
Oracle® Text
Application Developer's Guide

21c
F31234-02
January 2021

Oracle Text Application Developer's Guide, 21c

F31234-02

Copyright © 2005, 2021, Oracle and/or its affiliates.

Primary Author: Binika Kumar

Contributors: Bharathi Jayathirtha, Roopesh Ashok Kumar, Drew Adams, Edwin Balthes, Aleksandra
Czarlinska, Mohammad Faisal, Roger Ford, Rahul Kadwe, George Krupka, Paul Lane, Padmaja Potineni,
Prakash Jashnani, Yiming Qi, Sanoop Sethumadhavan, Asha Makur, Gaurav Yadav, Bonnie Xia, Nilay
Panchal, Ce Wei, Saurabh Naresh Netravalkar

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xv

Documentation Accessibility xv

Related Documents xv

Conventions xvi

1 Understanding Oracle Text Application Development

1.1 Introduction to Oracle Text 1-1

1.2 Document Collection Applications 1-1

1.2.1 About Document Collection Applications 1-1

1.2.2 Flowchart of Text Query Application 1-2

1.3 Catalog Information Applications 1-3

1.3.1 About Catalog Information Applications 1-3

1.3.2 Flowchart for Catalog Query Application 1-4

1.4 Document Classification Applications 1-5

1.5 XML Search Applications 1-6

1.5.1 The CONTAINS Operator with XML Search Applications 1-6

1.5.2 Combining Oracle Text Features with Oracle XML DB (XML Search
Index) 1-7

1.5.2.1 Using the xml_enable Method for an XML Search Index 1-8

1.5.2.2 Using the Text-on-XML Method 1-8

1.5.2.3 Indexing JSON Data 1-9

2 Getting Started with Oracle Text

2.1 Overview of Getting Started with Oracle Text 2-1

2.2 Creating an Oracle Text User 2-1

2.3 Query Application Quick Tour 2-2

2.3.1 Creating the Text Table 2-3

2.3.2 Using SQL*Loader to Load the Table 2-3

2.4 Catalog Application Quick Tour 2-5

2.4.1 Creating the Table 2-5

iii

2.4.2 Using SQL*Loader to Load the Table 2-6

2.5 Classification Application Quick Tour 2-8

2.5.1 About Classification of a Document 2-8

2.5.2 Creating a Classification Application 2-9

3 Indexing with Oracle Text

3.1 About Oracle Text Indexes 3-1

3.1.1 Types of Oracle Text Indexes 3-2

3.1.2 Structure of the Oracle Text CONTEXT Index 3-4

3.1.3 Oracle Text Indexing Process 3-5

3.1.3.1 Datastore Object 3-6

3.1.3.2 Filter Object 3-6

3.1.3.3 Sectioner Object 3-6

3.1.3.4 Lexer Object 3-6

3.1.3.5 Indexing Engine 3-6

3.1.4 About Updates to Indexed Columns 3-7

3.1.5 Partitioned Tables and Indexes 3-7

3.1.6 Online Indexes 3-8

3.1.7 Parallel Indexing 3-8

3.1.8 Indexing and Views 3-9

3.2 Considerations for Oracle Text Indexing 3-9

3.2.1 Location of Text 3-10

3.2.2 Supported Column Types 3-11

3.2.3 Storing Text in the Text Table 3-11

3.2.4 Storing File Path Names 3-11

3.2.5 Storing URLs 3-11

3.2.6 Storing Associated Document Information 3-12

3.2.7 Format and Character Set Columns 3-12

3.2.8 Supported Document Formats 3-12

3.2.9 Summary of DATASTORE Types 3-12

3.2.10 Document Formats and Filtering 3-14

3.2.10.1 No Filtering for HTML 3-14

3.2.10.2 Mixed-Format Columns Filtering 3-14

3.2.10.3 Custom Filtering 3-15

3.2.11 Bypass Rows 3-15

3.2.12 Document Character Set 3-15

3.3 Document Language 3-16

3.4 Special Characters 3-16

3.5 Case-Sensitive Indexing and Querying 3-17

3.6 Improved Document Services Performance with a Forward Index 3-17

iv

3.6.1 Enabling Forward Index 3-18

3.6.2 Forward Index with Snippets 3-18

3.6.3 Forward Index with Save Copy 3-18

3.6.4 Forward Index Without Save Copy 3-19

3.6.5 Save Copy Without Forward Index 3-19

3.7 Language-Specific Features 3-20

3.7.1 Theme Indexing 3-20

3.7.2 Base-Letter Conversion for Characters with Diacritical Marks 3-20

3.7.3 Alternate Spelling 3-21

3.7.4 Composite Words 3-21

3.7.5 Korean, Japanese, and Chinese Indexing 3-21

3.8 About Entity Extraction and CTX_ENTITY 3-22

3.8.1 Basic Example of Using Entity Extraction 3-22

3.8.2 Example of Creating a New Entity Type by Using a User-Defined Rule 3-24

3.9 Fuzzy Matching and Stemming 3-25

3.9.1 Language Attribute Values for index_stems of BASIC_LEXER 3-26

3.9.2 Language Attribute Values for index_stems of AUTO_LEXER 3-27

3.10 Better Wildcard Query Performance 3-28

3.11 Document Section Searches 3-28

3.12 Stopwords and Stopthemes 3-29

3.13 Index Performance 3-29

3.14 Query Performance and Storage of Large Object (LOB) Columns 3-29

3.15 Mixed Query Performance 3-30

3.16 In-Memory Full Text Search and JSON Full Text Search 3-30

4 Creating Oracle Text Indexes

4.1 Summary of the Procedure for Creating an Oracle Text Index 4-1

4.2 Creating Preferences 4-2

4.3 Section Searching Example: Creating HTML Sections 4-2

4.4 Using Stopwords and Stoplists 4-3

4.4.1 Multilanguage Stoplists 4-3

4.4.2 Stopthemes and Stopclasses 4-3

4.4.3 PL/SQL Procedures for Managing Stoplists 4-4

4.5 Creating a CONTEXT Index 4-4

4.5.1 CONTEXT Index and DML 4-4

4.5.2 Default CONTEXT Index Example 4-5

4.5.3 Incrementally Creating an Index with ALTER INDEX and CREATE
INDEX 4-5

4.5.4 Incrementally Creating a CONTEXT Index with POPULATE_PENDING 4-6

4.5.5 Custom CONTEXT Index Example: Indexing HTML Documents 4-6

v

4.5.6 CONTEXT Index Example: Query Processing with FILTER BY and
ORDER BY 4-7

4.5.7 DATASTORE Triggers in Release 12c 4-7

4.6 Creating a CTXCAT Index 4-8

4.6.1 CTXCAT Index and DML Operations 4-8

4.6.2 About CTXCAT Subindexes and Their Costs 4-8

4.6.3 Creating CTXCAT Subindexes 4-9

4.6.4 Creating CTXCAT Index 4-10

4.7 Creating a CTXRULE Index 4-11

4.8 Creating a Search Index for JSON 4-12

4.9 Creating an Oracle Text Search Index 4-12

5 Maintaining Oracle Text Indexes

5.1 Viewing Index Errors 5-1

5.2 Dropping an Index 5-1

5.3 Resuming a Failed Index 5-2

5.4 Re-creating an Index 5-2

5.4.1 Re-creating a Global Index 5-2

5.4.2 Re-creating a Local Partitioned Index 5-4

5.5 Rebuilding an Index 5-5

5.6 Dropping a Preference 5-5

5.7 Managing DML Operations for a CONTEXT Index 5-5

5.7.1 Viewing Pending DML Operations 5-6

5.7.2 Synchronizing the Index 5-6

5.7.3 Optimizing the Index 5-8

5.7.3.1 Index Fragmentation 5-8

5.7.3.2 Document Invalidation and Garbage Collection 5-9

5.7.3.3 Single Token Optimization 5-9

5.7.3.4 Viewing Index Fragmentation and Garbage Data 5-9

6 Querying with Oracle Text

6.1 Overview of Queries 6-1

6.1.1 Querying with CONTAINS 6-1

6.1.1.1 CONTAINS SQL Example 6-2

6.1.1.2 CONTAINS PL/SQL Example 6-2

6.1.1.3 Structured Query with CONTAINS Example 6-2

6.1.2 Querying with CATSEARCH 6-3

6.1.2.1 CATSEARCH SQL Query Example 6-3

6.1.2.2 CATSEARCH Example 6-4

6.1.3 Querying with MATCHES 6-5

vi

6.1.3.1 MATCHES SQL Query 6-5

6.1.3.2 MATCHES PL/SQL Examples 6-7

6.1.4 Word and Phrase Queries 6-8

6.1.5 Querying Stopwords 6-8

6.1.6 ABOUT Queries and Themes 6-9

6.2 Oracle Text Query Features 6-10

6.2.1 Query Expressions 6-10

6.2.1.1 CONTAINS Operators 6-11

6.2.1.2 CATSEARCH Operator 6-11

6.2.1.3 MATCHES Operator 6-11

6.2.2 Case-Sensitive Searching 6-12

6.2.3 Query Feedback 6-12

6.2.4 Query Explain Plan 6-13

6.2.5 Using a Thesaurus in Queries 6-13

6.2.6 Document Section Searching 6-14

6.2.7 Using Query Templates 6-14

6.2.7.1 Query Rewrite 6-14

6.2.7.2 Query Relaxation 6-15

6.2.7.3 Query Language 6-16

6.2.7.4 Ordering by SDATA Sections 6-16

6.2.7.5 Alternative and User-Defined Scoring 6-17

6.2.7.6 Alternative Grammar 6-18

6.2.8 Query Analysis 6-18

6.2.9 Other Query Features 6-19

7 Working with CONTEXT and CTXCAT Grammars in Oracle Text

7.1 The CONTEXT Grammar 7-1

7.1.1 ABOUT Query 7-2

7.1.2 Logical Operators 7-2

7.1.3 Section Searching and HTML and XML 7-3

7.1.4 Proximity Queries with NEAR, NEAR_ACCUM, and NEAR2 Operators 7-3

7.1.5 Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators 7-4

7.1.6 Using CTXCAT Grammar 7-4

7.1.7 Defined Stored Query Expressions 7-4

7.1.7.1 Defining a Stored Query Expression 7-5

7.1.7.2 SQE Example 7-5

7.1.8 Calling PL/SQL Functions in CONTAINS 7-5

7.1.9 Optimizing for Response Time 7-6

7.1.10 Counting Hits 7-7

7.1.11 Using DEFINESCORE and DEFINEMERGE for User-Defined Scoring 7-7

vii

7.2 The CTXCAT Grammar 7-8

8 Presenting Documents in Oracle Text

8.1 Highlighting Query Terms 8-1

8.1.1 Text highlighting 8-1

8.1.2 Theme Highlighting 8-1

8.1.3 CTX_DOC Highlighting Procedures 8-1

8.1.3.1 Markup Procedure 8-2

8.1.3.2 Highlight Procedure 8-3

8.1.3.3 Concordance 8-4

8.2 Obtaining Part-of-Speech Information for a Document 8-4

8.3 Obtaining Lists of Themes, Gists, and Theme Summaries 8-4

8.3.1 Lists of Themes 8-5

8.3.2 Gist and Theme Summary 8-6

8.4 Presenting and Highlighting Documents 8-7

9 Classifying Documents in Oracle Text

9.1 Overview of Document Classification 9-1

9.2 Classification Applications 9-1

9.3 Classification Solutions 9-2

9.4 Rule-Based Classification 9-3

9.4.1 Rule-Based Classification Example 9-3

9.4.2 CTXRULE Parameters and Limitations 9-6

9.5 Supervised Classification 9-7

9.5.1 Decision Tree Supervised Classification 9-7

9.5.2 Decision Tree Supervised Classification Example 9-8

9.5.3 SVM-Based Supervised Classification 9-10

9.5.4 SVM-Based Supervised Classification Example 9-11

9.6 Unsupervised Classification (Clustering) 9-12

9.7 Unsupervised Classification (Clustering) Example 9-13

10

Tuning Oracle Text

10.1 Optimizing Queries with Statistics 10-1

10.1.1 Collecting Statistics 10-2

10.1.2 Query Optimization with Statistics Example 10-3

10.1.3 Re-Collecting Statistics 10-3

10.1.4 Deleting Statistics 10-4

10.2 Optimizing Queries for Response Time 10-4

10.2.1 Other Factors That Influence Query Response Time 10-4

viii

10.2.2 Improved Response Time with the FIRST_ROWS(n) Hint for ORDER
BY Queries 10-5

10.2.3 Improved Response Time Using the DOMAIN_INDEX_SORT Hint 10-6

10.2.4 Improved Response Time Using the Local Partitioned CONTEXT Index 10-6

10.2.5 Improved Response Time with the Local Partitioned Index for Order by
Score 10-7

10.2.6 Improved Response Time with the Query Filter Cache 10-8

10.2.7 Improved Response Time Using the BIG_IO Option of CONTEXT
Index 10-9

10.2.8 Improved Response Time Using the SEPARATE_OFFSETS Option of
the CONTEXT Index 10-10

10.2.9 Improved Response Time Using the STAGE_ITAB,
STAGE_ITAB_MAX_ROWS, and STAGE_ITAB_PARALLEL Options of
CONTEXT Index 10-11

10.3 Optimizing Queries for Throughput 10-14

10.4 Composite Domain Index in Oracle Text 10-14

10.5 Performance Tuning with CDI 10-15

10.6 Solving Index and Query Bottlenecks by Using Tracing 10-15

10.7 Using Parallel Queries 10-16

10.7.1 Parallel Queries on a Local Context Index 10-16

10.7.2 Parallelizing Queries Across Oracle RAC Nodes 10-17

10.8 Tuning Queries with Blocking Operations 10-17

10.9 Frequently Asked Questions About Query Performance 10-18

10.9.1 What is query performance? 10-19

10.9.2 What is the fastest type of Oracle Text query? 10-19

10.9.3 Should I collect statistics on my tables? 10-19

10.9.4 How does the size of my data affect queries? 10-20

10.9.5 How does the format of my data affect queries? 10-20

10.9.6 What is the difference between an indexed lookup and a functional
lookup 10-20

10.9.7 What tables are involved in queries? 10-20

10.9.8 How is the $R table contention reduced? 10-21

10.9.9 Does sorting the results slow a text-only query? 10-21

10.9.10 How do I make an ORDER BY score query faster? 10-21

10.9.11 Which memory settings affect querying? 10-22

10.9.12 Does out-of-line LOB storage of wide base table columns improve
performance? 10-22

10.9.13 How can I speed up a CONTAINS query on more than one column? 10-22

10.9.14 Can I have many expansions in a query? 10-23

10.9.15 How can local partition indexes help? 10-23

10.9.16 Should I query in parallel? 10-24

10.9.17 Should I index themes? 10-24

10.9.18 When should I use a CTXCAT index? 10-25

ix

10.9.19 When is a CTXCAT index NOT suitable? 10-25

10.9.20 What optimizer hints are available and what do they do? 10-25

10.10 Frequently Asked Questions About Indexing Performance 10-26

10.10.1 How long should indexing take? 10-26

10.10.2 Which index memory settings should I use? 10-26

10.10.3 How much disk overhead will indexing require? 10-27

10.10.4 How does the format of my data affect indexing? 10-27

10.10.5 Can parallel indexing improve performance? 10-27

10.10.6 How can I improve index performance when I create a local
partitioned index? 10-28

10.10.7 How can I tell how much indexing has completed? 10-28

10.11 Frequently Asked Questions About Updating the Index 10-29

10.11.1 How often should I index new or updated records? 10-29

10.11.2 How can I tell when my indexes are fragmented? 10-29

10.11.3 Does memory allocation affect index synchronization? 10-30

11

Searching Document Sections in Oracle Text

11.1 About Oracle Text Document Section Searching 11-1

11.1.1 Enabling Oracle Text Section Searching 11-1

11.1.1.1 Create a Section Group 11-1

11.1.1.2 Define Your Sections 11-3

11.1.1.3 Index Your Documents 11-3

11.1.1.4 Search Sections with the WITHIN Operator 11-4

11.1.1.5 Search Paths with INPATH and HASPATH Operators 11-4

11.1.1.6 Mark an SDATA Section to Be Searchable 11-4

11.1.2 Oracle Text Section Types 11-5

11.1.2.1 Zone Section 11-5

11.1.2.2 Field Section 11-7

11.1.2.3 Stop Section 11-8

11.1.2.4 MDATA Section 11-8

11.1.2.5 NDATA Section 11-11

11.1.2.6 SDATA Section 11-11

11.1.2.7 Attribute Section 11-14

11.1.2.8 Special Sections 11-14

11.1.3 Oracle Text Section Attributes 11-15

11.2 HTML Section Searching with Oracle Text 11-17

11.2.1 Creating HTML Sections 11-17

11.2.2 Searching HTML Meta Tags 11-17

11.3 XML Section Searching with Oracle Text 11-18

11.3.1 Automatic Sectioning 11-18

11.3.2 Attribute Searching 11-18

x

11.3.3 Document Type Sensitive Sections 11-19

11.3.4 Path Section Searching 11-20

11.3.4.1 Creating an Index with PATH_SECTION_GROUP 11-20

11.3.4.2 Top-Level Tag Searching 11-21

11.3.4.3 Any-Level Tag Searching 11-21

11.3.4.4 Direct Parentage Searching 11-21

11.3.4.5 Tag Value Testing 11-21

11.3.4.6 Attribute Searching 11-22

11.3.4.7 Attribute Value Testing 11-22

11.3.4.8 Path Testing 11-22

11.3.4.9 Section Equality Testing with HASPATH 11-22

12

Using Oracle Text Name Search

12.1 Overview of Name Search 12-1

12.2 Name Search Examples 12-1

13

Working with a Thesaurus in Oracle Text

13.1 Overview of Oracle Text Thesaurus Features 13-1

13.1.1 Oracle Text Thesaurus Creation and Maintenance 13-2

13.1.2 Using a Case-Sensitive Thesaurus 13-2

13.1.3 Using a Case-Insensitive Thesaurus 13-3

13.1.4 Default Thesaurus 13-3

13.1.5 Supplied Thesaurus 13-4

13.2 Defining Terms in a Thesaurus 13-4

13.2.1 Defining Synonyms 13-5

13.2.2 Defining Hierarchical Relations 13-5

13.3 Using a Thesaurus in a Query Application 13-5

13.4 Loading a Custom Thesaurus and Issuing Thesaurus-Based Queries 13-6

13.5 Augmenting the Knowledge Base with a Custom Thesaurus 13-6

13.5.1 Advantages 13-7

13.5.2 Limitations 13-7

13.6 Linking New Terms to Existing Terms 13-7

13.7 Example of Loading a Thesaurus with ctxload 13-8

13.8 Example of Loading a Thesaurus with the
CTX_THES.IMPORT_THESAURUS PL/SQL procedure 13-8

13.9 Compiling a Loaded Thesaurus 13-8

13.10 About the Supplied Knowledge Base 13-9

13.10.1 Adding a Language-Specific Knowledge Base 13-10

13.10.2 Limitations for Adding Knowledge Bases 13-10

xi

14

Using Faceted Navigation

14.1 About Faceted Navigation 14-1

14.2 Defining Sections As Facets 14-1

14.3 Querying Facets by Using the Result Set Interface 14-6

14.4 Refining Queries by Using Facets As Filters 14-10

14.5 Multivalued Facets 14-11

15

Using Result Set Interface

15.1 Overview of the XML Query Result Set Interface 15-1

15.2 Using the XML Query Result Set Interface 15-1

15.3 Creating XML-Only Applications with Oracle Text 15-4

15.4 Example of a Result Set Descriptor 15-4

15.5 Identifying Collocates 15-5

15.6 Overview of the JSON Result Set Interface 15-7

15.7 Using the JSON Result Set Interface 15-7

16

Performing Sentiment Analysis Using Oracle Text

16.1 Overview of Sentiment Analysis 16-1

16.1.1 About Sentiment Analysis 16-1

16.1.2 About Sentiment Classifiers 16-2

16.1.3 About Performing Sentiment Analysis 16-3

16.1.4 Sentiment Analysis Interfaces 16-3

16.2 Creating a Sentiment Classifier Preference 16-4

16.3 Training Sentiment Classifiers 16-5

16.4 Performing Sentiment Analysis with the CTX_DOC Package 16-6

16.5 Performing Sentiment Analysis with the RSI 16-9

17

Administering Oracle Text

17.1 Oracle Text Users and Roles 17-1

17.1.1 CTXSYS User 17-1

17.1.2 CTXAPP Role 17-2

17.1.3 Granting Roles and Privileges to Users 17-2

17.2 DML Queue 17-2

17.3 CTX_OUTPUT Package 17-3

17.4 CTX_REPORT Package 17-3

17.5 Text Manager in Oracle Enterprise Manager 17-6

17.5.1 Using Text Manager 17-7

17.5.2 Viewing General Information for an Oracle Text Index 17-7

xii

17.5.3 Checking Oracle Text Index Health 17-8

17.6 Servers and Indexing 17-8

17.7 Tracking Database Feature Usage in Oracle Enterprise Manager 17-8

17.8 Oracle Text on Oracle Real Application Clusters 17-9

17.9 Configuring Oracle Text in Oracle Database Vault Environment 17-10

17.10 Unsupported Oracle Text Operations in Oracle Database Vault Realm 17-10

17.11 Export and Import of Schemas Containing Oracle Text Settings 17-10

18

Migrating Oracle Text Applications

18.1 Performing a Rolling Upgrade with a Logical Standby Database 18-1

18.1.1 CTX_DDL PL/SQL Procedures 18-2

18.1.2 CTX_OUTPUT PL/SQL Procedures 18-2

18.1.3 CTX_DOC PL/SQL Procedures 18-2

18.2 Identifying and Copying Oracle Text Files to a New Oracle Home 18-3

A CONTEXT Query Application

A.1 Web Query Application Overview A-1

A.2 The PL/SQL Server Pages (PSP) Web Application A-2

A.2.1 PSP Web Application Prerequisites A-3

A.2.2 Building the PSP Web Application A-3

A.2.3 PSP Web Application Sample Code A-5

A.2.3.1 loader.ctl A-5

A.2.3.2 loader.dat A-5

A.2.3.3 HTML Files for loader.dat Example A-5

A.2.3.4 search_htmlservices.sql A-10

A.2.3.5 search_html.psp A-11

A.3 The Java Server Pages (JSP) Web Application A-13

A.3.1 JSP Web Application Prerequisites A-13

A.3.2 JSP Web Application Sample Code A-13

B CATSEARCH Query Application

B.1 CATSEARCH Web Query Application Overview B-1

B.2 The JSP Web Application B-1

B.2.1 Building the JSP Web Application B-1

B.2.2 JSP Web Application Sample Code B-3

B.2.2.1 loader.ctl B-4

B.2.2.2 loader.dat B-4

xiii

B.2.2.3 catalogSearch.jsp B-4

C Custom Index Preference Examples

C.1 Datastore Examples C-1

C.2 NULL_FILTER Example: Indexing HTML Documents C-2

C.3 PROCEDURE_FILTER Example C-3

C.4 BASIC_LEXER Example: Setting Printjoin Characters C-3

C.5 MULTI_LEXER Example: Indexing a Multilanguage Table C-3

C.6 BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing C-4

C.7 BASIC_WORDLIST Example: Enabling Wildcard Index C-4

xiv

Preface

Welcome to Oracle Text Application Developer's Guide. This document provides
information for building applications with Oracle Text. This preface contains the
following topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This document is intended for users who perform the following tasks:

• Develop Oracle Text applications

• Administer Oracle Text installations

To use this document, you must have experience with the Oracle object relational
database management system, SQL, SQL*Plus, and PL/SQL.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see these Oracle resources:

• Oracle Text Reference

• Oracle Database Concepts

• Oracle Database Administrator's Guide

• Oracle Database SQL Tuning Guide

xv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Oracle Database SQL Language Reference

• Oracle Database Reference

• Oracle Database Development Guide

• Oracle Database Sample Schemas

• Oracle Database PL/SQL Language Reference

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xvi

1
Understanding Oracle Text Application
Development

Oracle Text enables you to build text query applications and document classification
applications.

This chapter contains the following topics:

• Introduction to Oracle Text

• Document Collection Applications

• Catalog Information Applications

• Document Classification Applications

• XML Search Applications

1.1 Introduction to Oracle Text
Oracle Text provides indexing, word and theme searching, and viewing capabilities for
text in query applications and document classification applications.

To design an Oracle Text application, first determine the type of queries that you
expect to run. When you know the types, you can choose the most suitable index for
the task.

Oracle Text is used for the following categories of applications:

• Document Collection Applications

• Catalog Information Applications

• Document Classification Applications

• XML Search Applications

1.2 Document Collection Applications
A text query application enables users to search document collections, such as
websites, digital libraries, or document warehouses.

This section contains the following topics.

• About Document Collection Applications

• Flowchart of Text Query Application

1.2.1 About Document Collection Applications
The collection is typically static and has no significant change in content after the
initial indexing run. Documents can be any size and format, such as HTML, PDF,

1-1

or Microsoft Word. These documents are stored in a document table. Searching is
enabled by first indexing the document collection.

Queries usually consist of words or phrases. Application users specify logical
combinations of words and phrases by using operators such as OR and AND. Users
can apply other query operations to improve the search results, such as stemming,
proximity searching, and wildcarding.

For this type of application, you should retrieve documents that are most relevant to a
query. The documents must rank high in the result list.

The queries are best served with a CONTEXT index on your document table. To query
this index, the application uses the SQL CONTAINS operator in the WHERE clause of a
SELECT statement.

Figure 1-1 Overview of Text Query Application

Context

Index

Database

SQL

CONTAINS

Query

Text Query

Application

DocTable

1.2.2 Flowchart of Text Query Application
A typical text query application on a document collection lets the user enter a
query. The application enters a CONTAINS query and returns a list, called a hitlist, of
documents that satisfy the query. The results are usually ranked by relevance. The
application enables the user to view one or more documents in the hitlist.

For example, an application might index URLs (HTML files) on the web and provide
query capabilities across the set of indexed URLs. Hitlists returned by the query
application are composed of URLs that the user can visit.

Figure 1-2 illustrates the flowchart of user interaction with a simple text query
application:

1. The user enters a query.

2. The application runs a CONTAINS query.

3. The application presents a hitlist.

4. The user selects document from the hitlist.

5. The application presents a document to the user for viewing.

Chapter 1
Document Collection Applications

1-2

Figure 1-2 Flowchart of a Text Query Application

Enter Query

Execute CONTAINS Query

Present Hitlist

Select from Hitlist

Present Document
CTX_DOC.HIGHLIGHT

Application Action

User Action

1.3 Catalog Information Applications
Catalog information consists of inventory type information, such as for an online book
store or auction site.

This section contains the following topics.

• About Catalog Information Applications

• Flowchart for Catalog Query Application

1.3.1 About Catalog Information Applications
The stored catalog information consists of text information, such as book titles, and
related structured information, such as price. The information is usually updated
regularly to keep the online catalog up-to-date with the inventory.

Queries are usually a combination of a text component and a structured component.
Results are almost always sorted by a structured component, such as date or price.
Good response time is always an important factor with this type of query application.

Catalog applications are best served by a CTXCAT index. Query this index with the
CATSEARCH operator in the WHERE clause of a SELECT statement.

Figure 1-3 illustrates the relationship of the catalog table, its CTXCAT index, and the
catalog application that uses the CATSEARCH operator to query the index.

Chapter 1
Catalog Information Applications

1-3

Figure 1-3 A Catalog Query Application

CTXCAT
Index

Database

SQL
CATSEARCH

Query

Catalog
Application

Catalog Table

1.3.2 Flowchart for Catalog Query Application
A catalog application enables users to search for specific items in catalogs. For
example, an online store application enables users to search for and purchase items in
inventory. Typically, the user query consists of a text component that searches across
the textual descriptions plus some other ordering criteria, such as price or date.

Figure 1-4 illustrates the flowchart of a catalog query application for an online
electronics store.

1. The user enters the query, consisting of a text component (for example, cd player)
and a structured component (for example, order by price).

2. The application executes the CATSEARCH query.

3. The application shows the results ordered accordingly.

4. The user browses the results.

5. The user enters another query or performs an action, such as purchasing the item.

Chapter 1
Catalog Information Applications

1-4

Figure 1-4 Flowchart of a Catalog Query Application

Text Component
'cd player'

Execute CATSEARCH Query

Show Results

User Browses Results

Structured Component
'order by price'

Enter Query

User Purchases Item

Application Action

User Action

New Query

1.4 Document Classification Applications
In a document classification application, an incoming stream or a set of documents is
compared to a predefined set of rules. If a document matches one or more rules, then
the application performs an action.

For example, assume an incoming stream of news articles. You define a rule to
represent the Finance category. The rule is essentially one or more queries that select
documents about the subject of Finance. The rule might have the form of 'stocks or
bonds or earnings.'

When a document arrives at a Wall Street earnings forecast and satisfies the rules
for this category, the application takes an action, such as tagging the document as
Finance or emailing one or more users.

To create a document classification application, create a table of rules and then create
a CTXRULE index. To classify an incoming stream of text, use the MATCHES operator
in the WHERE clause of a SELECT statement. See Figure 1-5 for the general flow of a
classification application.

Chapter 1
Document Classification Applications

1-5

Figure 1-5 Overview of a Document Classification Application

Document N
from Web

Document 2
from File
System

Document 1
from
Database

Document
Stream

Perform
ActionDocument

Classification
Application

CTXRULE
Index

Oracle

SQL
MATCHES

Query

Database A Database B

Email
User

Classify
Document

Rules Table

1.5 XML Search Applications
An XML search application performs searches over XML documents. A regular
document search usually searches across a set of documents to return documents
that satisfy a text predicate; an XML search often uses the structure of the XML
document to restrict the search. Typically, only the document part that satisfies the
search is returned. For example, instead of finding all purchase orders that contain the
word electric, the user might need only purchase orders in which the comment field
contains electric.

Oracle Text enables you to perform XML searching by using the following approaches:

• The CONTAINS Operator with XML Search Applications

• Combining Oracle Text Features with Oracle XML DB (XML Search Index)

See Also:

Using XML Query Result Set Interface

1.5.1 The CONTAINS Operator with XML Search Applications
The CONTAINS operator is well suited to structured searching, enabling you to perform
restrictive searches with the WITHIN, HASPATH, and INPATH operators. If you use a
CONTEXT index, then you can also benefit from the following characteristics of Oracle
Text searches:

• Token-based, whitespace-normalized searches

• Hitlists ranked by relevance

Chapter 1
XML Search Applications

1-6

• Case-sensitive searching

• Section searching

• Linguistic features such as stemming and fuzzy searching

• Performance-optimized queries for large document sets

WARNING:

Starting with Oracle Database 12c, Oracle XML Database (XML DB) is
automatically installed when you install the new Oracle Database software
or when you upgrade.

See Also:

"XML Section Searching with Oracle Text"

1.5.2 Combining Oracle Text Features with Oracle XML DB (XML
Search Index)

When you want a full-text retrieval for applications, combine the features of Oracle
Text and Oracle XML DB to create an XML Search Index. In this case, leverage
the XML structure by entering queries such as "find all nodes that contain the
word Pentium." Oracle Database 12c extends Oracle's support for the W3C XQuery
specification by adding support for the XQuery full-text extension. This support lets you
perform XML-aware, full-text searches on XML content that is stored in the database.

The following topics explain how to use Oracle XML DB with Oracle Text applications:

• Using the xml_enable Method for an XML Search Index

• Using the Text-on-XML Method

• Indexing JSON Data

See Also:

• "XML Section Searching with Oracle Text"

• Oracle Text Reference for information about the xml_enable variable of
SET_SEC_GRP_ATTR to enable XML awareness

• Oracle XML DB Developer's Guide for more information about XML full-
text indexing and XML Search Index

Chapter 1
XML Search Applications

1-7

1.5.2.1 Using the xml_enable Method for an XML Search Index
An XML Search Index is an XML-enabled Oracle Text index (CTXSYS.CONTEXT).
This index type supports information-retrieval searching and structured searching in
one unified index. XML Search Index also stores a Binary Persistent Document Object
Model (PDOM) internally within an Oracle Text table, so that XML operations can be
functionally evaluated over the Binary PDOM. This XML Search Index is supported for
XMLTYPE datastores. XMLEXISTS is seamlessly rewritten to a CONTAINS query in the
presence of such an XML Search Index.

When you create an XML Search Index, a Binary PDOM of the XML document is
materialized in an internal table of Oracle Text. Post evaluation from the Oracle Text
index is redirected to go against the PDOM stored in this internal table.

See Also:

Oracle Text Reference for information on xml_enable variable of
SET_SEC_GRP_ATTR to enable XML awareness for XML Search Index

The following example creates an Oracle XML Search Index:

exec
CTX_DDL.CREATE_SECTION_GROUP('secgroup','PATH_SECTION_GROUP');
exec
CTX_DDL.SET_SEC_GRP_ATTR('secgroup','xml_enable','t');
CREATE INDEX po_ctx_idx on T(X) indextype is ctxsys.context
parameters (‘section group SECGROUP');

1.5.2.2 Using the Text-on-XML Method
With Oracle Text, you can create a CONTEXT index on a column that contains XML data.
The column type can be XMLType or any supported type, provided that you use the
correct index preference for XML data.

With the Text-on-XML method, use the standard CONTAINS query and add a structured
constraint to limit the scope of a search to a particular section, field, tag, or attribute.
That is, specify the structure inside text operators, such as WITHIN, HASPATH, and
INPATH.

For example, set up your CONTEXT index to create sections with XML documents.
Consider the following XML document that defines a purchase order:

<?xml version="1.0"?>
<PURCHASEORDER pono="1">
 <PNAME>Po_1</PNAME>
 <CUSTNAME>John</CUSTNAME>
 <SHIPADDR>
 <STREET>1033 Main Street</STREET>
 <CITY>Sunnyvalue</CITY>
 <STATE>CA</STATE>
 </SHIPADDR>
 <ITEMS>
 <ITEM>
 <ITEM_NAME> Dell Computer </ITEM_NAME>

Chapter 1
XML Search Applications

1-8

 <DESC> Pentium 2.0 Ghz 500MB RAM </DESC>
 </ITEM>
 <ITEM>
 <ITEM_NAME> Norelco R100 </ITEM_NAME>
 <DESC>Electric Razor </DESC>
 </ITEM>
 </ITEMS>
</PURCHASEORDER>

To query all purchase orders that contain Pentium within the item description section,
use the WITHIN operator:

SELECT id from po_tab where CONTAINS(doc, 'Pentium WITHIN desc') > 0;

Use the INPATH operator to specify more complex criteria with XPATH expressions:

SELECT id from po_tab where CONTAINS(doc, 'Pentium INPATH (/purchaseOrder/items/
item/desc') > 0;

1.5.2.3 Indexing JSON Data
JavaScript Object Notation (JSON) is a language-independent data format that
is used for serializing structured data and exchanging this data over a network,
typically between a server and web applications. JSON provides a text-based way
of representing JavaScript object literals, arrays, and scalar data.

See Also:

• Oracle Text Reference for information about creating a search index on
JSON

• Oracle Database JSON Developer's Guide for more information about
JSON

Chapter 1
XML Search Applications

1-9

2
Getting Started with Oracle Text

You can create an Oracle Text developer user account and build simple text query and
catalog applications.

This chapter contains the following topics:

• Overview of Getting Started with Oracle Text

• Creating an Oracle Text User

• Query Application Quick Tour

• Catalog Application Quick Tour

• Classification Application Quick Tour

2.1 Overview of Getting Started with Oracle Text
This chapter provides basic information about how to configure Oracle Text, how to
create an Oracle Text developer user account and how to build simple text query and
catalog applications. It also provides information about basic SQL statements for each
type of application to load, index, and query tables.

More complete application examples are given in the appendixes.

Note:

The SQL> prompt has been omitted in this chapter, in part to improve
readability and in part to make it easier for you to cut and paste text.

See Also:

" Classifying Documents in Oracle Text" to learn more about building
document classification applications

2.2 Creating an Oracle Text User
Before you can create Oracle Text indexes and use Oracle Text PL/SQL packages,
you need to create a user with the CTXAPP role. This role enables you to do the
following:

• Create and delete Oracle Text indexing preferences

• Use the Oracle Text PL/SQL packages

2-1

To create an Oracle Text application developer user, perform the following steps as the
system administrator user:

1. Create the user.

The following SQL statement creates a user called MYUSER with a password of
password:

CREATE USER myuser IDENTIFIED BY password;

2. Grant roles to the user.

The following SQL statement grants the required roles of RESOURCE, CONNECT, and
CTXAPP to MYUSER:

GRANT RESOURCE, CONNECT, CTXAPP TO MYUSER;

3. Grant EXECUTE privileges on the CTX PL/SQL package.

Oracle Text includes several packages that let you perform actions ranging from
synchronizing an Oracle Text index to highlighting documents. For example,
the CTX_DDL package includes the SYNC_INDEX procedure, which enables you to
synchronize your index. The Oracle Text Reference describes these packages.

To call any of these procedures from a stored procedure, your application requires
execute privileges on the packages. For example, to grant execute privileges to
MYUSER on all Oracle Text packages, enter the following SQL statements:

GRANT EXECUTE ON CTXSYS.CTX_CLS TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_DDL TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_DOC TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_OUTPUT TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_QUERY TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_REPORT TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_THES TO myuser;
GRANT EXECUTE ON CTXSYS.CTX_ULEXER TO myuser;

Note:

These permissions are granted to the CTXAPP role. However, because
role permissions do not always work in PL/SQL procedures, it is safest to
explicitly grant these permissions to the user who already has the CTXAPP
role.

2.3 Query Application Quick Tour
In a basic text query application, users enter query words or phrases and expect the
application to return a list of documents that best match the query. Such an application
involves creating a CONTEXT index and querying it with CONTAINS.

Typically, query applications require a user interface. An example of how to build
such a query application using the CONTEXT index type is given in CONTEXT Query
Application.

The examples in this section provide the basic SQL statements to load the text table,
index the documents, and query the index.

• Creating the Text Table

Chapter 2
Query Application Quick Tour

2-2

• Using SQL*Loader to Load the Table

2.3.1 Creating the Text Table
Perform the following steps to create and load documents into a table.

1. Connect as the new user.

Before creating any tables, assume the identity of the user that you created.

CONNECT myuser;

2. Create your text table.

The following example creates a table called docs with two columns, id and text,
by using the CREATE TABLE statement. This example makes the id column the
primary key. The text column is VARCHAR2.

CREATE TABLE docs (id NUMBER PRIMARY KEY, text VARCHAR2(200));

Note:

Primary keys of the following type are supported: NUMBER, VARCHAR2,
DATE, CHAR, VARCHAR, and RAW.

3. Load documents into the table.

Use the SQL INSERT statement to load text into a table.

To populate the docs table, use the INSERT statement:

INSERT INTO docs VALUES(1, '<HTML>California is a state in the US.</HTML>');
INSERT INTO docs VALUES(2, '<HTML>Paris is a city in France.</HTML>');
INSERT INTO docs VALUES(3, '<HTML>France is in Europe.</HTML>');

2.3.2 Using SQL*Loader to Load the Table
You can use SQL*Loader to load a table in batches.

Perform the following steps to load your table in batches with SQL*Loader:

1. Create the CONTEXT index.

Index the HTML files by creating a CONTEXT index on the text column as follows.
Because you are indexing HTML, this example uses the NULL_FILTER preference
type for no filtering and the HTML_SECTION_GROUP type. If you index PDF, Microsoft
Word, or other formatted documents, then use the CTXSYS.AUTO_FILTER (the
default) as your FILTER preference.

CREATE INDEX idx_docs ON docs(text)
 INDEXTYPE IS CTXSYS.CONTEXT PARAMETERS
 ('FILTER CTXSYS.NULL_FILTER SECTION GROUP CTXSYS.HTML_SECTION_GROUP');

This example also uses the HTML_SECTION_GROUP section group, which is
recommended for indexing HTML documents. Using HTML_SECTION_GROUP enables
you to search within specific HTML tags and eliminate unwanted markup, such as
font information, from the index.

2. Query your table with CONTAINS.

Chapter 2
Query Application Quick Tour

2-3

First, set the format of the SELECT statement's output so that it is easily readable.
Set the width of the text column to 40 characters:

COLUMN text FORMAT a40;

Next, query the table with the SELECT statement with CONTAINS. This query
retrieves the document IDs that satisfy the query. The following query looks for
all documents that contain the word France:

SELECT SCORE(1), id, text FROM docs WHERE CONTAINS(text, 'France', 1) > 0;

 SCORE(1) ID TEXT
---------- ---------- --
 4 3 <HTML>France is in Europe.</HTML>
 4 2 <HTML>Paris is a city in France.</HTML>

3. Present the document.

In a real-world application, you could present the selected document with query
terms highlighted. Oracle Text enables you to mark up documents with the
CTX_DOC package.

You can demonstrate HTML document markup with an anonymous PL/SQL block
in SQL*Plus. However, in a real-world application, you could present the document
in a browser.

This PL/SQL example uses the in-memory version of CTX_DOC.MARKUP to highlight
the word France in document 3. It allocates a temporary CLOB (character large
object data type) to store the markup text and reads it back to the standard output.
The CLOB is then deallocated before exiting:

SET SERVEROUTPUT ON;
DECLARE
 2 mklob CLOB;
 3 amt NUMBER := 40;
 4 line VARCHAR2(80);
 5 BEGIN
 6 CTX_DOC.MARKUP('idx_docs','3','France', mklob);
 7 DBMS_LOB.READ(mklob, amt, 1, line);
 8 DBMS_OUTPUT.PUT_LINE('FIRST 40 CHARS ARE:'||line);
 9 DBMS_LOB.FREETEMPORARY(mklob);
 10 END;
 11 /
FIRST 40 CHARS ARE:<HTML><<<France>>> is in Europe.</HTML>

PL/SQL procedure successfully completed.

4. Synchronize the index after data manipulation.

When you create a CONTEXT index, you explicitly synchronize your index to update
it with any inserts, updates, or deletions to the text table.

Oracle Text enables you to do so with the CTX_DDL.SYNC_INDEX procedure.

Add some rows to the docs table:

INSERT INTO docs VALUES(4, '<HTML>Los Angeles is a city in California.</
HTML>');
INSERT INTO docs VALUES(5, '<HTML>Mexico City is big.</HTML>');

Because the index is not synchronized, these new rows are not returned with a
query on city:

Chapter 2
Query Application Quick Tour

2-4

SELECT SCORE(1), id, text FROM docs WHERE CONTAINS(text, 'city', 1) > 0;

 SCORE(1) ID TEXT
---------- ---------- --
 4 2 <HTML>Paris is a city in France.</HTML>

Therefore, synchronize the index with 2 Mb of memory and rerun the query:

EXEC CTX_DDL.SYNC_INDEX('idx_docs', '2M');

PL/SQL procedure successfully completed.

COLUMN text FORMAT a50;
SELECT SCORE(1), id, text FROM docs WHERE CONTAINS(text, 'city', 1) > 0;

 SCORE(1) ID TEXT
---------- ---------- --
 4 5 <HTML>Mexico City is big.</HTML>
 4 4 <HTML>Los Angeles is a city in California.</HTML>
 4 2 <HTML>Paris is a city in France.</HTML>

See Also:

"Building the PSP Web Application" for an example of how to use
SQL*Loader to load a text table from a data file

2.4 Catalog Application Quick Tour
The examples in this section provide the basic SQL statements to create a catalog
index for an auction site that sells electronic equipment, such as cameras and CD
players. New inventory is added every day, and item descriptions, bid dates, and
prices must be stored together.

The application requires good response time for mixed queries. The key is to
determine what columns users frequently search to create a suitable CTXCAT index.
Queries on this type of index use the CATSEARCH operator.

• Creating the Table

• Using SQL*Loader to Load the Table

Note:

Typically, query applications require a user interface. An example of how to
build such a query application using the CATSEARCH index type is given in
CATSEARCH Query Application .

2.4.1 Creating the Table
Perform the following steps to create and load the table:

1. Connect as the appropriate user.

Chapter 2
Catalog Application Quick Tour

2-5

Connect as the myuser with CTXAPP role:

CONNECT myuser;

2. Create your table.

Set up an auction table to store your inventory:

CREATE TABLE auction(
item_id NUMBER,
title VARCHAR2(100),
category_id NUMBER,
price NUMBER,
bid_close DATE);

3. Populate your table.

Populate the table with various items, each with an id, title, price and
bid_date:

INSERT INTO AUCTION VALUES(1, 'NIKON CAMERA', 1, 400, '24-OCT-2002');
INSERT INTO AUCTION VALUES(2, 'OLYMPUS CAMERA', 1, 300, '25-OCT-2002');
INSERT INTO AUCTION VALUES(3, 'PENTAX CAMERA', 1, 200, '26-OCT-2002');
INSERT INTO AUCTION VALUES(4, 'CANON CAMERA', 1, 250, '27-OCT-2002');

2.4.2 Using SQL*Loader to Load the Table
You can use SQL*Loader to load a table in batches.

Perform the following steps to load your table in batches with SQL*Loader:

1. Determine your queries.

Determine what criteria are likely to be retrieved. In this example, you determine
that all queries search the title column for item descriptions, and most queries
order by price. Later on, when you use the CATSEARCH operator, specify the terms
for the text column and the criteria for the structured clause.

2. Create the subindex to order by price.

For Oracle Text to serve these queries efficiently, you need a subindex for the
price column, because your queries are ordered by price.

Therefore, create an index set called auction_set and add a subindex for the
price column:

EXEC CTX_DDL.CREATE_INDEX_SET('auction_iset');
EXEC CTX_DDL.ADD_INDEX('auction_iset','price'); /* subindex A*/

3. Create the CTXCAT index.

Create the combined catalog index on the AUCTION table with the CREATE INDEX
statement:

CREATE INDEX auction_titlex ON AUCTION(title) INDEXTYPE IS CTXSYS.CTXCAT
PARAMETERS ('index set auction_iset');

The following figure shows how the CTXCAT index and its subindex relate to the
columns.

Chapter 2
Catalog Application Quick Tour

2-6

Figure 2-1 Auction table schema and CTXCAT index

Auction Table

item_id

number

title

varchar (100)

category_id

number

price

number

bid_close

date

Subindex A

CTXCAT

Index

A

4. Query your table with CATSEARCH.

After you create the CTXCAT index on the AUCTION table, query this index with the
CATSEARCH operator.

First, set the output format to make the output readable:

COLUMN title FORMAT a40;

Next, run the query:

SELECT title, price FROM auction WHERE CATSEARCH(title, 'CAMERA', 'order by
price')> 0;

TITLE PRICE
--------------- ----------
PENTAX CAMERA 200
CANON CAMERA 250
OLYMPUS CAMERA 300
NIKON CAMERA 400

SELECT title, price FROM auction WHERE CATSEARCH(title, 'CAMERA',
 'price <= 300')>0;

TITLE PRICE
--------------- ----------
PENTAX CAMERA 200
CANON CAMERA 250
OLYMPUS CAMERA 300

5. Update your table.

Update your catalog table by adding new rows. When you do so, the CTXCAT index
is automatically synchronized to reflect the change.

For example, add the following new rows to the table and then rerun the query:

INSERT INTO AUCTION VALUES(5, 'FUJI CAMERA', 1, 350, '28-OCT-2002');
INSERT INTO AUCTION VALUES(6, 'SONY CAMERA', 1, 310, '28-OCT-2002');

SELECT title, price FROM auction WHERE CATSEARCH(title, 'CAMERA', 'order by
price')> 0;

TITLE PRICE
----------------------------------- ----------
PENTAX CAMERA 200
CANON CAMERA 250

Chapter 2
Catalog Application Quick Tour

2-7

OLYMPUS CAMERA 300
SONY CAMERA 310
FUJI CAMERA 350
NIKON CAMERA 400

6 rows selected.

Note how the added rows show up immediately in the query.

See Also:

"Building the PSP Web Application" for an example of how to use
SQL*Loader to load a text table from a data file

2.5 Classification Application Quick Tour
The function of a classification application is to perform some action based on
document content. These actions can include assigning a category ID to a document
or sending the document to a user. The result is classification of a document.

This section contains the following sections:

• About Classification of a Document

• Steps for Creating a Classification Application

2.5.1 About Classification of a Document
Documents are classified according to predefined rules. These rules select documents
for a category. For instance, a query rule of 'presidential elections' selects documents
for a category about politics.

Oracle Text provides several types of classification. One type is simple, or rule-based
classification, discussed here, where you create document categories and the rules for
categorizing documents. With supervised classification, Oracle Text derives the rules
from a set of training documents that you provide. With clustering, Oracle Text does all
the work for you, deriving both rules and categories.

To create a simple classification application for document content using Oracle Text,
you create rules. Rules are essentially a table of queries that categorize document
content. You index these rules in a CTXRULE index. To classify an incoming stream of
text, use the MATCHES operator in the WHERE clause of a SELECT statement. See the
following image for the general flow of a classification application.

Chapter 2
Classification Application Quick Tour

2-8

Figure 2-2 Overview of a Document Classification Application

Document N
from Web

Document 2
from File
System

Document 1
from
Database

Document
Stream

Perform
ActionDocument

Classification
Application

CTXRULE
Index

Oracle

SQL
MATCHES

Query

Database A Database B

Email
User

Classify
Document

Rules Table

See Also:

"Overview of Document Classification"

2.5.2 Creating a Classification Application
The following example shows how to classify documents by using myuser with the
CTXAPP role. You define simple categories, create a CTXRULE index, and use MATCHES.

1. Connect as the appropriate user.

Connect as the myuser with CTXAPP role:

CONNECT myuser;

2. Create the rule table.

In this example, you create a table called queries. Each row defines a category
with an ID and a rule that is a query string.

CREATE TABLE queries (
 query_id NUMBER,
 query_string VARCHAR2(80)
);

 INSERT INTO queries VALUES (1, 'oracle');
 INSERT INTO queries VALUES (2, 'larry or ellison');
 INSERT INTO queries VALUES (3, 'oracle and text');
 INSERT INTO queries VALUES (4, 'market share');

3. Create your CTXRULE index.

CREATE INDEX queryx ON queries(query_string) INDEXTYPE IS CTXSYS.CTXRULE;

Chapter 2
Classification Application Quick Tour

2-9

4. Classify with MATCHES.

Use the MATCHES operator in the WHERE clause of a SELECT statement to match
documents to queries and then classify the documents.

 COLUMN query_string FORMAT a35;
 SELECT query_id,query_string FROM queries
 WHERE MATCHES(query_string,
 'Oracle announced that its market share in databases
 increased over the last year.')>0;

 QUERY_ID
QUERY_STRING

 1
oracle
 4 market
share

As shown, the document string matches categories 1 and 4. With this
classification, you can perform an action, such as writing the document to a
specific table or emailing a user.

See Also:

Classifying Documents in Oracle Text for more extended classification
examples

Chapter 2
Classification Application Quick Tour

2-10

3
Indexing with Oracle Text

Oracle Text provides several types of indexes, which you create depending on the type
of application that you develop.

This chapter contains the following topics:

• About Oracle Text Indexes

• Considerations for Oracle Text Indexing

• Document Language

• Indexing Special Characters

• Case-Sensitive Indexing and Querying

• Document Services Procedures Performance and Forward Index

• Language-Specific Features

• About Entity Extraction and CTX_ENTITY

• Fuzzy Matching and Stemming

• Better Wildcard Query Performance

• Document Section Searching

• Stopwords and Stopthemes

• Index Performance

• Query Performance and Storage of Large Object (LOB) Columns

• Mixed Query Performance

• In-Memory Full Text Search and JSON Full Text Search

3.1 About Oracle Text Indexes
The discussion of Oracle Text indexes includes the different types of indexes, their
structure, the indexing process, and limitations.

The following topics provide information about Oracle Text indexes:

• Types of Oracle Text Indexes

• Structure of the Oracle Text CONTEXT Index

• The Oracle Text Indexing Process

• Partitioned Tables and Indexes

• Creating an Index Online

• Parallel Indexing

• Indexing and Views

3-1

3.1.1 Types of Oracle Text Indexes
With Oracle Text, you create indexes by using the CREATE INDEX statement. Table 3-1
describes each index type.

Table 3-1 Oracle Text Index Types

Index Type Description Supported
Preferences and
Parameters

Query Operator Notes

CONTEXT Use this index to
build a text retrieval
application when your
text consists of large,
coherent documents in,
for example, MS Word,
HTML, or plain text.

You can customize the
index in a variety of
ways.

This index type requires
CTX_DDL.SYNC_INDEX
after insert, update, and
delete operations to the
base table.

All CREATE INDEX
preferences and
parameters are
supported, except for
INDEX SET.

Supported
parameters: index
partition clause
format, charset, and
language columns

CONTAINS

The CONTEXT
grammar supports a
rich set of operations.

Use the CTXCAT
grammar with query
templating.

Supports all
documents services
and query services.

Supports indexing of
partitioned text tables.

Supports FILTER BY
and ORDER BY clauses
of CREATE INDEX
to index structured
column values for more
efficient processing of
mixed queries.

SEARCH INDEX Use this index to
build a text retrieval
application when your
text consists of large,
coherent documents in,
for example, MS Word,
HTML, or plain text.

You can customize the
index in a variety of
ways.

This index type requires
CTX_DDL.SYNC_INDEX
after insert, update, and
delete operations to the
base table.

All CREATE INDEX
preferences and
parameters are
supported, except for
INDEX SET.

Supported
parameters: index
partition clause
format, charset, and
language columns

CONTAINS

The SEARCH INDEX
grammar supports a
rich set of operations.

Use the CONTEXT
and CTXCAT
grammar with query
templating.

Supports all
documents services
and query services.

Supports indexing of
partitioned text tables.

Supports sharded
databases and system
managed partitioning
for index storage
tables.

Chapter 3
About Oracle Text Indexes

3-2

Table 3-1 (Cont.) Oracle Text Index Types

Index Type Description Supported
Preferences and
Parameters

Query Operator Notes

CTXCAT Use this index
for better mixed
query performance of
small documents and
text fragments. To
improve mixed query
performance, include
other columns in the
base table, such as
item names, prices, and
descriptions.

This index type
is transactional. It
automatically updates
itself after inserts,
updates, or deletes
to the base table.
CTX_DDL.SYNC_INDEX
is not necessary.

INDEX SET

LEXER

STOPLIST

STORAGE

WORDLIST (The
prefix_index
attribute is supported
only for Japanese
data.)

Not supported:
Format, charset, and
language columns

Table and index
partitioning

CATSEARCH

The CTXCAT
grammar supports
logical operations,
phrase queries, and
wildcarding.

Use the CONTEXT
grammar with query
templating.

Theme querying is
supported.

This index is larger and
takes longer to build
than a CONTEXT index.

The size of a CTXCAT
index is related to
the total amount of
text to be indexed,
the number of indexes
in the index set, and
the number of columns
indexed. Carefully
consider your queries
and your resources
before adding indexes
to the index set.

The CTXCAT index
does not support index
partitioning, documents
services (highlighting,
markup, themes, and
gists) or query
services (explain,
query feedback, and
browse words.)

CTXRULE Use this index to build a
document classification
or routing application.
Create this index on a
table of queries, where
the queries define the
classification or routing
criteria..

See "CTXRULE
Parameters and
Limitations".

MATCHES Use the MATCHES
operator to classify
single documents
(plain text, HTML, or
XML). MATCHES turns a
document into a set of
queries and finds the
matching rows in the
index.

To build a
document classification
application by using
simple or rule-based
classification, create
an index of type
CTXRULE. This index
classifies plain text,
HTML, or XML
documents by using
the MATCHES operator.
Store your defining
query set in the text
table that you index.

An Oracle Text index is an Oracle Database domain index. To build your query
application, you can create an index of type CONTEXT with a mixture of text and
structured data columns, and query it with the CONTAINS operator.

Chapter 3
About Oracle Text Indexes

3-3

You create an index from a populated text table. In a query application, the table must
contain the text or pointers to the location of the stored text. Text is usually a collection
of documents, but it can also be small text fragments.

Note:

If you are building a new application that uses XML data, Oracle
recommends that you use XMLIndex, not CTXRULE.

Create an Oracle Text index as a type of extensible index to Oracle Database by using
standard SQL. This means that an Oracle Text index operates like an Oracle Database
index. It has a name by which it is referenced and can be manipulated with standard
SQL statements.

The benefit of creating an Oracle Text index is fast response time for text queries with
the CONTAINS, CATSEARCH, and MATCHES operators. These operators query the CONTEXT,
CTXCAT, and CTXRULE index types, respectively.

Note:

Because a Transparent Data Encryption-enabled column does not support
domain indexes, do not use it with Oracle Text. However, you can create an
Oracle Text index on a column in a table that is stored in a Transparent Data
Encryption-enabled tablespace.

See Also:

• "Creating Oracle Text Indexes"

• Oracle XML DB Developer's Guide for information about XMLIndex and
indexing XMLType data

3.1.2 Structure of the Oracle Text CONTEXT Index
Oracle Text indexes text by converting all words into tokens. The general structure of
an Oracle Text CONTEXT index is an inverted index, where each token contains the list
of documents (rows) that contain the token.

For example, after a single initial indexing operation, the word DOG might have an
entry as follows:

Word Appears in Document

DOG DOC1 DOC3 DOC5

This means that the word DOG is contained in the rows that store documents one,
three, and five.

Chapter 3
About Oracle Text Indexes

3-4

Merged Word and Theme Indexing

By default in English and French, Oracle Text indexes theme information with word
information. You can query theme information with the ABOUT operator. You can also
enable and disable theme indexing.

See Also:

"Creating Preferences " to learn more about indexing theme information

3.1.3 Oracle Text Indexing Process
This section describes the Oracle Text indexing process. Initiate the indexing process
by using the CREATE INDEX statement to create an Oracle Text index of tokens,
organized according to your parameters and preferences.

Figure 3-1 shows the indexing process. This process is a data stream that is acted
upon by the different indexing objects. Each object corresponds to an indexing
preference type or section group that you can specify in the parameter string of CREATE
INDEX or ALTER INDEX.

Figure 3-1 Oracle Text Indexing Process

Oracle Text

Index

Datastore
Documents

Marked-up

Text Text Tokens

Lexer Indexing

Engine

Wordlist

Filter Sectioner

Markup

Stoplist
Internet

O/S file

system

Oracle Text processes the data stream with the following objects and engine:

• Datastore Object

Chapter 3
About Oracle Text Indexes

3-5

• Filter Object

• Sectioner Object

• Lexer Object

• Indexing Engine

3.1.3.1 Datastore Object
The stream starts with the datastore reading in the documents as they are stored in
the system according to your datastore preference. For example, if you defined your
datastore as DIRECTORY_DATASTORE, then the stream starts by reading the files from an
Oracle directory object. You can also store your documents on the internet or in Oracle
Database. Wherever your files reside physically, a text table in Oracle Database must
always point to the files.

3.1.3.2 Filter Object
The stream then passes through the filter. Your FILTER preference determines what
happens. The stream can be acted upon in one of the following ways:

• No filtering takes place when you specify the NULL_FILTER preference type or
when the value of the format column is IGNORE. Documents that are plain text,
HTML, or XML need no filtering.

• Formatted documents (binary) are filtered to marked-up text when you specify the
AUTO_FILTER preference type or when the value of the format column is BINARY.

3.1.3.3 Sectioner Object
After being filtered, the marked-up text passes through the sectioner, which separates
the stream into text and section information. Section information includes where
sections begin and end in the text stream. The type of sections that are extracted
is determined by your section group type.

The text is passed to the lexer. The section information is passed directly to the
indexing engine, which uses it later.

3.1.3.4 Lexer Object
You create a lexer preference by using one of the Oracle Text lexer types to specify
the language of the text to be indexed. The lexer breaks the text into tokens according
to your language. These tokens are usually words. To extract tokens, the lexer
uses the parameters that are defined in your lexer preference. These parameters
include the definitions for the characters that separate tokens, such as whitespace.
Parameters also include whether to convert the text to all uppercase or to leave it in
mixed case.

When you enable theme indexing, the lexer analyzes your text to create theme tokens
for indexing.

3.1.3.5 Indexing Engine
The indexing engine creates the inverted index that maps tokens to the documents
that contain them. In this phase, Oracle Text uses the stoplist that you specify
to exclude stopwords or stopthemes from the index. Oracle Text also uses the

Chapter 3
About Oracle Text Indexes

3-6

parameters that are defined in your WORDLIST preference. Those parameters tell the
system how to create a prefix index or substring index, if enabled.

3.1.4 About Updates to Indexed Columns

In releases prior to Oracle Database 12c Release 2 (12.2), when there is an
update to the column on which an Oracle Text index is based, the document is
unavailable for search operations until the index is synchronized. User queries cannot
perform a search of this document. Starting with Oracle Database 12c Release 2
(12.2), you can specify that documents must be searchable after updates, without
immediately performing index synchronization. Before the index is synchronized,
queries use the old index entries to fetch the contents of the old document. After
index synchronization, user queries fetch the contents of the updated document.

The ASYNCHRONOUS_UPDATE option for indexes enables you to retain the old contents of
a document after an update and then use this index to answer user queries.

See Also:

• ALTER INDEX in the Oracle Text Reference

• CREATE INDEX in the Oracle Text Reference

3.1.5 Partitioned Tables and Indexes
When you create a partitioned CONTEXT index on a partitioned text table, you must
partition the table by range. Hash, composite, and list partitions are not supported.

You can create a partitioned text table to partition your data by date. For example,
if your application maintains a large library of dated news articles, you can partition
your information by month or year. Partitioning simplifies the manageability of large
databases, because querying, insert, update, delete operations, and backup and
recovery can act on a single partition.

On local CONTEXT indexes with multiple table sets, Oracle Text supports the number of
partitions supported by Oracle Database.

Note:

The number of partitions that are supported in Oracle Text is approximately
1024K-1. This limit, which should be more than adequate, is not applicable to
a CONTEXT index on partitioned tables.

See Also:

Oracle Database Concepts for more information about partitioning

Chapter 3
About Oracle Text Indexes

3-7

To query a partitioned table, use CONTAINS in the WHERE clause of a SELECT statement
as you query a regular table. You can query the entire table or a single partition.
However, if you are using the ORDER BY SCORE clause, Oracle recommends that you
query single partitions unless you include a range predicate that limits the query to a
single partition.

3.1.6 Online Indexes
When it is not practical to lock your base table for indexing because of ongoing
updates, you can create your index online with the ONLINE parameter of CREATE INDEX
statement. This way an application with frequent inserts, updates, or deletes does not
have to stop updating the base table for indexing.

There are short periods, however, when the base table is locked at the beginning and
end of the indexing process.

See Also:

Oracle Text Reference to learn more about creating an index online

3.1.7 Parallel Indexing
Oracle Text supports parallel indexing with the CREATE INDEX statement.

When you enter a parallel indexing statement on a nonpartitioned table, Oracle Text
splits the base table into temporary partitions, spawns child processes, and assigns
a child to a partition. Each child then indexes the rows in its partition. The method of
slicing the base table into partitions is determined by Oracle and is not under your
direct control. This is true as well for the number of child processes actually spawned,
which depends on machine capabilities, system load, your init.ora settings, and
other factors. Because of these variables, the actual parallel degree may not match
the degree of parallelism requested.

Because indexing is an intensive I/O operation, parallel indexing is most effective in
decreasing your indexing time when you have distributed disk access and multiple
CPUs. Parallel indexing can affect the performance of an initial index only with the
CREATE INDEX statement. It does not affect insert, update, and delete operations with
ALTER INDEX, and has minimal effect on query performance.

Because parallel indexing decreases the initial indexing time, it is useful for the
following scenarios:

• Data staging, when your product includes an Oracle Text index

• Rapid initial startup of applications based on large data collections

• Application testing, when you need to test different index parameters and schemas
while developing your application

Chapter 3
About Oracle Text Indexes

3-8

See Also:

– "Parallel Queries on a Local Context Index"

– "Frequently Asked Questions About Indexing Performance"

3.1.8 Indexing and Views
Oracle SQL standards do not support the creation of indexes on views. If you need
to index documents whose contents are in different tables, create a data storage
preference by using the USER_DATASTORE object. With this object, you can define a
procedure that synthesizes documents from different tables at index time.

See Also:

Oracle Text Reference to learn more about USER_DATASTORE

Oracle Text supports the creation of CONTEXT, CTXCAT, and CTXRULE indexes on
materialized views (MVIEW).

3.2 Considerations for Oracle Text Indexing
Use the CREATE INDEX statement to create an Oracle Text index. When you create
an index but do not specify a parameter string, an index is created with default
parameters. You can create a CONTEXT index, a CTXCAT index, or a CTXRULE index.

You can also override the defaults and customize your index to suit your query
application. The parameters and preference types that you use to customize your
index with the CREATE INDEX statement fall into the following general categories.

This section contains the following topics:

• Location of Text

• Supported Column Types

• Storing Text in the Text Table

• Storing File Path Names

• Storing URLs

• Storing Associated Document Information

• Format and Character Set Columns

• Supported Document Formats

• Summary of DATASTORE Types

• Document Formats and Filtering

• Bypass Rows

• Document Character Set

Chapter 3
Considerations for Oracle Text Indexing

3-9

3.2.1 Location of Text
The basic prerequisite for a text query application is a text table that is populated with
your document collection. The text table is required for indexing.

When you create a CONTEXT index, populate rows in your text table with one of the
following elements. CTXCAT and CTXRULE indexes support only the first method.

• Text information (Documents or text fragments. By default, the indexing operation
expects your document text to be directly loaded in your text table.)

• Path names of documents in your file system

• URLs of web documents

Figure 3-2 illustrates these different methods.

Figure 3-2 Different Ways of Storing Text

Text Table

author date text

Text Table

author date text

File 1 /my_path/my_system/doc1.doc

File 2 /my_path/my_system/doc2.doc

Document 1

Document 2

Document Collection

Documents are stored in
the text table.

File paths are stored in
the text column.

Text Table

author date text

URL 1 http://www.mysite.com/mydoc1.html

URL 2 http://www.mysite.com/mydoc1.html
URLs are stored in
the text column.

Chapter 3
Considerations for Oracle Text Indexing

3-10

3.2.2 Supported Column Types
With Oracle Text, you can create a CONTEXT index with columns of type VARCHAR2,
CLOB (limited to 4294967295 bytes), BLOB, CHAR, BFILE, XMLType, and URIType.

Note:

You cannot index the NCLOB, DATE, and NUMBER column types.

3.2.3 Storing Text in the Text Table
For CONTEXT data storage, use the following datastore types to store documents in
your text table:

• DIRECT_DATASTORE: In one column

• MULTI_COLUMN_DATASTORE: In multiple columns (Oracle Text concatenates the
columns into a virtual document, one document for each row.)

• DETAIL_DATASTORE: Master-detail relationships (Store one document across a
number of rows.)

• NESTED_DATASTORE: In a nested table

Oracle Text supports the indexing of the XMLType data type, which you use to store
XML documents.

For CTXCAT data storage, you can store short text fragments, such as names,
descriptions, and addresses, over a number of columns. A CTXCAT index improves
performance for mixed queries.

3.2.4 Storing File Path Names
In your text table, store path names to files stored in your file system. During indexing,
use the FILE_DATASTORE preference type. This method of data storage is supported
only for CONTEXT indexes.

Note:

Starting with Oracle Database 21c, the Oracle Text type FILE_DATASTORE is
deprecated. Use DIRECTORY_DATASTORE instead.

3.2.5 Storing URLs
Store URL names to index websites. During indexing, use the URL_DATASTORE
preference type. This method of data storage is supported only for CONTEXT indexes.

Chapter 3
Considerations for Oracle Text Indexing

3-11

Note:

Starting with Oracle Database 21c, the Oracle Text type URL_DATASTORE is
deprecated. Use NETWORK_DATASTORE instead.

3.2.6 Storing Associated Document Information
In your text table, create additional columns to store structured information that your
query application might need, such as primary key, date, description, or author.

3.2.7 Format and Character Set Columns
If your documents consist of mixed formats or mixed character sets, create the
following additional columns:

• A format column to record the format (TEXT or BINARY) to help filtering during
indexing. You can also use the format column to ignore rows for indexing
by setting the format column to IGNORE. IGNORE is useful for bypassing rows
containing data that is incompatible with Oracle Text indexing, such as images.

• A character set column to record the document character set for each row.

When you create your index, specify the name of the format or character set column in
the parameter clause of the CREATE INDEX statement.

For all rows containing the AUTO or AUTOMATIC keywords in character set or language
columns, Oracle Text applies statistical techniques to determine the character set and
language of the documents and modify document indexing appropriately.

3.2.8 Supported Document Formats
Because the system can index most document formats, including HTML, PDF,
Microsoft Word, and plain text, you can load any supported type into the text column.

When your text column has mixed formats, you can include a format column to help
filtering during indexing, and you can specify whether a document is binary (formatted)
or text (nonformatted, such as HTML). If you mix HTML and XML documents in one
index, you might not be able to configure your index to your needs; you cannot prevent
style sheet information from being added to the index.

See Also:

Oracle Text Reference for more information about the supported document
formats

3.2.9 Summary of DATASTORE Types
When you use CREATE INDEX, specify the location that uses the datastore preference.
Use the appropriate datastore according to your application.

Chapter 3
Considerations for Oracle Text Indexing

3-12

Table 3-2 summarizes the different ways that you can store your text with the datastore
preference type.

Table 3-2 Summary of DATASTORE Types

Datastore Type Use When

DIRECT_DATASTORE Data is stored internally in a text column. Each row is indexed as a
single document.

Your text column can be VARCHAR2, CLOB, BLOB, CHAR, or
BFILE. XMLType columns are supported for the context index type.

MULTI_COLUMN_DATAST
ORE

Data is stored in a text table in more than one column. Columns are
concatenated to create a virtual document, one document for each
row.

DETAIL_DATASTORE Data is stored internally in a text column. Document consists of one
or more rows stored in a text column in a detail table, with header
information stored in a master table.

FILE_DATASTORE Data is stored externally in operating system files. File names are
stored in the text column, one for each row.

DIRECTORY_DATASTORE Data is stored externally in Oracle directory objects. File names are
stored in the text column, one for each row.

NESTED_DATASTORE Data is stored in a nested table.

URL_DATASTORE Data is stored externally in files located on an intranet or the internet.
URLs are stored in the text column.

NETWORK_DATASTORE Data is stored externally in files located on an intranet or the internet.
URLs are stored in the text column.

USER_DATASTORE Documents are synthesized at index time by a user-defined stored
procedure.

Note:

• Starting with Oracle Database 21c, the Oracle Text type FILE_DATASTORE
is deprecated. Use DIRECTORY_DATASTORE instead.

• Starting with Oracle Database 21c, the Oracle Text type URL_DATASTORE
is deprecated. Use NETWORK_DATASTORE instead.

Indexing time and document retrieval time increases for indexing URLs, because the
system must retrieve the document from the network.

Note:

To troubleshoot issues with triggers and MULTI_COLUMN_DATASTORE or
USER_DATASTORE, refer to My Oracle Support document 1613741.1.

Chapter 3
Considerations for Oracle Text Indexing

3-13

See Also:

• MOS Document 1613741.1

• Oracle Text Reference for more information about datastore types

• "Datastore Examples"

3.2.10 Document Formats and Filtering
To index formatted documents, such as Microsoft Word and PDF, you must filter them
to text. The FILTER preference type determines the type of filtering that the system
uses. By default, the system uses the AUTO_FILTER filter type, which automatically
detects the format of your documents and filters them to text.

Oracle Text can index most formats. It can also index columns that contain mixed-
format documents.

• No Filtering for HTML

• Filtering Mixed-Format Columns

• Custom Filtering

See Also:

Oracle Text Reference for information about AUTO_FILTER supported
document and graphics formats

3.2.10.1 No Filtering for HTML
If you are indexing HTML or plain-text files, do not use the AUTO_FILTER type. For best
results, use the NULL_FILTER preference type.

See Also:

"NULL_FILTER Example: Indexing HTML Documents"

3.2.10.2 Mixed-Format Columns Filtering
For a mixed-format column, such as one that contains Microsoft Word, plain text, and
HTML documents, you can bypass filtering for plain text or HTML by including a format
column in your text table. In the format column, tag each row TEXT or BINARY. Rows
that are tagged TEXT are not filtered.

For example, tag the HTML and plain text rows as TEXT and the Microsoft Word rows
as BINARY. You specify the format column in the CREATE INDEX parameter clause.

Chapter 3
Considerations for Oracle Text Indexing

3-14

https://support.oracle.com/epmos/faces/DocumentDisplay?id=1613741.1

When you do not want a document to be indexed, you can use a third format column
type, IGNORE. This column type is useful, for example, when a mixed-format table
includes plain-text documents in Japanese and English, but you only want to process
the English documents. This column type is also useful when a mixed-format table
includes plain-text documents and images. Because IGNORE is implemented at the
datastore level, you can use it with all filters.

3.2.10.3 Custom Filtering
You can create a custom filter to filter documents for indexing. You can create either an
external filter that is executed from the file system or an internal filter as a PL/SQL or
Java-stored procedure.

For external custom filtering, use the USER_FILTER filter preference type.

For internal filtering, use the PROCEDURE_FILTER filter type.

See Also:

"PROCEDURE_FILTER Example"

3.2.11 Bypass Rows
In your text table, you can bypass rows that you do not want to index, such as rows
that contain image data. To bypass rows, you create a format column, set it to IGNORE,
and name the format column in the parameter clause of the CREATE INDEX statement.

3.2.12 Document Character Set
The indexing engine expects filtered text to be in the database character set. When
you use the AUTO_FILTER filter type, formatted documents are converted to text in the
database character set.

If your source is text and your document character set is not the database character
set, then you can use the AUTO_FILTER filter type to convert your text for indexing.

Character Set Detection

When you set the CHARSET column to AUTO, the AUTO_FILTER filter detects the
character set of the document and converts it from the detected character set to the
database character set, if there is a difference.

Mixed Character Set Columns

If your document set contains documents with different character sets, such as
JA16EUC and JA16SJIS, you can index the documents, provided that you create a
CHARSET column, populate this column with the name of the document character set
for each row, and name the column in the parameter clause of the CREATE INDEX
statement.

Chapter 3
Considerations for Oracle Text Indexing

3-15

3.3 Document Language
Oracle Text can index most languages. By default, Oracle Text assumes that the
language of the text to be indexed is the language that you specify in your database
setup. Depending on the language of your documents, use one of the following lexer
types:

• BASIC_LEXER: To index whitespace-delimited languages such as English, French,
German, and Spanish. For some of these languages, you can enable alternate
spelling, composite word indexing, and base-letter conversion.

• MULTI_LEXER: To index tables containing documents of different languages such
as English, German, and Japanese.

• USER_LEXER: To create your own lexer for indexing a particular language.

• WORLD_LEXER: To index tables containing documents of different languages and to
autodetect the languages in the document.

With the BASIC_LEXER preference, Oracle Text provides a lexing solution for most
languages. For the Japanese, Chinese, and Korean languages, you can create your
own lexing solution in the user-defined lexer interface.

• Language Features Outside BASIC_LEXER: The user-defined lexer interface
enables you to create a PL/SQL or Java procedure to process your documents
during indexing and querying. With the user-defined lexer, you can also create
your own theme lexing solution or linguistic processing engine.

• Multilanguage Columns: Oracle Text can index text columns that contain
documents in different languages, such as a column that contains documents
written in English, German, and Japanese. To index a multilanguage column,
you add a language column to your text table and use the MULTI_LEXER
preference type. You can also incorporate a multilanguage stoplist when you index
multilanguage columns.

See Also:

• Oracle Text Reference to learn more about indexing languages and lexer
types

• "MULTI_LEXER Example: Indexing a Multi-Language Table"

3.4 Special Characters
When you use the BASIC_LEXER preference type, you can specify how
nonalphanumeric characters, such as hyphens and periods, are indexed in relation
to the tokens that contain them. For example, you can specify that Oracle Text include
or exclude the hyphen (-) when it indexes a word such as vice-president.

These characters fall into BASIC_LEXER categories according to the behavior that you
require during indexing. The way you set the lexer to behave for indexing is the way it
behaves for query parsing.

Some of the special characters you can set are as follows:

Chapter 3
Document Language

3-16

• Printjoin Characters: Define a nonalphanumeric character as printjoin when
you want this character to be included in the token during indexing. For example,
if you want your index to include hyphens and underscores, define them as
printjoins. This means that a word such as vice-president is indexed as vice-
president. A query on vicepresident does not find vice-president.

• Skipjoin Characters: Define a nonalphanumeric character as skipjoin when
you do not want this character to be indexed with the token that contains it.
For example, with the hyphen (-) defined as a skipjoin, vice-president is indexed
as vicepresident. A query on vice-president finds documents containing vice-
president and vicepresident.

• Other Characters: You can specify other characters to control other
tokenization behavior, such as token separation (startjoins, endjoins, whitespace),
punctuation identification (punctuations), number tokenization (numjoins), and
word continuation after line breaks (continuation). These categories of characters
have modifiable defaults.

See Also:

• "BASIC_LEXER Example: Setting Printjoin Characters"

• Oracle Text Reference to learn more about the BASIC_LEXER type

3.5 Case-Sensitive Indexing and Querying
By default, all text tokens are converted to uppercase and then indexed. This
conversion results in case-insensitive queries. For example, queries on cat, CAT, and
Cat return the same documents.

You can change the default and have the index record tokens as they appear in the
text. When you create a case-sensitive index, you must specify your queries with the
exact case to match documents. For example, if a document contains Cat, you must
specify your query as Cat to match this document. Specifying cat or CAT does not
return the document.

To enable or disable case-sensitive indexing, use the mixed_case attribute of the
BASIC_LEXER preference.

See Also:

Oracle Text Reference to learn more about the BASIC_LEXER

3.6 Improved Document Services Performance with a
Forward Index

When it searches for a word in a document, Oracle Text uses an inverted index and
then displays the results by calculating the snippet from that document. For calculating

Chapter 3
Case-Sensitive Indexing and Querying

3-17

the snippet, each document returned as part of the search result is reindexed. The
search operation slows down considerably when a document’s size is very large.

The forward index overcomes the performance problem of very large documents. It
uses a $O mapping table that refers to the token offsets in the $I inverted index table.
Each token offset is translated into the character offset in the original document, and
the text surrounding the character offset is then used to generate the text snippet.

Because the forward index does not use in-memory indexing of the documents
while calculating the snippet, it provides considerable improved performance over the
inverted index while searching for a word in very large documents.

The forward index improves the performance of the following procedures in the Oracle
Text CTX_DOC package:

• CTX_DOC.SNIPPET

• CTX_DOC.HIGHLIGHT

• CTX_DOC.MARKUP

See Also:

Oracle Text Reference for information about the forward_index parameter
clause of the BASIC_STORAGE indexing type

3.6.1 Enabling Forward Index
The following example enables the forward index feature by setting the forward_index
attribute value of the BASIC_STORAGE storage type to TRUE:

exec ctx_ddl.create_preference('mystore', 'BASIC_STORAGE');
exec ctx_ddl.set_attribute('mystore','forward_index','TRUE');

3.6.2 Forward Index with Snippets
In some cases, when you use the forward_index option, generated snippets may
be slightly different from the snippets that are generated when you do not use the
forward_index option. The differences are generally minimal, do not affect snippet
quality, and are typically "few extra white spaces" and "newline."

3.6.3 Forward Index with Save Copy
Using Forward Index with Save Copy

To use the forward index effectively, you should store copies of the documents in
the $D table, either in plain-text format or filtered format, depending upon the CTX_DOC
package procedure that you use. For example, store the document in plain-text when
you use the SNIPPET procedure and store it in the filtered format when you use the
MARKUP or HIGHLIGHT procedure.

You should use the Save Copy feature of Oracle Text to store the copies of the
documents in the $D table. Implement the feature by using the save_copy attribute or
the save_copy column parameter.

Chapter 3
Improved Document Services Performance with a Forward Index

3-18

• save_copy basic storage attribute:

The following example sets the save_copy attribute value of the BASIC_STORAGE
storage type to PLAINTEXT. This example enables Oracle Text to save a copy of
the text document in the $D table while it searches for a word in that document.

exec ctx_ddl.create_preference('mystore', 'BASIC_STORAGE');
exec ctx_ddl.set_attribute('mystore','save_copy','PLAINTEXT');

• save_copy column index parameter:

The following example uses the save_copy column index parameter to save a
copy of a text document into the $D table. The create index statement creates
the $D table and copies document 1 ("hello world") into the $D table.

create table docs(
 id number,
 txt varchar2(64),
 save varchar2(10)
);

insert into docs values(1, 'hello world', 'PLAINTEXT');

create index idx on docs(txt) indextype is ctxsys.context
 parameters('save_copy column save');

For the save_copy attribute or column parameter, you can specify one of the following
values:

• PLAINTEXT saves the copy of the document in a plain-text format in the $D index
table. The plain-text format is defined as the output format of the sectioner. Specify
this value when you use the SNIPPET procedure.

• FILTERED saves a copy of a document in a filtered format in the $D index table. The
filtered format is defined as the output format of the filter. Specify this value when
you use the MARKUP or HIGHLIGHT procedure.

• NONE does not save the copy of the document in the $D index table. Specify this
value when you do not use the SNIPPET, MARKUP, or HIGHLIGHT procedure and
when the indexed column is either VARCHAR2 or CLOB.

3.6.4 Forward Index Without Save Copy
In the following scenarios, you can take advantage of the performance enhancement
of forward index without saving copies of all documents in the $D table (that is, without
using the Save Copy feature):

• The document set contains HTML and plain text: Store all documents in the base
table by using the DIRECT_DATASTORE or the MULTI_COLUMN_DATASTORE datastore
type.

• The document set contains HTML, plain text, and binary: Store all documents
in the base table by using the DIRECT_DATASTORE datastore type. Store only the
binary documents in the $D table in the filtered format.

3.6.5 Save Copy Without Forward Index
Even if you do not enable the forward index feature, the Save Copy feature improves
the performance of the following procedures of the CTX_DOC package:

Chapter 3
Improved Document Services Performance with a Forward Index

3-19

• CTX_DOC.FILTER

• CTX_DOC.GIST

• CTX_DOC.THEMES

• CTX_DOC.TOKENS

3.7 Language-Specific Features
You can enable the following language-specific features:

• Indexing Themes

• Base-Letter Conversion for Characters with Diacritical Marks

• Alternate Spelling

• Composite Words

• Korean, Japanese, and Chinese Indexing

3.7.1 Theme Indexing
By default, themes are indexed in English and French, for which you can index
document theme information. A document theme is a concept that is sufficiently
developed in the document.

Search document themes with the ABOUT operator and retrieve document themes
programatically with the CTX_DOC PL/SQL package.

Enable and disable theme indexing with the index_themes attribute of the BASIC_LEXER
preference type.

You can also index theme information in other languages, provided that you loaded
and compiled a knowledge base for the language.

See Also:

• Oracle Text Reference to learn more about the BASIC_LEXER

• "ABOUT Queries and Themes"

3.7.2 Base-Letter Conversion for Characters with Diacritical Marks
Some languages contain characters with diacritical marks, such as tildes, umlauts, and
accents. When your indexing operation converts words containing diacritical marks
to their base-letter form, queries do not have to contain diacritical marks to score
matches.

For example, in a Spanish base-letter index, a query of energía matches energía and
energia. However, if you disable base-letter indexing, a query of energía only matches
energía.

Enable and disable base-letter indexing for your language with the base_letter
attribute of the BASIC_LEXER preference type.

Chapter 3
Language-Specific Features

3-20

See Also:

Oracle Text Reference to learn more about the BASIC_LEXER

3.7.3 Alternate Spelling
Languages such as German, Danish, and Swedish contain words that have more than
one accepted spelling. For example, in German, you can substitute ae for ä. The ae
character pair is known as the alternate form.

By default, Oracle Text indexes words in their alternate forms for these languages.
Query terms are also converted to their alternate forms. The result is that you can
query these words with either spelling.

Enable and disable alternate spelling for your language with the alternate_spelling
attribute in the BASIC_LEXER preference type.

See Also:

Oracle Text Reference to learn more about the BASIC_LEXER

3.7.4 Composite Words
German and Dutch text contains composite words. By default, Oracle Text creates
composite indexes for these languages. The result is that a query on a term returns
words that contain the term as a subcomposite.

For example, in German, a query on the term Bahnhof (train station) returns
documents that contain Bahnhof or any word containing Bahnhof as a subcomposite,
such as Hauptbahnhof, Nordbahnhof, or Ostbahnhof.

Enable and disable composite indexes with the composite attribute of the BASIC_LEXER
preference.

See Also:

Oracle Text Reference to learn more about the BASIC_LEXER

3.7.5 Korean, Japanese, and Chinese Indexing
Index these languages with specific lexers:

Table 3-3 Lexers for Asian Languages

Language Lexer

Korean KOREAN_MORPH_LEXER

Chapter 3
Language-Specific Features

3-21

Table 3-3 (Cont.) Lexers for Asian Languages

Language Lexer

Japanese JAPANESE_LEXER, JAPANESE_VGRAM_LEXER

Chinese CHINESE_LEXER,CHINESE_VGRAM_LEXER

These lexers have their own sets of attributes to control indexing.

See Also:

Oracle Text Reference to learn more about these lexers

3.8 About Entity Extraction and CTX_ENTITY
Entity extraction is the identification and extraction of named entities within text.
Entities are mainly nouns and noun phrases, such as names, places, times, coded
strings (such as phone numbers and zip codes), percentages, and monetary amounts.
The CTX_ENTITY package implements entity extraction by means of a built-in dictionary
and a set of rules for English text. You can extend the capabilities for English and other
languages with user-provided add-on dictionaries and rule sets.

See Also:

• CTX_ENTITY Package in Oracle Text Reference

• Entity Extraction User Dictionary Loader (ctxload) in Oracle Text
Reference

This section contains the following examples:

• Basic Example of Using Entity Extraction

• Example of Creating a New Entity Type Using a User-defined Rule

3.8.1 Basic Example of Using Entity Extraction
The example in this section provides a very basic example of entity extraction. The
example assumes that a CLOB contains the following text:

New York, United States of America
The Dow Jones Industrial Average climbed by 5% yesterday on news of a new
software release from database giant Oracle Corporation.

The example uses CTX_ENTITY.EXTRACT to find the entities in CLOB value. (For now,
do not worry about how the text got into the CLOB or how we provide the output
CLOB.)

Chapter 3
About Entity Extraction and CTX_ENTITY

3-22

Entity extraction requires a new type of policy, an "extract policy," which enables you to
specify options. For now, create a default policy:

ctx_entity.create_extract_policy('mypolicy');

Now you can call extract to do the work. It needs four arguments: the policy name,
the document to process, the language, and the output CLOB (which you should have
initialized, for example, by calling dbms_lob.createtemporary).

ctx_entity.extract('mypolicy', mydoc, 'ENGLISH', outclob)

In the previous example, outclob contains the XML that identifies extracted entities.
When you display the contents (preferably by selecting it as XMLTYPE so that it is
formatted nicely), here is what you see:

<entities>
 <entity id="0" offset="0" length="8" source="SuppliedDictionary">
 <text>New York</text>
 <type>city</type>
 </entity>
 <entity id="1" offset="150" length="18" source="SuppliedRule">
 <text>Oracle Corporation</text>
 <type>company</type>
 </entity>
 <entity id="2" offset="10" length="24" source="SuppliedDictionary">
 <text>United States of America</text>
 <type>country</type>
 </entity>
 <entity id="3" offset="83" length="2" source="SuppliedRule">
 <text>5%</text>
 <type>percent</type>
 </entity>
 <entity id="4" offset="113" length="8" source="SuppliedDictionary">
 <text>software</text>
 <type>product</type>
 </entity>
 <entity id="5" offset="0" length="8" source="SuppliedDictionary">
 <text>New York</text>
 <type>state</type>
 </entity>
</entities>

This display is fine if you process it with an XML-aware program. However, if you want
it in a more "SQL friendly" view, use Oracle XML Database (XML DB) functions to
convert it as follows:

select xtab.offset, xtab.text, xtab.type, xtab.source
from xmltable('/entities/entity'
PASSING xmltype(outclob)
 COLUMNS
 offset number PATH '@offset',
 lngth number PATH '@length',
 text varchar2(50) PATH 'text/text()',
 type varchar2(50) PATH 'type/text()',
 source varchar2(50) PATH '@source'
) as xtab order by offset;

Here is the output:

 OFFSET TEXT TYPE SOURCE
---------- ------------------------- -------------------- --------------------

Chapter 3
About Entity Extraction and CTX_ENTITY

3-23

 0 New York city SuppliedDictionary
 0 New York state SuppliedDictionary
 10 United States of America country SuppliedDictionary
 83 5% percent SuppliedRule
 113 software product SuppliedDictionary
 150 Oracle Corporation company SuppliedRule

If you do not want to fetch all entity types, you can select the types by adding a fourth
argument to the "extract" procedure, with a comma-separated list of entity types. For
example:

ctx_entity.extract('mypolicy', mydoc, 'ENGLISH', outclob, 'city, country')

That would give us the XML

<entities>
 <entity id="0" offset="0" length="8" source="SuppliedDictionary">
 <text>New York</text>
 <type>city</type>
 </entity>
 <entity id="2" offset="10" length="24" source="SuppliedDictionary">
 <text>United States of America</text>
 <type>country</type>
 </entity>
</entities>

3.8.2 Example of Creating a New Entity Type by Using a User-Defined
Rule

The example in this section shows how to create a new entity type with a user-defined
rule. You define rules with a regular-expression-based syntax and add the rules to an
extraction policy. The policy is applied whenever it is used.

The following rule identifies increases in a stock index by matching any of the following
expressions:

 climbed by 5%
 increased by over 30 percent
 jumped 5.5%

Therefore, you must create a new type of entity as well as a regular expression that
matches any of the expressions:

exec ctx_entity.add_extract_rule('mypolicy', 1,
 '<rule>' ||
 '<expression>' ||
 '((climbed|gained|jumped|increasing|increased|rallied)' ||
 '((by|over|nearly|more than))* \d+(\.\d+)?(percent|%))' ||
 '</expression>' ||
 '<type>Positive Gain</type>' ||
 '</rule>');

In this case, you must compile the policy with CTX_ENTITY.COMPILE:

 ctx_entity.compile('mypolicy');

Then you can use it as before:

 ctx_entity.extract('mypolicy', mydoc, null, myresults)

Chapter 3
About Entity Extraction and CTX_ENTITY

3-24

Here is the (abbreviated) output:

<entities>
 ...
 <entity id="6" offset="72" length="18" source="UserRule">
 <text>climbed by over 5%</text>
 <type>Positive Gain</type>
 </entity>
</entities>

Finally, you add another user-defined entity, but this time it uses a dictionary. You want
to recognize "Dow Jones Industrial Average" as an entity of type Index. You also add
"S&P 500". To do that, create an XML file containing the following:

<dictionary>
 <entities>
 <entity>
 <value>dow jones industrial average</value>
 <type>Index</type>
 </entity>
 <entity>
 <value>S&P 500</value>
 <type>Index</type>
 </entity>
 </entities>
</dictionary>

Case is not significant in this file, but notice how the "&" in "S&P" must be specified as
the XML entity &. Otherwise, the XML is not valid.

This XML file is loaded into the system with the CTXLOAD utility. If the file were called
dict.load, you would use the following command:

ctxload -user username/password -extract -name mypolicy -file dict.load

You must compile the policy with CTX_ENTITY.COMPILE.

3.9 Fuzzy Matching and Stemming
Fuzzy matching enables you to match similarly spelled words in queries. Oracle Text
provides entity extraction for multiple languages.

Stemming enables you to match words with the same linguistic root. For example a
query on $speak, expands to search for all documents that contain speak, speaks,
spoke, and spoken.

Fuzzy matching and stemming are automatically enabled in your index if Oracle Text
supports this feature for your language.

Fuzzy matching is enabled with default parameters for its fuzzy score and for its
maximum number of expanded terms. Fuzzy score is a measure of how closely the
expanded word matches the query word. At index time, you can change these default
parameters.

To automatically detect the language of a document and to have the necessary
transformations performed, create a stem index by enabling the index_stems attribute
of the AUTO_LEXER. Use the stemmer that corresponds to the document language and
always configure the stemmer to maximize document recall. For compound words in
languages such as German, Finnish, Swedish, and Dutch, if you set index_stems to

Chapter 3
Fuzzy Matching and Stemming

3-25

YES, then compound word stemming is automatically performed in the documents.
Compounds are always separated into their component stems.

To improve the performance of stem queries, create a stem index by enabling the
index_stems attribute of BASIC_LEXER.

• Values For Language Attribute for index_stems of AUTO_LEXER

• Values For Language Attribute for index_stems of BASIC_LEXER

See Also:

Oracle Text Reference to learn more about fuzzy matching and stemming

3.9.1 Language Attribute Values for index_stems of BASIC_LEXER
You can use the following values with the index_stems attribute of BASIC_LEXER:

• ARABIC

• BOKMAL

• CROATIAN

• DANISH

• FINNISH

• HEBREW

• CATALAN

• CZECH

• DERIVATIONAL

• DERIVATIONAL_NEW

• DUTCH

• DUTCH_NEW

• ENGLISH

• ENGLISH_NEW

• FRENCH

• FRENCH_NEW

• GERMAN

• GERMAN_NEW

• GREEK

• NYNORSK

• PERSIAN

• SERBIAN

• SLOVAK

• SLOVENIAN

Chapter 3
Fuzzy Matching and Stemming

3-26

• THAI

• HUNGARIAN

• ITALIAN

• ITALIAN_NEW

• NONE

• POLISH

• PORTUGUESE

• ROMANIAN

• RUSSIAN

• SPANISH

• SPANISH_NEW

• SWEDISH

• TURKISH

3.9.2 Language Attribute Values for index_stems of AUTO_LEXER
The values for the index_stems attribute of AUTO_LEXER is TRUE or FALSE. The
index_stems attribute of AUTO_LEXER supports the following languages:

• ARABIC

• BOKMAL

• CROATIAN

• DANISH

• FINNISH

• HEBREW

• CATALAN

• CZECH

• DUTCH

• ENGLISH

• FRENCH

• GERMAN

• GREEK

• HUNGARIAN

• ITALIAN

• JAPANESE

• NYNORSK

• PERSIAN

• SERBIAN

• SLOVAK

Chapter 3
Fuzzy Matching and Stemming

3-27

• SLOVENIAN

• THAI

• KOREAN

• POLISH

• PORTUGUESE

• ROMANIAN

• RUSSIAN

• SIMPLIFIED CHINESE

• SPANISH

• SWEDISH

• TRADITIONAL CHINESE

• TURKISH

3.10 Better Wildcard Query Performance
Wildcard queries enable you to enter left-truncated, right-truncated, and double-
truncated queries, such as %ing, cos%, or %benz%. With normal indexing, these
queries can sometimes expand into large word lists and degrade your query
performance.

Wildcard queries have better response time when token prefixes and substrings are
recorded in the index.

By default, token prefixes and substrings are not recorded in the Oracle Text index. If
your query application makes heavy use of wildcard queries, consider indexing token
prefixes and substrings. To do so, use the wordlist preference type. The trade-off is a
bigger index for improved wildcard searching.

See Also:

• "BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing"

• Oracle Text Reference for more information on how to keep wildcard
query performance within an acceptable limit

3.11 Document Section Searches
For documents that have internal structure, such as HTML and XML, you can define
and index document sections. By indexing document sections, you can narrow the
scope of your queries to predefined sections. For example, you can specify a query to
find all documents that contain the term dog within a section defined as Headings.

Before indexing, you must define sections and specify them with the section group
preference.

Chapter 3
Better Wildcard Query Performance

3-28

Oracle Text provides section groups with system-defined section definitions for HTML
and XML. You can also specify that the system automatically create sections from
XML documents during indexing.

See Also:

Searching Document Sections in Oracle Text

3.12 Stopwords and Stopthemes
A stopword is a word that you do not want indexed. Stopwords are typically low-
information words in a given language, such as this and that in English.

By default, Oracle Text provides a stoplist for indexing a given language. Modify this
list or create your own with the CTX_DDL package. Specify the stoplist in the parameter
string of the CREATE INDEX statement.

A stoptheme is a word that is prevented from being theme-indexed or that is prevented
from contributing to a theme. Add stopthemes with the CTX_DDL package.

• Language detection and stoplists: At query time, the language of the query is
inherited from the query template or from the session language (if no language is
specified through the query template).

• Multilanguage stoplists: You create multilanguage stoplists to hold language-
specific stopwords. This stoplist is useful when you use MULTI_LEXER to index a
table that contains documents in different languages, such as English, German,
and Japanese. At index creation, the language column of each document is
examined, and only the stopwords for that language are eliminated. At query
time, the session language setting determines the active stopwords, just as it
determines the active lexer with the multi-lexer.

3.13 Index Performance
Factors that influence indexing performance include memory allocation, document
format, degree of parallelism, and partitioned tables.

See Also:

"Frequently Asked Questions About Indexing Performance"

3.14 Query Performance and Storage of Large Object (LOB)
Columns

If your table contains large object (LOB) structured columns that are frequently
accessed in queries but rarely updated, you can improve query performance by
storing these columns out-of-line. However, you cannot map attributes to remote LOB
columns.

Chapter 3
Stopwords and Stopthemes

3-29

See Also:

"Does out-of-line LOB storage of wide base table columns improve
performance?"

3.15 Mixed Query Performance
If your CONTAINS() query also has structured predicates on the nontext columns,
then consider indexing those column values. To do so, specify those columns in the
FILTER BY clause of the CREATE INDEX statement. Oracle Text can then determine
whether to have the structured predicates processed by the Oracle Text index for
better performance.

Additionally, if your CONTAINS() query has ORDER BY criteria on one or more structured
columns, then the Oracle Text index can also index those column values. Specify
those columns in the ORDER BY clause of the CREATE INDEX statement. Oracle Text can
then determine whether to push the sort into the Oracle Text index for better query
response time.

See Also:

"CONTEXT Index Example: Query Processing with FILTER BY and ORDER
BY"

3.16 In-Memory Full Text Search and JSON Full Text Search
The queries using CONTAINS() and JSON_TEXTCONTAINS() can be evaluated in SQL
predicates when the underlying columns that store the full text documents or JSON
documents are enabled for In-Memory full text search.

Normally, to use full-text (keyword) searching against textual columns, you must create
an Oracle Text index on that column. For JSON data, you create a JSON search
index. Starting with Oracle Database Release 21c, instead of creating an index, you
can load the column into memory, using an In-Memory columnar format. This does not
require an index, but allows for fast scanning of the text using In-Memory techniques.
This is particularly valuable when running queries which combine text searches and
structured searches on other In-Memory columns.

You must declare the columns that must be loaded into memory during table creation
time, using the INMEMORY TEXT clause. These columns can be searched using the
same CONTAINS() and JSON_TEXTCONTAINS() functions that are used with Oracle Text
or JSON search indexes, but there are limitations on the types of query operators that
can be used. Hence, In-Memory is not a replacement for Oracle Text or JSON search
indexes, but an alternative that can be used when required, and when the limitations
are not considered to be a problem.

It is possible to have a column which has an Oracle Text index on it and also uses
INMEMORY TEXT clause. In this situation, the optimizer chooses the best method of
executing the query. If there is an Oracle Text index on the column, the query always

Chapter 3
Mixed Query Performance

3-30

uses the Oracle Text index. If there is no Oracle Text index, then the optimizer
checks if the table is marked as In-Memory. If the table is marked as In-Memory,
the In-Memory evaluation is used for the query. If there is no Oracle Text index and the
table is not marked as In-Memory, then "DRG-10599: column is not indexed" error is
returned.

Supported Data Types

The In-Memory full text search supports the following data types:

• CHAR

• VARCHAR2

• CLOB

• BLOB

• JSON

Both JSON and text columns support a custom indexing policy created with
the CTX_DDL.CREATE_POLICY procedure. If the column data type is JSON, then
the In-Memory full text version of this column enables path-aware search using
JSON_TEXTCONTAINS() when the column uses either of the following:

• A default policy

• A custom policy with a PATH_SECTION_GROUP having JSON_ENABLED attribute set to
TRUE

Usage

You specify an In-Memory full text search column with the INMEMORY TEXT clause. Both
CREATE TABLE and ALTER TABLE statements support the INMEMORY TEXT clause. You
can use the PRIORITY subclause to control the order of object population. The default
priority is NONE. The MEMCOMPRESS subclause is not valid with INMEMORY TEXT. Specify
either the CREATE TABLE or ALTER TABLE statement with the INMEMORY TEXT clause,
using either of the following forms:

• INMEMORY TEXT (col1, col2, …)

• INMEMORY TEXT (col1 USING policy1, col2 USING policy2, …)

Limitations

• BFILE, XMLType, and URIType data types are not supported in In-Memory full text
search columns.

• For querying a text column, only the following Oracle Text query operators are
supported:

– AND

– OR

– NOT

– NEAR

• For querying a JSON column, the following Oracle Text query operators are also
supported:

– HASPATH

Chapter 3
In-Memory Full Text Search and JSON Full Text Search

3-31

– INPATH

• In the CTX_DDL.CREATE_POLICY procedure, filter and wordlist parameters
are not supported. The section_group parameter must be set to either
NULL_SECTION_GROUP (default) or PATH_SECTION_GROUP with JSON_ENABLE set to
TRUE (for JSON path-aware search). The lexer parameter is supported only with
BASIC_LEXER lexer type.

• You can not disable and re-enable In-Memory full text search by using a single
ALTER TABLE statement. You must first disable the In-Memory full text search
before re-enabling it.

• JSON enabled indexing policies are supported only for JSON columns.

• You can only use your own custom indexing policy for In-Memory full text search
and JSON In-Memory full text search. Also, you can not use a JSON enabled
indexing policy for text columns with IS JSON check constraint.

Examples

Example 3-1 Using In-Memory Full Text Search

The following example shows you how to query from an In-Memory full text search
enabled column using the CONTAINS operator. It also shows you how to create a
custom policy for text search and apply it on a column.

Create a table named text_docs that is loaded in memory and populate it with an
In-Memory full text search column named doc:

CREATE TABLE text_docs(id NUMBER, docCreationTime DATE, doc CLOB)
INMEMORY INMEMORY TEXT(doc);

Query using the CONTAINS operator with your condition:

SELECT id FROM text_docs WHERE docCreationTime > to_date('2014-01-01',
'YYYY-MM-DD')
AND CONTAINS(doc, 'in memory text processing');

You can also create a custom policy for text search, and then apply it to the doc
column:

EXEC CTX_DDL.CREATE_POLICY('first_policy');
ALTER TABLE text_docs INMEMORY TEXT (doc USING 'first_policy');

You can replace an existing custom policy by disabling the In-Memory full text search
using the NO INMEMORY TEXT clause and then enabling In-Memory full text search
using the INMEMORY TEXT clause:

EXEC CTX_DDL.CREATE_POLICY('second_policy');
ALTER TABLE text_docs NO INMEMORY TEXT(doc);
ALTER TABLE text_docs INMEMORY TEXT (doc USING 'second_policy');

Chapter 3
In-Memory Full Text Search and JSON Full Text Search

3-32

Example 3-2 Using JSON In-Memory Full Text Search

The following example shows you how to query from an In-Memory full text search
enabled column using the JSON_TEXTCONTAINS operator.

Create a table named json_docs that is loaded in memory and populate it with an
In-Memory full text search column named doc:

CREATE TABLE json_docs(id NUMBER, docCreationTime DATE, doc JSON)
INMEMORY INMEMORY TEXT(doc);

Query using the JSON_TEXTCONTAINS operator with your condition:

SELECT id FROM json_docs WHERE docCreationTime > to_date('2014-01-01',
'YYYY-MM-DD')
AND JSON_TEXTCONTAINS(doc, '$.abstract', 'in memory text processing');

Example 3-3 Prioritizing In-Memory Population in Full Text Search

The following example shows you how to set the priority level for data population using
the PRIORITY subclause.

Create a table named prioritized_docs that is loaded in memory and use the
PRIORITY subclause to set the priority level:

CREATE TABLE prioritized_docs(id NUMBER, docCreationTime DATE, doc
CLOB, json_doc CHECK(json_doc IS json))
INMEMORY PRIORITY CRITICAL INMEMORY TEXT(doc, json_doc);

See Also:

• Oracle Database In-Memory Guide

for more information about In-Memory full text columns

• Oracle Database JSON Developer’s Guide for more information about
In-Memory full text search using JSON_TEXTCONTAINS operator

Chapter 3
In-Memory Full Text Search and JSON Full Text Search

3-33

4
Creating Oracle Text Indexes

Learn how to create Oracle Text indexes.

This chapter contains the following topics:

• Summary of the Procedure for Creating an Oracle Text Index

• Creating Preferences

• Section Searching Example: Creating HTML Sections

• Using Stopwords and Stoplists

• Creating a CONTEXT Index

• Creating a CTXCAT Index

• Creating a CTXRULE Index

• Creating a Search Index for JSON

• Creating an Oracle Text Search Index

4.1 Summary of the Procedure for Creating an Oracle Text
Index

With Oracle Text, you can create indexes of type CONTEXT, CTXCAT, and CTXRULE.

Starting with Oracle Database 12c Release 2 (12.2), you can choose to keep old index
entries to search on original content by using the ASYNCHRONOUS_UPDATE parameter
string option.

By default, the system expects your documents to be stored in a text column. After
you satisfy this requirement, you can create an Oracle Text index by using the
CREATE INDEX SQL statement as an extensible index of type CONTEXT, without explicitly
specifying preferences. The system automatically detects your language, the data type
of the text column, and the format of the documents. Next, the system sets indexing
preferences.

See Also:

"Default CONTEXT Index Example"

To create an Oracle Text index:

1. (Optional) Determine your custom indexing preferences, section groups, or
stoplists if you do not use the defaults. The following table describes these
indexing classes:

4-1

Class Description

Datastore How are your documents stored?

Filter How can the documents be converted to plaintext?

Lexer What language is being indexed?

Wordlist How should stem and fuzzy queries be expanded?

Storage How should the index data be stored?

Stoplist What words or themes are not to be indexed?

Section Group How are document sections defined?

2. (Optional) Create custom preferences, section groups, or stoplists.

3. Create the Oracle Text index with the CREATE INDEX SQL statement. Name your
index and, if necessary, specify preferences.

See Also:

• "Considerations for Oracle Text Indexing" and CREATE INDEX in Oracle
Text Reference

• "Creating Preferences "

• "Creating a CONTEXT Index"

4.2 Creating Preferences
If you want, you can create custom index preferences to override the defaults. Use the
preferences to specify index information, such as where your files are stored and how
to filter your documents. You create the preferences and then set the attributes.

See Also:

"Custom Index Preference Examples"

4.3 Section Searching Example: Creating HTML Sections
When documents have internal structure such as in HTML and XML, you can define
document sections by using embedded tags before you index. This approach enables
you to query within the sections by using the WITHIN operator. You define sections as
part of a section group.

This example defines a section group called htmgroup of type HTML_SECTION_GROUP. It
then creates a zone section in htmgroup called heading identified by the <H1> tag:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'heading', 'H1');
end;

Chapter 4
Creating Preferences

4-2

See Also:

Searching Document Sections in Oracle Text

4.4 Using Stopwords and Stoplists
A stopword is a word that is not to be indexed, such as this or that in English.

The system supplies a stoplist for every language. By default during indexing, the
system uses the Oracle Text default stoplist for your language.

You can edit the default CTXSYS.DEFAULT_STOPLIST or create your own with the
following PL/SQL procedures:

• CTX_DDL.CREATE_STOPLIST

• CTX_DDL.ADD_STOPWORD

• CTX_DDL.REMOVE_STOPWORD

You specify your custom stoplists in the parameter clause of CREATE INDEX.

You can also dynamically add stopwords after indexing with the ALTER INDEX
statement.

• Multi-Language Stoplists

• Stopthemes and Stopclasses

• PL/SQL Procedures for Managing Stoplists

4.4.1 Multilanguage Stoplists
You can create multilanguage stoplists to hold language-specific stopwords. This
stoplist is useful when you use MULTI_LEXER to index a table that contains documents
in different languages, such as English, German, and Japanese.

To create a multilanguage stoplist, use the CTX_DDL.CREATE_STOPLIST procedure and
specify a stoplist type of MULTI_STOPLIST. You add language-specific stopwords with
CTX_DDL.ADD_STOPWORD.

4.4.2 Stopthemes and Stopclasses
In addition to defining your own stopwords, you can define stopthemes, which are
themes that are not indexed. This feature is available only for English and French.

You can also specify that numbers are not indexed. A class of alphanumeric
characters such a numbers that is not to be indexed is a stopclass.

You create a single stoplist, to which you add the stopwords, stopthemes, and
stopclasses, and specify the stoplist in the paramstring for CREATE INDEX.

Chapter 4
Using Stopwords and Stoplists

4-3

4.4.3 PL/SQL Procedures for Managing Stoplists
Use the following procedures to manage stoplists, stopwords, stopthemes, and
stopclasses:

• CTX_DDL.CREATE_STOPLIST

• CTX_DDL.ADD_STOPWORD

• CTX_DDL.ADD_STOPTHEME

• CTX_DDL.ADD_STOPCLASS

• CTX_DDL.REMOVE_STOPWORD

• CTX_DDL.REMOVE_STOPTHEME

• CTX_DDL.REMOVE_STOPCLASS

• CTX_DDL.DROP_STOPLIST

See Also:

Oracle Text Reference to learn more about using these procedures

4.5 Creating a CONTEXT Index
The CONTEXT index type is well suited for indexing large, coherent documents in
formats such as Microsoft Word, HTML, or plain text. With a CONTEXT index, you can
also customize your index in a variety of ways. The documents must be loaded in a
text table.

This section contains these topics:

• CONTEXT Index and DML

• Default CONTEXT Index Example

• Incrementally Creating an Index with ALTER INDEX and CREATE INDEX

• Creating a CONTEXT Index Incrementally with POPULATE_PENDING

• Custom CONTEXT Index Example: Indexing HTML Documents

• CONTEXT Index Example: Query Processing with FILTER BY and ORDER BY

4.5.1 CONTEXT Index and DML
A CONTEXT index is not transactional. When you delete a record, the index is changed
immediately. That is, your session no longer finds the record from the moment you
make the change, and other users cannot find the record after you commit. For
inserts and updates, the new information is not visible to text searches until an index
synchronization has occurred. Therefore, when you perform inserts or updates on the
base table, you must explicitly synchronize the index with CTX_DDL.SYNC_INDEX.

Chapter 4
Creating a CONTEXT Index

4-4

See Also:

"Synchronizing the Index"

4.5.2 Default CONTEXT Index Example
The following statement creates a default CONTEXT index called myindex on the text
column in the docs table:

CREATE INDEX myindex ON docs(text) INDEXTYPE IS CTXSYS.CONTEXT;

When you use the CREATE INDEX statement without explicitly specifying parameters,
the system completes the following actions by default for all languages:

• Assumes that the text to be indexed is stored directly in a text column. The text
column can be of type CLOB, BLOB, BFILE, VARCHAR2, or CHAR.

• Detects the column type and uses filtering for the binary column types of BLOB and
BFILE. Most document formats are supported for filtering. If your column is plain
text, the system does not use filtering.

Note:

For document filtering to work correctly in your system, you must ensure
that your environment is set up correctly to support the AUTO_FILTER
filter.

• Assumes that the language of the text to index is the language specified in your
database setup.

• Uses the default stoplist for the language specified in your database setup.
Stoplists identify the words that the system ignores during indexing.

• Enables fuzzy and stemming queries for your language, if this feature is available
for your language.

You can always change the default indexing behavior by customizing your preferences
and specifying those preferences in the parameter string of CREATE INDEX.

See Also:

Oracle Text Reference to learn more about configuring your environment to
use the AUTO_FILTER filter

4.5.3 Incrementally Creating an Index with ALTER INDEX and
CREATE INDEX

The ALTER INDEX and CREATE INDEX statements support incrementally creating a global
CONTEXT index.

Chapter 4
Creating a CONTEXT Index

4-5

• For a global index, use CREATE INDEX to support the NOPOPULATE keyword in the
REPLACE parameter of the REBUILD clause. By doing so, you can create indexes
incrementally. This keyword is valuable for creating Oracle Text indexes in large
installations that cannot afford to have the indexing process running continuously.

• For a local index partition, modify the ALTER INDEX ... REBUILD partition ...
parameters ('REPLACE ...') parameter string to support the NOPOPULATE keyword.

• For a partition on a local index, CREATE INDEX ... LOCAL ... (partition ...
parameters ('NOPOPULATE')) is supported. The partition-level POPULATE or
NOPOPULATE keywords override any POPULATE or NOPOPULATE specified at the index
level.

See Also:

Oracle Text Reference to learn more about the syntax for the ALTER INDEX
and CREATE INDEX statements

4.5.4 Incrementally Creating a CONTEXT Index with
POPULATE_PENDING

For large installations that cannot afford to have the indexing process run continuously,
use the CTX_DDL.POPULATE_PENDING procedure. This procedure also provides finer
control over creation of the indexes. The preferred method is to create an empty
index, place all rowids into the pending queue, and build the index through
CTX_DDL.SYNC_INDEX.

This procedure populates the pending queue with every rowid in the base table or
table partition.

See Also:

Oracle Text Reference for information about CTX_DDL.POPULATE_PENDING

4.5.5 Custom CONTEXT Index Example: Indexing HTML Documents
To index an HTML document set located by URLs, specify the system-defined
preference for the NULL_FILTER in the CREATE INDEX statement.

You can also specify your htmgroup section group that uses HTML_SECTION_GROUP and
my_url datastore that uses URL_DATASTORE:

begin
 ctx_ddl.create_preference('my_url','URL_DATASTORE');
 ctx_ddl.set_attribute('my_url','HTTP_PROXY','www-proxy.us.example.com');
 ctx_ddl.set_attribute('my_url','NO_PROXY','us.example.com');
 ctx_ddl.set_attribute('my_url','Timeout','300');
end;

begin

Chapter 4
Creating a CONTEXT Index

4-6

ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'heading', 'H1');
end;

You can then index your documents:

CREATE INDEX myindex on docs(htmlfile) indextype is ctxsys.context
parameters(
'datastore my_url filter ctxsys.null_filter section group htmgroup'
);

Note:

Starting with Oracle Database 21c, the Oracle Text type URL_DATASTORE is
deprecated. Use NETWORK_DATASTORE instead.

See Also:

"Creating Preferences " for more examples on creating a custom CONTEXT
index

4.5.6 CONTEXT Index Example: Query Processing with FILTER BY
and ORDER BY

To enable more efficient query processing and better response time for mixed queries,
use FILTER BY and ORDER BY clauses as shown in the following example:

CREATE INDEX myindex on docs(text) INDEXTYPE is CTXSYS.CONTEXT
FILTER BY category, publisher, pub_date
ORDER BY pub_date desc;

Because you specified the FILTER BY category, publisher, pub_date clause at
query time, Oracle Text also considers pushing a relational predicate on any of these
columns into the Oracle Text index row source.

Also, when the query has matching ORDER BY criteria, by specifying ORDER BY pub_date
desc, Oracle Text determines whether to push SORT into the Oracle Text index row
source for better response time.

4.5.7 DATASTORE Triggers in Release 12c
If you want to create an Oracle Text CONTEXT index on multiple columns, use
MULTI_COLUMN_DATASTORE or USER_DATASTORE to bring in the various columns for
indexing. Oracle Text updates the index only when the contents of a specified column
changes.

Chapter 4
Creating a CONTEXT Index

4-7

4.6 Creating a CTXCAT Index
The CTXCAT index type is well-suited for indexing small text fragments and related
information. This index type provides better structured query performance than a
CONTEXT index.

• CTXCAT Index and DML

• About CTXCAT Sub-Indexes and Their Costs

• Creating CTXCAT Sub-indexes

• Creating CTXCAT Index

4.6.1 CTXCAT Index and DML Operations
A CTXCAT index is transactional. When you perform inserts, updates, and deletes on
the base table, Oracle Text automatically synchronizes the index. Unlike a CONTEXT
index, no CTX_DDL.SYNC_INDEX is necessary.

Note:

Applications that insert without invoking triggers, such as SQL*Loader, do not
result in automatic index synchronization as described in this section.

4.6.2 About CTXCAT Subindexes and Their Costs
A CTXCAT index contains subindexes that you define as part of your index set. You
create a subindex on one or more columns to improve mixed query performance.
However, the time Oracle Text takes to create a CTXCAT index depends on its total size,
and the total size of a CTXCAT index is directly related to the following factors:

• Total text to be indexed

• Number of subindexes in the index set

• Number of columns in the base table that make up the subindexes

Many component indexes in your index set also degrade the performance of insert,
update, and delete operations, because more indexes must be updated.

Because of the added index time and disk space costs for creating a CTXCAT index,
before adding it to your index set, carefully consider the query performance benefit
that each component index gives your application.

Note:

You can use I_ROWID_INDEX_CLAUSE of BASIC_STORAGE to speed up creation
of a CTXCAT index. This clause is described in Oracle Text Reference.

Chapter 4
Creating a CTXCAT Index

4-8

4.6.3 Creating CTXCAT Subindexes
An online auction site that must store item descriptions, prices, and bid-close dates for
ordered look-up is a good example for creating a CTXCAT index.

Figure 4-1 Auction Table Schema and CTXCAT Index

Auction Table

item_id
number

title
varchar (100)

category_id
number

price
number

bid_close
date

Subindex A

Subindex B

CTXCAT

Index

B

A

Figure 4-1 shows a table called AUCTION with the following schema:

create table auction(
item_id number,
title varchar2(100),
category_id number,
price number,
bid_close date);

To create your subindexes, create an index set to contain them:

begin
ctx_ddl.create_index_set('auction_iset');
end;

Next, determine the structured queries that you are likely to enter. The CATSEARCH
query operator takes a mandatory text clause and optional structured clause.

In the example, this means that all queries include a clause for the title column,
which is the text column.

Assume that the structured clauses fall into the following categories:

Structured Clauses Subindex Definition to
Serve Query

Category

'price < 200'

'price = 150'

'order by price'

'price' A

Chapter 4
Creating a CTXCAT Index

4-9

Structured Clauses Subindex Definition to
Serve Query

Category

'price = 100 order by bid_close'

'order by price, bid_close'

'price, bid_close' B

Structured Query Clause Category A

The structured query clause contains an expression only for the price column as
follows:

SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'price < 200')> 0;
SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'price = 150')> 0;
SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'order by price')> 0;

These queries can be served by using subindex B. However, for efficiency, you can
also create a subindex only on price (subindex A):

begin
ctx_ddl.add_index('auction_iset','price'); /* sub-index A */
end;

Structured Query Clause Category B

The structured query clause includes an equivalent expression for price ordered by
bid_close, and an expression for ordering by price and bid_close, in that order:

SELECT FROM auction WHERE CATSEARCH(
 title, 'camera','price = 100
 ORDER BY bid_close')> 0;
SELECT FROM auction
 WHERE CATSEARCH(
 title, 'camera','order by price, bid_close')> 0;

These queries can be served with a subindex defined as follows:

begin
ctx_ddl.add_index('auction_iset','price, bid_close'); /* sub-index B */
end;

Like a combined b-tree index, the column order that you specify with
CTX_DDL.ADD_INDEX affects the efficiency and viability of the index scan which Oracle
Text uses to serve specific queries. For example, if two structured columns p and q
have a b-tree index specified as 'p,q', Oracle Text cannot scan this index to sort
'ORDER BY q,p'.

4.6.4 Creating CTXCAT Index
This example combines the previous examples and creates the index set preference
with the two subindexes:

begin
ctx_ddl.create_index_set('auction_iset');
ctx_ddl.add_index('auction_iset','price'); /* sub-index A */
ctx_ddl.add_index('auction_iset','price, bid_close'); /* sub-index B */
end;

Chapter 4
Creating a CTXCAT Index

4-10

Figure 4-1 shows how the subindexes A and B are created from the auction table.
Each subindex is a b-tree index on the text column and the named structured columns.
For example, subindex A is an index on the title column and the bid_close column.

You create the combined catalog index with the CREATE INDEX statement as follows:

CREATE INDEX auction_titlex ON AUCTION(title)
 INDEXTYPE IS CTXSYS.CTXCAT
 PARAMETERS ('index set auction_iset')
;

See Also:

Oracle Text Reference to learn more about creating a CTXCAT index with
CREATEINDEX

4.7 Creating a CTXRULE Index
To build a document classification application, use the CTXRULE index on a table
or queries. The stream of incoming documents is classified by content, and the
queries define your categories. You can use the MATCHES operator to classify single
documents.

To create a CTXRULE index and a simple document classification application:

1. Create a table of queries.

Create a myqueries table to hold the category name and query text, and then
populate the table with the classifications and the queries that define each
classification.

CREATE TABLE myqueries (
queryid NUMBER PRIMARY KEY,
category VARCHAR2(30),
query VARCHAR2(2000)
);

For example, consider a classification for the US Politics, Music, and Soccer
subjects:

INSERT INTO myqueries VALUES(1, 'US Politics', 'democrat or republican');
INSERT INTO myqueries VALUES(2, 'Music', 'ABOUT(music)');
INSERT INTO myqueries VALUES(3, 'Soccer', 'ABOUT(soccer)');

Tip:

You can also generate a table of rules (or queries) with the
CTX_CLS.TRAIN procedure, which takes as input a document training set.

2. Create the CTXRULE index.

Use the CREATE INDEX statement to create the CTXRULE index and specify lexer,
storage, section group, and wordlist parameters if needed.

Chapter 4
Creating a CTXRULE Index

4-11

CREATE INDEX myruleindex ON myqueries(query)
 INDEXTYPE IS CTXRULE PARAMETERS
 ('lexer lexer_pref
 storage storage_pref
 section group section_pref
 wordlist wordlist_pref');

3. Classify a document.

Use the MATCHES operator to classify a document.

Assume that incoming documents are stored in the table news:

CREATE TABLE news (
newsid NUMBER,
author VARCHAR2(30),
source VARCHAR2(30),
article CLOB);

If you want, create a "before insert" trigger with MATCHES to route each document to
a news_route table based on its classification:

BEGIN
 -- find matching queries
 FOR c1 IN (select category
 from myqueries
 where MATCHES(query, :new.article)>0)
 LOOP
 INSERT INTO news_route(newsid, category)
 VALUES (:new.newsid, c1.category);
 END LOOP;
END;

See Also:

• Classifying Documents in Oracle Text for more information on document
classification and the CTXRULE index

• Oracle Text Reference for more information on CTX_CLS.TRAIN

4.8 Creating a Search Index for JSON
Oracle Text supports a simpler alternative syntax for creating a search index on
JavaScript Object Notation (JSON). The JSON search index is created on the table
column name.

See Also:

Oracle Database JSON Developer's Guide

4.9 Creating an Oracle Text Search Index
You can create a CONTEXT index using a simplified SEARCH INDEX syntax.

Chapter 4
Creating a Search Index for JSON

4-12

The Oracle Text SEARCH INDEX is a new index type which supports CONTEXT index
functionality but also supports sharded databases and system managed partitioning
for index storage.

See Also:

Oracle Text Reference for more information about CREATE SEARCH INDEX

Chapter 4
Creating an Oracle Text Search Index

4-13

5
Maintaining Oracle Text Indexes

You can maintain your index for an error or indexing failure.

This chapter contains the following topics:

• Viewing Index Errors

• Dropping an Index

• Resuming Failed Index

• Re-creating an Index

• Rebuilding an Index

• Dropping a Preference

• Managing DML Operations for a CONTEXT Index

5.1 Viewing Index Errors
Sometimes an indexing operation might fail or it might not complete successfully.
When the system encounters an error during row indexing, it logs the error in an
Oracle Text view.

You can view errors on your indexes with CTX_USER_INDEX_ERRORS. View errors on all
indexes as CTXSYS with CTX_INDEX_ERRORS.

For example, to view the most recent errors on your indexes, enter the following
statement:

SELECT err_timestamp, err_text
 FROM ctx_user_index_errors
 ORDER BY err_timestamp DESC;

To clear the view of errors, enter:

DELETE FROM ctx_user_index_errors;

This view is cleared automatically when you create a new index.

See Also:

Oracle Text Reference to learn more about index error views

5.2 Dropping an Index
You must drop an existing index before you can re-create it with the CREATE INDEX
statement.

5-1

Drop an index by using the DROP INDEX statement in SQL.

If you try to create an index with an invalid PARAMETERS string, then you still need to
drop it before you can re-create it.

For example, to drop an index called newsindex, enter the following SQL statement:

DROP INDEX newsindex;

If Oracle Text cannot determine the state of the index (for example, because of an
indexing malfunction), you cannot drop the index. Instead use:

DROP INDEX newsindex FORCE;

See Also:

Oracle Text Reference to learn more about the DROP INDEX statement

5.3 Resuming a Failed Index
You can sometimes resume a failed index by using the ALTER INDEX statement. You
typically resume a failed index after you have investigated and corrected the index
failure. You cannot resume all index failures.

Index optimization commits at regular intervals. Therefore, if an optimization operation
fails, then all optimization work up to the commit point was already saved.

See Also:

Oracle Text Reference to learn more about the ALTER INDEX statement syntax

The following statement resumes the indexing operation on newsindex with 10
megabytes of memory:

ALTER INDEX newsindex REBUILD PARAMETERS('resume memory 10M');

5.4 Re-creating an Index
This section describes the procedures for re-creating an index. During the re-creation
process, you can query the index normally.

• Re-creating a Global Index

• Re-creating a Local Partitioned Index

5.4.1 Re-creating a Global Index
Oracle Text provides RECREATE_INDEX_ONLINE to re-create a CONTEXT index with new
preferences, while preserving inserts, updates, and deletes on the base table. You can
use RECREATE_INDEX_ONLINE in a single-step procedure to re-create a CONTEXT index
online for global indexes. Because the new index is created alongside the existing

Chapter 5
Resuming a Failed Index

5-2

index, this operation requires storage that is roughly equal to the size of the existing
index. Also, because the RECREATE_INDEX_ONLINE operation is performed online, you
can perform inserts, updates, and deletes on the base table during the operation. All
insert, update, and delete operations that occur during the re-creation process are
logged into an online pending queue.

• After the re-creation operation is complete, new information may not be
immediately reflected. As with creating an index online, you should synchronize
the index after the re-creation operation is complete to bring it fully up-to-date.

• Synchronizations issued against the index during the re-creation operation are
processed against the existing data. Synchronizations are blocked when queries
return errors.

• Optimize commands issued against the index during the re-creation operation
return immediately without error and without processing.

• During RECREATE_INDEX_ONLINE, you can query the index normally most of the
time. Queries return results based on the existing index and policy until after the
final swap. Also, if you issue insert, update, and delete operations and synchronize
them, then you will be able to see the new rows when you query the existing
index.

Note:

Transactional queries are not supported with RECREATE_INDEX_ONLINE.

Re-creating a Global Index with Time Limit for Synch

You can control index re-creation to set a time limit for SYNC_INDEX during nonbusiness
hours and incrementally re-create the index. Use the CREATE_SHADOW_INDEX procedure
with POPULATE_PENDING and maxtime.

Re-creating a Global Index with Scheduled Swap

With CTX_DDL.EXCHANGE_SHADOW_INDEX, you can perform index re-creation during
nonbusiness hours when query failures and DML blocking can be tolerated.

See Also:

• Oracle Text Reference to learn more about the RECREATE_INDEX_ONLINE
procedure

• Oracle Text Reference for information and examples for
CREATE_SHADOW_INDEX

• Oracle Text Reference for information and examples for
CTX_DDL.EXCHANGE_SHADOW_INDEX

Chapter 5
Re-creating an Index

5-3

5.4.2 Re-creating a Local Partitioned Index
If the index is locally partitioned, you cannot re-create the index in one step. You must
first create a shadow policy, and then run the RECREATE_INDEX_ONLINE procedure for
every partition. You can specify SWAP or NOSWAP, which indicates whether re-creating
the index for the partition swaps the index partition data and index partition metadata.

You can also use this procedure to update the metadata (for example, the storage
preference) of each partition when you specify NOPOPULATE in the parameter string.
This keyword is useful for incremental building of a shadow index through time-limited
synchronization. If you specify NOPOPULATE, then NOSWAP is silently enforced.

• When all partitions use NOSWAP, the storage requirement is approximately equal to
the size of the existing index. During re-creation of the index partition, because no
swapping is performed, queries on the partition are processed normally. Queries
spanning multiple partitions return consistent results across partitions until the
swapping stage is reached.

• When the partitions are rebuilt with SWAP, the storage requirement for the
operation is equal to the size of the existing index partition. Because index
partition data and metadata are swapped after re-creation, queries spanning
multiple partitions do not return consistent results from partition to partition, but
they will always be correct with respect to each index partition.

• If you specify SWAP, then insert, update, and delete operations and synchronization
on the partition are blocked during the swap process.

Re-creating a Local Index with All-at-Once Swap

You can re-create a local partitioned index online to create or change preferences.
The swapping of the index and partition metadata occurs at the end of the process.
Queries spanning multiple partitions return consistent results across partitions when
the re-creation is in process, except at the end when EXCHANGE_SHADOW_INDEX is
running.

Scheduling Local Index Re-creation with All-at-Once Swap

With RECREATE_INDEX_ONLINE of the CTX.DDL package, you can incrementally re-create
a local partitioned index, where partitions are all swapped at the end.

Re-creating a Local Index with Per-Partition Swap

Instead of swapping all partitions at once, you can re-create the index online with
new preferences, and each partition is swapped as it is completed. Queries across
all partitions may return inconsistent results during this process. This procedure uses
CREATE_SHADOW_INDEX with RECREATE_INDEX_ONLINE.

See Also:

Oracle Text Reference for complete information about
RECREATE_INDEX_ONLINE

Chapter 5
Re-creating an Index

5-4

5.5 Rebuilding an Index
You can rebuild a valid index by using ALTER INDEX. Rebuilding an index does not
allow most index settings to be changed. You might rebuild an index when you want to
index with a new preference. Generally, there is no advantage in rebuilding an index
over dropping it and re-creating it with the CREATE INDEX statement.

See Also:

"Re-creating an Index" for information about changing index settings

The following statement rebuilds the index and replaces the lexer preference with
my_lexer:

ALTER INDEX newsindex REBUILD PARAMETERS('replace lexer my_lexer');

5.6 Dropping a Preference
You might drop a custom index preference when you no longer need it for indexing.

You drop index preferences with the CTX_DDL.DROP_PREFERENCE procedure.

Dropping a preference does not affect the index that is created from the preference.

See Also:

Oracle Text Reference to learn more about the syntax for the
CTX_DDL.DROP_PREFERENCE procedure

The following code drops the my_lexer preference:

begin
ctx_ddl.drop_preference('my_lexer');
end;

5.7 Managing DML Operations for a CONTEXT Index
DML operations refer to when documents are inserted, updated, or deleted from the
base table. This section describes how you can view, synchronize, and optimize the
Oracle Text CONTEXT index for DML operations. This section contains the following
topics:

• Viewing Pending DML

• Synchronizing the Index

• Optimizing the Index

Chapter 5
Rebuilding an Index

5-5

Note:

CTXCAT indexes are transactional and are updated immediately when the
base table changes. The manual synchronization as described in this section
is not necessary for a CTXCAT index.

5.7.1 Viewing Pending DML Operations
When you insert or update documents in the base table, their rowids are held in
a DML queue until you synchronize the index. You can view this queue in the
CTX_USER_PENDING view.

For example, to view pending DML operations on your indexes, enter the following
statement:

SELECT pnd_index_name, pnd_rowid, to_char(
 pnd_timestamp, 'dd-mon-yyyy hh24:mi:ss'
) timestamp FROM ctx_user_pending;

This statement gives output in the following form:

PND_INDEX_NAME PND_ROWID TIMESTAMP
------------------------------ ------------------ --------------------
MYINDEX AAADXnAABAAAS3SAAC 06-oct-1999 15:56:50

See Also:

Oracle Text Reference to learn more about the CTX_USER_PENDING view

5.7.2 Synchronizing the Index
When you synchronize the index, you process all pending updates and inserts to the
base table. You can do this in PL/SQL with the CTX_DDL.SYNC_INDEX procedure. You
can also control the duration and locking behavior for index synchronization with the
CTX_DDL.SYNC_INDEX procedure.

Synchronizing the Index with SYNC_INDEX

The following example synchronizes the index with 2 megabytes of memory:

begin

ctx_ddl.sync_index('myindex', '2M');

end;

Maxtime Parameter for SYNC_INDEX

The SYNC_INDEX procedure includes a maxtime parameter that, like OPTIMIZE_INDEX,
indicates a suggested time limit in minutes for the operation. The SYNC_INDEX
procedure processes as many documents in the queue as possible within the given
time limit.

Chapter 5
Managing DML Operations for a CONTEXT Index

5-6

• NULL maxtime is equivalent to CTX_DDL.MAXTIME_UNLIMITED.

• The time limit is approximate. The actual time may be less than, or greater than,
what you specify.

• The ALTER INDEX... sync command has no changes because it is deprecated.

• The maxtime parameter is ignored when SYNC_INDEX is invoked without an index
name.

• The maxtime parameter cannot be communicated for automatic synchronizations
(for example, sync on commit or sync every).

Locking Parameter for SYNC_INDEX

The locking parameter of SYNC_INDEX enables you to configure how the
synchronization works when another synchronization is already running on the index.

• The locking parameter is ignored when SYNC_INDEX is invoked without an index
name.

• The locking parameter cannot be communicated for automatic synchronizations
(that is, sync on commit or sync every).

• When the locking mode is LOCK_WAIT, the mode waits forever and ignores the
maxtime setting if it cannot get a lock.

The options are as follows:

Option Description

CTX_DDL.LOCK_WAIT If another SYNC_INDEX is running, wait until the
running synchronization is complete, and then
begin the new synchronization.

CTX_DDL.LOCK_NOWAIT If another SYNC_INDEX is running, immediately
return without error.

CTX_DDL.LOCK_NOWAIT_ERROR If another SYNC_INDEX is running, immediately
generate an error (DRG-51313: timeout while
waiting for inserts, updates, or deletes or
optimize lock).

Note:

Starting with Oracle Database 12c Release 2 (12.2.0.1), you automatically
merge rows from STAGE_ITAB back to the $I table by using SYNC_INDEX.
This merging of rows happens when the number of rows in STAGE_ITAB ($G)
exceeds the STAGE_ITAB_MAX_ROWS parameter (10K by default). Therefore,
you do not have to run merge optimization explicitly or schedule an auto
optimize job.

Chapter 5
Managing DML Operations for a CONTEXT Index

5-7

See Also:

Oracle Text Reference to learn more about the CTX_DDL.SYNC_INDEX
statement syntax

5.7.3 Optimizing the Index
The CONTEXT index is an inverted index where each word contains the list of
documents that contain that word. For example, after a single initial indexing
operation, the word DOG might have the following entry:

DOG DOC1 DOC3 DOC5

Frequent index synchronization ultimately causes fragmentation of your CONTEXT
index. Index fragmentation can adversely affect query response time. Therefore, to
reduce fragmentation and index size and to ensure optimal query performance, allow
time to optimize your CONTEXT index.

To schedule an auto optimize job, you must explicitly set STAGE_ITAB_MAX_ROWS to 0 to
disable the automatic merging that now happens with SYNC_INDEX.

To optimize an index, Oracle recommends that you use CTX_DDL.OPTIMIZE_INDEX. To
understand index optimization, you must understand the structure of the index and
what happens when it is synchronized. This section contains the following topics:

• Index Fragmentation

• Document Invalidation and Garbage Collection

• Single Token Optimization

• Viewing Index Fragmentation and Garbage Data

See Also:

Oracle Text Reference for the CTX_DDL.OPTIMIZE_INDEX statement syntax
and examples

5.7.3.1 Index Fragmentation
When you add new documents to the base table, the index is synchronized by adding
new rows. For example, if you add the DOC 7 document with the word dog and
synchronize the index, you now have:

DOG DOC1 DOC3 DOC5
DOG DOC7

Subsequent inserts, updates, or deletes also create new rows, as follows:

DOG DOC1 DOC3 DOC5
DOG DOC7
DOG DOC9
DOG DOC11

Chapter 5
Managing DML Operations for a CONTEXT Index

5-8

Index fragmentation occurs when you add new documents and synchronize the index.
In particular, background inserts, updates, or deletes, which synchronize the index
frequently, generally produce more fragmentation than batch mode synchronization.

When you perform batch processing less frequently, you reduce fragmentation
because you produce longer document lists with a reduced number of rows in the
index.

You can reduce index fragmentation by optimizing the index in either FULL or FAST
mode with CTX_DDL.OPTIMIZE_INDEX.

5.7.3.2 Document Invalidation and Garbage Collection
When you remove documents from the base table, Oracle Text marks the document
as removed but does not immediately alter the index.

Because the old information takes up space and can cause extra overhead at query
time, you must remove the old information from the index by optimizing it in FULL
mode. This process is called garbage collection. Optimizing in FULL mode for
garbage collection is necessary when you perform frequent updates or deletes to the
base table.

5.7.3.3 Single Token Optimization
In addition to optimizing the entire index, you can optimize single tokens. You can use
token mode to optimize index tokens that are frequently searched, without spending
time on optimizing tokens that are rarely referenced.

For example, you can specify that only the token DOG be optimized in the index, if you
know that this token is updated and queried frequently.

An optimized token can improve query response time for the token.

To optimize an index in token mode, use CTX_DDL.OPTIMIZE_INDEX.

5.7.3.4 Viewing Index Fragmentation and Garbage Data
With the CTX_REPORT.INDEX_STATS procedure, you can create a statistical report on
your index. The report includes information on optimal row fragmentation, a list of most
fragmented tokens, and the amount of garbage data in your index. Although this report
might take a long time to run for large indexes, it can help you decide whether to
optimize your index.

See Also:

Oracle Text Reference to learn more about using the
CTX_REPORT.INDEX_STATS procedure

Chapter 5
Managing DML Operations for a CONTEXT Index

5-9

6
Querying with Oracle Text

Become familiar with Oracle Text querying and associated features.

This chapter contains the following topics:

• Overview of Queries

• Oracle Text Query Features

6.1 Overview of Queries
The basic Oracle Text query takes a query expression, usually a word with or without
operators, as input. Oracle Text returns all documents (previously indexed) that satisfy
the expression along with a relevance score for each document. You can use the
scores to order the documents in the result set.

To enter an Oracle Text query, use the SQL SELECT statement. Depending on the type
of index, you use either the CONTAINS or CATSEARCH operator in the WHERE clause. You
can use these operators programatically wherever you can use the SELECT statement,
such as in PL/SQL cursors.

Use the MATCHES operator to classify documents with a CTXRULE index.

• Querying with CONTAINS

• Querying with CATSEARCH

• Querying with MATCHES

• Word and Phrase Queries

• Querying Stopwords

• ABOUT Queries and Themes

6.1.1 Querying with CONTAINS
When you create an index of type CONTEXT, you must use the CONTAINS operator
to enter your query. This index is suitable for indexing collections of large coherent
documents.

With the CONTAINS operator, you can use a number of operators to define your search
criteria. These operators enable you to enter logical, proximity, fuzzy, stemming,
thesaurus, and wildcard searches. With a correctly configured index, you can also
enter section searches on documents that have internal structure such as HTML and
XML.

With CONTAINS, you can also use the ABOUT operator to search on document themes.

• CONTAINS SQL Example

• CONTAINS PL/SQL Example

• Structured Query with CONTAINS

6-1

6.1.1.1 CONTAINS SQL Example
In the SELECT statement, specify the query in the WHERE clause with the CONTAINS
operator. Also specify the SCORE operator to return the score of each hit in the hitlist.
The following example shows how to enter a query:

SELECT SCORE(1), title from news WHERE CONTAINS(text, 'oracle', 1) > 0;

You can order the results from the highest scoring documents to the lowest scoring
documents by using the ORDER BY clause as follows:

SELECT SCORE(1), title from news
 WHERE CONTAINS(text, 'oracle', 1) > 0
 ORDER BY SCORE(1) DESC;

The CONTAINS operator must always be followed by the > 0 syntax, which specifies that
the score value returned by the CONTAINS operator must be greater than zero for the
row to be returned.

When the SCORE operator is called in the SELECT statement, the CONTAINS operator
must reference the score label value in the third parameter, as shown in the previous
example.

6.1.1.2 CONTAINS PL/SQL Example
In a PL/SQL application, you can use a cursor to fetch the results of the query.

The following example enters a CONTAINS query against the NEWS table to find all
articles that contain the word oracle. The titles and scores of the first ten hits are
output.

declare
 rowno number := 0;
begin
 for c1 in (SELECT SCORE(1) score, title FROM news
 WHERE CONTAINS(text, 'oracle', 1) > 0
 ORDER BY SCORE(1) DESC)
 loop
 rowno := rowno + 1;
 dbms_output.put_line(c1.title||': '||c1.score);
 exit when rowno = 10;
 end loop;
end;

This example uses a cursor FOR loop to retrieve the first ten hits. An alias score is
declared for the return value of the SCORE operator. The score and title are shown as
output by using the cursor dot notation.

6.1.1.3 Structured Query with CONTAINS Example
A structured query, also called a mixed query, is a query that has one CONTAINS
predicate to query a text column and another predicate to query a structured data
column.

To enter a structured query, specify the structured clause in the WHERE condition of the
SELECT statement.

Chapter 6
Overview of Queries

6-2

For example, the following SELECT statement returns all articles that contain the word
oracle written on or after October 1, 1997:

SELECT SCORE(1), title, issue_date from news
 WHERE CONTAINS(text, 'oracle', 1) > 0
 AND issue_date >= ('01-OCT-97')
 ORDER BY SCORE(1) DESC;

Note:

Although you can enter structured queries with CONTAINS, consider creating
a CTXCAT index and issuing the query with CATSEARCH, which offers better
structured query performance.

6.1.2 Querying with CATSEARCH
When you create an index of type CTXCAT, you must use the CATSEARCH operator
to enter your query. This index is suitable when your application stores short text
fragments in the text column and associated information in related columns.

For example, an application serving an online auction site includes a table that stores
item descriptions in a text column and date and price information in other columns.
With a CTXCAT index, you can create b-tree indexes on one or more columns, so that
query performance is generally faster for mixed queries.

The operators available for CATSEARCH queries are limited to logical operations such as
AND or OR. To define your structured criteria, use the following operators : greater than,
less than, equality, BETWEEN, and IN.

• CATSEARCH SQL Query

• CATSEARCH Example

6.1.2.1 CATSEARCH SQL Query Example
A typical query with CATSEARCH includes the following structured clause to find all rows
that contain the word camera ordered by the bid_close date:

SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'order by bid_close desc')>
0;

The type of structured query tht you can enter depends on how you create your
sub-indexes.

See Also:

"Creating a CTXCAT Index"

As shown in the previous example, you specify the structured part of a CATSEARCH
query with the third structured_query parameter. The columns in the structured
expression must have a corresponding subindex.

Chapter 6
Overview of Queries

6-3

For example, assuming that category_id and bid_close have a subindex in the
ctxcat index for the AUCTION table, enter the following structured query:

SELECT FROM auction WHERE CATSEARCH(title, 'camera', 'category_id=99 order by
bid_close desc')> 0;

6.1.2.2 CATSEARCH Example
The following example shows a field section search against a CTXCAT index. It uses
CONTEXT grammar by means of a query template in a CATSEARCH query.

-- Create and populate table
create table BOOKS (ID number, INFO varchar2(200), PUBDATE DATE);

insert into BOOKS values(1, '<author>NOAM CHOMSKY</author><subject>CIVIL
 RIGHTS</subject><language>ENGLISH</language><publisher>MIT
 PRESS</publisher>', '01-NOV-2003');

insert into BOOKS values(2, '<author>NICANOR PARRA</author><subject>POEMS
 AND ANTIPOEMS</subject><language>SPANISH</language>
 <publisher>VASQUEZ</publisher>', '01-JAN-2001');

insert into BOOKS values(1, '<author>LUC SANTE</author><subject>XML
 DATABASE</subject><language>FRENCH</language><publisher>FREE
 PRESS</publisher>', '15-MAY-2002');

commit;

-- Create index set and section group
exec ctx_ddl.create_index_set('BOOK_INDEX_SET');
exec ctx_ddl.add_index('BOOK_INDEX_SET','PUBDATE');

exec ctx_ddl.create_section_group('BOOK_SECTION_GROUP',
 'BASIC_SECTION_GROUP');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','AUTHOR','AUTHOR');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','SUBJECT','SUBJECT');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','LANGUAGE','LANGUAGE');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','PUBLISHER','PUBLISHER');

-- Create index
create index books_index on books(info) indextype is ctxsys.ctxcat
 parameters('index set book_index_set section group book_section_group');

-- Use the index
-- Note that: even though CTXCAT index can be created with field sections, it
-- cannot be accessed using CTXCAT grammar (default for CATSEARCH).
-- We need to use query template with CONTEXT grammar to access field
-- sections with CATSEARCH

select id, info from books
where catsearch(info,
'<query>
 <textquery grammar="context">
 NOAM within author and english within language
 </textquery>
 </query>',
'order by pubdate')>0;

Chapter 6
Overview of Queries

6-4

6.1.3 Querying with MATCHES
When you create an index of type CTXRULE, you must use the MATCHES operator to
classify your documents. The CTXRULE index is essentially an index on the set of
queries that define your classifications.

For example, if you have an incoming stream of documents that need to be routed
according to content, you can create a set of queries that define your categories. You
create the queries as rows in a text column. You can create this type of table with the
CTX_CLS.TRAIN procedure.

You then index the table to create a CTXRULE index. When documents arrive, you use
the MATCHES operator to classify each document

• MATCHES SQL Query

• MATCHES PL/SQL Example

See Also:

Classifying Documents in Oracle Text

6.1.3.1 MATCHES SQL Query
A MATCHES query finds all rows in a query table that match a given document.
Assuming that a querytable table is associated with a CTXRULE index, enter the
following query:

SELECT classification FROM querytable WHERE MATCHES(query_string,:doc_text) > 0;

The :doc_text bind variable contains the CLOB document to be classified.

Here is a simple example:

 create table queries (
 query_id number,
 query_string varchar2(80)
);

 insert into queries values (1, 'oracle');
 insert into queries values (2, 'larry or ellison');
 insert into queries values (3, 'oracle and text');
 insert into queries values (4, 'market share');

 create index queryx on queries(query_string)
 indextype is ctxsys.ctxrule;

 select query_id from queries
 where matches(query_string,
 'Oracle announced that its market share in databases
 increased over the last year.')>0

This query returns queries 1 (the word oracle appears in the document) and 4 (the
phrase market share appears in the document), but not 2 (neither the word larry nor

Chapter 6
Overview of Queries

6-5

the word ellison appears, and not 3 (there is no text in the document, so it does not
match the query).

In this example, the document was passed in as a string for simplicity. Your document
is typically passed in a bind variable.

The document text used in a MATCHES query can be VARCHAR2 or CLOB. It does not
accept BLOB input, so you cannot match filtered documents directly. Instead, you must
filter the binary content to CLOB by using AUTO_FILTER. The following example makes
two assumptions:

• The document data is in the :doc_blob bind variable.

• You have already defined my_policy that CTX_DOC.POLICY_FILTER can use.

For example:

 declare
 doc_text clob;
 begin
 -- create a temporary CLOB to hold the document text
 doc_text := dbms_lob.createtemporary(doc_text, TRUE, DBMS_LOB.SESSION);

 -- create a simple policy for this example
 ctx_ddl.create_preference(preference_name => 'fast_filter',
 object_name => 'AUTO_FILTER');
 ctx_ddl.set_attribute(preference_name => 'fast_filter',
 attribute_name => 'OUTPUT_FORMATTING',
 attribute_value => 'FALSE');
 ctx_ddl.create_policy(policy_name => 'my_policy',
 filter => 'fast_filter);

 -- call ctx_doc.policy_filter to filter the BLOB to CLOB data
 ctx_doc.policy_filter('my_policy', :doc_blob, doc_text, FALSE);

 -- now do the matches query using the CLOB version
 for c1 in (select * from queries where matches(query_string, doc_text)>0)
 loop
 -- do what you need to do here
 end loop;

 dbms_lob.freetemporary(doc_text);
 end;

The CTX_DOC.POLICY_FILTER procedure filters the BLOB into the CLOB data, because
you must get the text into a CLOB to enter a MATCHES query. It takes, as one argument,
the name of a policy that you already created with CTX_DDL.CREATE_POLICY.

See Also:

Oracle Text Reference for information on CTX_DOC.POLICY_FILTER

If your file is text in the database character set, then you can create a BFILE and load
it to a CLOB by using the DBMS_LOB.LOADFROMFILE function, or you can use UTL_FILE to
read the file into a temp CLOB locator.

Chapter 6
Overview of Queries

6-6

If your file needs AUTO_FILTER filtering, then you can load the file into a BLOB instead
and call CTX_DOC.POLICY_FILTER, as previously shown.

See Also:

Classifying Documents in Oracle Text for more extended classification
examples

6.1.3.2 MATCHES PL/SQL Examples
The following example assumes that the profiles table of queries is associated with a
CTXRULE index. It also assumes that the newsfeed table contains a set of news articles
to be categorized.

This example loops through the newsfeed table, categorizing each article by using the
MATCHES operator. The results are stored in the results table.

PROMPT Populate the category table based on newsfeed articles
PROMPT
set serveroutput on;
declare
 mypk number;
 mytitle varchar2(1000);
 myarticles clob;
 mycategory varchar2(100);
 cursor doccur is select pk,title,articles from newsfeed;
 cursor mycur is select category from profiles where matches(rule,
myarticles)>0;
 cursor rescur is select category, pk, title from results order by category,pk;

begin
 dbms_output.enable(1000000);
 open doccur;
 loop
 fetch doccur into mypk, mytitle, myarticles;
 exit when doccur%notfound;
 open mycur;
 loop
 fetch mycur into mycategory;
 exit when mycur%notfound;
 insert into results values(mycategory, mypk, mytitle);
 end loop;
 close mycur;
 commit;
 end loop;
 close doccur;
 commit;

end;

The following example displays the categorized articles by category.

PROMPT display the list of articles for every category
PROMPT
set serveroutput on;

declare

Chapter 6
Overview of Queries

6-7

 mypk number;
 mytitle varchar2(1000);
 mycategory varchar2(100);
 cursor catcur is select category from profiles order by category;
 cursor rescur is select pk, title from results where category=mycategory order
by pk;

begin
 dbms_output.enable(1000000);
 open catcur;
 loop
 fetch catcur into mycategory;
 exit when catcur%notfound;
 dbms_output.put_line('********** CATEGORY: '||mycategory||' *************');
open rescur;
 loop
 fetch rescur into mypk, mytitle;
 exit when rescur%notfound;
dbms_output.put_line('** ('||mypk||'). '||mytitle);
 end loop;
 close rescur;
 dbms_output.put_line('**');
dbms_output.put_line('***');
 end loop;
 close catcur;
end;

See Also:

Classifying Documents in Oracle Text for more extended classification
examples

6.1.4 Word and Phrase Queries
A word query is a query on a word or phrase. For example, to find all the rows in your
text table that contain the word dog, enter a query specifying dog as your query term.

You can enter word queries with both CONTAINS and CATSEARCH SQL operators.
However, phrase queries are interpreted differently.

• CONTAINS Phrase Queries: If multiple words are contained in a query
expression, separated only by blank spaces (no operators), the string of words
is considered a phrase. Oracle Text searches for the entire string during a query.
For example, to find all documents that contain the phrase international law, enter
your query with the phrase international law.

• CATSEARCH Phrase Queries: With the CATSEARCH operator, you insert the AND
operator between words in phrases. For example, a query such as international
law is interpreted as international AND law.

6.1.5 Querying Stopwords
Stopwords are words for which Oracle Text does not create an index entry. They are
usually common words in your language that are unlikely to be searched.

Chapter 6
Overview of Queries

6-8

Oracle Text includes a default list of stopwords for your language. This list is called
a stoplist. For example, in English, the words this and that are defined as stopwords
in the default stoplist. You can modify the default stoplist or create new stoplists with
the CTX_DDL package. You can also add stopwords after indexing with the ALTER INDEX
statement.

You cannot query on a stopword itself or on a phrase composed of only stopwords. For
example, a query on the word this returns no hits when this is defined as a stopword.

Because the Oracle Text index records the position of stopwords even though it does
not create an index entry for them, you can query phrases that contain stopwords as
well as indexable words, such as this boy talks to that girl.

When you include a stopword within your query phrase, the stopword matches any
word. For example, the following query assumes that was is a stopword. It matches
phrases such as Jack is big and Jack grew big. It also matches grew, even though it is
not a stopword.

'Jack was big'

Starting with Oracle Database 12c Release 2 (12.2), stopwords and unary operators
on stopwords are ignored at the initial stages of a query result in different query results
than earlier releases. For example, the following query does not return documents
because the is a stopword and the $ operator and the stopword are ignored during
query processing:

SQL> select count(1) from tabx where contains(text,'$the')>0;
 .
 COUNT(1)

 0

The next query returns documents containing first because the the stopword and
the $ operator are ignored.

SQL> select count(1) from tabx where contains(text,'first and $the')>0;
 .
 COUNT(1)

 2

6.1.6 ABOUT Queries and Themes
An ABOUT query is a query on a document theme. A document theme is a concept
that is sufficiently developed in the text. For example, an ABOUT query on US politics
might return documents containing information about US presidential elections and
US foreign policy. Documents need not contain the exact phrase US politics to be
returned.

During indexing, document themes are derived from the knowledge base, which is a
hierarchical list of categories and concepts that represents a view of the world. Some
examples of themes in the knowledge catalog are concrete concepts such as jazz
music, football, or Nelson Mandela. Themes can also be abstract concepts such as
happiness or honesty.

Chapter 6
Overview of Queries

6-9

During indexing, the system can also identify and index document themes that are
sufficiently developed in the document but that do not exist in the knowledge base.

You can augment the knowledge base to define concepts and terms specific to your
industry or query application. When you do so, ABOUT queries are more precise for the
added concepts.

ABOUT queries perform best when you create a theme component in your index. Theme
components are created by default for English and French.

See Also:

Oracle Text Reference

Querying Stopthemes

Oracle Text enables you to query on themes with the ABOUT operator. A stoptheme is a
theme that is not to be indexed. You can add and remove stopthemes with the CTX_DDL
package. You can add stopthemes after indexing with the ALTER INDEX statement.

6.2 Oracle Text Query Features
Oracle Text has various query features. You can use these query features in your
query application.

• Query Expressions

• Case-Sensitive Searching

• Query Feedback

• Query Explain Plan

• Using a Thesaurus in Queries

• About Document Section Searching

• Using Query Templates

• Query Analysis

• Other Query Features

6.2.1 Query Expressions
A query expression is everything in between the single quotes in the text_query
argument of the CONTAINS or CATSEARCH operator. The contents of a query expression
in a CONTAINS query differs from the contents of a CATSEARCH operator.

• CONTAINS Operators

• CATSEARCH Operator

• MATCHES Operator

Chapter 6
Oracle Text Query Features

6-10

6.2.1.1 CONTAINS Operators
A CONTAINS query expression can contain query operators that enable logical,
proximity, thesaural, fuzzy, and wildcard searching. Querying with stored expressions
is also possible. Within the query expression, you can use grouping characters to alter
operator precedence. This book refers to these operators as the CONTEXT grammar.

With CONTAINS, you can also use the ABOUT query to query document themes.

See Also:

"The CONTEXT Grammar"

6.2.1.2 CATSEARCH Operator
With the CATSEARCH operator, you specify your query expression with the text_query
argument and your optional structured criteria with the structured_query argument.
The text_query argument enables you to query words and phrases. You can use
logical operations, such as logical and, or, and not. This book refers to these operators
as the CTXCAT grammar.

If you want to use the much richer set of operators supported by the CONTEXT grammar,
you can use the query template feature with CATSEARCH.

With structured_query argument, you specify your structured criteria. You can use
the following SQL operations:

• =

• <=

• >=

• >

• <

• IN

• BETWEEN

You can also use the ORDER BY clause to order your output.

See Also:

"The CTXCAT Grammar"

6.2.1.3 MATCHES Operator
Unlike CONTAINS and CATSEARCH, MATCHES does not take a query expression as input.

Chapter 6
Oracle Text Query Features

6-11

Instead, the MATCHES operator takes a document as input and finds all rows in a
query (rule) table that match it. As such, you can use MATCHES to classify documents
according to the rules they match.

See Also:

"Querying with MATCHES"

6.2.2 Case-Sensitive Searching
Oracle Text supports case-sensitivity for word and ABOUT queries.

Word queries are not case-insensitive by default. This means that a query on the term
dog returns the rows in your text table that contain the word dog, but not Dog or DOG.

You can enable or disable case-sensitive searching with the MIXED_CASE attribute in
your BASIC_LEXER index preference. With a case-sensitive index, your queries must be
entered in exact case. For example, a query on Dog matches only documents with
Dog. Documents with dog or DOG are not returned as hits.

To enable case-insensitive searching, set the MIXED_CASE attribute in your
BASIC_LEXER index preference to NO.

Note:

If you enable case-sensitivity for word queries and you query a phrase
containing stopwords and indexable words, then you must specify the correct
case for the stopwords. For example, a query on the dog does not return text
that contains The Dog, assuming that the is a stopword.

ABOUT queries give the best results when your query is formulated with proper case
because the normalization of your query is based on the knowledge catalog. The
knowledge catalog is case-sensitive. Attention to case is required, especially for words
that have different meanings depending on case, such as turkey the bird and Turkey
the country.

However, you do not have to enter your query in exact case to obtain relevant results
from an ABOUT query. The system does its best to interpret your query. For example,
if you enter a query of ORACLE and the system does not find this concept in the
knowledge catalog, the system might use Oracle as a related concept for lookup.

6.2.3 Query Feedback
Feedback provides broader-term, narrower term, and related term information for a
specified query with a CONTEXT index. You obtain this information programatically with
the CTX_QUERY.HFEEDBACK procedure.

Broader term, narrower term, and related term information is useful for suggesting
other query terms to the user in your query application.

Chapter 6
Oracle Text Query Features

6-12

The returned feedback information is obtained from the knowledge base and contains
only those terms that are also in the index. This process increases the chances that
terms returned from HFEEDBACK produce hits over the currently indexed document set.

See Also:

Oracle Text Reference for more information about using
CTX_QUERY.HFEEDBACK

6.2.4 Query Explain Plan
Explain plan information provides a graphical representation of the parse tree for a
CONTAINS query expression. You can obtain this information programatically with the
CTX_QUERY.EXPLAIN procedure.

Explain plan information tells you how a query is expanded and parsed without having
the system execute the query. Obtaining explain information is useful for knowing the
expansion for a particular stem, wildcard, thesaurus, fuzzy, soundex, or ABOUT query.
Parse trees also show the following information:

• Order of execution

• ABOUT query normalization

• Query expression optimization

• Stopword transformations

• Breakdown of composite-word tokens for supported languages

See Also:

Oracle Text Reference for more information about using
CTX_QUERY.EXPLAIN

6.2.5 Using a Thesaurus in Queries
Oracle Text enables you to define a thesaurus for your query application and process
queries more intelligently.

Because users might not know which words represent a topic, you can define
synonyms or narrower terms for likely query terms. You can use the thesaurus
operators to expand your query to include thesaurus terms.

See Also:

Working With a Thesaurus in Oracle Text

Chapter 6
Oracle Text Query Features

6-13

6.2.6 Document Section Searching
Section searching enables you to narrow text queries down to sections within
documents.

You can implement section searching when your documents have internal structure,
such as HTML and XML documents. For example, you can define a section for the
<H1> tag that enables you to query within this section by using the WITHIN operator.

You can set the system to automatically create sections from XML documents.

You can also define attribute sections to search attribute text in XML documents.

Note:

Section searching is supported for only word queries with a CONTEXT index.

See Also:

Searching Document Sections in Oracle Text

6.2.7 Using Query Templates
Query templates are an alternative to the existing query languages. Rather than
passing a query string to CONTAINS or CATSEARCH, you pass a structured document
that contains the query string in a tagged element. Within this structured document, or
query template, you can enable additional query features.

• Query Rewrite

• Query Relaxation

• Query Language

• Ordering By SDATA Sections

• Alternative and User-defined Scoring

• Alternative Grammar

6.2.7.1 Query Rewrite
Query applications sometimes parse end-user queries, interpreting a query string in
one or more ways by using different operator combinations. For example, if a user
enters a query of kukui nut, your application enters the {kukui nut} and {kukui or nut}
queries to increase recall.

The query rewrite feature enables you to submit a single query that expands the
original query into the rewritten versions. The results are returned with no duplication.

Chapter 6
Oracle Text Query Features

6-14

You specify your rewrite sequences with the query template feature. The rewritten
versions of the query are executed efficiently with a single call to CONTAINS or
CATSEARCH.

The following template defines a query rewrite sequence. The query of {kukui nut} is
rewritten as follows:

{kukui} {nut}

{kukui} ; {nut}

{kukui} AND {nut}

{kukui} ACCUM {nut}

The following is the query rewrite template for these transformations:

select id from docs where CONTAINS (text,
 '<query>
 <textquery lang="ENGLISH" grammar="CONTEXT"> kukui nut
 <progression>
 <seq><rewrite>transform((TOKENS, "{", "}", " "))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", " ; "))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", "AND"))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", "ACCUM"))</rewrite></seq>
 </progression>
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>')>0;

6.2.7.2 Query Relaxation
The query relaxation feature enables your application to execute the most restrictive
version of a query first and progressively relax the query until the required number of
hits are obtained.

For example, your application searches first on black pen and then the query is
relaxed to black NEAR pen to obtain more hits.

The following query template defines a query relaxation sequence. The query of black
pen is entered in sequence.

{black} {pen}

{black} NEAR {pen}

{black} AND {pen}

{black} ACCUM {pen}

The following is the query relaxation template for these transformations:

select id from docs where CONTAINS (text,
 '<query>
 <textquery lang="ENGLISH" grammar="CONTEXT">
 <progression>
 <seq>{black} {pen}</seq>
 <seq>{black} NEAR {pen}</seq>
 <seq>{black} AND {pen}</seq>
 <seq>{black} ACCUM {pen}</seq>
 </progression>
 </textquery>

Chapter 6
Oracle Text Query Features

6-15

 <score datatype="INTEGER" algorithm="COUNT"/>
</query>')>0;

Query hits are returned in this sequence with no duplication as long as the application
needs results.

Query relaxation is most effective when your application needs the top-N hits to a
query, which you can obtain with the DOMAIN_INDEX_SORT hint or in a PL/SQL cursor.

Using query templating to relax a query is more efficient than reexecuting a query.

6.2.7.3 Query Language
When you use MULTI_LEXER to index a column containing documents in different
languages, you can specify which language lexer to use during querying. You do so
by using the lang parameter in the query template, which specifies the document-level
lexer.

select id from docs where CONTAINS (text,
'<query><textquery lang="french">bon soir</textquery></query>')>0;

See Also:

Oracle Text Reference for information on LANGUAGE and lang with ALTER
INDEX and document sublexer

6.2.7.4 Ordering by SDATA Sections
You can order the query results according to the content of SDATA sections by using the
<order> and <orderkey> elements of the query template.

In the following example, the first level of ordering is performed on the SDATA price
section, which is sorted in ascending order. The second and third level of ordering
are performed by the SDATA pub_date section and score, both of which are sorted in
descending order.

select id from docs where CONTAINS (text, '
<query>
 <textquery lang="ENGLISH" grammar="CONTEXT"> Oracle </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
 <order>
 <orderkey> SDATA(price) ASC </orderkey>
 <orderkey> SDATA(pub_date) DESC </orderKey>
 <orderkey> Score DESC </orderkey>
 </order>
</query>', 1)>0;

Chapter 6
Oracle Text Query Features

6-16

Note:

• You can add additional SDATA sections to an index. Refer to the ADD
SDATA SECTION parameter string under ALTER INDEX in Oracle Text
Reference.

• Documents that were indexed before adding an SDATA section do not
reflect this new preference. Rebuild the index in this case.

See Also:

Oracle Text Reference for syntax of <order> and <orderkey> elements of the
query template

6.2.7.5 Alternative and User-Defined Scoring
You can use query templating to specify alternative scoring algorithms. Those
algorithms help you customize how CONTAINS is scored. They also enable SDATA to
be used as part of the scoring expressions. In this way, you can mathematically define
the scoring expression by using not only predefined scoring components, but also
SDATA components.

With alternative user-defined scoring, you can specify:

• Scoring expressions of terms by defining arithmetic expressions that define how
the query should be scored, using

– predefined scoring algorithms: DISCRETE, OCCURRENCE, RELEVANCE, and
COMPLETION

– arithmetic operations: plus, minus, multiply, divide

– arithmetic functions: ABS(n), finding the absolute value of n ; LOG(n), finding
the base-10 logarithmic value of n

– Numeric literals

• Scoring expressions at the term level

• Terms that should not be taken into account when calculating the score

• How the score from child elements of OR and AND operators should be merged

• Use

You can also use the SDATA that stores numeric or DATETIME values to affect the final
score of the document.

The following example specifies an alternative scoring algorithm:

select id from docs where CONTAINS (text,
'<query>
 <textquery grammar="CONTEXT" lang="english"> mustang </textquery>
 <score datatype="float" algorithm="DEFAULT"/>
</query>')>0

Chapter 6
Oracle Text Query Features

6-17

The following query templating example includes SDATA values as part of the final
score:

select id from docs where CONTAINS (text,
'<query>
<textquery grammar="CONTEXT" lang="english"> mustang </textquery>
<score datatype="float" algorithm="DEFAULT" normalization_expr
="doc_score+SDATA(price)"/>
</query>')>0"

See Also:

"Using DEFINESCORE and DEFINEMERGE for User-defined Scoring"

6.2.7.6 Alternative Grammar
Query templating enables you to use the CONTEXT grammar with CATSEARCH queries
and vice versa.

select id from docs where CONTAINS (text,
'<query>
 <textquery grammar="CTXCAT">San Diego</textquery>
 <score datatype="integer"/>
</query>')>0;

6.2.8 Query Analysis
Oracle Text enables you to create a log of queries and to analyze the queries. For
example, suppose you have an application that searches a database of large animals,
and your analysis of its queries shows that users search for the word mouse. This
analysis shows you that you should rewrite your application to avoid returning an
unsuccessful search. Instead, a search for mouse redirects users to a database of
small animals.

With query analysis, you can find out:

• Which queries were made

• Which queries were successful

• Which queries were unsuccessful

• How many times each query was made

You can combine these factors in various ways, such as determining the 50 most
frequent unsuccessful queries made by your application.

You start query logging with CTX_OUTPUT.START_QUERY_LOG. The query log
contains all queries made to all CONTEXT indexes that the program
is using until a CTX_OUTPUT.END_QUERY_LOG procedure is entered. Use
CTX_REPORT.QUERY_LOG_SUMMARY to get a report of queries.

Chapter 6
Oracle Text Query Features

6-18

See Also:

Oracle Text Reference for syntax and examples for these procedures

6.2.9 Other Query Features
In your query application, you can use other query features such as proximity
searching. Table 6-1 lists some of these features.

Table 6-1 Other Oracle Text Query Features

Feature Description Implement With

Case-Sensitive Searching Enables you to search on words or
phrases exactly as they are entered
in the query. For example, a search
on Roman returns documents that
contain Roman and not roman.

BASIC_LEXER when you
create the index

Base-Letter Conversion Queries words with or without
diacritical marks such as tildes,
accents, and umlauts. For example,
with a Spanish base-letter index,
a query of energía matches
documents containing both energía
and energia.

BASIC_LEXER when you
create the index

Word Decompounding

(German and Dutch)

Enables searching on words that
contain the specified term as
subcomposite.

BASIC_LEXER when you
create the index

Alternate Spelling

(German, Dutch, and
Swedish)

Searches on alternate spellings of
words.

BASIC_LEXER when you
create the index

Proximity Searching Searches for words near one
another.

NEAR operator when you
enter the query

Expanded operator
containing the functionality
of PHRASE, NEAR and AND
operators.

Breaks a document into clumps
based on the given query. Each
clump is classified based on a
primary feature, and is scored
based on secondary features. The
final document score adds clump
scores such that the ordering of
primary features determines the
initial ordering of document scores.

NEAR2 operator when you
enter the query

Stemming Searches for words with the same
root as the specified term.

$ operator at when you enter
the query

Fuzzy Searching Searches for words that have a
similar spelling as the specified
term.

FUZZY operator when you
enter the query

Query Explain Plan Generates query parse information. CTX_QUERY.EXPLAIN
PL/SQL procedure after you
index

Chapter 6
Oracle Text Query Features

6-19

Table 6-1 (Cont.) Other Oracle Text Query Features

Feature Description Implement With

Hierarchical Query
Feedback

Generates broader term, narrower
term and related term information
for a query.

CTX_QUERY.HFEEDBACK
PL/SQL procedure after you
index

Browse index Browses the words around a seed
word in the index.

CTX_QUERY.BROWSE_WORDS
PL/SQL after you index

Count hits Counts the number of hits in a
query.

CTX_QUERY.COUNT_HITS
PL/SQL procedure after you
index

Stored Query Expression Stores the text of a query
expression for later reuse in
another query.

CTX_QUERY.STORE_SQE
PL/SQL procedure after you
index

Thesaural Queries Uses a thesaurus to expand
queries.

Thesaurus operators such as
SYN and BT as well as the
ABOUT operator

(Use CTX_THES package to
maintain the thesaurus.)

Chapter 6
Oracle Text Query Features

6-20

7
Working with CONTEXT and CTXCAT
Grammars in Oracle Text

Become familiar with CONTEXT and CTXCAT grammars.

This chapter contains the following topics:

• The CONTEXT Grammar

• The CTXCAT Grammar

7.1 The CONTEXT Grammar
The CONTEXT grammar is the default grammar for CONTAINS. With this grammar, you
can add complexity to your searches with operators. You use the query operators in
your query expression. For example, the AND logical operator enables you to search
for all documents that contain two different words. The ABOUT operator enables you to
search on concepts.

You can also use the WITHIN operator for section searches; the NEAR operator for
proximity searches; and the stem, fuzzy, and thesaurus operators for expanding a
query expression.

With CONTAINS, you can also use the CTXCAT grammar with the query template feature.

The following sections describe some of the Oracle Text operators:

• ABOUT Query

• Logical Operators

• Section Searching and HTML and XML

• Proximity Queries with NEAR, NEAR_ACCUM, and NEAR2 Operators

• Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators

• Using CTXCAT Grammar

• Stored Query Expressions

• Calling PL/SQL Functions in CONTAINS

• Optimizing for Response Time

• Counting Hits

• Using DEFINESCORE and DEFINEMERGE for User-defined Scoring

See Also:

Oracle Text Reference for complete information about using query operators

7-1

7.1.1 ABOUT Query
Use the ABOUT operator in English or French to query on a concept. The query string
is usually a concept or theme that represents the idea to be searched on. Oracle Text
returns the documents that contain the theme.

Word information and theme information are combined into a single index. To enter a
theme query in your index, you must include that is created by default in English and
French.

Enter a theme query by using the ABOUT operator inside the query expression. For
example, to retrieve all documents that are about politics, write your query as follows:

SELECT SCORE(1), title FROM news
 WHERE CONTAINS(text, 'about(politics)', 1) > 0
 ORDER BY SCORE(1) DESC;

See Also:

Oracle Text Reference for more information about using the ABOUT operator

7.1.2 Logical Operators
Use logical operators to limit your search criteria in a number of ways. Table 7-1
describes some of these operators.

Table 7-1 Logical Operators

Operator Symbol Description Example Expression

AND & Use to search for
documents that contain at
least one occurrence of
each of the query terms.

The returned score is the
minimum of the operands.

'cats AND dogs'
'cats & dogs'

OR | Use to search for
documents that contain at
least one occurrence of
any of the query terms.

The returned score is
the maximum of the
operands.

'cats | dogs'
'cats OR dogs'

NOT ~ Use to search for
documents that contain
one query term and not
another.

To obtain the documents that contain
the term animals but not dogs, use the
following expression:

'animals ~ dogs'

Chapter 7
The CONTEXT Grammar

7-2

Table 7-1 (Cont.) Logical Operators

Operator Symbol Description Example Expression

ACCUM , Use to search for
documents that contain
at least one occurrence
of any of the query
terms. The accumulate
operator ranks documents
according to the total term
weight of a document.

The following query returns all
documents that contain the terms dogs,
cats, and puppies, giving the highest
scores to the documents that contain all
three terms:

'dogs, cats, puppies'

EQUIV = Use to specify an
acceptable substitution for
a word in a query.

The following example returns all
documents that contain either the
phrase alsatians are big dogs or
German shepherds are big dogs:

'German shepherds=alsatians are
big dogs'

7.1.3 Section Searching and HTML and XML
Section searching is useful when your document set is HTML or XML. For HTML, you
can define sections by using embedded tags and then use the WITHIN operator to
search these sections.

For XML, you can have the system automatically create sections. You can query with
the WITHIN operator or with the INPATH operator for path searching.

See Also:

Searching Document Sections in Oracle Text

7.1.4 Proximity Queries with NEAR, NEAR_ACCUM, and NEAR2
Operators

Use the NEAR operator to search for terms that are near to one another in a document.

For example, to find all the documents where dog is within 6 words of cat, enter the
following query:

'near((dog, cat), 6)'

The NEAR operator is now modified to change how the distance is measured between
phrases in NESTED NEAR.

The NEAR_ACCUM operator combines the functionality of the NEAR operator with that of
the ACCUM operator. Like NEAR, it returns terms that are within a given proximity of each
other; however, if one term is not found, it ranks documents according to the frequency
of the occurrence of the term that is found.

Chapter 7
The CONTEXT Grammar

7-3

The NEAR2 operator combines the functionality of PHRASE, NEAR, and AND operators. In
addition, the NEAR2 operator can use position information to boost the scores of its hits.
That is, if one phrase hit occurs at the beginning of a document and another at the
end of the document, then a higher weight is given to the first hit as compared to the
second hit.

See Also:

Oracle Text Reference for more information about using the NEAR,
NEAR_ACCUM, and NEAR2 operators

7.1.5 Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion
Operators

Expand your queries into longer word lists with operators such as wildcard, fuzzy,
stem, soundex, and thesaurus.

See Also:

• Oracle Text Reference for more information about using these operators

• "Is it OK to have many expansions in a query?"

7.1.6 Using CTXCAT Grammar
Use the CTXCAT grammar in CONTAINS queries. To do so, use a query template
specification in the text_query parameter of CONTAINS.

Take advantage of the CTXCAT grammar when you need an alternative and simpler
query grammar.

See Also:

Oracle Text Reference for more information about using these operators

7.1.7 Defined Stored Query Expressions
Use the CTX_QUERY.STORE_SQE procedure to store the definition of a query without
storing any results. Referencing the query with the CONTAINS SQL operator references
the definition of the query. In this way, stored query expressions make it easy to define
long or frequently used query expressions.

Stored query expressions are not attached to an index. When you call
CTX_QUERY.STORE_SQE, you specify only the name of the stored query expression and
the query expression.

Chapter 7
The CONTEXT Grammar

7-4

The query definitions are stored in the Text data dictionary. Any user can reference a
stored query expression.

• Defining a Stored Query Expression

• SQE Example

See Also:

Oracle Text Reference to learn more about the syntax of
CTX_QUERY.STORE_SQE

7.1.7.1 Defining a Stored Query Expression
To define and use a stored query expression:

1. Call CTX_QUERY.STORE_SQE to store the queries for the text column. With
STORE_SQE, you specify a name for the stored query expression and a query
expression.

2. Use the SQE operator to call the stored query expression in a query expression.
Oracle Text returns the results of the stored query expression in the same way that
it returns the results of a regular query. The query is evaluated when the stored
query expression is called.

You can delete a stored query expression by using REMOVE_SQE.

7.1.7.2 SQE Example
The following example creates a stored query expression called disaster that searches
for documents containing the words tornado, hurricane, or earthquake:

begin
ctx_query.store_sqe('disaster', 'tornado | hurricane | earthquake');
end;

To execute this query in an expression, write your query as follows:

SELECT SCORE(1), title from news
 WHERE CONTAINS(text, 'SQE(disaster)', 1) > 0
 ORDER BY SCORE(1);

See Also:

Oracle Text Reference to learn more about the syntax of
CTX_QUERY.STORE_SQE

7.1.8 Calling PL/SQL Functions in CONTAINS
You can call user-defined functions directly in the CONTAINS clause as long as the
function satisfies the requirements for being named in a SQL statement. The caller
must also have EXECUTE privilege on the function.

Chapter 7
The CONTEXT Grammar

7-5

For example, if the french function returns the French equivalent of an English word,
you can search on the French word for cat by writing:

SELECT SCORE(1), title from news
 WHERE CONTAINS(text, french('cat'), 1) > 0
 ORDER BY SCORE(1);

See Also:

Oracle Database SQL Language Reference for more information about
creating user functions and calling user functions from SQL

7.1.9 Optimizing for Response Time
A CONTAINS query optimized for response time provides a fast solution when you need
the highest scoring documents from a hitlist.

The following example returns the first twenty hits as output. This example uses the
FIRST_ROWS(n) hint and a cursor.

declare
cursor c is
 select /*+ FIRST_ROWS(20) */ title, score(1) score
 from news where contains(txt_col, 'dog', 1) > 0 order by score(1) desc;
begin
 for c1 in c
 loop
 dbms_output.put_line(c1.score||':'||substr(c1.title,1,50));
 exit when c%rowcount = 21;
 end loop;
end;
/

The following factors can also influence query response time:

• Collection of table statistics

• Memory allocation

• Sorting

• Presence of large object columns in your base table

• Partitioning

• Parallelism

• Number of term expansions in your query

See Also:

"Frequently Asked Questions About Query Performance"

Chapter 7
The CONTEXT Grammar

7-6

7.1.10 Counting Hits
Use CTX_QUERY.COUNT_HITS in PL/SQL or COUNT(*) in a SQL SELECT statement to
count the number of hits returned from a query with only a CONTAINS predicate.

If you want a rough hit count, use CTX_QUERY.COUNT_HITS in estimate mode (EXACT
parameter set to FALSE). With respect to response time, this is the fastest count you
can get.

Use the COUNT(*) function in a SELECT statement to count the number of hits returned
from a query that contains a structured predicate.

To find the number of documents that contain the word oracle, enter the query with the
SQL COUNT function.

SELECT count(*) FROM news WHERE CONTAINS(text, 'oracle', 1) > 0;

To find the number of documents returned by a query with a structured predicate, use
COUNT(*).

SELECT COUNT(*) FROM news WHERE CONTAINS(text, 'oracle', 1) > 0 and author =
'jones';

To find the number of documents that contain the word oracle, use COUNT_HITS.

declare count number;
begin
 count := ctx_query.count_hits(index_name => my_index, text_query => 'oracle',
exact => TRUE);
 dbms_output.put_line('Number of docs with oracle:');
 dbms_output.put_line(count);
end;

See Also:

Oracle Text Reference to learn more about the syntax of
CTX_QUERY.COUNT_HITS

7.1.11 Using DEFINESCORE and DEFINEMERGE for User-Defined
Scoring

Use the DEFINESCORE operator to define how the score for a term or phrase is to be
calculated. The DEFINEMERGE operator defines how to merge scores of child elements
of AND and OR operators. You can also use the alternative scoring template with SDATA
to affect the final scoring of the document.

Chapter 7
The CONTEXT Grammar

7-7

See Also:

• "Alternative and User-defined Scoring" for information about the
alternative scoring template

• Oracle Text Reference to learn more about the syntax of DEFINESCORE
and DEFINEMERGE

7.2 The CTXCAT Grammar
The CTXCAT grammar is the default grammar for CATSEARCH. This grammar supports
logical operations, such as AND and OR, as well as phrase queries.

The CATSEARCH query operators have the following syntax:

Table 7-2 CATSEARCH Query Operator Syntax

Operation Syntax Description of Operation

Logical AND a b c Returns rows that contain a, b and c.

Logical OR a | b | c Returns rows that contain a, b, or c.

Logical NOT a - b Returns rows that contain a and not b.

hyphen with no space a-b Hyphen treated as a regular character.

For example, if you define the hyphen as a
skipjoin, then words such as vice-president are
treated as the single query term vicepresident.

Likewise, if you define the hyphen as a
printjoin, then words such as vice-president
are treated as vice president with the space
in the CTXCAT query language.

" " "a b c" Returns rows that contain the phrase "a b c."

For example, entering "Sony CD Player"
means return all rows that contain this
sequence of words.

() (A B) | C Parentheses group operations. This query is
equivalent to the CONTAINS query (A &B) | C.

To use the CONTEXT grammar in CATSEARCH queries, use a query template specification
in the text_query parameter.

You might use the CONTAINS grammar as such when you need to enter proximity,
thesaurus, or ABOUT queries with a CTXCAT index.

See Also:

Oracle Text Reference for more information about using these operators

Chapter 7
The CTXCAT Grammar

7-8

8
Presenting Documents in Oracle Text

Oracle Text provides various methods for presenting documents in results for query
applications.

This chapter contains the following topics:

• Highlighting Query Terms

• Obtaining Part-of-Speech Information for a Document

• Obtaining Lists of Themes, Gists, and Theme Summaries

• Document Presentation and Highlighting

8.1 Highlighting Query Terms
In text query applications, you can present selected documents with query terms
highlighted for text queries or with themes highlighted for ABOUT queries.

You can generate three types of output associated with highlighting:

• A marked-up version of the document

• Query offset information for the document

• A concordance of the document, in which occurrences of the query term are
returned with their surrounding text

This section contains the following topics:

• Text highlighting

• Theme Highlighting

• CTX_DOC Highlighting Procedures

8.1.1 Text highlighting
For text highlighting, you supply the query, and Oracle Text highlights words in the
document that satisfy the query. You can obtain plain-text or HTML highlighting.

8.1.2 Theme Highlighting
For ABOUT queries, the CTX_DOC procedures highlight and mark up words or phrases
that best represent the ABOUT query.

8.1.3 CTX_DOC Highlighting Procedures
These are the highlighting procedures in CTX_DOC:

• CTX_DOC.MARKUP and CTX_DOC.POLICY_MARKUP

• CTX_DOC.HIGHLIGHT and CTX_DOC.POLICY_HIGHLIGHT

8-1

• CTX_DOC.SNIPPET and CTX_DOC.POLICY_SNIPPET

The POLICY and non-POLICY versions of the procedures are equivalent, except that the
POLICY versions do not require an index.

Note:

SNIPPET can also be generated using the Result Set Interface.

See Also:

Oracle Text Reference for information on CTX_QUERY.RESULT_SET

This section contains these topics:

• Markup Procedure

• Highlight Procedure

• Concordance

8.1.3.1 Markup Procedure
The CTX_DOC.MARKUP and CTX_DOC.POLICY_MARKUP procedures take a document
reference and a query, and return a marked-up version of the document. The output
can be either marked-up plain text or marked-up HTML. For example, specify that a
marked-up document be returned with the query term surrounded by angle brackets
(<<<tansu>>>) or HTML (tansu).

CTX_DOC.MARKUP and CTX_DOC.POLICY_MARKUP are equivalent, except that
CTX_DOC.POLICY_MARKUP does not require an index.

You can customize the markup sequence for HTML navigation.

CTX_DOC.MARKUP Example

The following example is taken from the web application described in CONTEXT
Query Application. The showDoc procedure takes an HTML document and a query,
creates the highlight markup—in this case, the query term is displayed in red—and
outputs the result to an in-memory buffer. It then uses htp.print to display it in the
browser.

procedure showDoc (p_id in varchar2, p_query in varchar2) is

 v_clob_selected CLOB;
 v_read_amount integer;
 v_read_offset integer;
 v_buffer varchar2(32767);
 v_query varchar(2000);
 v_cursor integer;

 begin
 htp.p('<html><title>HTML version with highlighted terms</title>');
 htp.p('<body bgcolor="#ffffff">');

Chapter 8
Highlighting Query Terms

8-2

 htp.p('HTML version with highlighted terms');

 begin
 ctx_doc.markup (index_name => 'idx_search_table',
 textkey => p_id,
 text_query => p_query,
 restab => v_clob_selected,
 starttag => '<i>',
 endtag => '</i>');

 v_read_amount := 32767;
 v_read_offset := 1;
 begin
 loop
 dbms_lob.read(v_clob_selected,v_read_amount,v_read_offset,v_buffer);
 htp.print(v_buffer);
 v_read_offset := v_read_offset + v_read_amount;
 v_read_amount := 32767;
 end loop;
 exception
 when no_data_found then
 null;
 end;

 exception
 when others then
 null; --showHTMLdoc(p_id);
 end;
end showDoc;
end;
/
show errors
set define on

See Also:

Oracle Text Reference for more information about CTX_DOC.MARKUP and
CTX_DOC.POLICY_SNIPPET

8.1.3.2 Highlight Procedure
CTX_DOC.HIGHLIGHT and CTX_DOC.POLICY_HIGHLIGHT take a query and a document
and return offset information for the query in plain text or HTML format. You can use
this offset information to write your own custom routines for displaying documents.

CTX_DOC.HIGHLIGHT and CTX_DOC.POLICY_HIGHLIGHT are equivalent, except that
CTX_DOC.POLICY_HIGHLIGHT does not require an index.

With offset information, you can display a highlighted version of a document (such as
different font types or colors) instead of the standard plain-text markup obtained from
CTX_DOC.MARKUP.

Chapter 8
Highlighting Query Terms

8-3

See Also:

Oracle Text Reference for more information about using CTX_DOC.HIGHLIGHT
and CTX_DOC.POLICY_HIGHLIGHT

8.1.3.3 Concordance
CTX_DOC.SNIPPET and CTX_DOC.POLICY_SNIPPET produce a concordance of the
document, in which occurrences of the query term are returned with their surrounding
text. This result is sometimes known as Key Word in Context (KWIC) because, instead
of returning the entire document (with or without the query term highlighted), it returns
the query term in text fragments, allowing a user to see it in context. You can control
how the query term is highlighted in the returned fragments.

CTX_DOC.SNIPPET and CTX_DOC.POLICY_SNIPPET are equivalent, except that
CTX_DOC.POLICY_SNIPPET does not require an index. CTX_DOC.POLICY_SNIPPET and
CTX_DOC.SNIPPET include two new attributes: radius specifies the approximate desired
length of each segment, whereas, max_length puts an upper bound on the length of
the sum of all segments.

See Also:

Oracle Text Reference for more information about CTX_DOC.SNIPPET and
CTX_DOC.POLICY_SNIPPET

8.2 Obtaining Part-of-Speech Information for a Document
The CTX_DOC package contains procedures to create policies for obtaining part-
of-speech information for a given document. This approach is described under
POLICY_NOUN_PHRASES in Oracle Text Reference and POLICY_PART_OF_SPEECH in
Oracle Text Reference.

8.3 Obtaining Lists of Themes, Gists, and Theme
Summaries

The following table describes lists of themes, gists, and theme summaries.

Table 8-1 Lists of Themes, Gists, and Theme Summaries

Output Type Description

List of Themes A list of the main concepts of a document.

Each theme is a single word, a single phrase, or a hierarchical list of
parent themes.

Gist Text in a document that best represents what the document is about as a
whole.

Chapter 8
Obtaining Part-of-Speech Information for a Document

8-4

Table 8-1 (Cont.) Lists of Themes, Gists, and Theme Summaries

Output Type Description

Theme Summary Text in a document that best represents a given theme in the document.

To obtain lists of themes, gists, and theme summaries, use procedures in the CTX_DOC
package to:

• Identify documents by ROWID in addition to primary key

• Store results in-memory for improved performance

8.3.1 Lists of Themes
A list of themes is a list of the main concepts in a document. Use the CTX_DOC.THEMES
procedure to generate lists of themes.

See Also:

Oracle Text Reference to learn more about the command syntax for
CTX_DOC.THEMES

The following in-memory theme example generates the top 10 themes for document
1 and stores them in an in-memory table called the_themes. The example then loops
through the table to display the document themes.

declare
 the_themes ctx_doc.theme_tab;

begin
 ctx_doc.themes('myindex','1',the_themes, numthemes=>10);
 for i in 1..the_themes.count loop
 dbms_output.put_line(the_themes(i).theme||':'||the_themes(i).weight);
 end loop;
end;

The following example create a result table theme:

create table ctx_themes (query_id number,
 theme varchar2(2000),
 weight number);

In this example, you obtain a list of themes where each element in the list is a single
theme:

begin
ctx_doc.themes('newsindex','34','CTX_THEMES',1,full_themes => FALSE);
end;

In this example, you obtain a list of themes where each element in the list is a
hierarchical list of parent themes:

Chapter 8
Obtaining Lists of Themes, Gists, and Theme Summaries

8-5

begin
ctx_doc.themes('newsindex','34','CTX_THEMES',1,full_themes => TRUE);
end;

8.3.2 Gist and Theme Summary
A gist is the text in a document that best represents what the document is about as a
whole. A theme summary is the text in a document that best represents a single theme
in the document.

Use the CTX_DOC.GIST procedure to generate gists and theme summaries. You can
specify the size of the gist or theme summary when you call the procedure.

See Also:

Oracle Text Reference to learn about the command syntax for CTX_DOC.GIST

In-Memory Gist Example

The following example generates a nondefault size generic gist of at most 10
paragraphs. The result is stored in memory in a CLOB locator. The code then de-
allocates the returned CLOB locator after using it.

declare
 gklob clob;
 amt number := 40;
 line varchar2(80);

begin
 ctx_doc.gist('newsindex','34','gklob',1,glevel => 'P',pov => 'GENERIC',
numParagraphs => 10);
 -- gklob is NULL when passed-in, so ctx-doc.gist will allocate a temporary
 -- CLOB for us and place the results there.

 dbms_lob.read(gklob, amt, 1, line);
 dbms_output.put_line('FIRST 40 CHARS ARE:'||line);
 -- have to de-allocate the temp lob
 dbms_lob.freetemporary(gklob);
 end;

Result Table Gists Example

To create a gist table, enter the following:

create table ctx_gist (query_id number,
 pov varchar2(80),
 gist CLOB);

The following example returns a default-sized paragraph gist for document 34:

begin
ctx_doc.gist('newsindex','34','CTX_GIST',1,'PARAGRAPH', pov =>'GENERIC');
end;

The following example generates a nondefault size gist of 10 paragraphs:

Chapter 8
Obtaining Lists of Themes, Gists, and Theme Summaries

8-6

begin
ctx_doc.gist('newsindex','34','CTX_GIST',1,'PARAGRAPH', pov =>'GENERIC',
numParagraphs => 10);
end;

The following example generates a gist whose number of paragraphs is 10 percent of
the total paragraphs in the document:

begin
ctx_doc.gist('newsindex','34','CTX_GIST',1, 'PARAGRAPH', pov =>'GENERIC',
maxPercent => 10);
end;

Theme Summary Example

The following example returns a theme summary on the theme of insects for document
with textkey 34. The default gist size is returned.

begin
ctx_doc.gist('newsindex','34','CTX_GIST',1, 'PARAGRAPH', pov => 'insects');
end;

8.4 Presenting and Highlighting Documents
Typically, a query application enables the user to view the documents returned by a
query. The user selects a document from the hitlist, and then the application presents
the document in some form.

With Oracle Text, you can display a document in different ways, such as highlighting
either the words of a word query or the themes of an ABOUT query in English.

You can also obtain gist (document summary) and theme information from documents
with the CTX_DOC PL/SQL package.

Table 8-2 describes the different output you can obtain and which procedure to use to
obtain each type.

Table 8-2 CTX_DOC Output

Output Procedure

Plain-text version, no highlights CTX_DOC.FILTER

HTML version of document, no highlights CTX_DOC.FILTER

Highlighted document, plain-text version CTX_DOC.MARKUP

Highlighted document, HTML version CTX_DOC.MARKUP

Highlighted offset information for plain-text version CTX_DOC.HIGHLIGHT

Highlighted offset information for HTML version CTX_DOC.HIGHLIGHT

Theme summaries and gist of document CTX_DOC.GIST

List of themes in document CTX_DOC.THEMES

Chapter 8
Presenting and Highlighting Documents

8-7

See Also:

Oracle Text Reference

Chapter 8
Presenting and Highlighting Documents

8-8

9
Classifying Documents in Oracle Text

Oracle Text offers various approaches to document classification.

This chapter contains the following topics:

• Overview of Document Classification

• Classification Applications

• Classification Solutions

• Rule-Based Classification

• Supervised Classification

• Unsupervised Classification (Clustering)

• Unsupervised Classification (Clustering) Example

9.1 Overview of Document Classification
Each theme is a single word, a single phrase, or a hierarchical list of parent themes.

To sift through numerous documents you can use keyword search engines. However,
keyword searches have limitations. One major drawback is that keyword searches do
not discriminate by context. In many languages, a word or phrase may have multiple
meanings, so a search may result in many matches that are not about the specific
topic. For example, a query on the phrase river bank might return documents about
the Hudson River Bank & Trust Company, because the word bank has two meanings.

Alternatively, you can sort through documents and classify them by content. This
approach is not feasible for very large volumes of documents.

Oracle Text offers various approaches to document classification. Under rule-based
classification (sometimes called simple classification), you write the classification
rules yourself. With supervised classification, Oracle Text creates classification rules
based on a set of sample documents that you preclassify. Finally, with unsupervised
classification (also known as clustering), Oracle Text performs all steps, from writing
the classification rules to classifying the documents, for you.

9.2 Classification Applications
Oracle Text enables you to build document classification applications that perform
some action based on document content. Actions include assigning category IDs to
a document for future lookup or sending a document to a user. The result is a set or
stream of categorized documents. Figure 9-1 illustrates how the classification process
works.

Oracle Text enables you to create document classification applications in different
ways. This chapter defines a typical classification scenario and shows how you can
use Oracle Text to build a solution.

9-1

Figure 9-1 Overview of a Document Classification Application

Document N
from Web

Document 2
from File
System

Document 1
from
Database

Document
Stream

Perform
ActionDocument

Classification
Application

CTXRULE
Index

Oracle

SQL
MATCHES

Query

Database A Database B

Email
User

Classify
Document

Rules Table

9.3 Classification Solutions
Oracle Text enables you to classify documents in the following ways:

• Rule-Based Classification. For this solution, you group your documents, choose
categories, and formulate the rules that define those categories; these rules are
actually query phrases. You then index the rules and use the MATCHES operator to
classify documents.

Advantages: This solution is very accurate for small document sets. Results are
always based on what you define, because you write the rules.

Disadvantages: Defining rules can be tedious for large document sets with many
categories. As your document set grows, you may need to write correspondingly
more rules.

• Supervised Classification. This solution is similar to rule-based classification, but
the rule-writing step is automated with CTX_CLS.TRAIN. This procedure formulates
a set of classification rules from a sample set of preclassified documents that you
provide. As with rule-based classification, you use the MATCHES operator to classify
documents.

Oracle Text offers two versions of supervised classification, one using the
RULE_CLASSIFIER preference and one using the SVM_CLASSIFIER preference.
These preferences are discussed in "Supervised Classification".

Advantages: Rules are written for you automatically. This method is useful for
large document sets.

Disadvantages: You must assign documents to categories before generating the
rules. Rules may not be as specific or accurate as those you write yourself.

• Unsupervised Classification (Clustering). All steps, from grouping your documents
to writing the category rules, are automated with CTX_CLS.CLUSTERING. Oracle

Chapter 9
Classification Solutions

9-2

Text statistically analyzes your document set and correlates them with clusters
according to content.

Advantages:

– You do not need to provide the classification rules or the sample documents
as a training set.

– This solution helps to discover overlooked patterns and content similarities in
your document set.

In fact, you can use this solution when you do not have a clear idea of rules or
classifications. For example, use it to provide an initial set of categories and to
build on the categories through supervised classification.

Disadvantages:

– Clustering is based on an internal solution. It might result in unexpected
groupings, because the clustering operation is not user-defined.

– You do not see the rules that create the clusters.

– The clustering operation is CPU-intensive and can take at least the same time
as indexing.

9.4 Rule-Based Classification
Rule-based classification is the basic solution for creating an Oracle Text classification
application.

The basic steps for rule-based classification are as follows. Specific steps are explored
in greater detail in the example.

1. Create a table for the documents to be classified, and then populate it.

2. Create a rule table (also known as a category table). The rule table consists of
categories that you name, such as "medicine" or "finance," and the rules that sort
documents into those categories.

These rules are actually queries. For example, you define the "medicine" category
as documents that include the words "hospital," "doctor," or "disease." Therefore,
you would set up a rule in the form of "hospital OR doctor OR disease."

3. Create a CTXRULE index on the rule table.

4. Classify the documents.

See Also:

"CTXRULE Parameters and Limitations" for information on which operators
are allowed for queries

9.4.1 Rule-Based Classification Example
In this example, you gather news articles about different subjects and then classify
them.

Chapter 9
Rule-Based Classification

9-3

After you create the rules, you can index them and then use the MATCHES statement to
classify documents.

To classify documents:

1. Create the schema to store the data.

The news_table stores the documents to be classified. The news_categories
table stores the categories and rules that define the categories. The news_id_cat
table stores the document IDs and their associated categories after classification.

create table news_table (
 tk number primary key not null,
 title varchar2(1000),
 text clob);

create table news_categories (
 queryid number primary key not null,
 category varchar2(100),
 query varchar2(2000));

create table news_id_cat (
 tk number,
 category_id number);

2. Load the documents with SQLLDR.

Use the SQLLDR program to load the HTML news articles into the news_table. The
file names and titles are read from loader.dat.

LOAD DATA
 INFILE 'loader.dat'
 INTO TABLE news_table
 REPLACE
 FIELDS TERMINATED BY ';'
 (tk INTEGER EXTERNAL,
 title CHAR,
 text_file FILLER CHAR,
 text LOBFILE(text_file) TERMINATED BY EOF)

3. Create the categories and write the rules for each category.

The defined categories are Asia, Europe, Africa, Middle East, Latin America,
United States, Conflicts, Finance, Technology, Consumer Electronics, World
Politics, U.S. Politics, Astronomy, Paleontology, Health, Natural Disasters, Law,
and Music News.

A rule is a query that selects documents for the category. For example, the 'Asia'
category has a rule of 'China or Pakistan or India or Japan'. Insert the rules in the
news_categories table.

insert into news_categories values
 (1,'United States','Washington or George Bush or Colin Powell');

insert into news_categories values
 (2,'Europe','England or Britain or Germany');

insert into news_categories values
 (3,'Middle East','Israel or Iran or Palestine');

insert into news_categories values(4,'Asia','China or Pakistan or India or Japan');

insert into news_categories values(5,'Africa','Egypt or Kenya or Nigeria');

Chapter 9
Rule-Based Classification

9-4

insert into news_categories values
 (6,'Conflicts','war or soldiers or military or troops');

insert into news_categories values(7,'Finance','profit or loss or wall street');
insert into news_categories values
 (8,'Technology','software or computer or Oracle
 or Intel or IBM or Microsoft');

insert into news_categories values
 (9,'Consumer electronics','HDTV or electronics');

insert into news_categories values
 (10,'Latin America','Venezuela or Colombia
 or Argentina or Brazil or Chile');

insert into news_categories values
 (11,'World Politics','Hugo Chavez or George Bush
 or Tony Blair or Saddam Hussein or United Nations');

insert into news_categories values
 (12,'US Politics','George Bush or Democrats or Republicans
 or civil rights or Senate or White House');

insert into news_categories values
 (13,'Astronomy','Jupiter or Earth or star or planet or Orion
 or Venus or Mercury or Mars or Milky Way
 or Telescope or astronomer
 or NASA or astronaut');

insert into news_categories values
 (14,'Paleontology','fossils or scientist
 or paleontologist or dinosaur or Nature');

insert into news_categories values
 (15,'Health','stem cells or embryo or health or medical
 or medicine or World Health Organization or AIDS or HIV
 or virus or centers for disease control or vaccination');

insert into news_categories values
 (16,'Natural Disasters','earthquake or hurricane or tornado');

insert into news_categories values
 (17,'Law','abortion or Supreme Court or illegal
 or legal or legislation');

insert into news_categories values
 (18,'Music News','piracy or anti-piracy
 or Recording Industry Association of America
 or copyright or copy-protection or CDs
 or music or artist or song');

commit;

4. Create the CTXRULE index on the news_categories query column.

create index news_cat_idx on news_categories(query)
indextype is ctxsys.ctxrule;

5. To classify the documents, use the CLASSIFIER.THIS PL/SQL procedure (a simple
procedure designed for this example).

Chapter 9
Rule-Based Classification

9-5

The procedure scrolls through the news_table, matches each document to a
category, and writes the categorized results into the news_id_cat table.

create or replace package classifier asprocedure this;end;/

show errors

create or replace package body classifier as

 procedure this
 is
 v_document clob;
 v_item number;
 v_doc number;
 begin

 for doc in (select tk, text from news_table)
 loop
 v_document := doc.text;
 v_item := 0;
 v_doc := doc.tk;
 for c in (select queryid, category from news_categories
 where matches(query, v_document) > 0)
 loop
 v_item := v_item + 1;
 insert into news_id_cat values (doc.tk,c.queryid);
 end loop;
 end loop;

 end this;

end;
/
show errors
exec classifier.this

9.4.2 CTXRULE Parameters and Limitations
The following considerations apply to indexing a CTXRULE index:

• If you use the SVM_CLASSIFIER classifier, then you may use the BASIC_LEXER,
CHINESE_LEXER, JAPANESE_LEXER, or KOREAN_MORPH_LEXER lexers. If you do not
use SVM_CLASSIFIER, then you can use only the BASIC_LEXER lexer type to index
your query set.

• Filter, memory, datastore, and [no]populate parameters are not applicable to the
CTXRULE index type.

• The CREATE INDEX storage clause is supported for creating the index on the
queries.

• Wordlists are supported for stemming operations on your query set.

• Queries for CTXRULE are similar to the CONTAINS queries. Basic phrasing ("dog
house") is supported, as are the following CONTAINS operators: ABOUT, AND, NEAR,
NOT, OR, STEM, WITHIN, and THESAURUS. Section groups are supported for using
the MATCHES operator to classify documents. Field sections are also supported;
however, CTXRULE does not directly support field queries, so you must use a query
rewrite on a CONTEXT query.

• You must drop the CTXRULE index before exporting or downgrading the database.

Chapter 9
Rule-Based Classification

9-6

See Also:

• Oracle Text Reference for more information on lexer and classifier
preferences

• "Creating a CTXRULE Index"

9.5 Supervised Classification
With supervised classification, you use the CTX_CLS.TRAIN procedure to automate
the rule-writing step. CTX_CLS.TRAIN uses a training set of sample documents to
deduce classification rules. This training set is the major advantage over rule-based
classification, where you must write the classification rules.

However, before you can run the CTX_CLS.TRAIN procedure, you must manually create
categories and assign each document in the sample training set to a category.

See Also:

Oracle Text Reference for more information on CTX_CLS.TRAIN

When the rules are generated, you index them to create a CTXRULE index. You can
then use the MATCHES operator to classify an incoming stream of new documents.

You can select one of the following classification algorithms for supervised
classification:

• Decision Tree Supervised Classification

The advantage of this classification is that the generated rules are easily observed
(and modified).

• SVM-Based Supervised Classification

This classification uses the Support Vector Machine (SVM) algorithm for creating
rules. The advantage of this classification is that it is often more accurate than the
Decision Tree classification. The disadvantage is that it generates binary rules, so
the rules themselves are opaque.

See Also:

• "Decision Tree Supervised Classification Example"

• "SVM-Based Supervised Classification Example"

9.5.1 Decision Tree Supervised Classification
To use Decision Tree classification, you set the preference argument of
CTX_CLS.TRAIN to RULE_CLASSIFIER.

Chapter 9
Supervised Classification

9-7

This form of classification uses a decision tree algorithm for creating rules. Generally
speaking, a decision tree is a method of deciding between two (or more, but usually
two) choices. In document classification, the choices are "the document matches the
training set" or "the document does not match the training set."

A decision tree has a set of attributes that can be tested. In this case, the attributes
include:

• words from the document

• stems of words from the document (for example, the stem of running is run)

• themes from the document (if themes are supported for the language in use)

The learning algorithm in Oracle Text builds one or more decision trees for each
category provided in the training set. These decision trees are then coded into queries
that are suitable for use by a CTXRULE index. For example, one category has a training
document for "Japanese beetle," and another category has a document for "Japanese
currency." The algorithm may create decision trees based on "Japanese," "beetle," and
"currency," and then classify documents accordingly.

The decision trees include the concept of confidence. Each generated rule is allocated
a percentage value that represents the accuracy of the rule, given the current training
set. In trivial examples, the accuracy is almost always 100 percent, but this percentage
merely represents the limitations of the training set. Similarly, the rules generated
from a trivial training set may seem to be less than what you might expect, but they
sufficiently distinguish the different categories in the current training set.

The advantage of the Decision Tree classification is that it can generate rules that
users can easily inspect and modify. The Decision Tree classification makes sense
when you want to the computer to generate the bulk of the rules, but you want to
fine-tune them afterward by editing the rule sets.

9.5.2 Decision Tree Supervised Classification Example
The following SQL example steps through creating your document and classification
tables, classifying the documents, and generating the rules. It then goes on to
generate rules with CTX_CLS.TRAIN.

Rules are then indexed to create CTXRULE index and new documents are classified
with MATCHES.

The CTX_CLS.TRAIN procedure requires an input training document set. A training set
is a set of documents that have already been assigned a category.

After you generate the rules, you can test them by first indexing them and then using
MATCHES to classify new documents.

To create and index the category rules:

1. Create and load a table of training documents.

This example uses a simple set of three fast food documents and three computer
documents.

create table docs (
 doc_id number primary key,
 doc_text clob);

insert into docs values

Chapter 9
Supervised Classification

9-8

(1, 'MacTavishes is a fast-food chain specializing in burgers, fries and -
shakes. Burgers are clearly their most important line.');
insert into docs values
(2, 'Burger Prince are an up-market chain of burger shops, who sell burgers -
and fries in competition with the likes of MacTavishes.');
insert into docs values
(3, 'Shakes 2 Go are a new venture in the low-cost restaurant arena,
specializing in semi-liquid frozen fruit-flavored vegetable oil products.');
insert into docs values
(4, 'TCP/IP network engineers generally need to know about routers,
firewalls, hosts, patch cables networking etc');
insert into docs values
(5, 'Firewalls are used to protect a network from attack by remote hosts,
 generally across TCP/IP');

2. Create category tables, category descriptions and IDs.

--

-- Create category tables
-- Note that "category_descriptions" isn't really needed for this demo -
-- it just provides a descriptive name for the category numbers in
-- doc_categories
--

create table category_descriptions (
 cd_category number,
 cd_description varchar2(80));

create table doc_categories (
 dc_category number,
 dc_doc_id number,
 primary key (dc_category, dc_doc_id))
 organization index;

-- descriptions for categories

insert into category_descriptions values (1, 'fast food');
insert into category_descriptions values (2, 'computer networking');

3. Assign each document to a category.

In this case, the fast food documents all go into category 1, and the computer
documents go into category 2.

insert into doc_categories values (1, 1);
insert into doc_categories values (1, 2);
insert into doc_categories values (1, 3);
insert into doc_categories values (2, 4);
insert into doc_categories values (2, 5);

4. Create a CONTEXT index to be used by CTX_CLS.TRAIN.

To experiment with the effects of turning themes on and off, create an Oracle Text
preference for the index.

exec ctx_ddl.create_preference('my_lex', 'basic_lexer');
exec ctx_ddl.set_attribute ('my_lex', 'index_themes', 'no');
exec ctx_ddl.set_attribute ('my_lex', 'index_text', 'yes');

create index docsindex on docs(doc_text) indextype is ctxsys.context
parameters ('lexer my_lex');

5. Create the rules table that will be populated by the generated rules.

Chapter 9
Supervised Classification

9-9

create table rules(
 rule_cat_id number,
 rule_text varchar2(4000),
 rule_confidence number
);

6. Generate category rules.

All arguments are the names of tables, columns, or indexes previously created in
this example. The rules table now contains the rules, which you can view.

begin
 ctx_cls.train(
 index_name => 'docsindex',
 docid => 'doc_id',
 cattab => 'doc_categories',
 catdocid => 'dc_doc_id',
 catid => 'dc_category',
 restab => 'rules',
 rescatid => 'rule_cat_id',
 resquery => 'rule_text',
 resconfid => 'rule_confidence'
);
end;
/

7. Fetch the generated rules, viewed by category.

For convenience's sake, the rules table is joined with category_descriptions so
that you can see the category that each rule applies to.

select cd_description, rule_confidence, rule_text from rules,
category_descriptions where cd_category = rule_cat_id;

8. Use the CREATE INDEX statement to create the CTXRULE index on the previously
generated rules.

create index rules_idx on rules (rule_text) indextype is ctxsys.ctxrule;

9. Test an incoming document by using MATCHES.

set serveroutput on;

declare
 incoming_doc clob;
begin
 incoming_doc
 := 'I have spent my entire life managing restaurants selling burgers';
 for c in
 (select distinct cd_description from rules, category_descriptions
 where cd_category = rule_cat_id
 and matches (rule_text, incoming_doc) > 0) loop
 dbms_output.put_line('CATEGORY: '||c.cd_description);
 end loop;
end;
/

9.5.3 SVM-Based Supervised Classification
The second method that you can use for training purposes is Support Vector Machine
(SVM) classification. SVM is a type of machine learning algorithm derived from

Chapter 9
Supervised Classification

9-10

statistical learning theory. A property of SVM classification is the ability to learn from a
very small sample set.

Using the SVM classifier is much the same as using the Decision Tree classifier,
except for the following differences:

• In the call to CTX_CLS.TRAIN, use the SVM_CLASSIFIER preference instead of the
RULE_CLASSIFIER preference. (If you do not want to modify any attributes, use the
predefined CTXSYS.SVM_CLASSIFIER preference.)

• Use the NOPOPULATE keyword if you do not want to populate the CONTEXT index on
the table. The classifier uses it only to find the source of the text, by means of
datastore and filter preferences, and to determine how to process the text through
lexer and sectioner preferences.

• In the generated rules table, use at least the following columns:

cat_id number,
type number,
rule blob;

As you can see, the generated rule is written into a BLOB column. It is therefore
opaque to the user, and unlike Decision Tree classification rules, it cannot be edited
or modified. The trade-off here is that you often get considerably better accuracy with
SVM than with Decision Tree classification.

With SVM classification, allocated memory has to be large enough to load the SVM
model; otherwise, the application built on SVM incurs an out-of-memory error. Here is
how to calculate the memory allocation:

Minimum memory request (in bytes) = number of unique categories x number of features
 example: (value of MAX_FEATURES attributes) x 8

If necessary to meet the minimum memory requirements, increase one of the following
memories:

• SGA (if in shared server mode)

• PGA (if in dedicated server mode)

9.5.4 SVM-Based Supervised Classification Example
This example uses SVM-based classification. The steps are essentially the same as
the Decision Tree example, except for the following differences:

• Set the SVM_CLASSIFIER preference with CTX_DDL.CREATE_PREFERENCE rather than
setting it in CTX_CLS.TRAIN. (You can do it either way.)

• Include category descriptions in the category table. (You can do it either way.)

• Because rules are opaque to the user, use fewer arguments in CTX_CLS.TRAIN.

To create a SVM-based supervised classification:

1. Create and populate the training document table.

create table doc (id number primary key, text varchar2(2000));
insert into doc values(1,'1 2 3 4 5 6');
insert into doc values(2,'3 4 7 8 9 0');
insert into doc values(3,'a b c d e f');
insert into doc values(4,'g h i j k l m n o p q r');
insert into doc values(5,'g h i j k s t u v w x y z');

Chapter 9
Supervised Classification

9-11

2. Create and populate the category table.

create table testcategory (
 doc_id number,
 cat_id number,
 cat_name varchar2(100)
);
insert into testcategory values (1,1,'number');
insert into testcategory values (2,1,'number');
insert into testcategory values (3,2,'letter');
insert into testcategory values (4,2,'letter');
insert into testcategory values (5,2,'letter');

3. Create the CONTEXT index on the document table without populating it.

create index docx on doc(text) indextype is ctxsys.context
 parameters('nopopulate');

4. Set the SVM_CLASSIFIER.

You can also set it in CTX.CLS_TRAIN.

exec ctx_ddl.create_preference('my_classifier','SVM_CLASSIFIER');
exec ctx_ddl.set_attribute('my_classifier','MAX_FEATURES','100');

5. Create the result (rule) table.

create table restab (
 cat_id number,
 type number(3) not null,
 rule blob
);

6. Perform the training.

exec ctx_cls.train('docx', 'id','testcategory','doc_id','cat_id',
 'restab','my_classifier');

7. Create a CTXRULE index on the rules table.

exec ctx_ddl.create_preference('my_filter','NULL_FILTER');
create index restabx on restab (rule)
 indextype is ctxsys.ctxrule
 parameters ('filter my_filter classifier my_classifier');

Now you can classify two unknown documents, as follows:

select cat_id, match_score(1) from restab
 where matches(rule, '4 5 6',1)>50;

select cat_id, match_score(1) from restab
 where matches(rule, 'f h j',1)>50;

drop table doc;
drop table testcategory;
drop table restab;
exec ctx_ddl.drop_preference('my_classifier');
exec ctx_ddl.drop_preference('my_filter');

9.6 Unsupervised Classification (Clustering)
With Rule-Based Classification, you write the rules for classifying documents yourself.
With Supervised Classification, Oracle Text writes the rules for you, but you
must provide a set of training documents that you preclassify. With unsupervised

Chapter 9
Unsupervised Classification (Clustering)

9-12

classification (also known as clustering), you do not have to provide a training set of
documents.

Clustering is performed with the CTX_CLS.CLUSTERING procedure. CTX_CLS.CLUSTERING
creates a hierarchy of document groups, known as clusters, and, for each document,
returns relevancy scores for all leaf clusters.

For example, suppose that you have a large collection of documents about animals.
CTX_CLS.CLUSTERING creates one leaf cluster about dogs, another about cats, another
about fish, and a fourth about bears. (The first three might be grouped under a node
cluster about pets.) Suppose further that you have a document about one breed
of dogs, such as Chihuahuas. CTX_CLS.CLUSTERING assigns the dog cluster to the
document with a very high relevancy score, whereas the cat cluster is assigned a
lower score and the fish and bear clusters are still assigned lower scores. After scores
for all clusters are assigned to all documents, an application can then take action
based on the scores.

As noted in "Decision Tree Supervised Classification", attributes used for determining
clusters may consist of simple words (or tokens), word stems, and themes (where
supported).

CTX_CLS.CLUSTERING assigns output to two tables (which may be in-memory tables):

• A document assignment table showing the document’s similarity to each leaf
cluster. This information takes the form of document identification, cluster
identification, and a similarity score between the document and a cluster.

• A cluster description table containing information about a generated cluster. This
table contains cluster identification, cluster description text, a suggested cluster
label, and a quality score for the cluster.

CTX_CLS.CLUSTERING uses a K-MEAN algorithm to perform clustering. Use the
KMEAN_CLUSTERING preference to determine how CTX_CLS.CLUSTERING works.

See Also:

Oracle Text Reference for more information on cluster types and hierarchical
clustering

9.7 Unsupervised Classification (Clustering) Example
This SQL example creates a small collection of documents in the collection table
and creates a CONTEXT index. It then creates a document assignment and cluster
description table, which are populated with a call to the CLUSTERING procedure. The
output is then viewed with a select statement:

set serverout on

/* collect document into a table */
create table collection (id number primary key, text varchar2(4000));
insert into collection values (1, 'Oracle Text can index any document or textual content.');
insert into collection values (2, 'Ultra Search uses a crawler to access documents.');
insert into collection values (3, 'XML is a tag-based markup language.');
insert into collection values (4, 'Oracle Database 11g XML DB treats XML
as a native datatype in the database.');

Chapter 9
Unsupervised Classification (Clustering) Example

9-13

insert into collection values (5, 'There are three Oracle Text index types to cover
all text search needs.');
insert into collection values (6, 'Ultra Search also provides API
for content management solutions.');

create index collectionx on collection(text)
 indextype is ctxsys.context parameters('nopopulate');

/* prepare result tables, if you omit this step, procedure will create table automatically */
create table restab (
 docid NUMBER,
 clusterid NUMBER,
 score NUMBER);

create table clusters (
 clusterid NUMBER,
 descript varchar2(4000),
 label varchar2(200),
 size number,
 quality_score number,
 parent number);

/* set the preference */
exec ctx_ddl.drop_preference('my_cluster');
exec ctx_ddl.create_preference('my_cluster','KMEAN_CLUSTERING');
exec ctx_ddl.set_attribute('my_cluster','CLUSTER_NUM','3');

/* do the clustering */
exec ctx_output.start_log('my_log');
exec ctx_cls.clustering('collectionx','id','restab','clusters','my_cluster');
exec ctx_output.end_log;

See Also:

Oracle Text Reference for CTX_CLS.CLUSTERING syntax and examples

Chapter 9
Unsupervised Classification (Clustering) Example

9-14

10
Tuning Oracle Text

Oracle Text provides ways to improve your query and indexing performance.

This chapter contains the following topics:

• Optimizing Queries with Statistics

• Optimizing Queries for Response Time

• Optimizing Queries for Throughput

• Composite Domain Index in Oracle Text

• Performance Tuning with CDI

• Solving Index and Query Bottlenecks by Using Tracing

• Using Parallel Queries

• Tuning Queries with Blocking Operations

• Frequently Asked Questions About Query Performance

• Frequently Asked Questions About Indexing Performance

• Frequently Asked Questions About Updating the Index

10.1 Optimizing Queries with Statistics
Query optimization with statistics uses the collected statistics on the tables and
indexes in a query to select an execution plan that can process the query in the most
efficient manner. As a general rule, Oracle recommends that you collect statistics on
your base table if you are interested in improving your query performance. Optimizing
with statistics enables a more accurate estimation of the selectivity and costs of the
CONTAINS predicate and thus a better execution plan.

The optimizer attempts to choose the best execution plan based on the following
parameters:

• The selectivity on the CONTAINS predicate

• The selectivity of other predicates in the query

• The CPU and I/O costs of processing the CONTAINS predicates

The following topics discuss how to use statistics with the extensible query optimizer:

• Collecting Statistics

• Query Optimization with Statistics Example

• Re-Collecting Statistics

• Deleting Statistics

10-1

Note:

Importing and exporting statistics on domain indexes, including Oracle
Text indexes, is not supported with the DBMS_STATS package. For more
information on importing and exporting statistics, see the Oracle Database
PL/SQL Packages and Types Reference.

See Also:

Oracle Text Reference for information on the CONTAINS query operator

10.1.1 Collecting Statistics
By default, Oracle Text uses the cost-based optimizer (CBO) to determine the best
execution plan for a query.

To enable the optimizer to better estimate costs, calculate the statistics on the table
you queried table:

ANALYZE TABLE <table_name> COMPUTE STATISTICS;

Alternatively, estimate the statistics on a sample of the table:

ANALYZE TABLE <table_name> ESTIMATE STATISTICS 1000 ROWS;

or

ANALYZE TABLE <table_name> ESTIMATE STATISTICS 50 PERCENT;

You can also collect statistics in parallel with the DBMS_STATS.GATHER_TABLE_STATS
procedure:

begin

DBMS_STATS.GATHER_TABLE_STATS('owner', 'table_name',
 estimate_percent=>50,
 block_sample=>TRUE,
 degree=>4) ;

end ;

These statements collect statistics on all objects associated with table_name,
including the table columns and any indexes (b-tree, bitmap, or Text domain)
associated with the table.

To re-collect the statistics on a table, enter the ANALYZE statement as many times as
necessary or use the DBMS_STATS package.

By collecting statistics on the Text domain index, the CBO in Oracle Database can
perform the following tasks:

• Estimate the selectivity of the CONTAINS predicate

Chapter 10
Optimizing Queries with Statistics

10-2

• Estimate the I/O and CPU costs of using the Oracle Text index (that is, the cost of
processing the CONTAINS predicate by using the domain index)

• Estimate the I/O and CPU costs of each invocation of CONTAINS

Knowing the selectivity of a CONTAINS predicate is useful for queries that contain more
than one predicate, such as in structured queries. This way the CBO can better decide
whether to use the domain index to evaluate CONTAINS or to apply the CONTAINS
predicate as a post filter.

See Also:

• Oracle Database SQL Language Reference for more information about
the ANALYZE statement

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_STATS package

10.1.2 Query Optimization with Statistics Example
The following structured query provides an example for optimizing statistics:

select score(1) from tab where contains(txt, 'freedom', 1) > 0 and author =
'King' and year > 1960;

Assume the following:

• The author column is of type VARCHAR2 and the year column is of type NUMBER.

• A b-tree index on the author column.

• The structured author predicate is highly selective with respect to the CONTAINS
predicate and the year predicate. That is, the structured predicate (author =
'King') returns a much smaller number of rows with respect to the year and
CONTAINS predicates individually, say 5 rows returned versus 1000 and 1500 rows,
respectively.

In this situation, Oracle Text can execute this query more efficiently by first scanning
a b-tree index range on the structured predicate (author = 'King'), then accessing a
table by rowid, and then applying the other two predicates to the rows returned from
the b-tree table access.

Note:

When statistics are not collected for a Oracle Text index, the CBO assumes
low selectivity and index costs for the CONTAINS predicate.

10.1.3 Re-Collecting Statistics
After synchronizing your index, you can re-collect statistics on a single index to update
the cost estimates.

Chapter 10
Optimizing Queries with Statistics

10-3

If your base table was reanalyzed before the synchronization, it is sufficient to analyze
the index after the synchronization without reanalyzing the entire table.

To re-collect statistics, enter one of the following statements:

ANALYZE INDEX <index_name> COMPUTE STATISTICS;

ANALYZE INDEX <index_name> ESTIMATE STATISTICS SAMPLE 50 PERCENT;

10.1.4 Deleting Statistics
Delete the statistics associated with a table:

ANALYZE TABLE <table_name> DELETE STATISTICS;

Delete statistics on one index:

ANALYZE INDEX <index_name> DELETE STATISTICS;

10.2 Optimizing Queries for Response Time
By default, Oracle Text optimizes queries for throughput so that queries return all rows
in the shortest time possible.

However, in many cases, especially in a web application, you must optimize queries
for response time, because you are only interested in obtaining the first few hits of a
potentially large hitlist in the shortest time possible.

The following sections describe some ways to optimize CONTAINS queries for response
time:

• Other Factors that Influence Query Response Time

• Improved Response Time with FIRST_ROWS(n) Hint for ORDER BY Queries

• Improved Response Time Using the DOMAIN_INDEX_SORT Hint

• Improved Response Time using Local Partitioned CONTEXT Index

• Improved Response Time with Local Partitioned Index for Order by Score

• Improved Response Time with Query Filter Cache

• Improved Response Time using BIG_IO Option of CONTEXT Index

• Improved Response Time using SEPARATE_OFFSETS Option of CONTEXT
Index

• Improved Response Time Using the STAGE_ITAB, STAGE_ITAB_MAX_ROWS,
and STAGE_ITAB_PARALLEL Options of CONTEXT Index

10.2.1 Other Factors That Influence Query Response Time
The following factors can influence query response time:

• Collection of table statistics

• Memory allocation

• Sorting

• Presence of large object (LOB) columns in your base table

Chapter 10
Optimizing Queries for Response Time

10-4

• Partitioning

• Parallelism

• The number term expansions in your query

See Also:

"Frequently Asked Questions About Query Performance"

10.2.2 Improved Response Time with the FIRST_ROWS(n) Hint for
ORDER BY Queries

When you need the first rows of an ORDER BY query, Oracle recommends that you use
the cost-based FIRST_ROWS(n) hint.

Note:

As the FIRST_ROWS(n) hint is cost-based, Oracle recommends that you
collect statistics on your tables before you use this hint.

You use the FIRST_ROWS(n) hint in cases where you want the first n number of rows in
the shortest possible time. For example, consider the following PL/SQL block that uses
a cursor to retrieve the first 10 hits of a query and the FIRST_ROWS(n) hint to optimize
the response time:

declare
cursor c is

select /*+ FIRST_ROWS(10) */ article_id from articles_tab
 where contains(article, 'Omophagia')>0 order by pub_date desc;

begin

for i in c
loop
insert into t_s values(i.pk, i.col);
exit when c%rowcount > 11;
end loop;

end;
/

The c cursor is a SELECT statement that returns the rowids that contain the word
omophagia in sorted order. The code loops through the cursor to extract the first 10
rows. These rows are stored in the temporary t_s table.

With the FIRST_ROWS(n) hint, the optimizer instructs the Oracle Text index to return
rowids in score-sorted order when the cost of returning the top-N hits is lower.

Chapter 10
Optimizing Queries for Response Time

10-5

Without the hint, Oracle Database sorts the rowids after the Oracle Text index returns
all rows in unsorted order that satisfy the CONTAINS predicate. Retrieving the entire
result set takes time.

Because only the first 10 hits are needed in this query, using the hint results in better
performance.

Note:

Use the FIRST_ROWS(n) hint when you need only the first few hits of a query.
When you need the entire result set, do not use this hint as it might result in
poor performance.

10.2.3 Improved Response Time Using the DOMAIN_INDEX_SORT
Hint

You can also optimize for response time by using the related DOMAIN_INDEX_SORT
hint. Like FIRST_ROWS(n), when queries are optimized for response time, Oracle Text
returns the first rows in the shortest time possible.

For example, you can use this hint:

select /*+ DOMAIN_INDEX_SORT */ pk, score(1), col from ctx_tab
 where contains(txt_col, 'test', 1) > 0 order by score(1) desc;

However, this hint is only rule-based. This means that Oracle Text always chooses
the index which satisfies the ORDER BY clause. This hint might result in suboptimal
performance for queries where the CONTAINS clause is very selective. In these cases,
Oracle recommends that you use the FIRST_ROWS(n) hint, which is fully cost-based.

10.2.4 Improved Response Time Using the Local Partitioned
CONTEXT Index

Partitioning your data and creating local partitioned indexes can improve your query
performance. On a partitioned table, each partition has its own set of index tables.
Effectively, there are multiple indexes, but the results are combined as necessary to
produce the final result set.

Create the CONTEXT index with the LOCAL keyword:

CREATE INDEX index_name ON table_name (column_name)
INDEXTYPE IS ctxsys.context
PARAMETERS ('...')
LOCAL

With partitioned tables and indexes, you can improve performance of the following
types of queries:

• Range Search on Partition Key Column: This query restricts the search to a
particular range of values on a column that is also the partition key. For example,
consider a query on a date range:

Chapter 10
Optimizing Queries for Response Time

10-6

SELECT storyid FROM storytab WHERE CONTAINS(story, 'oliver')>0 and pub_date
BETWEEN '1-OCT-93' AND '1-NOV-93';

If the date range is quite restrictive, it is very likely that the query can be satisfied
by only looking in a single partition.

• ORDER BY Partition Key Column: This query requires only the first n hits, and
the ORDER BY clause names the partition key. Consider an ORDER BY query on a
price column to fetch the first 20 hits:

SELECT * FROM (

SELECT itemid FROM item_tab WHERE CONTAINS(item_desc, 'cd player')
 >0 ORDER BY price)
 WHERE ROWNUM < 20;

In this example, with the table partitioned by price, the query might only need to
get hits from the first partition to satisfy the query.

10.2.5 Improved Response Time with the Local Partitioned Index for
Order by Score

The DOMAIN_INDEX_SORT hint on a local partitioned index might result in poor
performance, especially when you order by score. All hits to the query across all
partitions must be obtained before the results can be sorted.

Instead, use an inline view when you use the DOMAIN_INDEX_SORT hint. Specifically,
use the DOMAIN_INDEX_SORT hint to improve query performance on a local partitioned
index under the following conditions:

• The Oracle Text query itself, including the order by SCORE() clause, is expressed as
an in-line view.

• The Oracle Text query inside the in-line view contains the DOMAIN_INDEX_SORT hint.

• The query on the in-line view has a ROWNUM predicate that limits the number of
rows to fetch from the view.

For example, the following Oracle Text query and local Oracle Text index are created
on a partitioned doc_tab table:

 select doc_id, score(1) from doc_tab
 where contains(doc, 'oracle', 1)>0
 order by score(1) desc;

If you are interested in fetching only the top 20 rows, you can rewrite the query as
follows:

 select * from
 (select /*+ DOMAIN_INDEX_SORT */ doc_id, score(1) from doc_tab
 where contains(doc, 'oracle', 1)>0 order by score(1) desc)
 where rownum < 21;

Chapter 10
Optimizing Queries for Response Time

10-7

See Also:

Oracle Database SQL Language Reference for more information about the
EXPLAIN PLAN statement

10.2.6 Improved Response Time with the Query Filter Cache
Oracle Text provides a cache layer called the query filter cache that you can use to
cache the query results. The query filter cache is sharable across queries. Multiple
queries can reuse cached query results to improve the query response time.

Use the ctxfiltercache operator to specify which query results to cache. The
following example uses the operator to store the results of the common_predicate
query in the cache:

select * from docs where contains(txt, 'ctxfiltercache((common_predicate),
FALSE)')>0;

In this example, the cached results of the common_predicate query are reused by the
new_query query, to improve the query response time.

select * from docs where contains(txt, 'new_query &
ctxfiltercache((common_predicate), FALSE)')>0;

Note:

• You can specify the size of the query filter cache by using the basic
query_filter_cache_size storage attribute.

• The ctx_filter_cache_statistics view provides various statistics
about the query filter cache.

Note:

The CTXFILTERCACHE query operator was designed to speed up commonly-
used expressions in queries. In Oracle Database Release 21c, this
function is replaced by other internal improvements. The CTXFILTERCACHE
operator is deprecated (and will pass through its operands to be run
as a normal query). Because they no longer have a function, the view
CTX_FILTER_CACHE_STATISTICS is also deprecated, and also the storage
attribute QUERY_FILTER_CACHE_SIZE.

Chapter 10
Optimizing Queries for Response Time

10-8

See Also:

Oracle Text Reference for more information about:

• ctxfiltercache operator

• query_filter_cache_size basic storage attribute

• ctx_filter_cache_statistics view

10.2.7 Improved Response Time Using the BIG_IO Option of
CONTEXT Index

Oracle Text provides the BIG_IO option for improving the query performance for
the CONTEXT indexes that extensively use IO operations. The query performance
improvement is mainly for data stored on rotating disks, not for data stored on solid
state disks.

When you enable the BIG_IO option, a CONTEXT index creates token type pairs with one
large object (LOB) data type for each unique token text. Tokens with the same text but
different token types correspond to different rows in the $I table.

The indexes with the BIG_IO option enabled should have the token LOBs created
as SecureFile LOBs, so that the data is stored sequentially in multiple blocks. This
method improves the response time of the queries, because the queries can now
perform longer sequential reads instead of many short reads.

Note:

If you use SecureFiles, you must set the COMPATIBLE setting to 11.0 or
higher. In addition, you must create the LOB on an automatic segment space
management (ASSM) tablespace. When you migrate the existing Oracle
Text indexes to SecureFiles, use an ASSM tablespace. To help migrate the
existing indexes to SecureFiles, you can extend ALTER INDEX REBUILD to
provide storage preferences that only affect the $I table.

To create a CONTEXT index with the BIG_IO index option, first create a basic storage
preference by setting the value of its BIG_IO storage attribute to YES, and then specify
this storage preference while creating the CONTEXT index.

The following example creates a basic mystore storage preference and sets the value
of its BIG_IO storage attribute to YES:

exec ctx_ddl.create_preference('mystore', 'BASIC_STORAGE');
exec ctx_ddl.set_attribute('mystore', 'BIG_IO', 'YES');

To disable the BIG_IO option, update the existing storage preference (mystore) by
setting the value of its BIG_IO storage attribute to NO, and then rebuild the index.

exec ctx_ddl.set_attribute('mystore', 'BIG_IO', 'NO');
alter index idx rebuild('replace storage mystore');

Chapter 10
Optimizing Queries for Response Time

10-9

WARNING:

Do not use the replace metadata operation to disable the BIG_IO index
option. It can leave the index in an inconsistent state.

To enable the BIG_IO option for a partitioned index without rebuilding the index, modify
the basic storage preference by setting the value of its BIG_IO storage attribute to YES,
replace the global index metadata using ctx_ddl.replace_index_metadata, and then
call optimize_index in REBUILD mode for each partition of the partitioned index table.

The following example enables the BIG_IO option for the idx partitioned index:

exec ctx_ddl.set_attribute('mystore', 'BIG_IO', 'YES');
exec ctx_ddl.replace_index_metadata('idx', 'replace metadata storage mystore');
exec ctx_ddl.optimize_index('idx', 'rebuild', part_name=>'part1');

Note:

If a procedure modifies the existing index tables with only the BIG_IO option
enabled, then it will not result in reindexing of the data.

Note:

Because the BIG_IO index option performs longer sequential reads, the
queries that use the BIG_IO index option require a large program global area
(PGA) memory.

10.2.8 Improved Response Time Using the SEPARATE_OFFSETS
Option of the CONTEXT Index

Oracle Text provides the SEPARATE_OFFSETS option to improve the query performance
for the CONTEXT indexes that use IO operations, and whose queries are mainly single-
word or Boolean queries.

The SEPARATE_OFFSETS option creates a different postings list structure for the tokens
of type TEXT. Instead of interspersing docids, frequencies, info-length (length of the
offsets information), and the offsets in the postings list, the SEPARATE_OFFSETS option
stores all docids and frequencies at the beginning of the postings list, and all info-
lengths and offsets at the end of the postings list. The header at the beginning of
the posting contains the information about the boundary points between docids and
offsets. Because separation of docids and offsets reduces the time for the queries to
read the data, it improves the query response time.

Performance of the SEPARATE_OFFSETS option is best realized when you use it in
conjunction with the BIG_IO option and for tokens with a very long posting.

Chapter 10
Optimizing Queries for Response Time

10-10

To create a CONTEXT index with the SEPARATE_OFFSETS option, first create a basic
storage preference by setting the value of its SEPARATE_OFFSETS storage attribute to T.
Next, specify this storage preference when you create the CONTEXT index.

The following example creates a basic mystore storage preference and sets the value
of its SEPARATE_OFFSETS storage attribute to T:

exec ctx_ddl.create_preference('mystore', 'BASIC_STORAGE');
exec ctx_ddl.set_attribute('mystore', 'SEPARATE_OFFSETS', 'T');

To disable the SEPARATE_OFFSETS option, update the existing storage preference
(mystore) by setting the value of its SEPARATE_OFFSETS storage attribute to F, and
then rebuild the index.

exec ctx_ddl.set_attribute('mystore', 'SEPARATE_OFFSETS', 'F');
alter index idx rebuild('replace storage mystore');

WARNING:

Do not use replace metadata operation to disable the SEPARATE_OFFSETS
index option, as it can leave the index in an inconsistent state.

To enable the SEPARATE_OFFSETS option for a partitioned index without rebuilding
the index, modify the basic storage preference by setting the value of its
SEPARATE_OFFSETS storage attribute to T, replace the global index metadata by using
ctx_ddl.replace_index_metadata, and then call optimize_index in REBUILD mode
for each partition in the partitioned index table.

The following example enables the SEPARATE_OFFSETS option for the partitioned idx
index:

exec ctx_ddl.set_attribute('mystore', 'SEPARATE_OFFSETS', 'T');
exec ctx_ddl.replace_index_metadata('idx', 'replace storage mystore');
exec ctx_ddl.optimize_index('idx', 'rebuild', part_name=>'part1');

Note:

If a procedure modifies the existing index tables with only the
SEPARATE_OFFSETS option enabled, then the data is not reindexed.

10.2.9 Improved Response Time Using the STAGE_ITAB,
STAGE_ITAB_MAX_ROWS, and STAGE_ITAB_PARALLEL Options
of CONTEXT Index

Oracle Text provides the STAGE_ITAB option for improving the query performance for
CONTEXT and search indexes that extensively use insert, update, and delete operations
for near real-time indexing. The STAGE_ITAB option is the default index option only for
search indexes.

Chapter 10
Optimizing Queries for Response Time

10-11

If you do not use the STAGE_ITAB index option, then when you add a new document to
the CONTEXT index, SYNC_INDEX is called to make the documents searchable. This call
creates new rows in the $I table, and increases the fragmentation in the $I table. The
result is deterioration of the query performance.

When you enable the STAGE_ITAB index option, the following happens:

• Information about the new documents is stored in the $G staging table, not in
the $I table. This storage ensures that the $I table is not fragmented and does not
deteriorate the query performance.

• The $H b-tree index is created on the $G table. The $G table and $H b-tree index are
equivalent to the $I table and $X b-tree index.

Rows are merged automatically from the $G table to the $I table when the number
of rows in $G exceeds the storage setting, STAGE_ITAB_MAX_ROWS (10K by default).
You can also force an immediate merge of the rows from $G to $I by running index
optimization in MERGE optimization mode.

Note:

The $G table is stored in the KEEP pool. To improve query performance, you
should allocate sufficient KEEP pool memory and maintain a large enough $G
table size by using the new stage_itab_max_rows option.

To create a CONTEXT index with the STAGE_ITAB index option, first create a basic
storage preference by setting the value of its STAGE_ITAB storage attribute to YES.
Next, specify this storage preference when you create the CONTEXT index.

The following example creates a basic mystore storage preference and sets the value
of its STAGE_ITAB storage attribute to YES:

exec ctx_ddl.create_preference('mystore', 'BASIC_STORAGE');
exec ctx_ddl.set_attribute('mystore', 'STAGE_ITAB', 'YES');

You can also enable the STAGE_ITAB index option for an existing nonpartitioned
CONTEXT index by using the rebuild option of the ALTER INDEX statement.

alter index IDX rebuild parameters('replace storage mystore');

To disable the STAGE_ITAB option for a nonpartitioned CONTEXT index, update the
existing storage preference (mystore) by setting the value of its STAGE_ITAB storage
attribute to NO, and then rebuild the index.

exec ctx_ddl.set_attribute('mystore', 'STAGE_ITAB', 'NO');
alter index idx rebuild parameters('replace storage mystore');

This operation runs the optimization process by using the MERGE optimization mode
and then drops the $G table.

The rebuild option of the ALTER INDEX statement does not work with the partitioned
CONTEXT index for enabling and disabling the STAGE_ITAB option.

The following example enables the STAGE_ITAB option for the partitioned CONTEXT idx
index:

Chapter 10
Optimizing Queries for Response Time

10-12

alter index idx parameters('add stage_itab');

The following example disables the STAGE_ITAB option for the partitioned CONTEXT idx
index:

alter index idx parameters('remove stage_itab');

The contents of $G were automatically moved to $I during index synchronization
when $G had more than 1 million rows in Oracle Database 12c Release 2 (12.2) or
100K rows in Oracle Database Release 18c. Starting with Oracle Database Release
21c, the contents of $G are automatically moved to $I during index synchronization
when $G has more than 10K rows by default. This value is controlled by the
STAGE_ITAB_MAX_ROWS attribute of the STORAGE preference.

Note:

To use the STAGE_ITAB index option for a CONTEXT index, you must specify
the g_index_clause and g_table_clause BASIC_STORAGE preferences.

The query performance is deteriorated when $G table is too fragmented. To avoid
deterioration, starting with Oracle Database Release 18c, Oracle Text provides
automatic background optimize merge for every index or partition. To enable automatic
background optimize merge, you must set the STAGE_ITAB storage preference attribute
to TRUE, and you must create the index with a storage preference which uses the
STAGE_ITAB attribute.

By default, if you had enabled STAGE_ITAB in indexes before you upgraded to Oracle
Database Release 18c, then STAGE_ITAB_AUTO_OPT is not enabled. If STAGE_ITAB and
AUTO_OPTIMIZE are enabled in existing indexes, then you must disable AUTO_OPTIMIZE
before you enable STAGE_ITAB_AUTO_OPT. Starting with Oracle Database Release 19c,
STAGE_ITAB_AUTO_OPT is set to TRUE by default for automatic background optimize
merge. If you set STAGE_ITAB_AUTO_OPT to FALSE, the merge is run as part of SYNC
INDEX. It is recommended to set STAGE_ITAB and STAGE_ITAB_AUTO_OPT to TRUE
instead of using AUTO_OPTIMIZE.

Note:

In Oracle Database Release 21c, the procedures ADD_AUTO_OPTIMIZE
and REMOVE_AUTO_OPTIMIZE, and the views CTX_AUTO_OPTIMIZE_INDEXES,
CTX_USER_AUTO_OPTIMIZE_INDEXES and CTX_AUTO_OPTIMIZE_STATUS are
deprecated.

The following example creates a basic mystore storage preference and sets the value
of its STAGE_ITAB_AUTO_OPT storage attribute to TRUE:

exec ctx_ddl.create_preference('mystore', 'basic_storage');
exec ctx_ddl.set_attribute('mystore', 'stage_itab', 'TRUE');
exec ctx_ddl.set_attribute('mystore', 'stage_itab_auto_opt', 'TRUE');
exec ctx_ddl.set_attribute('mystore', 'stage_itab_parallel', 16);

Chapter 10
Optimizing Queries for Response Time

10-13

See Also:

Oracle Text Reference for more information about BASIC_STORAGE

10.3 Optimizing Queries for Throughput
When you optimize a query for throughput, the default behavior returns all hits in the
shortest time possible.

Here is how you can explicitly optimize queries for throughput:

• CHOOSE and ALL ROWS Modes: By default, you optimize queries with the
CHOOSE and ALL_ROWS modes. Oracle Text returns all rows in the shortest time
possible.

• FIRST_ROWS(n) Mode: In FIRST_ROWS(n) mode, the optimizer in Oracle
Database optimizes for fast response time by having the Text domain index return
score-sorted rows, if possible. This is the default behavior when you use the
FIRST_ROWS(n) hint.

If you want to optimize throughput with FIRST_ROWS(n), then use the
DOMAIN_INDEX_NO_SORT hint. Better throughput means that you are interested in
getting all query rows in the shortest time possible.

The following example achieves better throughput by not using the Text domain
index to return score-sorted rows. Instead, Oracle Text sorts the rows after all rows
that satisfy the CONTAINS predicate are retrieved from the index:

select /*+ FIRST_ROWS(10) DOMAIN_INDEX_NO_SORT */ pk, score(1), col from
ctx_tab
 where contains(txt_col, 'test', 1) > 0 order by score(1) desc;

See Also:

Oracle Database SQL Tuning Guide for more information about the query
optimizer and using hints such as FIRST_ROWS(n) and CHOOSE

10.4 Composite Domain Index in Oracle Text
The Composite Domain Index (CDI) feature of the Extensibility Framework in Oracle
Database enables structured columns to be indexed by Oracle Text. Therefore, both
text and one or more structured criteria can be satisfied by one single Oracle Text
index row source. Performance for the following types of queries is improved:

• Oracle Text query with structured criteria in the SQL WHERE clause

• Oracle Text query with structured ORDER BY criteria

• A combination of the previous two query types

As with concatenated b-tree indexes or bitmap indexes, applications experience
a slowdown in data manipulation language (DML) performance as the number of
FILTER BY and ORDER BY columns increases. Where SCORE-sort pushdown is optimized

Chapter 10
Optimizing Queries for Throughput

10-14

for response time, the structured sort or combination of SCORE and structured sort
pushdown is also optimized for response time, but not for throughput. However, using
DOMAIN_INDEX_SORT or FIRST_ROWS(n) hints to force the sort to be pushed into the CDI
while fetching the entire hitlist may result in poor query response time.

10.5 Performance Tuning with CDI
Because you can map a FILTER BY column to MDATA, you can optimize query
performances for equality searches by restricting the supported functionality of RANGE
and LIKE. However, Oracle does not recommend mapping a FILTER BY column to
MDATA if the FILTER BY column contains sequential values or has very high cardinality.
Doing so can result in a very long and narrow $I table and reduced $X performance.
One example of such a sequential column might be one that uses the DATE stamp. For
such sequential columns, mapping to SDATA is recommended.

Use the following hints to push or not push the SORT and FILTER BY predicates into the
CDI:

• DOMAIN_INDEX_SORT: The query optimizer tries to push the applicable sorting
criteria into the specified CDI.

• DOMAIN_INDEX_NO_SORT: The query optimizer tries not to push sorting criteria into
the specified CDI.

• DOMAIN_INDEX_FILTER(table name index name): The query optimizer tries to push
the applicable FILTER BY predicates into the specified CDI.

• DOMAIN_INDEX_NO_FILTER(table name index name): The query optimizer does not
try to push the applicable FILTER BY predicate(s) into the specified CDI.

Note:

The domain_index_filter hint does not force the query optimizer to use
CDI. Instead, if the CBO chooses to use the CDI, then it should also push the
filter predicate into the index. To force the query optimizer to choose the CDI
index, you additionally need to use the INDEX hint.

Example 10-1 Performance Tuning an Oracle Text Query with CDI Hints

The following example performs an optimized query on the books table.

SELECT bookid, pub_date, source FROM
 (SELECT /*+ domain_index_sort domain_index_filter(books books_ctxcdi) */
bookid, pub_date, source
 FROM books
 WHERE CONTAINS(text, 'aaa',1)>0 AND bookid >= 80
 ORDER BY PUB_DATE desc nulls last, SOURCE asc nulls last, score(1) desc)
 WHERE rownum < 20;

10.6 Solving Index and Query Bottlenecks by Using Tracing
Oracle Text includes a tracing feature that enables you to identify bottlenecks in
indexing and querying.

Chapter 10
Performance Tuning with CDI

10-15

Oracle Text provides a set of predefined traces. Each trace is identified by a unique
number. CTX_OUTPUT includes a symbol for this number.

Each trace measures a specific numeric quantity, such as the number of $I rows
selected during text queries.

Traces are cumulative counters, so usage is as follows:

1. The user enables a trace.

2. The user performs one or more operations. Oracle Text measures activities and
accumulates the results in the trace.

3. The user retrieves the trace value, which is the total value across all operations
done in step 2.

4. The user resets the trace to 0.

5. The user starts over at Step 2.

So, for instance, if in step 2 the user runs two queries, and query 1 selects 15 rows
from $I, and query 2 selects 17 rows from $I, then in step 3 the value of the trace is
32 (15 + 17).

Traces are associated with a session—they can measure operations that take place
within a single session, and, conversely, cannot make measurements across sessions.

During parallel synchronization or optimization, the trace profile is copied to the slave
sessions if and only if tracing is currently enabled. Each slave accumulates its own
traces and implicitly writes all trace values to the slave logfile before termination.

See Also:

Oracle Text Reference

10.7 Using Parallel Queries
In general, parallel queries are optimal for Decision Support System (DSS) and Online
Analysis Processing (OLAP). They are also optimal for analytical systems that have
large data collections, multiple CPUs with a low number of concurrent users, or Oracle
Real Application Clusters (Oracle RAC) nodes.

Oracle Text supports the following parallel queries:

• Parallel Queries on a Local Context Index

• Parallelizing Queries Across Oracle RAC Nodes

10.7.1 Parallel Queries on a Local Context Index
Parallel query refers to the parallelized processing of a local CONTEXT index. Based on
the parallel degree of the index and various system attributes, Oracle determines the
number of parallel query slaves to be spawned to process the index. Each parallel
query slave processes one or more index partitions. This default query behavior
applies to local indexes that are created in parallel.

Chapter 10
Using Parallel Queries

10-16

However, for heavily loaded systems with a high number of concurrent users, query
throughput is generally worse with parallel query; if the query is run serially, the top-N
hits can usually be satisfied by the first few partitions. For example, take the typical
top-N text queries with an ORDER BY partition key column:

select * from (
 select story_id from stories_tab where contains(...)>0 order by
publication_date desc)
 where rownum <= 10;

These text queries generally perform worse with a parallel query.

You can disable parallel querying after a parallel index operation with an ALTER INDEX
statement:

Alter index <text index name> NOPARALLEL;
Alter index <text index name> PARALLEL 1;

You can also enable or increase the parallel degree:

Alter index <text index name> parallel < parallel degree >;

10.7.2 Parallelizing Queries Across Oracle RAC Nodes
Oracle Real Application Clusters (Oracle RAC) provides an excellent solution for
improving query throughput. If you can get good performance from Oracle Text with a
light query load, then you can expect to get excellent scalability from Oracle RAC as
the query load increases.

You can achieve further improvements in Oracle Text performance by physically
partitioning the text data and Oracle Text indexes (using local partitioned indexes)
and ensuring that partitions are handled by separate Oracle RAC nodes. This way,
you avoid duplication of the cache contents across multiple nodes and, therefore,
maximize the benefit of Oracle RAC cache fusion.

In Oracle 10g Release 1, you must force each Oracle Text index partition into a
separate database file when the index is created. This enables the "remastering"
feature in Oracle RAC to force database file affinity, where each node concentrates on
a particular database file and, therefore, a particular Oracle Text index partition.

In Oracle 10g Release 2 and later, Oracle supports database object-level affinity,
which makes it much easier to allocate index objects ($I and $R tables) to particular
nodes.

Although Oracle RAC offers solutions for improving query throughput and
performance, it does not necessarily enable you to continue to get the same
performance improvements as you scale up the data volumes. You are more likely
to see improvements by increasing the amount of memory available to the system
global area (SGA) cache or by partitioning your data so that queries do not have to hit
all table partitions in order to provide the required set of query results.

10.8 Tuning Queries with Blocking Operations
If you issue a query with more than one predicate, you can cause a blocking operation
in the execution plan. For example, consider the following mixed query:

select docid from mytab where contains(text, 'oracle', 1) > 0
 AND colA > 5

Chapter 10
Tuning Queries with Blocking Operations

10-17

 AND colB > 1
 AND colC > 3;

Assume that all predicates are unselective and colA, colB, and colC have bitmap
indexes. The CBO in Oracle Database chooses the following execution plan:

TABLE ACCESS BY ROWIDS
 BITMAP CONVERSION TO ROWIDS
 BITMAP AND
 BITMAP INDEX COLA_BMX
 BITMAP INDEX COLB_BMX
 BITMAP INDEX COLC_BMX
 BITMAP CONVERSION FROM ROWIDS
 SORT ORDER BY
 DOMAIN INDEX MYINDEX

Because BITMAP AND is a blocking operation, Oracle Text must temporarily save the
rowid and score pairs returned from the Oracle Text domain index before it runs the
BITMAP AND operation.

Oracle Text attempts to save these rowid and score pairs in memory. However, when
the size of the result set exceeds the SORT_AREA_SIZE initialization parameter, Oracle
Text spills these results to temporary segments on disk.

Because saving results to disk causes extra overhead, you can improve performance
by increasing the SORT_AREA_SIZE parameter.

alter session set SORT_AREA_SIZE = <new memory size in bytes>;

For example, set the buffer to approximately 8 megabytes.

alter session set SORT_AREA_SIZE = 8300000;

See Also:

Oracle Database Performance Tuning Guide and Oracle Database
Reference for more information on SORT_AREA_SIZE

10.9 Frequently Asked Questions About Query Performance
This section answers some of the frequently asked questions about query
performance.

• What is Query Performance?

• What is the fastest type of text query?

• Should I collect statistics on my tables?

• How does the size of my data affect queries?

• How does the format of my data affect queries?

• What is a functional versus an indexed lookup?

• What tables are involved in queries?

• How is $R contention reduced?

Chapter 10
Frequently Asked Questions About Query Performance

10-18

• Does sorting the results slow a text-only query?

• How do I make an ORDER BY score query faster?

• Which memory settings affect querying?

• Does out-of-line LOB storage of wide base table columns improve performance?

• How can I make a CONTAINS query on more than one column faster?

• Is it OK to have many expansions in a query?

• How can local partition indexes help?

• Should I query in parallel?

• Should I index themes?

• When should I use a CTXCAT index?

• When is a CTXCAT index NOT suitable?

• What optimizer hints are available and what do they do?

10.9.1 What is query performance?
Answer: There are two measures of query performance:

• Response time: The time to get an answer to an individual query

• Throughput: The number of queries that can be run in any given time period; for
example, queries each second

These two measures are related, but they are not the same. In a heavily loaded
system, you want maximum throughput, whereas in a relatively lightly loaded system,
you probably want minimum response time. Also, some applications require a query to
deliver all hits to the user, whereas others only require the first 20 hits from an ordered
set. It is important to distinguish between these two scenarios.

10.9.2 What is the fastest type of Oracle Text query?
Answer: The fastest type of query meets the following conditions:

• Single CONTAINS clause

• No other conditions in the WHERE clause

• No ORDER BY clause

• Returns only the first page of results (for example, the first 10 or 20 hits)

10.9.3 Should I collect statistics on my tables?
Answer: Yes. Collecting statistics on your tables enables Oracle Text to do cost-based
analysis. This helps Oracle Text choose the most efficient execution plan for your
queries.

If your queries are always pure text queries (no structured predicate and no joins), you
should delete statistics on your Oracle Text index.

Chapter 10
Frequently Asked Questions About Query Performance

10-19

10.9.4 How does the size of my data affect queries?
Answer: The speed at which the Oracle Text index can deliver rowids is not affected
by the actual size of the data. Oracle Text query speed is related to the number of
rows that must be fetched from the index table, the number of hits requested, the
number of hits produced by the query, and the presence or absence of sorting.

10.9.5 How does the format of my data affect queries?
Answer: The format of the documents (plain ASCII text, HTML, or Microsoft Word)
should make no difference to query speed. The documents are filtered to plain text at
indexing time, not query time.

The cleanliness of the data makes a difference. Spell-checked and subedited text
for publication tends to have a much smaller total vocabulary (and therefore size of
the index table) than informal text such as email, which contains spelling errors and
abbreviations. For a given index memory setting, the extra text takes up memory,
creates more fragmented rows, and adversely affects query response time.

10.9.6 What is the difference between an indexed lookup and a
functional lookup

Answer: The kernel can query the Oracle Text index with an indexed lookup and a
functional lookup. In the indexed lookup, the first and most common case, the kernel
asks the Oracle Text index for all rowids that satisfy a particular text search. These
rowids are returned in batches.

In the functional lookup, the kernel passes individual rowids to the Oracle Text index
and asks whether that particular rowid satisfies a certain text criterion. The functional
lookup is most commonly used with a very selective structured clause, so that only a
few rowids must be checked against the Oracle Text index. Here is an example of a
search where a functional lookup is useful:

SELECT ID, SCORE(1), TEXT FROM MYTABLE

WHERE START_DATE = '21 Oct 1992' <- highly selective
AND CONTAINS (TEXT, 'commonword') > 0 <- unselective

Functional invocation is also used for an Oracle Text query that is ordered by a
structured column (for example date, price) and if the Oracle Text query contains
unselective words.

10.9.7 What tables are involved in queries?
Answer: All queries look at the index token table. The table’s name has the form
of DR$indexname$I and contains the list of tokens (TOKEN_TEXT column) and the
information about the row and word positions where the token occurs (TOKEN_INFO
column).

The row information is stored as internal docid values that must be translated into
external rowid values. The table that you use depends on the type of lookup:

• For functional lookups, use the $K table, DR$indexname$K. This simple Index
Organized Table (IOT) contains a row for each docid/rowid pair.

Chapter 10
Frequently Asked Questions About Query Performance

10-20

• For indexed lookups, use the $R table, DR$indexname$R. This table holds the
complete list of rowids in a BLOB column.

Starting with Oracle Database 12c Release 2 (12.2), a new storage attribute,
SMALL_R_ROW, was introduced to reduce the size of the $R row. It populates $R rows
on demand instead of creating 22 static rows, thereby reducing the Data Manipulation
Language contention. The contention happens when parallel insert, update, and delete
operations try to lock the same $R row.

You can easily find out whether a functional or indexed lookup is being used by
examining a SQL trace and looking for the $K or $R tables.

Note:

These internal index tables are subject to change from release to release.
Oracle recommends that you do not directly access these tables in your
application.

10.9.8 How is the $R table contention reduced?
The $R contention during base table delete and update operations has become a
recurring theme over the past few years. Currently, each $R index table has 22 static
rows, and each row can contain up to 200 million rowids. The contention happens
when the parallel insert, update, and delete operations try to lock the same $R row
for insert or delete operations. The following enhancements made during this release
reduce the contention:

• The maximum number of rowids that each $R row can contain is 70,000, which
translates to 1 MB of data stored on each row. To use this feature, you must set
the SMALL_R_ROW storage attribute.

• The $R rows are created on demand instead of just populating a pre-determined
number of rows.

10.9.9 Does sorting the results slow a text-only query?
Answer: Yes, it certainly does.

If Oracle Text does not sort, then it can return results as it finds them. This approach is
quicker when the application needs to display only a page of results at a time.

10.9.10 How do I make an ORDER BY score query faster?
Answer: Sorting by relevance (SCORE(n)) can be fast if you use the FIRST_ROWS(n)
hint. In this case, Oracle Text performs a high-speed internal sort when fetching from
the Oracle Text index tables.

Here is an example of this query:

 SELECT /*+ FIRST_ROWS(10) */ ID, SCORE(1), TEXT FROM mytable
 WHERE CONTAINS (TEXT, 'searchterm', 1) > 0
 ORDER BY SCORE(1) DESC;

Chapter 10
Frequently Asked Questions About Query Performance

10-21

It is important to note that, there must be no other criteria in the WHERE clause, other
than a single CONTAINS.

10.9.11 Which memory settings affect querying?
Answer: For querying, you want to strive for a large system global area (SGA). You
can set these SGA parameters in your Oracle Database initialization file. You can also
set these parameters dynamically.

The SORT_AREA_SIZE parameter controls the memory that is available for sorting ORDER
BY queries. You should increase the size of this parameter if you frequently order by
structured columns.

See Also:

• Oracle Database Administrator's Guide for more information on setting
SGA related parameters

• Oracle Database Performance Tuning Guide for more information on
memory allocation

• Oracle Database Reference for more information on setting the
SORT_AREA_SIZE parameter

10.9.12 Does out-of-line LOB storage of wide base table columns
improve performance?

Answer: Yes. Typically, a SELECT statement selects more than one column from your
base table. Because Oracle Text fetches columns to memory, it is more efficient to
store wide base table columns such as large objects (LOBs) out of line, especially
when these columns are rarely updated but frequently selected.

When LOBs are stored out of line, only the LOB locators need to be fetched to
memory during querying. Out-of-line storage reduces the effective size of the base
table. It makes it easier for Oracle Text to cache the entire table to memory, and so
reduces the cost of selecting columns from the base table, and speeds up text queries.

In addition, smaller base tables cached in memory enables more index table data to
be cached during querying, which improves performance.

10.9.13 How can I speed up a CONTAINS query on more than one
column?

Answer: The fastest type of query is one where there is only a single CONTAINS clause
and no other conditions in the WHERE clause.

Consider the following multiple CONTAINS query:

 SELECT title, isbn FROM booklist
 WHERE CONTAINS (title, 'horse') > 0
 AND CONTAINS (abstract, 'racing') > 0

Chapter 10
Frequently Asked Questions About Query Performance

10-22

You can get the same result with section searching and the WITHIN operator:

 SELECT title, isbn FROM booklist
 WHERE CONTAINS (alltext,
 'horse WITHIN title AND racing WITHIN abstract')>0

This query is completed more quickly than the single CONTAINS clause. To use a query
like this, you must copy all data into a single text column for indexing, with section tags
around each column's data. You can do that with PL/SQL procedures before indexing,
or you can use the USER_DATASTORE datastore during indexing to synthesize structured
columns with the text column into one document.

10.9.14 Can I have many expansions in a query?
Answer: Each distinct word used in a query requires at least one row to be fetched
from the index table. It is therefore best to keep the number of expansions down as
much as possible.

You should not use expansions such as wild cards, thesaurus, stemming, and fuzzy
matching unless they are necessary to the task. In general, a few expansions (for
example, 10 to 20) does not cause difficulty, but avoid a large number of expansions
(80 or 100) in a query. Use the query feedback mechanism to determine the number of
expansions for any particular query expression.

For wildcard and stem queries, you can avoid term expansion from query time to index
time by creating prefix, substring, or stem indexes. Query performance increases at
the cost of longer indexing time and added disk space.

Prefix and substring indexes can improve wildcard performance. You enable prefix
and substring indexing with the BASIC_WORDLIST preference. The following example
sets the wordlist preference for prefix and substring indexing. For prefix indexing, it
specifies that Oracle Text creates token prefixes between 3 and 4 characters long:

begin

ctx_ddl.create_preference('mywordlist', 'BASIC_WORDLIST');
ctx_ddl.set_attribute('mywordlist','PREFIX_INDEX','TRUE');
ctx_ddl.set_attribute('mywordlist','PREFIX_MIN_LENGTH', '3');
ctx_ddl.set_attribute('mywordlist','PREFIX_MAX_LENGTH', '4');
ctx_ddl.set_attribute('mywordlist','SUBSTRING_INDEX', 'YES');

end

Enable stem indexing with the BASIC_LEXER preference:

begin

ctx_ddl.create_preference('mylex', 'BASIC_LEXER');
ctx_ddl.set_attribute ('mylex', 'index_stems', 'ENGLISH');

end;

10.9.15 How can local partition indexes help?
Answer: You can create local partitioned CONTEXT indexes on partitioned tables.
This means that, on a partitioned table, each partition has its own set of index

Chapter 10
Frequently Asked Questions About Query Performance

10-23

tables. Effectively, the results from the multiple indexes are combined as necessary
to produce the final result set.

Use the LOCAL keyword to create the index:

CREATE INDEX index_name ON table_name (column_name)
INDEXTYPE IS ctxsys.context
PARAMETERS ('...')
LOCAL

With partitioned tables and local indexes, you can improve performance of the
following types of CONTAINS queries:

• Range Search on Partition Key Column: This query restricts the search to a
particular range of values on a column that is also the partition key.

• ORDER BY Partition Key Column: This query requires only the first n hits, and
the ORDER BY clause names the partition key.

See Also:

"Improved Response Time using Local Partitioned CONTEXT Index"

10.9.16 Should I query in parallel?
Answer: It depends on system load and server capacity. Even though parallel
querying is the default behavior for indexes created in parallel, it usually degrades
the overall query throughput on heavily loaded systems.

Parallel queries are optimal for Decision Support System (DSS) and Online Analysis
Processing (OLAP). They are also optimal for analytical systems that have large data
collections, multiple CPUs with a low number of concurrent users, or Oracle Real
Application Clusters (Oracle RAC) nodes.

See Also:

"Using Parallel Queries"

10.9.17 Should I index themes?
Answer: Indexing theme information with a CONTEXT index takes longer and also
increases the size of your index. However, theme indexes enable ABOUT queries to
be more precise by using the knowledge base. If your application uses many ABOUT
queries, it might be worthwhile to create a theme component to the index, despite the
extra indexing time and extra storage space required.

See Also:

"ABOUT Queries and Themes"

Chapter 10
Frequently Asked Questions About Query Performance

10-24

10.9.18 When should I use a CTXCAT index?
Answer: CTXCAT indexes work best when the text is in small chunks (just a few lines),
and you want searches to restrict or sort the result set according to certain structured
criteria, such as numbers or dates.

For example, consider an online auction site. Each item for sale has a short
description, a current bid price, and start and end dates for the auction. A user might
want to see all records with antique cabinet in the description, with a current bid price
less than $500. Because he is particularly interested in newly posted items, he wants
the results sorted by auction start time.

This search is not always efficient with a CONTAINS structured query on a CONTEXT
index. The response time can vary significantly depending on the structured and
CONTAINS clauses, because the intersection of structured and CONTAINS clauses or the
Oracle Text query ordering is computed during query time.

By including structured information within the CTXCAT index, you ensure that the query
response time is always in an optimal range regardless of search criteria. Because the
interaction between text and structured query is precomputed during indexing, query
response time is optimum.

10.9.19 When is a CTXCAT index NOT suitable?
Answer: There are differences in the time and space needed to create the index.
CTXCAT indexes take a bit longer to create, and they use considerably more disk space
than CONTEXT indexes. If you are tight on disk space, consider carefully whether CTXCAT
indexes are appropriate for you.

With query operators, you can use the richer CONTEXT grammar in CATSEARCH queries
with query templates. The older restriction of a single CATSEARCH query grammar no
longer holds.

10.9.20 What optimizer hints are available and what do they do?
Answer: To drive the query with a text or b-tree index, you can use the INDEX(table
column) optimizer hint in the usual way.

You can also use the NO_INDEX(table column) hint to disable a specific index.

The FIRST_ROWS(n) hint has a special meaning for text queries. Use it when you need
the first n hits to a query. When you use the DOMAIN_INDEX_SORT hint in conjunction
with ORDER BY SCORE(n) DESC, you tell the Oracle optimizer to accept a sorted set
from the Oracle Text index and to sort no farther.

See Also:

"Optimizing Queries for Response Time"

Chapter 10
Frequently Asked Questions About Query Performance

10-25

10.10 Frequently Asked Questions About Indexing
Performance

This section answers some of the frequently asked questions about indexing
performance.

• How long should indexing take?

• Which index memory settings should I use?

• How much disk overhead will indexing require?

• How does the format of my data affect indexing?

• Can parallel indexing improve performance?

• How can I improve index performance for creating local partitioned index?

• How can I tell how much indexing has completed?

10.10.1 How long should indexing take?
Answer: Indexing text is a resource-intensive process. The speed of indexing
depends on the power of your hardware. Indexing speed depends on CPU and I/O
capacity. With sufficient I/O capacity to read in the original data and write out index
entries, the CPU is the limiting factor.

Tests with Intel x86 (Core 2 architecture, 2.5GHz) CPUs have shown that Oracle
Text can index around 100 GB of text per CPU core, per day. This speed would be
expected to increase as CPU clock speeds increase and CPU architectures become
more efficient.

Other factors, such as your document format, location of your data, and the calls to
user-defined datastores, filters, and lexers, can affect your indexing speed.

10.10.2 Which index memory settings should I use?
Answer: You can set your index memory with the DEFAULT_INDEX_MEMORY and
MAX_INDEX_MEMORY system parameters. You can also set your index memory at runtime
with the CREATE INDEX memory parameter in the parameter string.

You should aim to set the DEFAULT_INDEX_MEMORY value as high as possible, without
causing paging.

You can also improve indexing performance by increasing the SORT_AREA_SIZE system
parameter.

Oracle recommends that you use a large index memory setting. Large settings,
even up to hundreds of megabytes, can improve the speed of indexing and reduce
fragmentation of the final indexes. However, if you set the index memory setting too
high, then memory paging reduces indexing speed.

With parallel indexing, each stream requires its own index memory. When dealing with
very large tables, you can tune your database system global area (SGA) differently
for indexing and retrieval. For querying, you want to get as much information cached
in the SGA block buffer cache as possible. So you should allocate a large amount

Chapter 10
Frequently Asked Questions About Indexing Performance

10-26

of memory to the block buffer cache. Because this approach does not make any
difference to indexing, you would be better off reducing the size of the SGA to make
more room for large index memory settings during indexing.

You set the size of SGA in your Oracle Database initialization file.

See Also:

• Oracle Text Reference to learn more about Oracle Text system
parameters

• Oracle Database Administrator's Guide for more information on setting
SGA related parameters

• Oracle Database Performance Tuning Guide for more information on
memory allocation

• Oracle Database Reference for more information on setting the
SORT_AREA_SIZE parameter

10.10.3 How much disk overhead will indexing require?
Answer: The overhead, the amount of space needed for the index tables, varies
between about 50 and 200 percent of the original text volume. Generally, larger
amounts of text result in smaller overhead, but many small records use more overhead
than fewer large records. Also, clean data (such as published text) requires less
overhead than dirty data such as emails or discussion notes, because the dirty data is
likely to include many misspelled and abbreviated words.

A text-only index is smaller than a combined text and theme index. A prefix and
substring index makes the index significantly larger.

10.10.4 How does the format of my data affect indexing?
Answer: You can expect much lower storage overhead for formatted documents such
as Microsoft Word files because the documents tend to be very large compared to the
actual text held in them. So 1 GB of Word documents might only require 50 MB of
index space, whereas 1 GB of plain text might require 500 MB, because there is ten
times as much plain text in the latter set.

Indexing time is less clear-cut. Although the reduction in the amount of text to be
indexed has an obvious effect, you must balance this against the cost of filtering the
documents with the AUTO_FILTER filter or other user-defined filters.

10.10.5 Can parallel indexing improve performance?
Answer: Parallel indexing can improve index performance when you have a large
amount of data and multiple CPUs.

Use the PARALLEL keyword to create an index with up to three separate indexing
processes, depending on your resources.

CREATE INDEX index_name ON table_name (column_name)
INDEXTYPE IS ctxsys.context PARAMETERS ('...') PARALLEL 3;

Chapter 10
Frequently Asked Questions About Indexing Performance

10-27

You can also use parallel indexing to create local partitioned indexes on partitioned
tables. However, indexing performance improves only with multiple CPUs.

Note:

Using PARALLEL to create a local partitioned index enables parallel queries.
(Creating a nonpartitioned index in parallel does not turn on parallel query
processing.)

Parallel querying degrades query throughput especially on heavily loaded
systems. Because of this, Oracle recommends that you disable parallel
querying after parallel indexing. To do so, use ALTER INDEX NOPARALLEL.

10.10.6 How can I improve index performance when I create a local
partitioned index?

Answer: When you have multiple CPUs, you can improve indexing performance by
creating a local index in parallel.

You can create a local partitioned index in parallel in the following ways:

• Use the PARALLEL clause with the LOCAL clause in the CREATE INDEX statement. In
this case, the maximum parallel degree is limited to the number of partitions.

• Create an unusable index, and then run the DBMS_PCLXUTIL.BUILD_PART_INDEX
utility. This method can result in a higher degree of parallelism, especially if you
have more CPUs than partitions.

The following is an example of the second method. The base table has three
partitions. You create a local partitioned unusable index first, and then run the
DBMS_PCLUTIL.BUILD_PART_INDEX, to build the three partitions in parallel (inter-partition
parallelism). Inside each partition, index creation occurs in parallel (intra-partition
parallelism) with a parallel degree of 2.

create index tdrbip02bx on tdrbip02b(text)
indextype is ctxsys.context local (partition tdrbip02bx1,
 partition tdrbip02bx2,
 partition tdrbip02bx3)
unusable;

exec dbms_pclxutil.build_part_index(3,2,'TDRBIP02B','TDRBIP02BX',TRUE);

10.10.7 How can I tell how much indexing has completed?
Answer: You can use the CTX_OUTPUT.START_LOG procedure to log output from
the indexing process. The filename is normally written to $ORACLE_HOME/ctx/log,
but you can change the directory by using the LOG_DIRECTORY parameter in
CTX_ADM.SET_PARAMETER.

Chapter 10
Frequently Asked Questions About Indexing Performance

10-28

See Also:

Oracle Text Reference to learn more about the CTX_OUTPUT package

10.11 Frequently Asked Questions About Updating the
Index

This section answers some of the frequently asked questions about updating your
index and related performance issues.

• How often should I index new or updated records?

• How can I tell when my indexes are getting fragmented?

• Does memory allocation affect index synchronization?

10.11.1 How often should I index new or updated records?
Answer: If you run reindexing with CTX_DDL.SYNC_INDEX less often, your indexes will
be less fragmented, and you will not have to optimize them as often.

However, your data becomes progressively more out-of-date, and that may be
unacceptable to your users.

Overnight indexing is acceptable for many systems. In this case, data that is less
than a day old is not searchable. Other systems use hourly, 10-minute, or 5-minute
updates.

See Also:

• Oracle Text Reference to learn more about using CTX_DDL.SYNC_INDEX

• "Managing DML Operations for a CONTEXT Index"

10.11.2 How can I tell when my indexes are fragmented?
Answer: The best way is to time some queries, run index optimization, and then time
the same queries (restarting the database to clear the SGA each time, of course). If
the queries speed up significantly, then optimization was worthwhile. If they do not,
then you can wait longer next time.

You can also use CTX_REPORT.INDEX_STATS to analyze index fragmentation.

Chapter 10
Frequently Asked Questions About Updating the Index

10-29

See Also:

• Oracle Text Reference to learn more about using the CTX_REPORT
package

• "Optimizing the Index"

10.11.3 Does memory allocation affect index synchronization?
Answer: Yes, the same way as for normal indexing. There are often far fewer records
to be indexed during a synchronize operation, so it is not usually necessary to provide
hundreds of megabytes of indexing memory.

Chapter 10
Frequently Asked Questions About Updating the Index

10-30

11
Searching Document Sections in Oracle
Text

You can use document sections in a text query application.

This chapter contains the following topics:

• About Oracle Text Document Section Searching

• HTML Section Searching with Oracle Text

• XML Section Searching with Oracle Text

11.1 About Oracle Text Document Section Searching
Section searching enables you to narrow text queries down to blocks of text within
documents. Section searching is useful when your documents have internal structure,
such as HTML and XML documents.

You can also search for text at the sentence and paragraph level.

This section contains these topics:

• Enabling Oracle Text Section Searching

• Oracle Text Section Types

• Oracle Text Section Attributes

11.1.1 Enabling Oracle Text Section Searching
The steps for enabling section searching for your document collection are:

1. Create a Section Group

2. Define Your Sections

3. Index Your Documents

4. Section Searching with the WITHIN Operator

5. Path Searching with INPATH and HASPATH Operators

6. Marking an SDATA Section to be Searchable

11.1.1.1 Create a Section Group
You enable section searching by defining section groups. You use one of the system-
defined section groups to create an instance of a section group. Choose a section
group that is appropriate for your document collection.

You use section groups to specify the type of document set that you have
and implicitly indicate the tag structure. For instance, to index HTML tagged

11-1

documents, use HTML_SECTION_GROUP. Likewise, to index XML tagged documents, use
XML_SECTION_GROUP.

Table 11-1 lists the different types of section groups.

Table 11-1 Types of Section Groups

Section Group Preference Description

NULL_SECTION_GROUP This is the default. Use this group type when you define no
sections or when you define only SENTENCE or PARAGRAPH
sections.

BASIC_SECTION_GROUP Use this group type for defining sections where the start and
end tags are of the form <A> and .

Note: This group type does not support input such as
unbalanced parentheses, comments tags, and attributes.
Use HTML_SECTION_GROUP for this type of input.

HTML_SECTION_GROUP Use this group type to index HTML documents and for
defining sections in HTML documents.

XML_SECTION_GROUP Use this group type to index XML documents and for
defining sections in XML documents.

AUTO_SECTION_GROUP Use this group type to automatically create a zone section
for each start-tag/end-tag pair in an XML document. As in
XML, the section names derived from XML tags are case-
sensitive.

Attribute sections are created automatically for XML tags
that have attributes. Attribute sections are named in the form
tag@attribute.

Stop sections, empty tags, processing instructions, and
comments are not indexed.

The following limitations apply to automatic section groups:

• You cannot add zone, field, or special sections to an
automatic section group.

• Automatic sectioning does not index XML document
types (root elements.)

• The length of the indexed tags, including prefix and
namespace, cannot exceed 64 bytes. Tags longer than
64 bytes are not indexed.

PATH_SECTION_GROUP Use this group type to index XML documents. This
preference behaves like AUTO_SECTION_GROUP.

The difference is that you can search paths with the INPATH
and HASPATH operators. Queries are also case-sensitive for
tag and attribute names.

NEWS_SECTION_GROUP Use this group to define sections in newsgroup-formatted
documents according to RFC 1036.

Note:

Documents sent to the HTML, XML, AUTO, and PATH sectioners must
begin with \s*<. The \s* represents zero or more whitespace characters.
Otherwise, the document is treated as a plain-text document, and no
sections are recognized.

Chapter 11
About Oracle Text Document Section Searching

11-2

You use the CTX_DDL package to create section groups and define sections as part of
section groups. For example, to index HTML documents, create a section group with
HTML_SECTION_GROUP:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
end;

Note:

Starting with Oracle Database 18c, use of NEWS_SECTION_GROUP is
deprecated in Oracle Text. Use external processing instead.
If you want to index USENET posts, then preprocess the posts to use
BASIC_SECTION_GROUP or HTML_SECTION_GROUP within Oracle Text. USENET
is rarely used commercially.

11.1.1.2 Define Your Sections
You define sections as part of the section group. The following example defines a zone
section called heading for all text within the HTML < H1> tag:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'heading', 'H1');
end;

Note:

If you are using AUTO_SECTION_GROUP or PATH_SECTION_GROUP to index an
XML document collection, then you do not have to explicitly define sections.
The system defines the sections during indexing.

See Also:

• "Oracle Text Section Types" for more information about sections

• "XML Section Searching with Oracle Text" for more information about
section searching with XML

11.1.1.3 Index Your Documents
When you index your documents, you specify your section group in the parameter
clause of CREATE INDEX.

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters('filter ctxsys.null_filter section group htmgroup');

Chapter 11
About Oracle Text Document Section Searching

11-3

11.1.1.4 Search Sections with the WITHIN Operator
When your documents are indexed, you can query within sections by using the WITHIN
operator. For example, to find all documents that contain the word Oracle within their
headings, enter the following query:

'Oracle WITHIN heading'

See Also:

Oracle Text Reference to learn more about using the WITHIN operator

11.1.1.5 Search Paths with INPATH and HASPATH Operators
When you use PATH_SECTION_GROUP, the system automatically creates XML sections.
In addition to using the WITHIN operator to enter queries, you can enter path queries
with the INPATH and HASPATH operators.

See Also:

• "XML Section Searching with Oracle Text" to learn more about using
these operators

• Oracle Text Reference to learn more about using the INPATH operator

11.1.1.6 Mark an SDATA Section to Be Searchable
To mark an SDATA section to be searchable and have a $Sdatatype table created, use
the CTX_DDL.SET_SECTION_ATTRIBUTE API.
The following tables are created:

• $SN – NUMBER

• $SD – DATE

• $SV – VARCHAR2, CHAR

• $SR – RAW

• $SBD – BINARY DOUBLE

• $SBF – BINARY FLOAT

• $ST – TIMESTAMP

• $STZ – TIMESTAMP WITH TIMEZONE

Chapter 11
About Oracle Text Document Section Searching

11-4

The following example creates a $SV table for this SDATA section to allow efficient
searching on that section.

ctx_ddl.add_sdata_section('sec_grp', 'sdata_sec', 'mytag', 'varchar');
ctx_ddl.set_section_attribute('sec_grp', 'sdata_sec', 'optimized_for',
'search');

The default value of this attribute is FALSE.

11.1.2 Oracle Text Section Types
All section types are blocks of text in a document. However, sections can differ in the
way that they are delimited and the way that they are recorded in the index. Sections
can be one of the following types:

• Zone Section

• Field Section

• Stop Section

• MDATA Section

• NDATA Section

• SDATA Section

• Attribute Section (for XML documents)

• Special Sections (sentence or paragraphs)

Table 11-2 shows which section types may be used with each kind of section group.

Table 11-2 Section Types and Section Groups

Section Group ZONE FIELD STOP MDATA NDATA SDATA ATTRIBUTE SPECIAL

NULL NO NO NO NO NO NO NO YES

BASIC YES YES NO YES YES YES NO YES

HTML YES YES NO YES YES YES NO YES

XML YES YES NO YES YES YES YES YES

NEWS YES YES NO YES YES YES NO YES

AUTO NO NO YES NO NO NO NO NO

PATH NO NO NO NO NO NO NO NO

11.1.2.1 Zone Section
A zone section is a body of text delimited by start and end tags in a document. The
positions of the start and end tags are recorded in the index so that any words in
between the tags are considered to be within the section. Any instance of a zone
section must have a start and an end tag.

For example, define the text between the <TITLE> and </TITLE> tags as a zone
section as follows:

<TITLE>Tale of Two Cities</TITLE>
It was the best of times...

Chapter 11
About Oracle Text Document Section Searching

11-5

Zone sections can nest, overlap, and repeat within a document.

When querying zone sections, you use the WITHIN operator to search for a term across
all sections. Oracle Text returns those documents that contain the term within the
defined section.

Zone sections are well suited for defining sections in HTML and XML documents. To
define a zone section, use CTX_DDL.ADD_ZONE_SECTION.

For example, assume you define the booktitle section as follows:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'booktitle', 'TITLE');
end;

After you index, you can search for all documents that contain the term Cities within
the booktitle section as follows:

'Cities WITHIN booktitle'

With multiple query terms such as (dog and cat) WITHIN booktitle, Oracle Text returns
those documents that contain cat and dog within the same instance of a booktitle
section.

Repeated Zone Sections

Zone sections can repeat. Each occurrence is treated as a separate section. For
example, if <H1> denotes a heading section, the heading can be repeated in the same
documents as follows:

<H1> The Brown Fox </H1>
<H1> The Gray Wolf </H1>

Assuming that these zone sections are named Heading, a query of Brown WITHIN
Heading returns this document. However, a query of (Brown and Gray) WITHIN
Heading does not.

Overlapping Zone Sections

Zone sections can overlap each other. For example, if and <I> denote two
different zone sections, they can overlap in a document as follows:

plain bold <I> bold and italic only italic </I> plain

Nested Zone Sections

Zone sections can be nested, as follows:

<TD> <TABLE><TD>nested cell</TD></TABLE></TD>

Using the WITHIN operator, you can write queries to search for text in sections within
sections. For example, assume that the BOOK1, BOOK2, and AUTHOR zone sections
occur as follows in the doc1 and doc2 documents:

doc1:

<book1> <author>Scott Tiger</author> This is a cool book to read.</book1>

doc2:

Chapter 11
About Oracle Text Document Section Searching

11-6

<book2> <author>Scott Tiger</author> This is a great book to read.</book2>

Consider the nested query. It returns only doc1.

'(Scott within author) within book1'

11.1.2.2 Field Section
A field section is similar to a zone section in that it is a region of text delimited
by start and end tags. Field sections are more efficient from zone sections and are
different than zone sections in that the region is indexed separately from the rest of the
document. You can create an unlimited number of field sections.

Because field sections are indexed differently, you can also get better query
performance over zone sections when a large number of documents are indexed.

Field sections are more suited to a single occurrence of a section in a document, such
as a field in a news header. Field sections can also be made visible to the rest of the
document.

Unlike zone sections, field sections have the following restrictions:

• They cannot overlap.

• They cannot repeat.

• They cannot nest.

Visible and Invisible Field Sections

By default, field sections are indexed as a sub-document separate from the rest of the
document. As such, field sections are invisible to the surrounding text and can only be
queried by explicitly naming the section in the WITHIN clause.

You can make field sections visible if you want the text within the field section to be
indexed as part of the enclosing document. You can query text within a visible field
section with or without the WITHIN operator.

The following example shows the difference using invisible and visible field sections.
The code defines a basicgroup section group of the BASIC_SECTION_GROUP type. It
then creates a field section in basicgroup called Author for the <A> tag. It also sets the
visible flag to FALSE to create an invisible section.

begin
ctx_ddl.create_section_group('basicgroup', 'BASIC_SECTION_GROUP');
ctx_ddl.add_field_section('basicgroup', 'Author', 'A', FALSE);
end;

Because the Author field section is not visible, to find text within the Author section,
you must use the WITHIN operator.

'(Martin Luther King) WITHIN Author'

A query of Martin Luther King without the WITHIN operator does not return instances
of this term in field sections. If you want to query text within field sections without
specifying WITHIN, you must set the visible flag to TRUE when you create the section,
as follows:

Chapter 11
About Oracle Text Document Section Searching

11-7

begin
ctx_ddl.add_field_section('basicgroup', 'Author', 'A', TRUE);
end;

Nested Field Sections

You cannot nest field sections. For example, if you define a field section to start with
<TITLE> and define another field section to start with <FOO>, you cannot nest the two
sections as follows:

<TITLE> dog <FOO> cat </FOO> </TITLE>

To work with nested sections, define them as zone sections.

Repeated Field Sections

Repeated field sections are allowed, but WITHIN queries treat them as a single section.
Here is an example of a repeated field section in a document:

<TITLE> cat </TITLE>
<TITLE> dog </TITLE>

The query dog and cat within title returns the document, even though these words
occur in different sections.

To have WITHIN queries distinguish repeated sections, define them as zone sections.

11.1.2.3 Stop Section
When you add a stop section to an automatic section group, the automatic section
indexing operation ignores the specified section in XML documents.

Note:

Adding a stop section causes no section information to be created in the
index. However, the text within a stop section is always searchable.

Adding a stop section is useful when your documents contain many low-information
tags. Adding stop sections also improves indexing performance with the automatic
section group.

You can add an unlimited number of stop sections.

Stop sections do not have section names and are not recorded in the section views.

11.1.2.4 MDATA Section
You use an MDATA section to reference user-defined metadata for a document. MDATA
sections can speed up mixed queries, and there is no limit to the number of MDATA
sections that can be returned in a query.

Consider the case where you want to query according to text content and document
type (magazine, newspaper, or novel). You can create an index with a column for text
and a column for the document type, and then perform a mixed query of this form.

Chapter 11
About Oracle Text Document Section Searching

11-8

In this case, search for all novels with the phrase Adam Thorpe (author of the novel
Ulverton):

SELECT id FROM documents
 WHERE doctype = 'novel'
 AND CONTAINS(text, 'Adam Thorpe')>0;

However, it is usually faster to incorporate the attribute (in this case, the document
type) in a field section, rather than using a separate column, and then using a single
CONTAINS query.

SELECT id FROM documents
 WHERE CONTAINS(text, 'Adam Thorpe AND novel WITHIN doctype')>0;

This approach has two drawbacks:

• Each time the attribute is updated, the entire text document must be reindexed,
resulting in increased index fragmentation and slower rates of data manipulation
language (DML) processing.

• Field sections tokenize the section value. Tokenization has several effects. Special
characters in metadata, such as decimal points or currency characters, are not
easily searchable; value searching (searching for John Smith but not John Smith,
Jr.) is difficult; multiword values are queried by phrase, which is slower than single-
token searching; and multiword values do not show up in browsed words, making
author browsing or subject browsing impossible.

For these reasons, using MDATA sections instead of field sections may be worthwhile.
MDATA sections are indexed like field sections, but you can add and remove metadata
values from documents without the need to reindex the document text. Unlike
field sections, MDATA values are not tokenized. Additionally, MDATA section indexing
generally takes up less disk space than field section indexing.

Starting with Oracle Database 12c Release 2 (12.2), the MDATA section can be
updatable or nonupdatable depending on the value of its read-only tag, which can
be set to either FALSE or TRUE.

Use CTX_DDL.ADD_MDATA_SECTION to add an MDATA section to a section group. By
default, the value of a read-only MDATA section is FALSE. It implies that you want
to permit calling CTX_DDL.ADD_MDATA() and CTX_DDL.REMOVE_MDATA() for this MDATA
section, otherwise you can set it to TRUE. When set to FALSE, the queries on the MDATA
section run less efficiently because a cursor must be opened on the index table to
track the deleted values for that MDATA section. This example adds an MDATA section
called AUTHOR and gives it the value Soseki Natsume (author of the novel Kokoro).

ctx_ddl.create.section.group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_mdata_section('htmgroup', 'author', 'Soseki Natsume');

You can change MDATA values with CTX_DDL.ADD_MDATA, and you can remove them
with CTX_DDL.REMOVE_MDATA. Also, MDATA sections can have multiple values. Only the
owner of the index may call CTX_DDL.ADD_MDATA and CTX_DDL.REMOVE_MDATA.

Neither CTX_DDL.ADD_MDATA nor CTX_DDL.REMOVE_MDATA is supported for CTXCAT and
CTXRULE indexes.

MDATA values are not passed through a lexer. Instead, all values undergo the following
simplified normalization:

• Leading and trailing whitespace on the value is removed.

Chapter 11
About Oracle Text Document Section Searching

11-9

• The value is truncated to 255 bytes.

• The value is indexed as a single value; if the value consists of multiple words, it is
not broken up.

• Case is preserved. If the document is dynamically generated, you can implement
case-insensitivity by uppercasing MDATA values and making sure to search only in
uppercase.

After you add MDATA metadata to a document, you can query for that metadata by
using the CONTAINS query operator:

SELECT id FROM documents
 WHERE CONTAINS(text, 'Tokyo and MDATA(author, Soseki Natsume)')>0;

This query is only successful if an AUTHOR tag has the exact value Soseki Natsume
(after simplified tokenization). Soseki or Natsume Soseki returns no rows.

The following are considerations for MDATA:

• MDATA values are not highlightable, do not appear in the output of
CTX_DOC.TOKENS, and do not appear when you enable FILTER PLAINTEXT.

• MDATA sections must be unique within section groups. For example, do not use FOO
as the name of an MDATA section and a zone or field section in the same section
group.

• Like field sections, MDATA sections cannot overlap or nest. An MDATA section is
implicitly closed by the first tag encountered. In this example:

<AUTHOR>Dickens Shelley Keats</AUTHOR>

The tag closes the AUTHOR MDATA section; as a result, this document has an
AUTHOR of 'Dickens', but not of 'Shelley' or 'Keats'.

• To prevent race conditions, each call to ADD_MDATA and REMOVE_MDATA locks out
other calls on that rowid for that index for all values and sections. However,
because ADD_MDATA and REMOVE_MDATA do not commit, it is possible for an
application to deadlock when calling them both. It is the application's responsibility
to prevent deadlocking.

See Also:

• "ALTER INDEX" in Oracle Text Reference

• "ADD_MDATA_SECTION" in Oracle Text Reference

• The "CONTAINS" query operators chapter of the Oracle Text Reference
for information on the MDATA operator

• The "CTX_DDL" package chapter of Oracle Text Reference for
information on adding and removing MDATA sections

Chapter 11
About Oracle Text Document Section Searching

11-10

11.1.2.5 NDATA Section
For fields containing data to be indexed for name searching, you can specify them
exclusively by adding NDATA sections to section groups of type BASIC_SECTION_GROUP,
HTML_SECTION_GROUP, or XML_SECTION_GROUP.

Users can synthesize textual documents, which contain name data, by using two
possible datastores: MULTI_COLUMN_DATASTORE or USER_DATASTORE. The following
example uses MULTI_COLUMN_DATASTORE to pick up relevant columns containing the
name data for indexing:

create table people(firstname varchar2(80), surname varchar2(80));
 insert into people values('John', 'Smith');
 commit;
 begin
 ctx_ddl.create_preference('nameds', 'MULTI_COLUMN_DATASTORE');
 ctx_ddl.set_attribute('nameds', 'columns', 'firstname,surname');
 end;
 /

This example produces the following virtual text for indexing:

<FIRSTNAME>
John
</FIRSTNAME>
<SURNAME>
Smith
</SURNAME>

You can then create NDATA sections for FIRSTNAME and SURNAME sections:

begin
 ctx_ddl.create_section_group('namegroup', 'BASIC_SECTION_GROUP');
 ctx_ddl.add_ndata_section('namegroup', 'FIRSTNAME', 'FIRSTNAME');
 ctx_ddl.add_ndata_section('namegroup', 'SURNAME', 'SURNAME');
end;
/

Next, create the index by using the datastore preference and section group preference
that you created earlier:

create index peopleidx on people(firstname) indextype is ctxsys.context
parameters('section group namegroup datastore nameds');

NDATA sections support both single- and multibyte data with character- and term-based
limitations. NDATA section data that is indexed is constrained as follows:

• The number of characters in a single, whitespace-delimited term: 511

• The number of whitespace-delimited terms: 255

• The total number of characters, including whitespaces: 511

11.1.2.6 SDATA Section
The value of an SDATA section is extracted from the document text like other sections,
but it is indexed as structured data, also referred to as SDATA. SDATA sections support
operations such as projection, range searches, and ordering. SDATA sections also
enable SDATA indexing of section data (such as embedded tags) and detail table or

Chapter 11
About Oracle Text Document Section Searching

11-11

function invocations. You can perform various combinations of text and structured
searches in one single SQL statement.

Use SDATA operators only as descendants of AND operators that also have non-SDATA
children. SDATA operators are meant to be used as secondary (checking or non-driving)
criteria. For example, "find documents with DOG that also have price > 5", rather than
"find documents with rating > 4".

Use CTX_DDL.ADD_SDATA_SECTION to add an SDATA section to a section group. Use
CTX_DDL.UPDATE_SDATA to update the values of an existing SDATA section. When
querying within an SDATA section, you must use the CONTAINS operator. The following
example creates a table called items, adds an SDATA section called my_sec_group,
and then queries SDATA in the section.

After you create an SDATA section, you can further modify the attributes of the SDATA
section by using CTX_DDL.SET_SECTION_ATTRIBUTE.

Create the items table:

CREATE TABLE items
(id NUMBER PRIMARY KEY,
 doc VARCHAR2(4000));

INSERT INTO items VALUES (1, '<description> Honda Pilot </description>
 <category> Cars & Trucks </category>
 <price> 27000 </price>');
INSERT INTO items VALUES (2, '<description> Toyota Sequoia </description>
 <category> Cars & Trucks </category>
 <price> 35000 </price>');
INSERT INTO items VALUES (3, '<description> Toyota Land Cruiser </description>
 <category> Cars & Trucks </category>
 <price> 45000 </price>');
INSERT INTO items VALUES (4, '<description> Palm Pilot </description>
 <category> Electronics </category>
 <price> 5 </price>');
INSERT INTO items VALUES (5, '<description> Toyota Land Cruiser Grill </
description>
 <category> Parts & Accessories </category>
 <price> 100 </price>');
COMMIT;

Add the my_sec_group SDATA section:

BEGIN
 CTX_DDL.CREATE_SECTION_GROUP('my_sec_group', 'BASIC_SECTION_GROUP');
 CTX_DDL.ADD_SDATA_SECTION('my_sec_group', 'category', 'category', 'VARCHAR2');
 CTX_DDL.ADD_SDATA_SECTION('my_sec_group', 'price', 'price', 'NUMBER');
END;

Create the CONTEXT index:

CREATE INDEX items$doc
 ON items(doc)
 INDEXTYPE IS CTXSYS.CONTEXT
 PARAMETERS('SECTION GROUP my_sec_group');

Run a query:

Chapter 11
About Oracle Text Document Section Searching

11-12

SELECT id, doc
 FROM items
 WHERE contains(doc, 'Toyota
 AND SDATA(category = ''Cars & Trucks'')
 AND SDATA(price <= 40000)') > 0;

Return the results:

 ID DOC
---- --
 2 <description> Toyota Sequoia </description>
 <category> Cars & Trucks </category>
 <price> 35000 </price>

Consider a document whose rowid is 1. This example updates the value of the price
SDATA section to a new value of 30000:

BEGIN
 SELECT ROWID INTO rowid_to_update FROM items WHERE id=1;

 CTX_DDL.UPDATE_SDATA('items$doc',
 'price',
 SYS.ANYDATA.CONVERTVARCHAR2('30000'),
 rowid_to_update);
END;

After executing the query, the price of Honda Pilot is changed from 27000 to 30000.

Note:

• You can also add an SDATA section to an existing index. Use the ADD
SDATA SECTION parameter of the ALTER INDEX PARAMETERS statement.
See the "ALTER INDEX" section of the Oracle Text Reference for more
information.

• Documents that were indexed before adding an SDATA section do not
reflect this new preference. Rebuild the index in this case.

See Also:

• The "CONTAINS" query section of the Oracle Text Reference for
information on the SDATA operator

• The "CTX_DDL" package section of the Oracle Text Reference
for information on adding and updating the SDATA sections
and changing their attributes by using the ADD_SDATA_SECTION,
SET_SECTION_ATTRIBUTE, and the UPDATE_SDATA procedures

Storage

For optimized_for search SDATA sections, use CTX_DDL.SET_ATTRIBUTE to specify the
storage preferences for the $Sdatatype tables and the indexes on these tables.

Chapter 11
About Oracle Text Document Section Searching

11-13

By default, large object (LOB) caching is turned on for $S* tables and off for $S*
indexes. These attributes are valid only on SDATA sections.

Query Operators

optimized_for search SDATA supports the following query operators:

• =

• <>

• between

• not between

• <=

• <

• >=

• >

• is null

• is not null

• like

• not like

11.1.2.7 Attribute Section
You can define attribute sections to query on XML attribute text. You can also have the
system automatically define and index XML attributes for you.

See Also:

"XML Section Searching with Oracle Text"

11.1.2.8 Special Sections
Special sections are not recognized by tags. Currently, sentence and paragraph are
the only supported special sections, and they enable you to search for a combination
of words within sentences or paragraphs.

The sentence and paragraph boundaries are determined by the lexer. For example,
BASIC_LEXER recognizes sentence and paragraph section boundaries as follows:

Table 11-3 Sentence and Paragraph Section Boundaries for BASIC_LEXER

Special Section Boundary

SENTENCE • WORD/PUNCT/WHITESPACE
• WORD/PUNCT/NEWLINE

PARAGRAPH • WORD/PUNCT/NEWLINE/WHITESPACE
• WORD/PUNCT/NEWLINE/NEWLINE

Chapter 11
About Oracle Text Document Section Searching

11-14

If the lexer cannot recognize the boundaries, then no sentence or paragraph sections
are indexed.

To add a special section, use the CTX_DDL.ADD_SPECIAL_SECTION procedure. For
example, the following code enables searches within sentences in HTML documents:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_special_section('htmgroup', 'SENTENCE');
end;

To enable zone and sentence searches, add zone sections to the group. The following
example adds the Headline zone section to the htmgroup section group:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_special_section('htmgroup', 'SENTENCE');
ctx_ddl.add_zone_section('htmgroup', 'Headline', 'H1');
end;

11.1.3 Oracle Text Section Attributes
Section attributes are the settings for the Oracle Text sections of tokenized type,
such as field, zone, hybrid, and SDATA. Section attributes improve query performance
because of the finer control at the section level, rather than at the document level or
index level.

By using the section attributes, you can specify:

• Lexer preferences on certain sections of a document. The preferences are useful
for part-name searches, when a section of a document containing a part name
needs to be lexed differently than the rest of the document. You can also use the
lexer preferences for handling multilanguage documents, where there is a section
to language mapping.

• A substring index only on certain sections of a document. This index helps reduce
the index size.

• Prefix tokens only on certain sections of a document. The prefix tokens improve
the performance of right-truncated queries, but can also cause the index size to
grow rapidly. Specifying prefix indexing only on certain sections provides improved
performance for the right-truncated queries on the specific sections, without rapidly
growing the size of the index.

• Stoplists for certain sections of a document.

• A new section type that combines the flexibility of zone sections with the
performance of field sections. Currently, zone sections have poor performance
compared with field sections. However, field sections do not support nested
section search.

To set section attributes, use the CTX_DDL.SET_SECTION_ATTRIBUTE procedure.

Table 11-4 lists the section attributes that you can use:

Chapter 11
About Oracle Text Document Section Searching

11-15

Table 11-4 Section Attributes

Section Attribute Description

visible Use the visible attribute for all section types that are
tokenized, except the zone section type. Thus, the visible
attribute can be used for field, hybrid, and SDATA section
types.

Specify TRUE to make the text visible within a document. The
text in the field section is indexed as part of the enclosing
document.

The default is FALSE. The text in the field section is indexed
separately from the rest of the document.

For the Field section type, the visible attribute overrides
the value specified in the CTX_DDL.ADD_FIELD_SECTION
procedure.

lexer Use the lexer attribute for all section types that are
tokenized (field, zone, hybrid, and SDATA sections).

Specify the lexer preference name to decide the tokenization
of an SDATA section. The default is NULL, and the lexer for
the main document is used.

The lexer preference must be valid at the time of calling the
set_section_attribute procedure. If you try to drop one
of the preferences when an existing field section refers to
a lexer preference, then the drop_preference procedure
fails.

wordlist Use the wordlist attribute for all section types that are
tokenized (field, zone, hybrid, and SDATA sections).

To enable section-specific prefix indexing and substring
indexing, specify the wordlist preference name for a section.
The default is NULL, and the wordlist for the main document
is used.

The wordlist preference must be valid at the time of calling
the set_section_attribute procedure. If you try to drop
one of the preferences when an existing field section
refers to a wordlist preference, then the drop_preference
procedure fails.

stoplist Use the stoplist attribute for all section types that are
tokenized (field, zone, hybrid, and SDATA sections).

To enable a section-specific stoplist, specify the stoplist
preference name. The default is NULL, and the stoplist for
the main document is used.

The stoplist preference must be valid at the time of calling
the set_section_attribute procedure. If you try to drop
one of the preferences when an existing field section
refers to a stoplist preference, then the drop_preference
procedure fails.

The following example enables the visible attribute of a Field section:

begin
ctx_ddl.create_section_group(‘fieldgroup', ‘BASIC_SECTION_GROUP');
ctx_ddl.add_field_section(‘fieldgroup', ‘author', ‘AUTHOR');

Chapter 11
About Oracle Text Document Section Searching

11-16

ctx_ddl.set_section_attribute(‘fieldgroup', ‘author', ‘visible', ‘true');
end;

See Also:

Oracle Text Reference for the syntax of CTX_DDL.SET_SECTION_ATTRIBUTE
procedure.

11.2 HTML Section Searching with Oracle Text
HTML has internal structure in the form of tagged text that you can use for section
searching. For example, define a section called headings for the <H1> tag, and then
search for terms only within these tags across your document set.

To query, you use the WITHIN operator. Oracle Text returns all documents that contain
your query term within the headings section. For example, if you want to find all
documents that contain the word oracle within headings, enter the following query:

'oracle within headings'

This section contains these topics:

• Creating HTML Sections

• Searching HTML Meta Tags

11.2.1 Creating HTML Sections
The following code defines a section group called htmgroup of type
HTML_SECTION_GROUP. It then creates a zone section in htmgroup called heading
identified by the <H1> tag:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'heading', 'H1');
end;

You can then index your documents as follows:

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters('filter ctxsys.null_filter section group htmgroup');

After indexing with the htmgroup section group, you can query within the heading
section by issuing this query:

'Oracle WITHIN heading'

11.2.2 Searching HTML Meta Tags
With HTML documents, you can also create sections for NAME/CONTENT pairs in <META>
tags. When you do so, you can limit your searches to text within CONTENT.

Consider an HTML document that has the following META tag:

<META NAME="author" CONTENT="ken">

Chapter 11
HTML Section Searching with Oracle Text

11-17

Create a zone section that indexes all CONTENT attributes for the META tag whose NAME
value is author:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'author', 'meta@author');
end

After indexing with the htmgroup section group, you can query the document:

'ken WITHIN author'

11.3 XML Section Searching with Oracle Text
Like HTML documents, XML documents have tagged text that you can use to define
blocks of text for section searching. You can search the contents of a section with the
WITHIN or INPATH operators.

The following sections describe the different types of XML searching:

• Automatic Sectioning

• Attribute Searching

• Document Type Sensitive Sections

• Path Section Searching

11.3.1 Automatic Sectioning
To set up your indexing operation to automatically create sections from XML
documents, use the AUTO_SECTION_GROUP section group. The system creates zone
sections for XML tags. Attribute sections are created for the tags that have attributes
and for the sections named in the form tag@attribute.

For example, the following statement uses the AUTO_SECTION_GROUP to create the
myindex index on a column containing the XML files:

CREATE INDEX myindex
ON xmldocs(xmlfile)
 INDEXTYPE IS ctxsys.context
PARAMETERS ('datastore ctxsys.default_datastore
 filter ctxsys.null_filter
 section group ctxsys.auto_section_group'
);

11.3.2 Attribute Searching
You can search XML attribute text in one of two ways:

• Creating Attribute Sections

Create attribute sections with CTX_DDL.ADD_ATTR_SECTION and then index with
XML_SECTION_GROUP. If you use AUTO_SECTION_GROUP when you index, attribute
sections are created automatically. You can query attribute sections with the
WITHIN operator.

Consider an XML file that defines the BOOK tag with a TITLE attribute:

Chapter 11
XML Section Searching with Oracle Text

11-18

<BOOK TITLE="Tale of Two Cities">
 It was the best of times.
</BOOK>

To define the title attribute as an attribute section, create an XML_SECTION_GROUP
and define the attribute section:

begin
ctx_ddl.create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_attr_section('myxmlgroup', 'booktitle', 'book@title');
end;

To index:

CREATE INDEX myindex
ON xmldocs(xmlfile)
INDEXTYPE IS ctxsys.context
PARAMETERS ('datastore ctxsys.default_datastore
 filter ctxsys.null_filter
 section group myxmlgroup'
);

To query the booktitle XML attribute section:

'Cities within booktitle'

• Searching Attributes with the INPATH Operator

Index with the PATH_SECTION_GROUP and query attribute text with the INPATH
operator.

See Also:

"Path Section Searching"

11.3.3 Document Type Sensitive Sections
For an XML document set that contains the <book> tag declared for different document
types, you may want to create a distinct book section for each document type to
improve search capability. The following scenario shows you how to create book
sections for each document type.

Assume that mydocname1 is declared as an XML document type (root element):

<!DOCTYPE mydocname1 ... [...

Within mydocname1,, the <book> element is declared. For this tag, you can create a
section named mybooksec1 that is sensitive to the tag's document type:

begin

ctx_ddl.create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_zone_section('myxmlgroup', 'mybooksec1', 'mydocname1(book)');

end;

Assume that mydocname2 is declared as another XML document type (root element):

Chapter 11
XML Section Searching with Oracle Text

11-19

<!DOCTYPE mydocname2 ... [...

Within mydocname2,, the <book> element is declared. For this tag, you can create a
section named mybooksec2 that is sensitive to the tag's document type:

begin

ctx_ddl.create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_zone_section('myxmlgroup', 'mybooksec2', 'mydocname2(book)');

end;

To query within the mybooksec1 section, use WITHIN:

'oracle within mybooksec1'

11.3.4 Path Section Searching
XML documents can have parent-child tag structures such as:

<A> <C> dog </C>

In this scenario, tag C is a child of tag B, which is a child of tag A.

With Oracle Text, you can search paths with PATH_SECTION_GROUP. This section group
enables you to specify direct parentage in queries, such as to find all documents that
contain the term dog in element C, which is a child of element B, and so on.

With PATH_SECTION_GROUP, you can also perform attribute value searching and
attribute equality testing.

The new operators associated with this feature are

• INPATH

• HASPATH

This section contains the following topics.

• Creating an Index with PATH_SECTION_GROUP

• Top-Level Tag Searching

• Any-Level Tag Searching

• Direct Parentage Searching

• Tag Value Testing

• Attribute Searching

• Attribute Value Testing

• Path Testing

• Section Equality Testing with HASPATH

11.3.4.1 Creating an Index with PATH_SECTION_GROUP
To enable path section searching, index your XML document set with
PATH_SECTION_GROUP. For example:

Create the preference.

Chapter 11
XML Section Searching with Oracle Text

11-20

begin
ctx_ddl.create_section_group('xmlpathgroup', 'PATH_SECTION_GROUP');
end;

Create the index.

CREATE INDEX myindex
ON xmldocs(xmlfile)
INDEXTYPE IS ctxsys.context
PARAMETERS ('datastore ctxsys.default_datastore
 filter ctxsys.null_filter
 section group xmlpathgroup'
);

When you create the index, you can use the INPATH and HASPATH operators.

11.3.4.2 Top-Level Tag Searching
To find all documents that contain the term dog in the top-level tag <A>:

dog INPATH (/A)

or

dog INPATH(A)

11.3.4.3 Any-Level Tag Searching
To find all documents that contain the term dog in the <A> tag at any level:

dog INPATH(//A)

This query finds the following documents:

<A>dog

and

<C><A>dog</C>

11.3.4.4 Direct Parentage Searching
To find all documents that contain the term dog in a B element that is a direct child of a
top-level A element:

dog INPATH(A/B)

This query finds the following XML document:

<A>My dog is friendly.

but it does not find:

<C>My dog is friendly.</C>

11.3.4.5 Tag Value Testing
You can test the value of tags. For example, the query:

Chapter 11
XML Section Searching with Oracle Text

11-21

dog INPATH(A[B="dog"])

Finds the following document:

<A>dog

But does not find:

<A>My dog is friendly.

11.3.4.6 Attribute Searching
You can search the content of attributes. For example, the query:

dog INPATH(//A/@B)

Finds the document:

<C> </C>

11.3.4.7 Attribute Value Testing
You can test the value of attributes. For example, the query:

California INPATH (//A[@B = "home address"])

Finds the document:

San Francisco, California, USA

But it does not find:

San Francisco, California, USA

11.3.4.8 Path Testing
You can test if a path exists with the HASPATH operator. For example, the query:

HASPATH(A/B/C)

finds and returns a score of 100 for the document

<A><C>dog</C>

without the query having to reference dog at all.

11.3.4.9 Section Equality Testing with HASPATH
You can use the HASPATH operator for section quality tests. For example, consider the
following query:

dog INPATH A

It finds:

<A>dog

but it also finds:

<A>dog park

Chapter 11
XML Section Searching with Oracle Text

11-22

To limit the query to the term dog and nothing else, you can use a section equality test
with the HASPATH operator. For example,

HASPATH(A="dog")

finds and returns a score of 100 only for the first document, not for the second
document.

See Also:

Oracle Text Reference to learn more about using the INPATH and HASPATH
operators

Chapter 11
XML Section Searching with Oracle Text

11-23

12
Using Oracle Text Name Search

Oracle Text provides a name search feature to handle inaccurate data and misspelled
names.

This chapter contains the following topics:

• Overview of Name Search

• Examples of Using Name Search

12.1 Overview of Name Search
Someone accustomed to the spelling rules of one culture can have difficulty applying
those same rules to a name from a different culture. Name searching (also called
name matching) provides a solution to match proper names that might differ in spelling
due to orthographic variation. It also enables you to search for somewhat inaccurate
data, such as might occur when a record's first name and surname are not properly
segmented. The main advantage of name searching is the ability to handle somewhat
inaccurate data.

12.2 Name Search Examples
The following example illustrates how to use NDATA sections to search on names:

drop table people;

create table people (
 full_name varchar2(2000)
);

insert into people values
('John Black Smith');

-- multi_column datastore is a convenient way of adding section tags around our
data
exec ctx_ddl.drop_preference('name_ds')
begin
 ctx_ddl.create_preference('name_ds', 'MULTI_COLUMN_DATASTORE');
 ctx_ddl.set_attribute('name_ds', 'COLUMNS', 'full_name');
end;
/

exec ctx_ddl.drop_section_group('name_sg');
begin
 ctx_ddl.create_section_group('name_sg', 'BASIC_SECTION_GROUP');
 ctx_ddl.add_ndata_section('name_sg', 'full_name', 'full_name');
end;
/
-- You can optionally load a thesaurus of nicknames
-- HOST ctxload -thes -name nicknames -file nicknames.txt

12-1

exec ctx_ddl.drop_preference('name_wl');
begin
 ctx_ddl.create_preference('name_wl', 'BASIC_WORDLIST');
 ctx_ddl.set_attribute('name_wl', 'NDATA_ALTERNATE_SPELLING', 'FALSE');
 ctx_ddl.set_attribute('name_wl', 'NDATA_BASE_LETTER', 'TRUE');
 -- Include the following line only if you have loaded the thesaurus
 -- file nicknames.txt:
 -- ctx_ddl.set_attribute('name_wl', 'NDATA_THESAURUS', 'nicknames');
 ctx_ddl.set_attribute('name_wl', 'NDATA_JOIN_PARTICLES',
 'de:di:la:da:el:del:qi:abd:los:la:dos:do:an:li:yi:yu:van:jon:un:sai:ben:al');
end;
/

create index people_idx on people(full_name) indextype is ctxsys.context
 parameters ('datastore name_ds section group name_sg wordlist name_wl');

-- Now you can do name searches with the following SQL:

var name varchar2(80);
exec :name := 'Jon Blacksmith'

select /*+ FIRST_ROWS */ full_name, score(1)
 from people
 where contains(full_name, 'ndata(full_name, '||:name||') ',1)>0
 order by score(1) desc
/

The following example illustrates a more complicated version of using NDATA sections
to search on names:

create table emp (
 first_name varchar2(30),
 middle_name varchar2(30),
 last_name varchar2(30),
 email varchar2(30),
 phone varchar2(30));

insert into emp values
('John', 'Black', 'Smith', 'john.smith@example.org', '123-456-7890');

-- user datastore procedure
create or replace procedure empuds_proc
 (rid in rowid, tlob in out nocopy clob) is
 tag varchar2(30);
 phone varchar2(30);
begin
 for c1 in (select FIRST_NAME, MIDDLE_NAME, LAST_NAME, EMAIL, PHONE
 from emp
 where rowid = rid)
 loop
 tag :='<email>';
 dbms_lob.writeappend(tlob, length(tag), tag);
 if (c1.EMAIL is not null) then
 dbms_lob.writeappend(tlob, length(c1.EMAIL), c1.EMAIL);
 end if;
 tag :='</email>';
 dbms_lob.writeappend(tlob, length(tag), tag);
 tag :='<phone>';
 dbms_lob.writeappend(tlob, length(tag), tag);
 if (c1.PHONE is not null) then
 phone := nvl(REGEXP_SUBSTR(c1.PHONE, '\d\d\d\d($|\s)'), ' ');

Chapter 12
Name Search Examples

12-2

 dbms_lob.writeappend(tlob, length(phone), phone);
 end if;
 tag :='</phone>';
 dbms_lob.writeappend(tlob, length(tag), tag);
 tag :='<fullname>';
 dbms_lob.writeappend(tlob, length(tag), tag);
 if (c1.FIRST_NAME is not null) then
 dbms_lob.writeappend(tlob, length(c1.FIRST_NAME), c1.FIRST_NAME);
 dbms_lob.writeappend(tlob, length(' '), ' ');
 end if;
 if (c1.MIDDLE_NAME is not null) then
 dbms_lob.writeappend(tlob, length(c1.MIDDLE_NAME), c1.MIDDLE_NAME);
 dbms_lob.writeappend(tlob, length(' '), ' ');
 end if;
 if (c1.LAST_NAME is not null) then
 dbms_lob.writeappend(tlob, length(c1.LAST_NAME), c1.LAST_NAME);
 end if;
 tag :='</fullname>';
 dbms_lob.writeappend(tlob, length(tag), tag);
 end loop;
 end;
 /

--list
show errors

exec ctx_ddl.drop_preference('empuds');
begin
 ctx_ddl.create_preference('empuds', 'user_datastore');
 ctx_ddl.set_attribute('empuds', 'procedure', 'empuds_proc');
 ctx_ddl.set_attribute('empuds', 'output_type', 'CLOB');
end;
/

exec ctx_ddl.drop_section_group('namegroup');
begin
 ctx_ddl.create_section_group('namegroup', 'BASIC_SECTION_GROUP');
 ctx_ddl.add_ndata_section('namegroup', 'fullname', 'fullname');
 ctx_ddl.add_ndata_section('namegroup', 'phone', 'phone');
 ctx_ddl.add_ndata_section('namegroup', 'email', 'email');
end;
/

-- Need to load nicknames thesaurus
-- ctxload -thes -name nicknames -file dr0thsnames.txt
-- You can find sample nicknames thesaurus file, dr0thsnames.txt, under
-- $ORACLE_HOME/ctx/sample/thes directory.

exec ctx_ddl.drop_preference('ndata_wl');
begin
 ctx_ddl.create_preference('NDATA_WL', 'BASIC_WORDLIST');
 ctx_ddl.set_attribute('NDATA_WL', 'NDATA_ALTERNATE_SPELLING', 'FALSE');
 ctx_ddl.set_attribute('NDATA_WL', 'NDATA_BASE_LETTER', 'TRUE');
 ctx_ddl.set_attribute('NDATA_WL', 'NDATA_THESAURUS', 'NICKNAMES');
 ctx_ddl.set_attribute('NDATA_WL', 'NDATA_JOIN_PARTICLES',
 'de:di:la:da:el:del:qi:abd:los:la:dos:do:an:li:yi:yu:van:jon:un:sai:ben:al');
end;
/

exec ctx_output.start_log('emp_log');
create index name_idx on emp(first_name) indextype is ctxsys.context

Chapter 12
Name Search Examples

12-3

parameters ('datastore empuds section group namegroup wordlist ndata_wl
 memory 500M');

exec ctx_output.end_log;

-- Now you can do name searches with the following SQL:
var name varchar2(80);
exec :name := 'Jon Blacksmith'

select first_name, middle_name, last_name, phone, email, scr from
 (select /*+ FIRST_ROWS */
 first_name, middle_name, last_name, phone, email, score(1) scr
 from emp
 where contains(first_name,
 'ndata(phone, '||:name||') OR ndata(email,'||:name||') OR
 ndata(fullname, '||:name||') ',1)>0
 order by score(1) desc
) where rownum <= 10;

Chapter 12
Name Search Examples

12-4

13
Working with a Thesaurus in Oracle Text

You can improve your query application with a thesaurus.

This chapter contains the following topics:

• Overview of Oracle Text Thesaurus Features

• Defining Terms in a Thesaurus

• Using a Thesaurus in a Query Application

• Loading a Custom Thesaurus and Issuing Thesaurus-Based Queries

• Augmenting the Knowledge Base with a Custom Thesaurus

• Linking New Terms to Existing Terms

• Example of Loading a Thesaurus with ctxload

• Example of Loading a Thesaurus with the CTX_THES.IMPORT_THESAURUS
PL/SQL procedure

• Compiling a Loaded Thesaurus

• About the Supplied Knowledge Base

13.1 Overview of Oracle Text Thesaurus Features
Users of your query application looking for information on a given topic might not know
which words have been used in documents that refer to that topic.

Oracle Text enables you to create case-sensitive or case-insensitive thesauruses that
define synonym and hierarchical relationships between words and phrases. You can
then retrieve documents that contain relevant text by expanding queries to include
similar or related terms as defined in the thesaurus.

You can create a thesaurus and load it into the system.

This section contains the following topics.

• Oracle Text Thesaurus Creation and Maintenance

• Using a Case-sensitive Thesaurus

• Using a Case-insensitive Thesaurus

• Default Thesaurus

• Supplied Thesaurus

Note:

Oracle Text thesaurus formats and functionality are compliant with both the
ISO-2788 and ANSI Z39.19 (1993) standards.

13-1

13.1.1 Oracle Text Thesaurus Creation and Maintenance
If you have the CTXAPP role, you can create, modify, delete, import, and export
thesauruses and thesaurus entries.

This section contains the following topics.

• CTX_THES Package: To maintain and browse your thesaurus programatically,
you can use the CTX_THES PL/SQL package. With this package, you can browse
terms and hierarchical relationships, add and delete terms, add and remove
thesaurus relations, and import and export thesauruses in and out of the thesaurus
tables.

• Thesaurus Operators: To expand query terms according to your loaded
thesaurus, you can use the thesaurus operators in the CONTAINS clause. For
example, use the SYN operator to expand a term such as dog to its synonyms:

'syn(dog)'

• ctxload Utility: You can use the ctxload utility to load thesauruses from a plain-
text file into the thesaurus tables, and to dump thesauruses from the tables into
output (or dump) files.

You can print the thesaurus dump files, you can use them as input for other
applications, and you can use them to load a thesaurus into the thesaurus tables
(useful when you want to use an existing thesaurus as the basis for a new
thesaurus).

WARNING:

To ensure sound security practices, Oracle recommends that you enter
the password for ctxload by using the interactive mode, which prompts
you for the user password. Oracle strongly recommends that you do not
enter a password on the command line.

Note:

You can also programatically import and export thesauruses in and out
of the thesaurus tables using the PL/SQL package CTX_THES procedures
IMPORT_THESAURUS and EXPORT_THESAURUS.

Refer to Oracle Text Reference for more information about these
procedures.

13.1.2 Using a Case-Sensitive Thesaurus
In a case-sensitive thesaurus, terms (words and phrases) are stored exactly as you
enter them. For example, if you enter a term in mixed case (using either the CTX_THES
package or a thesaurus load file), then the thesaurus stores the entry in mixed case.

Chapter 13
Overview of Oracle Text Thesaurus Features

13-2

Note:

To take full advantage of query expansions that result from a case-sensitive
thesaurus, your index must also be case-sensitive.

When loading a thesaurus, you can specify a case-sensitive thesaurus by using the
-thescase parameter.

When creating a thesaurus with either CTX_THES.CREATE_THESAURUS or
CTX_THES.IMPORT_THESAURUS, you can specify a case-sensitive thesaurus.

In addition, when you specify a case-sensitive thesaurus in a query, the thesaurus
lookup uses the query terms exactly as you enter them in the query. Therefore, queries
that use case-sensitive thesauruses allow for a higher level of precision in the query
expansion, which helps lookup when and only when you have a case-sensitive index.

For example, a case-sensitive thesaurus is created with different entries for the distinct
meanings of the terms Turkey (the country) and turkey (the type of bird). Using the
thesaurus, a query for Turkey expands to include only the entries associated with
Turkey.

13.1.3 Using a Case-Insensitive Thesaurus
In a case-insensitive thesaurus, terms are stored in all uppercase, regardless of the
case in which they were originally entered.

The ctxload program loads a thesaurus in case-insensitive mode by default.

When creating a thesaurus with either CTX_THES.CREATE_THESAURUS or
CTX_THES.IMPORT_THESAURUS, the thesaurus is created as case-insensitive by default.

In addition, when you specify a case-insensitive thesaurus in a query, the query terms
are converted to all uppercase for thesaurus lookup. As a result, Oracle Text is unable
to distinguish between terms that have different meanings when they are in mixed
case.

For example, a case-insensitive thesaurus is created with different entries for the two
distinct meanings of the term TURKEY (the country or the type of bird). Using the
thesaurus, a query for either Turkey or turkey is converted to TURKEY for thesaurus
lookup and then expanded to include all the entries associated with both meanings.

13.1.4 Default Thesaurus
If you do not specify a thesaurus by name in a query, by default, the thesaurus
operators use a thesaurus named DEFAULT. However, Oracle Text does not provide a
DEFAULT thesaurus.

As a result, if you want to use a default thesaurus for the thesaurus operators, you
must create a thesaurus named DEFAULT. You can create the thesaurus through any
of the thesaurus creation methods supported by Oracle Text:

• CTX_THES.CREATE_THESAURUS (PL/SQL)

• CTX_THES.IMPORT_THESAURUS (PL/SQL)

Chapter 13
Overview of Oracle Text Thesaurus Features

13-3

• ctxload utility

See Also:

Oracle Text Reference to learn more about using ctxload and the
CTX_THES package

13.1.5 Supplied Thesaurus
Although Oracle Text does not provide a default thesaurus, Oracle Text does supply
a thesaurus, in the form of a file that you load with ctxload, you can use to create a
general-purpose, English-language thesaurus.

You can use the thesaurus load file to create a default thesaurus for Oracle Text, or
you can use it as the basis for thesauruses tailored to a specific subject or range of
subjects.

• Supplied Thesaurus Structure and Content: The supplied thesaurus is similar
to a traditional thesaurus, such as Roget's Thesaurus, in that it provides a list of
synonymous and semantically related terms.

It provides additional value by organizing the terms into a hierarchy that defines
real-world, practical relationships between narrower terms and their broader terms.

Additionally, cross-references are established between terms in different areas of
the hierarchy.

• Supplied Thesaurus Location: The exact name and location of the thesaurus
load file depends on the operating system; however, the file is generally named
dr0thsus (with an appropriate extension for text files) and is generally located in
the following directory structure:

<Oracle_home_directory>
 <Oracle_Text_directory>
 sample
 thes

See Also:

• Oracle Database Installation Guide for the installation documentation
specific to your operating system for more information about the
directory structure of Oracle Text

• Oracle Text Reference to learn more about using ctxload and the
CTX_THES package

13.2 Defining Terms in a Thesaurus
You can create synonyms, related terms, and hierarchical relationships with a
thesaurus.

This section contains the following topics.

Chapter 13
Defining Terms in a Thesaurus

13-4

• Defining Synonyms

• Defining Hierarchical Relations

13.2.1 Defining Synonyms
If you have a thesaurus of computer science terms, then you might define a synonym
for the term XML as extensible markup language. This synonym enables queries on
either of these terms to return the same documents.

XML

SYN Extensible Markup Language

You can use the SYN operator to expand XML into its synonyms:

'SYN(XML)'

is expanded to:

'XML, Extensible Markup Language'

13.2.2 Defining Hierarchical Relations
If your document set consists of news articles, you can use a thesaurus to define a
hierarchy of geographical terms. Consider the following that describes a geographical
hierarchy for the state of California:

California
 NT Northern California
 NT San Francisco
 NT San Jose
 NT Central Valley
 NT Fresno
 NT Southern California
 NT Los Angeles

You can use the NT operator to expand a query on California:

'NT(California)'

is expanded to:

'California, Northern California, San Francisco, San Jose, Central Valley,
 Fresno, Southern California, Los Angeles'

The resulting hitlist shows all documents related to the state of California regions and
cities.

13.3 Using a Thesaurus in a Query Application
When you define a custom thesaurus, you can process queries more intelligently.
Because users of your application might not know which words represent a topic,
you can define synonyms or narrower terms for likely query terms. You can use the
thesaurus operators to expand your query into your thesaurus terms.

Chapter 13
Using a Thesaurus in a Query Application

13-5

There are two ways that you can enhance your query application with a custom
thesaurus so that you can process queries more intelligently. Each approach has its
advantages and disadvantages.

• Load your custom thesaurus and enter queries with thesaurus operators

• Augment the knowledge base with your custom thesaurus (English only) and use
the ABOUT operator to expand your query.

13.4 Loading a Custom Thesaurus and Issuing Thesaurus-
Based Queries

You can build and load a custom thesaurus.

The advantage of this method is that you can modify the thesaurus after indexing.

The limitation of this method is that you must use thesaurus expansion operators in
your query. Long queries can cause extra overhead in the thesaurus expansion and
slow your query down.

To build a custom thesaurus:

1. Create your thesaurus. See "Defining Terms in a Thesaurus".

2. Load the thesaurus with ctxload. The following example imports a thesaurus
named tech_doc from an import file named tech_thesaurus.txt:

ctxload -thes -name tech_doc -file tech_thesaurus.txt

3. At the prompt, enter your user name and password. To ensure security, do not
enter a password at the command line.

4. Use THES operators to query. For example, you can find all documents that contain
XML and its synonyms as defined in tech_doc:

'SYN(XML, tech_doc)'

13.5 Augmenting the Knowledge Base with a Custom
Thesaurus

You can add your custom thesaurus to a branch in the existing knowledge base. The
knowledge base is a hierarchical tree of concepts used for theme indexing, ABOUT
queries, and derived themes for document services.

When you augment the existing knowledge base with your new thesaurus, you query
with the ABOUT operator. The query implicitly expands to synonyms and narrower
terms. You do not query with the thesaurus operators.

To augment the existing knowledge base with your custom thesaurus:

1. Create your custom thesaurus, linking new terms to existing knowledge base
terms.

2. Load the thesaurus one of the following ways:

• Using the ctxload utility. See "Example of Loading a Thesaurus with ctxload".

Chapter 13
Loading a Custom Thesaurus and Issuing Thesaurus-Based Queries

13-6

• Using the PL/SQL procedure CTX_THES.IMPORT_THESAURUS. See "Example of
Loading a Thesaurus with the CTX_THES.IMPORT_THESAURUS PL/SQL
procedure".

3. Compile the loaded thesaurus with the ctxkbtc compiler.

4. Index your documents. By default the system creates a theme component for your
index.

5. Use the ABOUT operator to query. For example, to find all documents that are
related to the term politics, including any synonyms or narrower terms as defined
in the knowledge base, enter this query:

'about(politics)'

See Also:

• "Defining Terms in a Thesaurus" and "Linking New Terms to Existing
Terms"

• "Compiling a Loaded Thesaurus"

13.5.1 Advantages
Compiling your custom thesaurus with the existing knowledge base before indexing
enables faster and simpler queries with the ABOUT operator. Document services can
also take full advantage of the customized information to create theme summaries and
gists.

13.5.2 Limitations
Use of the ABOUT operator requires a theme component in the index, which requires
slightly more disk space. You must also define the thesaurus before indexing your
documents. If you change the thesaurus, you must recompile your thesaurus and
reindex your documents.

13.6 Linking New Terms to Existing Terms
When you add terms to the knowledge base, for best results in theme proving, Oracle
recommends that you links new terms to one of the categories in the knowledge base.

See Also:

Oracle Text Reference for more information about the supplied English
knowledge base

If you keep new terms separate from existing categories, fewer themes from new
terms are proven. The result is poor precision and recall with ABOUT queries, as well as
poor quality of gists and theme highlighting.

Chapter 13
Linking New Terms to Existing Terms

13-7

You link new terms to existing terms by making an existing term the broader term for
the new terms.

Consider the example: You purchase a medthes medical thesaurus containing a
hierarchy of medical terms. The following are the top four terms in the thesaurus:

• Anesthesia and Analgesia

• Anti-Allergic and Respiratory System Agents

• Anti-Inflammatory Agents, Antirheumatic Agents, and Inflammation Mediators

• Antineoplastic and Immunosuppressive Agents

To map these terms to the existing health and medicine branch in the knowledge base,
add the following entries to the medical thesaurus:

health and medicine
 NT Anesthesia and Analgesia
 NT Anti-Allergic and Respiratory System Agents
 NT Anti-Inflamammatory Agents, Antirheumatic Agents, and Inflamation Mediators
 NT Antineoplastic and Immunosuppressive Agents

13.7 Example of Loading a Thesaurus with ctxload
Assuming the medical thesaurus is in the med.thes file, you load the thesaurus as
medthes with ctxload as follows:

ctxload -thes -thescase y -name medthes -file med.thes -user ctxsys

When you enter the ctxload command line, you are prompted for the user
password. For best security practices, never enter the password at the command line.
Alternatively, you may omit -user and let ctxload prompt you for your user name and
password.

13.8 Example of Loading a Thesaurus with the
CTX_THES.IMPORT_THESAURUS PL/SQL procedure

This example creates a case-sensitive thesaurus named mythesaurus and imports the
thesaurus content in myclob into the Oracle Text thesaurus tables:

declare
 myclob clob;
begin
 myclob := to_clob('peking SYN beijing BT capital country NT beijing tokyo');
 ctx_thes.import_thesaurus(‘mythesaurus', myclob, ‘Y');
end;

The format of the thesaurus to be imported (myclob in this example) should be the
same as the format in the ctxload utility. If the format of the thesaurus to be imported
is not correct, then IMPORT_THESAURUS raises an exception.

13.9 Compiling a Loaded Thesaurus
To link the loaded medthes thesaurus to the knowledge base, use ctxkbtc as follows:

ctxkbtc -user ctxsys -name medthes

Chapter 13
Example of Loading a Thesaurus with ctxload

13-8

When you enter the ctxkbtc command line, you are prompted for the user password.
As with ctxload, for best security practices, do not enter the password at the
command line.

WARNING:

To ensure sound security practices, Oracle recommends that you enter the
password for ctxload and ctxkbtc in the interactive mode. This mode
prompts you for the user password. Oracle strongly recommends that you
do not enter a password on the command line.

13.10 About the Supplied Knowledge Base
Oracle Text supplies a knowledge base for English and French. The supplied
knowledge contains the information used to perform theme analysis. Theme analysis
includes theme indexing, ABOUT queries, and theme extraction with the CTX_DOC
package.

The knowledge base is a hierarchical tree of concepts and categories. It has six main
branches:

• Science and technology

• Business and economics

• Government and military

• Social environment

• Geography

• Abstract ideas and concepts

The supplied knowledge base is like a thesaurus in that it is hierarchical and contains
broader terms, narrower terms, and related terms. As such, to improve the accuracy of
theme analysis, augment the knowledge base with your industry-specific thesaurus by
linking new terms to existing terms.

See Also:

"Augmenting Knowledge Base with Custom Thesaurus"

You can also extend theme functionality to other languages by compiling a language-
specific thesaurus into a knowledge base.

See Also:

"Adding a Language-Specific Knowledge Base"

Chapter 13
About the Supplied Knowledge Base

13-9

Knowledge bases can be in any single-byte character set. Supplied knowledge bases
are in WE8ISO8859P1. You can store an extended knowledge base in another
character set such as US7ASCII.

This section contains the following topics:

• Adding a Language-Specific Knowledge Base

• Limitations for Adding Knowledge Bases

13.10.1 Adding a Language-Specific Knowledge Base
You can extend theme functionality to languages other than English or French by
loading your own knowledge base for any single-byte whitespace-delimited language,
including Spanish.

Theme functionality includes theme indexing, ABOUT queries, theme highlighting, and
the generation of themes, gists, and theme summaries with CTX_DOC.

You extend theme functionality by adding a user-defined knowledge base. For
example, you can create a Spanish knowledge base from a Spanish thesaurus.

To load your language-specific knowledge base:

1. Load your custom thesaurus by using ctxload.

2. Set NLS_LANG so that the language portion is the target language. The charset
portion must be a single-byte character set.

3. Compile the loaded thesaurus by using ctxkbtc and then enter the password for
-user when you are prompted. This statement compiles your language-specific
knowledge base from the loaded thesaurus.

ctxkbtc -user ctxsys -name my_lang_thes

To use this knowledge base for theme analysis during indexing and ABOUT queries,
specify the NLS_LANG language as the THEME_LANGUAGE attribute value for the
BASIC_LEXER preference.

See Also:

• "Example of Loading a Thesaurus with ctxload"

• "Compiling a Loaded Thesaurus"

13.10.2 Limitations for Adding Knowledge Bases
Here are the limitations for adding knowledge bases:

• Oracle supplies knowledge bases only in English and French. You must provide
your own thesaurus for any other language.

• You can add knowledge bases only for languages with single-byte character sets.
You cannot create a knowledge base for languages that can be expressed only
in multibyte character sets. If the database is a multibyte universal character

Chapter 13
About the Supplied Knowledge Base

13-10

set, such as UTF-8, you must still set the NLS_LANG parameter to a compatible
single-byte character set when you compile the thesaurus.

• Adding a knowledge base works best for whitespace-delimited languages.

• Only one knowledge base is allowed for each NLS_LANG language.

• Obtaining hierarchical query feedback information (for example, broader terms,
narrower terms, and related terms) does not work in languages other than English
and French. In other languages, the knowledge bases are derived entirely from
your thesauruses. In such cases, Oracle recommends that you obtain hierarchical
information directly from your thesauruses.

See Also:

Oracle Text Reference for more information about theme indexing,
ABOUT queries, using the CTX_DOC package, and the supplied English
knowledge base

Chapter 13
About the Supplied Knowledge Base

13-11

14
Using Faceted Navigation

Become familiar with the faceted navigation feature.

This chapter contains the following topics:

• About Faceted Navigation

• Defining Sections As Facets

• Querying Facets by Using the Result Set Interface

• Refining Queries by Using Facets As Filters

• Multivalued Facets

14.1 About Faceted Navigation
This feature implements group counts, also known as facets, which are frequently
used in e-commerce or catalog applications. In various applications, it is preferable not
only to display the list of hits returned by a query, but also to categorize the results.

For example, an e-commerce application wants to display all products matching a
query for the term management along with faceting information. The facets include
‘type of product’ (books or DVDs), ‘author’, and ‘date’. For each facet, the application
displays the unique values (books or DVDs) and their counts. You can quickly assess
that most of the product offerings of interest fall under the ‘books’ category. You can
further refine the search by selecting the ‘books’ value under ‘type of product’.

A group count is defined as the number of documents that have a certain value. If a
value is repeated within the same document, the document contributes a count of 1
to the total group count for the value. Group counts or facets are supported for SDATA
sections that use optimized_for search SDATA. To request a computation of facets
for a query, use the Result Set Interface.

14.2 Defining Sections As Facets
SDATA refers to structured data. Group counts or facets are supported for SDATA
sections that you create with the optimized_for attribute set to either ‘search’ or ‘sort
and search’. In the MULTI_COLUMN_DATASTORE preference, when data appears between
tags or columns that are specified as optimized_for search SDATA, the data is
automatically indexed as the facet data. Any data that does not match its declared
type is handled according to the same framework that currently handles indexing
errors for a specific row.

Examples

In the following statements, some tagged data is inserted into a VARCHAR2 column of a
table. You can later define SDATA sections to collect the data based on the tags used
here.

• Binary float or binary double with tag price:

14-1

insert into mytab values (1, 'red marble' <price>1.23</price>');

• Time stamp with tag T:

insert into mytab values (1,'blue marbles <T>2012-12-05T05:20:00</
T>');

In the following statements, a section group is created and various SDATA section
groups are added. The section definition includes the section group to which it
belongs, the name of the section, the tag to be looked for, and the data type.

exec ctx_ddl.create_section_group('sg','BASIC_SECTION_GROUP')
exec ctx_ddl.add_SDATA_section('sg','sec01','name', 'varchar2')
exec ctx_ddl.add_SDATA_section('sg','sec02','count', 'number')
exec ctx_ddl.add_SDATA_section('sg','sec03','date', 'date')
exec ctx_ddl.add_SDATA_section('sg','sec04','timestamp', 'timestamp')
exec ctx_ddl.add_SDATA_section('sg','sec05','new price',
'binary_double')
exec ctx_ddl.add_SDATA_section('sg','sec06','old price','binary_float')
exec ctx_ddl.add_SDATA_section('sg','sec07','timestamp','timestamp with
time zone')

The name given to the facet is ‘sec01’ and the ‘name’ tag is the actual tag name
that occurs inside the document that is to be indexed. The ‘date’, ‘timestamp’, and
‘timestamp with time zone’ data types require the input data to be in the standard
ISO format.

See Also:

Oracle Database Globalization Support Guide for more information about the
standard ISO formats

Example 14-1 Using Faceted Navigation

The following statements create a table named products:

drop table products;

create table products(name varchar2(60), vendor varchar2(60), rating
number, price number, mydate date);

The following statement inserts values into products:

insert all
 into products values ('cherry red shoes', 'first vendor', 5, 129,
sysdate)
 into products values ('bright red shoes', 'first vendor', 4, 109,
sysdate)
 into products values ('more red shoes', 'second vendor', 5, 129,
sysdate)
 into products values ('shoes', 'third vendor', 5, 109, sysdate)
select * from dual;

Chapter 14
Defining Sections As Facets

14-2

The following statements create a MULTI_COLUMN_DATASTORE preference named ds to
bring various other columns into the index (name) to be used as facets:

/*A MULTI_COLUMN_DATASTORE automatically adds tags by default so that
the text to be indexed looks like
'<name>cherry red shoes</name><vendor>first vendor</
vendor><rating> '*/

exec ctx_ddl.drop_preference ('ds')
exec ctx_ddl.create_preference('ds', 'MULTI_COLUMN_DATASTORE')
exec ctx_ddl.set_attribute ('ds', 'COLUMNS', 'name, vendor, rating,
price, mydate')

Note:

Oracle does not allow table columns with binary_float, binary_double,
timestamp, and timestamp with timezone data types. It is therefore
difficult to use such data types with MULTI_COLUMN_DATASTORE. You can still
create facets if the document contains tagged data for these data types.
Alternatively, you can convert 'timestamp' columns to 'date' and you can
store binary_float and binary_double as 'number'.

The following statements create a section group named sg and enable the
optimized_for search attribute for each column to be treated as a facet:

/* A Section Group is created to specify the data type of each column
(varchar2 is the default) and
how each column that is brought into the index should be used.*/

exec ctx_ddl.drop_section_group ('sg')
exec ctx_ddl.create_section_group ('sg', 'BASIC_SECTION_GROUP')

exec ctx_ddl.add_sdata_section ('sg', 'vendor', 'vendor', 'VARCHAR2')
exec ctx_ddl.add_sdata_section ('sg', 'rating', 'rating', 'NUMBER')
exec ctx_ddl.add_sdata_section ('sg', 'price', 'price', 'NUMBER')
exec ctx_ddl.add_sdata_section ('sg', 'mydate', 'mydate', 'DATE')

exec ctx_ddl.set_section_attribute('sg', 'vendor', 'optimized_for',
'SEARCH')
exec ctx_ddl.set_section_attribute('sg', 'rating', 'optimized_for',
'SEARCH')
exec ctx_ddl.set_section_attribute('sg', 'price', 'optimized_for',
'SEARCH')
exec ctx_ddl.set_section_attribute('sg', 'mydate', 'optimized_for',
'SEARCH')

Chapter 14
Defining Sections As Facets

14-3

The following statement creates an index on name and specifies the preferences by
using the PARAMETERS clause:

CREATE INDEX product_index ON products (name)
INDEXTYPE IS ctxsys.context
PARAMETERS ('datastore ds section group sg');

The following statements query for a product name, ‘red shoes’ and the facets for
computation can be specified. The count attribute shows the total number of items
that match the query for the product. The Result Set Interface specifies various
requirements, such as the top vendors that have the largest number of matching
items, the lowest available prices, and the latest arrivals:

set long 500000
set pagesize 0

variable displayrs clob;

declare
 rs clob;
begin
 ctx_query.result_set('product_index', 'red shoes',
'<ctx_result_set_descriptor>
 <count/>
 <group sdata="vendor" topn="5" sortby="count" order="desc">
 <count exact="true"/>
 </group>
 <group sdata="price" topn="3" sortby="value" order="asc">
 <count exact="true"/>
 </group>
 <group sdata="mydate" topn="3" sortby="value" order="desc">
 <count exact="true"/>
 </group>
 </ctx_result_set_descriptor>',
 rs);

/* Pretty-print the result set (rs) for display purposes.
It is not required if you are going to manipulate it in XML.*/

 select xmlserialize(Document XMLType(rs) as clob indent size=2)
into :displayrs from dual;
 dbms_lob.freetemporary(rs);
end;
/
select :displayrs from dual;

The following is output:

<ctx_result_set>

 <count>3</
count>

Chapter 14
Defining Sections As Facets

14-4

 <groups
sdata="VENDOR">
 <group value="first
vendor">
 <count>2</
count>
 </
group>

 <group value="second
vendor">
 <count>1</
count>
 </
group>

 </
groups>

 <groups
sdata="PRICE">
 <group
value="109">
 <count>1</
count>
 </
group>

 <group
value="129">
 <count>2</
count>
 </
group>

 </
groups>

 <groups
sdata="MYDATE">
 <group value="2017-12-06
05:44:54">
 <count>3</
count>
 </
group>

 </
groups>

</ctx_result_set>

Chapter 14
Defining Sections As Facets

14-5

14.3 Querying Facets by Using the Result Set Interface
Starting with Oracle Database Release 18c, the group-counting operation for a
specified list of facets is provided. You can obtain the group counts for each single
value by using the bucketby attribute with its value set to single. The topn, sortby,
and order attributes are also supported. Starting with Oracle Database Release 21c,
you can obtain the group counts for a range of numeric and variable character facet
values by using the range element, which is a child element of the group element.

bucketby Attribute

Valid attributes are single and custom.

• The 'single' mode produces a list of all unique values for the facet and a document
count for each value.

• The 'custom' mode produces document counts for a range of numeric values.

count Element (Single Count)

In the following example, a few rows are inserted into the mytab table. Some rows
have two values for the facet , and some rows have a single value.

begin
 insert into mytab values (1, '1.2345');
 insert into mytab values (2, '1.432');
 insert into mytab values (3, '2.4326');
 insert into mytab values (4, '2.432');
end;

Single counts show each unique value and the number of documents that have this
value:

<ctx_result_set>
 <groups sdata="SEC01">
 <group value="2.432"><count>2</count></group>
 <group value="1.234"><count>1</count></group>
 <group value="5"><count>1</count></group>
 <group value="6"><count>1</count></group>
 <group value="1.432"><count>1</count></group>
 </groups>
</ctx_result_set>

If document 1 is deleted, you see the following result:

<ctx_result_set>
 <groups sdata="SEC01">
 <group value="2.432"><count>2</count></group>
 <group value="6"><count>1</count></group>
 <group value="1.432"><count>1</count></group>
 </groups>
</ctx_result_set>

Chapter 14
Querying Facets by Using the Result Set Interface

14-6

range Element

The range element supports start, greaterthan, end, and lessthan attributes. The
start and greaterthan attributes specify the beginning value for the range. The end
and lessthan attributes specify the ending value for the range.

Ranges can overlap each other. For example, <range start="1" end="2"/> and
<range start="2" end="3"/>. Ranges can also be open ended. For example, you
can specify only the start value or the end value. If you do not specify the attributes of
the range element, all results are returned.

Example 14-2 Obtaining Group Counts for a Range of Facets

Create a table named products and populate it:

drop table products;

create table products(name varchar2(60), vendor varchar2(60), rating
number, price number);

insert all
 into products values ('cherry red shoes', 'first vendor', 5, 129)
 into products values ('bright red shoes', 'first vendor', 4, 109)
 into products values ('more red shoes', 'second vendor', 5, 129)
 into products values ('shoes', 'third vendor', 5, 109)
 into products values ('dark red shoes', 'fourth vendor', 3, 98)
 into products values ('light red shoes', 'fifth vendor', 2, 49)
select * from dual;

Create a MULTI_COLUMN_DATASTORE preference named ds to bring various other
columns into the index (name) to be used as facets:

exec ctx_ddl.drop_preference ('ds')
exec ctx_ddl.create_preference('ds', 'MULTI_COLUMN_DATASTORE')
exec ctx_ddl.set_attribute ('ds', 'COLUMNS', 'name, vendor, rating,
price')

Create a section group named sg and enable the optimized_for search attribute for
each column to be treated as a facet:

exec ctx_ddl.drop_section_group ('sg')
exec ctx_ddl.create_section_group ('sg', 'BASIC_SECTION_GROUP')

exec ctx_ddl.add_sdata_section ('sg', 'rating', 'rating', 'NUMBER')
exec ctx_ddl.add_sdata_section ('sg', 'price', 'price', 'NUMBER')
exec ctx_ddl.add_sdata_section ('sg', 'vendor', 'vendor', 'VARCHAR2')

exec ctx_ddl.set_section_attribute('sg', 'rating', 'optimized_for',
'SEARCH')
exec ctx_ddl.set_section_attribute('sg', 'price', 'optimized_for',
'SEARCH')
exec ctx_ddl.set_section_attribute('sg', 'vendor', 'optimized_for',
'SEARCH')

Chapter 14
Querying Facets by Using the Result Set Interface

14-7

Create an index on name and specify the preferences by using the parameters clause:

create index mytab_idx on products (name)
indextype is ctxsys.context
parameters ('datastore ds section group sg');

Query for a product name, ‘red shoes’ by setting the bucketby attribute to custom and
provide the values for the range element:

set long 500000
set pagesize 0

variable displayrs clob;

declare
 rs clob;
begin
 ctx_query.result_set('mytab_idx', 'red shoes',
'<ctx_result_set_descriptor>
 <group sdata="rating" bucketby="custom">
 <range start="1" lessthan="10"/>
 <range start="10" lessthan="20"/>
 <range start="20"/>
 </group>
 <group sdata="price" bucketby="custom">
 <range end="1"/>
 <range greaterthan="1" end="10"/>
 <range greaterthan="10" end="100"/>
 <range greaterthan="100"/>
 </group>
 <group sdata="vendor" bucketby="custom">
 <range greaterthan="a"/>
 <range start="s"/>
 <range end="f"/>
 </group>
 </ctx_result_set_descriptor>',
 rs);

 select xmlserialize(Document XMLType(rs) as clob indent size=2)
into :displayrs from dual;
 dbms_lob.freetemporary(rs);
end;
/
select :displayrs from dual;

The following is output:

<ctx_result_set>
 <groups sdata="RATING">
 <group value="range" start="1" lessthan="10">
 <count>5</count>
 </group>
 <group value="range" start="10" lessthan="20">

Chapter 14
Querying Facets by Using the Result Set Interface

14-8

 <count>0</count>
 </group>
 <group value="range" start="20" end="5">
 <count>0</count>
 </group>
 </groups>
 <groups sdata="PRICE">
 <group value="range" start="49" end="1">
 <count>0</count>
 </group>
 <group value="range" greaterthan="1" end="10">
 <count>0</count>
 </group>
 <group value="range" greaterthan="10" end="100">
 <count>2</count>
 </group>
 <group value="range" greaterthan="100" end="129">
 <count>3</count>
 </group>
 </groups>
 <groups sdata="VENDOR">
 <group value="range" greaterthan="a" end="second vendor">
 <count>5</count>
 </group>
 <group value="range" start="s" end="second vendor">
 <count>1</count>
 </group>
 <group value="range" start="fifth vendor" end="f">
 <count>0</count>
 </group>
 </groups>
</ctx_result_set>

topn Attribute

• Valid attribute values are non-negative numbers greater than zero.

• This attribute specifies that only top n facet values and their counts are returned.

• Group count determines the top n values to return unless the sortby attribute is
set to value. In that case, the values are sorted according to the data type and the
top n results of the sort are returned. The order attribute is respected for the sort.

• By default, the results are sorted by the group count in descending order.

• If a tie occurs in the count, the ordering of the facet values within this tie is not
guaranteed.

sortby and order Attributes

sortby supports count and value attributes.

• count sorts by group counts (numbers). This is the default.

• value sorts by value depending on the data type.

order supports ASC (ascending order) and DESC (descending order), which is the
default.

Chapter 14
Querying Facets by Using the Result Set Interface

14-9

If there is no selection, the default is count DESC.

This example shows the grouping of a number facet if bucketby is set to single,
where mytab_idx is the name of the index, text is the query, and group SDATA
requests the facets:

begin
 ctx_query.result_set('mytab_idx', 'text',
 '<ctx_result_set_descriptor>
 <group sdata="sec01" topn = "4" sortby = "value" order="asc"
bucketby="single">
 <count/>
 </group>
 </ctx_result_set_descriptor>'
 :rs);
end;

The following is a sample output showing that the values are listed in alphabetical
order because the sortby attribute is set to value instead of count. The values are
also displayed in ascending order (ABC to XYZ) because the order attribute is set to
asc. Only four values are displayed because the topn attribute is set to 4.

<ctx_result_set>
 <group SDATA="SEC01">
 <group value="ABC"><count>2</count>
 </group>
 <group value="DEF"><count>1</count>
 </group>
 <group value="GHI"><count>10</count>
 </group>
 <group value="XYZ"><count>1</count>
 </group>
</ctx_result_set>

14.4 Refining Queries by Using Facets As Filters
The facet implementation now supports CONTAINS queries with the standard set of
database comparison operators available for SDATA. The following example is based
on the ‘name’ varchar2 section. When you use it with numbers, do not use quotation
marks around the numeric term to be searched.

contains (text, 'SDATA(sec01 = "run")', 1) > 0
contains (text, 'SDATA(sec01 > "run")', 1) > 0
contains (text, 'SDATA(sec01 >= "run")', 1) > 0
contains (text, 'SDATA(sec01 < "run")', 1) > 0
contains (text, 'SDATA(sec01 <= "run")', 1) > 0
contains (text, 'SDATA(sec01 <> "run")', 1) > 0
contains (text, 'SDATA(sec01 != "run")', 1) > 0
contains (text, 'SDATA(sec01 between "run1" and "run2")', 1) > 0
contains (text, 'SDATA(sec01 not between "run1" and "run2")', 1) > 0
contains (text, 'SDATA(sec01 is null)', 1) > 0
contains (text, 'SDATA(sec01 is not null)', 1) > 0
contains (text, 'SDATA(sec01 like "%run")', 1) > 0

Chapter 14
Refining Queries by Using Facets As Filters

14-10

contains (text, 'SDATA(sec01 like "run%")', 1) > 0
contains (text, 'SDATA(sec01 like "%run%")', 1) > 0
contains (text, 'SDATA(sec01 not like "%run")', 1) > 0
contains (text, 'SDATA(sec01 not like "run%")', 1) > 0
contains (text, 'SDATA(sec01 not like "%run%")', 1) > 0

contains (text, 'SDATA(sec02 = 9)', 1) > 0
contains (text, 'SDATA(sec02 < 10)', 1) > 0
contains (text, 'SDATA(sec02 between 2 and 20)', 1) > 0

The comparison operators behave according to the current optimized_for search
SDATA behavior for the various data types.

14.5 Multivalued Facets
If multiple values are in an optimized for search SDATA section within the same
document, then each value is indexed if the value is enclosed in its own tag
corresponding to the SDATA section. Values that are not enclosed within separate
section tags, but that appear together within the same section tag, are treated as a
single value.

For example, in a document, <car>First Car, Second Car</car> is treated
as a single string of value ‘First Car, Second Car’. However, <car>First Car</
car><car>Second Car</car> is treated as two separate values for the document.

Chapter 14
Multivalued Facets

14-11

15
Using Result Set Interface

Become familiar with the XML and JSON Query Result Set Interface.

This chapter contains the following topics:

• Overview of the XML Query Result Set Interface

• Using the XML Query Result Set Interface

• Creating XML-Only Applications with Oracle Text

• Example of a Result Set Descriptor

• Identifying Collocates

• Overview of the JSON Result Set Interface

• Using the JSON Result Set Interface

15.1 Overview of the XML Query Result Set Interface
The XML Query Result Set Interface (RSI) enables you to perform queries in XML and
return results as XML, avoiding the SQL layer and requirement to work within SELECT
semantics. The RSI uses a simple Oracle Text query and an XML result set descriptor,
where the hitlist is returned in XML according to the result set descriptor. The XML
Query RSI uses SDATA sections for grouping and counting.

In applications, a page of search results can consist of many disparate elements, such
as metadata of the first few documents, total hit counts, and per-word hit counts. Each
extra call takes time to reparse the query and look up index metadata. Additionally,
some search operations, such as iterative query refinement, are difficult for SQL. If it is
even possible to construct a SQL statement to produce the desired results, such SQL
is usually suboptimal.

The XML Query RSI is able to produce the various kinds of data needed for a page of
search results all at once, thus improving performance by sharing overhead. The RSI
can also return data views that are difficult to express in SQL.

15.2 Using the XML Query Result Set Interface
The CTX_QUERY.RESULT_SET() and CTX_QUERY.RESULT_SET_CLOB_QUERY() APIs enable
you to obtain query results with a single query, rather than running multiple CONTAINS()
queries to achieve the same result. The two APIs are identical except that one uses
a VARCHAR2 query parameter, and the other uses a CLOB query parameter to allow for
longer queries.

For example, to display a search result page, you must first get the following
information:

• Top 20 hit list sorted by date and relevancy

• Total number of hits for the given Oracle Text query

15-1

• Counts group by publication date

• Counts group by author

Assume the following table definition for storing documents to be searched:

create table docs (
 docid number,
 author varchar2(30),
 pubdate date,
 title varchar2(60), doc clob);

Assume the following Oracle Text Index definition:

create index docidx on docs(doc) indextype is ctxsys.context
filter by author, pubdate, title
order by pubdate;

With these definitions, you can issue four SQL statements to obtain the four pieces of
information needed for displaying the search result page:

-- Get top 20 hits sorted by date and relevancy
select * from
 (select /*+ first_rows */ rowid, title, author, pubdate
 from docs where contains(doc, 'oracle',1)>0
 order by pubdate desc, score(1) desc)
where rownum < 21;

-- Get total number of hits for the given Oracle Text query
select count(*) from docs where contains(doc, 'oracle',1)>0;

-- Get counts group by publication date
select pubdate, count(*) from docs where contains(doc, 'oracle',1)>0
group by pubdate;

-- Get counts group by author
select author, count(*) from docs where contains(doc, 'oracle',1)>0 group by
author;

As you can see, using separate SQL statements results in a resource-intensive
query, because you run the same query four times. However, if you use
CTX_QUERY.RESULT_SET(), then you can enter all of the information in one single
Oracle Text query:

declare
 rs clob;
begin
 dbms_lob.createtemporary(rs, true, dbms_lob.session);
 ctx_query.result_set('docidx', 'oracle text performance tuning', '
 <ctx_result_set_descriptor>
 <count/>
 <hitlist start_hit_num="1" end_hit_num="20" order="pubDate desc,
 score desc">
 <score/>
 <rowid/>
 <sdata name="title"/>
 <sdata name="author"/>
 <sdata name="pubDate"/>
 </hitlist>
 <group sdata="pubDate">
 <count/>
 </group>

Chapter 15
Using the XML Query Result Set Interface

15-2

 <group sdata="author">
 <count/>
 </group>
 </ctx_result_set_descriptor>
 ', rs);

-- Put in your code here to process the Output Result Set XML
 dbms_lob.freetemporary(rs);
exception
 when others then
 dbms_lob.freetemporary(rs);
 raise;
end;
/

The result set output is XML that as the information required to construct the search
result page:

<ctx_result_set>
 <hitlist>
 <hit>
 <score>90</score>
 <rowid>AAAPoEAABAAAMWsAAC</rowid>
 <sdata name="TITLE"> Article 8 </sdata>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
 <hit>
 <score>86</score>
 <rowid>AAAPoEAABAAAMWsAAG</rowid>
 <sdata name="TITLE"> Article 20 </sdata>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
 <hit>
 <score>78</score>
 <rowid>AAAPoEAABAAAMWsAAK</rowid>
 <sdata name="TITLE"> Article 17 </sdata>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
 <hit>
 <score>77</score>
 <rowid>AAAPoEAABAAAMWsAAO</rowid>
 <sdata name="TITLE"> Article 37 </sdata>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
...
 <hit>
 <score>72</score>
 <rowid>AAAPoEAABAAAMWsAAS</rowid>
 <sdata name="TITLE"> Article 56 </sdata>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
 </hitlist>

 <count>100</count>

 <groups sdata="PUBDATE">

Chapter 15
Using the XML Query Result Set Interface

15-3

 <group value="2001-01-01 00:00:00"><count>25</count></group>
 <group value="2001-01-02 00:00:00"><count>50</count></group>
 <group value="2001-01-03 00:00:00"><count>25</count></group>
 </groups>

 <groups sdata="AUTHOR">
 <group value="John"><count>50</count></group>
 <group value="Mike"><count>25</count></group>
 <group value="Steve"><count>25</count></group>
 </groups>

</ctx_result_set>

See Also:

Oracle Text Reference for syntax details and more information on
CTX_QUERY.RESULT_SET

15.3 Creating XML-Only Applications with Oracle Text
Although it is common to create applications by using SQL SELECT statements with
the CONTAINS clause, it is not always the most efficient method. An alternative method
is to use the XML-based RSI. The advantage is that it is easy to obtain summary
information (such as the total number of hits) without fetching all results of the query.

To use the RSI, you specify a Result Set Descriptor (RSD). The RSD declares the
information to be returned, which can consist of:

• The total result count of the query

• A hitlist

• Summary information over SDATA fields

In turn, the hitlist consists of repeating elements, each of which may contain:

• The rowid of the hit

• SDATA fields from the hit

See Also:

"Example of a Result Set Descriptor"

15.4 Example of a Result Set Descriptor
This example shows how to use an RSD. The following example requests a hitlist with
the top 10 hits (ordered by score) and the count of the total number of results.

<ctx_result_set_descriptor>
 <hitlist start_hit_num="1" end_hit_num="10" order="SCORE DESC">
 <rowid />
 <sdata name="title" />

Chapter 15
Creating XML-Only Applications with Oracle Text

15-4

 <sdata name="author" />
 <sdata name="articledate" />
 <snippet radius="20" max_length="160" starttag="" endtag="</
b>" />
 </hitlist>
 <count />
</ctx_result_set_descriptor>

For each hit, you are requesting the rowid (which you could use to fetch further
information about the row, if necessary), the contents of the SDATA fields or the title,
author, and articledate columns, and a snippet (which is a short summary with
keywords highlighted, in this case by ...).

15.5 Identifying Collocates
Collocates are a group of words that frequently co-occur in a document. They provide
a quick summary of other keywords or concepts that are related to a specified
keyword. You can then use the other keywords in queries to fetch more relevant
results.

You identify collocates based on a search query. For each document that is returned
by the query, snippets of text around the search keyword are automatically extracted.
Next, the words in these snippets are correlated to the query keyword by using
statistical measures and, depending on how frequently the extracted words occur in
the overall document set, a score is assigned to each returned co-occurring word.

Use the RSI to identify collocates. You can specify the number of co-occurring words
that must be returned by the query. You can also specify whether to identify collocates
that are common nouns or collocates that emphasize uniqueness. Synonyms of the
specified search keyword can also be returned.

Note:

Collocates are supported only for BASIC_LEXER.

To identify collocates:

1. Create the document set table for the query.

2. Create an Oracle Text index on the document set table.

3. Use the XML Query RSI to define and input a query that identifies collocates.
Include the collocates element with the required attributes.

Example 15-1 Identifying Collocates Within a Document Set

In this example, the keyword used to query documents in a data set is ‘Nobel.’ Oracle
Text searches for occurrences of this keyword in the document set. In addition to the
result set, use collocates to search for five common words that co-occur with ‘Nobel.’
Use the max_words attribute to identify the number of collocates to be generated. Set
the use_tscore attribute to TRUE to specify that common words must be identified for
the collocates. The number of words to pick on either side of the keyword in order to
identify collocates is 10.

Chapter 15
Identifying Collocates

15-5

The following is the input RSI descriptor that is used to determine collocates:

declare
rsd varchar2(32767);
 begin
 ctx_query.result_set('tdrbnbsan01idx', 'nobel',
 <ctx_result_set_descriptor>
 <collocates radius = "10" max_words="5" use_tscore="TRUE"/>
 </ctx_result_set_descriptor>',
 :rs);
 end;
/

Here is the output result set for the query:

<ctx_result_set>
<collocates>
 <collocation>
 <word>PRIZE</word>
 <score>82</score>
 </collocation>
 <collocation>
 <word>LAUREATE</word>
 <score>70</score>
 </collocation>
 <collocation>
 <word>NOBELPRIZE</word>
 <score>44</score>
 </collocation>
 <collocation>
 <word>AWARD</word>
 <score>42</score>
 </collocation>
 <collocation>
 <word>ORG</word>
 <score>41</score>
 </collocation
</collocates>
</ctx_result_set>

For ‘Nobel,’ the top five common collocates, in order, are Prize, Laureate, Nobelprize,
award, and org. Each word is assigned a score that indicates the frequency of
occurrence. Collocates are always returned after any hitlist elements are returned.

If you set use_tscore to FALSE in the same example, then less common (unique)
words are identified. Here is the output result set:

<ctx_result_set>
<collocates>
 <collocation>
 <word>MOLA</word>
 <score>110</score>
 </collocation>
 <collocation>

Chapter 15
Identifying Collocates

15-6

 <word>BISMARCK</word>
 <score>89</score>
 </collocation>
 <collocation>
 <word>COLONNA</word>
 <score>67</score>
 </collocation>
 <collocation>
 <word>LYNEN</word>
 <score>55</score>
 </collocation>
 <collocation>
 <word>TIMBERGEN</word>
 <score>25</score>
 </collocation>
 </collocates>
</ctx_result_set>

See Also:

Oracle Text Reference for information about attributes used with collocates

15.6 Overview of the JSON Result Set Interface
The JSON Result Set Interface (RSI) enables you to perform queries in JSON and
return results as JSON, avoiding the SQL layer and requirement to work within SELECT
semantics.

The RSI uses a simple Oracle Text query or facets and a JSON result set descriptor,
where the hitlist is returned in one single CLOB of JSON according to the result set
descriptor. The JSON RSI uses SDATA sections for grouping and counting.

In applications, a page of search results can consist of many disparate elements, such
as metadata of the first few documents, total hit counts, and per-word hit counts. Each
extra call takes time to reparse the query and look up index metadata. Additionally,
some search operations, such as iterative query refinement, are difficult for SQL. If it is
even possible to construct a SQL statement to produce the desired results, such SQL
is usually suboptimal.

The JSON RSI is able to produce the various kinds of data needed for a page of
search results all at once, thus improving performance by sharing overhead. The RSI
can also return data views that are difficult to express in SQL.

The JSON RSI supports queries based on CONTEXT and JSON search indexes. You
can also perform other aggregations in facets like COUNT, MIN, and MAX apart from the
supported group counts. AVG and SUM are supported for numeric facets.

15.7 Using the JSON Result Set Interface
The CTX_QUERY.RESULT_SET() and CTX_QUERY.RESULT_SET_CLOB_QUERY() APIs enable
you to obtain query results with a single query, rather than running multiple CONTAINS()
queries to achieve the same result. The two APIs are identical except that one uses

Chapter 15
Overview of the JSON Result Set Interface

15-7

a VARCHAR2 query parameter, and the other uses a CLOB query parameter to allow for
longer queries.

Usage

The input Result Set Descriptor (RSD) query consists of the following parts:

• $query - Use $query to specify a search query, the path constraints, and
additional path based filter conditions. The $query part is supported only when
a JSON search index exists on the column.

• $search - Use $search to display the score ranked search results and their
count. For a non-JSON Oracle Text full-text index, you can also specify the SDATA
sections to project for the search results.

• $facet - Use $facet to specify the facets for various paths of a JSON document
or SDATA sections of a context indexed document. Facets bucketed by a single
unique value and facets per user specified range buckets are supported. The facts
can also be one of the aggregations like COUNT, MIN, etc.

The result set output is of the following format:

{
 "$count" : number ,
 "$hit" :
 [
 {
 "score" : <search_score>,
 "rowid" : <rowid>,
 "project" : {"<sdata_name>" : <sdata_value>, … }
 },
 …
],
"$facets" :
 [
 {"<field>" : [..., { "value" : <value_i>, "$uniqueCount" :
<group_count_i>}, ...]},
 {"<field>" : [..., { "bucket" : <bucket_object_i>, "<op>" :
<group_count_i>}, ...]},
 {"<field>" : { "<op>" : <actual_value of the aggregation> } },
 …
]
}

See Also:

Oracle Text Reference for more information about CTX_QUERY.RESULT_SET
procedure

Chapter 15
Using the JSON Result Set Interface

15-8

16
Performing Sentiment Analysis Using
Oracle Text

Sentiment analysis enables you to identify a positive or negative sentiment in a search
topic.

This chapter contains the following topics:

• Overview of Sentiment Analysis

• Creating a Sentiment Classifier Preference

• Training Sentiment Classifiers

• Performing Sentiment Analysis with the CTX_DOC Package

• Performing Sentiment Analysis with the RSI

16.1 Overview of Sentiment Analysis
Sentiment analysis uses trained sentiment classifiers to provide sentiment information
for documents or topics within documents.

This section contains the following topics:

• About Sentiment Analysis

• About Sentiment Classifiers

• About Performing Sentiment Analysis

• Sentiment Analysis Interfaces

16.1.1 About Sentiment Analysis
Oracle Text enables you to perform sentiment analysis for a topic or document by
using sentiment classifiers that are trained to identify sentiment metadata.

With growing amounts of data, organizations must gain more insights about their data
rather than just obtaining hits in response to a search query. The insight could be
in the form of answering certain basic types of queries (such as weather queries
or queries about recent events) or providing opinions about user-specified topics.
Keyword searches provide a list of results containing the search term. However,
to identify a sentiment or opinion about the search term, must browse through
the results and then manually locate the required sentiment information. Sentiment
analysis provides a one-step process to identify sentiment information within a set of
documents.

Sentiment analysis is the process of identifying and extracting sentiment metadata
about a specified topic or entity from a set of documents. Trained sentiment classifiers
identify the sentiment. When you run a query with sentiment analysis, in addition to the
search results, sentiment metadata is also identified and displayed. Sentiment analysis
provides answers to questions such as “Is a product review positive or negative?”

16-1

or “Is the customer satisfied or dissatisfied?” For example, from a document set
consisting of multiple reviews for a particular product, you can determine an overall
sentiment that indicates if the product is good or bad.

16.1.2 About Sentiment Classifiers
A sentiment classifier is a type of document classifier that is used to extract sentiment
metadata about a topic or document.

To perform sentiment analysis by using a sentiment classifier, you must first associate
a sentiment classifier preference with the sentiment classifier and then train the
sentiment classifier.

You can associate user-defined sentiment classifiers with a sentiment classifier
preference of type SENTIMENT_CLASSIFIER. A sentiment classifier preference
specifies the parameters that are used to train a sentiment classifier. These
parameters are defined as attributes of the sentiment classifier preference.
You can either create a sentiment classifier preference or use the default
CTXSYS.DEFAULT_SENTIMENT_CLASSIFIER. To create a user-defined sentiment
classifier preference, use the CTX_DDL.CREATE_PREFERENCE procedure to define a
sentiment classifier preference and the CTX_DDL.SET_ATTRIBUTE procedure to define
its parameters.

To train a sentiment classifier, you need to provide an associated sentiment classifier
preference, a training set of documents, and the sentiment categories. If you do not
specify a classifier preference, then Oracle Text uses default values for the training
parameters. You train the sentiment classifier by using the set of sample documents
and the specified preference. You assign each sample document to a category. Oracle
Text uses this sentiment classifier to deduce a set of classification rules that define
how sentiment analysis must be performed. Use the CTX_CLS.SA_TRAIN procedure to
train a sentiment classifier.

Typically, you define and train separate sentiment classifiers for different categories of
documents, such as finance, product reviews, and music. If you do not want to create
your own sentiment classifier or if suitable training data is not available to train your
classifier, you can use the default sentiment classifier provided by Oracle Text. The
default sentiment classifier is unsupervised.

Note:

The default sentiment classifier works only with AUTO_LEXER. Do not use
AUTO_LEXER with user-defined sentiment classifiers.

See Also:

• Creating a Sentiment Classifier Preference

• Training Sentiment Classifiers

Chapter 16
Overview of Sentiment Analysis

16-2

16.1.3 About Performing Sentiment Analysis
To perform sentiment analysis, you run a sentiment query that includes the sentiment
classifier which must be used to identify sentiment information. The classifier can be
the default or a user-defined sentiment classifier.

You can perform sentiment analysis only as part of a search operation. Oracle Text
searches for the specified keywords and generates a result set. Then, sentiment
analysis is performed on the result set to identify a sentiment score for each result. If
you do not explicitly specify a sentiment classifier in your query, the default classifier is
used.

You can either identify one single sentiment for the entire document or separate
sentiments for each topic within a document. Most often, a document contains multiple
topics and the author’s sentiment toward each topic may be different. In such cases,
document-level sentiment scores may not be useful because they cannot identify
sentiment scores associated with different topics in the document. Identifying topic-
level sentiment scores provides the required answers. For example, when searching
through a set of documents containing reviews for a camera, a document-level
sentiment tells you whether the camera is good or not. Assume that you want
the general opinion about the picture quality of a camera. Performing a topic-level
sentiment analysis, with “picture quality” as one of the topics provides the required
information.

Note:

If you do not specify a topic of interest for sentiment analysis, then Oracle
Text returns the overall sentiment for the entire document.

See Also:

• Performing Sentiment Analysis with the CTX_DOC Package

• Performing Sentiment Analysis with the RSI

16.1.4 Sentiment Analysis Interfaces
Oracle Text supports multiple interfaces for performing sentiment analysis.

Use one of the following interfaces to run a sentiment query:

• Procedures in the CTX_DOC package

• XML Query Result Set Interface (RSI)

Chapter 16
Overview of Sentiment Analysis

16-3

See Also:

• Performing Sentiment Analysis with the CTX_DOC Package

• Performing Sentiment Analysis with the RSI

16.2 Creating a Sentiment Classifier Preference
Use the CTX_DDL.CREATE_PREFERENCE procedure to create a sentiment classifier
preference and the CTX_DDL.SET_ATTRIBUTE procedure to define its attributes. The
classifier type associated with a user-defined sentiment classifier preference is
SENTIMENT_CLASSIFIER.

To create a sentiment classifier preference:

1. To define a sentiment classifier preference, use the CTX_DDL.CREATE_PREFERENCE
procedure. The classifier must be of type SENTIMENT_CLASSIFIER.

2. To define attributes for the sentiment classifier preference, use the
CTX_DDL.SET_ATTRIBUTE procedure. The attributes define the parameters that are
used to train the sentiment classifier.

Example 16-1 Creating a Sentiment Classifier Preference

The following example creates a sentiment classifier preference named
clsfier_camera. This preference is used to classify a set of documents that contain
reviews for SLR cameras.

1. Define a sentiment classifier preference named clsfier_camera with type
SENTIMENT_CLASSIFIER.

exec ctx_ddl.create_preference('clsfier_camera','SENTIMENT_CLASSIFIER');

2. Define the attributes of the clsfier_camera sentiment classifier preference. Set
1000 for the maximum number of features to be extracted. Set 600 for the number
of iterations for which the classifier runs.

exec ctx_ddl.set_attribute('clsfier_camera','MAX_FEATURES','1000');
exec ctx_ddl.set_attribute('clsfier_camera','NUM_ITERATIONS','600');

For attributes that are not explicitly defined, the default values are used.

See Also:

• Oracle Text Reference

• About Sentiment Classifiers

Chapter 16
Creating a Sentiment Classifier Preference

16-4

16.3 Training Sentiment Classifiers
Training a sentiment classifier generates the classification rules that are used to
provide a positive or negative sentiment for a search keyword.

The following example trains a sentiment classifier that can perform sentiment analysis
on user reviews of cameras:

1. Create and populate the training document table. This table contains the actual
text of the training set documents or the file names (if the documents are present
externally).

Ensure that the training documents are randomly selected to avoid any possible
bias in the trained sentiment classifier. The distribution of positive and negative
documents must not be skewed. Oracle Text checks for the distribution while
training the sentiment classifier.

create table training_camera (review_id number primary key, text
varchar2(2000));
insert into training_camera values(1,'/sa/reviews/cameras/
review1.txt');
insert into training_camera values(2,'/sa/reviews/cameras/
review2.txt');
insert into training_camera values(3,'/sa/reviews/cameras/
review3.txt');
insert into training_camera values(4,'/sa/reviews/cameras/
review4.txt');

2. Create and populate the category table.

This table specifies training labels for the documents present in the document
table. It tells the classifier the true sentiment of the training set documents.

The primary key of the document table must have a foreign key relationship with
the unique key of the category table. The names of these columns must be passed
to the CTX_CLS.SA_TRAIN procedure so that the sentiment label can be associated
with the corresponding document.

Oracle Text validates the parameters specified for the classifier preference and
the category values. The category values are restricted to 1 for positive, 2 for
negative, and 0 for neutral sentiment. Documents with a category of 0 (neutral
documents) are not used while training the classifier. Additional columns in the
category table, other than document ID and category, are also not used by the
classifier.

create table train_category (doc_id number, category number,
category_desc varchar2(100));

insert into train_category values (1,0,'neutral');
insert into train_category values (2,1,'positive');
insert into train_category values (3,2,'negative');
insert into train_category values (4,2,'negative');

3. Create the context index on the training document table. This index is used to
extract metadata for training documents while training the sentiment classifier.

Chapter 16
Training Sentiment Classifiers

16-5

In this example, create an index without populating it.

exec ctx_ddl.create_preference('fds','DIRECTORY_DATASTORE');
create index docx on training_camera(text) indextype is
ctxsys.context parameters ('datastore fds nopopulate');

4. (Optional) Create a clsfier_camera sentiment classifier preference that performs
sentiment analysis on a document set consisting of camera reviews.

5. Train the sentiment classifier clsfier_camera.

During training, Oracle Text determines the ratio of positive to negative
documents. If this ratio is not in the range of 0.4 to 0.6, then a warning written to
the CTX log indicates that the sentiment classifier is skewed. After the sentiment
classifier is trained, it is ready to be used in sentiment queries to perform
sentiment analysis.

In the following example, clsfier_camera is the name of the sentiment classifier
that is being trained, review_id is the name of the document ID column in the
document training set, train_category is the name of the category table that
contains the labels for the training set documents, doc_id is the document ID
column in the category table, category is the category column in the category
table, and clsfier is the name of the sentiment classifier preference that is used
to train the classifier.

exec
ctx_cls.sa_train_model('clsfier_camera','docx','review_id','train_ca
tegory','doc_id','category','clsfier');

Note:

If you do not specify a sentiment classifier preference when running the
CTX_CLS.SA_TRAIN_MODEL procedure, then Oracle Text uses the default
preference CTXSYS.DEFAULT_SENTIMENT_CLASSIFIER.

See Also:

• Creating a Sentiment Classifier Preference

• About Sentiment Classifiers

• Oracle Text Reference

16.4 Performing Sentiment Analysis with the CTX_DOC
Package

Use the procedures in the CTX_DOC package to perform sentiment analysis on a single
document within a document set. For each document, you can either determine a

Chapter 16
Performing Sentiment Analysis with the CTX_DOC Package

16-6

single sentiment score for the entire document or individual sentiment scores for each
topic within the document.

Before you perform sentiment analysis, you must create a context index on the
document set. The following command creates a camera_revidx context index on the
document set in the camera_reviews table:

create index camera_revidx on camera_reviews(review_text) indextype is
ctxsys.context parameters ('lexer mylexer stoplist
ctxsys.default_stoplist');

To perform sentiment analysis with the CTX_DOC package, use one of the following
methods:

• Run the CTX_DOC.SENTIMENT_AGGREGATE procedure with the required parameters.

This procedure provides a single consolidated sentiment score for the entire
document.

The sentiment score is a value in the range of -100 to 100, and it indicates
the strength of the sentiment. A negative score represents a negative sentiment
and a positive score represents a positive sentiment. Based on the sentiment
scores, you can group scores into labels such as Strongly Negative (–80 to –100),
Negative (–80 to –50), Neutral (-50 to +50), Positive (+50 to +80), and Strongly
Positive (+80 to +100).

• Run the CTX_DOC.SENTIMENT procedure with the required parameters.

This procedure returns the individual segments within the document that contain
the search term, and provides an associated sentiment score for each segment.

Example 16-2 Obtaining a Single Sentiment Score for a Document

The following example uses the clsfier_camera sentiment classifier to provide a
single aggregate sentiment score for the entire document. The sentiment classifier
was created and trained. The table containing the document set has a camera_revidx
context index. The doc_id of the document within the document table for which
sentiment analysis must be performed is 49. The topic for which a sentiment score
is being generated is ‘Nikon.’

select
ctx_doc.sentiment_aggregate('camera_revidx','49','Nikon','clsfier_camera
') from dual;

CTX_DOC.SENTIMENT_AGGREGATE('CAMERA_REVIDX','49','NIKON','CLSFIER_CAMERA
')
--
--
 74
1 row selected.

Example 16-3 Obtaining a Single Sentiment Score with the Default Classifier

The following example uses the default sentiment classifier to provide an aggregate
sentiment score for the entire document. The table containing the document set has a

Chapter 16
Performing Sentiment Analysis with the CTX_DOC Package

16-7

camera_revidx context index. The doc_id of the document within the document table
for which sentiment analysis must be performed is 1.

select ctx_doc.sentiment_aggregate('camera_revidx','1') from dual;

CTX_DOC.SENTIMENT_AGGREGATE('CAMERA_REVIDX','1')
--
 2

1 row selected.

Example 16-4 Obtaining Sentiment Scores for Each Topic Within a Document

The following example uses the clsfier_camera sentiment classifier to generate
sentiment scores for each segment within the document. The sentiment classifier was
created and trained. The table containing the document set has a camera_revidx
context index . The doc_id of the document within the document table for which
sentiment analysis must be performed is 49. The topic for which a sentiment score is
being generated is ‘Nikon.’ The restab result table, which will be populated with the
analysis results, was created with the columns snippet (CLOB) and score (NUMBER).

exec
ctx_doc.sentiment('camera_revidx','49','Nikon','restab','clsfier_camera'
, starttag=>'<<', endtag=>'>>');

SQL> select * from restab;
SNIPPET
--

 SCORE

It took <<Nikon>> a while to produce a superb compact 85mm lens, but
this time they finally got it right.
 65

Without a doubt, this is a fine portrait lens for photographing head-
and-shoulder portraits (The only lens which is optically better is
<<Nikon>>'s legendary 10
5mm f2.5 Nikkor lens, and its close optical twin, the 105mm f2.8 Micro
Nikkor.
 75

Since the 105mm f2.5 Nikkor lens doesn't have an autofocus version,
then this might be the perfect moderate telephoto lens for owners of
<<Nikon>> autofocus
SLR cameras.
 84
3 rows selected.

Example 16-5 Obtaining a Sentiment Score for a Topic Within a Document

The following example uses the tdrbrtsent03_cl sentiment classifier to generate a
sentiment score for each segment within the document. The sentiment classifier was
created and trained. The table containing the document set has a tdrbrtsent03_idx

Chapter 16
Performing Sentiment Analysis with the CTX_DOC Package

16-8

context index. The doc_id of the document within the document table for which
sentiment analysis must be performed is 1. The topic for which a sentiment score
is being generated is ‘movie.’ The tdrbrtsent03_rtab result table, which will be
populated with the analysis results was created with the columns snippet and score.

SQL> exec
ctx_doc.sentiment('tdrbrtsent03_idx','1','movie','tdrbrtsent03_rtab','td
rbrtsent03_cl');
PL/SQL procedure successfully completed.

SQL> select * from tdrbrtsent03_rtab;
SNIPPET
--

SCORE

the movie is a bit overlong , but nicholson is such good fun
that the running time passes by pretty quickly
 -62

1 row selected.

See Also:

• CTX_DOC.SENTIMENT_AGGREGATE in the Oracle Text Reference

• CTX_DOC.SENTIMENT in the Oracle Text Reference

16.5 Performing Sentiment Analysis with the RSI
The XML Query Result Set Interface (RSI) enables you to perform sentiment analysis
on a set of documents by using either the default sentiment classifier or a user-defined
sentiment classifier. The documents on which sentiment analysis must be performed
are stored in a document table.

Use the sentiment element in the input RSI to indicate that sentiment analysis, in
addition to other operations specified in the Result Set Descriptor (RSD), must be
performed at query time. If you specify a value for the classifier attribute of the
sentiment element, then the specified sentiment classifier is used to perform the
sentiment analysis. If the classifier attribute is omitted, then Oracle Text performs
sentiment analysis by using the default sentiment classifier. The sentiment element
contains a child element called item that specifies the topic or concept about which a
sentiment must be generated during sentiment analysis.

You can generate either a single sentiment score for each document or separate
sentiment scores for each topic within the document. Use the agg attribute of the item
element to generate a single aggregated sentiment score for each document.

You can perform sentiment classification by using a keyword query or the ABOUT
operator. When you use the ABOUT operator, the result set includes synonyms of the
keyword that are identified by using the thesaurus.

Chapter 16
Performing Sentiment Analysis with the RSI

16-9

To perform sentiment analysis by using RSI:

1. Create and train the sentiment classifier you will use to perform sentiment
analysis.

2. Create the document table that contains the documents to be analyzed and a
context index on the document table.

3. Use the required elements and attributes within a query to perform sentiment
analysis.

The RSI must contain the sentiment element.

Example 16-6 Input the RSD to Perform Sentiment Analysis

The following example performs sentiment analysis and generates a sentiment for the
‘lens’ topic. The driving query is a keyword query for ‘camera.’ The sentiment element
specifies that sentiment analysis must be performed by using the clsfier_camera
sentiment classifier. This classifier was previously created and trained by using the
CTX_CLS.SA_TRAIN_MODEL procedure. The camera_revidx context index is on the
document set table.

The sentiment score ranges from -100 to 100. A positive score indicates positive
sentiment, whereas a negative score indicates negative sentiment. The absolute value
of the score is indicative of the magnitude of positive and negative sentiment.

To perform sentiment analysis and obtain a sentiment score for each topic within the
document:

1. Create the rs result set table that will store the results of the search operation.

SQL> var rs clob;
SQL> exec dbms_lob.createtemporary(:rs, TRUE, DBMS_LOB.SESSION);

2. Perform sentiment analysis as part of a search query.

The keyword being searched for is ‘camera.’ The topic for which sentiment
analysis is performed is ‘lens.’

begin
ctx_query.result_set('camera_revidx','camera','
 <ctx_result_set_descriptor>
 <hitlist start_hit_num="1" end_hit_num="10" order="score
desc">
 <sentiment classifier="clsfier_camera">
 <item topic="lens" />
 <item topic="picture quality" agg="true" />
 </sentiment> </hitlist>
 </ctx_result_set_descriptor>',:rs);
end;
/

3. View the results stored in the result table.

Chapter 16
Performing Sentiment Analysis with the RSI

16-10

Other applications can use the XML result set for further processing. For brevity,
some output was removed. For each segment within the document, a score
represents the sentiment score for the segment.

SQL> select xmltype(:rs) from dual;
XMLTYPE(:RS)
--

<ctx_result_set>
 <hitlist>
 <hit>
 <sentiment>
 <item topic="lens">
 <segment>
 <segment_text>The first time it was sent in was
because the lens door failed to turn on the camera
and it was almost to come off of its track . Eight months later,
the flash quit working in all modes AND the door was
failing AGAIN!</segment_text>
 <segment_score>-81</segment_score>
 </segment>
 </item>
 <item topic="picture quality"> <score> -75 </score>
 </item>
 </sentiment>
 </hit>
 <hit>
 <sentiment>
 <item topic="lens">
 <segment>
 <segment_text>I was actually quite impressed with
it. Powerful zoom , sharp lens, decent picture
quality. I also played with some other Panasonic models in various
stores just to get a better feel for them, as well as
spent a few hours on </segment_text>
 <segment_score> 67 </segment_score>
 </segment>
 </item>
 <item topic="picture quality"> <score>-1</score> </
item>
 </sentiment>
 </hit>
 . . .
 . . .
 </hitlist>
</ctx_result_set>

See Also:

Oracle Text Reference

Chapter 16
Performing Sentiment Analysis with the RSI

16-11

17
Administering Oracle Text

Become familiar with Oracle Text administration.

This chapter contains the following topics:

• Oracle Text Users and Roles

• DML Queue

• CTX_OUTPUT Package

• CTX_REPORT Package

• Text Manager in Oracle Enterprise Manager

• Servers and Indexing

• Tracking Database Feature Usage in Oracle Enterprise Manager

• Oracle Text on Oracle Real Application Clusters

• Configuring Oracle Text in Oracle Database Vault Environment

• Unsupported Oracle Text Operations in Oracle Database Vault Realm

• Export and Import of Schemas Containing Oracle Text Settings

17.1 Oracle Text Users and Roles
While any user can create an Oracle Text index and enter a CONTAINS query, Oracle
Text provides the CTXSYS user for administration and the CTXAPP role for application
developers.

This section contains the following sections:

• CTXSYS User

• CTXAPP Role

• Granting Roles and Privileges to Users

17.1.1 CTXSYS User
The CTXSYS user is created during installation and can:

• View all indexes

• Sync all indexes

• Run ctxkbtc, the knowledge base extension compiler

• Query all system-defined views

• Perform all tasks of a user with the CTXAPP role

17-1

Note:

In earlier releases of Oracle Text, CTXSYS had SYSDBA privileges, and only
CTXSYS users could perform certain functions, such as modifying system-
defined preferences or setting system parameters.

Starting with Oracle Database Release 19c, the CTXSYS user is a schema only user. To
use the CTXSYS schema, run the following statements:

connect / as sysdba;

alter session set CURRENT_SCHEMA=CTXSYS;

17.1.2 CTXAPP Role
The CTXAPP role is a system-defined role that enables users to:

• Create and delete Oracle Text preferences

• Use the Oracle Text PL/SQL packages

17.1.3 Granting Roles and Privileges to Users
The system uses the standard SQL model for granting roles to users. To grant an
Oracle Text role to a user, use the GRANT statement.

In addition, to allow application developers to call procedures in the Oracle Text
PL/SQL packages, you must explicitly grant EXECUTE privileges for the Oracle Text
package to each user.

See Also:

"Creating an Oracle Text User"

17.2 DML Queue
When you make inserts, updates, or deletes to documents in your base table, the
data manipulation language (DML) queue stores the requests for documents waiting to
be indexed. When you synchronize the index with CTX_DDL.SYNC_INDEX, requests are
removed from this queue.

You can query pending insert, update, and delete operations with the CTX_PENDING and
CTX_USER_PENDING views.

You can query insert, update, and delete errors with the CTX_INDEX_ERRORS or
CTX_USER_INDEX_ERRORS view.

Chapter 17
DML Queue

17-2

See Also:

Oracle Text Reference for more information about these views

17.3 CTX_OUTPUT Package
Use the CTX_OUTPUT PL/SQL package to log indexing and document service requests.

See Also:

Oracle Text Reference for more information about this package

17.4 CTX_REPORT Package
Use the CTX_REPORT package to produce reports on indexes and queries. These
reports can help you fine-tune or troubleshoot your applications.

See Also:

Oracle Text Reference for more information about this package

The CTX_REPORT package contains the following procedures:

CTX_REPORT.DESCRIBE_INDEX and CTX_REPORT.DESCRIBE_POLICY

These procedures create reports that describe an existing index or policy, including the
settings of the index metadata, the indexing objects, the settings of the attributes of the
objects, and (for CTX_REPORT.DESCRIBE_INDEX) the index partition information, if any.
These procedures are especially useful for diagnosing index-related problems.

This is sample output from DESCRIBE_INDEX, run on a simple context index:

===
 INDEX DESCRIPTION
===
index name: "DR_TEST"."TDRBPRX0"
index id: 1160
index type: context
base table: "DR_TEST"."TDRBPR"
primary key column: ID
text column: TEXT2
text column type: VARCHAR2(80)
language column:
format column:
charset column:
===
 INDEX OBJECTS
===

Chapter 17
CTX_OUTPUT Package

17-3

datastore: DIRECT_DATASTORE
filter: NULL_FILTER
section group: NULL_SECTION_GROUP
lexer: BASIC_LEXER
wordlist: BASIC_WORDLIST
 stemmer: ENGLISH
 fuzzy_match: GENERIC
stoplist: BASIC_STOPLIST
 stopword: teststopword
storage: BASIC_STORAGE
 r_table_clause: lob (data) store as (cache)
 i_index_clause: compress 2

CTX_REPORT.CREATE_INDEX_SCRIPT and
CTX_REPORT.CREATE_POLICY_SCRIPT

CREATE_INDEX_SCRIPT creates a SQL*Plus script that can create a duplicate of a given
Oracle Text index. Use this when you have an index but you do not have the original
script (if any) that was used to create this index, and you want to be able to re-create
the index. For example, if you accidentally drop a script, CREATE_INDEX_SCRIPT can re-
create it. Likewise, CREATE_INDEX_SCRIPT can be useful if you have inherited indexes
from another user but not the scripts that created them.

CREATE_POLICY_SCRIPT does the same thing as CREATE_INDEX_SCRIPT, except that it
enables you to re-create a policy instead of an index.

This is sample output from CREATE_INDEX_SCRIPT, run on a simple context index (not
a complete listing):

begin
 ctx_ddl.create_preference('"TDRBPRX0_DST"','DIRECT_DATASTORE');
end;
/
...
/
begin
 ctx_ddl.create_section_group('"TDRBPRX0_SGP"','NULL_SECTION_GROUP');
end;
/
...
begin
 ctx_ddl.create_preference('"TDRBPRX0_WDL"','BASIC_WORDLIST');
 ctx_ddl.set_attribute('"TDRBPRX0_WDL"','STEMMER','ENGLISH');
 ctx_ddl.set_attribute('"TDRBPRX0_WDL"','FUZZY_MATCH','GENERIC');
end;
/
begin
 ctx_ddl.create_stoplist('"TDRBPRX0_SPL"','BASIC_STOPLIST');
 ctx_ddl.add_stopword('"TDRBPRX0_SPL"','teststopword');
end;
/
...
/
begin
 ctx_output.start_log('TDRBPRX0_LOG');
end;
/
create index "DR_TEST"."TDRBPRX0"
 on "DR_TEST"."TDRBPR"
 ("TEXT2")
 indextype is ctxsys.context

Chapter 17
CTX_REPORT Package

17-4

 parameters('
 datastore "TDRBPRX0_DST"
 filter "TDRBPRX0_FIL"
 section group "TDRBPRX0_SGP"
 lexer "TDRBPRX0_LEX"
 wordlist "TDRBPRX0_WDL"
 stoplist "TDRBPRX0_SPL"
 storage "TDRBPRX0_STO"
 ')
/

CTX_REPORT.INDEX_SIZE

This procedure creates a report of the names of the internal index objects, along with
their tablespaces, allocated sizes, and used sizes. It is useful for DBAs who may need
to monitor the size of their indexes (for example, when disk space is at a premium).

Sample output from this procedure looks like this (partial listing):

===
 INDEX SIZE FOR DR_TEST.TDRBPRX10
===
TABLE: DR_TEST.DR$TDRBPRX10$I
TABLESPACE NAME: DRSYS
BLOCKS ALLOCATED: 4
BLOCKS USED: 1
BYTES ALLOCATED: 8,192 (8.00 KB)
BYTES USED: 2,048 (2.00 KB)

INDEX (LOB): DR_TEST.SYS_IL0000023161C00006$$
TABLE NAME: DR_TEST.DR$TDRBPRX10$I
TABLESPACE NAME: DRSYS
BLOCKS ALLOCATED: 5
BLOCKS USED: 2
BYTES ALLOCATED: 10,240 (10.00 KB)
BYTES USED: 4,096 (4.00 KB)

INDEX (NORMAL): DR_TEST.DR$TDRBPRX10$X
TABLE NAME: DR_TEST.DR$TDRBPRX10$I
TABLESPACE NAME: DRSYS
BLOCKS ALLOCATED: 4
BLOCKS USED: 2
BYTES ALLOCATED: 8,192 (8.00 KB)
BYTES USED: 4,096 (4.00 KB)

CTX_REPORT.INDEX_STATS

INDEX_STATS produces a variety of calculated statistics about an index, such as how
many documents are indexed, how many unique tokens in the index, average size
of its tokens, and fragmentation information for the index. Optimizing stoplists is an
example of a use for INDEX_STATS.

CTX_REPORT.QUERY_LOG_SUMMARY

This procedure creates a report of logged queries, which you can use to perform
simple analyses. With query analysis, you can find out:

• Which queries were made

• Which queries were successful

• Which queries were unsuccessful

Chapter 17
CTX_REPORT Package

17-5

• How many times each query was made

You can combine these factors in various ways, such as determining the 50 most
frequent unsuccessful queries made by your application.

CTX_REPORT.TOKEN_INFO

TOKEN_INFO helps you diagnose query problems. For example, use it to check that
index data is not corrupted and to find out which documents are producing unexpected
or bad tokens.

CTX_REPORT.TOKEN_TYPE

TOKEN_TYPE is a lookup function that is used mainly as input to other functions
(CTX_DDL.OPTIMIZE_INDEX, CTX_REPORT.TOKEN_INFO, and so on).

See Also:

• Oracle Text Reference for an example of the output of
CTX_REPORT.INDEX_STATS procedure

• Oracle Text Reference for an example of the output of
CTX_REPORT.QUERY_LOG_SUMMARY procedure

17.5 Text Manager in Oracle Enterprise Manager
Oracle Enterprise Manager provides Text Manager for configuring, maintaining, and
administering Oracle Text indexes. With Text Manager, you can perform all of the basic
configuration and administration tasks for Oracle Text indexes. You can monitor the
overall health of Oracle Text indexes for a single Oracle Database instance or for the
Oracle Real Application Clusters environment. Text Manager provides summaries of
critical information and enables you to drill down to the level of detail that you want, to
resolve issues, and to understand any actions that you need to take.

The Text Indexes page shows the jobs that are in progress, that are scheduled within
the last seven days, or that are experiencing problems. From this page, you can go
to the Job Scheduler to see a summary of all jobs for this database instance and to
manage selected jobs. The online help in Oracle Enterprise Manager provides details
and procedures for using each Text Manager feature.

This section contains the following sections:

• Using Text Manager

• Viewing General Information for an Oracle Text Index

• Checking Oracle Text Index Health

Chapter 17
Text Manager in Oracle Enterprise Manager

17-6

Note:

You cannot create an Oracle Text index with Text Manager. Use the CREATE
INDEX statement to create an Oracle Text index as described in Indexing with
Oracle Text under Creating Oracle Text Indexes.

17.5.1 Using Text Manager
On the main Text Manager page, you can perform the following actions on the
selected index from the Actions list:

• Synchronize

• Optimize

• Rebuild

• Resume Failed Operation

• Show Logs

• Show Errors

You can also schedule jobs for the specified index.

To access Text Manager:

1. Sign in to the database with a user account that is authorized to access Cloud
Control. For example, use SYS or SYSTEM and the password that you specified
during database installation.

2. On the Database Home page, click the Schema tab.

3. In the Text Manager group, select Text Indexes.

The Text Indexes page displays a list of Oracle Text indexes for this database
instance.

When you select an Oracle Text index from the Text Indexes page, edit and action
options become available for that index. For example, to configure attributes for
searching, click Edit for the selected index. On the Edit Text Index page, you can
set such attributes as Wild Card Maximum Term, Fuzzy Score, and Number of Fuzzy
Expansions. You can also change index and partition names, and specify settings for
URL_DATASTORE.

Note:

Starting with Oracle Database 21c, the Oracle Text type URL_DATASTORE is
deprecated. Use NETWORK_DATASTORE instead.

17.5.2 Viewing General Information for an Oracle Text Index
Use the View Text Index page to see general information about a specific index, such
as index type, parallel degree, synchronization mode, wild card limit, fuzzy score,

Chapter 17
Text Manager in Oracle Enterprise Manager

17-7

fuzzy numeric result, and datastore. Information about any partitions on the index is
also available.

To view general information for an Oracle Text index, on the Text Indexes page, in the
list of indexes, click the name of the index. The View Text Index page opens and the
General tab is selected. From here, you can select actions to perform maintenance
tasks.

17.5.3 Checking Oracle Text Index Health
In Text Manager, the Text Indexes page displays the Oracle Text indexes for the
database instance. Use that page to help you understand the critical actions that are
necessary to make sure that the entire application is performing properly.

Use the Text Indexes page to see:

• The status of the indexes and jobs submitted during the last seven days.

• The number of Oracle Text indexes that contain invalid partitions, and which are,
therefore, invalid. The number of partitions that are invalid, if any, for all Oracle
Text indexes is also shown.

• The number of indexes and partitions that are in an in-progress state.

• The number of indexes where all partitions are valid, and no activity is in progress.

• The sum total of the Oracle Text indexes found for this database instance.

• The index type for each Oracle Text index, the owner, the number of documents
that are not synchronized, total number of documents, and percentage of
fragmentation.

After you select an Oracle Text index from the list, options become available for editing
or performing actions.

17.6 Servers and Indexing
You index documents and enter queries with standard SQL. No server is needed
for performing batch insert, update, and delete operations. You can synchronize
the CONTEXT index with the CTX_DDL.SYNC_INDEX procedure, or from Text Manager in
Oracle Enterprise Manager.

See Also:

Indexing with Oracle Text for more information about indexing and index
synchronization

17.7 Tracking Database Feature Usage in Oracle Enterprise
Manager

In Oracle Enterprise Manager, Database Feature Usage statistics provide an
approximation of how often various database features are used. Tracking this
information is useful for application development and for auditing.

Chapter 17
Servers and Indexing

17-8

To access Database Feature Usage, in Oracle Enterprise Manager, click the Server
tab, and then select Database Feature Usage under Database Configuration.

Database Feature Usage captures the following information for Oracle Text:

• Index Usage Statistics: The number of existing indexes in the database for the
CONTEXT, CTXCAT, and CTXRULE index types

• SQL Operator Usage Statistics: Whether the user has ever used the CONTAINS,
CATSEARCH, and MATCHES operators

• Package Usage Statistics: How often, if ever, and when the following packages
were used:

– CTX_ADM

– CTX_CLS

– CTX_DDL

– CTX_DOC

– CTX_OUTPUT

– CTX_QUERY

– CTX_REPORT

– CTX_THES

– CTX_ULEXER

Note:

The feature usage tracking statistics might not be 100 percent accurate.

17.8 Oracle Text on Oracle Real Application Clusters
For maximum throughput and performance for OLAP applications, you can parallelize
Oracle Text queries across Oracle Real Application Clusters (Oracle RAC) nodes. You
can manage Oracle Text indexes on Oracle RAC nodes with Text Manager in Oracle
Enterprise Manager, as described in "Text Manager in Oracle Enterprise Manager".

See Also:

"Parallelizing Queries Across Oracle RAC Nodes"

Chapter 17
Oracle Text on Oracle Real Application Clusters

17-9

17.9 Configuring Oracle Text in Oracle Database Vault
Environment

In an Oracle Database Vault environment, you can create a CTXSYS user if you have
the DV_ACCTMGR role.

To create a CTXSYS user, run the @$ORACLE_HOME/ctx/admin/catctx_user.sql
SQL script. Then, connect as SYS user and run the @$ORACLE_HOME/ctx/admin/
catctx_schema.sql SQL script.

Note:

If the SYS user also has the DV_ACCTMGR role, then you can run the
@$ORACLE_HOME/ctx/admin/catctx.sql SQL script which installs both,
catctx_user.sql and catctx_schema.sql scripts.

17.10 Unsupported Oracle Text Operations in Oracle
Database Vault Realm

Oracle Database Vault realms place restrictions on DDL operations within a realm. For
this reason, once you are added to a realm but if you are not authorized in the realm,
then you cannot create, alter, or drop an Oracle Text index. You also cannot use any
DDL operations contained in the CTX_DDL package.

The DDL error messages and query error messages on indexes that could not
be created within the realm might indicate insufficient privileges as the cause. The
insufficient privilege message is specific to DDL operations not being allowed within
the realm.

17.11 Export and Import of Schemas Containing Oracle Text
Settings

Before Oracle Database Release 21c, schema objects like preferences, section
groups, stoplists, and other Oracle Text preferences were not exported or imported.
Starting with Oracle Database Release 21c, they are copied when you export and
import the schema by using Data Pump Export and Import utilities (invoked with the
expdp and impdp commands, respectively).

Chapter 17
Configuring Oracle Text in Oracle Database Vault Environment

17-10

18
Migrating Oracle Text Applications

You can migrate Oracle Text applications into a new Oracle Database release.

When you upgrade to a new release of Oracle Database, you may have difficulty
migrating your applications from earlier releases of Oracle Text. Where applicable,
Oracle provides information about the migration steps to move Oracle Text
applications into the new release.

This chapter contains the following topics:

• Oracle Text and Rolling Upgrade with Logical Standby

• Identifying and Copying Oracle Text Files to a New Oracle Home

See Also:

Oracle Database Upgrade Guide for information on upgrading Oracle
Database and topics about migrating applications

18.1 Performing a Rolling Upgrade with a Logical Standby
Database

You can use a logical standby database to perform a rolling upgrade of Oracle
Database. To incur minimal downtime on the primary database, you can run different
releases of Oracle Database on the primary and logical standby databases while you
upgrade your databases, one at a time. Oracle Text takes full advantage of upgrading
Oracle Text indexes.

All CTX PL/SQL procedures are fully replicated to the standby database and are
upgraded, except with certain limitations for these procedures:

• CTX_DDL PL/SQL Procedures

• CTX_OUTPUT PL/SQL Procedures

• CTX_DOC PL/SQL Procedures

See Also:

Oracle Data Guard Concepts and Administration for information on creating
a logical standby database to perform rolling upgrades

18-1

18.1.1 CTX_DDL PL/SQL Procedures
Oracle Database uses rowids internally for the construction of indexes. The following
CTX_DDL procedures are not fully replicated to the standby:

• ADD_MDATA

• REMOVE_MDATA

18.1.2 CTX_OUTPUT PL/SQL Procedures
Only CTX_OUTPUT.ENABLE_QUERY_STATS and CTX_OUTPUT.DISABLE_QUERY_STATS are
replicated. If you enable Oracle Text logging on the primary database before you run
an operation that causes logging, then the operation runs with logging on the primary
database and without logging on the secondary database.

18.1.3 CTX_DOC PL/SQL Procedures
When you use the following CTX_DOC procedures with Oracle Text Result Tables, the
data stored in the tables is replicated. When these procedures are used without Result
Tables, they are not replicated.

• CTX_DOC.SET_KEY_TYPE

• CTX_DOC.FILTER

• CTX_DOC.GIST

• CTX_DOC.MARKUP

• CTX_DOC.TOKENS

• CTX_DOC.THEMES

• CTX_DOC.HIGHLIGHT

• CTX_DOC.FILTER_CLOB_QUERY

• CTX_DOC.MARKUP_CLOB_QUERY

• CTX_DOC.HIGHLIGHT_CLOB_QUERY

See Also:

Oracle Data Guard Concepts and Administration for information on
performing a rolling upgrade for minimal downtime on the primary database

Chapter 18
Performing a Rolling Upgrade with a Logical Standby Database

18-2

18.2 Identifying and Copying Oracle Text Files to a New
Oracle Home

To upgrade Oracle Text, use this procedure to identify and copy required files from
your existing Oracle home to the new release Oracle home. Complete this task after
you upgrade Oracle Database.

Certain Oracle Text features rely on files under the Oracle home that you have
configured. After manually upgrading to a new Oracle Database release, or after
any process that changes the Oracle home, you must identify and move these
files manually. These files include user filters, mail filter configuration files, and all
knowledge base extension files. After you identify the files, copy the files from your
existing Oracle home to the new Oracle home.

To identify and copy required files from your existing Oracle home to the new release
Oracle home:

1. Log in with the SYS, SYSTEM, or CTXSYS system privileges for the upgraded
database.

2. Under the Oracle home of the upgraded database, run the $ORACLE_HOME/ctx/
admin/ctx_oh_files.sql SQL script.

For example:

sqlplus / as sysdba
connected
SQL> @?/ctx/admin/ctx_oh_files

3. Review the output of the ctx_oh_files.sql command, and copy the files to the
new Oracle home.

Chapter 18
Identifying and Copying Oracle Text Files to a New Oracle Home

18-3

A
CONTEXT Query Application

This appendix describes how to build a simple web search application by using the
CONTEXT index type.

This appendix contains the following topics:

• Web Query Application Overview

• The PL/SQL Server Pages (PSP) Web Application

• The Java Server Pages (JSP) Web Application

A.1 Web Query Application Overview
A common use of Oracle Text is to index HTML files on websites and provide search
capabilities to users. The sample application in this appendix indexes a set of HTML
files stored in the database. It also uses a web server connected to Oracle Database
to provide the search service.

This appendix describes two versions of the Web query application:

• One using PL/SQL Server Pages (PSP)

• One using Java Server Pages (JSP)

Figure A-1 shows the JSP version of the text query application.

Figure A-1 The Text Query Application

Figure A-2 shows the results of the text query.

A-1

Figure A-2 Text Query Application with Results

The application returns links to documents containing the search term. Each document
has four links:

• The HTML link displays the document.

Graphics are not displayed in the filtered document.

• The Highlight link displays the document with the search term highlighted.

• The Theme link shows the top 50 themes associated with the document.

The Gist link displays a short summary of the document.

A.2 The PL/SQL Server Pages (PSP) Web Application
The PSP web application is based on PL/SQL server pages. Figure A-3 illustrates
how the browser calls the PSP-stored procedure on Oracle Database through a web
server.

This section contains the following topics:

• PSP Web Application Prerequisites

• Building the PSP Web Application

• PSP Web Application Sample Code

Appendix A
The PL/SQL Server Pages (PSP) Web Application

A-2

Figure A-3 The PSP Web Application

Browser

Browser calls

PSP stored

procedure

with URL

Web Server maps

URLs to PSP

stored procedure

Database

PSP

Stored

Procedure

PL/SQL

Gateway

Database stores
compiled PSP files
as PL/SQL Stored
Procedures

http://mymachine:7777 / mypath / search_html

idx_search_table

search_table

A.2.1 PSP Web Application Prerequisites
This application has the following requirements:

• Your Oracle Database must be up and running.

• You unlocked the SCOTT account is unlocked with its password, and the account
has CREATE, RESOURCE, and CTXAPP privileges.

• The Oracle PL/SQL gateway must be running.

• A web server such as Apache is up and running and is correctly configured to
send requests to Oracle Database.

See Also:

• Oracle Database SQLJ Developer's Guide for a connection example

• Oracle Database Development Guide for complete information about
setting up the PL/SQL gateway and developing PL/SQL web applications

• Oracle Database 2 Day + PHP Developer's Guide for information about
installing Apache HTTP Server

A.2.2 Building the PSP Web Application
To create PSP web application:

1. Create your text tables.

You must create text tables with the CREATE TABLE command to store your HTML
files. These examples create the output_table, gist_table, and theme_table
tables:

CREATE TABLE output_table (query_id NUMBER, document CLOB);
CREATE TABLE gist_table (query_id NUMBER, pov VARCHAR2(80), gist CLOB);

Appendix A
The PL/SQL Server Pages (PSP) Web Application

A-3

CREATE TABLE theme_table (query_id NUMBER, theme VARCHAR2(2000), weight
NUMBER);

2. Load HTML documents into the table by using SQL*Loader.

You must load the text tables with the HTML files. This example uses the loader.ctl
control file to load the files named in loader.dat. The SQL*Loader statement is as
follows:

% sqlldr userid=scott/password control=loader.ctl

3. Create the CONTEXT index.

Index the HTML files by creating a CONTEXT index on the text column, as shown
here. Because you are indexing HTML, this example uses the NULL_FILTER
preference type for no filtering, and it uses the HTML_SECTION_GROUP type, as
follows:

create index idx_search_table on search_table(text)
 indextype is ctxsys.context parameters
 ('filter ctxsys.null_filter section group CTXSYS.HTML_SECTION_GROUP');

4. Compile the search_htmlservices package in Oracle Database.

The application must present selected documents to the user. To do so, Oracle
Database must read the documents from the character large object (CLOB) in
search_table and output the result for viewing. To do that, call procedures in the
search_htmlservices package. Compile the file search_htmlservices.sql file at the
SQL*Plus prompt as follows:

SQL> @search_htmlservices.sql

Package created.

5. Compile the search_html PSP page with loadpsp.

The search page is invoked by calling search_html.psp from a browser. You
compile search_html in Oracle Database with the loadpsp command-line program
as follows:

% loadpsp -replace -user scott/password search_html.psp

The output appears as:

"search_html.psp": procedure "search_html" created.

See Also:

Oracle Database 11g Release 2 (11.2) of Oracle Database Development
Guide for more information about using PSP

6. Configure your web server.

You must configure your web server to accept client PSP requests as a URL. Your
web server forwards these requests to Oracle Database and returns server output
to the browser. See Figure A-3.

You can use the Oracle WebDB web listener or Oracle Application Server, which
includes the Apache web server.

7. Enter the query from a browser.

Appendix A
The PL/SQL Server Pages (PSP) Web Application

A-4

You can access the query application from a browser by using a URL. You
configure the URL with your web server. An example URL might look like the
following:

http://server.example.com:7777/mypath/search_html

The application displays a query entry box in your browser and returns the query
results as a list of HTML links, as shown in Figure A-1 and Figure A-2.

A.2.3 PSP Web Application Sample Code
This section lists the code used to build the example Web application. It includes the
following files:

• loader.ctl

• loader.dat

• search_htmlservices.sql

• search_html.psp

A.2.3.1 loader.ctl
This example shows a sample loader.ctl file. It is used by sqlldr to load the
loader.dat data file.

LOAD DATA
 INFILE 'loader.dat'
 INTO TABLE search_table
 REPLACE
 FIELDS TERMINATED BY ';'
 (tk INTEGER,
 title CHAR,
 text_file FILLER CHAR,
 text LOBFILE(text_file) TERMINATED BY EOF)

A.2.3.2 loader.dat
This example shows a sample loader.dat file. Each row contains three fields: a
reference number for the document, a label (or "title"), and the name of the HTML
document to load into the text column of search_table. The file has been truncated
for this example.

1; Pizza Shredder;Pizza.html
2; Refrigerator w/ Front-Door Auto Cantaloupe Dispenser;Cantaloupe.html
3; Self-Tipping Couch;Couch.html
4; Home Air Dirtier;Mess.html
5; Set of Pet Magnets;Pet.html
6; Esteem-Building Talking Pillow;Snooze.html

A.2.3.3 HTML Files for loader.dat Example
The HTML files that are named and loaded into loader.dat are included here for your
reference as follows:

• Pizza.html

• Cantaloupe.html

Appendix A
The PL/SQL Server Pages (PSP) Web Application

A-5

• Couch.html

• Mess.html

• Pet.html

• Snooze.html

Pizza.html

<html>
<header>
<title>The Pizza Shredder</title>
</header>
<body>

<h2>The Pizza Shredder</h2>
<h4>Keeping your pizza preferences secure</h4>

So it's the end of a long evening. Beer has been drunk, pizza has been eaten.
<p>
But there's leftover pizza - what are you going to do with it?

<p>
You could save it for the morning, or you could feed it to your pet. But if
neither of those appeal (maybe you don't have a pet?) then
you'll be throwing it in the trash.

<p>
But wait a minute - anybody could look through your trash, and figure out what
kind of pizza you've been eating! "No big deal," I hear you
say. But it is! After they've figured out that your favorite pizza is pepperoni,
then it's only a short step to figuring out that
your top-secret online banking password is "pepperoni_pizza."

<p>
Get one over the dumpster-divers with our new patent-pending "Mk III Pizza
Shredder." Cross-cut blades ensure that your pizza will be rendered
unreadable, and nobody will be able to identify the original toppings. Also
doubles as a lettuce-shredder and may also be used for removing
unwanted fingertips.

<h2>Model Comparison</h2>

<table border="1">
 <tr><th>Model</th><th>Blades0</th><th>Pizza Thickness</th><th>Price</th></tr>
 <tr><td>Mk I</td><td>Plastic</td><td>1/2 inch (Thin Crust)</td><td>$69.99</
td></tr>
 <tr><td>Mk II</td><td>Brass</td><td>1 inch (Deep Pan)</td><td>$99.99</td></tr>
 <tr><td>Mk III</td><td>Carbon Steel</td><td>2 inch (Calzoni)</td><td>$129.99</
td></tr>
</table>

</body>
</html>

Cantaloupe.html

<html>
<header>
<title>The Fridge with a Cantaloupe Dispenser</title>
</header>

Appendix A
The PL/SQL Server Pages (PSP) Web Application

A-6

<body>
<h2>The Fridge with a Cantaloupe Dispenser</h2>
<h4>A nice cold melon at the touch of a button</h4>

Does your refrigerator only have a boring water dispenser in the door?

<p>
When you're hungry for a cantaloupe, do you have to expend valuable energy
opening the fridge door and fishing around amongst the half-used
 packets of pet food?

<p>
Do your friends complain that they wish there was an effortless way to get
cantaloupes from your fridge? Do you overhear them saying they're
tired of always having to rummage through your moldy leftovers and seal-a-meals
to get to the cold melons?

<p>
What you need is the convenience of a built-in cantaloupe dispenser.

<p>
Impress your friends. Win praise from your neighbors. Become a legendary host!

<p>
Try our new <i>Melonic 2000</i> model!

<p>
Works with honeydews and small crenshaws too.

<p>
Let the <i>Melonic 2000</i> go to work for you. Order one now at your local
store.

</body>
</html>

Couch.html

<html>
<header>
<title>The Self-Tipping Couch</title>
</header>
<body>
<h2>The Self-Tipping Couch</h2>

<h4>Sometimes it's hard work to get off the couch</h4>

<p>
Sometimes it's hard work to get your partner, or your pet, off the couch.

<p>
The Self-Tipping Couch solves these problems for you. At the touch of a
button it will deposit the contents of the couch onto the
 floor in front of it.

<p>
The Self-Tipping Couch has been proven to boost communication with
stubborn spouses, children, and relatives.

<p>
You will never again need to yell, "Get off the couch!" Simply press a button

Appendix A
The PL/SQL Server Pages (PSP) Web Application

A-7

and all those couch hoggers are gently
dumped onto your carpet.

<p>
Get your own Self-Tipping Couch TODAY!

</body>
</html>

Mess.html

<html>
<header>
<title>Home Air Dirtier</title>
</header>
<body>
<h2>Home Air Dirtier</h2>
<h4>Missing your home in the middle of the city?</h4>

<p>
Like many ex-city-dwellers, you might be finding that the air in the countryside
is just too clean.

<p>
You can remedy this right now with the <i>UltraAppliance</i> Home Air
Dirtier.

<p>
Simply insert our patented <i>CityFilth</i> cartridge, and soon you'll be
enjoying the aromas of vehicle fumes and decaying garbage that
you're used to from home.

<p>
Please note: Decaying garbage smells may confuse your pet. No matter how
much he hunts, he will not be able to find the garbage he can
smell.
We recommend adding genuine garbage to your environment if this is a concern.

</body>
</html>

Pet.html

<html>
<header>
<title>The Pet Magnet</title>
</header>
<body>
<h2>The Pet Magnet</h2>

<h4>Every pet owner loves to let his or her pet run free, but that's not always
possible</h4>

<p>
Sometimes local laws require pets to be on leashes. Sometimes a free-roaming pet
will ruin a flower bed, leave a "calling card" on the
sidewalk, or chew through another pet. In the case of extremely smart pets, like
chimpanzees or dolphins, the unattended pet may get
away and run up hundreds of dollars of long-distance charges on your phone.

<p>

Appendix A
The PL/SQL Server Pages (PSP) Web Application

A-8

But leashes aren't always a practical answer. They can be too confining, or too
big, or can tug uncomfortably at the pet's neck. They
may get tangled, or wrapped around poles or passersby. Pets may chew through the
leash, or, again, in the case of extremely smart pets,
burn through it with an acetylene torch. In the case of cats, leashes simply
look ridiculous, as though the pet owner really wanted to
own a dog but got confused at the pet store.

<p>
The Hold 'Em 2000 Pet Magnet from <i>UltraAppliance</i> is the answer.
Instead of old-fashioned leashes, the
Hold 'Em 2000 Pet Magnet keeps your pet under control in a humane and
simple way.

<p>
Here's how it works. Dozens of small magnets are placed underneath the coat of
your pet, where they remain painlessly invisible. Any time
you need to recall your animal, you merely activate the handy, massive Hold 'Em
2000 Pet Magnet electromagnet (fits inside any extremely
oversized purse) and your pet is gently and painlessly dragged to you from up to
100 yards. It's a must-have for any pet owner!

<p>

<blockquote>
<i>
"The Hold 'Em 2000 Pet Magnet not only keeps my dog from running away,
but the electromagnet also comes in very handy if I need to
find a needle in a haystack"</i>
-- Anonymous Celebrity
</blockquote>
</body>
</html>

Snooze.html

<html>
<header>
<title>Esteem-building Talking Pillow</title>
</header>
<body>
<h2>Esteem-building Talking Pillow</h2>
<h4>Do you feel less than your true potential when you wake up in the morning?
</h4>

<p>
We searched for a way to capture the wasted time spent sleeping and to use this
precious time to build motivation, character, and self-esteem.

<p>
We are proud to announce the Esteem-building Talking Pillow. Our pride in
this wonderful invention glows even more because:
<i>We use our own invention every night!</i>

<p>
Only you will know that you are sleeping with the Esteem-building Talking
Pillow because only you can hear the soothing
affirmations that gently enter your brain through the discreet speaker.

<p>
You will wake up refreshed and raring to go with a new sense of pride and

Appendix A
The PL/SQL Server Pages (PSP) Web Application

A-9

enthusiasm for any task the day may bring.

<p>
Be the first to own the Esteem-building Talking Pillow! Your friends and
fellow workers will be amazed when you no longer
cower in the corner. Now you will join in every conversation.

<p>
Disclaimer: Not responsible for narcissism and hyberbolic statements. May
cause extreme behavior with overuse.

</body>
</html>

A.2.3.4 search_htmlservices.sql
set define off

create or replace package search_htmlServices as
 procedure showHTMLDoc (p_id in numeric);
 procedure showDoc (p_id in varchar2, p_query in varchar2);
end search_htmlServices;
/
show errors;

create or replace package body search_htmlServices as

 procedure showHTMLDoc (p_id in numeric) is
 v_clob_selected CLOB;
 v_read_amount integer;
 v_read_offset integer;
 v_buffer varchar2(32767);
 begin

 select text into v_clob_selected from search_table where tk = p_id;
 v_read_amount := 32767;
 v_read_offset := 1;
 begin
 loop
 dbms_lob.read(v_clob_selected,v_read_amount,v_read_offset,v_buffer);
 htp.print(v_buffer);
 v_read_offset := v_read_offset + v_read_amount;
 v_read_amount := 32767;
 end loop;
 exception
 when no_data_found then
 null;
 end;
 end showHTMLDoc;

procedure showDoc (p_id in varchar2, p_query in varchar2) is

 v_clob_selected CLOB;
 v_read_amount integer;
 v_read_offset integer;
 v_buffer varchar2(32767);
 v_query varchar(2000);
 v_cursor integer;

 begin
 htp.p('<html><title>HTML version with highlighted terms</title>');

Appendix A
The PL/SQL Server Pages (PSP) Web Application

A-10

 htp.p('<body bgcolor="#ffffff">');
 htp.p('HTML version with highlighted terms');

 begin
 ctx_doc.markup (index_name => 'idx_search_table',
 textkey => p_id,
 text_query => p_query,
 restab => v_clob_selected,
 starttag => '<i>',
 endtag => '</i>');

 v_read_amount := 32767;
 v_read_offset := 1;
 begin
 loop
 dbms_lob.read(v_clob_selected,v_read_amount,v_read_offset,v_buffer);
 htp.print(v_buffer);
 v_read_offset := v_read_offset + v_read_amount;
 v_read_amount := 32767;
 end loop;
 exception
 when no_data_found then
 null;
 end;

 exception
 when others then
 null; --showHTMLdoc(p_id);
 end;
end showDoc;
end search_htmlServices;
/
show errors

set define on

A.2.3.5 search_html.psp
<%@ plsql procedure="search_html" %>
<%@ plsql parameter="query" default="null" %>
<%! v_results number := 0; %>

<html>
<head>
 <title>search_html Search </title>
</head>
<body>

<%

IF query IS NULL THEN
%>

 <center>
 <form method="post" action="search_html">
 Search for:
 <input type="text" name="query" size="30">
 <input type="submit" value="Search">
 </center>
<hr>

Appendix A
The PL/SQL Server Pages (PSP) Web Application

A-11

<%
 ELSE
%>

 <p>
 <%!
 color varchar2(6) := 'ffffff';
 %>

 <center>
 <form method="post" action="search_html">
 Search for:
 <input type="text" name="query" size="30" value="<%= query %>">
 <input type="submit" value="Search">
 </form>
 </center>
 <hr>
 <p>

 <%
 -- select statement
 FOR DOC IN (
 SELECT /*+ DOMAIN_INDEX_SORT */ rowid, tk, title, score(1) scr
 FROM search_table
 WHERE CONTAINS(text, query,1) >0
 ORDER BY score(1) DESC
)
 LOOP
 v_results := v_results + 1;
 IF v_results = 1 THEN

 %>

 <center>
 <table border="0">
 <tr bgcolor="#6699CC">
 <th>Score</th>
 <th>Title</th>
 </tr>

 <% END IF; %>
 <tr bgcolor="#<%= color %>">
 <td> <%= doc.scr %>% </td>
 <td> <%= doc.title %>
 [<a href="search_htmlServices.showHTMLDoc?p_id=
 <%= doc.tk %>">HTML]
 [<a href="search_htmlServices.showDoc?p_id=
 <%= doc.tk %>&p_query=<%= query %>">Highlight]
 </td>
 </tr>

 <%
 IF (color = 'ffffff') THEN
 color := 'eeeeee';
 ELSE
 color := 'ffffff';
 END IF;

 END LOOP;
 %>

Appendix A
The PL/SQL Server Pages (PSP) Web Application

A-12

 </table>
 </center>

<%
 END IF;
%>
</body>
</html>

A.3 The Java Server Pages (JSP) Web Application
Creating the JSP-based web application involves most of the same steps as those
used in building the PSP-based application. See "Building the PSP Web Application"
for more information. You can use the same loader.dat and loader.ctl files.
However, with the JSP-based application, you do not need to do the following:

• Compile the search_htmlservices package

• Compile the search_html PSP page with loadpsp

This section contains the following topics:

• JSP Web Application Prerequisites

• JSP Web Application Sample Code

A.3.1 JSP Web Application Prerequisites
The JSP web application has the following requirements:

• Your Oracle Database must be up and running.

• You have a web server such as Apache Tomcat, which can run JavaServer
Pages (JSP) scripts that connect to the Oracle Database by using Java Database
Connectivity (JDBC).

See Also:

Oracle Database 2 Day + PHP Developer's Guide for information about
installing Apache HTTP Server

A.3.2 JSP Web Application Sample Code
This section lists the Java code used to build the example web application, as shown
in the TextSearchApp.jsp file.

<%@page language="java" pageEncoding="utf-8" contentType="text/html; charset=utf-8" %>
<%@ page import="java.sql.*, java.util.*, java.net.*,
 oracle.jdbc.*, oracle.sql.*, oracle.jsp.dbutil.*" %>

<%
// Change these details to suit your database and user details

String connStr = "jdbc:oracle:thin:@//servername:1521/pdb1";
String dbUser = "scott";
String dbPass = "tiger";

Appendix A
The Java Server Pages (JSP) Web Application

A-13

// The table we're running queries against is called SEARCH_TABLE.
// It must have columns:
// tk number primary key, (primary key is important for document services)
// title varchar2(2000),
// text clob
// There must be a CONTEXT index called IDX_SEARCH_TABLE on the text column

request.setCharacterEncoding("UTF-8");

java.util.Properties info=new java.util.Properties();
Connection conn = null;
ResultSet rset = null;
OracleCallableStatement callStmt = null;
Statement stmt = null;
String userQuery = null;
String myQuery = null;
String action = null;
String theTk = null;
URLEncoder myEncoder;
int count=0;
int loopNum=0;
int startNum=0;

userQuery = request.getParameter("query");
action = request.getParameter("action");
theTk = request.getParameter("tk");

if (action == null) action = "";

// Connect to database

try {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 info.put ("user", dbUser);
 info.put ("password", dbPass);
 conn = DriverManager.getConnection(connStr,info);
}
 catch (SQLException e) {
%> Error: <%= e %><p> <%
 }

if (action.equals("doHTML")) {
 // Directly display the text of the document
 try {

 // not attempting to share the output table for this example, we'll truncate it each
time
 conn.createStatement().execute("truncate table OUTPUT_TABLE");

 String sql = "{ call ctx_doc.filter(index_name=>'IDX_SEARCH_TABLE', textkey=> '" +
theTk + "', restab=>'OUTPUT_TABLE',
 plaintext=>false) }";
 PreparedStatement s = conn.prepareCall(sql);
 s.execute();

 sql = "select document from output_table where rownum = 1";
 stmt = conn.createStatement();
 rset = stmt.executeQuery(sql);

 rset.next();
 oracle.sql.CLOB res = (oracle.sql.CLOB) rset.getClob(1);
 // should fetch from clob piecewise, but to keep it simple we'll just fetch 32K to a
string
 String txt = res.getSubString(1, 32767);
 out.println(txt);
 }
 catch (SQLException e) {
%> Error: <%= e %><p> <%
 }

Appendix A
The Java Server Pages (JSP) Web Application

A-14

}
else if (action.equals("doHighlight")) {
 // Display the text of the document with highlighting from the "markup" function
 try {

 // not attempting to share the output table for this example, we'll truncate it each
time
 conn.createStatement().execute("truncate table OUTPUT_TABLE");

 String sql = "{ call ctx_doc.markup(index_name=>'IDX_SEARCH_TABLE', textkey=> '" +
theTk + "', text_query => '" + userQuery + "',
 restab=>'OUTPUT_TABLE', plaintext=>false, starttag => '<i><font
color=\"red\">', endtag => '</i>') }";
 PreparedStatement s = conn.prepareCall(sql);
 s.execute();

 sql = "select document from output_table where rownum = 1";
 stmt = conn.createStatement();
 rset = stmt.executeQuery(sql);

 rset.next();
 oracle.sql.CLOB res = (oracle.sql.CLOB) rset.getClob(1);
 // should fetch from clob piecewise, but to keep it simple we'll just fetch 32K to a
string
 String txt = res.getSubString(1, 32767);
 out.println(txt);
 }
 catch (SQLException e) {
%> Error: <%= e %><p> <%
 }
}

else if (action.equals("doThemes")) {
 // Display the text of the document with highlighting from the "markup" function
 try {

 // not attempting to share the output table for this example, we'll truncate it each
time
 conn.createStatement().execute("truncate table THEME_TABLE");

 String sql = "{ call ctx_doc.themes(index_name=>'IDX_SEARCH_TABLE', textkey=> '" +
theTk + "', restab=>'THEME_TABLE') }";
 PreparedStatement s = conn.prepareCall(sql);
 s.execute();

 sql = "select * from (select theme, weight from theme_table order by weight desc)
where rownum <= 20";
 stmt = conn.createStatement();
 rset = stmt.executeQuery(sql);
 int weight = 0;
 String theme = "";
%>
 <h2>The top 20 themes of the document</h2>
 <table BORDER=1 CELLSPACING=0 CELLPADDING=0"
 <tr bgcolor="#CCCC99">
 <th>Theme</th>
 <th>Weight</th>
 </tr>
<%
 while (rset.next()) {

 theme = rset.getString(1);
 weight = (int)rset.getInt(2);
%>
 <tr bgcolor="ffffe0">
 <td align="center"> <%= theme %> </td>
 <td align="center"> <%= weight %></td>
 </tr>
<%

Appendix A
The Java Server Pages (JSP) Web Application

A-15

 }

%>
</table>
<%
 }
 catch (SQLException e) {
%> Error: <%= e %><p> <%
 }
}
else if (action.equals("doGists")) {
 // Display the text of the document with highlighting from the "markup" function
 try {

 // not attempting to share the output table for this example, we'll truncate it each
time
 conn.createStatement().execute("truncate table GIST_TABLE");

 String sql = "{ call ctx_doc.gist(index_name=>'IDX_SEARCH_TABLE', textkey=> '" +
theTk + "', restab=>'GIST_TABLE', query_id=>1) }";
 PreparedStatement s = conn.prepareCall(sql);
 s.execute();

 sql = "select pov, gist from gist_table where pov = 'GENERIC' and query_id = 1";
 stmt = conn.createStatement();
 rset = stmt.executeQuery(sql);
 String pov = "";
 String gist = "";

 while (rset.next()) {

 pov = rset.getString(1);
 oracle.sql.CLOB gistClob = (oracle.sql.CLOB) rset.getClob(2);

 out.println("<h3>Document Gist for Point of View: " + pov + "</h3>");
 gist = gistClob.getSubString(1, 32767);
 out.println(gist);

 }

%>
</table>
<%
 }
 catch (SQLException e) {
%> Error: <%= e %><p> <%
 }
}

if ((action.equals("")) && ((userQuery == null) || (userQuery.length() == 0))) {
%>
 <html>
 <title>Text Search</title>
 <body>
 <table width="100%">
 <tr bgcolor="#336699">
 <td><font face="arial" align="left"
 color="#CCCC99" size="+2">Text Search</td>
 </tr>
 </table>
 <center>
 <form method = post>
 Search for:
 <input type="text" name="query" size = "30">
 <input type="submit" value="Search">
 </form>
 </center>
 </body>
 </html>

Appendix A
The Java Server Pages (JSP) Web Application

A-16

<%
}
else if (action.equals("")) {
%>
 <html>
 <title>Text Search Result Page</title>
 <body text="#000000" bgcolor="#FFFFFF" link="#663300"
 vlink="#996633" alink="#ff6600">
 <table width="100%">
 <tr bgcolor="#336699">
 <td><font face="arial" align="left"
 color="#CCCC99" size=+2>Text Search</td>
 </tr>
 </table>
 <center>
 <form method = post action="TextSearchApp.jsp">
 Search for:
 <input type=text name="query" value="<%= userQuery %>" size = 30>
 <input type=submit value="Search">
 </form>
 </center>
<%
 myQuery = URLEncoder.encode(userQuery);
 try {

 stmt = conn.createStatement();

 String numStr = request.getParameter("sn");
 if(numStr!=null)
 startNum=Integer.parseInt(numStr);
 String theQuery = translate(userQuery);

 callStmt =(OracleCallableStatement)conn.prepareCall("begin "+
 "?:=ctx_query.count_hits(index_name=>'IDX_SEARCH_TABLE', "+
 "text_query=>?"+
 "); " +
 "end; ");
 callStmt.setString(2,theQuery);
 callStmt.registerOutParameter(1, OracleTypes.NUMBER);
 callStmt.execute();
 count=((OracleCallableStatement)callStmt).getNUMBER(1).intValue();
 if(count>=(startNum+20)){
%>
 Results
 <%=startNum+1%> - <%=startNum+20%> of <%=count%> matches
<%
 }
 else if(count>0){
%>
 Results
 <%=startNum+1%> - <%=count%> of <%=count%> matches
<%
 }
 else {
%>
 No match found
<%
 }
%>
 <table width="100%">
 <TR ALIGN="RIGHT">
<%
 if((startNum>0)&(count<=startNum+20))
 {
%>
 <TD ALIGN="RIGHT">
 <a href="TextSearchApp.jsp?sn=<%=startNum-20 %>&query=
 <%=myQuery %>">previous20
 </TD>

Appendix A
The Java Server Pages (JSP) Web Application

A-17

<%
 }
 else if((count>startNum+20)&(startNum==0))
 {
%>
 <TD ALIGN="RIGHT">
 <a href="TextSearchApp.jsp?sn=<%=startNum+20
 %>&query=<%=myQuery %>">next20
 </TD>
<%
 }
 else if((count>startNum+20)&(startNum>0))
 {
%>
 <TD ALIGN="RIGHT">
 <a href="TextSearchApp.jsp?sn=<%=startNum-20 %>&query=
 <%=myQuery %>">previous20
 <a href="TextSearchApp.jsp?sn=<%=startNum+20 %>&query=
 <%=myQuery %>">next20
 </TD>
<%
 }
%>
 </TR>
 </table>
<%
 String ctxQuery =
 " select /*+ FIRST_ROWS */ " +
 " tk, TITLE, score(1) scr, " +
 " ctx_doc.snippet ('IDX_SEARCH_TABLE', tk, '" + theQuery + "') " +
 " from search_table " +
 " where contains(TEXT, '"+theQuery+"',1) > 0 " +
 " order by score(1) desc";
 rset = stmt.executeQuery(ctxQuery);
 String tk = null;
 String[] colToDisplay = new String[1];
 int myScore = 0;
 String snippet = "";
 int items = 0;
 while (rset.next()&&items< 20) {
 if(loopNum>=startNum)
 {
 tk = rset.getString(1);
 colToDisplay[0] = rset.getString(2);
 myScore = (int)rset.getInt(3);
 snippet = rset.getString(4);
 items++;
 if (items == 1) {
%>
 <center>
 <table BORDER=1 CELLSPACING=0 CELLPADDING=0 width="100%"
 <tr bgcolor="#CCCC99">
 <th>Score</th>
 <th>TITLE</th>
 <th>Snippet</th>
 <th> <font face="arial"
 color="#336699">Document Services</th>
 </tr>
<% } %>
 <tr bgcolor="#FFFFE0">
 <td ALIGN="CENTER"> <%= myScore %>%</td>
 <td> <%= colToDisplay[0] %> </td>
 <td> <%= snippet %> </td>
 <td>
 <a href="TextSearchApp.jsp?action=doHTML&tk=<%= tk %>">HTML
 <a href="TextSearchApp.jsp?action=doHighlight&tk=<%= tk %>&query=<%= theQuery
%>">Highlight
 <a href="TextSearchApp.jsp?action=doThemes&tk=<%= tk %>&query=<%= theQuery
%>">Themes

Appendix A
The Java Server Pages (JSP) Web Application

A-18

 <a href="TextSearchApp.jsp?action=doGists&tk=<%= tk %>">Gist
 </td>
 </tr>
<%
 }
 loopNum++;
 }
} catch (SQLException e) {
%>
 Error: <%= e %><p>
<%
} finally {
 if (conn != null) conn.close();
 if (stmt != null) stmt.close();
 if (rset != null) rset.close();
 }
%>
 </table>
 </center>
 <table width="100%">
 <TR ALIGN="RIGHT">
<%
 if((startNum>0)&(count<=startNum+20))
 {
%>
 <TD ALIGN="RIGHT">
 <a href="TextSearchApp.jsp?sn=<%=startNum-20 %>&query=
 <%=myQuery %>">previous20
 </TD>
<%
 }
 else if((count>startNum+20)&(startNum==0))
 {
%>
 <TD ALIGN="RIGHT">
 <a href="TextSearchApp.jsp?sn=<%=startNum+20 %>&query=
 <%=myQuery %>">next20
 </TD>
<%
 }
 else if((count>startNum+20)&(startNum>0))
 {
%>
 <TD ALIGN="RIGHT">
 <a href="TextSearchApp.jsp?sn=<%=startNum-20 %>&query=
 <%=myQuery %>">previous20
 <a href="TextSearchApp.jsp?sn=<%=startNum+20 %>&query=
 <%=myQuery %>">next20
 </TD>
<%
 }
%>
 </TR>
 </table>
 </body></html>
<%}

%>
<%!
 public String translate (String input)
 {
 Vector reqWords = new Vector();
 StringTokenizer st = new StringTokenizer(input, " '", true);
 while (st.hasMoreTokens())
 {
 String token = st.nextToken();
 if (token.equals("'"))
 {
 String phrase = getQuotedPhrase(st);

Appendix A
The Java Server Pages (JSP) Web Application

A-19

 if (phrase != null)
 {
 reqWords.addElement(phrase);
 }
 }
 else if (!token.equals(" "))
 {
 reqWords.addElement(token);
 }
 }
 return getQueryString(reqWords);
 }

 private String getQuotedPhrase(StringTokenizer st)
 {
 StringBuffer phrase = new StringBuffer();
 String token = null;
 while (st.hasMoreTokens() && (!(token = st.nextToken()).equals("'")))
 {
 phrase.append(token);
 }
 return phrase.toString();
 }

 private String getQueryString(Vector reqWords)
 {
 StringBuffer query = new StringBuffer("");
 int length = (reqWords == null) ? 0 : reqWords.size();
 for (int ii=0; ii < length; ii++)
 {
 if (ii != 0)
 {
 query.append(" & ");
 }
 query.append("{");
 query.append(reqWords.elementAt(ii));
 query.append("}");
 }
 return query.toString();
 }
%>

Appendix A
The Java Server Pages (JSP) Web Application

A-20

B
CATSEARCH Query Application

This appendix describes how to build a simple web search application by using the
CATSEARCH index type.

This appendix contains the following topics:

• CATSEARCH Web Query Application Overview

• The JSP Web Application

B.1 CATSEARCH Web Query Application Overview
The CTXCAT index type is well suited for merchandise catalogs that have short,
descriptive text fragments and associated structured data. This appendix describes
how to build a browser-based bookstore catalog that users can search to find titles and
prices.

This application is written in JavaServer Pages (JSP).

B.2 The JSP Web Application
This application is based on JavaServer pages (JSP) and has the following
requirements:

• Your Oracle Database must be up and running.

• A web server such as Apache Tomcat, which is can run JSP scripts that connect to
the Oracle Database by using Java Database Connectivity (JDBC).

See Also:

Oracle Database 2 Day + PHP Developer's Guide for information about
installing Apache HTTP Server

This section contains the following topics:

• Building the JSP Web Application

• JSP Web Application Sample Code

B.2.1 Building the JSP Web Application
This application models an online bookstore, where you can look up book titles and
prices.

To create the JavaServer Pages (JSP) web application:

1. Create your table.

B-1

You must create the table to store such book information as title, publisher, and
price. From SQL*Plus:

sqlplus>create table book_catalog (
 id numeric,
 title varchar2(80),
 publisher varchar2(25),
 price numeric)

2. Load data by using SQL*Loader.

Load the book data from the operating system command line with SQL*Loader:

% sqlldr userid=ctxdemo/ctxdemo control=loader.ctl

3. Create the index set.

You can create the index set from SQL*Plus:

sqlplus>begin
 ctx_ddl.create_index_set('bookset');
 ctx_ddl.add_index('bookset','price');
 ctx_ddl.add_index('bookset','publisher');
 end;
/

4. Create the CTXCAT index.

You can create the CTXCAT index from SQL*Plus as follows:

sqlplus>create index book_idx on book_catalog (title)
 indextype is ctxsys.ctxcat
 parameters('index set bookset');

5. Try a simple search by using CATSEARCH.

You can test the newly created index in SQL*Plus as follows:

sqlplus>select id, title from book_catalog
 where catsearch(title,'Java','price > 10 order by price') > 0

6. Copy the catalogSearch.jsp file to your JSP directory.

When you do so, you can access the application from a browser. The URL is
http://localhost:port/path/catalogSearch.jsp.

The application displays a query field in your browser and returns the query results
as a list of HTML links. See Figure B-1.

Appendix B
The JSP Web Application

B-2

Figure B-1 Screenshot of the Web Query Application

B.2.2 JSP Web Application Sample Code
This section lists the code used to build the example web application. It includes the
following files:

• loader.ctl

• loader.dat

• catalogSearch.jsp

See Also:

http://www.oracle.com/technetwork/indexes/downloads/index.html

Appendix B
The JSP Web Application

B-3

http://www.oracle.com/technetwork/indexes/downloads/index.html

B.2.2.1 loader.ctl
 LOAD DATA
 INFILE 'loader.dat'
 INTO TABLE book_catalog
 REPLACE
 FIELDS TERMINATED BY ';'
 (id, title, publisher, price)

B.2.2.2 loader.dat
1; A History of Goats; SPINDRIFT BOOKS; 50
2; Robust Recipes Inspired by Eating Too Much; SPINDRIFT BOOKS; 28
3; Atlas of Greenland History; SPINDRIFT BOOKS; 35
4; Bed and Breakfast Guide to Greenland; SPINDRIFT BOOKS; 37
5; Quitting Your Job and Running Away; SPINDRIFT BOOKS; 25
6; Best Noodle Shops of Omaha; SPINDRIFT BOOKS; 28
7; Complete Book of Toes; SPINDRIFT BOOKS; 16
8; Complete Idiot's Guide to Nuclear Technology; SPINDRIFT BOOKS; 28
9; Java Programming for Woodland Animals; BIG LITTLE BOOKS; 10
10; Emergency Surgery Tips and Tricks; SPOT-ON PUBLISHING; 10
11; Programming with Your Eyes Shut; KLONDIKE BOOKS; 10
12; English in Twelve Minutes; WRENCH BOOKS 11
13; Spanish in Twelve Minutes; WRENCH BOOKS 11
14; C++ Programming for Woodland Animals; CALAMITY BOOKS; 12
15; Oracle Internet Application Server, Enterprise Edition; KANT BOOKS; 12
16; Oracle Internet Developer Suite; SPAMMUS BOOK CO;13
17; Telling the Truth to Your Pets; IBEX BOOKS INC; 13
18; Go Ask Alice's Restaurant; HUMMING BOOKS; 13
19; Life Begins at 93; CALAMITY BOOKS; 17
20; Python Programming for Snakes; BALLAST BOOKS; 14
21; The Second-to-Last Mohican; KLONDIKE BOOKS; 14
22; Eye of Horus; An Oracle of Ancient Egypt; BIG LITTLE BOOKS; 15
23; Introduction to Sitting Down; IBEX BOOKS INC; 15

B.2.2.3 catalogSearch.jsp
<%@ page import="java.sql.* , oracle.jsp.dbutil.*" %>
<jsp:useBean id="name" class="oracle.jsp.jml.JmlString" scope="request" >
<jsp:setProperty name="name" property="value" param="v_query" />
</jsp:useBean>

<%
 String connStr="jdbc:oracle:thin:@machine-domain-name:1521:betadev";

 java.util.Properties info = new java.util.Properties();

 Connection conn = null;
 ResultSet rset = null;
 Statement stmt = null;

 if (name.isEmpty()) {

%>
 <html>
 <title>Catalog Search</title>
 <body>
 <center>
 <form method=post>
 Search for book title:

Appendix B
The JSP Web Application

B-4

 <input type=text name="v_query" size=10>
 where publisher is
 <select name="v_publisher">
 <option value="ADDISON WESLEY">ADDISON WESLEY
 <option value="HUMMING BOOKS">HUMMING BOOKS
 <option value="WRENCH BOOKS">WRENCH BOOKS
 <option value="SPOT-ON PUBLISHING">SPOT-ON PUBLISHING
 <option value="SPINDRIFT BOOKS">SPINDRIFT BOOKS
 <option value="KLONDIKE BOOKS">KLONDIKE BOOKS
 <option value="CALAMITY BOOKS">CALAMITY BOOKS
 <option value="IBEX BOOKS INC">IBEX BOOKS INC
 <option value="BIG LITTLE BOOKS">BIG LITTLE BOOKS
 </select>
 and price is
 <select name="v_op">
 <option value="=">=
 <option value="<"><
 <option value=">">>
 </select>
 <input type=text name="v_price" size=2>
 <input type=submit value="Search">
 </form>
 </center>
 <hr>
 </body>
 </html>

<%
 }
 else {

 String v_query = request.getParameter("v_query");
 String v_publisher = request.getParameter("v_publisher");
 String v_price = request.getParameter("v_price");
 String v_op = request.getParameter("v_op");
%>

 <html>
 <title>Catalog Search</title>
 <body>
 <center>
 <form method=post action="catalogSearch.jsp">
 Search for book title:
 <input type=text name="v_query" value=
 <%= v_query %>
 size=10>
 where publisher is
 <select name="v_publisher">
 <option value="ADDISON WESLEY">ADDISON WESLEY
 <option value="HUMMING BOOKS">HUMMING BOOKS
 <option value="WRENCH BOOKS">WRENCH BOOKS
 <option value="SPOT-ON PUBLISHING">SPOT-ON PUBLISHING
 <option value="SPINDRIFT BOOKS">SPINDRIFT BOOKS
 <option value="KLONDIKE BOOKS">KLONDIKE BOOKS
 <option value="CALAMITY BOOKS">CALAMITY BOOKS
 <option value="IBEX BOOKS INC">IBEX BOOKS INC
 <option value="BIG LITTLE BOOKS">BIG LITTLE BOOKS
 </select>
 and price is
 <select name="v_op">
 <option value="=">=
 <option value="<"><
 <option value=">">>
 </select>
 <input type=text name="v_price" value=
 <%= v_price %> size=2>
 <input type=submit value="Search">
 </form>
 </center>

Appendix B
The JSP Web Application

B-5

<%
 try {

 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 info.put ("user", "ctxdemo");
 info.put ("password","ctxdemo");
 conn = DriverManager.getConnection(connStr,info);

 stmt = conn.createStatement();
 String theQuery = request.getParameter("v_query");
 String thePrice = request.getParameter("v_price");

 // select id,title
 // from book_catalog
 // where catsearch (title,'Java','price >10 order by price') > 0

 // select title
 // from book_catalog
 // where catsearch(title,'Java','publisher = ''CALAMITY BOOKS''
 and price < 40 order by price')>0

 String myQuery = "select title, publisher, price from book_catalog
 where catsearch(title, '"+theQuery+"',
 'publisher = ''"+v_publisher+"'' and price "+v_op+thePrice+"
 order by price') > 0";
 rset = stmt.executeQuery(myQuery);

 String color = "ffffff";

 String myTitle = null;
 String myPublisher = null;
 int myPrice = 0;
 int items = 0;

 while (rset.next()) {
 myTitle = (String)rset.getString(1);
 myPublisher = (String)rset.getString(2);
 myPrice = (int)rset.getInt(3);
 items++;

 if (items == 1) {
%>
 <center>
 <table border="0">
 <tr bgcolor="#6699CC">
 <th>Title</th>
 <th>Publisher</th>
 <th>Price</th>
 </tr>
<%
 }
%>
 <tr bgcolor="#<%= color %>">
 <td> <%= myTitle %></td>
 <td> <%= myPublisher %></td>
 <td> $<%= myPrice %></td>
 </tr>
<%
 if (color.compareTo("ffffff") == 0)
 color = "eeeeee";
 else
 color = "ffffff";

 }

 } catch (SQLException e) {

%>

Appendix B
The JSP Web Application

B-6

 Error: <%= e %><p>

<%

 } finally {
 if (conn != null) conn.close();
 if (stmt != null) stmt.close();
 if (rset != null) rset.close();
 }

%>
 </table>
 </center>
 </body>
 </html>
<%
 }
%>

Appendix B
The JSP Web Application

B-7

C
Custom Index Preference Examples

This appendix describes a few custom index preference examples.

This appendix contains the following topics:

• Datastore Examples

• NULL_FILTER Example: Indexing HTML Documents

• PROCEDURE_FILTER Example

• BASIC_LEXER Example: Setting Printjoin Characters

• MULTI_LEXER Example: Indexing a Multi-Language Table

• BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing

• BASIC_WORDLIST Example: Enabling Wildcard Index

C.1 Datastore Examples
The following are examples for setting direct, multicolumn, URL, and file datastores.

Specifying DIRECT_DATASTORE

This example creates a table with a CLOB column to store text data. It then
populates two rows with text data and indexes the table by using the system-defined
CTXSYS.DEFAULT_DATASTORE preference, which uses the DIRECT_DATASTORE preference
type.

create table mytable(id number primary key, docs clob);

insert into mytable values(111555,'this text will be indexed');
insert into mytable values(111556,'this is a default datastore example');
commit;

create index myindex on mytable(docs)
 indextype is ctxsys.context
 parameters ('DATASTORE CTXSYS.DEFAULT_DATASTORE');

Specifying MULTI_COLUMN_DATASTORE

This example creates a multicolumn datastore preference called my_multi on the three
text columns to be concatenated and indexed:

begin
ctx_ddl.create_preference('my_multi', 'MULTI_COLUMN_DATASTORE');
ctx_ddl.set_attribute('my_multi', 'columns', 'column1, column2, column3');
end;

C-1

Specifying URL Data Storage

This example creates a URL_DATASTORE preference called my_url to which the
http_proxy, no_proxy, and timeout attributes are set. The timeout attribute is set
to 300 seconds. The defaults are used for the attributes that are not set.

begin
 ctx_ddl.create_preference('my_url','URL_DATASTORE');
 ctx_ddl.set_attribute('my_url','HTTP_PROXY','www-proxy.us.example.com');
 ctx_ddl.set_attribute('my_url','NO_PROXY','us.example.com');
 ctx_ddl.set_attribute('my_url','TIMEOUT','300');
end;

Note:

Starting with Oracle Database 21c, the Oracle Text type URL_DATASTORE is
deprecated. Use NETWORK_DATASTORE instead.

Specifying File Data Storage

This example creates a data storage preference by using FILE_DATASTORE to tell the
system that the files to be indexed are stored in the operating system. The example
uses CTX_DDL.SET_ATTRIBUTE to set the PATH attribute to the /docs directory.

begin
ctx_ddl.create_preference('mypref', 'FILE_DATASTORE');
ctx_ddl.set_attribute('mypref', 'PATH', '/docs');
end;

Note:

Starting with Oracle Database 21c, the Oracle Text type FILE_DATASTORE is
deprecated. Use DIRECTORY_DATASTORE instead.

See Also:

Oracle Text Reference for more information about data storage

C.2 NULL_FILTER Example: Indexing HTML Documents
If your document set is entirely in HTML, then Oracle recommends that you use
NULL_FILTER in your filter preference because it does no filtering.

For example, to index an HTML document set, specify the system-defined preferences
for NULL_FILTER and HTML_SECTION_GROUP:

Appendix C
NULL_FILTER Example: Indexing HTML Documents

C-2

create index myindex on docs(htmlfile) indextype is ctxsys.context
 parameters('filter ctxsys.null_filter
 section group ctxsys.html_section_group');

C.3 PROCEDURE_FILTER Example
Consider a CTXSYS.NORMALIZE filter procedure that you define with the following
signature:

PROCEDURE NORMALIZE(id IN ROWID, charset IN VARCHAR2, input IN CLOB,
output IN OUT NOCOPY VARCHAR2);

To use this procedure as your filter, set up your filter preference:

begin
ctx_ddl.create_preference('myfilt', 'procedure_filter');
ctx_ddl.set_attribute('myfilt', 'procedure', 'normalize');
ctx_ddl.set_attribute('myfilt', 'input_type', 'clob');
ctx_ddl.set_attribute('myfilt', 'output_type', 'varchar2');
ctx_ddl.set_attribute('myfilt', 'rowid_parameter', 'TRUE');
ctx_ddl.set_attribute('myfilt', 'charset_parameter', 'TRUE');
end;

C.4 BASIC_LEXER Example: Setting Printjoin Characters
Printjoin characters are nonalphanumeric characters that are to be included in index
tokens, so that words such as vice-president are indexed as vice-president.

The following example sets printjoin characters to be the hyphen and underscore with
BASIC_LEXER:

begin
ctx_ddl.create_preference('mylex', 'BASIC_LEXER');
ctx_ddl.set_attribute('mylex', 'printjoins', '_-');
end;

Create the index with printjoins characters set as previously shown:

create index myindex on mytable (docs)
 indextype is ctxsys.context
 parameters ('LEXER mylex');

C.5 MULTI_LEXER Example: Indexing a Multilanguage
Table

Use the MULTI_LEXER preference type to index a column containing documents in
different languages. For example, use this preference type when your text column
stores documents in English, German, and French.

The first step is to create the multilanguage table with a primary key, a text column,
and a language column:

create table globaldoc (
 doc_id number primary key,
 lang varchar2(3),
 text clob
);

Appendix C
PROCEDURE_FILTER Example

C-3

Assume that the table holds mostly English documents, with some German and
Japanese documents. To handle the three languages, you must create three sub-
lexers, one for English, one for German, and one for Japanese:

ctx_ddl.create_preference('english_lexer','basic_lexer');
ctx_ddl.set_attribute('english_lexer','index_themes','yes');
ctx_ddl.set_attribute('english_lexer','theme_language','english');

ctx_ddl.create_preference('german_lexer','basic_lexer');
ctx_ddl.set_attribute('german_lexer','composite','german');
ctx_ddl.set_attribute('german_lexer','mixed_case','yes');
ctx_ddl.set_attribute('german_lexer','alternate_spelling','german');

ctx_ddl.create_preference('japanese_lexer','japanese_vgram_lexer');

Create the multi-lexer preference:

ctx_ddl.create_preference('global_lexer', 'multi_lexer');

Because the stored documents are mostly English, make the English lexer the default
by using CTX_DDL.ADD_SUB_LEXER:

ctx_ddl.add_sub_lexer('global_lexer','default','english_lexer');

Add the German and Japanese lexers in their respective languages with the
CTX_DDL.ADD_SUB_LEXER procedure. Also assume that the language column is
expressed in the standard ISO 639-2 language codes, and add those codes as
alternate values.

ctx_ddl.add_sub_lexer('global_lexer','german','german_lexer','ger');
ctx_ddl.add_sub_lexer('global_lexer','japanese','japanese_lexer','jpn');

Create the globalx index, specifying the multi-lexer preference and the language
column in the parameter clause:

create index globalx on globaldoc(text) indextype is ctxsys.context
parameters ('lexer global_lexer language column lang');

C.6 BASIC_WORDLIST Example: Enabling Substring and
Prefix Indexing

This example improves performance for wildcard queries by setting the wordlist
preference for prefix and substring indexing. For prefix indexing, the example creates
token prefixes between three and four characters long.

begin
ctx_ddl.create_preference('mywordlist', 'BASIC_WORDLIST');
ctx_ddl.set_attribute('mywordlist','PREFIX_INDEX','TRUE');
ctx_ddl.set_attribute('mywordlist','PREFIX_MIN_LENGTH', '3');
ctx_ddl.set_attribute('mywordlist','PREFIX_MAX_LENGTH', '4');
ctx_ddl.set_attribute('mywordlist','SUBSTRING_INDEX', 'YES');
end;

C.7 BASIC_WORDLIST Example: Enabling Wildcard Index
Wildcard indexing supports fast and efficient wildcard search for all wildcard
expressions.

Appendix C
BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing

C-4

This example creates a wordlist preference and enables the wildcard (“K-gram”) index.
By default, the K-grams have a K value of 3:

begin
 ctx_ddl.create_preference('mywordlist','BASIC_WORDLIST');
 ctx_ddl.set_attribute('mywordlist','WILDCARD_INDEX','TRUE');
end;

See Also:

Oracle Text Reference for more information about the BASIC_WORDLIST
attributes table and the WILDCARD_INDEX and WILDCARD_INDEX_K attributes

Appendix C
BASIC_WORDLIST Example: Enabling Wildcard Index

C-5

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Understanding Oracle Text Application Development
	1.1 Introduction to Oracle Text
	1.2 Document Collection Applications
	1.2.1 About Document Collection Applications
	1.2.2 Flowchart of Text Query Application

	1.3 Catalog Information Applications
	1.3.1 About Catalog Information Applications
	1.3.2 Flowchart for Catalog Query Application

	1.4 Document Classification Applications
	1.5 XML Search Applications
	1.5.1 The CONTAINS Operator with XML Search Applications
	1.5.2 Combining Oracle Text Features with Oracle XML DB (XML Search Index)
	1.5.2.1 Using the xml_enable Method for an XML Search Index
	1.5.2.2 Using the Text-on-XML Method
	1.5.2.3 Indexing JSON Data

	2 Getting Started with Oracle Text
	2.1 Overview of Getting Started with Oracle Text
	2.2 Creating an Oracle Text User
	2.3 Query Application Quick Tour
	2.3.1 Creating the Text Table
	2.3.2 Using SQL*Loader to Load the Table

	2.4 Catalog Application Quick Tour
	2.4.1 Creating the Table
	2.4.2 Using SQL*Loader to Load the Table

	2.5 Classification Application Quick Tour
	2.5.1 About Classification of a Document
	2.5.2 Creating a Classification Application

	3 Indexing with Oracle Text
	3.1 About Oracle Text Indexes
	3.1.1 Types of Oracle Text Indexes
	3.1.2 Structure of the Oracle Text CONTEXT Index
	3.1.3 Oracle Text Indexing Process
	3.1.3.1 Datastore Object
	3.1.3.2 Filter Object
	3.1.3.3 Sectioner Object
	3.1.3.4 Lexer Object
	3.1.3.5 Indexing Engine

	3.1.4 About Updates to Indexed Columns
	3.1.5 Partitioned Tables and Indexes
	3.1.6 Online Indexes
	3.1.7 Parallel Indexing
	3.1.8 Indexing and Views

	3.2 Considerations for Oracle Text Indexing
	3.2.1 Location of Text
	3.2.2 Supported Column Types
	3.2.3 Storing Text in the Text Table
	3.2.4 Storing File Path Names
	3.2.5 Storing URLs
	3.2.6 Storing Associated Document Information
	3.2.7 Format and Character Set Columns
	3.2.8 Supported Document Formats
	3.2.9 Summary of DATASTORE Types
	3.2.10 Document Formats and Filtering
	3.2.10.1 No Filtering for HTML
	3.2.10.2 Mixed-Format Columns Filtering
	3.2.10.3 Custom Filtering

	3.2.11 Bypass Rows
	3.2.12 Document Character Set

	3.3 Document Language
	3.4 Special Characters
	3.5 Case-Sensitive Indexing and Querying
	3.6 Improved Document Services Performance with a Forward Index
	3.6.1 Enabling Forward Index
	3.6.2 Forward Index with Snippets
	3.6.3 Forward Index with Save Copy
	3.6.4 Forward Index Without Save Copy
	3.6.5 Save Copy Without Forward Index

	3.7 Language-Specific Features
	3.7.1 Theme Indexing
	3.7.2 Base-Letter Conversion for Characters with Diacritical Marks
	3.7.3 Alternate Spelling
	3.7.4 Composite Words
	3.7.5 Korean, Japanese, and Chinese Indexing

	3.8 About Entity Extraction and CTX_ENTITY
	3.8.1 Basic Example of Using Entity Extraction
	3.8.2 Example of Creating a New Entity Type by Using a User-Defined Rule

	3.9 Fuzzy Matching and Stemming
	3.9.1 Language Attribute Values for index_stems of BASIC_LEXER
	3.9.2 Language Attribute Values for index_stems of AUTO_LEXER

	3.10 Better Wildcard Query Performance
	3.11 Document Section Searches
	3.12 Stopwords and Stopthemes
	3.13 Index Performance
	3.14 Query Performance and Storage of Large Object (LOB) Columns
	3.15 Mixed Query Performance
	3.16 In-Memory Full Text Search and JSON Full Text Search

	4 Creating Oracle Text Indexes
	4.1 Summary of the Procedure for Creating an Oracle Text Index
	4.2 Creating Preferences
	4.3 Section Searching Example: Creating HTML Sections
	4.4 Using Stopwords and Stoplists
	4.4.1 Multilanguage Stoplists
	4.4.2 Stopthemes and Stopclasses
	4.4.3 PL/SQL Procedures for Managing Stoplists

	4.5 Creating a CONTEXT Index
	4.5.1 CONTEXT Index and DML
	4.5.2 Default CONTEXT Index Example
	4.5.3 Incrementally Creating an Index with ALTER INDEX and CREATE INDEX
	4.5.4 Incrementally Creating a CONTEXT Index with POPULATE_PENDING
	4.5.5 Custom CONTEXT Index Example: Indexing HTML Documents
	4.5.6 CONTEXT Index Example: Query Processing with FILTER BY and ORDER BY
	4.5.7 DATASTORE Triggers in Release 12c

	4.6 Creating a CTXCAT Index
	4.6.1 CTXCAT Index and DML Operations
	4.6.2 About CTXCAT Subindexes and Their Costs
	4.6.3 Creating CTXCAT Subindexes
	4.6.4 Creating CTXCAT Index

	4.7 Creating a CTXRULE Index
	4.8 Creating a Search Index for JSON
	4.9 Creating an Oracle Text Search Index

	5 Maintaining Oracle Text Indexes
	5.1 Viewing Index Errors
	5.2 Dropping an Index
	5.3 Resuming a Failed Index
	5.4 Re-creating an Index
	5.4.1 Re-creating a Global Index
	5.4.2 Re-creating a Local Partitioned Index

	5.5 Rebuilding an Index
	5.6 Dropping a Preference
	5.7 Managing DML Operations for a CONTEXT Index
	5.7.1 Viewing Pending DML Operations
	5.7.2 Synchronizing the Index
	5.7.3 Optimizing the Index
	5.7.3.1 Index Fragmentation
	5.7.3.2 Document Invalidation and Garbage Collection
	5.7.3.3 Single Token Optimization
	5.7.3.4 Viewing Index Fragmentation and Garbage Data

	6 Querying with Oracle Text
	6.1 Overview of Queries
	6.1.1 Querying with CONTAINS
	6.1.1.1 CONTAINS SQL Example
	6.1.1.2 CONTAINS PL/SQL Example
	6.1.1.3 Structured Query with CONTAINS Example

	6.1.2 Querying with CATSEARCH
	6.1.2.1 CATSEARCH SQL Query Example
	6.1.2.2 CATSEARCH Example

	6.1.3 Querying with MATCHES
	6.1.3.1 MATCHES SQL Query
	6.1.3.2 MATCHES PL/SQL Examples

	6.1.4 Word and Phrase Queries
	6.1.5 Querying Stopwords
	6.1.6 ABOUT Queries and Themes

	6.2 Oracle Text Query Features
	6.2.1 Query Expressions
	6.2.1.1 CONTAINS Operators
	6.2.1.2 CATSEARCH Operator
	6.2.1.3 MATCHES Operator

	6.2.2 Case-Sensitive Searching
	6.2.3 Query Feedback
	6.2.4 Query Explain Plan
	6.2.5 Using a Thesaurus in Queries
	6.2.6 Document Section Searching
	6.2.7 Using Query Templates
	6.2.7.1 Query Rewrite
	6.2.7.2 Query Relaxation
	6.2.7.3 Query Language
	6.2.7.4 Ordering by SDATA Sections
	6.2.7.5 Alternative and User-Defined Scoring
	6.2.7.6 Alternative Grammar

	6.2.8 Query Analysis
	6.2.9 Other Query Features

	7 Working with CONTEXT and CTXCAT Grammars in Oracle Text
	7.1 The CONTEXT Grammar
	7.1.1 ABOUT Query
	7.1.2 Logical Operators
	7.1.3 Section Searching and HTML and XML
	7.1.4 Proximity Queries with NEAR, NEAR_ACCUM, and NEAR2 Operators
	7.1.5 Fuzzy, Stem, Soundex, Wildcard and Thesaurus Expansion Operators
	7.1.6 Using CTXCAT Grammar
	7.1.7 Defined Stored Query Expressions
	7.1.7.1 Defining a Stored Query Expression
	7.1.7.2 SQE Example

	7.1.8 Calling PL/SQL Functions in CONTAINS
	7.1.9 Optimizing for Response Time
	7.1.10 Counting Hits
	7.1.11 Using DEFINESCORE and DEFINEMERGE for User-Defined Scoring

	7.2 The CTXCAT Grammar

	8 Presenting Documents in Oracle Text
	8.1 Highlighting Query Terms
	8.1.1 Text highlighting
	8.1.2 Theme Highlighting
	8.1.3 CTX_DOC Highlighting Procedures
	8.1.3.1 Markup Procedure
	8.1.3.2 Highlight Procedure
	8.1.3.3 Concordance

	8.2 Obtaining Part-of-Speech Information for a Document
	8.3 Obtaining Lists of Themes, Gists, and Theme Summaries
	8.3.1 Lists of Themes
	8.3.2 Gist and Theme Summary

	8.4 Presenting and Highlighting Documents

	9 Classifying Documents in Oracle Text
	9.1 Overview of Document Classification
	9.2 Classification Applications
	9.3 Classification Solutions
	9.4 Rule-Based Classification
	9.4.1 Rule-Based Classification Example
	9.4.2 CTXRULE Parameters and Limitations

	9.5 Supervised Classification
	9.5.1 Decision Tree Supervised Classification
	9.5.2 Decision Tree Supervised Classification Example
	9.5.3 SVM-Based Supervised Classification
	9.5.4 SVM-Based Supervised Classification Example

	9.6 Unsupervised Classification (Clustering)
	9.7 Unsupervised Classification (Clustering) Example

	10 Tuning Oracle Text
	10.1 Optimizing Queries with Statistics
	10.1.1 Collecting Statistics
	10.1.2 Query Optimization with Statistics Example
	10.1.3 Re-Collecting Statistics
	10.1.4 Deleting Statistics

	10.2 Optimizing Queries for Response Time
	10.2.1 Other Factors That Influence Query Response Time
	10.2.2 Improved Response Time with the FIRST_ROWS(n) Hint for ORDER BY Queries
	10.2.3 Improved Response Time Using the DOMAIN_INDEX_SORT Hint
	10.2.4 Improved Response Time Using the Local Partitioned CONTEXT Index
	10.2.5 Improved Response Time with the Local Partitioned Index for Order by Score
	10.2.6 Improved Response Time with the Query Filter Cache
	10.2.7 Improved Response Time Using the BIG_IO Option of CONTEXT Index
	10.2.8 Improved Response Time Using the SEPARATE_OFFSETS Option of the CONTEXT Index
	10.2.9 Improved Response Time Using the STAGE_ITAB, STAGE_ITAB_MAX_ROWS, and STAGE_ITAB_PARALLEL Options of CONTEXT Index

	10.3 Optimizing Queries for Throughput
	10.4 Composite Domain Index in Oracle Text
	10.5 Performance Tuning with CDI
	10.6 Solving Index and Query Bottlenecks by Using Tracing
	10.7 Using Parallel Queries
	10.7.1 Parallel Queries on a Local Context Index
	10.7.2 Parallelizing Queries Across Oracle RAC Nodes

	10.8 Tuning Queries with Blocking Operations
	10.9 Frequently Asked Questions About Query Performance
	10.9.1 What is query performance?
	10.9.2 What is the fastest type of Oracle Text query?
	10.9.3 Should I collect statistics on my tables?
	10.9.4 How does the size of my data affect queries?
	10.9.5 How does the format of my data affect queries?
	10.9.6 What is the difference between an indexed lookup and a functional lookup
	10.9.7 What tables are involved in queries?
	10.9.8 How is the ⁠$R table contention reduced?
	10.9.9 Does sorting the results slow a text-only query?
	10.9.10 How do I make an ORDER BY score query faster?
	10.9.11 Which memory settings affect querying?
	10.9.12 Does out-of-line LOB storage of wide base table columns improve performance?
	10.9.13 How can I speed up a CONTAINS query on more than one column?
	10.9.14 Can I have many expansions in a query?
	10.9.15 How can local partition indexes help?
	10.9.16 Should I query in parallel?
	10.9.17 Should I index themes?
	10.9.18 When should I use a CTXCAT index?
	10.9.19 When is a CTXCAT index NOT suitable?
	10.9.20 What optimizer hints are available and what do they do?

	10.10 Frequently Asked Questions About Indexing Performance
	10.10.1 How long should indexing take?
	10.10.2 Which index memory settings should I use?
	10.10.3 How much disk overhead will indexing require?
	10.10.4 How does the format of my data affect indexing?
	10.10.5 Can parallel indexing improve performance?
	10.10.6 How can I improve index performance when I create a local partitioned index?
	10.10.7 How can I tell how much indexing has completed?

	10.11 Frequently Asked Questions About Updating the Index
	10.11.1 How often should I index new or updated records?
	10.11.2 How can I tell when my indexes are fragmented?
	10.11.3 Does memory allocation affect index synchronization?

	11 Searching Document Sections in Oracle Text
	11.1 About Oracle Text Document Section Searching
	11.1.1 Enabling Oracle Text Section Searching
	11.1.1.1 Create a Section Group
	11.1.1.2 Define Your Sections
	11.1.1.3 Index Your Documents
	11.1.1.4 Search Sections with the WITHIN Operator
	11.1.1.5 Search Paths with INPATH and HASPATH Operators
	11.1.1.6 Mark an SDATA Section to Be Searchable

	11.1.2 Oracle Text Section Types
	11.1.2.1 Zone Section
	11.1.2.2 Field Section
	11.1.2.3 Stop Section
	11.1.2.4 MDATA Section
	11.1.2.5 NDATA Section
	11.1.2.6 SDATA Section
	11.1.2.7 Attribute Section
	11.1.2.8 Special Sections

	11.1.3 Oracle Text Section Attributes

	11.2 HTML Section Searching with Oracle Text
	11.2.1 Creating HTML Sections
	11.2.2 Searching HTML Meta Tags

	11.3 XML Section Searching with Oracle Text
	11.3.1 Automatic Sectioning
	11.3.2 Attribute Searching
	11.3.3 Document Type Sensitive Sections
	11.3.4 Path Section Searching
	11.3.4.1 Creating an Index with PATH_SECTION_GROUP
	11.3.4.2 Top-Level Tag Searching
	11.3.4.3 Any-Level Tag Searching
	11.3.4.4 Direct Parentage Searching
	11.3.4.5 Tag Value Testing
	11.3.4.6 Attribute Searching
	11.3.4.7 Attribute Value Testing
	11.3.4.8 Path Testing
	11.3.4.9 Section Equality Testing with HASPATH

	12 Using Oracle Text Name Search
	12.1 Overview of Name Search
	12.2 Name Search Examples

	13 Working with a Thesaurus in Oracle Text
	13.1 Overview of Oracle Text Thesaurus Features
	13.1.1 Oracle Text Thesaurus Creation and Maintenance
	13.1.2 Using a Case-Sensitive Thesaurus
	13.1.3 Using a Case-Insensitive Thesaurus
	13.1.4 Default Thesaurus
	13.1.5 Supplied Thesaurus

	13.2 Defining Terms in a Thesaurus
	13.2.1 Defining Synonyms
	13.2.2 Defining Hierarchical Relations

	13.3 Using a Thesaurus in a Query Application
	13.4 Loading a Custom Thesaurus and Issuing Thesaurus-Based Queries
	13.5 Augmenting the Knowledge Base with a Custom Thesaurus
	13.5.1 Advantages
	13.5.2 Limitations

	13.6 Linking New Terms to Existing Terms
	13.7 Example of Loading a Thesaurus with ctxload
	13.8 Example of Loading a Thesaurus with the CTX_THES.IMPORT_THESAURUS PL/SQL procedure
	13.9 Compiling a Loaded Thesaurus
	13.10 About the Supplied Knowledge Base
	13.10.1 Adding a Language-Specific Knowledge Base
	13.10.2 Limitations for Adding Knowledge Bases

	14 Using Faceted Navigation
	14.1 About Faceted Navigation
	14.2 Defining Sections As Facets
	14.3 Querying Facets by Using the Result Set Interface
	14.4 Refining Queries by Using Facets As Filters
	14.5 Multivalued Facets

	15 Using Result Set Interface
	15.1 Overview of the XML Query Result Set Interface
	15.2 Using the XML Query Result Set Interface
	15.3 Creating XML-Only Applications with Oracle Text
	15.4 Example of a Result Set Descriptor
	15.5 Identifying Collocates
	15.6 Overview of the JSON Result Set Interface
	15.7 Using the JSON Result Set Interface

	16 Performing Sentiment Analysis Using Oracle Text
	16.1 Overview of Sentiment Analysis
	16.1.1 About Sentiment Analysis
	16.1.2 About Sentiment Classifiers
	16.1.3 About Performing Sentiment Analysis
	16.1.4 Sentiment Analysis Interfaces

	16.2 Creating a Sentiment Classifier Preference
	16.3 Training Sentiment Classifiers
	16.4 Performing Sentiment Analysis with the CTX_DOC Package
	16.5 Performing Sentiment Analysis with the RSI

	17 Administering Oracle Text
	17.1 Oracle Text Users and Roles
	17.1.1 CTXSYS User
	17.1.2 CTXAPP Role
	17.1.3 Granting Roles and Privileges to Users

	17.2 DML Queue
	17.3 CTX_OUTPUT Package
	17.4 CTX_REPORT Package
	17.5 Text Manager in Oracle Enterprise Manager
	17.5.1 Using Text Manager
	17.5.2 Viewing General Information for an Oracle Text Index
	17.5.3 Checking Oracle Text Index Health

	17.6 Servers and Indexing
	17.7 Tracking Database Feature Usage in Oracle Enterprise Manager
	17.8 Oracle Text on Oracle Real Application Clusters
	17.9 Configuring Oracle Text in Oracle Database Vault Environment
	17.10 Unsupported Oracle Text Operations in Oracle Database Vault Realm
	17.11 Export and Import of Schemas Containing Oracle Text Settings

	18 Migrating Oracle Text Applications
	18.1 Performing a Rolling Upgrade with a Logical Standby Database
	18.1.1 CTX_DDL PL/SQL Procedures
	18.1.2 CTX_OUTPUT PL/SQL Procedures
	18.1.3 CTX_DOC PL/SQL Procedures

	18.2 Identifying and Copying Oracle Text Files to a New Oracle Home

	A CONTEXT Query Application
	A.1 Web Query Application Overview
	A.2 The PL/SQL Server Pages (PSP) Web Application
	A.2.1 PSP Web Application Prerequisites
	A.2.2 Building the PSP Web Application
	A.2.3 PSP Web Application Sample Code
	A.2.3.1 loader.ctl
	A.2.3.2 loader.dat
	A.2.3.3 HTML Files for loader.dat Example
	A.2.3.4 search_htmlservices.sql
	A.2.3.5 search_html.psp

	A.3 The Java Server Pages (JSP) Web Application
	A.3.1 JSP Web Application Prerequisites
	A.3.2 JSP Web Application Sample Code

	B CATSEARCH Query Application
	B.1 CATSEARCH Web Query Application Overview
	B.2 The JSP Web Application
	B.2.1 Building the JSP Web Application
	B.2.2 JSP Web Application Sample Code
	B.2.2.1 loader.ctl
	B.2.2.2 loader.dat
	B.2.2.3 catalogSearch.jsp

	C Custom Index Preference Examples
	C.1 Datastore Examples
	C.2 NULL_FILTER Example: Indexing HTML Documents
	C.3 PROCEDURE_FILTER Example
	C.4 BASIC_LEXER Example: Setting Printjoin Characters
	C.5 MULTI_LEXER Example: Indexing a Multilanguage Table
	C.6 BASIC_WORDLIST Example: Enabling Substring and Prefix Indexing
	C.7 BASIC_WORDLIST Example: Enabling Wildcard Index

