter index idx paraneters('add stage_itab');

The following example disables the STAGE | TAB option for the partitioned CONTEXT i dx
index:

alter index idx paraneters('renove stage_itab');

The contents of $Gwere automatically moved to $I during index synchronization
when $G had more than 1 million rows in Oracle Database 12c Release 2 (12.2) or
100K rows in Oracle Database Release 18c. Starting with Oracle Database Release
21c, the contents of $G are automatically moved to $I during index synchronization
when $G has more than 10K rows by default. This value is controlled by the

STAGE_| TAB_MAX_ROAS attribute of the STORAGE preference.

< Note:

To use the STAGE_| TAB index option for a CONTEXT indeXx, you must specify
the g_i ndex_cl ause and g_t abl e_cl ause BASI C_STORAGE preferences.

The query performance is deteriorated when $Gtable is too fragmented. To avoid
deterioration, starting with Oracle Database Release 18c, Oracle Text provides
automatic background optimize merge for every index or partition. To enable automatic
background optimize merge, you must set the STAGE | TAB storage preference attribute
to TRUE, and you must create the index with a storage preference which uses the
STACE_| TAB attribute.

By default, if you had enabled STAGE | TAB in indexes before you upgraded to Oracle
Database Release 18c, then STAGE_| TAB_AUTO _OPT is not enabled. If STAGE_| TAB and
AUTO_OPTI M ZE are enabled in existing indexes, then you must disable AUTO _OPTI M ZE
before you enable STAGE | TAB_AUTO OPT. Starting with Oracle Database Release 19c,
STACGE_| TAB_AUTO _OPT is set to TRUE by default for automatic background optimize
merge. If you set STAGE | TAB_AUTO OPT to FALSE, the merge is run as part of SYNC

| NDEX. It is recommended to set STAGE | TAB and STAGE | TAB_AUTO OPT to TRUE
instead of using AUTO _OPTI M ZE.

Note:

In Oracle Database Release 21c, the procedures ADD_AUTO OPTI M ZE
and REMOVE_AUTO_OPTI M ZE, and the views CTX_AUTO_OPTI M ZE_| NDEXES,
CTX_USER_AUTO_OPTI M ZE_| NDEXES and CTX_AUTO OPTI M ZE_STATUS are
deprecated.

The following example creates a basic nyst or e storage preference and sets the value
of its STAGE_| TAB_AUTO_OPT storage attribute to TRUE:

exec ctx_ddl.create preference(' nystore', 'basic_storage');

exec ctx_ddl.set attribute('nystore', 'stage itab', 'TRUE);

exec ctx_ddl.set attribute('nystore', 'stage itab auto opt', 'TRUE);
exec ctx_ddl.set attribute('nystore', 'stage itab parallel', 16);

10-13

Chapter 10
Optimizing Queries for Throughput

¢ See Also:

Oracle Text Reference for more information about BASI C_STORAGE

10.3 Optimizing Queries for Throughput

When you optimize a query for throughput, the default behavior returns all hits in the
shortest time possible.

Here is how you can explicitly optimize queries for throughput:

¢ CHOOSE and ALL ROWS Modes: By default, you optimize queries with the
CHOOSE and ALL_ROAS modes. Oracle Text returns all rows in the shortest time
possible.

* FIRST_ROWS(n) Mode: In FI RST_ROAS(n) mode, the optimizer in Oracle
Database optimizes for fast response time by having the Text domain index return
score-sorted rows, if possible. This is the default behavior when you use the
FI RST_ROAS(n) hint.

If you want to optimize throughput with FI RST_ROAS(n), then use the
DOMAI N_I NDEX_NO_SORT hint. Better throughput means that you are interested in
getting all query rows in the shortest time possible.

The following example achieves better throughput by not using the Text domain
index to return score-sorted rows. Instead, Oracle Text sorts the rows after all rows
that satisfy the CONTAI NS predicate are retrieved from the index:

sel ect /*+ FI RST_ROAS(10) DOVAI N_I NDEX_NO SCRT */ pk, score(1), col from
ctx_tab
where contains(txt_col, '"test', 1) > 0 order by score(l) desc;

" See Also:

Oracle Database SQL Tuning Guide for more information about the query
optimizer and using hints such as FI RST_ROAS(n) and CHOOSE

10.4 Composite Domain Index in Oracle Text

ORACLE

The Composite Domain Index (CDI) feature of the Extensibility Framework in Oracle
Database enables structured columns to be indexed by Oracle Text. Therefore, both
text and one or more structured criteria can be satisfied by one single Oracle Text
index row source. Performance for the following types of queries is improved:

* Oracle Text query with structured criteria in the SQL WHERE clause
e Oracle Text query with structured ORDER BY criteria
* A combination of the previous two query types

As with concatenated b-tree indexes or bitmap indexes, applications experience
a slowdown in data manipulation language (DML) performance as the number of
FI LTER BY and ORDER BY columns increases. Where SCORE-sort pushdown is optimized

10-14

Chapter 10
Performance Tuning with CDI

for response time, the structured sort or combination of SCORE and structured sort
pushdown is also optimized for response time, but not for throughput. However, using
DOMVAI N_I NDEX_SORT or FI RST_ROAS(n) hints to force the sort to be pushed into the CDI
while fetching the entire hitlist may result in poor query response time.

10.5 Performance Tuning with CDI

Because you can map a FI LTER BY column to MDATA, you can optimize query
performances for equality searches by restricting the supported functionality of RANGE
and LI KE. However, Oracle does not recommend mapping a FI LTER BY column to
MDATA if the FI LTER BY column contains sequential values or has very high cardinality.
Doing so can result in a very long and narrow $I table and reduced $X performance.
One example of such a sequential column might be one that uses the DATE stamp. For
such sequential columns, mapping to SDATA is recommended.

Use the following hints to push or not push the SORT and FI LTER BY predicates into the
CDl:

- DOMAI N_I NDEX_SORT: The query optimizer tries to push the applicable sorting
criteria into the specified CDI.

* DOVAI N_I NDEX_NO_SCRT: The query optimizer tries not to push sorting criteria into
the specified CDI.

e DOMAI N_I NDEX_FI LTER(table name index name): The query optimizer tries to push
the applicable FI LTER BY predicates into the specified CDI.

» DOMAI N_I NDEX_NO FI LTER(table name index name): The query optimizer does not
try to push the applicable FI LTER BY predicate(s) into the specified CDI.

" Note:

The donri n_i ndex_filter hint does not force the query optimizer to use
CDI. Instead, if the CBO chooses to use the CDI, then it should also push the
filter predicate into the index. To force the query optimizer to choose the CDI
index, you additionally need to use the | NDEX hint.

Example 10-1 Performance Tuning an Oracle Text Query with CDI Hints
The following example performs an optimized query on the books table.

SELECT booki d, pub_date, source FROM
(SELECT /*+ domai n_i ndex_sort domai n_i ndex_filter(books books_ctxcdi) */
booki d, pub_date, source
FROM books
WHERE CONTAINS(text, 'aaa',1)>0 AND bookid >= 80
ORDER BY PUB_DATE desc nulls last, SOURCE asc nulls last, score(l) desc)
VWHERE r ownum < 20;

10.6 Solving Index and Query Bottlenecks by Using Tracing

Oracle Text includes a tracing feature that enables you to identify bottlenecks in
indexing and querying.

ORACLE 10-15

Chapter 10
Using Parallel Queries

Oracle Text provides a set of predefined traces. Each trace is identified by a unique
number. CTX_QUTPUT includes a symbol for this number.

Each trace measures a specific numeric quantity, such as the number of $| rows
selected during text queries.

Traces are cumulative counters, so usage is as follows:

1. The user enables a trace.

2. The user performs one or more operations. Oracle Text measures activities and
accumulates the results in the trace.

3. The user retrieves the trace value, which is the total value across all operations
done in step 2.

4. The user resets the trace to O.
5. The user starts over at Step 2.

So, for instance, if in step 2 the user runs two queries, and query 1 selects 15 rows
from $I, and query 2 selects 17 rows from $I, then in step 3 the value of the trace is
32 (15 + 17).

Traces are associated with a session—they can measure operations that take place
within a single session, and, conversely, cannot make measurements across sessions.

During parallel synchronization or optimization, the trace profile is copied to the slave
sessions if and only if tracing is currently enabled. Each slave accumulates its own
traces and implicitly writes all trace values to the slave logfile before termination.

¢ See Also:

Oracle Text Reference

10.7 Using Parallel Queries

In general, parallel queries are optimal for Decision Support System (DSS) and Online
Analysis Processing (OLAP). They are also optimal for analytical systems that have
large data collections, multiple CPUs with a low number of concurrent users, or Oracle
Real Application Clusters (Oracle RAC) nodes.

Oracle Text supports the following parallel queries:

« Parallel Queries on a Local Context Index

» Parallelizing Queries Across Oracle RAC Nodes

10.7.1 Parallel Queries on a Local Context Index

ORACLE

Parallel query refers to the parallelized processing of a local CONTEXT index. Based on
the parallel degree of the index and various system attributes, Oracle determines the
number of parallel query slaves to be spawned to process the index. Each parallel
guery slave processes one or more index partitions. This default query behavior
applies to local indexes that are created in parallel.

10-16

Chapter 10
Tuning Queries with Blocking Operations

However, for heavily loaded systems with a high number of concurrent users, query
throughput is generally worse with parallel query; if the query is run serially, the top-N
hits can usually be satisfied by the first few partitions. For example, take the typical
top-N text queries with an ORDER BY partition key column:

select * from (
select story_ id fromstories_tab where contains(...)>0 order by
publication_date desc)
where rownum <= 10;

These text queries generally perform worse with a parallel query.

You can disable parallel querying after a parallel index operation with an ALTER | NDEX
statement:

Alter index <text index name> NOPARALLEL;
Alter index <text index name> PARALLEL 1;

You can also enable or increase the parallel degree:

Alter index <text index name> parallel < parallel degree >;

10.7.2 Parallelizing Queries Across Oracle RAC Nodes

Oracle Real Application Clusters (Oracle RAC) provides an excellent solution for
improving query throughput. If you can get good performance from Oracle Text with a
light query load, then you can expect to get excellent scalability from Oracle RAC as
the query load increases.

You can achieve further improvements in Oracle Text performance by physically
partitioning the text data and Oracle Text indexes (using local partitioned indexes)
and ensuring that partitions are handled by separate Oracle RAC nodes. This way,
you avoid duplication of the cache contents across multiple nodes and, therefore,
maximize the benefit of Oracle RAC cache fusion.

In Oracle 10g Release 1, you must force each Oracle Text index partition into a
separate database file when the index is created. This enables the "remastering”
feature in Oracle RAC to force database file affinity, where each node concentrates on
a particular database file and, therefore, a particular Oracle Text index partition.

In Oracle 10g Release 2 and later, Oracle supports database object-level affinity,
which makes it much easier to allocate index objects ($| and $R tables) to particular
nodes.

Although Oracle RAC offers solutions for improving query throughput and
performance, it does not necessarily enable you to continue to get the same
performance improvements as you scale up the data volumes. You are more likely

to see improvements by increasing the amount of memory available to the system
global area (SGA) cache or by partitioning your data so that queries do not have to hit
all table partitions in order to provide the required set of query results.

10.8 Tuning Queries with Blocking Operations

If you issue a query with more than one predicate, you can cause a blocking operation
in the execution plan. For example, consider the following mixed query:

select docid fromnytab where contains(text, 'oracle', 1) >0
AND colA > 5

ORACLE 10-17

Chapter 10
Frequently Asked Questions About Query Performance

AND col B > 1
AND col C > 3;

Assume that all predicates are unselective and colA, colB, and colC have bitmap
indexes. The CBO in Oracle Database chooses the following execution plan:

TABLE ACCESS BY ROW DS
Bl TMAP CONVERSI ON TO ROW DS
Bl TMAP AND
Bl TMAP | NDEX COLA BMX
Bl TMAP | NDEX COLB_BMX
Bl TMAP | NDEX COLC_BMX
Bl TMAP CONVERSI ON FROM ROW DS
SORT ORDER BY
DOVAI N | NDEX MYl NDEX

Because Bl TMAP AND is a blocking operation, Oracle Text must temporarily save the
rowid and score pairs returned from the Oracle Text domain index before it runs the
Bl TMAP AND operation.

Oracle Text attempts to save these rowid and score pairs in memory. However, when
the size of the result set exceeds the SORT_AREA Sl ZE initialization parameter, Oracle
Text spills these results to temporary segments on disk.

Because saving results to disk causes extra overhead, you can improve performance
by increasing the SORT_AREA S| ZE parameter.

alter session set SORT_AREA SIZE = <new nenory Size in bytes>;

For example, set the buffer to approximately 8 megabytes.

alter session set SORT_AREA SI ZE = 8300000;

See Also:

Oracle Database Performance Tuning Guide and Oracle Database
Reference for more information on SORT_AREA S| ZE

10.9 Frequently Asked Questions About Query Performance

ORACLE

This section answers some of the frequently asked questions about query
performance.

* What is Query Performance?

* What is the fastest type of text query?

* Should | collect statistics on my tables?

* How does the size of my data affect queries?

* How does the format of my data affect queries?
* What is a functional versus an indexed lookup?
* What tables are involved in queries?

« How is $R contention reduced?

10-18

Chapter 10
Frequently Asked Questions About Query Performance

* Does sorting the results slow a text-only query?

* How do | make an ORDER BY score query faster?

* Which memory settings affect querying?

* Does out-of-line LOB storage of wide base table columns improve performance?
* How can | make a CONTAINS query on more than one column faster?
* Isit OK to have many expansions in a query?

* How can local partition indexes help?

e Should | query in parallel?

e Should | index themes?

* When should | use a CTXCAT index?

* When is a CTXCAT index NOT suitable?

* What optimizer hints are available and what do they do?

10.9.1 What is query performance?

Answer: There are two measures of query performance:

* Response time: The time to get an answer to an individual query

* Throughput: The number of queries that can be run in any given time period; for
example, queries each second

These two measures are related, but they are not the same. In a heavily loaded
system, you want maximum throughput, whereas in a relatively lightly loaded system,
you probably want minimum response time. Also, some applications require a query to
deliver all hits to the user, whereas others only require the first 20 hits from an ordered
set. It is important to distinguish between these two scenarios.

10.9.2 What is the fastest type of Oracle Text query?

Answer: The fastest type of query meets the following conditions:
e Single CONTAI NS clause

* No other conditions in the WHERE clause

* No ORDERBY clause

« Returns only the first page of results (for example, the first 10 or 20 hits)

10.9.3 Should | collect statistics on my tables?

ORACLE

Answer: Yes. Collecting statistics on your tables enables Oracle Text to do cost-based
analysis. This helps Oracle Text choose the most efficient execution plan for your
queries.

If your queries are always pure text queries (no structured predicate and no joins), you
should delete statistics on your Oracle Text index.

10-19

Chapter 10
Frequently Asked Questions About Query Performance

10.9.4 How does the size of my data affect queries?

Answer: The speed at which the Oracle Text index can deliver rowids is not affected
by the actual size of the data. Oracle Text query speed is related to the number of
rows that must be fetched from the index table, the number of hits requested, the
number of hits produced by the query, and the presence or absence of sorting.

10.9.5 How does the format of my data affect queries?

Answer: The format of the documents (plain ASCII text, HTML, or Microsoft Word)
should make no difference to query speed. The documents are filtered to plain text at
indexing time, not query time.

The cleanliness of the data makes a difference. Spell-checked and subedited text
for publication tends to have a much smaller total vocabulary (and therefore size of
the index table) than informal text such as email, which contains spelling errors and
abbreviations. For a given index memory setting, the extra text takes up memory,
creates more fragmented rows, and adversely affects query response time.

10.9.6 What is the difference between an indexed lookup and a
functional lookup

Answer: The kernel can query the Oracle Text index with an indexed lookup and a
functional lookup. In the indexed lookup, the first and most common case, the kernel
asks the Oracle Text index for all rowids that satisfy a particular text search. These
rowids are returned in batches.

In the functional lookup, the kernel passes individual rowids to the Oracle Text index
and asks whether that particular rowid satisfies a certain text criterion. The functional
lookup is most commonly used with a very selective structured clause, so that only a
few rowids must be checked against the Oracle Text index. Here is an example of a

search where a functional lookup is useful:

SELECT I D, SCORE(1), TEXT FROM MYTABLE

WHERE START_DATE = '21 Cct 1992 <- highly selective
AND CONTAINS (TEXT, 'conmonword') > 0 <- unsel ective

Functional invocation is also used for an Oracle Text query that is ordered by a
structured column (for example date, price) and if the Oracle Text query contains
unselective words.

10.9.7 What tables are involved in queries?

ORACLE

Answer: All queries look at the index token table. The table’s name has the form
of DR$i ndexname$l and contains the list of tokens (TOKEN_TEXT column) and the
information about the row and word positions where the token occurs (TOKEN | NFO
column).

The row information is stored as internal docid values that must be translated into
external rowid values. The table that you use depends on the type of lookup:

* For functional lookups, use the $K table, DR$i ndexnane$K. This simple Index
Organized Table (IOT) contains a row for each docid/rowid pair.

10-20

Chapter 10
Frequently Asked Questions About Query Performance

e For indexed lookups, use the $R table, DR$i ndexnane$R. This table holds the
complete list of rowids in a BLOB column.

Starting with Oracle Database 12¢ Release 2 (12.2), a new storage attribute,
SMALL R ROW was introduced to reduce the size of the $Rrow. It populates $R rows

on demand instead of creating 22 static rows, thereby reducing the Data Manipulation
Language contention. The contention happens when parallel insert, update, and delete
operations try to lock the same $R row.

You can easily find out whether a functional or indexed lookup is being used by
examining a SQL trace and looking for the $K or $R tables.

< Note:

These internal index tables are subject to change from release to release.
Oracle recommends that you do not directly access these tables in your
application.

10.9.8 How is the $R table contention reduced?

The $R contention during base table delete and update operations has become a
recurring theme over the past few years. Currently, each $R index table has 22 static
rows, and each row can contain up to 200 million rowids. The contention happens
when the parallel insert, update, and delete operations try to lock the same $R row
for insert or delete operations. The following enhancements made during this release
reduce the contention:

e The maximum number of rowids that each $R row can contain is 70,000, which
translates to 1 MB of data stored on each row. To use this feature, you must set
the SMALL_R ROWSstorage attribute.

* The $Rrows are created on demand instead of just populating a pre-determined
number of rows.

10.9.9 Does sorting the results slow a text-only query?

Answer: Yes, it certainly does.

If Oracle Text does not sort, then it can return results as it finds them. This approach is
quicker when the application needs to display only a page of results at a time.

10.9.10 How do | make an ORDER BY score query faster?

Answer: Sorting by relevance (SCORE(n)) can be fast if you use the FI RST_ROWS(n)
hint. In this case, Oracle Text performs a high-speed internal sort when fetching from
the Oracle Text index tables.

Here is an example of this query:

SELECT /*+ FI RST_ROAS(10) */ I D, SCORE(1), TEXT FROM mytable
WHERE CONTAINS (TEXT, 'searchterm, 1) >0
ORDER BY SCORE(1) DESC;

ORACLE 10-21

Chapter 10
Frequently Asked Questions About Query Performance

It is important to note that, there must be no other criteria in the WHERE clause, other
than a single CONTAI NS.

10.9.11 Which memory settings affect querying?

Answer: For querying, you want to strive for a large system global area (SGA). You
can set these SGA parameters in your Oracle Database initialization file. You can also
set these parameters dynamically.

The SORT_AREA S| ZE parameter controls the memory that is available for sorting ORDER
BY queries. You should increase the size of this parameter if you frequently order by
structured columns.

¢ See Also:

e Oracle Database Administrator's Guide for more information on setting
SGA related parameters

e Oracle Database Performance Tuning Guide for more information on
memory allocation

e Oracle Database Reference for more information on setting the
SORT_AREA_SI ZE parameter

10.9.12 Does out-of-line LOB storage of wide base table columns
improve performance?

Answer: Yes. Typically, a SELECT statement selects more than one column from your
base table. Because Oracle Text fetches columns to memory, it is more efficient to
store wide base table columns such as large objects (LOBSs) out of line, especially
when these columns are rarely updated but frequently selected.

When LOBs are stored out of line, only the LOB locators need to be fetched to
memory during querying. Out-of-line storage reduces the effective size of the base
table. It makes it easier for Oracle Text to cache the entire table to memory, and so
reduces the cost of selecting columns from the base table, and speeds up text queries.

In addition, smaller base tables cached in memory enables more index table data to
be cached during querying, which improves performance.

10.9.13 How can | speed up a CONTAINS query on more than one

column?

ORACLE

Answer: The fastest type of query is one where there is only a single CONTAI NS clause
and no other conditions in the WHERE clause.

Consider the following multiple CONTAI NS query:

SELECT title, isbn FROM bookli st
WHERE CONTAINS (title, "horse') >0
AND CONTAINS (abstract, 'racing') > 0

10-22

Chapter 10
Frequently Asked Questions About Query Performance

You can get the same result with section searching and the W THI N operator:

SELECT title, isbn FROM bookli st
WHERE CONTAINS (al I text,
"horse WTHIN title AND racing WTH N abstract')>0

This query is completed more quickly than the single CONTAI NS clause. To use a query
like this, you must copy all data into a single text column for indexing, with section tags
around each column's data. You can do that with PL/SQL procedures before indexing,
or you can use the USER_DATASTORE datastore during indexing to synthesize structured
columns with the text column into one document.

10.9.14 Can | have many expansions in a query?

Answer: Each distinct word used in a query requires at least one row to be fetched
from the index table. It is therefore best to keep the number of expansions down as
much as possible.

You should not use expansions such as wild cards, thesaurus, stemming, and fuzzy
matching unless they are necessary to the task. In general, a few expansions (for
example, 10 to 20) does not cause difficulty, but avoid a large number of expansions
(80 or 100) in a query. Use the query feedback mechanism to determine the number of
expansions for any particular query expression.

For wildcard and stem queries, you can avoid term expansion from query time to index
time by creating prefix, substring, or stem indexes. Query performance increases at
the cost of longer indexing time and added disk space.

Prefix and substring indexes can improve wildcard performance. You enable prefix
and substring indexing with the BASI C_WORDLI ST preference. The following example
sets the wordlist preference for prefix and substring indexing. For prefix indexing, it
specifies that Oracle Text creates token prefixes between 3 and 4 characters long:

begi n

ctx_ddl.create_preference(' mywordlist', 'BASIC WORDLIST');
ctx_ddl.set_attribute(' mywordlist',' PREFI X | NDEX' ,' TRUE');
ctx_ddl.set_attribute(' mywordlist',' PREFIX MN LENGTH, '3");
ctx_ddl.set_attribute(' mywordlist',' PREFI X MAX_ LENGTH , '4");
ctx_ddl.set_attribute(' mywordlist',' SUBSTRI NG | NDEX', 'YES');

end

Enable stem indexing with the BASI C_LEXER preference:

begin

ctx_ddl.create_preference(' nylex', 'BASIC LEXER);
ctx_ddl.set_attribute ('"nylex', 'index_stens', 'ENGLISH);
end;

10.9.15 How can local partition indexes help?

Answer: You can create local partitioned CONTEXT indexes on partitioned tables.
This means that, on a partitioned table, each partition has its own set of index

ORACLE 10-23

Chapter 10
Frequently Asked Questions About Query Performance

tables. Effectively, the results from the multiple indexes are combined as necessary
to produce the final result set.

Use the LOCAL keyword to create the index:

CREATE | NDEX i ndex_nane ON tabl e_nane (col um_nane)
| NDEXTYPE | S ct xsys. cont ext

PARAMETERS ('...")

LOCAL

With partitioned tables and local indexes, you can improve performance of the
following types of CONTAI NS queries:

* Range Search on Partition Key Column: This query restricts the search to a
particular range of values on a column that is also the partition key.

* ORDER BY Partition Key Column: This query requires only the first n hits, and
the ORDER BY clause names the partition key.

¢ See Also:

"Improved Response Time using Local Partitioned CONTEXT Index"

10.9.16 Should I query in parallel?

Answer: It depends on system load and server capacity. Even though parallel
querying is the default behavior for indexes created in parallel, it usually degrades
the overall query throughput on heavily loaded systems.

Parallel queries are optimal for Decision Support System (DSS) and Online Analysis
Processing (OLAP). They are also optimal for analytical systems that have large data
collections, multiple CPUs with a low number of concurrent users, or Oracle Real
Application Clusters (Oracle RAC) nodes.

¢ See Also:

"Using Parallel Queries"

10.9.17 Should | index themes?

ORACLE

Answer: Indexing theme information with a CONTEXT index takes longer and also
increases the size of your index. However, theme indexes enable ABOUT queries to
be more precise by using the knowledge base. If your application uses many ABOUT
queries, it might be worthwhile to create a theme component to the index, despite the
extra indexing time and extra storage space required.

See Also:
"ABOUT Queries and Themes"

10-24

Chapter 10
Frequently Asked Questions About Query Performance

10.9.18 When should | use a CTXCAT index?

Answer: CTXCAT indexes work best when the text is in small chunks (just a few lines),
and you want searches to restrict or sort the result set according to certain structured
criteria, such as numbers or dates.

For example, consider an online auction site. Each item for sale has a short
description, a current bid price, and start and end dates for the auction. A user might
want to see all records with antique cabinet in the description, with a current bid price
less than $500. Because he is particularly interested in newly posted items, he wants
the results sorted by auction start time.

This search is not always efficient with a CONTAI NS structured query on a CONTEXT
index. The response time can vary significantly depending on the structured and
CONTAI NS clauses, because the intersection of structured and CONTAI NS clauses or the
Oracle Text query ordering is computed during query time.

By including structured information within the CTXCAT index, you ensure that the query
response time is always in an optimal range regardless of search criteria. Because the
interaction between text and structured query is precomputed during indexing, query
response time is optimum.

10.9.19 When is a CTXCAT index NOT suitable?

Answer: There are differences in the time and space needed to create the index.
CTXCAT indexes take a bit longer to create, and they use considerably more disk space
than CONTEXT indexes. If you are tight on disk space, consider carefully whether CTXCAT
indexes are appropriate for you.

With query operators, you can use the richer CONTEXT grammar in CATSEARCH queries
with query templates. The older restriction of a single CATSEARCH query grammar no
longer holds.

10.9.20 What optimizer hints are available and what do they do?

ORACLE

Answer: To drive the query with a text or b-tree index, you can use the | NDEX(t abl e
col um) optimizer hint in the usual way.

You can also use the NO | NDEX(t abl e col um) hint to disable a specific index.

The FI RST_ROWS(n) hint has a special meaning for text queries. Use it when you need
the first n hits to a query. When you use the DOVAI N_I NDEX_SORT hint in conjunction
with ORDER BY SCORE(n) DESC, you tell the Oracle optimizer to accept a sorted set
from the Oracle Text index and to sort no farther.

¢ See Also:

"Optimizing Queries for Response Time"

10-25

Chapter 10
Frequently Asked Questions About Indexing Performance

10.10 Frequently Asked Questions About Indexing
Performance

This section answers some of the frequently asked questions about indexing
performance.

* How long should indexing take?

* Which index memory settings should | use?

* How much disk overhead will indexing require?

* How does the format of my data affect indexing?

e Can parallel indexing improve performance?

* How can | improve index performance for creating local partitioned index?

* How can | tell how much indexing has completed?

10.10.1 How long should indexing take?

Answer: Indexing text is a resource-intensive process. The speed of indexing
depends on the power of your hardware. Indexing speed depends on CPU and I/O
capacity. With sufficient I/O capacity to read in the original data and write out index
entries, the CPU is the limiting factor.

Tests with Intel x86 (Core 2 architecture, 2.5GHz) CPUs have shown that Oracle
Text can index around 100 GB of text per CPU core, per day. This speed would be
expected to increase as CPU clock speeds increase and CPU architectures become
more efficient.

Other factors, such as your document format, location of your data, and the calls to
user-defined datastores, filters, and lexers, can affect your indexing speed.

10.10.2 Which index memory settings should | use?

ORACLE

Answer: You can set your index memory with the DEFAULT_| NDEX_MEMORY and
MAX_| NDEX_MEMORY system parameters. You can also set your index memory at runtime
with the CREATE | NDEX nenory parameter in the parameter string.

You should aim to set the DEFAULT_I NDEX_MEMCRY value as high as possible, without
causing paging.

You can also improve indexing performance by increasing the SORT_AREA Sl ZE system
parameter.

Oracle recommends that you use a large index memory setting. Large settings,
even up to hundreds of megabytes, can improve the speed of indexing and reduce
fragmentation of the final indexes. However, if you set the index memory setting too
high, then memory paging reduces indexing speed.

With parallel indexing, each stream requires its own index memory. When dealing with
very large tables, you can tune your database system global area (SGA) differently
for indexing and retrieval. For querying, you want to get as much information cached
in the SGA block buffer cache as possible. So you should allocate a large amount

10-26

Chapter 10
Frequently Asked Questions About Indexing Performance

of memory to the block buffer cache. Because this approach does not make any
difference to indexing, you would be better off reducing the size of the SGA to make
more room for large index memory settings during indexing.

You set the size of SGA in your Oracle Database initialization file.

¢ See Also:

e Oracle Text Reference to learn more about Oracle Text system
parameters

e Oracle Database Administrator's Guide for more information on setting
SGA related parameters

e Oracle Database Performance Tuning Guide for more information on
memory allocation

e Oracle Database Reference for more information on setting the
SORT_AREA S| ZE parameter

10.10.3 How much disk overhead will indexing require?

Answer: The overhead, the amount of space needed for the index tables, varies
between about 50 and 200 percent of the original text volume. Generally, larger
amounts of text result in smaller overhead, but many small records use more overhead
than fewer large records. Also, clean data (such as published text) requires less
overhead than dirty data such as emails or discussion notes, because the dirty data is
likely to include many misspelled and abbreviated words.

A text-only index is smaller than a combined text and theme index. A prefix and
substring index makes the index significantly larger.

10.10.4 How does the format of my data affect indexing?

Answer: You can expect much lower storage overhead for formatted documents such
as Microsoft Word files because the documents tend to be very large compared to the
actual text held in them. So 1 GB of Word documents might only require 50 MB of
index space, whereas 1 GB of plain text might require 500 MB, because there is ten
times as much plain text in the latter set.

Indexing time is less clear-cut. Although the reduction in the amount of text to be
indexed has an obvious effect, you must balance this against the cost of filtering the
documents with the AUTO FI LTER filter or other user-defined filters.

10.10.5 Can parallel indexing improve performance?

ORACLE

Answer: Parallel indexing can improve index performance when you have a large
amount of data and multiple CPUs.

Use the PARALLEL keyword to create an index with up to three separate indexing
processes, depending on your resources.

CREATE | NDEX i ndex_nanme ON tabl e_name (col urm_nane)
| NDEXTYPE | S ctxsys. context PARAVETERS ('...') PARALLEL 3;

10-27

Chapter 10
Frequently Asked Questions About Indexing Performance

You can also use parallel indexing to create local partitioned indexes on partitioned
tables. However, indexing performance improves only with multiple CPUs.

Note:

Using PARALLEL to create a local partitioned index enables parallel queries.
(Creating a nonpartitioned index in parallel does not turn on parallel query
processing.)

Parallel querying degrades query throughput especially on heavily loaded
systems. Because of this, Oracle recommends that you disable parallel
querying after parallel indexing. To do so, use ALTER | NDEX NOPARALLEL.

10.10.6 How can | improve index performance when | create a local
partitioned index?

Answer: When you have multiple CPUs, you can improve indexing performance by
creating a local index in parallel.

You can create a local partitioned index in parallel in the following ways:

* Use the PARALLEL clause with the LOCAL clause in the CREATE | NDEX statement. In
this case, the maximum parallel degree is limited to the number of partitions.

* Create an unusable index, and then run the DBMS_PCLXUTI L. BUI LD _PART | NDEX
utility. This method can result in a higher degree of parallelism, especially if you
have more CPUs than partitions.

The following is an example of the second method. The base table has three
partitions. You create a local partitioned unusable index first, and then run the
DBVMS_PCLUTI L. BUI LD_PART | NDEX, to build the three partitions in parallel (inter-partition
parallelism). Inside each partition, index creation occurs in parallel (intra-partition
parallelism) with a parallel degree of 2.

create index tdrbi p02bx on tdrbi p02b(text)

i ndextype is ctxsys.context |ocal (partition tdrbip02bx1,
partition tdrbip02bx2,
partition tdrbi p02bx3)

unusabl e;

exec dbms_pcl xutil.build_part_index(3,2," TDRBI PO2B'," TDRBI PO2BX , TRUE) ;

10.10.7 How can | tell how much indexing has completed?

Answer: You can use the CTX_QUTPUT. START_LOG procedure to log output from
the indexing process. The filename is normally written to $ORACLE_HOVE/ ct x/ | og,
but you can change the directory by using the LOG_DI RECTORY parameter in
CTX_ADM SET_PARAVETER.

ORACLE 10-28

Chapter 10
Frequently Asked Questions About Updating the Index

¢ See Also:

Oracle Text Reference to learn more about the CTX_OUTPUT package

10.11 Frequently Asked Questions About Updating the
Index

This section answers some of the frequently asked questions about updating your
index and related performance issues.

* How often should | index new or updated records?
* How can I tell when my indexes are getting fragmented?

* Does memory allocation affect index synchronization?

10.11.1 How often should I index new or updated records?

Answer: If you run reindexing with CTX_DDL. SYNC | NDEX less often, your indexes will
be less fragmented, and you will not have to optimize them as often.

However, your data becomes progressively more out-of-date, and that may be
unacceptable to your users.

Overnight indexing is acceptable for many systems. In this case, data that is less
than a day old is not searchable. Other systems use hourly, 10-minute, or 5-minute
updates.

¢ See Also:

e Oracle Text Reference to learn more about using CTX_DDL. SYNC_| NDEX
e "Managing DML Operations for a CONTEXT Index"

10.11.2 How can | tell when my indexes are fragmented?

Answer: The best way is to time some queries, run index optimization, and then time
the same queries (restarting the database to clear the SGA each time, of course). If
the queries speed up significantly, then optimization was worthwhile. If they do not,
then you can wait longer next time.

You can also use CTX_REPORT. | NDEX_STATS to analyze index fragmentation.

ORACLE 10-29

Chapter 10
Frequently Asked Questions About Updating the Index

¢ See Also:

» Oracle Text Reference to learn more about using the CTX_REPORT
package

e "Optimizing the Index"

10.11.3 Does memory allocation affect index synchronization?

Answer: Yes, the same way as for normal indexing. There are often far fewer records
to be indexed during a synchronize operation, so it is not usually necessary to provide
hundreds of megabytes of indexing memory.

ORACLE 10-30

Searching Document Sections in Oracle
Text

You can use document sections in a text query application.
This chapter contains the following topics:
* About Oracle Text Document Section Searching

* HTML Section Searching with Oracle Text
XML Section Searching with Oracle Text

11.1 About Oracle Text Document Section Searching

Section searching enables you to narrow text queries down to blocks of text within
documents. Section searching is useful when your documents have internal structure,
such as HTML and XML documents.

You can also search for text at the sentence and paragraph level.
This section contains these topics:
e Enabling Oracle Text Section Searching

e Oracle Text Section Types

» Oracle Text Section Attributes

11.1.1 Enabling Oracle Text Section Searching

The steps for enabling section searching for your document collection are:

Create a Section Group

Define Your Sections

Index Your Documents

Section Searching with the WITHIN Operator

Path Searching with INPATH and HASPATH Operators
Marking an SDATA Section to be Searchable

@ o w0 N P

11.1.1.1 Create a Section Group

You enable section searching by defining section groups. You use one of the system-
defined section groups to create an instance of a section group. Choose a section
group that is appropriate for your document collection.

You use section groups to specify the type of document set that you have
and implicitly indicate the tag structure. For instance, to index HTML tagged

ORACLE 11-1

ORACLE

Chapter 11
About Oracle Text Document Section Searching

documents, use HTM__SECTI ON_GROUP. Likewise, to index XML tagged documents, use

XM._SECTI ON_GROUP.

Table 11-1 lists the different types of section groups.

Table 11-1 Types of Section Groups

Section Group Preference

Description

NULL_SECTI ON_GROUP

BASI C_SECTI ON_GROUP

HTM._SECTI ON_GROUP
XM._SECTI ON_GROUP

AUTO_SECTI ON_GROUP

PATH_SECTI ON_GROUP

NEWS_SECTI ON_GROUP

This is the default. Use this group type when you define no
sections or when you define only SENTENCE or PARAGRAPH
sections.

Use this group type for defining sections where the start and
end tags are of the form <A> and </ A>.

Note: This group type does not support input such as
unbalanced parentheses, comments tags, and attributes.
Use HTML_SECTI ON_GROUP for this type of input.

Use this group type to index HTML documents and for
defining sections in HTML documents.

Use this group type to index XML documents and for
defining sections in XML documents.

Use this group type to automatically create a zone section
for each start-tag/end-tag pair in an XML document. As in
XML, the section names derived from XML tags are case-
sensitive.

Attribute sections are created automatically for XML tags
that have attributes. Attribute sections are named in the form
tag@attribute.

Stop sections, empty tags, processing instructions, and

comments are not indexed.

The following limitations apply to automatic section groups:

* You cannot add zone, field, or special sections to an
automatic section group.

* Automatic sectioning does not index XML document
types (root elements.)

» The length of the indexed tags, including prefix and
namespace, cannot exceed 64 bytes. Tags longer than
64 bytes are not indexed.

Use this group type to index XML documents. This
preference behaves like AUTO_SECTI ON_GROUP.

The difference is that you can search paths with the | NPATH
and HASPATH operators. Queries are also case-sensitive for
tag and attribute names.

Use this group to define sections in newsgroup-formatted
documents according to RFC 1036.

Note:

Documents sent to the HTM., XM_, AUTO, and PATH sectioners must

begin with \ s*<. The \ s* represents zero or more whitespace characters.
Otherwise, the document is treated as a plain-text document, and no
sections are recognized.

11-2

Chapter 11
About Oracle Text Document Section Searching

You use the CTX_DDL package to create section groups and define sections as part of
section groups. For example, to index HTML documents, create a section group with
HTM._SECTI ON_GROUP:

begi n
ctx_ddl . create_section_group(' htngroup', 'HTM._SECTI ON_GROUP');
end;

Note:

Starting with Oracle Database 18c, use of NEW5_SECTI ON_GROUP is
deprecated in Oracle Text. Use external processing instead.

If you want to index USENET posts, then preprocess the posts to use

BASI C_SECTI ON_GRQUP or HTM._SECTI ON_GROUP within Oracle Text. USENET
is rarely used commercially.

11.1.1.2 Define Your Sections

You define sections as part of the section group. The following example defines a zone
section called heading for all text within the HTML < HL1> tag:

begin
ctx_ddl . create_section_group(' htngroup', 'HTM._SECTI ON_GROUP');
ctx_ddl . add_zone_section(' htngroup', 'heading', 'HL');

end,

¢ Note:
If you are using AUTO SECTI ON_GROUP or PATH_SECTI ON_GROUP to index an
XML document collection, then you do not have to explicitly define sections.
The system defines the sections during indexing.

¢ See Also:
e "Oracle Text Section Types" for more information about sections
e "XML Section Searching with Oracle Text" for more information about

section searching with XML

11.1.1.3 Index Your Documents

ORACLE

When you index your documents, you specify your section group in the parameter
clause of CREATE | NDEX.

create index nyindex on docs(htmfile) indextype is ctxsys.context
parameters('filter ctxsys.null _filter section group htngroup');

11-3

Chapter 11
About Oracle Text Document Section Searching

11.1.1.4 Search Sections with the WITHIN Operator

When your documents are indexed, you can query within sections by using the W TH N
operator. For example, to find all documents that contain the word Oracle within their
headings, enter the following query:

"Oracle WTH N headi ng'

See Also:

Oracle Text Reference to learn more about using the W THI N operator

11.1.1.5 Search Paths with INPATH and HASPATH Operators

When you use PATH_SECTI ON_GROUP, the system automatically creates XML sections.
In addition to using the W THI N operator to enter queries, you can enter path queries
with the | NPATH and HASPATH operators.

" See Also:

e "XML Section Searching with Oracle Text" to learn more about using
these operators

e Oracle Text Reference to learn more about using the | NPATH operator

11.1.1.6 Mark an SDATA Section to Be Searchable

To mark an SDATA section to be searchable and have a $Sdat at ype table created, use
the CTX_DDL. SET_SECTI ON_ATTRI BUTE API.
The following tables are created:

e $SN— NUMBER

* $SD-— DATE
* $SV— VARCHAR2, CHAR
* $SR—RAW

* $SBD- BI NARY DOUBLE

* $SBF — BI NARY FLOAT

o $ST — TI MESTAWP

e $STZ - TI MESTAWP W TH TI MEZONE

ORACLE 11-4

Chapter 11
About Oracle Text Document Section Searching

The following example creates a $SV table for this SDATA section to allow efficient
searching on that section.
ctx_ddl . add_sdata_section('sec_grp', 'sdata_sec', 'nytag', 'varchar');

ctx_ddl .set_section_attribute('sec_grp', 'sdata_sec', 'optimzed_for',
"search');

The default value of this attribute is FALSE.

11.1.2 Oracle Text Section Types

All section types are blocks of text in a document. However, sections can differ in the
way that they are delimited and the way that they are recorded in the index. Sections
can be one of the following types:

e Zone Section

* Field Section

e Stop Section

* MDATA Section

* NDATA Section

* SDATA Section

* Attribute Section (for XML documents)

* Special Sections (sentence or paragraphs)

Table 11-2 shows which section types may be used with each kind of section group.

Table 11-2 Section Types and Section Groups

Section Group

ZONE FIELD STOP MDATA NDATA SDATA ATTRIBUTE SPECIAL

NULL NO NO NO NO NO NO NO YES
BASIC YES YES NO YES YES YES NO YES
HTML YES YES NO YES YES YES NO YES
XML YES YES NO YES YES YES YES YES
NEWS YES YES NO YES YES YES NO YES
AUTO NO NO YES NO NO NO NO NO
PATH NO NO NO NO NO NO NO NO
11.1.2.1 Zone Section
A zone section is a body of text delimited by start and end tags in a document. The
positions of the start and end tags are recorded in the index so that any words in
between the tags are considered to be within the section. Any instance of a zone
section must have a start and an end tag.
For example, define the text between the <TI TLE> and </ Tl TLE> tags as a zone
section as follows:
<TITLE>Tal e of Two Gities</TITLE>
It was the best of times...
ORACLE 11-5

ORACLE

Chapter 11
About Oracle Text Document Section Searching

Zone sections can nest, overlap, and repeat within a document.

When querying zone sections, you use the W TH N operator to search for a term across
all sections. Oracle Text returns those documents that contain the term within the
defined section.

Zone sections are well suited for defining sections in HTML and XML documents. To
define a zone section, use CTX_DDL.ADD_ZONE_SECTI ON.

For example, assume you define the bookti t | e section as follows:
begin
ctx_ddl . create_section_group(' htngroup', 'HTM._SECTI ON_GROUP');

ctx_ddl . add_zone_section(' htngroup', 'booktitle', 'TITLE);
end;

After you index, you can search for all documents that contain the term Cities within
the booktit| e section as follows:

"Cities WTH N booktitle'

With multiple query terms such as (dog and cat) WITHIN booktitle, Oracle Text returns
those documents that contain cat and dog within the same instance of a booktitle
section.

Repeated Zone Sections

Zone sections can repeat. Each occurrence is treated as a separate section. For
example, if <H1> denotes a headi ng section, the heading can be repeated in the same
documents as follows:

<H1> The Brown Fox </H1>
<H1> The Gray Wl f </HL>

Assuming that these zone sections are named Headi ng, a query of Brown WITHIN
Heading returns this document. However, a query of (Brown and Gray) WITHIN
Heading does not.

Overlapping Zone Sections

Zone sections can overlap each other. For example, if and <I > denote two
different zone sections, they can overlap in a document as follows:

plain bold <I> bold and italic only italic </I> plain
Nested Zone Sections

Zone sections can be nested, as follows:

<TD> <TABLE><TD>nested cel | </ TD></ TABLE></ TD>

Using the W THI N operator, you can write queries to search for text in sections within
sections. For example, assume that the BOOK1, BOOK2, and AUTHOR zone sections
occur as follows in the doc1 and doc2 documents:

docl:

<book1> <aut hor>Scott Tiger</author> This is a cool book to read.</bookl>

doc2:

11-6

Chapter 11
About Oracle Text Document Section Searching

<book2> <aut hor>Scott Tiger</author> This is a great book to read. </ book2>

Consider the nested query. It returns only docl.

"(Scott within author) within bookl'

11.1.2.2 Field Section

ORACLE

A field section is similar to a zone section in that it is a region of text delimited

by start and end tags. Field sections are more efficient from zone sections and are
different than zone sections in that the region is indexed separately from the rest of the
document. You can create an unlimited number of field sections.

Because field sections are indexed differently, you can also get better query
performance over zone sections when a large number of documents are indexed.

Field sections are more suited to a single occurrence of a section in a document, such
as a field in a news header. Field sections can also be made visible to the rest of the
document.

Unlike zone sections, field sections have the following restrictions:

e They cannot overlap.
e They cannot repeat.

e They cannot nest.

Visible and Invisible Field Sections

By default, field sections are indexed as a sub-document separate from the rest of the
document. As such, field sections are invisible to the surrounding text and can only be
gueried by explicitly naming the section in the W THI N clause.

You can make field sections visible if you want the text within the field section to be
indexed as part of the enclosing document. You can query text within a visible field
section with or without the W THI N operator.

The following example shows the difference using invisible and visible field sections.
The code defines a basi cgr oup section group of the BASI C_SECTI ON_GROUP type. It
then creates a field section in basi cgr oup called Aut hor for the <A> tag. It also sets the
visible flag to FALSE to create an invisible section.

begi n

ctx_ddl . create_section_group(' basicgroup', 'BASI C_SECTI ON_GROUF);
ctx_ddl . add_field_section('basicgroup', "Author', "A, FALSE);
end;

Because the Aut hor field section is not visible, to find text within the Aut hor section,
you must use the W THI N operator.

"(Martin Luther King) WTH N Aut hor'

A query of Martin Luther King without the W THI N operator does not return instances
of this term in field sections. If you want to query text within field sections without
specifying W THI N, you must set the visible flag to TRUE when you create the section,
as follows:

11-7

Chapter 11
About Oracle Text Document Section Searching

begin
ctx_ddl.add_field_section('basicgroup', 'Author', "A', TRUE);
end;

Nested Field Sections

You cannot nest field sections. For example, if you define a field section to start with
<TI TLE> and define another field section to start with <FOO>, you cannot nest the two
sections as follows:

<TI TLE> dog <FOO> cat </FOO> </ TI TLE>

To work with nested sections, define them as zone sections.

Repeated Field Sections

Repeated field sections are allowed, but W THI N queries treat them as a single section.
Here is an example of a repeated field section in a document:

<TITLE> cat </TITLE>
<TITLE> dog </ TI TLE>

The query dog and cat within title returns the document, even though these words
occur in different sections.

To have W THI N queries distinguish repeated sections, define them as zone sections.

11.1.2.3 Stop Section

When you add a stop section to an automatic section group, the automatic section
indexing operation ignores the specified section in XML documents.

< Note:

Adding a stop section causes no section information to be created in the
index. However, the text within a stop section is always searchable.

Adding a stop section is useful when your documents contain many low-information
tags. Adding stop sections also improves indexing performance with the automatic
section group.

You can add an unlimited number of stop sections.

Stop sections do not have section names and are not recorded in the section views.

11.1.2.4 MDATA Section

ORACLE

You use an MDATA section to reference user-defined metadata for a document. MDATA
sections can speed up mixed queries, and there is no limit to the number of MDATA
sections that can be returned in a query.

Consider the case where you want to query according to text content and document
type (magazine, newspaper, or novel). You can create an index with a column for text
and a column for the document type, and then perform a mixed query of this form.

11-8

ORACLE

Chapter 11
About Oracle Text Document Section Searching

In this case, search for all novels with the phrase Adam Thorpe (author of the novel
Ulverton):

SELECT id FROM docunents
WHERE doctype = 'novel'
AND CONTAI NS(text, ' Adam Thorpe')>0;

However, it is usually faster to incorporate the attribute (in this case, the document
type) in a field section, rather than using a separate column, and then using a single
CONTAI NS query.

SELECT id FROM docunents
VWHERE CONTAINS(text, 'Adam Thorpe AND novel W TH N doctype')>0;

This approach has two drawbacks:

« Each time the attribute is updated, the entire text document must be reindexed,
resulting in increased index fragmentation and slower rates of data manipulation
language (DML) processing.

» Field sections tokenize the section value. Tokenization has several effects. Special
characters in metadata, such as decimal points or currency characters, are not
easily searchable; value searching (searching for John Smith but not John Smith,
Jr.) is difficult; multiword values are queried by phrase, which is slower than single-
token searching; and multiword values do not show up in browsed words, making
author browsing or subject browsing impossible.

For these reasons, using MDATA sections instead of field sections may be worthwhile.
MDATA sections are indexed like field sections, but you can add and remove metadata
values from documents without the need to reindex the document text. Unlike

field sections, MDATA values are not tokenized. Additionally, MDATA section indexing
generally takes up less disk space than field section indexing.

Starting with Oracle Database 12¢ Release 2 (12.2), the MDATA section can be
updatable or nonupdatable depending on the value of its read-only tag, which can
be set to either FALSE or TRUE.

Use CTX_DDL. ADD_MDATA SECTI ONto add an MDATA section to a section group. By
default, the value of a read-only MDATA section is FALSE. It implies that you want

to permit calling CTX_DDL. ADD_MDATA() and CTX_DDL. REMOVE_MDATA() for this MDATA
section, otherwise you can set it to TRUE. When set to FALSE, the queries on the MDATA
section run less efficiently because a cursor must be opened on the index table to
track the deleted values for that MDATA section. This example adds an MDATA section
called AUTHOR and gives it the value Soseki Natsume (author of the novel Kokoro).

ctx_ddl . create.section.group(' htngroup', 'HTM._SECTI ON_GROUP');
ctx_ddl . add_ndata_section(' htmgroup', 'author', 'Soseki Natsume');

You can change MDATA values with CTX_DDL. ADD_MDATA, and you can remove them
with CTX_DDL. REMOVE_MDATA. Also, MDATA sections can have multiple values. Only the
owner of the index may call CTX_DDL. ADD_MDATA and CTX_DDL. REMOVE_NDATA.

Neither CTX_DDL. ADD_MDATA nor CTX_DDL. REMOVE_MDATA is supported for CTXCAT and
CTXRULE indexes.

MVDATA values are not passed through a lexer. Instead, all values undergo the following
simplified normalization:

» Leading and trailing whitespace on the value is removed.

11-9

Chapter 11
About Oracle Text Document Section Searching

* The value is truncated to 255 bytes.

* The value is indexed as a single value; if the value consists of multiple words, it is
not broken up.

» Case is preserved. If the document is dynamically generated, you can implement
case-insensitivity by uppercasing MDATA values and making sure to search only in
uppercase.

After you add MDATA metadata to a document, you can query for that metadata by
using the CONTAI NS query operator:

SELECT id FROM docunents
VWHERE CONTAI NS(text, 'Tokyo and MDATA(author, Soseki Natsume)')>0;

This query is only successful if an AUTHOR tag has the exact value Soseki Natsume
(after simplified tokenization). Soseki or Natsume Soseki returns no rows.

The following are considerations for MDATA:

» MDATA values are not highlightable, do not appear in the output of
CTX_DQOC. TOKENS, and do not appear when you enable FI LTER PLAI NTEXT.

» MDATA sections must be unique within section groups. For example, do not use FOO
as the name of an MDATA section and a zone or field section in the same section
group.

« Like field sections, MDATA sections cannot overlap or nest. An MDATA section is
implicitly closed by the first tag encountered. In this example:

<AUTHOR>Di ckens Shel | ey</ B> Keat s</ AUTHOR>
The tag closes the AUTHOR MDATA section; as a result, this document has an
AUTHOR of 'Dickens', but not of 'Shelley' or 'Keats'.

» To prevent race conditions, each call to ADD_MDATA and REMOVE_MDATA locks out
other calls on that rowid for that index for all values and sections. However,
because ADD MDATA and REMOVE_MDATA do not commit, it is possible for an
application to deadlock when calling them both. It is the application's responsibility
to prevent deadlocking.

¢ See Also:

e "ALTER | NDEX" in Oracle Text Reference
e "ADD MDATA SECTI ON' in Oracle Text Reference

e The "CONTAI NS" query operators chapter of the Oracle Text Reference
for information on the MDATA operator

e« The "CTX_DDL" package chapter of Oracle Text Reference for
information on adding and removing MDATA sections

ORACLE 11-10

Chapter 11
About Oracle Text Document Section Searching

11.1.2.5 NDATA Section

For fields containing data to be indexed for name searching, you can specify them
exclusively by adding NDATA sections to section groups of type BASI C_SECTI ON_GROUP,
HTM._SECTI ON_GROUP, or XM._SECTI ON_GROUP.

Users can synthesize textual documents, which contain name data, by using two
possible datastores: MULTI _COLUWN DATASTORE or USER_DATASTORE. The following
example uses MULTI _COLUMN_DATASTORE to pick up relevant columns containing the
name data for indexing:

create table people(firstnanme varchar2(80), surnane varchar2(80));
insert into people values('John', 'Smth');
comit;
begi n
ctx_ddl.create_preference(' nameds', ' MULTI _COLUWN DATASTORE');
ctx_ddl.set_attribute(' nameds', 'colums', 'firstname, surname');
end;
/

This example produces the following virtual text for indexing:

<FI RSTNAVE>
John

</ FI RSTNAME>
<SURNAME>
Smith

</ SURNAMVE>

You can then create NDATA sections for FI RSTNAME and SURNAME sections:

begin
ctx_ddl . create_section_group(' namegroup', 'BASI C SECTI ON_GROUP');
ctx_ddl . add_ndata_section(' namegroup’', 'FIRSTNAME , 'FI RSTNAME');
ctx_ddl . add_ndata_section(' namegroup', ' SURNAME , ' SURNAME');

end;

/

Next, create the index by using the datastore preference and section group preference
that you created earlier:

create index peopleidx on people(firstnane) indextype is ctxsys.context
paramet ers(' section group namegroup datastore nameds');

NDATA sections support both single- and multibyte data with character- and term-based
limitations. NDATA section data that is indexed is constrained as follows:

* The number of characters in a single, whitespace-delimited term: 511
* The number of whitespace-delimited terms: 255

* The total number of characters, including whitespaces: 511

11.1.2.6 SDATA Section

ORACLE

The value of an SDATA section is extracted from the document text like other sections,
but it is indexed as structured data, also referred to as SDATA. SDATA sections support
operations such as projection, range searches, and ordering. SDATA sections also
enable SDATA indexing of section data (such as embedded tags) and detail table or

11-11

ORACLE

Chapter 11
About Oracle Text Document Section Searching

function invocations. You can perform various combinations of text and structured
searches in one single SQL statement.

Use SDATA operators only as descendants of AND operators that also have non-SDATA
children. SDATA operators are meant to be used as secondary (checking or non-driving)
criteria. For example, "find documents with DOG that also have price > 5", rather than
"find documents with rating > 4".

Use CTX _DDL. ADD_SDATA SECTI ONto add an SDATA section to a section group. Use
CTX_DDL. UPDATE_SDATA to update the values of an existing SDATA section. When
guerying within an SDATA section, you must use the CONTAI NS operator. The following
example creates a table called i t ens, adds an SDATA section called ny_sec_gr oup,
and then queries SDATA in the section.

After you create an SDATA section, you can further modify the attributes of the SDATA
section by using CTX _DDL. SET_SECTI ON_ATTRI BUTE.

Create the i t ens table:

CREATE TABLE itens
(id NUVBER PRI MARY KEY,
doc VARCHAR2(4000));

INSERT INTO itenms VALUES (1, '<description> Honda Pilot </description>
<category> Cars & Trucks </category>
<price> 27000 </price>);

INSERT INTO itenms VALUES (2, '<description> Toyota Sequoia </description>
<category> Cars & Trucks </category>
<price> 35000 </price>);

INSERT INTO itenms VALUES (3, '<description> Toyota Land Cruiser </description>
<category> Cars & Trucks </category>
<price> 45000 </price>);

INSERT INTO itenms VALUES (4, '<description> PalmPilot </description>
<category> El ectronics </category>
<price> 5 </price>);

INSERT INTO items VALUES (5, '<description> Toyota Land Cruiser Gill </

descri ption>
<category> Parts & Accessories </category>
<price> 100 </price>");

COWM T;

Add the ny_sec_gr oup SDATA section:

BEG N
CTX _DDL. CREATE_SECTI ON_GROUP(' my_sec_group', 'BASI C_SECTI ON_GROUP');
CTX _DDL. ADD_SDATA SECTION(' my_sec_group', 'category', 'category', 'VARCHAR');
CTX _DDL. ADD_SDATA SECTION(' my_sec_group', 'price', 'price', 'NUMBER);

END;

Create the CONTEXT index:
CREATE | NDEX it ems$doc
ON itens(doc)

| NDEXTYPE | S CTXSYS. CONTEXT
PARAMETERS(' SECTI ON GROUP ny_sec_group');

Run a query:

11-12

Chapter 11
About Oracle Text Document Section Searching

SELECT id, doc
FROM i t ens
VWHERE cont ai ns(doc, ' Toyota
AND SDATA(category = ''Cars & Trucks'')
AND SDATA(price <= 40000)') > 0;

Return the results:

2 <description> Toyota Sequoi a </description>
<category> Cars & Trucks </category>
<price> 35000 </price>

Consider a document whose rowid is 1. This example updates the value of the price
SDATA section to a new value of 30000:

BEG N
SELECT ROAN'D INTO rowid_to_update FROM itens WHERE id=1;

CTX_DDL. UPDATE_SDATA(' i t ens$doc',
"price',
SYS. ANYDATA. CONVERTVARCHAR2(' 30000'),
rowi d_to_update);
END;

After executing the query, the price of Honda Pi | ot is changed from 27000 to 30000.

" Note:

e You can also add an SDATA section to an existing index. Use the ADD
SDATA SECTI ON parameter of the ALTER | NDEX PARAMETERS statement.
See the "ALTER INDEX" section of the Oracle Text Reference for more
information.

e Documents that were indexed before adding an SDATA section do not
reflect this new preference. Rebuild the index in this case.

¢ See Also:

e The "CONTAI NS" query section of the Oracle Text Reference for
information on the SDATA operator

e The "CTX_DDL" package section of the Oracle Text Reference
for information on adding and updating the SDATA sections
and changing their attributes by using the ADD_SDATA_SECTI ON,
SET_SECTI ON_ATTRI BUTE, and the UPDATE_SDATA procedures

Storage

For optim zed_f or search SDATA sections, use CTX _DDL. SET_ATTRI BUTE to specify the
storage preferences for the $Sdat at ype tables and the indexes on these tables.

ORACLE 11-13

Chapter 11
About Oracle Text Document Section Searching

By default, large object (LOB) caching is turned on for $S* tables and off for $S*
indexes. These attributes are valid only on SDATA sections.

Query Operators

optimzed for search SDATA supports the following query operators:

° =
. <>
e between

* not between

e isnull

e isnot null

o like

e not like
11.1.2.7 Attribute Section

You can define attribute sections to query on XML attribute text. You can also have the
system automatically define and index XML attributes for you.

" See Also:

"XML Section Searching with Oracle Text"

11.1.2.8 Special Sections

ORACLE

Special sections are not recognized by tags. Currently, sentence and paragraph are
the only supported special sections, and they enable you to search for a combination
of words within sentences or paragraphs.

The sentence and paragraph boundaries are determined by the lexer. For example,
BASI C_LEXER recognizes sentence and paragraph section boundaries as follows:

Table 11-3 Sentence and Paragraph Section Boundaries for BASIC_LEXER
|

Special Section Boundary
SENTENCE ¢ WORD/PUNCT/WHITESPACE
« WORD/PUNCT/NEWLINE
PARAGRAPH ¢ WORD/PUNCT/NEWLINE/WHITESPACE

* WORD/PUNCT/NEWLINE/NEWLINE

11-14

Chapter 11
About Oracle Text Document Section Searching

If the lexer cannot recognize the boundaries, then no sentence or paragraph sections
are indexed.

To add a special section, use the CTX _DDL.ADD SPECI AL_SECTI ON procedure. For
example, the following code enables searches within sentences in HTML documents:

begin

ctx_ddl . create_section_group(' htngroup', 'HTM._SECTI ON_GROUP');
ctx_ddl . add_speci al _section('htngroup', ' SENTENCE);

end;

To enable zone and sentence searches, add zone sections to the group. The following
example adds the Headl i ne zone section to the ht ngr oup section group:

begin

ctx_ddl . create_section_group(' htngroup', 'HTM._SECTI ON_GROUP');
ctx_ddl . add_speci al _section('htngroup', 'SENTENCE);

ctx_ddl . add_zone_section(' htngroup', 'Headline', 'Hl');

end;

11.1.3 Oracle Text Section Attributes

Section attributes are the settings for the Oracle Text sections of tokenized type,
such as field, zone, hybrid, and SDATA. Section attributes improve query performance
because of the finer control at the section level, rather than at the document level or
index level.

By using the section attributes, you can specify:

* Lexer preferences on certain sections of a document. The preferences are useful
for part-name searches, when a section of a document containing a part name
needs to be lexed differently than the rest of the document. You can also use the
lexer preferences for handling multilanguage documents, where there is a section
to language mapping.

* A substring index only on certain sections of a document. This index helps reduce
the index size.

» Prefix tokens only on certain sections of a document. The prefix tokens improve
the performance of right-truncated queries, but can also cause the index size to
grow rapidly. Specifying prefix indexing only on certain sections provides improved
performance for the right-truncated queries on the specific sections, without rapidly
growing the size of the index.

» Stoplists for certain sections of a document.

* A new section type that combines the flexibility of zone sections with the
performance of field sections. Currently, zone sections have poor performance
compared with field sections. However, field sections do not support nested
section search.

To set section attributes, use the CTX_DDL. SET_SECTI ON_ATTRI BUTE procedure.

Table 11-4 lists the section attributes that you can use:

ORACLE 11-15

Chapter 11
About Oracle Text Document Section Searching

Table 11-4 Section Attributes

__|
Section Attribute Description

visible Use the vi si bl e attribute for all section types that are
tokenized, except the zone section type. Thus, the vi si bl e
attribute can be used for field, hybrid, and SDATA section
types.
Specify TRUE to make the text visible within a document. The
text in the field section is indexed as part of the enclosing
document.

The default is FALSE. The text in the field section is indexed
separately from the rest of the document.

For the Field section type, the visible attribute overrides
the value specified in the CTX_DDL. ADD_FI ELD_SECTI ON
procedure.

| exer Use the | exer attribute for all section types that are
tokenized (field, zone, hybrid, and SDATA sections).

Specify the lexer preference name to decide the tokenization
of an SDATA section. The default is NULL, and the lexer for
the main document is used.

The lexer preference must be valid at the time of calling the
set _section_attribute procedure. If you try to drop one
of the preferences when an existing field section refers to

a lexer preference, then the dr op_pr ef er ence procedure
fails.

wor dl i st Use the wor dl i st attribute for all section types that are
tokenized (field, zone, hybrid, and SDATA sections).

To enable section-specific prefix indexing and substring
indexing, specify the wordlist preference name for a section.
The default is NULL, and the wordlist for the main document
is used.

The wordlist preference must be valid at the time of calling
the set _section_attri bute procedure. If you try to drop
one of the preferences when an existing field section

refers to a wordlist preference, then the dr op_pr ef erence
procedure fails.

stopli st Use the st opl i st attribute for all section types that are
tokenized (field, zone, hybrid, and SDATA sections).

To enable a section-specific stoplist, specify the stoplist
preference name. The default is NULL, and the stoplist for
the main document is used.

The stoplist preference must be valid at the time of calling
the set _section_attri bute procedure. If you try to drop
one of the preferences when an existing field section

refers to a stoplist preference, then the dr op_pr ef er ence
procedure fails.

The following example enables the vi si bl e attribute of a Field section:
begi n

ctx_ddl . create_section_group(‘fieldgroup', ‘BASIC_SECTION GROUF');
ctx_ddl . add_field_section('fieldgroup', ‘author', ‘AUTHOR);

ORACLE 11-16

Chapter 11
HTML Section Searching with Oracle Text

ctx_ddl.set_section_attribute('fieldgroup', “author', ‘visible', ‘true');
end;

See Also:

Oracle Text Reference for the syntax of CTX_DDL. SET_SECTI ON_ATTRI BUTE
procedure.

11.2 HTML Section Searching with Oracle Text

HTML has internal structure in the form of tagged text that you can use for section
searching. For example, define a section called headi ngs for the <H1> tag, and then
search for terms only within these tags across your document set.

To query, you use the W THI N operator. Oracle Text returns all documents that contain
your query term within the headi ngs section. For example, if you want to find all
documents that contain the word or acl e within headi ngs, enter the following query:

"oracl e within headings'

This section contains these topics:

e Creating HTML Sections
e Searching HTML Meta Tags

11.2.1 Creating HTML Sections

The following code defines a section group called ht ngr oup of type

HTML_SECTI ON_GRQOUP. It then creates a zone section in ht ngr oup called headi ng
identified by the <HL> tag:

begin

ctx_ddl . create_section_group(' htngroup', 'HIM_SECTI ON_GROUF');

ctx_ddl . add_zone_section(' htngroup', 'heading', "Hl');
end;

You can then index your documents as follows:

create index nyindex on docs(htmfile) indextype is ctxsys.context
paranmeters('filter ctxsys.null _filter section group htmgroup');

After indexing with the ht ngr oup section group, you can query within the headi ng
section by issuing this query:

"Oracl e WTHI N headi ng'

11.2.2 Searching HTML Meta Tags

ORACLE

With HTML documents, you can also create sections for NAME/ CONTENT pairs in <META>
tags. When you do so, you can limit your searches to text within CONTENT.

Consider an HTML document that has the following META tag:
<META NAME="aut hor" CONTENT="ken">

11-17

11.3 XML

Chapter 11
XML Section Searching with Oracle Text

Create a zone section that indexes all CONTENT attributes for the META tag whose NAME
value is author:

begin

ctx_ddl . create_section_group(' htngroup', 'HTM._SECTI ON_GROUP');
ctx_ddl . add_zone_section(' htngroup', '"author', 'meta@uthor');
end

After indexing with the ht ngr oup section group, you can query the document:

"ken WTH N aut hor'

Section Searching with Oracle Text

Like HTML documents, XML documents have tagged text that you can use to define
blocks of text for section searching. You can search the contents of a section with the
W THI N or | NPATH operators.

The following sections describe the different types of XML searching:
* Automatic Sectioning

e Attribute Searching

* Document Type Sensitive Sections

» Path Section Searching

11.3.1 Automatic Sectioning

To set up your indexing operation to automatically create sections from XML
documents, use the AUTO_SECTI ON_GROUP section group. The system creates zone
sections for XML tags. Attribute sections are created for the tags that have attributes
and for the sections named in the formtag@ttri bute.

For example, the following statement uses the AUTO_SECTI ON_GROUP to create the
myindex index on a column containing the XML files:

CREATE | NDEX myi ndex

ON xnm docs(xm file)
I NDEXTYPE | S ct xsys. cont ext

PARAVETERS (' datastore ctxsys.default_datastore
filter ctxsys.null _filter
section group ctxsys.auto_section_group'

)i

11.3.2 Attribute Searching

ORACLE

You can search XML attribute text in one of two ways:

* Creating Attribute Sections

Create attribute sections with CTX_DDL.ADD_ATTR_SECTI ON and then index with
XM__SECTI ON_GROUP. If you use AUTO_SECTI ON_GROUP when you index, attribute
sections are created automatically. You can query attribute sections with the

W THI N operator.

Consider an XML file that defines the BOXK tag with a Tl TLE attribute:

11-18

Chapter 11
XML Section Searching with Oracle Text

<BOOK TITLE="Tale of Two Cities">
It was the best of tines.
</ BOOK>

To define the title attribute as an attribute section, create an XM._SECTI ON_GROUP
and define the attribute section:

begi n

ctx_ddl . create_section_group(' nyxm group', ' XM._SECTI ON_GROUF');

ctx_ddl.add_attr_section(' nyxm group', 'booktitle', 'book@itle');
end;

To index:

CREATE | NDEX myi ndex

ON xm docs(xm file)

| NDEXTYPE | S ct xsys. cont ext

PARAVETERS (' datastore ctxsys.default_datastore
filter ctxsys.null _filter

section group nyxm group'

)

To query the booktitle XML attribute section:
"Cities within booktitle'
e Searching Attributes with the INPATH Operator

Index with the PATH_SECTI ON_GROUP and query attribute text with the | NPATH
operator.

¢ See Also:

"Path Section Searching"

11.3.3 Document Type Sensitive Sections

ORACLE

For an XML document set that contains the <book> tag declared for different document
types, you may want to create a distinct book section for each document type to
improve search capability. The following scenario shows you how to create book
sections for each document type.

Assume that nydocnanel is declared as an XML document type (root element):

<! DCCTYPE nydocnanel ... [...

Within nydocnanel, , the <book> element is declared. For this tag, you can create a
section named nybooksecl that is sensitive to the tag's document type:

begin

ctx_ddl . create_section_group(' nyxm group', ' XM__SECTI ON_GROUF');
ctx_ddl . add_zone_section(' nyxm group', 'nybooksecl', 'nydocnanel(book)');

end;

Assume that nydocnane2 is declared as another XML document type (root element):

11-19

Chapter 11
XML Section Searching with Oracle Text

<! DCCTYPE nydocnane2 ... [...

Within nydocnane2, , the <book> element is declared. For this tag, you can create a
section named nybooksec?2 that is sensitive to the tag's document type:

begi n

ctx_ddl . create_section_group(' nyxm group', ' XM._SECTI ON_GROUF');
ctx_ddl . add_zone_section(' nyxm group', 'nybooksec2', 'nydocnane2(book)"');

end;

To query within the nybooksec1 section, use W THI N:

"oracle within nybooksecl'

11.3.4 Path Section Searching

XML documents can have parent-child tag structures such as:

<A> <C dog </ C </ A>

In this scenario, tag C is a child of tag B, which is a child of tag A.

With Oracle Text, you can search paths with PATH_SECTI ON_GROUP. This section group
enables you to specify direct parentage in queries, such as to find all documents that
contain the term dog in element C, which is a child of element B, and so on.

With PATH_SECTI ON_GRQOUP, you can also perform attribute value searching and
attribute equality testing.

The new operators associated with this feature are
° | NPATH

* HASPATH

This section contains the following topics.

e Creating an Index with PATH_SECTION_GROUP
e Top-Level Tag Searching

e Any-Level Tag Searching

e Direct Parentage Searching

e Tag Value Testing

e Attribute Searching

e Attribute Value Testing

e Path Testing

e Section Equality Testing with HASPATH

11.3.4.1 Creating an Index with PATH_SECTION_GROUP

To enable path section searching, index your XML document set with
PATH_SECTI ON_GROUP. For example:

Create the preference.

ORACLE 11-20

Chapter 11
XML Section Searching with Oracle Text

begin
ctx_ddl . create_section_group('xm pathgroup', 'PATH SECTI ON_GROUP');
end;

Create the index.

CREATE | NDEX nyi ndex

ON xm docs(xm file)

I NDEXTYPE | S ctxsys. cont ext

PARAMETERS (' datastore ctxsys. defaul t_datastore
filter ctxsys.null_filter

section group xm pat hgroup'

);

When you create the index, you can use the | NPATH and HASPATH operators.

11.3.4.2 Top-Level Tag Searching

To find all documents that contain the term dog in the top-level tag <A>:

dog | NPATH (/ A)

or

dog | NPATH(A)

11.3.4.3 Any-Level Tag Searching

To find all documents that contain the term dog in the <A> tag at any level:

dog | NPATH(// A)

This query finds the following documents:

<A>dog</ A>

and

<C><A>dog</ A></ B></ &

11.3.4.4 Direct Parentage Searching

To find all documents that contain the term dog in a B element that is a direct child of a
top-level A element:

dog | NPATH(A/ B)

This query finds the following XML document:

<A>My dog is friendly.

but it does not find:

<CM dog is friendly.</C

11.3.4.5 Tag Value Testing

You can test the value of tags. For example, the query:

ORACLE 11-21

Chapter 11
XML Section Searching with Oracle Text

dog | NPATH(Al B="dog"])

Finds the following document:

<A>dog</ B></ A>

But does not find:

<A>My dog is friendly.

11.3.4.6 Attribute Searching

You can search the content of attributes. For example, the query:

dog | NPATH(/ | A/ @)

Finds the document:

<C> </ A> </ C

11.3.4.7 Attribute Value Testing

You can test the value of attributes. For example, the query:

California | NPATH (// Al @ = "honme address"])

Finds the document:

San Francisco, California, USA</ A>

But it does not find:

San Francisco, California, USA

11.3.4.8 Path Testing

You can test if a path exists with the HASPATH operator. For example, the query:

HASPATH(A/ B/ C)

finds and returns a score of 100 for the document

<A><C>dog</ C</ B></ A>

without the query having to reference dog at all.

11.3.4.9 Section Equality Testing w