Oracle® Database
Database PL/SQL Language Reference

ORACLE"

Oracle Database Database PL/SQL Language Reference, 21c
F31827-01

Copyright © 1996, 2020, Oracle and/or its affiliates.

Primary Author: Louise Morin

Contributing Authors: L. Jayapalan, E. Belden, P. Huey, S. Moore, K. Rich

Contributors: D. Alpern, S. Agrawal, H. Baer, S. Castledine, T. Chang, B. Cheng, R. Dani, R. Decker, C. lyer,
A. Kruglikov, N. Le, W. Li, B. Llewellyn, P. Miller, V. Moore, T. Raney, R. Rajagopalan, I. Stocks, C. Wetherell,
S. Wolicki, G. Viswanathan, M. Yang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not

be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience XXXVI
Documentation Accessibility XXXVi
Related Documents XXXVii
Conventions XXXV
Syntax Descriptions XXXViii

1 Changes in This Release for Oracle Database PL/SQL Language

Reference
1.1 New Features in Release 21c for Oracle Database PL/SQL Language
Reference 1-1
1.1.1 PL/SQL Extended lterators 1-1
1.1.2 PL/SQL Qualified Expressions Enhancements 1-2
1.1.3 SQL Macros 1-2
1.1.4 New JSON Data Type 1-3
1.1.5 New Pragma SUPPRESSES_WARNING_6009 1-3
1.1.6 PL/SQL Type Attributes in Non Persistable User Defined Types 1-4
1.1.7 PL/SQL Function Enhanced Result Cache 1-4
1.2 Deprecated Features 1-4
1.3 Desupported Features 1-5
2 Overview of PL/SQL
2.1 Advantages of PL/SQL 2-1
2.1.1 Tight Integration with SQL 2-1
2.1.2 High Performance 2-2
2.1.3 High Productivity 2-2
2.1.4 Portability 2-2
2.1.5 Scalability 2-3
2.1.6 Manageability 2-3
2.1.7 Support for Object-Oriented Programming 2-3
2.2 Main Features of PL/SQL 2-3

ORACLE

2.2.1 Error Handling 2-4

2.2.2 Blocks 2-4
2.2.3 Variables and Constants 2-5
2.2.4 Subprograms 2-5
2.2.5 Packages 2-5
2.2.6 Triggers 2-5
2.2.7 Input and Output 2-6
2.2.8 Data Abstraction 2-7
2.2.8.1 Cursors 2-7
2.2.8.2 Composite Variables 2-7
2.2.8.3 Using the %ROWTYPE Attribute 2-8
2.2.8.4 Using the %TYPE Attribute 2-8
2.2.8.5 Abstract Data Types 2-8
2.2.9 Control Statements 2-9
2.2.10 Conditional Compilation 2-9
2.2.11 Processing a Query Result Set One Row at a Time 2-9
2.3 Architecture of PL/SQL 2-10
2.3.1 PL/SQL Engine 2-10
2.3.2 PL/SQL Units and Compilation Parameters 2-11

3 PL/SQL Language Fundamentals

3.1 Character Sets 3-1
3.1.1 Database Character Set 3-1
3.1.2 National Character Set 3-3
3.1.3 About Data-Bound Collation 3-3

3.2 Lexical Units 34
3.2.1 Delimiters 3-4
3.2.2 Identifiers 3-6

3.2.2.1 Reserved Words and Keywords 3-6
3.2.2.2 Predefined Identifiers 3-6
3.2.2.3 User-Defined Identifiers 3-7
3.2.3 Literals 3-10
3.2.4 Pragmas 3-12
3.25 Comments 3-12
3.2.5.1 Single-Line Comments 3-13
3.2.5.2 Multiline Comments 3-13
3.2.6 Whitespace Characters Between Lexical Units 3-14

3.3 Declarations 3-15
3.3.1 NOT NULL Constraint 3-15
3.3.2 Declaring Variables 3-16

ORACLE iv

3.3.3
3.34
3.35

Declaring Constants
Initial Values of Variables and Constants
Declaring Items using the %TYPE Attribute

3.4 References to ldentifiers

3.5 Scope and Visibility of Identifiers

3.6 Assigning Values to Variables

3.6.1
3.6.2
3.6.3
3.6.4

Assigning Values to Variables with the Assignment Statement
Assigning Values to Variables with the SELECT INTO Statement
Assigning Values to Variables as Parameters of a Subprogram
Assigning Values to BOOLEAN Variables

3.7 Expressions

3.7.1
3.7.2
3.7.3
3.74
3.7.5

Concatenation Operator
Operator Precedence
Logical Operators
Short-Circuit Evaluation
Comparison Operators

3.7.5.1 IS [NOT] NULL Operator
3.7.5.2 Relational Operators
3.7.5.3 LIKE Operator

3.7.5.4 BETWEEN Operator
3.7.5.5 IN Operator

3.7.6
3.7.7

BOOLEAN Expressions
CASE Expressions

3.7.7.1 Simple CASE Expression
3.7.7.2 Searched CASE Expression

3.7.8
3.7.9

SQL Functions in PL/SQL Expressions
Static Expressions

3.7.9.1 PLS_INTEGER Static Expressions
3.7.9.2 BOOLEAN Static Expressions
3.7.9.3 VARCHAR?2 Static Expressions
3.7.9.4 Static Constants

3.8 Error-Reporting Functions

3.9 Conditional Compilation

3.9.1

How Conditional Compilation Works

3.9.1.1 Preprocessor Control Tokens

3.9.1.2 Selection Directives

3.9.1.3 Error Directives

3.9.1.4 Inquiry Directives

3.9.1.5 DBMS DB _VERSION Package

3.9.2
3.9.3

ORACLE

Conditional Compilation Examples
Retrieving and Printing Post-Processed Source Text

3-17
3-17
3-18
3-19
3-20
3-25
3-25
3-26
3-27
3-27
3-28
3-28
3-29
3-31
3-36
3-37
3-37
3-38
3-40
3-41
3-42
3-43
3-44
3-44
3-45
3-47
3-48
3-51
3-51
3-52
3-53
3-54
3-54
3-55
3-55
3-56
3-56
3-57
3-60
3-61
3-63

3.9.4 Conditional Compilation Directive Restrictions 3-63
4 PL/SQL Data Types

4.1 SQL Data Types 4-2
4.1.1 Different Maximum Sizes 4-2

4.1.2 Additional PL/SQL Constants for BINARY_FLOAT and
BINARY_DOUBLE 4-3
4.1.3 Additional PL/SQL Subtypes of BINARY_FLOAT and BINARY_DOUBLE 4-3
4.14 CHAR and VARCHAR? Variables 4-4
4.1.4.1 Assigning or Inserting Too-Long Values 4-4
4.1.4.2 Declaring Variables for Multibyte Characters 4-5
4.1.4.3 Differences Between CHAR and VARCHAR?2 Data Types 4-5
4.1.5 LONG and LONG RAW Variables 4-7
4.1.6 ROWID and UROWID Variables 4-7
4.2 BOOLEAN Data Type 4-8
4.3 PLS_INTEGER and BINARY_INTEGER Data Types 4-10
4.3.1 Preventing PLS_INTEGER Overflow 4-10
4.3.2 Predefined PLS_INTEGER Subtypes 4-11
4.3.3 SIMPLE_INTEGER Subtype of PLS_INTEGER 4-12
4.3.3.1 SIMPLE_INTEGER Overflow Semantics 4-13
4.3.3.2 Expressions with Both SIMPLE_INTEGER and Other Operands 4-13
4.3.3.3 Integer Literals in SIMPLE_INTEGER Range 4-14
4.4 User-Defined PL/SQL Subtypes 4-14
4.4.1 Unconstrained Subtypes 4-14
4.4.2 Constrained Subtypes 4-15
4.4.3 Subtypes with Base Types in Same Data Type Family 4-17

5 PL/SQL Control Statements

5.1 Conditional Selection Statements 5-1
5.1.1 IF THEN Statement 5-2
5.1.2 IF THEN ELSE Statement 5-3
5.1.3 IF THEN ELSIF Statement 5-5
5.1.4 Simple CASE Statement 5-6
5.1.5 Searched CASE Statement 5-7
5.2 LOOP Statements 5-9
5.2.1 Basic LOOP Statement 5-10
5.2.2 FOR LOOP Statement Overview 5-10
5.2.2.1 FOR LOOP lIterand 5-11
5.2.2.2 Iterand Mutability 5-14
5.2.2.3 Multiple Iteration Controls 5-14

ORACLE

Vi

5.2.2.4 Stepped Range lteration Controls 5-15

5.2.2.5 Single Expression lteration Controls 5-17

5.2.2.6 Collection Iteration Controls 5-18

5.2.2.7 Cursor Iteration Controls 5-21

5.2.2.8 Using Dynamic SQL in Iteration Controls 5-21

5.2.2.9 Stopping and Skipping Predicate Clauses 5-22

5.2.3 WHILE LOOP Statement 5-23

5.3 Sequential Control Statements 5-24

5.3.1 GOTO Statement 5-24

5.3.2 NULL Statement 5-24

PL/SQL Collections and Records

6.1 Collection Types 6-2

6.2 Associative Arrays 6-4

6.2.1 Declaring Associative Array Constants 6-7

6.2.2 NLS Parameter Values Affect Associative Arrays Indexed by String 6-8
6.2.2.1 Changing NLS Parameter Values After Populating Associative

Arrays 6-9

6.2.2.2 Indexes of Data Types Other Than VARCHAR?2 6-9

6.2.2.3 Passing Associative Arrays to Remote Databases 6-9

6.2.3 Appropriate Uses for Associative Arrays 6-10

6.3 Varrays (Variable-Size Arrays) 6-10

6.3.1 Appropriate Uses for Varrays 6-13

6.4 Nested Tables 6-13

6.4.1 Important Differences Between Nested Tables and Arrays 6-16

6.4.2 Appropriate Uses for Nested Tables 6-16

6.5 Collection Constructors 6-17

6.6 Qualified Expressions Overview 6-18

6.7 Assigning Values to Collection Variables 6-22

6.7.1 Data Type Compatibility 6-22

6.7.2 Assigning Null Values to Varray or Nested Table Variables 6-23

6.7.3 Assigning Set Operation Results to Nested Table Variables 6-24

6.8 Multidimensional Collections 6-25

6.9 Collection Comparisons 6-27

6.9.1 Comparing Varray and Nested Table Variables to NULL 6-28

6.9.2 Comparing Nested Tables for Equality and Inequality 6-29

6.9.3 Comparing Nested Tables with SQL Multiset Conditions 6-30

6.10 Collection Methods 6-31

6.10.1 DELETE Collection Method 6-32

6.10.2 TRIM Collection Method 6-35

6.10.3 EXTEND Collection Method 6-37

ORACLE

Vii

6.10.4 EXISTS Collection Method 6-38
6.10.5 FIRST and LAST Collection Methods 6-39
6.10.5.1 FIRST and LAST Methods for Associative Array 6-39
6.10.5.2 FIRST and LAST Methods for Varray 6-40
6.10.5.3 FIRST and LAST Methods for Nested Table 6-42
6.10.6 COUNT Collection Method 6-43
6.10.6.1 COUNT Method for Varray 6-43
6.10.6.2 COUNT Method for Nested Table 6-44
6.10.7 LIMIT Collection Method 6-45
6.10.8 PRIOR and NEXT Collection Methods 6-46
6.11 Collection Types Defined in Package Specifications 6-48
6.12 Record Variables 6-50
6.12.1 Initial Values of Record Variables 6-50
6.12.2 Declaring Record Constants 6-50
6.12.3 RECORD Types 6-52
6.12.4 Declaring Items using the %ROWTYPE Attribute 6-56
6.12.4.1 Declaring a Record Variable that Always Represents Full Row 6-56
6.12.4.2 Declaring a Record Variable that Can Represent Partial Row 6-58
6.12.4.3 %ROWTYPE Attribute and Virtual Columns 6-59
6.12.4.4 %ROWTYPE Attribute and Invisible Columns 6-60
6.13 Assigning Values to Record Variables 6-62
6.13.1 Assigning Values to RECORD Type Variables Using Qualified
Expressions 6-62
6.13.2 Assigning One Record Variable to Another 6-64
6.13.3 Assigning Full or Partial Rows to Record Variables 6-66
6.13.3.1 Using SELECT INTO to Assign a Row to a Record Variable 6-66
6.13.3.2 Using FETCH to Assign a Row to a Record Variable 6-67
6.13.3.3 Using SQL Statements to Return Rows in PL/SQL Record
Variables 6-68
6.13.4 Assigning NULL to a Record Variable 6-69
6.14 Record Comparisons 6-69
6.15 Inserting Records into Tables 6-70
6.16 Updating Rows with Records 6-71
6.17 Restrictions on Record Inserts and Updates 6-72
7 PL/SQL Static SQL
7.1 Description of Static SQL 7-1
7.1.1 Statements 7-1
7.1.2 Pseudocolumns 7-3
7.1.2.1 CURRVAL and NEXTVAL in PL/SQL 7-3
7.2 Cursors Overview 7-5

ORACLE

viii

7.2.1

Implicit Cursors

7.2.1.1 SQL%ISOPEN Attribute: Is the Cursor Open?

7.2.1.2 SQL%FOUND Attribute: Were Any Rows Affected?

7.2.1.3 SQL%NOTFOUND Attribute: Were No Rows Affected?

7.2.1.4 SQL%ROWCOUNT Attribute: How Many Rows Were Affected?

7.2.2

Explicit Cursors

7.2.2.1 Declaring and Defining Explicit Cursors

7.2.2.2 Opening and Closing Explicit Cursors

7.2.2.3 Fetching Data with Explicit Cursors

7.2.2.4 Variables in Explicit Cursor Queries

7.2.2.5 When Explicit Cursor Queries Need Column Aliases

7.2.2.6 Explicit Cursors that Accept Parameters
7.2.2.7 Explicit Cursor Attributes
7.3 Processing Query Result Sets

7.3.1

Processing Query Result Sets With SELECT INTO Statements

7.3.1.1 Handling Single-Row Result Sets
7.3.1.2 Handling Large Multiple-Row Result Sets

7.3.2
7.3.3

7.3.4

Processing Query Result Sets With Cursor FOR LOOP Statements

Processing Query Result Sets With Explicit Cursors, OPEN, FETCH,
and CLOSE

Processing Query Result Sets with Subqueries

7.4 Cursor Variables

7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8
7.4.9

Creating Cursor Variables

Opening and Closing Cursor Variables
Fetching Data with Cursor Variables
Assigning Values to Cursor Variables
Variables in Cursor Variable Queries
Querying a Collection

Cursor Variable Attributes

Cursor Variables as Subprogram Parameters
Cursor Variables as Host Variables

7.5 CURSOR Expressions
7.6 Transaction Processing and Control

7.6.1
7.6.2
7.6.3
7.6.4
7.6.5
7.6.6

COMMIT Statement
ROLLBACK Statement
SAVEPOINT Statement

Implicit Rollbacks

SET TRANSACTION Statement
Overriding Default Locking

7.6.6.1 LOCK TABLE Statement
7.6.6.2 SELECT FOR UPDATE and FOR UPDATE Cursors

ORACLE

7-7

7-7

7-8

7-8

7-9
7-10
7-10
7-11
7-13
7-15
7-16
7-20
7-24
7-25
7-25
7-26
7-26

7-29
7-29
7-30
7-31
7-33
7-33
7-35
7-36
7-38
7-39
7-39
7-41
7-43
7-44
7-45
7-47
7-48
7-50
7-50
7-51
7-52
7-52

7.6.6.3 Simulating CURRENT OF Clause with ROWID Pseudocolumn 7-53

7.7 Autonomous Transactions 7-55
7.7.1 Advantages of Autonomous Transactions 7-56
7.7.2 Transaction Context 7-56
7.7.3 Transaction Visibility 7-56
7.7.4 Declaring Autonomous Routines 7-57
7.7.5 Controlling Autonomous Transactions 7-58

7.7.5.1 Entering and Exiting Autonomous Routines 7-58
7.7.5.2 Committing and Rolling Back Autonomous Transactions 7-59
7.7.5.3 Savepoints 7-59
7.7.5.4 Avoiding Errors with Autonomous Transactions 7-59
7.7.6 Autonomous Triggers 7-59
7.7.7 Invoking Autonomous Functions from SQL 7-62

8 PL/SQL Dynamic SQL

8.1 When You Need Dynamic SQL 8-1

8.2 Native Dynamic SQL 8-2

8.2.1 EXECUTE IMMEDIATE Statement 8-2

8.2.2 OPEN FOR, FETCH, and CLOSE Statements 8-8

8.2.3 Repeated Placeholder Names in Dynamic SQL Statements 8-10
8.2.3.1 Dynamic SQL Statement is Not Anonymous Block or CALL

Statement 8-10

8.2.3.2 Dynamic SQL Statement is Anonymous Block or CALL Statement 8-10

8.3 DBMS_SQL Package 8-11

8.3.1 DBMS_SQL.RETURN_RESULT Procedure 8-12

8.3.2 DBMS_SQL.GET_NEXT_RESULT Procedure 8-13

8.3.3 DBMS_SQL.TO_REFCURSOR Function 8-15

8.3.4 DBMS_SQL.TO_CURSOR_NUMBER Function 8-16

8.4 SQL Injection 8-18

8.4.1 SQL Injection Techniques 8-18

8.4.1.1 Statement Modification 8-19

8.4.1.2 Statement Injection 8-20

8.4.1.3 Data Type Conversion 8-22

8.4.2 Guards Against SQL Injection 8-23

8.4.2.1 Bind Variables 8-24

8.4.2.2 Validation Checks 8-25

8.4.2.3 Explicit Format Models 8-27

O PL/SQL Subprograms

9.1 Reasons to Use Subprograms 9-1

ORACLE X

9.2 Nested, Package, and Standalone Subprograms
9.3 Subprogram Invocations
9.4 Subprogram Properties
9.5 Subprogram Parts
9.5.1 Additional Parts for Functions
9.5.2 RETURN Statement
9.5.2.1 RETURN Statement in Function
9.5.2.2 RETURN Statement in Procedure
9.5.2.3 RETURN Statement in Anonymous Block
9.6 Forward Declaration
9.7 Subprogram Parameters
9.7.1 Formal and Actual Subprogram Parameters
9.7.1.1 Formal Parameters of Constrained Subtypes
9.7.2 Subprogram Parameter Passing Methods
9.7.3 Subprogram Parameter Modes
9.7.4 Subprogram Parameter Aliasing

9.7.4.1 Subprogram Parameter Aliasing with Parameters Passed by
Reference

9.7.4.2 Subprogram Parameter Aliasing with Cursor Variable Parameters
9.7.5 Default Values for IN Subprogram Parameters
9.7.6 Positional, Named, and Mixed Notation for Actual Parameters
9.8 Subprogram Invocation Resolution
9.9 Overloaded Subprograms
9.9.1 Formal Parameters that Differ Only in Numeric Data Type
9.9.2 Subprograms that You Cannot Overload
9.9.3 Subprogram Overload Errors
9.10 Recursive Subprograms
9.11 Subprogram Side Effects
9.12 PL/SQL Function Result Cache
9.12.1 Enabling Result-Caching for a Function
9.12.2 Developing Applications with Result-Cached Functions
9.12.3 Requirements for Result-Cached Functions
9.12.4 Examples of Result-Cached Functions
9.12.4.1 Result-Cached Application Configuration Parameters
9.12.4.2 Result-Cached Recursive Function
9.12.5 Advanced Result-Cached Function Topics
9.12.5.1 Rules for a Cache Hit
9.12.5.2 Result Cache Bypass

9.12.5.3 Making Result-Cached Functions Handle Session-Specific
Settings

9.12.5.4 Making Result-Cached Functions Handle Session-Specific
Application Contexts

ORACLE

9-2
9-3
9-3
9-5
9-6

9-8
9-8
9-9
9-9
9-10
9-12
9-14
9-15
9-20

9-20
9-22
9-23
9-26
9-28
9-30
9-32
9-33
9-33
9-35
9-37
9-37
9-38
9-40
9-40
9-41
9-41
9-43
9-43
9-44
9-44

9-45

9-46

Xi

9.12.5.5 Choosing Result-Caching Granularity 9-46
9.12.5.6 Result Caches in Oracle RAC Environment 9-48
9.12.5.7 Result Cache Management 9-49
9.12.5.8 Hot-Patching PL/SQL Units on Which Result-Cached Functions
Depend 9-51
9.13 PL/SQL Functions that SQL Statements Can Invoke 9-51
9.14 Invoker's Rights and Definer's Rights (AUTHID Property) 9-52
9.14.1 Granting Roles to PL/SQL Packages and Standalone Subprograms 9-54
9.14.2 IR Units Need Template Objects 9-55
9.14.3 Connected User Database Links in DR Units 9-55
9.15 External Subprograms 9-56
10 PL/SQL Triggers
10.1 Overview of Triggers 10-1
10.2 Reasons to Use Triggers 10-3
10.3 DML Triggers 10-4
10.3.1 Conditional Predicates for Detecting Triggering DML Statement 10-5
10.3.2 INSTEAD OF DML Triggers 10-6
10.3.3 Compound DML Triggers 10-10
10.3.3.1 Compound DML Trigger Structure 10-11
10.3.3.2 Compound DML Trigger Restrictions 10-12
10.3.3.3 Performance Benefit of Compound DML Triggers 10-12
10.3.3.4 Using Compound DML Triggers with Bulk Insertion 10-12
10.3.3.5 Using Compound DML Triggers to Avoid Mutating-Table Error 10-15
10.3.4 Triggers for Ensuring Referential Integrity 10-16
10.3.4.1 Foreign Key Trigger for Child Table 10-17
10.3.4.2 UPDATE and DELETE RESTRICT Trigger for Parent Table 10-18
10.3.4.3 UPDATE and DELETE SET NULL Trigger for Parent Table 10-19
10.3.4.4 DELETE CASCADE Trigger for Parent Table 10-19
10.3.4.5 UPDATE CASCADE Trigger for Parent Table 10-20
10.3.4.6 Triggers for Complex Constraint Checking 10-21
10.3.4.7 Triggers for Complex Security Authorizations 10-22
10.3.4.8 Triggers for Transparent Event Logging 10-24
10.3.4.9 Triggers for Deriving Column Values 10-24
10.3.4.10 Triggers for Building Complex Updatable Views 10-24
10.3.4.11 Triggers for Fine-Grained Access Control 10-27
10.4 Correlation Names and Pseudorecords 10-28
10.4.1 OBJECT_VALUE Pseudocolumn 10-32
10.5 System Triggers 10-34
10.5.1 SCHEMA Triggers 10-34
10.5.2 DATABASE Triggers 10-35
ORACLE Xii

10.5.3 INSTEAD OF CREATE Triggers 10-35

10.6 Subprograms Invoked by Triggers 10-36
10.7 Trigger Compilation, Invalidation, and Recompilation 10-37
10.8 Exception Handling in Triggers 10-37
10.9 Trigger Design Guidelines 10-39
10.10 Trigger Restrictions 10-40
10.10.1 Trigger Size Restriction 10-41
10.10.2 Trigger LONG and LONG RAW Data Type Restrictions 10-41
10.10.3 Mutating-Table Restriction 10-42
10.11 Order in Which Triggers Fire 10-45
10.12 Trigger Enabling and Disabling 10-46
10.13 Trigger Changing and Debugging 10-47
10.14 Triggers and Oracle Database Data Transfer Utilities 10-47
10.15 Triggers for Publishing Events 10-49
10.15.1 Event Attribute Functions 10-50
10.15.2 Event Attribute Functions for Database Event Triggers 10-54
10.15.3 Event Attribute Functions for Client Event Triggers 10-55
10.16 Views for Information About Triggers 10-61

11 PL/SQL Packages

11.1 What is a Package? 11-1
11.2 Reasons to Use Packages 11-2
11.3 Package Specification 11-3
11.3.1 Appropriate Public Iltems 11-4
11.3.2 Creating Package Specifications 11-5
11.4 Package Body 11-6
11.5 Package Instantiation and Initialization 11-7
11.6 Package State 11-7
11.7 SERIALLY_REUSABLE Packages 11-8
11.7.1 Creating SERIALLY_REUSABLE Packages 11-9
11.7.2 SERIALLY_REUSABLE Package Work Unit 11-10
11.7.3 Explicit Cursors in SERIALLY_REUSABLE Packages 11-11
11.8 Package Writing Guidelines 11-12
11.9 Package Example 11-15
11.10 How STANDARD Package Defines the PL/SQL Environment 11-18

12 PL/SQL Error Handling

12.1 Compile-Time Warnings 12-2
12.1.1 DBMS_WARNING Package 12-4

ORACLE Xiii

12.2 Overview of Exception Handling 12-5

12.2.1 Exception Categories 12-6
12.2.2 Advantages of Exception Handlers 12-7
12.2.3 Guidelines for Avoiding and Handling Exceptions 12-9
12.3 Internally Defined Exceptions 12-10
12.4 Predefined Exceptions 12-11
12.5 User-Defined Exceptions 12-14
12.6 Redeclared Predefined Exceptions 12-14
12.7 Raising Exceptions Explicitly 12-16
12.7.1 RAISE Statement 12-16
12.7.1.1 Raising User-Defined Exception with RAISE Statement 12-16
12.7.1.2 Raising Internally Defined Exception with RAISE Statement 12-17
12.7.1.3 Reraising Current Exception with RAISE Statement 12-17

12.7.2 RAISE_APPLICATION_ERROR Procedure 12-18
12.8 Exception Propagation 12-20
12.8.1 Propagation of Exceptions Raised in Declarations 12-23
12.8.2 Propagation of Exceptions Raised in Exception Handlers 12-24
12.9 Unhandled Exceptions 12-27
12.10 Retrieving Error Code and Error Message 12-27
12.11 Continuing Execution After Handling Exceptions 12-29
12.12 Retrying Transactions After Handling Exceptions 12-30
12.13 Handling Errors in Distributed Queries 12-31

13 PL/SQL Optimization and Tuning

13.1 PL/SQL Optimizer 13-1
13.1.1 Subprogram Inlining 13-2
13.2 Candidates for Tuning 13-4
13.3 Minimizing CPU Overhead 13-5
13.3.1 Tune SQL Statements 13-5
13.3.2 Tune Function Invocations in Queries 13-6
13.3.3 Tune Subprogram Invocations 13-7
13.3.4 Tune Loops 13-9
13.3.5 Tune Computation-Intensive PL/SQL Code 13-9
13.3.5.1 Use Data Types that Use Hardware Arithmetic 13-9
13.3.5.2 Avoid Constrained Subtypes in Performance-Critical Code 13-10
13.3.5.3 Minimize Implicit Data Type Conversion 13-10

13.3.6 Use SQL Character Functions 13-11
13.3.7 Put Least Expensive Conditional Tests First 13-11
13.4 Bulk SQL and Bulk Binding 13-12
13.4.1 FORALL Statement 13-13

ORACLE Xiv

13.4.1.1 Using FORALL Statements for Sparse Collections
13.4.1.2 Unhandled Exceptions in FORALL Statements

13.4.1.3 Handling FORALL Exceptions Immediately

13.4.1.4 Handling FORALL Exceptions After FORALL Statement

Completes
13.4.1.5 Getting Number of Rows Affected by FORALL Statement
13.4.2 BULK COLLECT Clause

13.4.2.1 SELECT INTO Statement with BULK COLLECT Clause
13.4.2.2 FETCH Statement with BULK COLLECT Clause

13.4.2.3 RETURNING INTO Clause with BULK COLLECT Clause
13.4.3 Using FORALL Statement and BULK COLLECT Clause Together

13.4.4

Client Bulk-Binding of Host Arrays

13.5 Chaining Pipelined Table Functions for Multiple Transformations

1351
13.5.2
13.5.3
13.5.4
13.55
13.5.6
13.5.7
13.5.8

Overview of Table Functions

Creating Pipelined Table Functions

Pipelined Table Functions as Transformation Functions
Chaining Pipelined Table Functions

Fetching from Results of Pipelined Table Functions

Passing CURSOR Expressions to Pipelined Table Functions
DML Statements on Pipelined Table Function Results
NO_DATA_NEEDED Exception

13.6 Overview of Polymorphic Table Functions

13.6.1
13.6.2
13.6.3

Polymorphic Table Function Definition
Polymorphic Table Function Implementation
Polymorphic Table Function Invocation

13.6.3.1 Variadic Pseudo-Operators
13.6.3.2 COLUMNS Pseudo-Operator

13.6.4
13.6.5
13.6.6
13.6.7
13.6.8

Polymorphic Table Function Compilation and Execution
Polymorphic Table Function Optimization

Skip_col Polymorphic Table Function Example

To_doc Polymorphic Table Function Example
Implicit_echo Polymorphic Table Function Example

13.7 Updating Large Tables in Parallel

13.8 Collecting Data About User-Defined Identifiers
13.9 Profiling and Tracing PL/SQL Programs

13.10 Compiling PL/SQL Units for Native Execution

13.10.1
13.10.2
13.10.3
13.10.4

ORACLE

Determining Whether to Use PL/SQL Native Compilation
How PL/SQL Native Compilation Works

Dependencies, Invalidation, and Revalidation

Setting Up a New Database for PL/SQL Native Compilation

13-16
13-19
13-19

13-21
13-24
13-26
13-26
13-34
13-38
13-39
13-41
13-41
13-42
13-43
13-45
13-47
13-47
13-48
13-51
13-51
13-53
13-53
13-54
13-54
13-56
13-56
13-57
13-57
13-57
13-61
13-65
13-67
13-68
13-69
13-70
13-71
13-71
13-72
13-72

XV

13.10.5 Compiling the Entire Database for PL/SQL Native or Interpreted

Compilation 13-72
14 PL/SQL Language Elements

14.1 ACCESSIBLE BY Clause 14-3
14.2 AGGREGATE Clause 14-8
14.3 Assignment Statement 14-9
144 AUTONOMOUS_TRANSACTION Pragma 14-12
14.5 Basic LOOP Statement 14-13
14.6 Block 14-15
14.7 Call Specification 14-24
14.8 CASE Statement 14-27
14.9 CLOSE Statement 14-30
14.10 Collection Method Invocation 14-31
14.11 Collection Variable Declaration 14-34
14.12 Comment 14-39
14.13 COMPILE Clause 14-40
14.14 Constant Declaration 14-43
14.15 CONTINUE Statement 14-44
1416 COVERAGE Pragma 14-47
14.17 Cursor FOR LOOP Statement 14-50
14.18 Cursor Variable Declaration 14-52
14.19 Datatype Attribute 14-55
14.20 DEFAULT COLLATION Clause 14-56
14.21 DELETE Statement Extension 14-58
14.22 DEPRECATE Pragma 14-58
14.23 DETERMINISTIC Clause 14-68
14.24 Element Specification 14-70
14.25 EXCEPTION_INIT Pragma 14-76
14.26 Exception Declaration 14-77
14.27 Exception Handler 14-78
14.28 EXECUTE IMMEDIATE Statement 14-80
14.29 EXIT Statement 14-84
14.30 Explicit Cursor Declaration and Definition 14-86
14.31 Expression 14-89
14.32 FETCH Statement 14-100
14.33 FOR LOOP Statement 14-102
14.34 FORALL Statement 14-105
14.35 Formal Parameter Declaration 14-107
14.36 Function Declaration and Definition 14-110
14.37 GOTO Statement 14-113

ORACLE

XVi

14.38 |F Statement 14-116

14.39 Implicit Cursor Attribute 14-117
14.40 INLINE Pragma 14-120
14.41 Invoker’s Rights and Definer’s Rights Clause 14-121
14.42 INSERT Statement Extension 14-122
14.43 lIterator 14-124
14.44 Named Cursor Attribute 14-131
14.45 NULL Statement 14-133
14.46 OPEN Statement 14-134
14.47 OPEN FOR Statement 14-135
14.48 PARALLEL_ENABLE Clause 14-138
14.49 PIPE ROW Statement 14-140
14.50 PIPELINED Clause 14-141
1451 Procedure Declaration and Definition 14-144
14.52 Qualified Expression 14-147
1453 RAISE Statement 14-151
14.54 Record Variable Declaration 14-152
1455 RESTRICT_REFERENCES Pragma 14-154
1456 RETURN Statement 14-156
1457 RETURNING INTO Clause 14-158
14.58 RESULT_CACHE Clause 14-160
1459 %ROWTYPE Attribute 14-162
14.60 Scalar Variable Declaration 14-164
14.61 SELECT INTO Statement 14-165
14.62 SERIALLY_REUSABLE Pragma 14-168
14.63 SHARING Clause 14-168
14.64 SQL_MACRO Clause 14-171
14.65 SQLCODE Function 14-180
14.66 SQLERRM Function 14-181
14.67 SUPPRESSES_ WARNING_6009 Pragma 14-183
14.68 %TYPE Attribute 14-189
14.69 UDF Pragma 14-191
14.70 UPDATE Statement Extensions 14-191
14.71 WHILE LOOP Statement 14-192

15 SQL Statements for Stored PL/SQL Units

15.1 ALTER FUNCTION Statement 15-2
15.2 ALTER LIBRARY Statement 15-4
15.3 ALTER PACKAGE Statement 15-6
154 ALTER PROCEDURE Statement 15-8

ORACLE XVii

15,5 ALTER TRIGGER Statement 15-10
15.6 ALTER TYPE Statement 15-12
15.7 CREATE FUNCTION Statement 15-25
15.8 CREATE LIBRARY Statement 15-31
15.9 CREATE PACKAGE Statement 15-35
15.10 CREATE PACKAGE BODY Statement 15-38
15.11 CREATE PROCEDURE Statement 15-42
15.12 CREATE TRIGGER Statement 15-45
15.13 CREATE TYPE Statement 15-66
15.14 CREATE TYPE BODY Statement 15-77
15.15 DROP FUNCTION Statement 15-81
15.16 DROP LIBRARY Statement 15-83
15.17 DROP PACKAGE Statement 15-84
15.18 DROP PROCEDURE Statement 15-85
15.19 DROP TRIGGER Statement 15-86
15.20 DROP TYPE Statement 15-87
15.21 DROP TYPE BODY Statement 15-90
A PL/SQL Source Text Wrapping
A.1 PL/SQL Source Text Wrapping Limitations A-2
A.2 PL/SQL Source Text Wrapping Guidelines A-2
A.3 Wrapping PL/SQL Source Text with PL/SQL Wrapper Utility A-2
A.4 Wrapping PL/SQL Source Text with DBMS_DDL Subprograms A-8
B PL/SQL Name Resolution
B.1 Qualified Names and Dot Notation B-1
B.2 Column Name Precedence B-3
B.3 Differences Between PL/SQL and SQL Name Resolution Rules B-5
B.4 Resolution of Names in Static SQL Statements B-6
B.5 What is Capture? B-7
B.5.1 Outer Capture B-7
B.5.2 Same-Scope Capture B-7
B.5.3 Inner Capture B-7
B.6 Avoiding Inner Capture in SELECT and DML Statements B-8
B.6.1 Qualifying References to Attributes and Methods B-9
B.6.2 Qualifying References to Row Expressions B-10
ORACLE Xviii

C PL/SQL Program Limits

D PL/SQL Reserved Words and Keywords

E PL/SQL Predefined Data Types

Index

ORACLE" XiX

List of Examples

2-1 PL/SQL Block Structure

2-2 Processing Query Result Rows One at a Time

3-1 Valid Case-Insensitive Reference to Quoted User-Defined Identifier
3-2 Invalid Case-Insensitive Reference to Quoted User-Defined Identifier
3-3 Reserved Word as Quoted User-Defined Identifier

3-4 Neglecting Double Quotation Marks

3-5 Neglecting Case-Sensitivity

3-6 Single-Line Comments

3-7 Multiline Comments

3-8 Whitespace Characters Improving Source Text Readability
3-9 Variable Declaration with NOT NULL Constraint

3-10 Variables Initialized to NULL Values

3-11 Scalar Variable Declarations

3-12 Constant Declarations

3-13 Variable and Constant Declarations with Initial Values
3-14 Variable Initialized to NULL by Default

3-15 Declaring Variable of Same Type as Column

3-16 Declaring Variable of Same Type as Another Variable

3-17 Scope and Visibility of Identifiers

3-18 Qualifying Redeclared Global Identifier with Block Label
3-19 Qualifying Identifier with Subprogram Name

3-20 Duplicate Identifiers in Same Scope

3-21 Declaring Same ldentifier in Different Units

3-22 Label and Subprogram with Same Name in Same Scope
3-23 Block with Multiple and Duplicate Labels

3-24 Assigning Values to Variables with Assignment Statement
3-25 Assigning Value to Variable with SELECT INTO Statement
3-26 Assigning Value to Variable as IN OUT Subprogram Parameter
3-27 Assigning Value to BOOLEAN Variable

3-28 Concatenation Operator

3-29 Concatenation Operator with NULL Operands

3-30 Controlling Evaluation Order with Parentheses

3-31 Expression with Nested Parentheses

3-32 Improving Readability with Parentheses

3-33 Operator Precedence

ORACLE

2-5

2-9

3-8

3-8

3-9

3-9
3-10
3-13
3-14
3-14
3-15
3-16
3-16
3-17
3-17
3-18
3-19
3-19
3-21
3-21
3-22
3-23
3-23
3-24
3-24
3-25
3-26
3-27
3-27
3-29
3-29
3-30
3-30
3-30
3-30

XX

3-34 Procedure Prints BOOLEAN Variable

3-35 AND Operator

3-36 OR Operator

3-37 NOT Operator

3-38 NULL Value in Unequal Comparison

3-39 NULL Value in Equal Comparison

3-40 NOT NULL Equals NULL

3-41 Changing Evaluation Order of Logical Operators

3-42 Short-Circuit Evaluation

3-43 Relational Operators in Expressions

3-44 LIKE Operator in Expression

3-45 Escape Character in Pattern

3-46 BETWEEN Operator in Expressions

3-47 IN Operator in Expressions

3-48 IN Operator with Sets with NULL Values

3-49 Equivalent BOOLEAN Expressions

3-50 Simple CASE Expression

3-51 Simple CASE Expression with WHEN NULL

3-52 Searched CASE Expression

3-53 Searched CASE Expression with WHEN ... IS NULL

3-54 Static Constants

3-55 Predefined Inquiry Directives

3-56 Displaying Values of PL/SQL Compilation Parameters

3-57 PLSQL_CCFLAGS Assigns Value to Itself

3-58 Code for Checking Database Version

3-59 Compiling Different Code for Different Database Versions

3-60 Displaying Post-Processed Source Textsource text

3-61 Using Conditional Compilation Directive in the Definition of a Package Specification
3-62 Using Conditional Compilation Directive in the Formal Parameter List of a Subprogram
4-1 CHAR and VARCHAR?2 Blank-Padding Difference

4-2 Printing BOOLEAN Values

4-3 SQL Statement Invokes PL/SQL Function with BOOLEAN Parameter
4-4 PLS_INTEGER Calculation Raises Overflow Exception

4-5 Preventing Overflow

4-6 Violating Constraint of SIMPLE_INTEGER Subtype

4-7 User-Defined Unconstrained Subtypes Show Intended Use

4-8 User-Defined Constrained Subtype Detects Out-of-Range Values
ORACLE

3-32
3-32
3-33
3-34
3-35
3-35
3-35
3-36
3-36
3-38
3-40
3-41
3-42
3-42
3-43
3-43
3-45
3-45
3-46
3-47
3-53
3-58
3-58
3-60
3-61
3-61
3-63
3-64
3-64

4-6

4-9

4-9
4-11
4-11
4-12
4-15
4-16

XXi

4-9 Implicit Conversion Between Constrained Subtypes with Same Base Type
4-10 Implicit Conversion Between Subtypes with Base Types in Same Family
5-1 IF THEN Statement

5-2 IF THEN ELSE Statement

5-3 Nested IF THEN ELSE Statements

5-4 IF THEN ELSIF Statement

5-5 IF THEN ELSIF Statement Simulates Simple CASE Statement

5-6 Simple CASE Statement

5-7 Searched CASE Statement

5-8 EXCEPTION Instead of ELSE Clause in CASE Statement

5-9 FOR LOOP Statement Tries to Change Index Value

5-10 Outside Statement References FOR LOOP Statement Index

5-11 FOR LOOP Statement Index with Same Name as Variable

5-12 FOR LOOP Statement References Variable with Same Name as Index
5-13 Nested FOR LOOP Statements with Same Index Name

5-14 Using Multiple Iteration Controls

5-15 FOR LOOP Statements Range Iteration Control

5-16 Reverse FOR LOOP Statements Range lIteration Control

5-17 Stepped Range lteration Controls

5-18 STEP Clause in FOR LOOP Statement

5-19 Simple Step Filter Using FOR LOOP Stepped Range Iterator

5-20 Single Expression Iteration Control

5-21 VALUES OF lteration Control

5-22 INDICES OF lteration Control

5-23 PAIRS OF lIteration Control

5-24 Cursor lteration Controls

5-25 Using Dynamic SQL As An Iteration Control

5-26 Using Dynamic SQL As An Iteration Control In a Qualified Expression
5-27 Using FOR LOOP Stopping Predicate Clause

5-28 Using FOR LOOP Skipping Predicate Clause

5-29 NULL Statement Showing No Action

5-30 NULL Statement as Placeholder During Subprogram Creation

5-31 NULL Statement in ELSE Clause of Simple CASE Statement

6-1 Associative Array Indexed by String

6-2 Function Returns Associative Array Indexed by PLS INTEGER

6-3 Declaring Associative Array Constant

6-4 Varray (Variable-Size Array)

ORACLE

4-16
4-17

5-2

5-3

5-4

5-5

5-6

5-7

5-8

5-8
5-12
5-12
5-12
5-13
5-13
5-14
5-16
5-16
5-16
5-17
5-17
5-18
5-19
5-20
5-20
5-21
5-22
5-22
5-23
5-23
5-25
5-25
5-25

6-5

6-6

6-7
6-11

XXIi

6-5 Nested Table of Local Type

6-6 Nested Table of Standalone Type

6-7 Initializing Collection (Varray) Variable to Empty

6-8 Basic Iterator Choice Association in Qualified Expressions

6-9 Index Iterator Choice Association in Qualified Expressions
6-10 Sequence lterator Choice Association in Qualified Expressions
6-11 Assigning Values to Associative Array Type Variables Using Qualified Expressions
6-12 Data Type Compatibility for Collection Assignment

6-13 Assigning Null Value to Nested Table Variable

6-14 Assigning Set Operation Results to Nested Table Variable
6-15 Two-Dimensional Varray (Varray of Varrays)

6-16 Nested Tables of Nested Tables and Varrays of Integers

6-17 Nested Tables of Associative Arrays and Varrays of Strings
6-18 Comparing Varray and Nested Table Variables to NULL

6-19 Comparing Nested Tables for Equality and Inequality

6-20 Comparing Nested Tables with SQL Multiset Conditions

6-21 DELETE Method with Nested Table

6-22 DELETE Method with Associative Array Indexed by String
6-23 TRIM Method with Nested Table

6-24 EXTEND Method with Nested Table

6-25 EXISTS Method with Nested Table

6-26 FIRST and LAST Values for Associative Array Indexed by PLS_INTEGER
6-27 FIRST and LAST Values for Associative Array Indexed by String
6-28 Printing Varray with FIRST and LAST in FOR LOOP

6-29 Printing Nested Table with FIRST and LAST in FOR LOOP
6-30 COUNT and LAST Values for Varray

6-31 COUNT and LAST Values for Nested Table

6-32 LIMIT and COUNT Values for Different Collection Types

6-33 PRIOR and NEXT Methods

6-34 Printing Elements of Sparse Nested Table

6-35 Identically Defined Package and Local Collection Types

6-36 Identically Defined Package and Standalone Collection Types
6-37 Declaring Record Constant

6-38 Declaring Record Constant

6-39 RECORD Type Definition and Variable Declaration

6-40 RECORD Type with RECORD Field (Nested Record)

6-41 RECORD Type with Varray Field

ORACLE

6-14
6-15
6-17
6-19
6-20
6-21
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-33
6-34
6-36
6-37
6-38
6-39
6-40
6-41
6-42
6-43
6-44
6-45
6-46
6-47
6-48
6-49
6-51
6-52
6-53
6-53
6-54

XXiii

6-42 Identically Defined Package and Local RECORD Types

6-43 %ROWTYPE Variable Represents Full Database Table Row
6-44 %ROWTYPE Variable Does Not Inherit Initial Values or Constraints
6-45 %ROWTYPE Variable Represents Partial Database Table Row
6-46 %ROWTYPE Variable Represents Join Row

6-47 Inserting %ROWTYPE Record into Table (Wrong)

6-48 Inserting %ROWTYPE Record into Table (Right)

6-49 %ROWTYPE Affected by Making Invisible Column Visible

6-50 Assigning Values to RECORD Type Variables Using Qualified Expressions
6-51 Assigning Record to Another Record of Same RECORD Type
6-52 Assigning %ROWTYPE Record to RECORD Type Record
6-53 Assigning Nested Record to Another Record of Same RECORD Type
6-54 SELECT INTO Assigns Values to Record Variable

6-55 FETCH Assigns Values to Record that Function Returns

6-56 UPDATE Statement Assigns Values to Record Variable

6-57 Assigning NULL to Record Variable

6-58 Initializing Table by Inserting Record of Default Values

6-59 Updating Rows with Record

7-1 Static SQL Statements

7-2 CURRVAL and NEXTVAL Pseudocolumns

7-3 SQL%FOUND Implicit Cursor Attribute

7-4 SQL%ROWCOUNT Implicit Cursor Attribute

7-5 Explicit Cursor Declaration and Definition

7-6 FETCH Statements Inside LOOP Statements

7-7 Fetching Same Explicit Cursor into Different Variables

7-8 Variable in Explicit Cursor Query—No Result Set Change

7-9 Variable in Explicit Cursor Query—Result Set Change

7-10 Explicit Cursor with Virtual Column that Needs Alias

7-11 Explicit Cursor that Accepts Parameters

7-12 Cursor Parameters with Default Values

7-13 Adding Formal Parameter to Existing Cursor

7-14 %ISOPEN Explicit Cursor Attribute

7-15 %FOUND Explicit Cursor Attribute

7-16 %NOTFOUND Explicit Cursor Attribute

7-17 %ROWCOUNT Explicit Cursor Attribute

7-18 Implicit Cursor FOR LOOP Statement

7-19 Explicit Cursor FOR LOOP Statement

ORACLE

6-55
6-56
6-57
6-58
6-59
6-59
6-60
6-61
6-62
6-64
6-64
6-65
6-66
6-67
6-68
6-69
6-70
6-71

7-2

7-7

7-9
7-10
7-12
7-13
7-14
7-14
7-16
7-17
7-18
7-19
7-21
7-22
7-23
7-24
7-27
7-27

XXIV

7-20

Passing Parameters to Explicit Cursor FOR LOOP Statement

7-21 Cursor FOR Loop References Virtual Columns

7-22 Subquery in FROM Clause of Parent Query

7-23 Correlated Subquery

7-24 Cursor Variable Declarations

7-25 Cursor Variable with User-Defined Return Type

7-26 Fetching Data with Cursor Variables

7-27 Fetching from Cursor Variable into Collections

7-28 Variable in Cursor Variable Query—No Result Set Change

7-29 Variable in Cursor Variable Query—Result Set Change

7-30 Querying a Collection with Static SQL

7-31 Procedure to Open Cursor Variable for One Query

7-32 Opening Cursor Variable for Chosen Query (Same Return Type)

7-33 Opening Cursor Variable for Chosen Query (Different Return Types)
7-34 Cursor Variable as Host Variable in Pro*C Client Program

7-35 CURSOR Expression

7-36 COMMIT Statement with COMMENT and WRITE Clauses

7-37 ROLLBACK Statement

7-38 SAVEPOINT and ROLLBACK Statements

7-39 Reusing SAVEPOINT with ROLLBACK

7-40 SET TRANSACTION Statement in Read-Only Transaction

7-41 FETCH with FOR UPDATE Cursor After COMMIT Statement

7-42 Simulating CURRENT OF Clause with ROWID Pseudocolumn

7-43 Declaring Autonomous Function in Package

7-44 Declaring Autonomous Standalone Procedure

7-45 Declaring Autonomous PL/SQL Block

7-46 Autonomous Trigger Logs INSERT Statements

7-47 Autonomous Trigger Uses Native Dynamic SQL for DDL

7-48 Invoking Autonomous Function

8-1 Invoking Subprogram from Dynamic PL/SQL Block

8-2 Dynamically Invoking Subprogram with BOOLEAN Formal Parameter
8-3 Dynamically Invoking Subprogram with RECORD Formal Parameter
8-4 Dynamically Invoking Subprogram with Assoc. Array Formal Parameter
8-5 Dynamically Invoking Subprogram with Nested Table Formal Parameter
8-6 Dynamically Invoking Subprogram with Varray Formal Parameter

8-7 Uninitialized Variable Represents NULL in USING Clause

8-8 Native Dynamic SQL with OPEN FOR, FETCH, and CLOSE Statements
ORACLE

7-28
7-28
7-29
7-30
7-32
7-32
7-34
7-35
7-36
7-37
7-38
7-40
7-40
7-41
7-42
7-43
7-46
7-47
7-48
7-49
7-51
7-53
7-54
7-57
7-57
7-58
7-60
7-61
7-62

8-4

8-5

8-5

8-6

8-7

8-7

8-8

8-9

XXV

8-9 Querying a Collection with Native Dynamic SQL

8-10 Repeated Placeholder Names in Dynamic PL/SQL Block

8-11 DBMS_SQL.RETURN_RESULT Procedure

8-12 DBMS_SQL.GET_NEXT_RESULT Procedure

8-13 Switching from DBMS_SQL Package to Native Dynamic SQL

8-14 Switching from Native Dynamic SQL to DBMS_SQL Package

8-15 Setup for SQL Injection Examples

8-16 Procedure Vulnerable to Statement Modification

8-17 Procedure Vulnerable to Statement Injection

8-18 Procedure Vulnerable to SQL Injection Through Data Type Conversion
8-19 Bind Variables Guarding Against SQL Injection

8-20 Validation Checks Guarding Against SQL Injection

8-21 Explicit Format Models Guarding Against SQL Injection

9-1 Declaring, Defining, and Invoking a Simple PL/SQL Procedure

9-2 Declaring, Defining, and Invoking a Simple PL/SQL Function

9-3 Execution Resumes After RETURN Statement in Function

9-4 Function Where Not Every Execution Path Leads to RETURN Statement
9-5 Function Where Every Execution Path Leads to RETURN Statement
9-6 Execution Resumes After RETURN Statement in Procedure

9-7 Execution Resumes After RETURN Statement in Anonymous Block
9-8 Nested Subprograms Invoke Each Other

9-9 Formal Parameters and Actual Parameters

9-10 Actual Parameter Inherits Only NOT NULL from Subtype

9-11 Actual Parameter and Return Value Inherit Only Range From Subtype
9-12 Function Implicitly Converts Formal Parameter to Constrained Subtype
9-13 Avoiding Implicit Conversion of Actual Parameters

9-14 Parameter Values Before, During, and After Procedure Invocation
9-15 OUT and IN OUT Parameter Values After Exception Handling

9-16 OUT Formal Parameter of Record Type with Non-NULL Default Value
9-17 Aliasing from Global Variable as Actual Parameter

9-18 Aliasing from Same Actual Parameter for Multiple Formal Parameters
9-19 Aliasing from Cursor Variable Subprogram Parameters

9-20 Procedure with Default Parameter Values

9-21 Function Provides Default Parameter Value

9-22 Adding Subprogram Parameter Without Changing Existing Invocations
9-23 Equivalent Invocations with Different Notations in Anonymous Block
9-24 Equivalent Invocations with Different Notations in SELECT Statements
ORACLE

8-9
8-10
8-13
8-14
8-16
8-17
8-18
8-19
8-20
8-22
8-24
8-26
8-27

9-4

9-5

9-7

9-7

9-7

9-8

9-9

9-9
9-11
9-12
9-13
9-13
9-14
9-17
9-19
9-19
9-21
9-22
9-23
9-24
9-24
9-25
9-28
9-28

XXVi

9-25 Resolving PL/SQL Procedure Names

9-26 Overloaded Subprogram

9-27 Overload Error Causes Compile-Time Error

9-28 Overload Error Compiles Successfully

9-29 Invoking Subprogram in Causes Compile-Time Error

9-30 Correcting Overload Error in

9-31 Invoking Subprogram in

9-32 Package Specification Without Overload Errors

9-33 Improper Invocation of Properly Overloaded Subprogram

9-34 Implicit Conversion of Parameters Causes Overload Error

9-35 Recursive Function Returns n Factorial (n!)

9-36 Recursive Function Returns nth Fibonacci Number

9-37 Declaring and Defining Result-Cached Function

9-38 Result-Cached Function Returns Configuration Parameter Setting
9-39 Result-Cached Function Handles Session-Specific Settings

9-40 Result-Cached Function Handles Session-Specific Application Context
9-41 Caching One Name at a Time (Finer Granularity)

9-42 Caching Translated Names One Language at a Time (Coarser Granularity)
9-43 Database Link in a DR Unit

9-44 PL/SQL Anonymous Block Invokes External Procedure

9-45 PL/SQL Standalone Procedure Invokes External Procedure

10-1 Trigger Uses Conditional Predicates to Detect Triggering Statement
10-2 INSTEAD OF Trigger

10-3 INSTEAD OF Trigger on Nested Table Column of View

10-4 Compound Trigger Logs Changes to One Table in Another Table
10-5 Compound Trigger Avoids Mutating-Table Error

10-6 Foreign Key Trigger for Child Table

10-7 UPDATE and DELETE RESTRICT Trigger for Parent Table

10-8 UPDATE and DELETE SET NULL Trigger for Parent Table

10-9 DELETE CASCADE Trigger for Parent Table

10-10 UPDATE CASCADE Trigger for Parent Table

10-11 Trigger Checks Complex Constraints

10-12 Trigger Enforces Security Authorizations

10-13 Trigger Derives New Column Values

10-14 Trigger Logs Changes to EMPLOYEES.SALARY

10-15 Conditional Trigger Prints Salary Change Information

10-16 Trigger Modifies CLOB Columns

ORACLE

9-29
9-31
9-34
9-34
9-34
9-34
9-34
9-34
9-35
9-35
9-36
9-36
9-39
9-42
9-45
9-46
9-47
9-48
9-55
9-57
9-57
10-5
10-6
10-8
10-13
10-15
10-17
10-18
10-19
10-20
10-20
10-22
10-23
10-24
10-29
10-30
10-31

XXVii

10-17
10-18
10-19
10-20
10-21
10-22
10-23
10-24
10-25
10-26
10-27
10-28
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10
12-11
12-12
12-13
12-14
12-15
12-16

Trigger with REFERENCING Clause

Trigger References OBJECT_VALUE Pseudocolumn

BEFORE Statement Trigger on Sample Schema HR

AFTER Statement Trigger on Database

Trigger Monitors Logons

INSTEAD OF CREATE Trigger on Schema

Trigger Invokes Java Subprogram

Trigger Cannot Handle Exception if Remote Database is Unavailable
Workaround for

Trigger Causes Mutating-Table Error

Update Cascade

Viewing Information About Triggers

Simple Package Specification

Passing Associative Array to Standalone Subprogram

Matching Package Specification and Body

Creating SERIALLY_ REUSABLE Packages

Effect of SERIALLY_REUSABLE Pragma

Cursor in SERIALLY_REUSABLE Package Open at Call Boundary
Separating Cursor Declaration and Definition in Package
ACCESSIBLE BY Clause

Creating emp_admin Package

Setting Value of PLSQL_WARNINGS Compilation Parameter
Displaying and Setting PLSQL_WARNINGS with DBMS_WARNING Subprograms
Single Exception Handler for Multiple Exceptions

Locator Variables for Statements that Share Exception Handler
Naming Internally Defined Exception

Anonymous Block Handles ZERO_DIVIDE

Anonymous Block Avoids ZERO_DIVIDE

Anonymous Block Handles ROWTYPE_MISMATCH

Redeclared Predefined Identifier

Declaring, Raising, and Handling User-Defined Exception
Explicitly Raising Predefined Exception

Reraising Exception

Raising User-Defined Exception with RAISE_APPLICATION_ERROR
Exception that Propagates Beyond Scope is Handled

Exception that Propagates Beyond Scope is Not Handled

Exception Raised in Declaration is Not Handled

ORACLE

10-32
10-33
10-34
10-35
10-35
10-36
10-36
10-38
10-39
10-43
10-44
10-61

11-5

11-5

11-6

11-9
11-10
11-11
11-13
11-13
11-15

12-3

12-4

12-8

12-9
12-11
12-12
12-13
12-13
12-14
12-16
12-17
12-18
12-19
12-22
12-22
12-23

XXVIIi

12-17
12-18
12-19
12-20
12-21
12-22
12-23
12-24
12-25
12-26
13-1

13-2

13-3

13-4

13-5

13-6

13-7

13-8

13-9

13-10
13-11
13-12
13-13
13-14
13-15
13-16
13-17
13-18
13-19
13-20
13-21
13-22
13-23
13-24
13-25
13-26
13-27

Exception Raised in Declaration is Handled by Enclosing Block
Exception Raised in Exception Handler is Not Handled

Exception Raised in Exception Handler is Handled by Invoker
Exception Raised in Exception Handler is Handled by Enclosing Block
Exception Raised in Exception Handler is Not Handled

Exception Raised in Exception Handler is Handled by Enclosing Block
Displaying SQLCODE and SQLERRM Values

Exception Handler Runs and Execution Ends

Exception Handler Runs and Execution Continues

Retrying Transaction After Handling Exception

Specifying that Subprogram Is To Be Inlined

Specifying that Overloaded Subprogram Is To Be Inlined

Specifying that Subprogram Is Not To Be Inlined

PRAGMA INLINE ... 'NO' Overrides PRAGMA INLINE ... 'YES'
Nested Query Improves Performance

NOCOPY Subprogram Parameters

DELETE Statement in FOR LOOP Statement

DELETE Statement in FORALL Statement

Time Difference for INSERT Statement in FOR LOOP and FORALL Statements
FORALL Statement for Subset of Collection

FORALL Statements for Sparse Collection and Its Subsets

Handling FORALL Exceptions Immediately

Handling FORALL Exceptions After FORALL Statement Completes
Showing Number of Rows Affected by Each DELETE in FORALL
Showing Number of Rows Affected by Each INSERT SELECT in FORALL
Bulk-Selecting Two Database Columns into Two Nested Tables
Bulk-Selecting into Nested Table of Records

SELECT BULK COLLECT INTO Statement with Unexpected Results
Cursor Workaround for

Second Collection Workaround for

Limiting Bulk Selection with ROWNUM, SAMPLE, and FETCH FIRST
Bulk-Fetching into Two Nested Tables

Bulk-Fetching into Nested Table of Records

Limiting Bulk FETCH with LIMIT

Returning Deleted Rows in Two Nested Tables

DELETE with RETURN BULK COLLECT INTO in FORALL Statement
DELETE with RETURN BULK COLLECT INTO in FOR LOOP Statement

ORACLE

12-23
12-24
12-25
12-25
12-25
12-26
12-28
12-29
12-30
12-30

13-3

13-3

13-4

13-4

13-6

13-8
13-14
13-14
13-14
13-15
13-16
13-20
13-22
13-24
13-25
13-27
13-28
13-29
13-30
13-31
13-33
13-34
13-36
13-37
13-38
13-39
13-40

XXiX

13-28
13-29
13-30
13-31
13-32
13-33
13-34
13-35
13-36
13-37
13-38
14-1

14-2

14-3

14-4

14-5

14-6

14-7

14-8

14-9

14-10
14-11
14-12
14-13
14-14
14-15
14-16
14-17
14-18
14-19
14-20
14-21
14-22
14-23
14-24
14-25
14-26

Anonymous Block Bulk-Binds Input Host Array

Creating and Invoking Pipelined Table Function

Pipelined Table Function Transforms Each Row to Two Rows

Fetching from Results of Pipelined Table Functions

Pipelined Table Function with Two Cursor Variable Parameters

Pipelined Table Function as Aggregate Function

Pipelined Table Function Does Not Handle NO_DATA NEEDED
Pipelined Table Function Handles NO_DATA_ NEEDED

Skip_col Polymorphic Table Function Example

To_doc Polymorphic Table Function Example

Implicit_echo Polymorphic Table Function Example

Restricting Access to Top-Level Procedures in the Same Schema
Restricting Access to a Unit Name of Any Kind

Restricting Access to a Stored Procedure

Nested, Labeled Basic LOOP Statements with EXIT WHEN Statements
Nested, Unabeled Basic LOOP Statements with EXIT WHEN Statements
External Function Example

CONTINUE Statement in Basic LOOP Statement

CONTINUE WHEN Statement in Basic LOOP Statement

Marking a Single Basic Block as Infeasible to Test for Coverage

Marking a Line Range as Infeasible to Test for Coverage

Marking Entire Units or Individual Subprograms as Infeasible to Test for Coverage
Marking Internal Subprogram as Infeasible to Test for Coverage

Enabling the Deprecation Warnings

Deprecation of a PL/SQL Package

Deprecation of a PL/SQL Package with a Custom Warning

Deprecation of a PL/SQL Procedure

Deprecation of an Overloaded Procedure

Deprecation of a Constant and of an Exception

Using Conditional Compilation to Deprecate Entities in Some Database Releases
Deprecation of an Object Type

Deprecation of a Member Function in an Object Type Specification
Deprecation of Inherited Object Types

Deprecation Only Applies to Top Level Subprogram

Misplaced DEPRECATE Pragma

Mismatch of the Element Name and the DEPRECATE Pragma Argument
Basic LOOP Statement with EXIT Statement

ORACLE

13-41
13-44
13-45
13-47
13-48
13-49
13-52
13-52
13-58
13-61
13-65

14-5

14-6

14-7
14-14
14-14
14-27
14-45
14-46
14-48
14-48
14-49
14-49
14-61
14-61
14-61
14-62
14-62
14-63
14-63
14-63
14-64
14-64
14-66
14-67
14-67
14-85

XXX

14-27 Basic LOOP Statement with EXIT WHEN Statement

14-28 EXIT WHEN Statement in FOR LOOP Statement

14-29 EXIT WHEN Statement in Inner FOR LOOP Statement

14-30 CONTINUE WHEN Statement in Inner FOR LOOP Statement

14-31 GOTO Statement

14-32 Incorrect Label Placement

14-33 GOTO Statement Goes to Labeled NULL Statement

14-34 GOTO Statement Transfers Control to Enclosing Block

14-35 GOTO Statement Cannot Transfer Control into IF Statement

14-36 Emp_doc: Using a Scalar Macro to Convert Columns into a JSON or XML Document

14-37 Env: Using a Scalar Macro in a Scalar Expression

14-38 Budget : Using a Table Macro in a Table Expression

14-39 Take: Using a Table Macro with a Polymorphic View

14-40 Range : Using a Table Macro in a Table Expression

14-41 Enabling the PLW-6009 Warning

14-42 SUPPRESSES WARNING_6009 Pragma in a Procedure

14-43 SUPPRESSES WARNING_6009 Pragma in a Function

14-44 SUPPRESSES WARNING_6009 Pragma in an Overloaded Subprogram in a
Package Specification

14-45 SUPPRESSES WARNING_6009 Pragma in a Forward Declaration in a Package Body

14-46 SUPPRESSES WARNING_6009 Pragma in Object Type Methods

14-47 WHILE LOOP Statements

15-1 Recompiling a Function

15-2 Recompiling a Library

15-3 Recompiling a Package

15-4 Recompiling a Procedure

15-5 Disabling Triggers

15-6 Enabling Triggers

15-7 Adding a Member Function

15-8 Adding a Collection Attribute

15-9 Increasing the Number of Elements of a Collection Type

15-10 Increasing the Length of a Collection Type

15-11 Recompiling a Type

15-12 Recompiling a Type Specification

15-13 Evolving and Resetting an ADT

15-14 Creating a Function

15-15 Creating Aggregate Functions

ORACLE

14-85
14-103
14-104
14-104
14-114
14-114
14-115
14-115
14-115
14-172
14-175
14-176
14-177
14-177
14-185
14-185
14-185

14-186
14-187
14-188
14-193
15-4
15-5
15-7
15-9
15-12
15-12
15-21
15-22
15-22
15-22
15-22
15-22
15-23
15-28
15-29

XXXi

15-16 Package Procedure in a Function

15-17 Creating a Library

15-18 Specifying an External Procedure Agent

15-19 Creating the Specification for the emp_mgmt Package
15-20 Creating the emp_mgmt Package Body

15-21 Creating a Procedure

15-22 Creating an External Procedure

15-23 ADT Examples

15-24 Creating a Subtype

15-25 Creating a Type Hierarchy

15-26 Creating a Varray Type

15-27 Creating a Non-Persistable Nested Array

15-28 Creating a Non-Persistable Object Type

15-29 Creating a Non-Persistable Varray

15-30 Creating a Nested Table Type

15-31 Creating a Nested Table Type Containing a Varray

15-32 Constructor Example

15-33 Creating a Member Method

15-34 Creating a Static Method

15-35 Dropping a Function

15-36 Dropping a Library

15-37 Dropping a Package

15-38 Dropping a Procedure

15-39 Dropping a Trigger

15-40 Dropping an ADT

15-41 Dropping an ADT Body

A-1 SQL File with Two Wrappable PL/SQL Units

A-2 Wrapping File with PL/SQL Wrapper Utility

A-3 Running Wrapped File and Viewing Wrapped PL/SQL Units
A-4 Creating Wrapped Package Body with CREATE_WRAPPED Procedure
A-5 Viewing Package with Wrapped Body and Invoking Package Procedure
B-1 Qualified Names

B-2 Variable Name Interpreted as Column Name Causes Unintended Result
B-3 Fixing with Different Variable Name

B-4 Fixing with Block Label

B-5 Subprogram Name for Name Resolution

B-6 Inner Capture of Column Reference

ORACLE

15-30
15-34
15-34
15-37
15-40
15-44
15-45
15-73
15-73
15-74
15-74
15-74
15-74
15-74
15-74
15-75
15-75
15-75
15-76
15-82
15-83
15-85
15-86
15-87
15-89
15-90
A-3
A-4
A-5
A-9
A-10
B-2
B-3
B-4
B-4
B-4
B-7

XXXIi

B-7 Inner Capture of Attribute Reference B-8
B-8 Qualifying ADT Attribute References B-9

B-9 Qualifying References to Row Expressions B-10

List of Figures

2-1 PL/SQL Engine

6-1 Varray of Maximum Size 10 with 7 Elements

6-2 Array and Nested Table

7-1 Transaction Control Flow

9-1 How PL/SQL Compiler Resolves Invocations

12-1 Exception Does Not Propagate

12-2 Exception Propagates from Inner Block to Outer Block

12-3 PL/SQL Returns Unhandled Exception Error to Host Environment
ORACLE

2-11
6-11
6-16
7-55
9-29
12-20
12-21
12-21

XXXIV

List of Tables

2-1 PL/SQL I/O-Processing Packages

2-2 PL/SQL Compilation Parameters

3-1 Punctuation Characters in Every Database Character Set
3-2 PL/SQL Delimiters

3-3 Operator Precedence

3-4 Logical Truth Table

3-5 Relational Operators

3-6 Operators Allowed in Static Expressions

4-1 Data Types with Different Maximum Sizes in PL/SQL and SQL
4-2 Predefined PL/SQL BINARY_FLOAT and BINARY_DOUBLE Constants
4-3 Predefined Subtypes of PLS_INTEGER Data Type

6-1 PL/SQL Collection Types

6-2 Collection Methods

9-1 PL/SQL Subprogram Parameter Modes

9-2 PL/SQL Subprogram Parameter Modes Characteristics
9-3 PL/SQL Actual Parameter Notations

9-4 Finer and Coarser Caching Granularity

10-1 Conditional Predicates

10-2 Compound Trigger Timing-Point Sections

10-3 Constraints and Triggers for Ensuring Referential Integrity
10-4 OLD and NEW Pseudorecord Field Values

10-5 System-Defined Event Attributes

10-6 Database Event Triggers

10-7 Client Event Triggers

12-1 Compile-Time Warning Categories

12-2 Exception Categories

12-3 PL/SQL Predefined Exceptions

13-1 Profiling and Tracing Tools Summary

14-1 Iterand Implicit Type Defaults

14-2 Summary of Possible Sharing Attributes by Application Common Object Type
C-1 PL/SQL Compiler Limits

D-1 PL/SQL Reserved Words

D-2 PL/SQL Keywords

ORACLE

2-6
2-12

XXXV

Preface

Preface

Audience

Oracle Database PL/SQL Language Reference describes and explains how to use
PL/SQL, the Oracle procedural extension of SQL.

Topics

* Audience

* Documentation Accessibility

* Related Documents

* Conventions

* Syntax Descriptions

Oracle Database PL/SQL Language Reference is intended for anyone who is
developing PL/SQL-based applications for either an Oracle Database or an Oracle
TimesTen In-Memory Database, including:

* Programmers

e Systems analysts

e Project managers

+ Database administrators

To use this document effectively, you need a working knowledge of:
e Oracle Database

e Structured Query Language (SQL)

» Basic programming concepts such as IF-THEN statements, loops, procedures, and
functions

Documentation Accessibility

ORACLE

For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

XXXVI

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Related Documents

For more information, see these documents in the Oracle Database documentation
set:

* Oracle Database SQL Language Reference

* Oracle Database PL/SQL Packages and Types Reference

* Oracle Database JSON Developer’s Guide

e Oracle Database SODA for PL/SQL Developer's Guide

* Oracle Database Development Guide

* Oracle Database Administrator's Guide

» Oracle Database SecureFiles and Large Objects Developer's Guide
* Oracle Database Object-Relational Developer's Guide

* Oracle Database Concepts

e Oracle Database Performance Tuning Guide

* Oracle Database Sample Schemas

¢ See Also:

https://www.oracle.com/database/technologies/appdev/plsgl.html

Conventions

ORACLE

This document uses these text conventions:

Convention Meaning
boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.
italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.
monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.
{A|B|C} Choose either A, B, or C.
Also:

* *_vi ewmeans all static data dictionary views whose names end with vi ew. For
example, * ERRORS means ALL_ERRORS, DBA_ERRORS, and USER_ERRORS. For more
information about any static data dictionary view, or about static dictionary views in
general, see Oracle Database Reference.

* Table names not qualified with schema names are in the sample schema HR. For
information about the sample schemas, see Oracle Database Sample Schemas.

XXXVii

https://www.oracle.com/database/technologies/appdev/plsql.html

Preface

Syntax Descriptions

Syntax descriptions are provided in this book for various SQL, PL/SQL, or other
command-line constructs in graphic form or Backus Naur Form (BNF). See Oracle
Database SQL Language Reference for information about how to interpret these
descriptions.

ORACLE XXXViii

Changes in This Release for Oracle
Database PL/SQL Language Reference

1.1 New Features in Release 21c for Oracle Database
PL/SQL Language Reference

For Oracle Database Release 21c, PL/SQL Language Reference documents these
new features and enhancements.

¢ See Also:

Learning Key New Features for Database Administrators for the descriptions
of all of the features that are new in Oracle Database Release 21c as well as
details and practices

1.1.1 PL/SQL Extended Iterators

PL/SQL programs use iteration controls to implement business logic over rows of data
generated by SQL queries.

Iteration is the basic building block of PL/SQL. PL/SQL is enhanced to help you
program iteration controls using new iterators in loops and in qualified expressions.
The iterators are clear, simple, understandable, and efficient.

These iteration controls available are:

e Stepped range iteration controls

* Single expression iteration controls

* Collections iteration controls

* Cursor iteration controls

Multiple iteration controls may be chained together.

New stopping and skipping predicate clauses have been added.

The new mutability property of an iterand determines whether or not it can be assigned
to in the loop body.

An iterand type can be implicitly or explicitly declared.

ORACLE 1-1

Chapter 1
New Features in Release 21c for Oracle Database PL/SQL Language Reference

¢ See Also:

* "FOR LOOP Statement Overview" for more information about the
concepts and examples

* "FOR LOOP Statement" for more information about the syntax and
semantics

1.1.2 PL/SQL Qualified Expressions Enhancements

A qualified expression combines expression elements to create values of almost any
type. Aggregates and their necessary adjunct, qualified expressions, improve program
clarity and programmer productivity.

Starting with Oracle Database Release 18c, any PL/SQL value can be provided by
an expression like a constructor provides an abstract datatype value. In PL/SQL, we
use the terms "qualified expression” and "aggregate" rather than the SQL term "type
constructor”, but the functionality is the same. Qualified expressions are most useful
for records, associative arrays, nested tables, and varrays.

Starting with Oracle Database Release 21c, three new types of iterator choice
association are added for use in qualified expressions. The basic iterator choice
association extends the current iterator choice association by allowing a full iterator
as the index. The index iterator choice association provides an index expression
along with the value expression. The sequence iterator choice association allows

a sequence of values to be added to the end of a collection. In each case, the
expressions specified may reference the iterands.

¢ See Also:

e "Qualified Expressions Overview" for more information and examples

e "Qualified Expression" for more information about the syntax and
semantics

1.1.3 SQL Macros

ORACLE

You can create SQL macros (SQM) to factor out common SQL expressions and
statements into reusable, parameterized constructs that can be used in other SQL
statements.

SQL macros can either be scalar expressions, typically used in SELECT lists, WHERE,
GROUP BY, and HAVING clauses, to encapsulate calculations and business logic, or can
be table expressions, typically used in a FROM clause, to act as a sort of polymorphic
(parameterized) views.

SQL macros increase developer productivity, simplify collaborative development, and
improve code quality.

1-2

Chapter 1
New Features in Release 21c for Oracle Database PL/SQL Language Reference

¢ See Also:

° "CREATE FUNCTION Statement" for more information about the syntax
and semantics

¢ "SQL_MACRO Clause" syntax and semantics

1.1.4 New JSON Data Type

JSON is a new SQL and PL/SQL data type for JSON data. The data is stored in the
database in a binary form for faster access to nested JSON values.

You can use JSON data type and its instances in most places where a SQL data type
is allowed, including:

* As the column type for table or view DDL
* As a parameter type for a PL/SQL subprogram
* In expressions wherever a SQL/JSON function or condition are allowed

Some restrictions apply.

¢ See Also:

e "SQL Functions in PL/SQL Expressions" for more information

1.1.5 New Pragma SUPPRESSES_WARNING_6009

The SUPPRESSES_WARNING_6009 pragma allows more robust error handling and better
encapsulation and modularization.

The PL/SQL compiler issues warning PLW-06009 if it determines that an OTHERS
exception handler does not, in all cases, end in either an explicit RAISE statement or
in a call to the PL/SQL supplied procedure RAISE_APPLICATION_ERROR. The compiler’s
behavior may be too aggressive for some programming styles when programmers
supply their own reporting subroutines. This new pragma allows to quiet the warning.

¢ See Also:

e "Pragmas" for more information about pragmas

e« "SUPPRESSES WARNING_ 6009 Pragma" for more information about
the syntax and semantics

ORACLE 1-3

Chapter 1
Deprecated Features

1.1.6 PL/SQL Type Attributes in Non Persistable User Defined Types

You can use attributes of PL/SQL scalar data types, such as BOOLEAN and
PLS_INTEGER, in non-persistable objects.

Instances of non-persistable types cannot persist on disk.

You can use non-persistable object types in your PL/SQL code if you have no desire
to persist instances of these types. This is useful when you are developing programs
following Oracle's object oriented programming model.

¢ See Also:

e CREATE TYPE statement [NOT] PERSISTABLE clause for more
information about the syntax and semantics

1.1.7 PL/SQL Function Enhanced Result Cache

The result cache enhancements improve database performance, broadens its use
cases, and reduces the overall workload.

Result cache functionality is enhanced to provide better scalability, provide better
control of what is being cached, and to broaden the applicability to cache results
beyond the limits of pure-memory storage.

New functionality includes blocklisting of statements, PL/SQL function history tracking,
object blocklisting, and allowing result caching to spill to disk. A function that is
invoked frequently with different arguments may generate results that are rarely
reused, leading to performance degradation. Oracle Database tracks recently used
PL/SQL functions that have the RESULT_CACHE annotation. The database only caches
a PL/SQL function and arguments pair if it has seen it in recent history. Using

this history, the database only caches a PL/SQL function and arguments pair if it

has seen it x times in recent history, where x is set by the initialization parameter
RESULT CACHE_EXECUTION_THRESHOLD. Before fetching a cached result from a remote
instance, the database uses heuristics to determine if it is more cost efficient to
recompute the result on the local instance

See Also:

"PL/SQL Function Result Cache" for more information

1.2 Deprecated Features

The following features are deprecated, and may be desupported in a future release.

The command ALTER TYPE ... INVALIDATE is deprecated. Use the CASCADE clause
instead.

ORACLE 1-4

Chapter 1
Desupported Features

The REPLACE clause of ALTER TYPE is deprecated. Use the al t er _nmet hod_spec clause
instead. Alternatively, you can recreate the type using the CREATE OR REPLACE TYPE
statement.

For the syntax and semantics, see ALTER TYPE Statement
Starting with Oracle Database 12c release 1 (12.1), the compilation parameter
PLSQL_DEBUG is deprecated.

To compile PL/SQL units for debugging, specify PLSQL_OPTIMIZE_LEVEL=1.

For information about compilation parameters, see PL/SQL Units and Compilation
Parameters.

1.3 Desupported Features

ORACLE

No features in PL/SQL Language Reference have been desupported.

¢ See Also:

e Oracle Database Upgrade Guide for more information about
desupported features in this release of Oracle Database

1-5

Overview of PL/SQL

PL/SQL, the Oracle procedural extension of SQL, is a portable, high-performance
transaction-processing language. This overview explains its advantages and briefly
describes its main features and its architecture.

Topics

* Advantages of PL/SQL

e Main Features of PL/SQL

e Architecture of PL/SQL

2.1 Advantages of PL/SQL

PL/SQL offers several advantages over other programming languages.
PL/SQL has these advantages:
» Tight Integration with SQL

* High Performance

e High Productivity

e Portability

* Scalability

* Manageability

e Support for Object-Oriented Programming

2.1.1 Tight Integration with SQL

ORACLE

PL/SQL is tightly integrated with SQL, the most widely used database manipulation
language.

For example:

e PL/SQL lets you use all SQL data manipulation, cursor control, and transaction
control statements, and all SQL functions, operators, and pseudocolumns.

e PL/SQL fully supports SQL data types.

You need not convert between PL/SQL and SQL data types. For example, if your
PL/SQL program retrieves a value from a column of the SQL type VARCHARZ2, it can
store that value in a PL/SQL variable of the type VARCHAR2.

You can give a PL/SQL data item the data type of a column or row of a database
table without explicitly specifying that data type (see "Using the %TYPE Attribute"
and "Using the %ROWTYPE Attribute").

e PL/SQL lets you run a SQL query and process the rows of the result set one at a
time (see "Processing a Query Result Set One Row at a Time").

2-1

Chapter 2
Advantages of PL/SQL

* PL/SQL functions can be declared and defined in the WITH clauses of SQL SELECT
statements (see Oracle Database SQL Language Reference).

PL/SQL supports both static and dynamic SQL. Static SQL is SQL whose full text is
known at compile time. Dynamic SQL is SQL whose full text is not known until run
time. Dynamic SQL lets you make your applications more flexible and versatile. For
more information, see PL/SQL Static SQL and PL/SQL Dynamic SQL.

2.1.2 High Performance

PL/SQL lets you send a block of statements to the database, significantly reducing
traffic between the application and the database.

Bind Variables

When you embed a SQL INSERT, UPDATE, DELETE, MERGE, or SELECT statement directly
in your PL/SQL code, the PL/SQL compiler turns the variables in the WHERE and
VALUES clauses into bind variables (for details, see "Resolution of Names in Static SQL
Statements"). Oracle Database can reuse these SQL statements each time the same
code runs, which improves performance.

PL/SQL does not create bind variables automatically when you use dynamic SQL, but
you can use them with dynamic SQL by specifying them explicitly (for details, see
"EXECUTE IMMEDIATE Statement").

Subprograms

PL/SQL subprograms are stored in executable form, which can be invoked repeatedly.
Because stored subprograms run in the database server, a single invocation over

the network can start a large job. This division of work reduces network traffic and
improves response times. Stored subprograms are cached and shared among users,
which lowers memory requirements and invocation overhead. For more information
about subprograms, see "Subprograms”.

Optimizer

The PL/SQL compiler has an optimizer that can rearrange code for better
performance. For more information about the optimizer, see "PL/SQL Optimizer".

2.1.3 High Productivity

PL/SQL has many features that save designing and debugging time, and it is the same
in all environments.

PL/SQL lets you write compact code for manipulating data. Just as a scripting
language like PERL can read, transform, and write data in files, PL/SQL can query,
transform, and update data in a database.

If you learn to use PL/SQL with one Oracle tool, you can transfer your knowledge
to other Oracle tools. For an overview of PL/SQL features, see "Main Features of
PL/SQL".

2.1.4 Portability

PL/SQL is a portable and standard language for Oracle development.

ORACLE 2-2

Chapter 2
Main Features of PL/SQL

You can run PL/SQL applications on any operating system and platform where Oracle
Database runs.

2.1.5 Scalability

PL/SQL stored subprograms increase scalability by centralizing application processing
on the database server.

The shared memory facilities of the shared server let Oracle Database support
thousands of concurrent users on a single node. For more information about
subprograms, see "Subprograms"

For further scalability, you can use Oracle Connection Manager to multiplex
network connections. For information about Oracle Connection Manager, see "Oracle
Database Net Services Reference"

2.1.6 Manageability

PL/SQL stored subprograms increase manageability because you can maintain only
one copy of a subprogram, on the database server, rather than one copy on each
client system.

Any number of applications can use the subprograms, and you can change the
subprograms without affecting the applications that invoke them. For more information
about subprograms, see "Subprograms".

2.1.7 Support for Object-Oriented Programming

PL/SQL allows defining object types that can be used in object-oriented designs.

PL/SQL supports object-oriented programming with "Abstract Data Types".

2.2 Main Features of PL/SQL

ORACLE

PL/SQL combines the data-manipulating power of SQL with the processing power of
procedural languages.

When you can solve a problem with SQL, you can issue SQL statements from your
PL/SQL program, without learning new APIs.

Like other procedural programming languages, PL/SQL lets you declare constants and
variables, control program flow, define subprograms, and trap runtime errors.

You can break complex problems into easily understandable subprograms, which you
can reuse in multiple applications.

Topics

e Error Handling

» Blocks

* \Variables and Constants

e Subprograms

» Packages

2-3

Chapter 2
Main Features of PL/SQL

e Triggers

e Input and Output

» Data Abstraction

» Control Statements

» Conditional Compilation

* Processing a Query Result Set One Row at a Time

2.2.1 Error Handling

PL/SQL makes it easy to detect and handle errors.

When an error occurs, PL/SQL raises an exception. Normal execution stops and
control transfers to the exception-handling part of the PL/SQL block. You do not have
to check every operation to ensure that it succeeded, as in a C program.

For more information, see PL/SQL Error Handling.

2.2.2 Blocks

ORACLE

The basic unit of a PL/SQL source program is the block, which groups related
declarations and statements.

A PL/SQL block is defined by the keywords DECLARE, BEGIN, EXCEPTION, and END.
These keywords divide the block into a declarative part, an executable part, and an
exception-handling part. Only the executable part is required. A block can have a
label.

Declarations are local to the block and cease to exist when the block completes
execution, helping to avoid cluttered namespaces for variables and subprograms.

Blocks can be nested: Because a block is an executable statement, it can appear in
another block wherever an executable statement is allowed.

You can submit a block to an interactive tool (such as SQL*Plus or Enterprise
Manager) or embed it in an Oracle Precompiler or OCI program. The interactive tool or
program runs the block one time. The block is not stored in the database, and for that
reason, it is called an anonymous block (even if it has a label).

An anonymous block is compiled each time it is loaded into memory, and its
compilation has three stages:

1. Syntax checking: PL/SQL syntax is checked, and a parse tree is generated.
2. Semantic checking: Type checking and further processing on the parse tree.

3. Code generation

Note:

An anonymous block is a SQL statement.

For syntax details, see "Block".

2-4

Chapter 2
Main Features of PL/SQL

Example 2-1 PL/SQL Block Structure

This example shows the basic structure of a PL/SQL block.

<< label >> (optional)
DECLARE -- Declarative part (optional)
-- Declarations of local types, variables, & subprograms

BEGIN -- Executable part (required)
-- Statements (which can use items declared in declarative part)

[EXCEPTION -- Exception-handling part (optional)
-- Exception handlers for exceptions (errors) raised in executable part]
END;

2.2.3 Variables and Constants

PL/SQL lets you declare variables and constants, and then use them wherever you
can use an expression.

As the program runs, the values of variables can change, but the values of constants
cannot.

For more information, see "Declarations" and "Assigning Values to Variables".

2.2.4 Subprograms

A PL/SQL subprogram is a named PL/SQL block that can be invoked repeatedly.

If the subprogram has parameters, their values can differ for each invocation. PL/SQL
has two types of subprograms, procedures and functions. A function returns a result.

For more information about PL/SQL subprograms, see PL/SQL Subprograms.
PL/SQL also lets you invoke external programs written in other languages.

For more information, see "External Subprograms".

2.2.5 Packages

A package is a schema object that groups logically related PL/SQL types, variables,
constants, subprograms, cursors, and exceptions.

A package is compiled and stored in the database, where many applications can share
its contents. You can think of a package as an application.

You can write your own packages—for details, see PL/SQL Packages. You can
also use the many product-specific packages that Oracle Database supplies.
For information about these, see Oracle Database PL/SQL Packages and Types
Reference.

2.2.6 Triggers

ORACLE

A trigger is a named PL/SQL unit that is stored in the database and run in response to
an event that occurs in the database.

You can specify the event, whether the trigger fires before or after the event, and
whether the trigger runs for each event or for each row affected by the event. For

2-5

Chapter 2
Main Features of PL/SQL

example, you can create a trigger that runs every time an INSERT statement affects the
EMPLOYEES table.

For more information about triggers, see PL/SQL Triggers.

2.2.7 Input and Output

Most PL/SQL input and output (I/O) is done with SQL statements that store data in
database tables or query those tables. All other PL/SQL 1/O is done with PL/SQL
packages that Oracle Database supplies.

Table 2-1 PL/SQL I/0-Processing Packages
|

Package Description More Information
DBMS_OUTPUT Lets PL/SQL blocks, subprograms, Oracle Database PL/SQL
packages, and triggers display output. Packages and Types

Especially useful for displaying PL/SQL Reference
debugging information.

HTF Has hypertext functions that generate Oracle Database PL/SQL
HTML tags (for example, the HTF.ANCHOR Packages and Types
function generates the HTML anchortag Reference

<A>).
HTP Has hypertext procedures that generate ~ Oracle Database PL/SQL
HTML tags. Packages and Types
Reference
DBMS_PIPE Lets two or more sessions in the same Oracle Database PL/SQL
instance communicate. Packages and Types
Reference
UTL_FILE Lets PL/SQL programs read and write Oracle Database PL/SQL
operating system files. Packages and Types
Reference
UTL_HTTP Lets PL/SQL programs make Hypertext Oracle Database PL/SQL
Transfer Protocol (HTTP) callouts, and Packages and Types
access data on the Internet over HTTP. Reference
UTL_SMTP Sends electronic mails (emails) over Oracle Database PL/SQL
Simple Mail Transfer Protocol (SMTP) as Packages and Types
specified by RFC821. Reference

To display output passed to DBMS_OUTPUT, you need another program, such as
SQL*Plus. To see DBMS_OQUTPUT output with SQL*Plus, you must first issue the
SQL*Plus command SET SERVEROUTPUT ON.

Some subprograms in the packages in Table 2-1 can both accept input and display
output, but they cannot accept data directly from the keyboard. To accept data directly
from the keyboard, use the SQL*Plus commands PROMPT and ACCEPT.

ORACLE 2-6

Chapter 2
Main Features of PL/SQL

¢ See Also:

e SQL*Plus User's Guide and Reference for information about the
SQL*Plus command SET SERVEROUTPUT ON

e SQL*Plus User's Guide and Reference for information about the
SQL*Plus command PROMPT

e SQL*Plus User's Guide and Reference for information about the
SQL*Plus command ACCEPT

e Oracle Database SQL Language Reference for information about SQL
statements

2.2.8 Data Abstraction

Data abstraction lets you work with the essential properties of data without being too
involved with details.

You can design a data structure first, and then design algorithms that manipulate it.

Topics

e Cursors

e Composite Variables

* Using the %ROWTYPE Attribute
* Using the %TYPE Attribute

e Abstract Data Types

2.2.8.1 Cursors

A cursor is a pointer to a private SQL area that stores information about processing a
specific SQL statement or PL/SQL SELECT INTO statement.

You can use the cursor to retrieve the rows of the result set one at a time. You can use
cursor attributes to get information about the state of the cursor—for example, how
many rows the statement has affected so far.

For more information about cursors, see "Cursors Overview".

2.2.8.2 Composite Variables

ORACLE

A composite variable has internal components, which you can access individually.

You can pass entire composite variables to subprograms as parameters. PL/SQL has
two kinds of composite variables, collections and records.

In a collection, the internal components are always of the same data type, and are
called elements. You access each element by its unique index. Lists and arrays are
classic examples of collections.

2-7

Chapter 2
Main Features of PL/SQL

In a record, the internal components can be of different data types, and are called
fields. You access each field by its name. A record variable can hold a table row, or
some columns from a table row.

For more information about composite variables, see PL/SQL Collections and
Records.

2.2.8.3 Using the %ROWTYPE Attribute

The %ROWTYPE attribute lets you declare a record that represents either a full or partial
row of a database table or view.

For every column of the full or partial row, the record has a field with the same name
and data type. If the structure of the row changes, then the structure of the record
changes accordingly.

For more information about %ROWTYPE syntax and semantics, see "%ROWTYPE
Attribute". For more details about its usage, see "Declaring Items using the
%ROWTYPE Attribute".

2.2.8.4 Using the %TYPE Attribute

The %TYPE attribute lets you declare a data item of the same data type as a previously
declared variable or column (without knowing what that type is).

If the declaration of the referenced item changes, then the declaration of the
referencing item changes accordingly. The %TYPE attribute is particularly useful when
declaring variables to hold database values. For more information about %TYPE
syntax and semantics, see "%TYPE Attribute”. For more details about its usage, see
"Declaring Items using the %TYPE Attribute”.

2.2.8.5 Abstract Data Types

ORACLE

An Abstract Data Type (ADT) consists of a data structure and subprograms that
manipulate the data.

The variables that form the data structure are called attributes. The subprograms that
manipulate the attributes are called methods.

ADTs are stored in the database. Instances of ADTs can be stored in tables and used
as PL/SQL variables.

ADTs let you reduce complexity by separating a large system into logical components,
which you can reuse.

In the static data dictionary view *_0BJECTS, the OBJECT_TYPE of an ADT is TYPE. In the
static data dictionary view *_TYPES, the TYPECODE of an ADT is OBJECT.

For more information about ADTs, see "CREATE TYPE Statement".

Note:

ADTs are also called user-defined types and object types.

2-8

Chapter 2
Main Features of PL/SQL

¢ See Also:

Oracle Database Object-Relational Developer's Guide for information about
ADTs (which it calls object types)

2.2.9 Control Statements

Control statements are the most important PL/SQL extension to SQL.
PL/SQL has three categories of control statements:

e Conditional selection statements, which let you run different statements for
different data values.

For more information, see "Conditional Selection Statements".

* Loop statements, which let you repeat the same statements with a series of
different data values.

For more information, see "LOOP Statements".

e Sequential control statements, which allow you to go to a specified, labeled
statement, or to do nothing.

For more information, see "Sequential Control Statements".

2.2.10 Conditional Compilation

Conditional compilation lets you customize the functionality in a PL/SQL application
without removing source text.

For example, you can:

* Use new features with the latest database release, and disable them when running
the application in an older database release.

» Activate debugging or tracing statements in the development environment, and
hide them when running the application at a production site.

For more information, see "Conditional Compilation".

2.2.11 Processing a Query Result Set One Row at a Time

ORACLE

PL/SQL lets you issue a SQL query and process the rows of the result set one at a
time.

You can use a basic loop, or you can control the process precisely by using individual
statements to run the query, retrieve the results, and finish processing.

Example 2-2 Processing Query Result Rows One at a Time

This example uses a basic loop.

BEGIN
FOR someone IN (
SELECT * FROM employees
WHERE employee_id < 120
ORDER BY employee_id

2-9

)

LOOP

Chapter 2
Architecture of PL/ISQL

DBMS_OUTPUT.PUT_LINE("First name = " || someone.first_name ||
", Last name = " || someone.last_name);

END LOOP;

END;
/

Result:

First
First
First
First
First
First
First
First
First
First
First
First
First
First
First
First
First
First
First
First

name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name

Steven, Last name = King
Neena, Last name = Kochhar
Lex, Last name = De Haan
Alexander, Last name = Hunold
Bruce, Last name = Ernst

David, Last name = Austin
Valli, Last name = Pataballa
Diana, Last name = Lorentz
Nancy, Last name = Greenberg

Daniel, Last name = Faviet
John, Last name = Chen
Ismael, Last name = Sciarra
Jose Manuel, Last name = Urman
Luis, Last name = Popp

Den, Last name = Raphaely
Alexander, Last name = Khoo
Shelli, Last name = Baida
Sigal, Last name = Tobias
Guy, Last name = Himuro
Karen, Last name = Colmenares

2.3 Architecture of PL/SQL

Basic understanding of the PL/SQL architecture is beneficial to PL/SQL programmers.

Topics

* PL/SQL Engine

e PL/SQL Units and Compilation Parameters

2.3.1 PL/ISQL Engine

The PL/SQL compilation and runtime system is an engine that compiles and runs

PL/SQL units.

The engine can be installed in the database or in an application development tool,
such as Oracle Forms.

In either environment, the PL/SQL engine accepts as input any valid PL/SQL unit. The
engine runs procedural statements, but sends SQL statements to the SQL engine in
the database, as shown in Figure 2-1.

ORACLE

2-10

Chapter 2
Architecture of PL/SQL

Figure 2-1 PL/SQL Engine

PL/SQL Engine

procedural > Procedural
PL/SQL PL/SQL Statement

Block Block Executor
SQL

\

‘ SQL Statement Executor ’

Database Server

Typically, the database processes PL/SQL units.

When an application development tool processes PL/SQL units, it passes them to its
local PL/SQL engine. If a PL/SQL unit contains no SQL statements, the local engine
processes the entire PL/SQL unit. This is useful if the application development tool can
benefit from conditional and iterative control.

For example, Oracle Forms applications frequently use SQL statements to test the
values of field entries and do simple computations. By using PL/SQL instead of SQL,
these applications can avoid calls to the database.

2.3.2 PLISQL Units and Compilation Parameters

ORACLE

PL/SQL units are affected by PL/SQL compilation parameters (a category of
database initialization parameters). Different PL/SQL units—for example, a package
specification and its body—can have different compilation parameter settings.

A PL/SQL unit is one of these:

e PL/SQL anonymous block

* FUNCTION
e LIBRARY
» PACKAGE

* PACKAGE BODY
» PROCEDURE

* TRIGGER
e TYPE
» TYPE BODY

Table 2-2 summarizes the PL/SQL compilation parameters. To display the values of
these parameters for specified or all PL/SQL units, query the static data dictionary

2-11

Chapter 2
Architecture of PL/ISQL

view ALL_PLSQL_OBJECT SETTINGS. For information about this view, see Oracle

Database Reference.

Table 2-2 PL/SQL Compilation Parameters
|

Parameter

Description

PLSCOPE_SETTINGS

PLSQL_CCFLAGS

PLSQL_CODE_TYPE

PLSQL_OPTIMIZE_LEVEL

PLSQL_WARNINGS

NLS_LENGTH_SEMANTICS

ORACLE

Controls the compile-time collection, cross-reference, and
storage of PL/SQL source text identifier data. Used by the PL/
Scope tool (see Oracle Database Development Guide).

For more information about PLSCOPE_SETTINGS, see Oracle
Database Reference.

Lets you control conditional compilation of each PL/SQL unit
independently.
For more information about PLSQL_CCFLAGS, see "How

Conditional Compilation Works" and Oracle Database
Reference.

Specifies the compilation mode for PL/SQL units—INTERPRETED

(the default) or NATIVE. For information about which mode

to use, see "Determining Whether to Use PL/SQL Native

Compilation”.

If the optimization level (set by PLSQL_OPTIMIZE_LEVEL) is less

than 2:

* The compiler generates interpreted code, regardless of
PLSQL_CODE_TYPE.

e If you specify NATIVE, the compiler warns you that NATIVE
was ignored.

For more information about PLSQL_CODE_TYPE, see Oracle

Database Reference.

Specifies the optimization level at which to compile PL/SQL units
(the higher the level, the more optimizations the compiler tries to
make).

PLSQL_OPTIMIZE_LEVEL=1 instructs the PL/SQL compiler to
generate and store code for use by the PL/SQL debugger.
For more information about PLSQL_OPTIMIZE_LEVEL, see
"PL/SQL Optimizer" and Oracle Database Reference.

Enables or disables the reporting of warning messages by the
PL/SQL compiler, and specifies which warning messages to
show as errors.

For more information about PLSQL_WARNINGS, see "Compile-
Time Warnings" and Oracle Database Reference.

Lets you create CHAR and VARCHAR2 columns using either byte-
length or character-length semantics.

For more information about byte and character length semantics,
see "CHAR and VARCHAR? Variables".

For more information about NLS_LENGTH_SEMANTICS, see
Oracle Database Reference.

2-12

Chapter 2
Architecture of PL/SQL

Table 2-2 (Cont.) PL/ISQL Compilation Parameters

]
Parameter Description
PERMIT_92 WRAP_FORMAT Specifies whether the 12.1 PL/SQL compiler can use wrapped

packages that were compiled with the 9.2 PL/SQL compiler. The
default value is TRUE.

For more information about wrapped packages, see PL/SQL
Source Text Wrapping.

For more information about PERMIT_92_WRAP_FORMAT, see
Oracle Database Reference.

< Note:

The compilation parameter PLSQL_DEBUG, which specifies whether to compile
PL/SQL units for debugging, is deprecated. To compile PL/SQL units for
debugging, specify PLSQL_OPTIMIZE_LEVEL=1.

The compile-time values of the parameters in Table 2-2 are stored with the metadata
of each stored PL/SQL unit, which means that you can reuse those values when

you explicitly recompile the unit. (A stored PLISQL unit is created with one of the
"CREATE [OR REPLACE] Statements". An anonymous block is not a stored PL/SQL
unit.)

To explicitly recompile a stored PL/SQL unit and reuse its parameter values, you must
use an ALTER statement with both the COMPILE clause and the REUSE SETTINGS clause.
All ALTER statements have this clause. For a list of ALTER statements, see "ALTER
Statements".

ORACLE 2-13

PL/SQL Language Fundamentals

The PL/SQL language fundamental components are explained.

Character Sets

Lexical Units

Declarations

References to Identifiers

Scope and Visibility of Identifiers
Assigning Values to Variables
Expressions

Error-Reporting Functions

Conditional Compilation

3.1 Character Sets

Any character data to be processed by PL/SQL or stored in a database must be
represented as a sequence of bytes. The byte representation of a single character is
called a character code. A set of character codes is called a character set.

Every Oracle database supports a database character set and a national character
set. PL/SQL also supports these character sets. This document explains how PL/SQL
uses the database character set and national character set.

Topics

Database Character Set
National Character Set

About Data-Bound Collation

" See Also:

Oracle Database Globalization Support Guide for general information about
character sets

3.1.1 Database Character Set

PL/SQL uses the database character set to represent:

ORACLE

Stored source text of PL/SQL units

3-1

ORACLE

Chapter 3
Character Sets

For information about PL/SQL units, see "PL/SQL Units and Compilation
Parameters".

* Character values of data types CHAR, VARCHAR2, CLOB, and LONG
For information about these data types, see "SQL Data Types".

The database character set can be either single-byte, mapping each supported
character to one particular byte, or multibyte-varying-width, mapping each supported
character to a sequence of one, two, three, or four bytes. The maximum number of
bytes in a character code depends on the particular character set.

Every database character set includes these basic characters:

e Latin letters: A through Z and a through z

* Decimal digits: 0 through 9

* Punctuation characters in Table 3-1

* Whitespace characters: space, tab, new line, and carriage return

PL/SQL source text that uses only the basic characters can be stored and compiled in
any database. PL/SQL source text that uses nonbasic characters can be stored and
compiled only in databases whose database character sets support those nonbasic
characters.

Table 3-1 Punctuation Characters in Every Database Character Set

___|
Symbol Name

(Left parenthesis

) Right parenthesis
< Left angle bracket
> Right angle bracket
+ Plus sign

- Hyphen or minus sign
* Asterisk
/ Slash
= Equal sign
, Comma
; Semicolon
Colon
Period
1 Exclamation point
? Question mark
Apostrophe or single quotation mark

Quotation mark or double quotation mark

@ At sign

% Percent sign
Number sign
$ Dollar sign

3-2

Chapter 3
Character Sets

Table 3-1 (Cont.) Punctuation Characters in Every Database Character Set

___|
Symbol Name

Underscore

| Vertical bar

¢ See Also:

Oracle Database Globalization Support Guide for more information about the
database character set

3.1.2 National Character Set

PL/SQL uses the national character set to represent character values of data types
NCHAR, NVARCHAR2 and NCLOB.

¢ See Also:

e "SQL Data Types" for information about these data types

e Oracle Database Globalization Support Guide for more information about
the national character set

3.1.3 About Data-Bound Collation

ORACLE

Collation (also called sort ordering) is a set of rules that determines if a character
string equals, precedes, or follows another string when the two strings are compared
and sorted.

Different collations correspond to rules of different spoken languages. Collation-
sensitive operations are operations that compare text and need a collation to control
the comparison rules. The equality operator and the built-in function INSTR are
examples of collation-sensitive operations.

Starting with Oracle Database 12c release 2 (12.2) , a new architecture provides
control of the collation to be applied to operations on character data. In the new
architecture, collation becomes an attribute of character data, analogous to a data
type. You can now declare collation for a column and this collation is automatically
applied by all collation-sensitive SQL operations referencing the column. The data-
bound collation feature uses syntax and semantics compatible with the ISO/IEC SQL
standard.

The PL/SQL language has limited support for the data-bound collation architecture.
All data processed in PL/SQL expressions is assumed to have the compatibility
collation USING_NLS_COMP. This pseudo-collation instructs collation-sensitive operators
to behave in the same way as in previous Oracle Database releases. That is, the
values of the session parameters NLS_COMP and NLS_SORT determine the collation to

3-3

Chapter 3
Lexical Units

use. However, all SQL statements embedded or constructed dynamically in PL/SQL
fully support the new architecture.

A new property called default collation has been added to tables, views, materialized
views, packages, stored procedures, stored functions, triggers, and types. The default
collation of a unit determines the collation for data containers, such as columns,
variables, parameters, literals, and return values, that do not have their own explicit
collation declaration in that unit. The default collation for packages, stored procedures,
stored functions, triggers, and types must be USING_NLS_COMP.

For syntax and semantics, see the DEFAULT COLLATION Clause.

To facilitate the creation of PL/SQL units in a schema that has a schema default
collation other than USING_NLS COMP, the syntax and semantics for the following
statements enable an explicit declaration of the object's default collation to be
USING_NLS_COMP:

e CREATE FUNCTION Statement

» CREATE PACKAGE Statement

* CREATE PROCEDURE Statement
» CREATE TRIGGER Statement

» CREATE TYPE Statement

¢ See Also:

e Oracle Database Globalization Support Guide for more information about
specifying data-bound collation for PL/SQL units

e Oracle Database Globalization Support Guide for more information about
effective schema default collation

3.2 Lexical Units

The lexical units of PL/SQL are its smallest individual components—delimiters,
identifiers, literals, pragmas, and comments.

Topics

» Delimiters

* |dentifiers

e Literals

e Pragmas

 Comments

* Whitespace Characters Between Lexical Units

3.2.1 Delimiters

A delimiter is a character, or character combination, that has a special meaning in
PL/SQL.

ORACLE 3-4

ORACLE

Chapter 3
Lexical Units

Do not embed any others characters (including whitespace characters) inside a

delimiter.

Table 3-2 summarizes the PL/SQL delimiters.

Table 3-2 PL/SQL Delimiters
|

Delimiter = Meaning
+ Addition operator
= Assignment operator

= Association operator

% Attribute indicator

" Character string delimiter
Component indicator

11 Concatenation operator

/ Division operator

*x Exponentiation operator

(Expression or list delimiter (begin)

) Expression or list delimiter (end)
Host variable indicator

, Item separator

<< Label delimiter (begin)

>> Label delimiter (end)

/* Multiline comment delimiter (begin)

*/ Multiline comment delimiter (end)

* Multiplication operator

" Quoted identifier delimiter
Range operator

= Relational operator (equal)

<> Relational operator (not equal)

1= Relational operator (not equal)

~= Relational operator (not equal)

Az Relational operator (not equal)

< Relational operator (less than)

> Relational operator (greater than)

<= Relational operator (less than or equal)

>= Relational operator (greater than or equal)

@ Remote access indicator

Single-line comment indicator
Statement terminator

Subtraction or negation operator

3-5

Chapter 3
Lexical Units

3.2.2 ldentifiers

Identifiers name PL/SQL elements, which include:
» Constants

* Cursors

» Exceptions

* Keywords

* Labels

e Packages

* Reserved words
e Subprograms

e Types

* \Variables

Every character in an identifier, alphabetic or not, is significant. For example, the
identifiers lastname and last_name are different.

You must separate adjacent identifiers by one or more whitespace characters or a
punctuation character.

Except as explained in "Quoted User-Defined Identifiers”, PL/SQL is case-insensitive
for identifiers. For example, the identifiers lastname, LastName, and LASTNAME are the
same.

Topics
* Reserved Words and Keywords
* Predefined Identifiers

» User-Defined Identifiers

3.2.2.1 Reserved Words and Keywords

Reserved words and keywords are identifiers that have special meaning in PL/SQL.

You cannot use reserved words as ordinary user-defined identifiers. You can use them
as quoted user-defined identifiers, but it is not recommended. For more information,
see "Quoted User-Defined Identifiers".

You can use keywords as ordinary user-defined identifiers, but it is not recommended.

For lists of PL/SQL reserved words and keywords, see Table D-1 and Table D-2,
respectively.

3.2.2.2 Predefined Identifiers

Predefined identifiers are declared in the predefined package STANDARD.

An example of a predefined identifier is the exception INVALID_NUMBER.

ORACLE 3-6

Chapter 3
Lexical Units

For a list of predefined identifiers, connect to Oracle Database as a user who has the
DBA role and use this query:

SELECT TYPE_NAME FROM ALL_TYPES WHERE PREDEFINED="YES";
You can use predefined identifiers as user-defined identifiers, but it is not

recommended. Your local declaration overrides the global declaration (see "Scope and
Visibility of Identifiers").

3.2.2.3 User-Defined Identifiers

A user-defined identifier is:
e Composed of characters from the database character set

e Either ordinary or quoted

Tip:

Make user-defined identifiers meaningful. For example, the meaning of
cost_per_thousand is obvious, but the meaning of cpt is not.

3.2.2.3.1 Ordinary User-Defined Identifiers

ORACLE

An ordinary user-defined identifier:

* Begins with a letter

e Can include letters, digits, and these symbols:
— Dollar sign ($)
— Number sign (#)
— Underscore ()

* Is not areserved word (listed in Table D-1).

The database character set defines which characters are classified as letters and
digits. If COMPATIBLE is set to a value of 12.2 or higher, the representation of the
identifier in the database character set cannot exceed 128 bytes. If COMPATIBLE is
set to a value of 12.1 or lower, the limit is 30 bytes.

Examples of acceptable ordinary user-defined identifiers:

X

t2

phone#
credit_limit
LastName
oracle$number
money$$$tree
SN##
try_again_

Examples of unacceptable ordinary user-defined identifiers:

mine&yours
debit-amount

3-7

Chapter 3
Lexical Units

on/off
user id

3.2.2.3.2 Quoted User-Defined Identifiers

ORACLE

A quoted user-defined identifier is enclosed in double quotation marks.

Between the double quotation marks, any characters from the database character set
are allowed except double quotation marks, new line characters, and null characters.
For example, these identifiers are acceptable:

XY

"last name"

"on/off switch"
"employee(s)"

"*x* header info ***"

If COMPATIBLE is set to a value of 12.2 or higher, the representation of the quoted
identifier in the database character set cannot exceed 128 bytes (excluding the double
guotation marks). If COMPATIBLE is set to a value of 12.1 or lower, the limit is 30
bytes.

A quoted user-defined identifier is case-sensitive, with one exception: If a quoted
user-defined identifier, without its enclosing double quotation marks, is a valid ordinary
user-defined identifier, then the double quotation marks are optional in references to
the identifier, and if you omit them, then the identifier is case-insensitive.

It is not recommended, but you can use a reserved word as a quoted user-defined
identifier. Because a reserved word is not a valid ordinary user-defined identifier,
you must always enclose the identifier in double quotation marks, and it is always
case-sensitive.

Example 3-1 Valid Case-Insensitive Reference to Quoted User-Defined
Identifier

In this example, the quoted user-defined identifier "HELLO", without its enclosing
double quotation marks, is a valid ordinary user-defined identifier. Therefore, the
reference Hello is valid.

DECLARE

"HELLO" varchar2(10) := "hello”;
BEGIN

DBMS_Output.Put_Line(Hello);
END;
/

Result:

hello

Example 3-2 Invalid Case-Insensitive Reference to Quoted User-Defined
Identifier

In this example, the reference "Hello" is invalid, because the double quotation marks
make the identifier case-sensitive.

DECLARE
"HELLO" varchar2(10) := "hello”;
BEGIN
DBMS_Output.Put_Line("'Hello™);

3-8

ORACLE

Chapter 3
Lexical Units

END;
/

Result:

DBMS_Output.Put_Line(""Hello");
*

ERROR at line 4:

ORA-06550: line 4, column 25:

PLS-00201: identifier "Hello" must be declared
ORA-06550: line 4, column 3:

PL/SQL: Statement ignored

Example 3-3 Reserved Word as Quoted User-Defined Identifier

This example declares quoted user-defined identifiers "BEGIN", "Begin", and "begin".
Although BEGIN, Begin, and begin represent the same reserved word, "BEGIN",
"Begin™, and "begin" represent different identifiers.

DECLARE
"BEGIN" varchar2(15) :
"Begin" varchar2(15) :
"begin" varchar2(15) :

BEGIN
DBMS_Output._Put_Line(""BEGIN™);
DBMS_Output.Put_Line("'Begin™);
DBMS_Output._Put_Line("'begin™);

END;

/

"UPPERCASE" ;
"Initial Capital®;
"lowercase”;

Result:

UPPERCASE
Initial Capital
lowercase

PL/SQL procedure successfully completed.

Example 3-4 Neglecting Double Quotation Marks

This example references a quoted user-defined identifier that is a reserved word,
neglecting to enclose it in double quotation marks.

DECLARE
"HELLO" varchar2(10) := "hello"; -- HELLO is not a reserved word
"BEGIN" varchar2(10) := "begin®; -- BEGIN is a reserved word
BEGIN
DBMS_Output._Put_Line(Hello); -- Double quotation marks are optional
DBMS_Output._Put_Line(BEGIN); -- Double quotation marks are required
end;
/
Result:
DBMS_Output.Put_Line(BEGIN); -- Double quotation marks are required
*

ERROR at line 6:

ORA-06550: line 6, column 24:

PLS-00103: Encountered the symbol "BEGIN" when expecting one of the following:
() - + case mod new not null <an identifier>

<a double-quoted delimited-identifier> <a bind variable>

table continue avg count current exists max min prior sql

3-9

Chapter 3
Lexical Units

stddev sum variance execute multiset the both leading
trailing forall merge year month day hour minute second
timezone_hour timezone_minute timezone_region timezone_abbr
time timestamp interval date

<a string literal with character set specificat

Example 3-5 Neglecting Case-Sensitivity

This example references a quoted user-defined identifier that is a reserved word,
neglecting its case-sensitivity.

DECLARE
"HELLO" varchar2(10) := "hello"; -- HELLO is not a reserved word
"BEGIN" varchar2(10) := "begin®; -- BEGIN is a reserved word
BEGIN
DBMS_Output._Put_Line(Hello); -- ldentifier is case-insensitive
DBMS_Output._Put_Line(*'Begin™); -- ldentifier is case-sensitive
END;
/
Result:
DBMS_Output.Put_Line("'Begin™); -- ldentifier is case-sensitive
*

ERROR at line 6:

ORA-06550: line 6, column 25:

PLS-00201: identifier "Begin® must be declared
ORA-06550: line 6, column 3:

PL/SQL: Statement ignored

3.2.3 Literals

ORACLE

A literal is a value that is neither represented by an identifier nor calculated from other
values.

For example, 123 is an integer literal and "abc”® is a character literal, but 1+2 is not a
literal.

PL/SQL literals include all SQL literals (described in Oracle Database SQL Language
Reference) and BOOLEAN literals (which SQL does not have). A BOOLEAN literal is the
predefined logical value TRUE, FALSE, or NULL. NULL represents an unknown value.

" Note:

Like Oracle Database SQL Language Reference, this document uses the
terms character literal and string interchangeably.

When using character literals in PL/SQL, remember:
* Character literals are case-sensitive.

For example, "Z" and "z" are different.
* Whitespace characters are significant.

For example, these literals are different:

3-10

ORACLE

Chapter 3
Lexical Units

"abc”

" abc*
"abc "
" abc "
"fabc"

PL/SQL has no line-continuation character that means "this string continues on the
next source line." If you continue a string on the next source line, then the string
includes a line-break character.

For example, this PL/SQL code:

BEGIN
DBMS_OUTPUT.PUT_LINE("This string breaks
here.");
END;
/
Prints this:
This string breaks
here.

If your string does not fit on a source line and you do not want it to include a
line-break character, then construct the string with the concatenation operator (] |).
For example, this PL/SQL code:

BEGIN
DBMS_OUTPUT.PUT_LINE("This string " ||
"contains no line-break character.");
END;
/

Prints this:

This string contains no line-break character.

For more information about the concatenation operator, see "Concatenation
Operator".

"0" through "9" are not equivalent to the integer literals 0 through 9.

However, because PL/SQL converts them to integers, you can use them in
arithmetic expressions.

A character literal with zero characters has the value NULL and is called a null
string.

However, this NULL value is not the BOOLEAN value NULL.

An ordinary character literal is composed of characters in the database
character set.

For information about the database character set, see Oracle Database
Globalization Support Guide.

A national character literal is composed of characters in the national character
set.

For information about the national character set, see Oracle Database
Globalization Support Guide.

3-11

Chapter 3
Lexical Units

3.2.4 Pragmas

A pragma is an instruction to the compiler that it processes at compile time.

A pragma begins with the reserved word PRAGMA followed by the name of the pragma.
Some pragmas have arguments. A pragma may appear before a declaration or a
statement. Additional restrictions may apply for specific pragmas. The extent of a
pragma’s effect depends on the pragma. A pragma whose name or argument is not
recognized by the compiler has no effect.

pragma ::=

,(autonomous_trans_pragma)—

coverage_pragma

deprecate_pragma
exception_init_pragma

——{ inline_pragma

"

—(restrict_references_pragma

I

—(serialIy,reusable,pragma

I

—(suppresses,warning,6009,pragma>—

D

udf_pragma

For information about pragmas syntax and semantics, see :
* "AUTONOMOUS_TRANSACTION Pragma”
 "COVERAGE Pragma"

 "DEPRECATE Pragma"

"EXCEPTION_INIT Pragma"

* "INLINE Pragma"

« "RESTRICT_REFERENCES Pragma"
 "SERIALLY_REUSABLE Pragma"
 "SUPPRESSES_WARNING_6009 Pragma"

« "UDF Pragma"

3.2.5 Comments

ORACLE

The PL/SQL compiler ignores comments. Their purpose is to help other application
developers understand your source text.

Typically, you use comments to describe the purpose and use of each code segment.
You can also disable obsolete or unfinished pieces of code by turning them into
comments.

3-12

Chapter 3
Lexical Units

Topics
e Single-Line Comments

e Multiline Comments

See Also:

"Comment"

3.2.5.1 Single-Line Comments

A single-line comment begins with -- and extends to the end of the line.

Caution:

Do not put a single-line comment in a PL/SQL block to be processed
dynamically by an Oracle Precompiler program. The Oracle Precompiler
program ignores end-of-line characters, which means that a single-line
comment ends when the block ends.

While testing or debugging a program, you can disable a line of code by making it a
comment. For example:

-- DELETE FROM employees WHERE comm_pct IS NULL

Example 3-6 Single-Line Comments
This example has three single-line comments.

DECLARE
howmany NUMBER;
num_tables NUMBER;
BEGIN
-- Begin processing
SELECT COUNT(*) INTO howmany
FROM USER_OBJECTS
WHERE OBJECT_TYPE = "TABLE"; -- Check number of tables
num_tables := howmany; -- Compute another value
END;
/

3.2.5.2 Multiline Comments

A multiline comment begins with /*, ends with */, and can span multiple lines.

You can use multiline comment delimiters to "comment out" sections of code. When
doing so, be careful not to cause nested multiline comments. One multiline comment
cannot contain another multiline comment. However, a multiline comment can contain
a single-line comment. For example, this causes a syntax error:

ORACLE 3-13

Chapter 3
Lexical Units

/-k
IF 2 + 2 =4 THEN
some_condition := TRUE;
/* We expect this THEN to always be performed */
END IF;
*/

This does not cause a syntax error:

/*
IF 2 + 2 = 4 THEN
some_condition := TRUE;
-- We expect this THEN to always be performed
END IF;
*/

Example 3-7 Multiline Comments

This example has two multiline comments. (The SQL function TO_CHAR returns the
character equivalent of its argument. For more information about TO_CHAR, see Oracle
Database SQL Language Reference.)

DECLARE
some_condition BOOLEAN;
pi NUMBER := 3.1415926;
radius NUMBER := 15;
area NUMBER;
BEGIN

/* Perform some simple tests and assignments */

IF 2 + 2 = 4 THEN

some_condition := TRUE;
/* We expect this THEN to always be performed */
END IF;

/* This line computes the area of a circle using pi,
which is the ratio between the circumference and diameter.
After the area is computed, the result is displayed. */

area := pi * radius**2;

DBMS_OUTPUT.PUT_LINE(*The area is: " || TO_CHAR(area));
END;
/

Result:

The area is: 706.858335

3.2.6 Whitespace Characters Between Lexical Units

ORACLE

You can put whitespace characters between lexical units, which often makes your
source text easier to read.

Example 3-8 Whitespace Characters Improving Source Text Readability

DECLARE
X NUMBER :
y NUMBER :
max NUMBER;

BEGIN

(O 21

3-14

Chapter 3
Declarations

IF x>y THEN max:=x;ELSE max:=y;END IF; -- correct but hard to read
-- Easier to read:

IF x >y THEN
max:=x;
ELSE
max:=y;
END IF;
END;
/

3.3 Declarations

A declaration allocates storage space for a value of a specified data type, and names
the storage location so that you can reference it.

You must declare objects before you can reference them. Declarations can appear in
the declarative part of any block, subprogram, or package.

Topics

» Declaring Variables

* Declaring Constants

* Initial Values of Variables and Constants

* NOT NULL Constraint

» Declaring Items using the %TYPE Attribute

For information about declaring objects other than variables and constants, see the
syntax of decl are_secti on in "Block".

3.3.1 NOT NULL Constraint

ORACLE

You can impose the NOT NULL constraint on a scalar variable or constant (or scalar
component of a composite variable or constant).

The NOT NULL constraint prevents assigning a null value to the item. The item can
acquire this constraint either implicitly (from its data type) or explicitly.

A scalar variable declaration that specifies NOT NULL, either implicitly or explicitly, must
assign an initial value to the variable (because the default initial value for a scalar
variable is NULL).

PL/SQL treats any zero-length string as a NULL value. This includes values returned by
character functions and BOOLEAN expressions.

To test for a NULL value, use the "IS [NOT] NULL Operator".

Examples
Example 3-9 Variable Declaration with NOT NULL Constraint

In this example, the variable acct_id acquires the NOT NULL constraint explicitly, and
the variables a, b, and ¢ acquire it from their data types.

3-15

Chapter 3
Declarations

DECLARE
acct_id INTEGER(4) NOT NULL := 9999;
a NATURALN = 9999;
b POSITIVEN = 9999;
¢ SIMPLE_INTEGER = 9999;

BEGIN
NULL;

END;

/

Example 3-10 Variables Initialized to NULL Values

In this example, all variables are initialized to NULL.

DECLARE
null_string VARCHAR2(80) := TO_CHAR("");
address VARCHAR2(80);
zip_code VARCHAR2(80) := SUBSTR(address, 25, 0);
name VARCHAR2(80);
valid BOOLEAN = (name 1= "%);

BEGIN
NULL ;

END;

/

3.3.2 Declaring Variables

ORACLE

A variable declaration always specifies the name and data type of the variable.
For most data types, a variable declaration can also specify an initial value.
The variable name must be a valid user-defined identifier .

The data type can be any PL/SQL data type. The PL/SQL data types include the SQL
data types. A data type is either scalar (without internal components) or composite
(with internal components).

Example
Example 3-11 Scalar Variable Declarations

This example declares several variables with scalar data types.

DECLARE
part_number NUMBER(6) ; -- SQL data type
part_name VARCHAR2(20); -- SQL data type
in_stock BOOLEAN; -- PL/SQL-only data type
part_price NUMBER(6,2); -- SQL data type
part_description VARCHAR2(50); -- SQL data type

BEGIN
NULL ;

END;

/

Related Topics

* "User-Defined Identifiers"
e "Scalar Variable Declaration" for scalar variable declaration syntax

* PL/SQL Data Types for information about scalar data types

3-16

Chapter 3
Declarations

* PL/SQL Collections and Records, for information about composite data types and
variables

3.3.3 Declaring Constants

A constant holds a value that does not change.

The information in "Declaring Variables" also applies to constant declarations, but a
constant declaration has two more requirements: the keyword CONSTANT and the initial
value of the constant. (The initial value of a constant is its permanent value.)

Example 3-12 Constant Declarations

This example declares three constants with scalar data types.

DECLARE
credit_limit CONSTANT REAL
max_days_in_year CONSTANT INTEGER :
urban_legend CONSTANT BOOLEAN :
BEGIN
NULL ;
END;
/

5000.00; -- SQL data type
366; -- SQL data type
FALSE; -- PL/SQL-only data type

Related Topic

* "Constant Declaration" for constant declaration syntax

3.3.4 Initial Values of Variables and Constants

ORACLE

In a variable declaration, the initial value is optional unless you specify the NOT NULL
constraint . In a constant declaration, the initial value is required.

If the declaration is in a block or subprogram, the initial value is assigned to the
variable or constant every time control passes to the block or subprogram. If the
declaration is in a package specification, the initial value is assigned to the variable or
constant for each session (whether the variable or constant is public or private).

To specify the initial value, use either the assignment operator (:=) or the keyword
DEFAULT, followed by an expression. The expression can include previously declared
constants and previously initialized variables.

If you do not specify an initial value for a variable, assign a value to it before using it in
any other context.

Examples
Example 3-13 Variable and Constant Declarations with Initial Values

This example assigns initial values to the constant and variables that it declares. The
initial value of area depends on the previously declared constant pi and the previously
initialized variable radius.

DECLARE
hours_worked INTEGER := 40;
employee_count INTEGER := O;
pi CONSTANT REAL := 3.14159;

radius REAL 1;

3-17

Chapter 3
Declarations

area REAL := (pi * radius**2);
BEGIN

NULL;
END;
/

Example 3-14 Variable Initialized to NULL by Default

In this example, the variable counter has the initial value NULL, by default. The
example uses the "IS [NOT] NULL Operator" to show that NULL is different from zero.

DECLARE

counter INTEGER; -- initial value is NULL by default
BEGIN

counter := counter + 1; -- NULL + 1 is still NULL

IF counter 1S NULL THEN
DBMS_OUTPUT.PUT_LINE("counter is NULL.");
END IF;
END;
/

Result:

counter is NULL.

Related Topics

» "Declaring Associative Array Constants" for information about declaring constant
associative arrays

» "Declaring Record Constants" for information about declaring constant records

e "NOT NULL Constraint"

3.3.5 Declaring Items using the %TYPE Attribute

ORACLE

The %TYPE attribute lets you declare a data item of the same data type as a previously
declared variable or column (without knowing what that type is). If the declaration of
the referenced item changes, then the declaration of the referencing item changes
accordingly.

The syntax of the declaration is:

referencing_itemreferenced_itenWTYPE;

For the kinds of items that can be referencing and referenced items, see "%TYPE
Attribute".

The referencing item inherits the following from the referenced item:
* Data type and size

* Constraints (unless the referenced item is a column)

The referencing item does not inherit the initial value of the referenced item. Therefore,
if the referencing item specifies or inherits the NOT NULL constraint, you must specify an
initial value for it.

3-18

Chapter 3
References to Identifiers

The %TYPE attribute is particularly useful when declaring variables to hold database
values. The syntax for declaring a variable of the same type as a column is:

vari abl e_nane tabl e_nane.col um_nane%TYPE;

" See Also:

"Declaring Items using the %ROWTYPE Attribute", which lets you declare a
record variable that represents either a full or partial row of a database table
or view

Examples
Example 3-15 Declaring Variable of Same Type as Column

In this example, the variable surname inherits the data type and size of the column
employees.last_name, which has a NOT NULL constraint. Because surname does not
inherit the NOT NULL constraint, its declaration does not need an initial value.

DECLARE
surname employees.last_name%TYPE;
BEGIN
DBMS_OUTPUT.PUT_LINE("surname=" |] surname);
END;
/

Result:

surname=

Example 3-16 Declaring Variable of Same Type as Another Variable

In this example, the variable surname inherits the data type, size, and NOT NULL
constraint of the variable name. Because surname does not inherit the initial value of
name, its declaration needs an initial value (which cannot exceed 25 characters).

DECLARE
name VARCHAR(25) NOT NULL := "Smith";
surname name%TYPE := “Jones”;
BEGIN
DBMS_OUTPUT.PUT_LINE("name=" || name);
DBMS_OUTPUT.PUT_LINE("surname=" || surname);
END;
/

Result:

name=Smith
surname=Jones

3.4 References to Identifiers

When referencing an identifier, you use a name that is either simple, qualified, remote,
or both qualified and remote.

The simple name of an identifier is the name in its declaration. For example:

ORACLE 3-19

Chapter 3
Scope and Visibility of Identifiers

DECLARE
a INTEGER; -- Declaration
BEGIN
a:=1; -- Reference with simple name
END;
/

If an identifier is declared in a named PL/SQL unit, you can (and sometimes must)
reference it with its qualified name. The syntax (called dot notation) is:

unit _name.sinpl e_i dentifier_nane

For example, if package p declares identifier a, you can reference the identifier with the
gualified name p.a. The unit name also can (and sometimes must) be qualified. You
must qualify an identifier when it is not visible (see "Scope and Visibility of Identifiers").

If the identifier names an object on a remote database, you must reference it with its
remote name. The syntax is:

sinple_identifier_nane@ ink_to_renote_dat abase

If the identifier is declared in a PL/SQL unit on a remote database, you must reference
it with its qualified remote name. The syntax is:

unit _nane.sinpl e_identifier_name@ ink_to_renote_database

You can create synonyms for remote schema objects, but you cannot create
synonyms for objects declared in PL/SQL subprograms or packages. To create a
synonym, use the SQL statement CREATE SYNONYM, explained in Oracle Database SQL
Language Reference.

For information about how PL/SQL resolves ambiguous names, see PL/SQL Name
Resolution.

" Note:

You can reference identifiers declared in the packages STANDARD and
DBMS_STANDARD without qualifying them with the package names, unless
you have declared a local identifier with the same name (see "Scope and
Visibility of Identifiers™).

3.5 Scope and Visibility of Identifiers

ORACLE

The scope of an identifier is the region of a PL/SQL unit from which you can reference
the identifier. The visibility of an identifier is the region of a PL/SQL unit from which
you can reference the identifier without qualifying it. An identifier is local to the
PL/SQL unit that declares it. If that unit has subunits, the identifier is global to them.

If a subunit redeclares a global identifier, then inside the subunit, both identifiers are
in scope, but only the local identifier is visible. To reference the global identifier, the
subunit must qualify it with the name of the unit that declared it. If that unit has no
name, then the subunit cannot reference the global identifier.

A PL/SQL unit cannot reference identifiers declared in other units at the same level,
because those identifiers are neither local nor global to the block.

3-20

ORACLE

Chapter 3
Scope and Visibility of Identifiers

You cannot declare the same identifier twice in the same PL/SQL unit. If you do, an
error occurs when you reference the duplicate identifier.

You can declare the same identifier in two different units. The two objects represented
by the identifier are distinct. Changing one does not affect the other.

In the same scope, give labels and subprograms unique names to avoid confusion and
unexpected results.

Examples
Example 3-17 Scope and Visibility of Identifiers

This example shows the scope and visibility of several identifiers. The first sub-block
redeclares the global identifier a. To reference the global variable a, the first sub-block
would have to qualify it with the name of the outer block—but the outer block has

no name. Therefore, the first sub-block cannot reference the global variable a; it can
reference only its local variable a. Because the sub-blocks are at the same level, the
first sub-block cannot reference d, and the second sub-block cannot reference c.

-- Outer block:

DECLARE
a CHAR; -- Scope of a (CHAR) begins
b REAL; -- Scope of b begins
BEGIN

-- Visible: a (CHAR), b

-- First sub-block:

DECLARE
a INTEGER; -- Scope of a (INTEGER) begins
Cc REAL; -- Scope of c begins
BEGIN
-- Visible: a (INTEGER), b, c
NULL;
END; -- Scopes of a (INTEGER) and c end
-- Second sub-block:
DECLARE
d REAL; -- Scope of d begins
BEGIN
-- Visible: a (CHAR), b, d
NULL;
END; -- Scope of d ends
-- Visible: a (CHAR), b
END; -- Scopes of a (CHAR) and b end
/

Example 3-18 Qualifying Redeclared Global Identifier with Block Label

This example labels the outer block with the name outer. Therefore, after the sub-
block redeclares the global variable birthdate, it can reference that global variable
by qualifying its name with the block label. The sub-block can also reference its local
variable birthdate, by its simple name.

<<outer>> -- label
DECLARE

birthdate DATE := TO_DATE("09-AUG-70", "DD-MON-YY*");
BEGIN

DECLARE

birthdate DATE := TO_DATE("29-SEP-70", "DD-MON-YY");

3-21

Chapter 3
Scope and Visibility of Identifiers

BEGIN
IF birthdate = outer.birthdate THEN
DBMS_OUTPUT.PUT_LINE (*Same Birthday");
ELSE
DBMS_OUTPUT.PUT_LINE ("Different Birthday");
END IF;
END;
END;
/

Result:

Different Birthday

Example 3-19 Qualifying Identifier with Subprogram Name

In this example, the procedure check credit declares a variable, rating, and a
function, check_rating. The function redeclares the variable. Then the function
references the global variable by qualifying it with the procedure name.

CREATE OR REPLACE PROCEDURE check_credit (credit_limit NUMBER) AS
rating NUMBER := 3;

FUNCTION check_rating RETURN BOOLEAN IS
rating NUMBER := 1;
over_limit BOOLEAN;

BEGIN
IF check_credit.rating <= credit_limit THEN -- reference global variable
over_limit := FALSE;
ELSE
over_limit := TRUE;
rating := credit_limit; -- reference local variable
END IF;

RETURN over_limit;
END check_rating;
BEGIN
IF check_rating THEN
DBMS_OUTPUT.PUT_LINE
("Credit rating over limit (" || TO_CHAR(credit_limit) || *). -
|l "Rating: " || TO_CHAR(rating));
ELSE
DBMS_OUTPUT.PUT_LINE
("Credit rating OK. " || "Rating: " || TO_CHAR(rating));
END IF;
END;
/

BEGIN
check_credit(l);

END;

/

Result:

Credit rating over limit (1). Rating: 3

ORACLE 3-22

ORACLE

Chapter 3
Scope and Visibility of Identifiers

Example 3-20 Duplicate Identifiers in Same Scope

You cannot declare the same identifier twice in the same PL/SQL unit. If you do, an
error occurs when you reference the duplicate identifier, as this example shows.

DECLARE
id BOOLEAN;
id VARCHAR2(5); -- duplicate identifier
BEGIN
id = FALSE;
END;
/
Result:
id := FALSE;

*

ERROR at line 5:

ORA-06550: line 5, column 3:

PLS-00371: at most one declaration for "ID" is permitted
ORA-06550: line 5, column 3:

PL/SQL: Statement ignored

Example 3-21 Declaring Same Identifier in Different Units

You can declare the same identifier in two different units. The two objects represented
by the identifier are distinct. Changing one does not affect the other, as this example
shows. In the same scope, give labels and subprograms unique names to avoid
confusion and unexpected results.

DECLARE

PROCEDURE p

IS
x VARCHAR2(1);

BEGIN
X = "a"; -- Assign the value "a" to x
DBMS_OUTPUT.PUT_LINE("In procedure p, X

END;

"1 X

PROCEDURE q
IS
x VARCHAR2(1);
BEGIN
X = "b"; -- Assign the value "b" to x
DBMS_OUTPUT.PUT_LINE("In procedure q, X
END;

"1 X

BEGIN
p;
q;

END;

/

Result:

In procedure p, X
In procedure q, X

3-23

Chapter 3
Scope and Visibility of Identifiers

Example 3-22 Label and Subprogram with Same Name in Same Scope

In this example, echo is the name of both a block and a subprogram. Both the block
and the subprogram declare a variable named x. In the subprogram, echo.x refers to
the local variable x, not to the global variable x.

<<echo>>
DECLARE
X NUMBER := 5;

PROCEDURE echo AS
X NUMBER := O;
BEGIN
DBMS_OUTPUT.PUT_LINE(*X = " || x);
DBMS_OUTPUT.PUT_LINE("echo.x = * || echo.x);
END;

BEGIN
echo;

END;

/

Result:

X =0
echo.x = 0

Example 3-23 Block with Multiple and Duplicate Labels

This example has two labels for the outer block, compute_ratio and another_label.
The second label appears again in the inner block. In the inner block,
another_label.denominator refers to the local variable denominator, not to the global
variable denominator, which results in the error ZERO_DIVIDE.

<<compute_ratio>>
<<another_label>>
DECLARE

numerator NUMBER := 22;
denominator NUMBER := 7;
BEGIN

<<another_label>>

DECLARE
denominator NUMBER := 0;

BEGIN
DBMS_OUTPUT.PUT_LINE("Ratio with compute_ratio.denominator = *);
DBMS_OUTPUT.PUT_LINE(numerator/compute_ratio.denominator);
DBMS_OUTPUT.PUT_LINE("Ratio with another_label.denominator = *);

DBMS_OUTPUT.PUT_LINE(numerator/another_label .denominator);

EXCEPTION
WHEN ZERO_DIVIDE THEN
DBMS_OUTPUT.PUT_LINE("Divide-by-zero error: can""t divide *
|l numerator || " by * || denominator);
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE("Unexpected error.");
END another_label;
END compute_ratio;
/

ORACLE 3-24

Chapter 3
Assigning Values to Variables

Result:

Ratio with compute_ratio.denominator =
3.14285714285714285714285714285714285714
Ratio with another_label.denominator =
Divide-by-zero error: cannot divide 22 by 0

3.6 Assigning Values to Variables

After declaring a variable, you can assign a value to it in these ways:
e Use the assignment statement to assign it the value of an expression.
e Use the SELECT INTO or FETCH statement to assign it a value from a table.

* Pass it to a subprogram as an OUT or IN OUT parameter, and then assign the value
inside the subprogram.

The variable and the value must have compatible data types. One data type is
compatible with another data type if it can be implicitly converted to that type.

For information about implicit data conversion, see Oracle Database SQL Language
Reference.

Topics

* Assigning Values to Variables with the Assignment Statement

* Assigning Values to Variables with the SELECT INTO Statement

* Assigning Values to Variables as Parameters of a Subprogram

e Assigning Values to BOOLEAN Variables

" See Also:

e "Assigning Values to Collection Variables"
e "Assigning Values to Record Variables"
 "FETCH Statement"

3.6.1 Assigning Values to Variables with the Assignment Statement

ORACLE

To assign the value of an expression to a variable, use this form of the assignment
statement:

vari abl e_nane := expression;

For the complete syntax of the assignment statement, see "Assignment Statement".
For the syntax of an expression, see "Expression".

Example 3-24 Assigning Values to Variables with Assignment Statement

This example declares several variables (specifying initial values for some) and then
uses assignment statements to assign the values of expressions to them.

3-25

Chapter 3
Assigning Values to Variables

DECLARE -- You can assign initial values here
wages NUMBER;
hours_worked NUMBER := 40;
hourly_salary NUMBER := 22.50;
bonus NUMBER := 150;
country VARCHAR2(128);
counter NUMBER := 0;
done BOOLEAN;
valid_id BOOLEAN;
emp_recl employees%ROWTYPE;
emp_rec2 employees%ROWTYPE;
TYPE commissions IS TABLE OF NUMBER INDEX BY PLS_INTEGER;
comm_tab commissions;
BEGIN -- You can assign values here too

wages := (hours_worked * hourly_salary) + bonus;
country := "France";
country := UPPER("Canada®);
done := (counter > 100);
valid_id := TRUE;
emp_recl.first_name := "Antonio”;
emp_recl.last_name := "Ortiz";
emp_recl := emp_rec2;
comm_tab(5) := 20000 * 0.15;

END;

/

3.6.2 Assigning Values to Variables with the SELECT INTO Statement

ORACLE

A simple form of the SELECT INTO statement is:

SELECT select_item [, select_item]...
INTO variabl e_name [, variable_nane]...
FROM t abl e_nane;

For each sel ect _i t em there must be a corresponding, type-compatible
vari abl e_name. Because SQL does not have a BOOLEAN type, vari abl e_name cannot
be a BOOLEAN variable.

For the complete syntax of the SELECT INTO statement, see "SELECT INTO
Statement”.

Example 3-25 Assigning Value to Variable with SELECT INTO Statement

This example uses a SELECT INTO statement to assign to the variable bonus the value
that is 10% of the salary of the employee whose employee_id is 100.

DECLARE
bonus NUMBER(8,2);
BEGIN
SELECT salary * 0.10 INTO bonus
FROM employees
WHERE employee_id = 100;
END;

DBMS_OUTPUT.PUT_LINE("bonus = * || TO_CHAR(bonus));
/

Result:

bonus = 2400

3-26

Chapter 3
Assigning Values to Variables

3.6.3 Assigning Values to Variables as Parameters of a Subprogram

If you pass a variable to a subprogram as an OUT or IN OUT parameter, and the
subprogram assigns a value to the parameter, the variable retains that value after the
subprogram finishes running. For more information, see "Subprogram Parameters".

Example 3-26 Assigning Value to Variable as IN OUT Subprogram Parameter

This example passes the variable new_sal to the procedure adjust_salary. The
procedure assigns a value to the corresponding formal parameter, sal. Because sal
is an IN OUT parameter, the variable new_sal retains the assigned value after the
procedure finishes running.

DECLARE
emp_salary NUMBER(8,2);

PROCEDURE adjust_salary (
emp NUMBER,
sal IN OUT NUMBER,
adjustment NUMBER
) IS
BEGIN
sal := sal + adjustment;
END;

BEGIN
SELECT salary INTO emp_salary
FROM employees
WHERE employee_id = 100;

DBMS_OUTPUT.PUT_LINE
("Before invoking procedure, emp_salary: " || emp_salary);

adjust_salary (100, emp_salary, 1000);

DBMS_OUTPUT.PUT_LINE

("After invoking procedure, emp_salary: " || emp_salary);
END;
/

Result:

Before invoking procedure, emp_salary: 24000
After invoking procedure, emp_salary: 25000

3.6.4 Assigning Values to BOOLEAN Variables

ORACLE

The only values that you can assign to a BOOLEAN variable are TRUE, FALSE, and NULL.
For more information about the BOOLEAN data type, see "BOOLEAN Data Type".
Example 3-27 Assigning Value to BOOLEAN Variable

This example initializes the BOOLEAN variable done to NULL by default, assigns it the
literal value FALSE, compares it to the literal value TRUE, and assigns it the value of a
BOOLEAN expression.

3-27

Chapter 3
Expressions

DECLARE
done BOOLEAN; --— Initial value is NULL by default
counter NUMBER := 0;
BEGIN
done := FALSE; -- Assign literal value
WHILE done !'= TRUE -- Compare to literal value
LOOP
counter := counter + 1;
done := (counter > 500); -- Assign value of BOOLEAN expression
END LOOP;
END;
/

3.7 Expressions

An expression is a combination of one or more values, operators, and SQL functions
that evaluates to a value.

An expression always returns a single value. The simplest expressions, in order of
increasing complexity, are:

1. Asingle constant or variable (for example, a)
2. A unary operator and its single operand (for example, -a)
3. A binary operator and its two operands (for example, a+b)

An operand can be a variable, constant, literal, operator, function invocation,
or placeholder—or another expression. Therefore, expressions can be arbitrarily
complex. For expression syntax, see Expression.

The data types of the operands determine the data type of the expression. Every time
the expression is evaluated, a single value of that data type results. The data type of
that result is the data type of the expression.

Topics

* Concatenation Operator

e Operator Precedence

e Logical Operators

* Short-Circuit Evaluation

e Comparison Operators

« BOOLEAN Expressions

* CASE Expressions

* SQL Functions in PL/SQL Expressions

3.7.1 Concatenation Operator

ORACLE

The concatenation operator (] |) appends one string operand to another.
The concatenation operator ignores null operands.

For more information about the syntax of the concatenation operator, see
"character_expression ::=".

3-28

Chapter 3
Expressions

Example 3-28 Concatenation Operator

DECLARE
X VARCHAR2(4) :
y VARCHAR2(4) :
BEGIN
DBMS_OUTPUT.PUT_LINE (x || V);
END;
/

"suit”;
"case”;

Result:

suitcase

Example 3-29 Concatenation Operator with NULL Operands
The concatenation operator ignores null operands, as this example shows.

BEGIN

DBMS_OUTPUT.PUT_LINE (*apple” || NULL || NULL || “"sauce®);
END;
/

Result:

applesauce

3.7.2 Operator Precedence

An operation is either a unary operator and its single operand or a binary operator
and its two operands. The operations in an expression are evaluated in order of
operator precedence.

Table 3-3 shows operator precedence from highest to lowest. Operators with equal
precedence are evaluated in no particular order.

Table 3-3 Operator Precedence
|

Operator Operation

kel exponentiation

+, - identity, negation

*/ multiplication, division

+ - 1 addition, subtraction,
concatenation

=, <, >, <=, >=, <> 1= ~= A= IS NULL, LIKE, BETWEEN, IN comparison

NOT negation

AND conjunction

OR inclusion

To control the order of evaluation, enclose operations in parentheses, as in
Example 3-30.

When parentheses are nested, the most deeply nested operations are evaluated first.

ORACLE 3-29

ORACLE

Chapter 3
Expressions

You can also use parentheses to improve readability where the parentheses do not
affect evaluation order.

Example 3-30 Controlling Evaluation Order with Parentheses

DECLARE

a INTEGER := 1+42**2;

b INTEGER := (1+2)**2;
BEGIN

DBMS_OUTPUT.PUT_LINE("a
DBMS_OUTPUT.PUT_LINE("b
END;
/

" |1 TO_CHAR(a));
" |1 TO_CHAR(D));

Result:

5
9

a
b

Example 3-31 Expression with Nested Parentheses

In this example, the operations (1+2) and (3+4) are evaluated first, producing the
values 3 and 7, respectively. Next, the operation 3*7 is evaluated, producing the result
21. Finally, the operation 21/7 is evaluated, producing the final value 3.

DECLARE
a INTEGER := ((1+2)*(3+4))/7;
BEGIN
DBMS_OUTPUT.PUT_LINE("a = " || TO_CHAR(a));
END;
/

Result:
a=3
Example 3-32 Improving Readability with Parentheses

In this example, the parentheses do not affect the evaluation order. They only improve
readability.

DECLARE
a INTEGER 1= 2%*2%3%*2;
b INTEGER := (2**2)*(3**2);
BEGIN

DBMS_OUTPUT.PUT_LINE("a
DBMS_OUTPUT.PUT_LINE("b
END;
/

" |1 TO_CHAR(a));
" |1 TO_CHAR(D));

Result:

36
36

a
b

Example 3-33 Operator Precedence

This example shows the effect of operator precedence and parentheses in several
more complex expressions.

DECLARE
salary NUMBER := 60000;

3-30

Chapter 3
Expressions

commission NUMBER := 0.10;

BEGIN

-- Division has higher precedence than addition:

DBMS_OUTPUT.PUT_LINE("5 + 12 / 4
DBMS_OUTPUT.PUT_LINE("12 / 4 + 5

" |1 TO_CHAR(S + 12 / 4));
" || TO_CHAR(12 / 4 + 5));

-- Parentheses override default operator precedence:

DBMS_OUTPUT.PUT_LINE(*8 + 6 / 2 = * || TO_CHAR(8 + 6 / 2));
DBMS_OUTPUT.PUT_LINE("(8 + 6) 7/ 2 = " || TO_CHAR((8 + 6) / 2));

-- Most deeply nested operation is evaluated first:

DBMS_OUTPUT.PUT_LINE(®100 + (20 / 5 + (7 - 3)) = *
|| TO_CHAR(100 + (20 / 5 + (7 - 3))));

-- Parentheses, even when unnecessary, improve readability:
DBMS_OUTPUT.PUT_LINE("(salary * 0.05) + (commission * 0.25) = *
Il TO_CHAR((salary * 0.05) + (commission * 0.25))

DBMS_OUTPUT.PUT_LINE("salary * 0.05 + commission * 0.25 = *

|| TO_CHAR(salary * 0.05 + commission * 0.25)
);

END;

Result:

5+12/ 4
12/ 4 +5
8+6/2

@ +6)/

100 + (20

(salary *

8
8
1

=1
2 =17
/5 +
0.0

(7 - 3)) = 108
5) + (commission * 0.25) = 3000.025
salary * 0.05 + commission * 0.25 = 3000.025

3.7.3 Logical Operators

The logical operators AND, OR, and NOT follow a tri-state logic.

ORACLE

AND and OR are binary operators; NOT is a unary operator.

Table 3-4 Logical Truth Table

X y X AND y XORYy NOT x
TRUE TRUE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE FALSE
TRUE NULL NULL TRUE FALSE
FALSE TRUE FALSE TRUE TRUE
FALSE FALSE FALSE FALSE TRUE
FALSE NULL FALSE NULL TRUE

3-31

ORACLE

Chapter 3
Expressions

Table 3-4 (Cont.) Logical Truth Table

X y X AND y XORYy NOT x
NULL TRUE NULL TRUE NULL
NULL FALSE FALSE NULL NULL
NULL NULL NULL NULL NULL

AND returns TRUE if and only if both operands are TRUE.
OR returns TRUE if either operand is TRUE.

NOT returns the opposite of its operand, unless the operand is NULL. NOTNULL returns
NULL, because NULL is an indeterminate value.

Example 3-34 Procedure Prints BOOLEAN Variable

This example creates a procedure, print_boolean, that prints the value of a BOOLEAN
variable. The procedure uses the "IS [NOT] NULL Operator". Several examples in this
chapter invoke print_boolean.

CREATE OR REPLACE PROCEDURE print_boolean (
b name VARCHARZ2,
b_value BOOLEAN

) AUTHID DEFINER IS

BEGIN
IF b_value IS NULL THEN

DBMS_OUTPUT.PUT_LINE (b_name || " = NULL®);
ELSIF b_value = TRUE THEN
DBMS_OUTPUT.PUT LINE (b_name || * = TRUE");
ELSE
DBMS_OUTPUT.PUT_LINE (b_name || " = FALSE");
END IF;
END;

/

Example 3-35 AND Operator

As Table 3-4 and this example show, AND returns TRUE if and only if both operands are
TRUE.

DECLARE
PROCEDURE print_x_and_y (
X BOOLEAN,
y BOOLEAN
) IS
BEGIN
print_boolean ("x", Xx);
print_boolean ("y", y);
print_boolean ("x AND y*, x AND y);
END print_x_and_y;

BEGIN

print_x_and y (FALSE, FALSE);
print_x_and y (TRUE, FALSE);
print_x_and y (FALSE, TRUE);
print_x_and_y (TRUE, TRUE);

3-32

ORACLE

print_x_and_y (TRUE, NULL);
print_x_and_y (FALSE, NULL);
print_x_and_y (NULL, TRUE);
print_x_and_y (NULL, FALSE);
END;
/

Result:

= FALSE
= FALSE
AND y = FALSE
= TRUE
= FALSE
AND y = FALSE
= FALSE
= TRUE
AND y = FALSE
= TRUE
= TRUE
AND y = TRUE
= TRUE
= NULL
AND y = NULL
= FALSE
= NULL
AND y = FALSE
= NULL
= TRUE
AND y = NULL
= NULL
= FALSE
AND y = FALSE

XK X XK X XK X XK X XK X XK X XK X XK X

Example 3-36 OR Operator

Chapter 3
Expressions

As Table 3-4 and this example show, OR returns TRUE if either operand is TRUE. (This

example invokes the print_boolean procedure from Example 3-34.)

DECLARE

PROCEDURE print_x or_y (
X BOOLEAN,
y BOOLEAN

) IS

BEGIN
print_boolean ("x", X);
print_boolean ("y", y);
print_boolean ("x OR y", x OR y);

END print_x_ or_y;

BEGIN
print_x or_y (FALSE, FALSE);
print_x or_y (TRUE, FALSE);
print_x or_y (FALSE, TRUE);
print_x_or_y (TRUE, TRUE);

print_x_or_y (TRUE, NULL);
print_x or_y (FALSE, NULL);
print_x_or_y (NULL, TRUE);

3-33

ORACLE

print_x_or_y (NULL, FALSE);

END;

/

Result:

XK X XK X XK X XK X XK X XK X XK X XK X

= FALSE
= FALSE
OR y = FALSE
= TRUE
= FALSE
OR y = TRUE
= FALSE
= TRUE
OR y = TRUE
= TRUE
= TRUE
OR y = TRUE
= TRUE
= NULL
OR y = TRUE
= FALSE
= NULL
OR y = NULL
= NULL
= TRUE
OR y = TRUE
= NULL
= FALSE
OR y = NULL

Example 3-37

NOT Operator

Chapter 3
Expressions

As Table 3-4 and this example show, NOT returns the opposite of its operand, unless
the operand is NULL. NOT NULL returns NULL, because NULL is an indeterminate value.

(This example invokes the print_boolean procedure from Example 3-34.)

DECLARE

PROCEDURE print_not_x (

X BOOLEAN
) IS
BEGIN

print_boolean ("x", X);
print_boolean (*NOT x", NOT x);
END print_not_x;

BEGIN

print_not_x (TRUE);
print_not_x (FALSE);
print_not_x (NULL);

END;

/

Result:

X

= TRUE

NOT x = FALSE

X

= FALSE

NOT x = TRUE

3-34

ORACLE

Chapter 3
Expressions

X = NULL
NOT x = NULL

Example 3-38 NULL Value in Unequal Comparison

In this example, you might expect the sequence of statements to run because x and
y seem unequal. But, NULL values are indeterminate. Whether x equals y is unknown.
Therefore, the IF condition yields NULL and the sequence of statements is bypassed.

DECLARE
x NUMBER := 5;
y NUMBER := NULL;
BEGIN
IF x 1=y THEN -- yields NULL, not TRUE
DBMS_OUTPUT.PUT_LINE("x !=y"); -- not run

ELSIF x = y THEN -- also yields NULL
DBMS_OUTPUT.PUT_LINE("X = y");
ELSE
DBMS_OUTPUT .PUT_LINE
("Can""t tell if x and y are equal or not.");
END IF;
END;
/

Result:

Can"t tell if x and y are equal or not.

Example 3-39 NULL Value in Equal Comparison

In this example, you might expect the sequence of statements to run because a and
b seem equal. But, again, that is unknown, so the IF condition yields NULL and the
sequence of statements is bypassed.

DECLARE
a NUMBER := NULL;
b NUMBER := NULL;
BEGIN
IF a=Db THEN -- yields NULL, not TRUE
DBMS_OUTPUT.PUT_LINE("a = b"); -- not run
ELSIF a '= b THEN -- yields NULL, not TRUE
DBMS_OUTPUT.PUT_LINE("a !'= b"); -- not run
ELSE
DBMS_OUTPUT.PUT_LINE("Can""t tell if two NULLs are equal®);
END IF;
END;
/
Result:

Can"t tell if two NULLs are equal

Example 3-40 NOT NULL Equals NULL

In this example, the two IF statements appear to be equivalent. However, if either x or
y is NULL, then the first IF statement assigns the value of y to high and the second IF
statement assigns the value of x to high.

3-35

Chapter 3
Expressions

DECLARE
X INTEGER := 2;
Y INTEGER := 5;
high INTEGER;
BEGIN
IF X >y) -- If x or y is NULL, then (x > y) is NULL
THEN high := x; -- run if (x > y) is TRUE
ELSE high :=y; -- run if (x > y) is FALSE or NULL
END IF;
IF NOT (x >y) -- If x or y is NULL, then NOT (x > y) is NULL
THEN high :=y; -- run if NOT (x > y) is TRUE
ELSE high := x; -- run if NOT (x > y) is FALSE or NULL
END IF;
END;
/

Example 3-41 Changing Evaluation Order of Logical Operators

This example invokes the print_boolean procedure from Example 3-34 three times.
The third and first invocation are logically equivalent—the parentheses in the third
invocation only improve readability. The parentheses in the second invocation change
the order of operation.

DECLARE
X BOOLEAN := FALSE;
y BOOLEAN := FALSE;

BEGIN
print_boolean ("NOT x AND y*, NOT x AND y);
print_boolean ("NOT (x AND y)", NOT (x AND y));
print_boolean ("(NOT x) AND y", (NOT x) AND y);

END;

/

Result:

NOT x AND y = FALSE
NOT (x AND y) = TRUE
(NOT X) AND y = FALSE

3.7.4 Short-Circuit Evaluation

When evaluating a logical expression, PL/SQL uses short-circuit evaluation. That is,
PL/SQL stops evaluating the expression as soon as it can determine the result.

Therefore, you can write expressions that might otherwise cause errors.

In Example 3-42, short-circuit evaluation prevents the OR expression from causing a
divide-by-zero error. When the value of on_hand is zero, the value of the left operand
is TRUE, so PL/SQL does not evaluate the right operand. If PL/SQL evaluated both
operands before applying the OR operator, the right operand would cause a division by
Zero error.

Example 3-42 Short-Circuit Evaluation

DECLARE
on_hand INTEGER := 0;
on_order INTEGER := 100;

ORACLE 3-36

Chapter 3
Expressions

BEGIN
-- Does not cause divide-by-zero error;
-- evaluation stops after first expression

IF (on_hand = 0) OR ((on_order / on_hand) < 5) THEN
DBMS_OUTPUT.PUT_LINE(*On hand quantity is zero.");
END IF;
END;
/

Result:

On hand quantity is zero.

3.7.5 Comparison Operators

Comparison operators compare one expression to another. The result is always either
TRUE, FALSE, or NULL.

If the value of one expression is NULL, then the result of the comparison is also NULL.
The comparison operators are:

* IS[NOT] NULL Operator

* Relational Operators

* LIKE Operator

» BETWEEN Operator

* IN Operator

Note:

Character comparisons are affected by NLS parameter settings, which

can change at runtime. Therefore, character comparisons are evaluated at
runtime, and the same character comparison can have different values at
different times. For information about NLS parameters that affect character
comparisons, see Oracle Database Globalization Support Guide.

Note:

Using CLOB values with comparison operators can create temporary LOB
values. Ensure that your temporary tablespace is large enough to handle
them.

3.7.5.1 IS [NOT] NULL Operator

The IS NULL operator returns the BOOLEAN value TRUE if its operand is NULL or FALSE if it
is not NULL. The IS NOT NULL operator does the opposite.

Comparisons involving NULL values always yield NULL.

ORACLE 3-37

Chapter 3
Expressions

To test whether a value is NULL, use IF val ue IS NULL, as in these examples:

* Example 3-14, "Variable Initialized to NULL by Default"
* Example 3-34, "Procedure Prints BOOLEAN Variable"
* Example 3-53, "Searched CASE Expression with WHEN ... IS NULL"

3.7.5.2 Relational Operators

This table summarizes the relational operators.

Table 3-5 Relational Operators

Operator Meaning

= equal to

<> 1= ~= A= not equal to

< less than

> greater than

<= less than or equal to
>= greater than or equal to
Topics

e Arithmetic Comparisons
¢ BOOLEAN Comparisons

e Character Comparisons

« Date Comparisons

3.7.5.2.1 Arithmetic Comparisons

ORACLE

One number is greater than another if it represents a larger quantity.

Real numbers are stored as approximate values, so Oracle recommends comparing
them for equality or inequality.

Example 3-43 Relational Operators in Expressions

This example invokes the print_boolean procedure from Example 3-35 to print the
values of expressions that use relational operators to compare arithmetic values.

BEGIN
print_boolean ("(2

print_boolean ("(2
print_boolean ("(2
print_boolean ("(2
print_boolean ("(2
print_boolean ("(1
print_boolean ("(1

print_boolean ("(1

+
+
+
+
+

<

>

2= 4)", 2+ 2=4);

2<>4)", 2+ 2<>4);
2 1= 4)", 2 +2 1= 4);
2 ~=4)", 2+ 2 ~=4);
2 M= 4)", 2+ 2 N=4);
2)", 1<2);
2)", 1> 2);

<=2)7, 1<=2);

3-38

Chapter 3
Expressions

print_boolean ("(1 >= 1)", 1 >= 1);

END;

/

Result

(2 +2= 4) = TRUE
(2 + 2 <> 4) = FALSE
(2 + 2 1= 4) = FALSE
(2 + 2 ~= 4) = FALSE
(2 + 2 "= 4) = FALSE
(1 <2) = TRUE

(1 > 2) = FALSE

(1 <= 2) = TRUE
(1 >= 1) = TRUE

3.7.5.2.2 BOOLEAN Comparisons

By definition, TRUE is greater than FALSE. Any comparison with NULL returns NULL.

3.7.5.2.3 Character Comparisons

ORACLE

By default, one character is greater than another if its binary value is larger.

For example, this expression is true:

vyt > 'r
Strings are compared character by character. For example, this expression is true:

"Kathy® > "Kathryn®

If you set the initialization parameter NLS_COMP=ANSI, string comparisons use the
collating sequence identified by the NLS_SORT initialization parameter.

A collating sequence is an internal ordering of the character set in which a range

of numeric codes represents the individual characters. One character value is greater
than another if its internal numeric value is larger. Each language might have different
rules about where such characters occur in the collating sequence. For example, an
accented letter might be sorted differently depending on the database character set,
even though the binary value is the same in each case.

By changing the value of the NLS_SORT parameter, you can perform comparisons that
are case-insensitive and accent-insensitive.

A case-insensitive comparison treats corresponding uppercase and lowercase
letters as the same letter. For example, these expressions are true:

2t o= AT

"Alpha® = "ALPHA"

To make comparisons case-insensitive, append _ClI to the value of the NLS_SORT
parameter (for example, BINARY_CI or XGERMAN_CI).

An accent-insensitive comparison is case-insensitive, and also treats letters that
differ only in accents or punctuation characters as the same letter. For example, these
expressions are true:

3-39

Chapter 3
Expressions

“Cooperate® = "Co-Operate”
“Co-Operate® = "colperate”

To make comparisons both case-insensitive and accent-insensitive, append _Al to the
value of the NLS_SORT parameter (for example, BINARY_Al or FRENCH_M_Al).

Semantic differences between the CHAR and VARCHAR2 data types affect character
comparisons.

For more information, see "Value Comparisons".

3.7.5.2.4 Date Comparisons
One date is greater than another if it is more recent.

For example, this expression is true:

"01-JAN-91" > "31-DEC-90*"

3.7.5.3 LIKE Operator

The LIKE operator compares a character, string, or CLOB value to a pattern and returns
TRUE if the value matches the pattern and FALSE if it does not.

Case is significant.

The pattern can include the two wildcard characters underscore (_) and percent sign
(%).

Underscore matches exactly one character.
Percent sign (%) matches zero or more characters.

To search for the percent sign or underscore, define an escape character and put it
before the percent sign or underscore.

" See Also:
e Oracle Database SQL Language Reference for more information about
LIKE

e Oracle Database SQL Language Reference for information about
REGEXP_LIKE, which is similar to LIKE

Example 3-44 LIKE Operator in Expression

The string "Johnson® matches the pattern *J%s_n* but not *J%S_N", as this example
shows.

DECLARE
PROCEDURE compare (
value VARCHARZ2,
pattern VARCHAR2
) IS
BEGIN
IF value LIKE pattern THEN
DBMS_OUTPUT.PUT_LINE ("TRUE");

ORACLE 3-40

Chapter 3
Expressions

ELSE
DBMS_OUTPUT.PUT_LINE ("FALSE");
END IF;
END;
BEGIN
compare("Johnson®, "J%s_n");
compare("Johnson®, "J%S_N");
END;
/

Result:

TRUE
FALSE

Example 3-45 Escape Character in Pattern

This example uses the backslash as the escape character, so that the percent sign in
the string does not act as a wildcard.

DECLARE
PROCEDURE half_off (sale_sign VARCHAR2) IS
BEGIN
IF sale_sign LIKE "50\% off!" ESCAPE "\" THEN
DBMS_OUTPUT.PUT_LINE ("TRUE™);
ELSE
DBMS_OUTPUT.PUT_LINE ("FALSE");
END IF;
END;
BEGIN
half_off("Going out of business!");
half_off("50% off!");
END;
/

Result:

FALSE
TRUE

3.7.5.4 BETWEEN Operator

The BETWEEN operator tests whether a value lies in a specified range.

The value of the expression x BETWEEN a AND b is defined to be the same as the
value of the expression (x>=a) AND (x<=b) . The expression x will only be evaluated
once.

¢ See Also:

Oracle Database SQL Language Reference for more information about
BETWEEN

ORACLE 3-41

Chapter 3
Expressions

Example 3-46 BETWEEN Operator in Expressions

This example invokes the print_boolean procedure from Example 3-34 to print the
values of expressions that include the BETWEEN operator.

BEGIN
print_boolean ("2 BETWEEN 1 AND 3", 2 BETWEEN 1 AND 3);
print_boolean ("2 BETWEEN 2 AND 3", 2 BETWEEN 2 AND 3);
print_boolean ("2 BETWEEN 1 AND 2", 2 BETWEEN 1 AND 2);
print_boolean ("2 BETWEEN 3 AND 4", 2 BETWEEN 3 AND 4);

END;

/

Result:

2 BETWEEN 1 AND 3 = TRUE

2 BETWEEN 2 AND 3 = TRUE
2 BETWEEN 1 AND 2 = TRUE
2 BETWEEN 3 AND 4 = FALSE

3.7.5.5 IN Operator

ORACLE

The IN operator tests set membership.

x IN (set) returns TRUE only if x equals a member of set .

¢ See Also:

Oracle Database SQL Language Reference for more information about IN

Example 3-47 IN Operator in Expressions

This example invokes the print_boolean procedure from Example 3-34 to print the
values of expressions that include the IN operator.

DECLARE

letter VARCHAR2(1) := "m";
BEGIN

print_boolean (

“letter IN ("*a"", **b"", ""c**)",

letter IN (fa", "b", "c")
):
print_boolean (

“letter IN ("*z°", *"m"*, "Ty**, "pt)",
letter IN ("z", "m", "y", "p")
):
END;
/

Result:

letter IN ("a®, "b", "c") = FALSE
letter IN ("z", *m", "y", "p") = TRUE

3-42

Chapter 3
Expressions

Example 3-48 IN Operator with Sets with NULL Values

This example shows what happens when set includes a NULL value. This invokes the
print_boolean procedure from Example 3-34.

DECLARE
a INTEGER; -- Initialized to NULL by default
b INTEGER := 10;
c INTEGER := 100;

BEGIN

print_boolean ("100 IN (a, b, ¢)", 100 IN (a, b, ¢));
print_boolean ("100 NOT IN (a, b, c)*, 100 NOT IN (a, b, ¢));

print_boolean ("100 IN (a, b)", 100 IN (a, b));
print_boolean ("100 NOT IN (a, b)", 100 NOT IN (a, b));

print_boolean ("a IN (a, b)", a IN (a, b));
print_boolean ("a NOT IN (a, b)", a NOT IN (a, b));
END;
/

Result:

100 IN (a, b, c) = TRUE

100 NOT IN (a, b, c) = FALSE
100 IN (a, b) = NULL

100 NOT IN (a, b) = NULL

a IN (a, b) = NULL

a NOT IN (a, b) = NULL

3.7.6 BOOLEAN Expressions

ORACLE

A BOOLEAN expression is an expression that returns a BOOLEAN value—TRUE, FALSE, or
NULL.

The simplest BOOLEAN expression is a BOOLEAN literal, constant, or variable. The
following are also BOOLEAN expressions:

NOT bool ean_expressi on
bool ean_expressi on rel ati onal _operator bool ean_expressi on
bool ean_expression { AND | OR } bool ean_expressi on

For a list of relational operators, see Table 3-5. For the complete syntax of a BOOLEAN
expression, see "boolean_expression ::=".

Typically, you use BOOLEAN expressions as conditions in control statements (explained
in PL/SQL Control Statements) and in WHERE clauses of DML statements.

You can use a BOOLEAN variable itself as a condition; you need not compare it to the
value TRUE or FALSE.

Example 3-49 Equivalent BOOLEAN Expressions
In this example, the conditions in the loops are equivalent.

DECLARE
done BOOLEAN;
BEGIN
-- These WHILE loops are equivalent

3-43

Chapter 3
Expressions

done := FALSE;
WHILE done = FALSE
LOOP
done := TRUE;
END LOOP;

done := FALSE;
WHILE NOT (done = TRUE)
LOOP
done := TRUE;
END LOOP;

done := FALSE;
WHILE NOT done

LOOP
done := TRUE;
END LOOP;
END;
/

3.7.7 CASE Expressions

Topics
* Simple CASE Expression
* Searched CASE Expression

3.7.7.1 Simple CASE Expression

ORACLE

For this explanation, assume that a simple CASE expression has this syntax:

CASE sel ector
WHEN sel ector_value_1 THEN result_1
WHEN sel ector_value_2 THEN result_2

WHEN sel ector_val ue_n THEN result_n
[ELSE

else_result]
END

The sel ect or is an expression (typically a single variable). Each sel ect or _val ue and
each resul t can be either a literal or an expression. At least one resul t must not be
the literal NULL.

The simple CASE expression returns the first resul t for which sel ect or _val ue
matches sel ect or . Remaining expressions are not evaluated. If no sel ect or _val ue
matches sel ect or, the CASE expression returns el se_resul t if it exists and NULL
otherwise.

¢ See Also:

"simple_case_expression ::=" for the complete syntax

3-44

Chapter 3
Expressions

Example 3-50 Simple CASE Expression

This example assigns the value of a simple CASE expression to the variable appraisal.
The sel ect or is grade.

DECLARE
grade CHAR(1) := "B";
appraisal VARCHAR2(20);
BEGIN
appraisal :=
CASE grade
WHEN "A® THEN "Excellent”
WHEN "B* THEN "Very Good"
WHEN "C* THEN "Good*®
WHEN "D* THEN "Fair*®
WHEN "F* THEN "Poor*
ELSE "No such grade*
END;
DBMS_OUTPUT.PUT_LINE ("Grade " || grade || " is " || appraisal);
END;
/

Result:

Grade B is Very Good

Example 3-51 Simple CASE Expression with WHEN NULL

If sel ect or has the value NULL, it cannot be matched by WHEN NULL, as this example
shows.

Instead, use a searched CASE expression with WHEN bool ean_expr essi on IS NULL, as
in Example 3-53.

DECLARE
grade CHAR(1); -- NULL by default
appraisal VARCHAR2(20);
BEGIN
appraisal :=
CASE grade
WHEN NULL THEN "No grade assigned®
WHEN "A" THEN “"Excellent”
WHEN "B" THEN "Very Good"
WHEN *C* THEN "Good"
WHEN "D* THEN "Fair"
WHEN "F* THEN "Poor*
ELSE "No such grade*
END;
DBMS_OUTPUT.PUT_LINE ("Grade " || grade || " is " || appraisal);
END;
/

Result:

Grade is No such grade

3.7.7.2 Searched CASE Expression

For this explanation, assume that a searched CASE expression has this syntax:

ORACLE 3-45

ORACLE

Chapter 3
Expressions

CASE
WHEN bool ean_expression_1 THEN result_1
WHEN bool ean_expression_2 THEN result_2

WHEN bool ean_expression_n THEN result_n
[ELSE

else_result]
END]

The searched CASE expression returns the first resul t for which bool ean_expr essi on
is TRUE. Remaining expressions are not evaluated. If no bool ean_expr essi on is TRUE,
the CASE expression returns el se_resul t if it exists and NULL otherwise.

" See Also:

"searched_case_expression ::=" for the complete syntax

Example 3-52 Searched CASE Expression

This example assigns the value of a searched CASE expression to the variable
appraisal.

DECLARE
grade CHAR(1) := "B";
appraisal VARCHAR2(120);
id NUMBER := 8429862;

attendance NUMBER := 150;
min_days CONSTANT NUMBER := 200;

FUNCTION attends_this_school (id NUMBER)
RETURN BOOLEAN 1S
BEGIN
RETURN TRUE;
END;
BEGIN
appraisal :=
CASE
WHEN attends_this_school (id) = FALSE
THEN "Student not enrolled”
WHEN grade = "F" OR attendance < min_days
THEN "Poor (poor performance or bad attendance)”
WHEN grade = "A" THEN "Excellent®
WHEN grade = "B" THEN "Very Good"
WHEN grade = "C" THEN "Good*"
WHEN grade = "D" THEN "Fair*”
ELSE “"No such grade*
END;
DBMS_OUTPUT.PUT_LINE
("Result for student * || id || " is " || appraisal);
END;
/

Result:

Result for student 8429862 is Poor (poor performance or bad attendance)

3-46

ORACLE

Chapter 3
Expressions

Example 3-53 Searched CASE Expression with WHEN ... IS NULL

This example uses a searched CASE expression to solve the problem in Example 3-51.

DECLARE

grade CHAR(1); -- NULL by default
appraisal VARCHAR2(20);

BEGIN

appraisal :=

CASE
WHEN grade IS NULL THEN "No grade assigned®

WHEN grade = "A" THEN "Excellent”
WHEN grade = "B" THEN "Very Good"
WHEN grade = *"C*" THEN "Good"
WHEN grade = D" THEN "Fair"
WHEN grade = "F" THEN "Poor*"
ELSE "No such grade*”
END;
DBMS_OUTPUT.PUT_LINE ("Grade " || grade || " is " || appraisal);
END;
/
Result:

Grade is No grade assigned

3.7.8 SQL Functions in PL/SQL Expressions

In PL/SQL expressions, you can use all SQL functions except:

Aggregate functions (such as AVG and COUNT)

Aggregate function JSON_ARRAYAGG

Aggregate function JSON_DATAGUIDE

Aggregate function JSON_MERGEPATCH

Aggregate function JSON_OBJECTAGG

JSON_TABLE

JSON_TRANSFORM

JSON condition JSON_TEXTCONTAINS

Analytic functions (such as LAG and RATIO_TO_REPORT)
Conversion function BIN_TO_NUM

Data mining functions (such as CLUSTER_ID and FEATURE_VALUE)
Encoding and decoding functions (such as DECODE and DUMP)
Model functions (such as ITERATION_NUMBER and PREVIOUS)
Object reference functions (such as REF and VALUE)

XML functions

These collation SQL operators and functions:

— COLLATE operator

— COLLATION function

3-47

Chapter 3
Expressions

— NLS_COLLATION_ID function

— NLS_COLLATION_NAME function
* These miscellaneous functions:

— CUBE_TABLE

— DATAOBJ_TO_PARTITION

— LNNVL

— NVL2

— SYS_CONNECT_BY_PATH

— SYS_TYPEID

— WIDTH_BUCKET

PL/SQL supports an overload of BITAND for which the arguments and result are
BINARY_INTEGER.

When used in a PL/SQL expression, the RAWTOHEX function accepts an argument of
data type RAW and returns a VARCHAR2 value with the hexadecimal representation of
bytes that comprise the value of the argument. Arguments of types other than RAW can
be specified only if they can be implicitly converted to RAW. This conversion is possible
for CHAR, VARCHAR2, and LONG values that are valid arguments of the HEXTORAW function,
and for LONG RAW and BLOB values of up to 16380 bytes.

3.7.9 Static Expressions

ORACLE

A static expression is an expression whose value can be determined at compile time
—that is, it does not include character comparisons, variables, or function invocations.
Static expressions are the only expressions that can appear in conditional compilation
directives.

Definition of Static Expression

* An expression is static if it is the NULL literal.
* An expression is static if it is a character, numeric, or boolean literal.
* An expression is static if it is a reference to a static constant.

* An expression is static if it is a reference to a conditional compilation variable
begun with $$.

* An expression is static if it is an operator is allowed in static expressions, if all of
its operands are static, and if the operator does not raise an exception when it is
evaluated on those operands.

Table 3-6 Operators Allowed in Static Expressions
|

Operators Operators Category

0 Expression delimiter

*k exponentiation

* 4+, - Arithmetic operators for multiplication, division,

addition or positive, subtraction or negative

=, 1=, <, <=, >=, > IS [NOT] NULL Comparison operators

3-48

ORACLE

Chapter 3
Expressions

Table 3-6 (Cont.) Operators Allowed in Static Expressions

__|
Operators Operators Category

NOT Logical operator

[NOT] LIKE, [NOT] LIKE2, [NOT] LIKE4, [NOT] Pattern matching operators
LIKEC

XOR Binary operator

This list shows functions allowed in static expressions.

* ABS

* ACOS

* ASCI

* ASCIISTR
« ASIN

e ATAN

* ATAN2

* BITAND

« CEIL

e CHR

» COMPOSE
* CONVERT
« COS

« COSH

- DECOMPOSE
e EXP

* FLOOR

* HEXTORAW
* INSTR

* INSTRB

* INSTRC

* INSTR2

* INSTR4

« IS[NOT] INFINITE
« IS[NOT] NAN

* LENGTH

* LENGTH2
* LENGTH4
* LENGTHB

3-49

ORACLE

Static expressions can be used in the following subtype declarations:

LENGTHC
LN

LOG
LOWER
LPAD

LTRIM

MOD

NVL
POWER
RAWTOHEX
REM
REMAINDER
REPLACE
ROUND
RPAD
RTRIM

SIGN

SIN

SINH

SQRT
SUBSTR
SUBSTR2
SUBSTR4
SUBSTRB
SUBSTRC
TAN

TANH
TO_BINARY_DOUBLE
TO_BINARY_FLOAT
TO_CHAR
TO_NUMBER
TRIM
TRUNC
UPPER

Chapter 3
Expressions

Length of string types (VARCHAR2, NCHAR, CHAR, NVARCHAR2, RAW, and the ANSI

equivalents)

3-50

Chapter 3
Expressions

Scale and precision of NUMBER types and subtypes such as FLOAT
Interval type precision (year, month ,second)

Time and Timestamp precision

VARRAY bounds

Bounds of ranges in type declarations

In each case, the resulting type of the static expression must be the same as the
declared item subtype and must be in the correct range for the context.

Topics

PLS_INTEGER Static Expressions
BOOLEAN Static Expressions
VARCHAR?2 Static Expressions

Static Constants

¢ See Also:

"Expressions” for general information about expressions

3.7.9.1 PLS_INTEGER Static Expressions

PLS_INTEGER static expressions are:

PLS_INTEGER literals

For information about literals, see "Literals".

PLS_INTEGER static constants

For information about static constants, see "Static Constants".
NULL

¢ See Also:

"PLS_INTEGER and BINARY_INTEGER Data Types" for information about
the PLS_INTEGER data type

3.7.9.2 BOOLEAN Static Expressions

BOOLEAN static expressions are:

ORACLE

BOOLEAN literals (TRUE, FALSE, or NULL)
BOOLEAN static constants
For information about static constants, see "Static Constants".

Where x and y are PLS_INTEGER static expressions:

3-51

Chapter 3
Expressions

- x>y
— X<y
- x>=y
— x<=y
— x=y
- X<y

For information about PLS_INTEGER static expressions, see "PLS_INTEGER Static
Expressions".

Where x and y are BOOLEAN expressions:
— NOTy

— XANDy

— XORy

— x>y

- x>=y

— x=y

- X<=y

— X <> y

For information about BOOLEAN expressions, see "BOOLEAN Expressions".
Where x is a static expression:

— x ISNULL

— x ISNOT NULL

For information about static expressions, see "Static Expressions".

" See Also:
"BOOLEAN Data Type" for information about the BOOLEAN data type

3.7.9.3 VARCHAR? Static Expressions

VARCHAR?2 static expressions are:

ORACLE

String literal with maximum size of 32,767 bytes

For information about literals, see "Literals".

NULL

TO_CHAR(X), where x is a PLS_INTEGER static expression

For information about the TO_CHAR function, see Oracle Database SQL Language
Reference.

TO_CHAR(X, f, n) where x is a PLS_INTEGER static expression and f and n are
VARCHAR? static expressions

3-52

Chapter 3
Expressions

For information about the TO_CHAR function, see Oracle Database SQL Language
Reference.

e X || ywhere x and y are VARCHAR2 or PLS_INTEGER static expressions

For information about PLS_INTEGER static expressions, see "PLS_INTEGER Static
Expressions".

¢ See Also:

"CHAR and VARCHAR?2 Variables" for information about the VARCHAR2 data
type

3.7.9.4 Static Constants

A static constant is declared in a package specification with this syntax:

constant _name CONSTANT data_type := static_expression;

The type of st ati c_expressi on must be the same as dat a_t ype (either BOOLEAN or
PLS_INTEGER).

The static constant must always be referenced as package _name.const ant _narne, even
in the body of the package_nane package.

If you use const ant _name in the BOOLEAN expression in a conditional compilation
directive in a PL/SQL unit, then the PL/SQL unit depends on the package
package_nare. If you alter the package specification, the dependent PL/SQL unit
might become invalid and need recompilation (for information about the invalidation
of dependent objects, see Oracle Database Development Guide).

If you use a package with static constants to control conditional compilation in multiple
PL/SQL units, Oracle recommends that you create only the package specification, and
dedicate it exclusively to controlling conditional compilation. This practice minimizes
invalidations caused by altering the package specification.

To control conditional compilation in a single PL/SQL unit, you can set flags in
the PLSQL_CCFLAGS compilation parameter. For information about this parameter, see
"Assigning Values to Inquiry Directives" and Oracle Database Reference.

¢ See Also:

e "Declaring Constants" for general information about declaring constants
e PL/SQL Packages for more information about packages

e Oracle Database Development Guide for more information about
schema object dependencies

Example 3-54 Static Constants

In this example, the package my_debug defines the static constants debug and trace to
control debugging and tracing in multiple PL/SQL units. The procedure my_procl uses

ORACLE 3-53

Chapter 3
Error-Reporting Functions

only debug, and the procedure my_proc2 uses only trace, but both procedures depend
on the package. However, the recompiled code might not be different. For example, if
you only change the value of debug to FALSE and then recompile the two procedures,
the compiled code for my_procl changes, but the compiled code for my_proc2 does
not.

CREATE PACKAGE my_debug 1S
debug CONSTANT BOOLEAN := TRUE;
trace CONSTANT BOOLEAN := TRUE;
END my_debug;
/

CREATE PROCEDURE my_procl AUTHID DEFINER IS
BEGIN
$IF my_debug.debug $THEN
DBMS_OUTPUT .put_line("Debugging ON");
$ELSE
DBMS_OUTPUT.put_line("Debugging OFF");
$END
END my_procl;
/

CREATE PROCEDURE my_proc2 AUTHID DEFINER IS
BEGIN
$IF my_debug.trace $THEN
DBMS_OUTPUT.put_line("Tracing ON");
$ELSE
DBMS_OUTPUT.put_line("Tracing OFF");
$END
END my_proc2;
/

3.8 Error-Reporting Functions

PL/SQL has two error-reporting functions, SQLCODE and SQLERRM, for use in PL/SQL
exception-handling code.

For their descriptions, see "SQLCODE Function" and "SQLERRM Function".

You cannot use the SQLCODE and SQLERRM functions in SQL statements.

3.9 Conditional Compilation

Conditional compilation lets you customize the functionality of a PL/SQL application
without removing source text.

For example, you can:

« Use new features with the latest database release and disable them when running
the application in an older database release.

» Activate debugging or tracing statements in the development environment and
hide them when running the application at a production site.

Topics
e How Conditional Compilation Works

e Conditional Compilation Examples

ORACLE 3-54

Chapter 3
Conditional Compilation

» Retrieving and Printing Post-Processed Source Text

» Conditional Compilation Directive Restrictions

3.9.1 How Conditional Compilation Works

Conditional compilation uses selection directives, which are similar to 1F statements,
to select source text for compilation.

The condition in a selection directive usually includes an inquiry directive. Error
directives raise user-defined errors. All conditional compilation directives are built from
preprocessor control tokens and PL/SQL text.

Topics

* Preprocessor Control Tokens

* Selection Directives

» Error Directives

e Inquiry Directives

« DBMS_DB_VERSION Package

See Also:

"Static Expressions"

3.9.1.1 Preprocessor Control Tokens

ORACLE

A preprocessor control token identifies code that is processed before the PL/SQL unit
is compiled.

Syntax
$pl sql _identifier
There cannot be space between $ and pl sql _i dentifier.

The character $ can also appear inside pl sgl _i denti fi er, but it has no special
meaning there.

These preprocessor control tokens are reserved:

+ $IF

* $THEN

« $ELSE

o S$ELSIF
* $ERROR

For information about pl sql _i denti fi er, see "ldentifiers".

3-55

Chapter 3
Conditional Compilation

3.9.1.2 Selection Directives

A selection directive selects source text to compile.

Syntax

$IF bool ean_stati c_expressi on $THEN
text

[$ELSIF bool ean_static_expression $THEN
text

1

[$ELSE
t ext

$END
]

For the syntax of bool ean_st ati c_expressi on, see "BOOLEAN Static Expressions".
The t ext can be anything, but typically, it is either a statement (see "statement ::=") or
an error directive (explained in "Error Directives").

The selection directive evaluates the BOOLEAN static expressions in the order that they
appear until either one expression has the value TRUE or the list of expressions is
exhausted. If one expression has the value TRUE, its text is compiled, the remaining
expressions are not evaluated, and their text is not analyzed. If no expression has the
value TRUE, then if $ELSE is present, its text is compiled; otherwise, no text is compiled.

For examples of selection directives, see "Conditional Compilation Examples".

¢ See Also:

"Conditional Selection Statements" for information about the IF statement,
which has the same logic as the selection directive

3.9.1.3 Error Directives

ORACLE

An error directive produces a user-defined error message during compilation.

Syntax

$ERROR varchar2_stati c_expressi on $END

It produces this compile-time error message, where st ri ng is the value of
varchar2_static_expression:

PLS-00179: $ERROR: string

For the syntax of var char 2_st ati c_expressi on, see "VARCHAR2 Static
Expressions".

For an example of an error directive, see Example 3-58.

3-56

Chapter 3
Conditional Compilation

3.9.1.4 Inquiry Directives

An inquiry directive provides information about the compilation environment.

Syntax

$$nanme

For information about nane, which is an unquoted PL/SQL identifier, see "ldentifiers".

An inquiry directive typically appears in the bool ean_st ati c_expr essi on of a selection
directive, but it can appear anywhere that a variable or literal of its type can appear.
Moreover, it can appear where regular PL/SQL allows only a literal (not a variable)—
for example, to specify the size of a VARCHAR2 variable.

Topics

* Predefined Inquiry Directives

* Assigning Values to Inquiry Directives

* Unresolvable Inquiry Directives

3.9.1.4.1 Predefined Inquiry Directives

ORACLE

The predefined inquiry directives are:
° SSPLSQL_LINE

A PLS_INTEGER literal whose value is the number of the source line on which the
directive appears in the current PL/SQL unit. An example of $$PLSQL_LINE in a
selection directive is:

$IF $$PLSQL LINE = 32 $THEN ...
< $$PLSQL_UNIT

A VARCHAR?2 literal that contains the name of the current PL/SQL unit. If the current
PL/SQL unit is an anonymous block, then $$PLSQL_UNIT contains a NULL value.

o $$PLSQL_UNIT_OWNER

A VARCHAR? literal that contains the name of the owner of the current PL/SQL
unit. If the current PL/SQL unit is an anonymous block, then $$PLSQL_UNIT_OWNER
contains a NULL value.

o $SPLSQL_UNIT_TYPE

A VARCHAR? literal that contains the type of the current PL/SQL unit—ANONYMOUS
BLOCK, FUNCTION, PACKAGE, PACKAGE BODY, PROCEDURE, TRIGGER, TYPE, or TYPE BODY.
Inside an anonymous block or non-DML trigger, $$PLSQL_UNIT_TYPE has the value
ANONYMOUS BLOCK.

e $$pl sgl _conpil ation_paranet er

The name pl sql _conpi | ati on_par amet er is a PL/SQL compilation parameter (for
example, PLSCOPE_SETTINGS). For descriptions of these parameters, see Table 2-2.

Because a selection directive needs a BOOLEAN static expression, you cannot
use $$PLSQL_UNIT, $SPLSQL_UNIT_OWNER, or $$PLSQL_UNIT_TYPE in a VARCHAR2
comparison such as:

3-57

Chapter 3
Conditional Compilation

$IF $SPLSQL_UNIT = "AWARD_BONUS®" $THEN ...
$IF $SPLSQL_UNIT_OWNER IS HR $THEN ...
$IF $SPLSQL_UNIT_TYPE IS FUNCTION $THEN ...

However, you can compare the preceding directives to NULL. For example:

$IF $$PLSQL_UNIT IS NULL $THEN ...
$IF $$PLSQL_UNIT_OWNER IS NOT NULL $THEN ...
$IF $$PLSQL_UNIT_TYPE IS NULL $THEN ...

Example 3-55 Predefined Inquiry Directives

In this example, a SQL*Plus script, uses several predefined inquiry directives as
PLS_INTEGER and VARCHAR? literals to show how their values are assigned.

SQL> CREATE OR REPLACE PROCEDURE p
2 AUTHID DEFINER 1S
3 i PLS_INTEGER;
4 BEGIN
DBMS_OUTPUT.PUT_LINE("Inside p*);
i = $SPLSQL_LINE;
DBMS_OUTPUT.PUT_LINEC"i = * || i);
DBMS_OUTPUT.PUT_LINE("$$PLSQL_LINE = ™ || $$PLSQL_LINE);
9 DBMS_OUTPUT.PUT_LINE("$$PLSQL_UNIT = ™ || $$PLSQL_UNIT);
10 DBMS_OUTPUT.PUT LINE("$$PLSQL_UNIT OWNER = * || $$PLSQL_UNIT_OWNER);
11 DBMS_OUTPUT.PUT LINE("$$PLSQL_UNIT_TYPE = " || $$PLSQL_UNIT_TYPE);
12 END;
13 7/

0 ~NO O

Procedure created.

SQL> BEGIN
p;
DBMS_OUTPUT.PUT_LINE("Outside p*);
DBMS_OUTPUT.PUT_LINE("$$PLSQL_LINE = " || $$PLSQL_LINE);
DBMS_OUTPUT.PUT_LINE("$$PLSQL_UNIT = * || $$PLSQL_UNIT);
DBMS_OUTPUT.PUT_LINE("$$PLSQL_UNIT OWNER = * || $SPLSQL_UNIT_OWNER);
DBMS_OUTPUT.PUT_LINE("$$PLSQL_UNIT TYPE = * || $$PLSQL_UNIT TYPE);
END;
/

O©oO~NOOOThA, WN

Result:

Inside p

i=6

$SPLSQL_LINE = 8

$SPLSQL_UNIT = P
$SPLSQL_UNIT_OWNER = HR
$$PLSQL_UNIT_TYPE = PROCEDURE
Outside p
$SPLSQL_LINE
$SPLSQL_UNIT
$SPLSQL_UNIT_OWNER =
$$PLSQL_UNIT_TYPE = ANONYMOUS BLOCK

4

PL/SQL procedure successfully completed.

Example 3-56 Displaying Values of PL/ISQL Compilation Parameters

This example displays the current values of PL/SQL the compilation parameters.

ORACLE 3-58

Chapter 3
Conditional Compilation

< Note:

In the SQL*Plus environment, you can display the current values of
initialization parameters, including the PL/SQL compilation parameters, with
the command SHOW PARAMETERS. For more information about the SHOW
command and its PARAMETERS option, see SQL*Plus User's Guide and
Reference.

BEGIN
DBMS_OUTPUT.PUT_LINE(*$$PLSCOPE_SETTINGS = *
DBMS_OUTPUT.PUT_LINE("$$PLSQL_CCFLAGS = *
DBMS_OUTPUT.PUT_LINE(*$$PLSQL_CODE_TYPE = *
DBMS_OUTPUT.PUT_LINE("$$PLSQL_OPTIMIZE_LEVEL = *
DBMS_OUTPUT. PUT_LINE("$$PLSQL_WARNINGS = *
DBMS_OUTPUT.PUT_LINE(*$$NLS_LENGTH_SEMANTICS = *

END;

/

$$PLSCOPE_SETTINGS)
$$PLSQL_CCFLAGS);
$$PLSQL_CODE_TYPE);
$$PLSQL_OPTIMIZE_LEVEL);
$$PLSQL_WARNINGS) ;
$SNLS_LENGTH_SEMANTICS);

Result:

$$PLSCOPE_SETTINGS = IDENTIFIERS:NONE
$$PLSQL_CCFLAGS =

$$PLSQL_CODE_TYPE = INTERPRETED
$$PLSQL_OPTIMIZE_LEVEL = 2
$$PLSQL_WARNINGS = ENABLE:ALL
$SNLS_LENGTH_SEMANTICS = BYTE

3.9.1.4.2 Assigning Values to Inquiry Directives

You can assign values to inquiry directives with the PLSQL_CCFLAGS compilation
parameter.

For example:

ALTER SESSION SET PLSQL_CCFLAGS =
"nanel:val uel, nanme2:val ue2, ... nanen:val uen®

Each val ue must be either a BOOLEAN literal (TRUE, FALSE, or NULL) or PLS_INTEGER
literal. The data type of val ue determines the data type of nane.

The same nane can appear multiple times, with values of the same or different data
types. Later assignments override earlier assignments. For example, this command
sets the value of $$flag to 5 and its data type to PLS_INTEGER:

ALTER SESSION SET PLSQL_CCFLAGS = "flag:TRUE, flag:5”

Oracle recommends against using PLSQL_CCFLAGS to assign values to predefined
inquiry directives, including compilation parameters. To assign values to compilation
parameters, Oracle recommends using the ALTER SESSION statement.

For more information about the ALTER SESSION statement, see Oracle Database SQL
Language Reference.

ORACLE 3-59

Chapter 3
Conditional Compilation

< Note:

The compile-time value of PLSQL_CCFLAGS is stored with the metadata of
stored PL/SQL units, which means that you can reuse the value when you
explicitly recompile the units. For more information, see "PL/SQL Units and
Compilation Parameters".

For more information about PLSQL_CCFLAGS, see Oracle Database Reference.
Example 3-57 PLSQL_CCFLAGS Assigns Value to Itself

This example uses PLSQL_CCFLAGS to assign a value to the user-defined inquiry
directive $$Some_Flag and (though not recommended) to itself. Because later
assignments override earlier assignments, the resulting value of $$Some_Flag is 2 and
the resulting value of PLSQL_CCFLAGS is the value that it assigns to itself (99), not the
value that the ALTER SESSION statement assigns to it (*Some_Flag:1, Some Flag:2,
PLSQL_CCFlags:99").

ALTER SESSION SET

PLSQL_CCFlags = "Some_Flag:1, Some_Flag:2, PLSQL_CCFlags:99"

/

BEGIN
DBMS_OUTPUT.PUT_LINE($$Some_Flag);
DBMS_OUTPUT.PUT_LINE($$PLSQL_CCFlags);

END;

/

Result:

2
99

3.9.1.4.3 Unresolvable Inquiry Directives

If the source text is not wrapped, PL/SQL issues a warning if the value of an inquiry
directive cannot be determined.

If an inquiry directive ($$nane) cannot be resolved, and the source text is not wrapped,
then PL/SQL issues the warning PLW-6003 and substitutes NULL for the value of the
unresolved inquiry directive. If the source text is wrapped, the warning message is
disabled, so that the unresolved inquiry directive is not revealed.

For information about wrapping PL/SQL source text, see PL/SQL Source Text
Wrapping.

3.9.1.5 DBMS_DB_VERSION Package

ORACLE

The DBMS_DB_VERSION package specifies the Oracle version numbers and other
information useful for simple conditional compilation selections based on Oracle
versions.

The DBMS_DB_VERSION package provides these static constants:

e The PLS_INTEGER constant VERSION identifies the current Oracle Database version.

3-60

Chapter 3
Conditional Compilation

e The PLS_INTEGER constant RELEASE identifies the current Oracle Database release
number.

e Each BOOLEAN constant of the form VER_LE_v has the value TRUE if the database
version is less than or equal to v; otherwise, it has the value FALSE.

» Each BOOLEAN constant of the form VER_LE v_r has the value TRUE if the database
version is less than or equal to v and release is less than or equal to r ; otherwise,
it has the value FALSE.

For more information about the DBMS_DB_VERSION package, see Oracle Database
PL/SQL Packages and Types Reference.

3.9.2 Conditional Compilation Examples

ORACLE

Examples of conditional compilation using selection and user-defined inquiry
directives.

Example 3-58 Code for Checking Database Version

This example generates an error message if the database version and release is less
than Oracle Database 109 release 2; otherwise, it displays a message saying that the
version and release are supported and uses a COMMIT statement that became available
at Oracle Database 10g release 2.

BEGIN
$I1F DBMS_DB_VERSION.VER_LE_10 1 $THEN -- selection directive begins
$ERROR "unsupported database release”™ $END -- error directive
$ELSE

DBMS_OUTPUT.PUT_LINE (
*Release * || DBMS_DB_VERSION.VERSION |] *." ||
DBMS_DB_VERSION.RELEASE || " is supported."

);
-- This COMMIT syntax is newly supported in 10.2:

COMMIT WRITE IMMEDIATE NOWAIT;
$END -- selection directive ends
END;
/

Result:

Release 12.1 is supported.

Example 3-59 Compiling Different Code for Different Database Versions

This example sets the values of the user-defined inquiry directives $$my_debug
and $$my_tracing and then uses conditional compilation:

e In the specification of package my_pkg, to determine the base type of the subtype
my_real (BINARY_DOUBLE is available only for Oracle Database versions 10g and
later.)

* Inthe body of package my pkg, to compute the values of my_pi and my_e
differently for different database versions

e Inthe procedure circle_area, to compile some code only if the inquiry
directive $$my_debug has the value TRUE.

ALTER SESSION SET PLSQL_CCFLAGS = "my debug:FALSE, my tracing:FALSE";

3-61

Chapter 3
Conditional Compilation

CREATE OR REPLACE PACKAGE my pkg AUTHID DEFINER AS
SUBTYPE my_real 1S
$I1F DBMS_DB_VERSION.VERSION < 10 $THEN
NUMBER;
$ELSE
BINARY_DOUBLE;
$END

my_pi my_real;
my_e my_real;
END my_pkg;
/

CREATE OR REPLACE PACKAGE BODY my pkg AS
BEGIN
$IF DBMS_DB_VERSION.VERSION < 10 $THEN

my_pi := 3.14159265358979323846264338327950288420;

my_e := 2.71828182845904523536028747135266249775;
SELSE

my_pi := 3.14159265358979323846264338327950288420d;

my_e 1= 2.71828182845904523536028747135266249775d;
$END

END my_pkg;
/

CREATE OR REPLACE PROCEDURE circle_area(radius my_pkg.my_real) AUTHID DEFINER IS

my_area my_pkg.-my_real;
my_data_type VARCHAR2(30);
BEGIN

my_area := my_pkg.my _pi * (radius**2);

DBMS_OUTPUT.PUT_LINE
("Radius: " || TO_CHAR(radius) || " Area: " || TO_CHAR(my_area));

$IF $$my_debug $THEN
SELECT DATA_TYPE INTO my_data_type
FROM USER_ARGUMENTS
WHERE OBJECT_NAME = “CIRCLE_AREA*
AND ARGUMENT_NAME = “RADIUS";

DBMS_OUTPUT.PUT_LINE
("Data type of the RADIUS argument is: " || my_data_type);
$END
END;
/

CALL DBMS_PREPROCESSOR.PRINT_POST_PROCESSED_SOURCE
("PACKAGE", "HR", "MY_PKG");

Result:

PACKAGE my_pkg AUTHID DEFINER AS
SUBTYPE my_real 1S
BINARY_DOUBLE;

my_pi my_real;

my_e my_real;

END my_pkg;

Call completed.

ORACLE 3-62

Chapter 3
Conditional Compilation

3.9.3 Retrieving and Printing Post-Processed Source Text

The DBMS_PREPROCESSOR package provides subprograms that retrieve and print the
source text of a PL/SQL unit in its post-processed form.

For information about the DBMS_PREPROCESSOR package, see Oracle Database PL/SQL
Packages and Types Reference.

Example 3-60 Displaying Post-Processed Source Textsource text

This example invokes the procedure
DBMS_PREPROCESSOR.PRINT_POST_PROCESSED_SOURCE to print the post-processed form
of my_pkg (from "Example 3-59"). Lines of code in "Example 3-59" that are not included
in the post-processed text appear as blank lines.

CALL DBMS_PREPROCESSOR.PRINT POST_PROCESSED_SOURCE (
"PACKAGE", "HR", "MY_PKG"
);

Result:

PACKAGE my pkg AUTHID DEFINERs AS
SUBTYPE my_real 1S
BINARY_DOUBLE;

my_pi my_real;

my_e my_real;

END my_pkg;

3.9.4 Conditional Compilation Directive Restrictions

ORACLE

Conditional compilation directives are subject to these semantic restrictions.

A conditional compilation directive cannot appear in the specification of a schema-
level user-defined type (created with the "CREATE TYPE Statement"). This type
specification specifies the attribute structure of the type, which determines the attribute
structure of dependent types and the column structure of dependent tables.

Caution:

Using a conditional compilation directive to change the attribute structure of
a type can cause dependent objects to "go out of sync” or dependent tables
to become inaccessible. Oracle recommends that you change the attribute
structure of a type only with the "ALTER TYPE Statement". The ALTER TYPE
statement propagates changes to dependent objects.

If a conditional compilation directive is used in a schema-level type specification, the
compiler raises the error PLS-00180: preprocessor directives are not supported
in this context.

As all conditional compiler constructs are processed by the PL/SQL preprocessor, the
SQL Parser imposes the following restrictions on the location of the first conditional
compilation directive in a stored PL/SQL unit or anonymous block:

3-63

ORACLE

Chapter 3
Conditional Compilation

* In a package specification, a package body, a type body, a schema-level function
and in a schema-level procedure, at least one nonwhitespace PL/SQL token
must appear after the identifier of the unit name before a conditional compilation
directive is valid.

Note:

— The PL/SQL comments, "--" or "/*", are counted as whitespace
tokens.

— Ifthe token is invalid in PL/SQL, then a PLS-00103 error is issued.
But if a conditional compilation directive is used in violation of this
rule, then an ORA error is produced.

Example 3-61 and Example 3-62, show that the first conditional compilation
directive appears after the first PL/SQL token that follows the identifier of the unit
being defined.

e In atrigger or an anonymous block, the first conditional compilation directive
cannot appear before the keyword DECLARE or BEGIN, whichever comes first.

The SQL parser also imposes this restriction: If an anonymous block uses a
placeholder, the placeholder cannot appear in a conditional compilation directive. For
example:

BEGIN
:n = 1; -- valid use of placeholder
$IF ... $THEN
:n = 1; -- invalid use of placeholder
$END

Example 3-61 Using Conditional Compilation Directive in the Definition of a
Package Specification

This example shows the placement of the first conditional compilation directive after
an AUTHID clause, but before the keyword 1S, in the definition of the package
specification.

CREATE OR REPLACE PACKAGE cc_pkg
AUTHID DEFINER
$IF $SXFLAG $THEN ACCESSIBLE BY(pl_pkg) $END

IS

i NUMBER := 10;

trace CONSTANT BOOLEAN := TRUE;
END cc_pkg;
Result:

Package created.

Example 3-62 Using Conditional Compilation Directive in the Formal Parameter
List of a Subprogram

This example shows the placement of the first conditional compilation directive after
the left parenthesis, in the formal parameter list of a PL/SQL procedure definition.

3-64

Chapter 3
Conditional Compilation

CREATE OR REPLACE PROCEDURE my proc (
$IF $$xxx $THEN i IN PLS_INTEGER $ELSE i IN INTEGER $END
) IS
BEGIN
NULL;
END my_proc;

Result:

Procedure created.

ORACLE 3-65

PL/SQL Data Types

ORACLE

Every PL/SQL constant, variable, parameter, and function return value has a data
type that determines its storage format and its valid values and operations.

This chapter explains scalar data types, which store values with no internal
components.

A scalar data type can have subtypes. A subtype is a data type that is a subset of

another data type, which is its base type. A subtype has the same valid operations as

its base type. A data type and its subtypes comprise a data type family.

PL/SQL predefines many types and subtypes in the package STANDARD and lets you
define your own subtypes.

The PL/SQL scalar data types are:

The SQL data types
BOOLEAN

PLS_INTEGER
BINARY_INTEGER

REF CURSOR
User-defined subtypes

Topics

SQL Data Types

BOOLEAN Data Type

PLS_INTEGER and BINARY_INTEGER Data Types
SIMPLE_INTEGER Subtype of PLS_INTEGER
User-Defined PL/SQL Subtypes

¢ See Also:

"PL/SQL Collections and Records" for information about composite
data types

e "Cursor Variables" for information about REF CURSOR

e "CREATE TYPE Statement" for information about creating schema-level
user-defined data types

e "PL/SQL Predefined Data Types" for the predefined PL/SQL data types
and subtypes, grouped by data type family

4-1

Chapter 4
SQL Data Types

4.1 SQL Data Types

The PL/SQL data types include the SQL data types.

For information about the SQL data types, see Oracle Database SQL Language
Reference—all information there about data types and subtypes, data type
comparison rules, data conversion, literals, and format models applies to both SQL
and PL/SQL, except as noted here:

« Different Maximum Sizes

e Additional PL/SQL Constants for BINARY_FLOAT and BINARY_DOUBLE

« Additional PL/SQL Subtypes of BINARY_ _FLOAT and BINARY DOUBLE
Unlike SQL, PL/SQL lets you declare variables, to which the following topics apply:
* CHAR and VARCHAR? Variables

* LONG and LONG RAW Variables

* ROWID and UROWID Variables

4.1.1 Different Maximum Sizes

The SQL data types listed in Table 4-1 have different maximum sizes in PL/SQL and
SQL.

Table 4-1 Data Types with Different Maximum Sizes in PLISQL and SQL

Data Type Maximum Size in PLISQL Maximum Size in SQL

CHAR? 32,767 bytes 2,000 bytes

NCHAR1 32,767 bytes 2,000 bytes

RAW! 32,767 bytes 2,000 bytes?

VARCHAR2! 32,767 bytes 4,000 bytes?

NVARCHAR21 32,767 bytes 4,000 bytes?

LONG3 32,760 bytes 2 gigabytes (GB) - 1

LONG RAW3 32,760 bytes 2 GB

BLOB 128 terabytes (TB) (4 GB - 1) *dat abase_bl ock_si ze
CLOB 128 TB (4 GB - 1) *dat abase_bl ock_si ze
NCLOB 128 TB (4 GB - 1) *dat abase_bl ock_si ze

1 When specifying the maximum size of a value of this data type in PL/SQL, use an integer literal (not a
constant or variable) whose value is in the range from 1 through 32,767.
2 To eliminate this size difference, follow the instructions in Oracle Database SQL Language Reference.

3 Supported only for backward compatibility with existing applications.

ORACLE 4-2

Chapter 4
SQL Data Types

4.1.2 Additional PL/SQL Constants for BINARY _FLOAT and
BINARY DOUBLE

The SQL data types BINARY_FLOAT and BINARY_DOUBLE represent single-precision and
double-precision IEEE 754-format floating-point numbers, respectively.

BINARY_FLOAT and BINARY_DOUBLE computations do not raise exceptions, so you must
check the values that they produce for conditions such as overflow and underflow by
comparing them to predefined constants (for examples, see Oracle Database SQL
Language Reference). PL/ISQL has more of these constants than SQL does.

Table 4-2 lists and describes the predefined PL/SQL constants for BINARY_FLOAT and
BINARY_DOUBLE, and identifies those that SQL also defines.

Table 4-2 Predefined PL/ISQL BINARY_FLOAT and BINARY_DOUBLE Constants
|

Constant Description

BINARY_FLOAT_NAN (*) BINARY_FLOAT value for which the condition 1S NAN
(not a number) is true

BINARY_FLOAT _INFINITY (*) Single-precision positive infinity

BINARY_FLOAT_MAX_NORMAL Maximum normal BINARY_FLOAT value

BINARY_FLOAT_MIN_NORMAL Minimum normal BINARY_FLOAT value

BINARY_FLOAT_MAX_SUBNORMAL Maximum subnormal BINARY _FLOAT value
BINARY_FLOAT_MIN_SUBNORMAL Minimum subnormal BINARY_FLOAT value

BINARY_DOUBLE_NAN (*) BINARY_DOUBLE value for which the condition 1S NAN
(not a number) is true

BINARY_DOUBLE_INFINITY (*) Double-precision positive infinity

BINARY_DOUBLE_MAX_NORMAL Maximum normal BINARY_DOUBLE value

BINARY_DOUBLE_MIN_NORMAL Minimum normal BINARY_DOUBLE value

BINARY_DOUBLE_MAX_SUBNORMAL Maximum subnormal BINARY_DOUBLE value
BINARY_DOUBLE_MIN_SUBNORMAL Minimum subnormal BINARY_DOUBLE value

(*) SQL also predefines this constant.

4.1.3 Additional PL/SQL Subtypes of BINARY FLOAT and
BINARY DOUBLE

ORACLE

PL/SQL predefines these subtypes:
e SIMPLE_FLOAT, a subtype of SQL data type BINARY_FLOAT
e SIMPLE_DOUBLE, a subtype of SQL data type BINARY_DOUBLE

Each subtype has the same range as its base type and has a NOT NULL constraint
(explained in "NOT NULL Constraint").

If you know that a variable will never have the value NULL, declare it as
SIMPLE_FLOAT or SIMPLE_DOUBLE, rather than BINARY_FLOAT or BINARY_DOUBLE. Without
the overhead of checking for nullness, the subtypes provide significantly better

4-3

Chapter 4
SQL Data Types

performance than their base types. The performance improvement is greater with
PLSQL_CODE_TYPE="NATIVE" than with PLSQL_CODE_TYPE="INTERPRETED" (for more
information, see "Use Data Types that Use Hardware Arithmetic").

4.1.4 CHAR and VARCHAR?Z Variables

Topics

* Assigning or Inserting Too-Long Values

» Declaring Variables for Multibyte Characters

- Differences Between CHAR and VARCHAR?2 Data Types

4.1.4.1 Assigning or Inserting Too-Long Values

ORACLE

If the value that you assign to a character variable is longer than the maximum size of
the variable, an error occurs. For example:

DECLARE

¢ VARCHAR2(3 CHAR);
BEGIN

c := "abc *;
END;
/

Result:

DECLARE

*
ERROR at line 1:

ORA-06502: PL/SQL: numeric or value error: character string buffer too small
ORA-06512: at line 4

Similarly, if you insert a character variable into a column, and the value of the variable
is longer than the defined width of the column, an error occurs. For example:

DROP TABLE t;
CREATE TABLE t (c CHAR(3 CHAR));

DECLARE

s VARCHAR2(5 CHAR) := "abc *;
BEGIN

INSERT INTO t(c) VALUES(S);
END;
/

Result:

BEGIN

*

ERROR at line 1:
ORA-12899: value too large for column "HR"._."T"."C" (actual: 5, maximum: 3)
ORA-06512: at line 4

To strip trailing blanks from a character value before assigning it to a variable or
inserting it into a column, use the RTRIM function, explained in Oracle Database SQL
Language Reference. For example:

4-4

Chapter 4
SQL Data Types

DECLARE
¢ VARCHAR2(3 CHAR);
BEGIN
¢ := RTRIM("abc *);
INSERT INTO t(c) VALUES(RTRIM("abc *));
END;
/

Result:

PL/SQL procedure successfully completed.

4.1.4.2 Declaring Variables for Multibyte Characters

The maximum size of a CHAR or VARCHARZ variable is 32,767 bytes, whether you
specify the maximum size in characters or bytes. The maximum number of characters
in the variable depends on the character set type and sometimes on the characters

themselves:
Character Set Type Maximum Number of Characters
Single-byte character set 32,767

n-byte fixed-width multibyte character FLOOR(32,767/n)
set (for example, AL16UTF16)

n-byte variable-width multibyte Depends on characters themselves—can be anything
character set with character widths ~ from 32,767 (for a string containing only 1-byte
between 1 and n bytes (for example, characters) through FLOOR(32,767/n) (for a string
JA16SJIS or AL32UTF8) containing only n-byte characters).

When declaring a CHAR or VARCHARZ2 variable, to ensure that it can always hold n
characters in any multibyte character set, declare its length in characters—that is,
CHAR(n CHAR) or VARCHAR2(n CHAR), where n does not exceed FLOOR(32767/4) = 8191.

" See Also:

Oracle Database Globalization Support Guide for information about Oracle
Database character set support

4.1.4.3 Differences Between CHAR and VARCHAR?2 Data Types

CHAR and VARCHAR?2 data types differ in:

* Predefined Subtypes
* How Blank-Padding Works

* Value Comparisons

4.1.4.3.1 Predefined Subtypes

The CHAR data type has one predefined subtype in both PL/SQL and SQL—CHARACTER.

The VARCHAR2 data type has one predefined subtype in both PL/SQL and SQL,
VARCHAR, and an additional predefined subtype in PL/SQL, STRING.

ORACLE 4.5

Chapter 4
SQL Data Types

Each subtype has the same range of values as its base type.

Note:

In a future PL/SQL release, to accommodate emerging SQL standards,
VARCHAR might become a separate data type, no longer synonymous with
VARCHAR?2.

4.1.4.3.2 How Blank-Padding Works

ORACLE

This explains the differences and considerations of using blank-padding with CHAR
and VARCHAR2.

Consider these situations:

* The value that you assign to a variable is shorter than the maximum size of the
variable.

e The value that you insert into a column is shorter than the defined width of the
column.

* The value that you retrieve from a column into a variable is shorter than the
maximum size of the variable.

If the data type of the receiver is CHAR, PL/SQL blank-pads the value to the maximum
size. Information about trailing blanks in the original value is lost.

If the data type of the receiver is VARCHAR2, PL/SQL neither blank-pads the value nor
strips trailing blanks. Character values are assigned intact, and no information is lost.

Example 4-1 CHAR and VARCHAR2 Blank-Padding Difference

In this example, both the CHAR variable and the VARCHAR2 variable have the maximum
size of 10 characters. Each variable receives a five-character value with one trailing
blank. The value assigned to the CHAR variable is blank-padded to 10 characters, and
you cannot tell that one of the six trailing blanks in the resulting value was in the
original value. The value assigned to the VARCHARZ2 variable is not changed, and you
can see that it has one trailing blank.

DECLARE
first_name CHAR(10 CHAR);
last name VARCHAR2(10 CHAR);

BEGIN
first_name := "John *;
last name := "Chen *;

DBMS_OUTPUT.PUT_LINE(**" || first_name || "*");

DBMS_OUTPUT.PUT_LINE(™** || last_name || ***);
END;
/
Result:
*John *
*Chen *

4-6

Chapter 4
SQL Data Types

4.1.4.3.3 Value Comparisons

The SQL rules for comparing character values apply to PL/SQL character variables.

Whenever one or both values in the comparison have the data type VARCHAR2
or NVARCHAR2, nonpadded comparison semantics apply; otherwise, blank-padded

semantics apply. For more information, see Oracle Database SQL Language
Reference.

4.1.5 LONG and LONG RAW Variables

" Note:

Oracle supports the LONG and LONG RAW data types only for backward
compatibility with existing applications. For new applications:

e Instead of LONG, use VARCHAR2(32760), BLOB, CLOB or NCLOB.
e Instead of LONG RAW, use BLOB.

You can insert any LONG value into a LONG column. You can insert any LONG RAW value
into a LONG RAW column. You cannot retrieve a value longer than 32,760 bytes from a
LONG or LONG RAW column into a LONG or LONG RAW variable.

You can insert any CHAR or VARCHAR2 value into a LONG column. You cannot retrieve a
value longer than 32,767 bytes from a LONG column into a CHAR or VARCHAR2 variable.

You can insert any RAW value into a LONG RAW column. You cannot retrieve a value
longer than 32,767 bytes from a LONG RAW column into a RAW variable.

" See Also:

"Trigger LONG and LONG RAW Data Type Restrictions" for restrictions on
LONG and LONG RAW data types in triggers

4.1.6 ROWID and UROWID Variables

ORACLE

When you retrieve a rowid into a ROWID variable, use the ROWIDTOCHAR function to
convert the binary value to a character value. For information about this function, see
Oracle Database SQL Language Reference.

To convert the value of a ROWID variable to a rowid, use the CHARTOROWID function,
explained in Oracle Database SQL Language Reference. If the value does not
represent a valid rowid, PL/SQL raises the predefined exception SYS_INVALID_ROWID.

To retrieve a rowid into a UROWID variable, or to convert the value of a UROWID variable
to a rowid, use an assignment statement; conversion is implicit.

4-7

Chapter 4
BOOLEAN Data Type

< Note:

e UROWID is a more versatile data type than ROWID, because it is compatible
with both logical and physical rowids.

e When you update a row in a table compressed with Hybrid Columnar
Compression (HCC), the ROWID of the row changes. HCC, a feature
of certain Oracle storage systems, is described in Oracle Database
Concepts.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_ROWID package, whose subprograms let you create and
return information about ROWID values (but not UROWID values)

4.2 BOOLEAN Data Type

The PL/SQL data type BOOLEAN stores logical values, which are the boolean values
TRUE and FALSE and the value NULL. NULL represents an unknown value.

The syntax for declaring an BOOLEAN variable is:

vari abl e_nane BOOLEAN

The only value that you can assign to a BOOLEAN variable is a BOOLEAN expression. For
details, see "BOOLEAN Expressions".

Because SQL has no data type equivalent to BOOLEAN, you cannot:

* Assign a BOOLEAN value to a database table column
» Select or fetch the value of a database table column into a BOOLEAN variable
* Use a BOOLEAN value in a SQL function

(However, a SQL query can invoke a PL/SQL function that has a BOOLEAN
parameter, as in "Example 4-3".)

» Use a BOOLEAN expression in a SQL statement, except as an argument to a
PL/SQL function invoked in a SQL query, or in a PL/SQL anonymous block.

< Note:

An argument to a PL/SQL function invoked in a static SQL query cannot
be a BOOLEAN literal. The workaround is to assign the literal to a variable
and then pass the variable to the function, as in "Example 4-3".

You cannot pass a BOOLEAN value to the DBMS_OUTPUT.PUT or DBMS_OUTPUT.PUTLINE
subprogram. To print a BOOLEAN value, use an IF or CASE statement to translate it to

ORACLE 4-8

ORACLE

Chapter 4
BOOLEAN Data Type

a character value (for information about these statements, see "Conditional Selection
Statements").

Example 4-2 Printing BOOLEAN Values

In this example, the procedure accepts a BOOLEAN parameter and uses a CASE
statement to print Unknown if the value of the parameter is NULL, Yes if it is TRUE,
and No if it is FALSE.

¢ See Also:

Example 3-34, which creates a print_boolean procedure that uses an IF
statement.

PROCEDURE print_boolean (b BOOLEAN)
AS
BEGIN
DBMS_OUTPUT.PUT_LINE (
CASE
WHEN b IS NULL THEN “"Unknown*®
WHEN b THEN "Yes*"
WHEN NOT b THEN "No*®
END
):
END;

BEGIN
print_boolean(TRUE);
print_boolean(FALSE);
print_boolean(NULL);

END;

Result:

Yes
No
Unknown

Example 4-3 SQL Statement Invokes PL/SQL Function with BOOLEAN
Parameter

In this example, a SQL statement invokes a PL/SQL function that has a BOOLEAN
parameter.

FUNCTION f (x BOOLEAN, y PLS_INTEGER)
RETURN employees.employee_ id%TYPE
AUTHID CURRENT_USER AS

BEGIN
IF x THEN

RETURN y;
ELSE
RETURN 2*y;
END IF;
END;

DECLARE
name employees.last_name%TYPE;

4-9

Chapter 4
PLS_INTEGER and BINARY_INTEGER Data Types

b BOOLEAN := TRUE;
BEGIN
SELECT last_name INTO name
FROM employees
WHERE employee_id = f(b, 100);

DBMS_OUTPUT.PUT_LINE(name);

b := FALSE;

SELECT last_name INTO name
FROM employees

WHERE employee_id = f(b, 100);
DBMS_OUTPUT.PUT_LINE(name);

END;
/

Result:

King
Whalen

4.3 PLS_INTEGER and BINARY INTEGER Data Types

The PL/SQL data types PLS_INTEGER and BINARY_INTEGER are identical.

For simplicity, this document uses PLS_INTEGER to mean both PLS_INTEGER and
BINARY_INTEGER.

The PLS_INTEGER data type stores signed integers in the range -2,147,483,648 through
2,147,483,647, represented in 32 bits.

The PLS_INTEGER data type has these advantages over the NUMBER data type and
NUMBER subtypes:

e PLS_INTEGER values require less storage.

e PLS_INTEGER operations use hardware arithmetic, so they are faster than NUMBER
operations, which use library arithmetic.

For efficiency, use PLS_INTEGER values for all calculations in its range.

Topics

* Preventing PLS_INTEGER Overflow

* Predefined PLS_INTEGER Subtypes

* SIMPLE_INTEGER Subtype of PLS_INTEGER

4.3.1 Preventing PLS_INTEGER Overflow

ORACLE

A calculation with two PLS_INTEGER values that overflows the PLS_INTEGER range
raises an overflow exception.

For calculations outside the PLS_INTEGER range, use INTEGER, a predefined subtype of
the NUMBER data type.

4-10

Chapter 4
PLS_INTEGER and BINARY_INTEGER Data Types

Example 4-4 PLS_INTEGER Calculation Raises Overflow Exception

This example shows that a calculation with two PLS_INTEGER values that overflows the
PLS_INTEGER range raises an overflow exception, even if you assign the result to a
NUMBER data type.

DECLARE
pl PLS_INTEGER :
p2 PLS_INTEGER :
n NUMBER;
BEGIN
n = pl + p2;
END;
/

2147483647,
1;

Result:

DECLARE

*

ERROR at line 1:

ORA-01426: numeric overflow
ORA-06512: at line 6

Example 4-5 Preventing Example 4-4 Overflow

This example shows the correct use of the INTEGER predefined subtype for calculations
outside the PLS_INTEGER range.

DECLARE
pl PLS_INTEGER := 2147483647;
p2 INTEGER := 1;
n NUMBER;
BEGIN
n = pl + p2;
END;
/

Result:

PL/SQL procedure successfully completed.

4.3.2 Predefined PLS_INTEGER Subtypes

ORACLE

This summary lists the predefined subtypes of the PLS_INTEGER data type and
describes the data they store.

Table 4-3 Predefined Subtypes of PLS_INTEGER Data Type
|

Data Type Data Description

NATURAL Nonnegative PLS_INTEGER value

NATURALN Nonnegative PLS_INTEGER value with NOT NULL constraint
POSITIVE Positive PLS _INTEGER value

POSITIVEN Positive PLS_INTEGER value with NOT NULL constraint

SIGNTYPE PLS_INTEGER value -1, 0, or 1 (useful for programming tri-state logic)

SIMPLE_INTEGER PLS_INTEGER value with NOT NULL constraint.

4-11

Chapter 4
PLS_INTEGER and BINARY_INTEGER Data Types

PLS_INTEGER and its subtypes can be implicitly converted to these data types:

* CHAR

* VARCHAR2
* NUMBER

* LONG

All of the preceding data types except LONG, and all PLS_INTEGER subtypes, can be
implicitly converted to PLS_INTEGER.

A PLS_INTEGER value can be implicitly converted to a PLS _INTEGER subtype only if the
value does not violate a constraint of the subtype.

¢ See Also:

« "NOT NULL Constraint"for information about the NOT NULL constraint

e "SIMPLE_INTEGER Subtype of PLS_INTEGER" for more information
about SIMPLE_INTEGER

Example 4-6 Violating Constraint of SIMPLE_INTEGER Subtype

This example shows that casting the PLS_INTEGER value NULL to the SIMPLE_INTEGER
subtype raises an exception.

DECLARE
a SIMPLE_INTEGER := 1;
b PLS_INTEGER := NULL;
BEGIN
a = b;
END;
/

Result:

DECLARE

*

ERROR at line 1:

ORA-06502: PL/SQL: numeric or value error
ORA-06512: at line 5

4.3.3 SIMPLE_INTEGER Subtype of PLS_INTEGER

ORACLE

SIMPLE_INTEGER is a predefined subtype of the PLS_INTEGER data type.

SIMPLE_INTEGER has the same range as PLS_INTEGER and has a NOT NULL constraint. It
differs significantly from PLS_INTEGER in its overflow semantics.

If you know that a variable will never have the value NULL or need overflow checking,
declare it as SIMPLE_INTEGER rather than PLS_INTEGER. Without the overhead of
checking for nullness and overflow, SIMPLE_INTEGER performs significantly better than
PLS_INTEGER.

4-12

Chapter 4
PLS_INTEGER and BINARY_INTEGER Data Types

Topics
* SIMPLE_INTEGER Overflow Semantics

» Expressions with Both SIMPLE_INTEGER and Other Operands
* Integer Literals in SIMPLE_INTEGER Range

¢ See Also:
"NOT NULL Constraint"

4.3.3.1 SIMPLE_INTEGER Overflow Semantics

If and only if all operands in an expression have the data type SIMPLE_INTEGER,
PL/SQL uses two's complement arithmetic and ignores overflows.

Because overflows are ignored, values can wrap from positive to negative or from
negative to positive; for example:

230 + 230 = 0x40000000 + 0x40000000 = 0x80000000 = -231
-231 + -231 = 0x80000000 + 0x80000000 = 0x00000000 = 0
For example, this block runs without errors:

DECLARE
n SIMPLE_INTEGER := 2147483645;
BEGIN
FOR j IN 1..4 LOOP
n:=n+1;
DBMS_OUTPUT.PUT_LINE(TO_CHAR(n, "S$9999999999%));
END LOOP;
FOR j IN 1..4 LOOP
n:=n-1;
DBMS_OUTPUT.PUT_LINE(TO_CHAR(n, "S9999999999%));
END LOOP;
END;
/

Result:

+2147483646
+2147483647
-2147483648
-2147483647
-2147483648
+2147483647
+2147483646
+2147483645

PL/SQL procedure successfully completed.

4.3.3.2 Expressions with Both SIMPLE _INTEGER and Other Operands

ORACLE

If an expression has both SIMPLE_INTEGER and other operands, PL/SQL implicitly
converts the SIMPLE_INTEGER values to PLS_INTEGER NOT NULL.

4-13

Chapter 4
User-Defined PL/SQL Subtypes

The PL/SQL compiler issues a warning when SIMPLE_INTEGER and other values
are mixed in a way that might negatively impact performance by inhibiting some
optimizations.

4.3.3.3 Integer Literals in SIMPLE_INTEGER Range

Integer literals in the SIMPLE_INTEGER range have the data type SIMPLE_INTEGER.

However, to ensure backward compatibility, when all operands in an arithmetic
expression are integer literals, PL/SQL treats the integer literals as if they were cast to
PLS_INTEGER.

4.4 User-Defined PL/SQL Subtypes

PL/SQL lets you define your own subtypes.

The base type can be any scalar or user-defined PL/SQL data type specifier such as
CHAR, DATE, or RECORD (including a previously defined user-defined subtype).

Note:

The information in this topic applies to both user-defined subtypes and the
predefined subtypes listed in PL/SQL Predefined Data Types.

Subtypes can:
* Provide compatibility with ANSI/ISO data types
e Show the intended use of data items of that type

e Detect out-of-range values
Topics
e Unconstrained Subtypes

e Constrained Subtypes
e Subtypes with Base Types in Same Data Type Family

4.4.1 Unconstrained Subtypes

ORACLE

An unconstrained subtype has the same set of values as its base type, so it is only
another name for the base type.

Therefore, unconstrained subtypes of the same base type are interchangeable with
each other and with the base type. No data type conversion occurs.

To define an unconstrained subtype, use this syntax:
SUBTYPE subtype_nane IS base_type
For information about subt ype_name and base_t ype, see subtype.

An example of an unconstrained subtype, which PL/SQL predefines for compatibility
with ANSI, is:

4-14

Chapter 4
User-Defined PL/SQL Subtypes

SUBTYPE "DOUBLE PRECISION"™ IS FLOAT

Example 4-7 User-Defined Unconstrained Subtypes Show Intended Use

In this example, the unconstrained subtypes Balance and Counter show the intended
uses of data items of their types.

DECLARE
SUBTYPE Balance IS NUMBER;
checking_account Balance(6,2);
savings_account Balance(8,2);

certificate_of deposit Balance(8,2);
max_insured CONSTANT Balance(8,2) := 250000.00;

SUBTYPE Counter 1S NATURAL;

accounts Counter :
deposits Counter :
withdrawals Counter :
overdrafts Counter :

O OO

PROCEDURE deposit (
account IN OUT Balance,

amount IN Balance
) IS
BEGIN
account account + amount;

deposits :
END;

deposits + 1;

BEGIN
NULL;

END;

/

4.4.2 Constrained Subtypes

A constrained subtype has only a subset of the values of its base type.

If the base type lets you specify size, precision and scale, or a range of values, then
you can specify them for its subtypes. The subtype definition syntax is:

SUBTYPE subtype_nane IS base_type
{ precision [, scale] | RANGE | ow value .. high_value } [NOT NULL]

Otherwise, the only constraint that you can put on its subtypes is NOT NULL:

SUBTYPE subtype_nane IS base_type [NOT NULL]

¢ Note:

The only base types for which you can specify a range of values are
PLS_INTEGER and its subtypes (both predefined and user-defined).

ORACLE 4-15

ORACLE

Chapter 4
User-Defined PL/SQL Subtypes

A constrained subtype can be implicitly converted to its base type, but the base type
can be implicitly converted to the constrained subtype only if the value does not violate
a constraint of the subtype.

A constrained subtype can be implicitly converted to another constrained subtype with
the same base type only if the source value does not violate a constraint of the target
subtype.

¢ See Also:

e "subtype_definition ::=" syntax diagram

e "subtype" semantic description

e "Example 4-6", "Violating Constraint of SIMPLE_INTEGER Subtype"
e "Formal Parameters of Constrained Subtypes"

e "NOT NULL Constraint"

Example 4-8 User-Defined Constrained Subtype Detects Out-of-Range Values
In this example, the constrained subtype Balance detects out-of-range values.

DECLARE
SUBTYPE Balance 1S NUMBER(8,2);

checking_account Balance;
savings_account Balance;

BEGIN
checking_account :
savings_account

END;

/

2000.00;
1000000.00;

Result:

DECLARE

*
ERROR at line 1:

ORA-06502: PL/SQL: numeric or value error: number precision too large
ORA-06512: at line 9

Example 4-9 Implicit Conversion Between Constrained Subtypes with Same
Base Type

In this example, the three constrained subtypes have the same base type. The first
two subtypes can be implicitly converted to the third subtype, but not to each other.

DECLARE
SUBTYPE Digit IS PLS_INTEGER RANGE 0..9;
SUBTYPE Double_digit IS PLS_INTEGER RANGE 10..99;
SUBTYPE Under_100 IS PLS_INTEGER RANGE 0..99;

d Digit = 4;
dd Double digit := 35;
u Under_100;

BEGIN

4-16

Chapter 4
User-Defined PL/SQL Subtypes

u :=d; -- Succeeds; Under_100 range includes Digit range
u := dd; -- Succeeds; Under_100 range includes Double_digit range
dd := d; -- Raises error; Double_digit range does not include Digit range
END;
/
Result:
DECLARE

*

ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error
ORA-06512: at line 12

4.4.3 Subtypes with Base Types in Same Data Type Family

If two subtypes have different base types in the same data type family, then one
subtype can be implicitly converted to the other only if the source value does not
violate a constraint of the target subtype.

For the predefined PL/SQL data types and subtypes, grouped by data type family, see
PL/SQL Predefined Data Types.

Example 4-10 Implicit Conversion Between Subtypes with Base Types in Same
Family

In this example, the subtypes Word and Text have different base types in the same
data type family. The first assignment statement implicitly converts a Word value to
Text. The second assignment statement implicitly converts a Text value to Word. The
third assignment statement cannot implicitly convert the Text value to Word, because
the value is too long.

DECLARE
SUBTYPE Word IS CHAR(6);
SUBTYPE Text IS VARCHAR2(15);
verb Word := "run®;
sentencel Text;
sentence2 Text :
sentence3 Text :

"Hurry!*;
"See Tom run.";

BEGIN
sentencel := verb; -- 3-character value, 15-character limit
verb := sentence2; -- 6-character value, 6-character limit
verb := sentence3; -- 12-character value, 6-character limit

END;

/

Result:

DECLARE

*

ERROR at line 1:

ORA-06502: PL/SQL: numeric or value error: character string buffer too small
ORA-06512: at line 13

ORACLE 4-17

PL/SQL Control Statements

PL/SQL has three categories of control statements: conditional selection statements,
loop statements and sequential control statements.

PL/SQL categories of control statements are:

e Conditional selection statements, which run different statements for different
data values.

The conditional selection statements are IF and CASE.

* Loop statements, which run the same statements with a series of different data
values.

The loop statements are the basic LOOP, FOR LOOP, and WHILE LOOP.

The EXIT statement transfers control to the end of a loop. The CONTINUE statement
exits the current iteration of a loop and transfers control to the next iteration.

Both EXIT and CONTINUE have an optional WHEN clause, where you can specify a
condition.

* Sequential control statements, which are not crucial to PL/SQL programming.

The sequential control statements are GOTO, which goes to a specified statement,
and NULL, which does nothing.

5.1 Conditional Selection Statements

The conditional selection statements, IF and CASE, run different statements for
different data values.

The IF statement either runs or skips a sequence of one or more statements,
depending on a condition. The IF statement has these forms:

 IFTHEN
* IF THEN ELSE
* IF THEN ELSIF

The CASE statement chooses from a sequence of conditions, and runs the
corresponding statement. The CASE statement has these forms:

» Simple CASE statement, which evaluates a single expression and compares it to
several potential values.

e Searched CASE statement, which evaluates multiple conditions and chooses the
first one that is true.

The CASE statement is appropriate when a different action is to be taken for each
alternative.

ORACLE 5-1

Chapter 5
Conditional Selection Statements

5.1.1 [F THEN Statement

ORACLE

The IF THEN statement either runs or skips a sequence of one or more statements,
depending on a condition.

The IF THEN statement has this structure:

IF condition THEN
statenments
END IF;

If the condi ti on is true, the st at enent s run; otherwise, the IF statement does nothing.

For complete syntax, see "IF Statement".

Tip:
Avoid clumsy IF statements such as:

IF new_balance < minimum_balance THEN
overdrawn := TRUE;

ELSE
overdrawn := FALSE;

END IF;

Instead, assign the value of the BOOLEAN expression directly to a BOOLEAN
variable:

overdrawn := new_balance < minimum_balance;

A BOOLEAN variable is either TRUE, FALSE, or NULL. Do not write:

IF overdrawn = TRUE THEN
RAISE insufficient_funds;
END IF;

Instead, write:

IF overdrawn THEN
RAISE insufficient_funds;
END IF;

Example 5-1 IF THEN Statement

In this example, the statements between THEN and END IF run if and only if the value of
sales is greater than quota+200.

DECLARE
PROCEDURE p (
sales NUMBER,
quota NUMBER,
emp_id NUMBER
)
IS
bonus NUMBER := 0;
updated VARCHAR2(3) := "No";
BEGIN

5-2

Chapter 5
Conditional Selection Statements

IF sales > (quota + 200) THEN
bonus := (sales - quota)/4;

UPDATE employees
SET salary = salary + bonus
WHERE employee_id = emp_id;

updated := "Yes";
END IF;

DBMS_OUTPUT.PUT_LINE (
"Table updated? " || updated || *, " ||
"bonus = " || bonus || "-"
);
END p;
BEGIN
p(10100, 10000, 120);
p(10500, 10000, 121);
END;
/

Result:

Table updated? No, bonus = 0.
Table updated? Yes, bonus = 125.

5.1.2 IF THEN ELSE Statement

ORACLE

The IF THEN ELSE statement has this structure:

IF condition THEN
statenents
ELSE
el se_statenents
END IF;

If the value of condi ti on is true, the st at ement s run; otherwise, the el se_st at enent s
run.

IF statements can be nested, as in Example 5-3.
For complete syntax, see "IF Statement".
Example 5-2 IF THEN ELSE Statement

In this example, the statement between THEN and ELSE runs if and only if the value of
sales is greater than quota+200; otherwise, the statement between ELSE and END IF
runs.

DECLARE
PROCEDURE p (
sales NUMBER,
quota NUMBER,
emp_id NUMBER
)
1S
bonus NUMBER := 0;
BEGIN
IF sales > (quota + 200) THEN
bonus := (sales - quota)/4;

5-3

ORACLE

ELSE
bonus := 50;
END 1F;

DBMS_OUTPUT.PUT_LINE("bonus = * || bonus);

UPDATE employees
SET salary = salary + bonus
WHERE employee_id = emp_id;
END p;
BEGIN
p(10100, 10000, 120);
p(10500, 10000, 121);

END;

/

Result:
bonus = 50
bonus = 125

Example 5-3 Nested IF THEN ELSE Statements

DECLARE
PROCEDURE p (
sales NUMBER,
quota NUMBER,
emp_id NUMBER
)
IS
bonus NUMBER := 0;
BEGIN
IF sales > (quota + 200) THEN
bonus := (sales - quota)/4;
ELSE
IF sales > quota THEN
bonus := 50;
ELSE
bonus := 0;
END IF;
END IF;

DBMS_OUTPUT.PUT_LINE("bonus = * || bonus);

UPDATE employees
SET salary = salary + bonus
WHERE employee_id = emp_id;
END p;
BEGIN
p(10100, 10000, 120);
p(10500, 10000, 121);
p(9500, 10000, 122);

END;

/

Result:
bonus = 50
bonus = 125
bonus = 0

Chapter 5
Conditional Selection Statements

5-4

Chapter 5
Conditional Selection Statements

5.1.3 IF THEN ELSIF Statement

The IF THEN ELSIF statement has this structure:

IF condition_1 THEN
statenments_1
ELSIF condition_2 THEN
statenents_2
[ELSIF condition_3 THEN
statenents_3

1---
[ELSE
el se_statenents

]
END IF;

The IF THEN ELSIF statement runs the first st at enent s for which condi ti on is true.
Remaining conditions are not evaluated. If no condi ti on is true, the el se_stat enent s
run, if they exist; otherwise, the IF THEN ELSIF statement does nothing.

A single IF THEN ELSIF statement is easier to understand than a logically equivalent
nested IF THEN ELSE statement:

-- IF THEN ELSIF statement

IF condition_1 THEN statements 1;
ELSIF condition_2 THEN statenments 2;
ELSIF condition_3 THEN statement 3;

END IF;

-- Logically equivalent nested IF THEN ELSE statements

IF condition_1 THEN
statements_1;
ELSE
IF condition_2 THEN
statenents_2;
ELSE
IF condition_3 THEN
statenments_3;
END IF;
END IF;
END IF;

For complete syntax, see "IF Statement".
Example 5-4 IF THEN ELSIF Statement

In this example, when the value of sales is larger than 50000, both the first and
second conditions are true. However, because the first condition is true, bonus is
assigned the value 1500, and the second condition is never tested. After bonus is
assigned the value 1500, control passes to the DBMS_OUTPUT.PUT_LINE invocation.

DECLARE
PROCEDURE p (sales NUMBER)
IS
bonus NUMBER := 0;
BEGIN

IF sales > 50000 THEN

ORACLE 5-5

bonus := 1500;

ELSIF sales > 35000 THEN
bonus := 500;

ELSE
bonus := 100;

END IF;

DBMS_OUTPUT .

PUT_LINE (

Chapter 5
Conditional Selection Statements

"Sales = " || sales || *, bonus = * || bonus || "."

);
END p;
BEGIN
p(55000);
p(40000);
p(30000);
END;
/

Result:

Sales
Sales
Sales

55000, bonus
40000, bonus
30000, bonus

1500.
500.
100.

Example 5-5 IF THEN ELSIF Statement Simulates Simple CASE Statement

This example uses an IF THEN ELSIF statement with many ELSIF clauses to compare
a single value to many possible values. For this purpose, a simple CASE statement is
clearer—see Example 5-6.

DECLARE

grade CHAR(1);
BEGIN

grade := "B";

IF grade = "A*
DBMS_OUTPUT.
ELSIF grade =
DBMS_OUTPUT.
ELSIF grade =
DBMS_OUTPUT.
ELSIF grade =
DBMS_OUTPUT.
ELSIF grade =
DBMS_OUTPUT.
ELSE
DBMS_OUTPUT.
END IF;
END;
/

Result:

Very Good

THEN
PUT_LINE("Excellent®);
"B" THEN
PUT_LINE("Very Good");
"C" THEN
PUT_LINE("Good");

"D" THEN

PUT_LINE("Fair®);

"F" THEN
PUT_LINE("Poor®);

PUT_LINE("No such grade®);

5.1.4 Simple CASE Statement

The simple CASE statement has this structure:

ORACLE

5-6

Chapter 5
Conditional Selection Statements

CASE sel ector
WHEN sel ector _value_1 THEN statenents_1
WHEN sel ector _val ue_2 THEN statenents_2

WHEN sel ector _val ue_n THEN statenents_n
[ELSE

el se_statenents]
END CASE;]

The sel ect or is an expression (typically a single variable). Each sel ect or _val ue can
be either a literal or an expression. (For complete syntax, see "CASE Statement".)

The simple CASE statement runs the first st at ement s for which sel ect or _val ue equals
sel ect or. Remaining conditions are not evaluated. If no sel ect or _val ue equals

sel ect or, the CASE statement runs el se_st at ement s if they exist and raises the
predefined exception CASE_NOT_FOUND otherwise.

Example 5-6 uses a simple CASE statement to compare a single value to many
possible values. The CASE statement in Example 5-6 is logically equivalent to the IF
THEN ELSIF statement in Example 5-5.

" Note:

As in a simple CASE expression, if the selector in a simple CASE statement
has the value NULL, it cannot be matched by WHEN NULL (see Example 3-51).
Instead, use a searched CASE statement with WHEN condi ti on 1S NULL (see
Example 3-53).

Example 5-6 Simple CASE Statement

DECLARE

grade CHAR(1);
BEGIN

grade := "B";

CASE grade
WHEN "A® THEN DBMS_OUTPUT.PUT_LINE("Excellent™);
WHEN *B" THEN DBMS_OUTPUT.PUT_LINE("Very Good");
WHEN *C* THEN DBMS_OUTPUT.PUT_LINE("Good");
WHEN *D" THEN DBMS_OUTPUT.PUT_LINE("Fair");
WHEN "F" THEN DBMS_OUTPUT.PUT_LINE("Poor*");
ELSE DBMS_OUTPUT.PUT_LINE("No such grade®);
END CASE;
END;
/

Result:

Very Good

5.1.5 Searched CASE Statement

The searched CASE statement has this structure:

ORACLE .

Chapter 5
Conditional Selection Statements

CASE
WHEN condition_1 THEN statenents_1
WHEN condition_2 THEN statenents_2

WHEN condition_n THEN statenents_n
[ELSE

el se_statenents]
END CASE;]

The searched CASE statement runs the first st at ement s for which condi ti on is
true. Remaining conditions are not evaluated. If no condi ti on is true, the CASE
statement runs el se_st at ement s if they exist and raises the predefined exception
CASE_NOT_FOUND otherwise. (For complete syntax, see "CASE Statement".)

The searched CASE statement in Example 5-7 is logically equivalent to the simple CASE
statement in Example 5-6.

In both Example 5-7 and Example 5-6, the ELSE clause can be replaced by an
EXCEPTION part. Example 5-8 is logically equivalent to Example 5-7.

Example 5-7 Searched CASE Statement

DECLARE

grade CHAR(1);
BEGIN

grade := "B";

CASE
WHEN grade
WHEN grade

"A" THEN DBMS_OUTPUT.PUT_LINE("Excellent™);
"B* THEN DBMS_OUTPUT.PUT_LINE("Very Good");
WHEN grade = "C* THEN DBMS_OUTPUT.PUT_LINE("Good");

WHEN grade = *D* THEN DBMS_OUTPUT.PUT_LINE("Fair");

WHEN grade = "F" THEN DBMS_OUTPUT.PUT_LINE("Poor™);

ELSE DBMS_OUTPUT.PUT_LINE("No such grade®);
END CASE;
END;
/

Result:

Very Good

Example 5-8 EXCEPTION Instead of ELSE Clause in CASE Statement

DECLARE

grade CHAR(1);
BEGIN

grade := "B";

CASE
WHEN grade
WHEN grade
WHEN grade
WHEN grade
WHEN grade
END CASE;
EXCEPTION
WHEN CASE_NOT_FOUND THEN
DBMS_OUTPUT.PUT_LINE("No such grade®);
END;

"A® THEN DBMS_OUTPUT.PUT_LINE("Excellent®);
"B* THEN DBMS_OUTPUT.PUT_LINE("Very Good");
"C" THEN DBMS_OUTPUT.PUT_LINE("Good");
"D* THEN DBMS_OUTPUT.PUT_LINE("Fair™);
"F* THEN DBMS_OUTPUT.PUT_LINE("Poor™);

ORACLE 5-8

Chapter 5
LOOP Statements

Result:

Very Good

5.2 LOOP Statements

ORACLE

Loop statements run the same statements iteratively with a series of different values.

A LOOP statement has three parts:

1. Aniterand, also known as a loop variable, to pass values from the loop header to
the loop body

2. lteration controls to generate values for the loop
3. Aloop body executed once for each value

| oop_statement ::= [iteration_schene] LOOP
| oop_body
END LOOP [label];

iteration_scheme ::= WHILE expression
| FOR iterator

The loop statements are:

* Basic LOOP

e FOR LOOP

e Cursor FOR LOOP
e WHILE LOOP

The statements that exit a loop are:

o EXIT

e EXIT WHEN

The statements that exit the current iteration of a loop are:
e CONTINUE

e CONTINUE WHEN

EXIT, EXIT WHEN, CONTINUE, and CONTINUE WHEN can appear anywhere inside a loop,
but not outside a loop. Oracle recommends using these statements instead of the GOTO
statement, which can exit a loop or the current iteration of a loop by transferring control
to a statement outside the loop.

A raised exception also exits a loop.

LOOP statements can be labeled, and LOOP statements can be nested. Labels are
recommended for nested loops to improve readability. You must ensure that the label
in the END LOOP statement matches the label at the beginning of the same loop
statement (the compiler does not check).

5-9

Chapter 5
LOOP Statements

¢ See Also:

« GOTO Statement

* CONTINUE Statement

« "EXIT Statement"

e "Overview of Exception Handling" for information about exceptions

e "Processing Query Result Sets With Cursor FOR LOOP Statements" for
information about the cursor FOR LOOP

5.2.1 Basic LOOP Statement

The basic LOOP statement has this structure.

With each iteration of the loop, the st at enent s run and control returns to the top of the
loop. To prevent an infinite loop, a statement or raised exception must exit the loop.

[Iabel] LOOP
statenents
END LOOP [Iabel 7];

¢ See Also:
"Basic LOOP Statement"

5.2.2 FOR LOOP Statement Overview

ORACLE

The FOR LOOP statement runs one or more statements for each value of the loop index.

A FOR LOOP header specifies the iterator. The iterator specifies an iterand and the
iteration controls. The iteration control provides a sequence of values to the iterand for
access in the loop body. The loop body has the statements that are executed once for
each value of the iterand.

The iteration controls available are :

Stepped Range An iteration control that generates a sequence of stepped numeric
values. When step is not specified, the counting control is a stepped range of type pls
integer with a step of one.

Single Expression An iteration control that evaluates a single expression.

Repeated Expression An iteration control that repeatedly evaluates a single
expression.

Values Of An iteration control that generates all the values from a collection in
sequence. The collection can be a vector valued expression, cursor, cursor variable, or
dynamic SQL.

5-10

Chapter 5
LOOP Statements

Indices Of An iteration control that generates all the indices from a collection in
sequence. While all the collection types listed for values of are allowed, indices of is
most useful when the collection is a vector variable.

Pairs Of An iteration control that generates all the index and value pairs from a
collection. All of the collection types allowed for values of are allowed for pairs of. Pairs
of iteration controls require two iterands.

Cursor An iteration control that generates all the records from a cursor, cursor
variable, or dynamic SQL.

The FOR LOOP statement has this structure:

[1abel] for_|l oop_header
statenents
END LOOP [|abel];

for_|l oop_header ::= FOR iterator LOOP

iterator ::=iterand_decl [, iterand_decl] IN iteration_ctl_seq
iterand_decl ::= pls_identifier [MUTABLE | IMMUTABLE] [constrained_type
1

iteration_ctl_seq ::= qual _iteration_ctl [,]---

qual _iteration_ctl ::= [REVERSE] iteration_control pred_clause_seq
iteration_control ::= stepped_control

| single_expression_control
| val ues_of control

| indices_of _control

| pairs_of _control

| cursor_control

pred_clause_seq ::= [stopping_pred] [skipping_pred]
st oppi ng_pred ::= WHILE bool ean_expression

ski ppi ng_pred ::= WHEN bool ean_expressi on

stepped_control ::= lower_bound .. upper_bound [BY step]
singl e_expression_control ::= [REPEAT] expr
" See Also:

"FOR LOOP Statement” for more information about syntax and semantics

5.2.2.1 FOR LOORP Iterand

The index or iterand of a FOR LOOP statement is implicitly or explicitly declared as a
variable that is local to the loop.

ORACLE 5-11

ORACLE

Chapter 5
LOOP Statements

The statements in the loop can read the value of the iterand, but cannot change it.
Statements outside the loop cannot reference the iterand. After the FOR LOOP statement
runs, the iterand is undefined. A loop iterand is sometimes called a loop counter.

Example 5-9 FOR LOOP Statement Tries to Change Index Value

In this example, the FOR LOOP statement tries to change the value of its index, causing
an error.

BEGIN
FOR i IN 1..3 LOOP
IF i < 3 THEN
DBMS_OUTPUT.PUT_LINE (TO_CHAR(i));
ELSE
i:=2;
END IF;
END LOOP;
END;
/

Result:

i :=2;

*

PLS-00363: expression "1" cannot be used as an assignment target
ORA-06550: line 6, column 8:
PL/SQL: Statement ignored

Example 5-10 Outside Statement References FOR LOOP Statement Index

In this example, a statement outside the FOR LOOP statement references the loop index,
causing an error.

BEGIN
FOR i IN 1..3 LOOP
DBMS_OUTPUT.PUT_LINE ("Inside loop, i is " || TO_CHAR(i));
END LOOP;

DBMS_OUTPUT.PUT LINE (*Outside loop, i is " || TO_CHAR(i));
END;
/

Result:

DBMS_OUTPUT.PUT_LINE (*Outside loop, i is " || TO_CHAR(I));
*

PLS-00201: identifier "1" must be declared
ORA-06550: line 6, column 3:
PL/SQL: Statement ignored

Example 5-11 FOR LOOP Statement Index with Same Name as Variable

If the index of a FOR LOOP statement has the same name as a variable declared in
an enclosing block, the local implicit declaration hides the other declaration, as this
example shows.

DECLARE
i NUMBER := 5;
BEGIN
FOR i IN 1..3 LOOP
DBMS_OUTPUT.PUT_LINE ("Inside loop, i is " || TO_CHAR(i));
END LOOP;

5-12

Chapter 5
LOOP Statements

DBMS_OUTPUT.PUT_LINE (“Outside loop, i is " || TO_CHAR(i));
END;
/

Result:

Inside loop, i is 1
Inside loop, i is 2
Inside loop, i is 3
Outside loop, 1 is 5

Example 5-12 FOR LOOP Statement References Variable with Same Name as
Index

This example shows how to change Example 5-11 to allow the statement inside the
loop to reference the variable declared in the enclosing block.

<<main>> -- Label block.
DECLARE

i NUMBER := 5;
BEGIN

FOR i IN 1..3 LOOP

DBMS_OUTPUT.PUT_LINE (
“local: " || TO_CHAR(Ci) || ", global: * ||
TO_CHAR(main.i) -- Qualify reference with block label.
);
END LOOP;
END main;
/

Result:

local: 1, global: 5
local: 2, global: 5
local: 3, global: 5

Example 5-13 Nested FOR LOOP Statements with Same Index Name

In this example, the indexes of the nested FOR LOOP statements have the same name.
The inner loop references the index of the outer loop by qualifying the reference with
the label of the outer loop. For clarity only, the inner loop also qualifies the reference to
its own index with its own label.

BEGIN
<<outer_loop>>
FOR i IN 1..3 LOOP
<<inner_loop>>
FOR i IN 1..3 LOOP
IF outer_loop.i = 2 THEN
DBMS_OUTPUT.PUT_LINE
(Touter: " || TO_CHAR(outer_loop.i) || * inner: *
|l TO_CHAR(inner_loop.i));
END IF;
END LOOP inner_loop;
END LOOP outer_loop;
END;
/

Result:

ORACLE 5-13

Chapter 5
LOOP Statements

outer: 2 inner: 1
outer: 2 inner: 2
outer: 2 inner: 3

5.2.2.2 Iterand Mutability

The mutability property of an iterand determines whether or not it can be assigned in
the loop body.

If all iteration controls specified in an iterator are cursor controls, the iterand is mutable
by default. Otherwise, the iterand is immutable. The default mutability property of

an iterand can be changed in the iterand declaration by specifying the MUTABLE or
IMMUTABLE keyword after the iterand variable.

Considerations when declaring an iterand mutable:

* Any modification to the iterand for values of iteration control or the values iterand
for a pairs of iteration control will not affect the sequence of values produced by
that iteration control.

* Any modification to the iterand for stepped range iteration control or repeated
single expression iteration control will likely affect the behaviour of that control and
the sequence of values it produces.

* When the PL/SQL compiler can determine that making an iterand mutable may
adversely affect runtime performance, it may report a warning.

5.2.2.3 Multiple Iteration Controls

ORACLE

Multiple iteration controls may be chained together by separating them with commas.

Each iteration control has a set of controlling expressions (some controls have none)
that are evaluated once when the control starts. Evaluation of these expressions or
conversion of the evaluated values to the iterand type may raise exceptions. In such
cases, the loop is abandoned and normal exception handling occurs. The iterand is
accessible in the list of iteration controls. It is initially set to the default value for its
type. If that type has a not null constraint, any reference to the iterand in the controlling
expressions for the first iteration control will produce a semantic error because the
iterand cannot be implicitly initialized. When an iteration control is exhausted, the
iterand contains the final value assigned to it while processing that iteration control
and execution advances to the next iteration control. If no values are assigned to

the iterand by an iteration control, it retains the value it had prior to the start of that
iteration control. If the final value of a mutable iterand is modified in the loop body,
that modified value will be visible when evaluating the control expressions from the
following iteration control.

Expanding Multiple Iteration Controls Into PL/SQL

The first iteration control is initialized. The loop for the first iteration control is
evaluated. The controlling expressions from the next iteration control is evaluated.

The loop for the second iteration control is evaluated. Each iteration control and loop is
evaluated in turn until there are no more iteration controls.

Example 5-14 Using Multiple Iteration Controls

This example shows the loop variable i taking the value three iteration controls in
succession. The value of the iterator is printed for demonstration purpose. It shows

5-14

Chapter 5
LOOP Statements

that when a loop control is exhausted, the next iteration control begins. When the last
iteration control is exhausted, the loop is complete.

DECLARE
i PLS_INTEGER;
BEGIN
FOR i IN 1..3, REVERSE i+1..i+10, 51..55 LOOP
DBMS_OUTPUT.PUT_LINE(i);
END LOOP;
END;
/

5.2.2.4 Stepped Range lteration Controls

ORACLE

Stepped range iteration controls generate a sequence of humeric values.

Controlling expressions are the lower bound, upper bound, and step.

stepped_control ::= [REVERSE] | ower_bound..upper_bound [BY step]
| ower _bound ::= numeric_expression

upper _bound ::= nuneric_expression

step ::i= numeric_expression

Expanding Stepped Range Iteration Controls Into PL/SQL

When the iteration control is initialized, each controlling expression is evaluated and
converted to the type of the iterand. Step must have a strictly positive humeric

value. If any exception occurs while evaluating the controlling expressions, the loop is
abandoned and normal exception handling occurs. When no step is specified, its value
is one. The values generated by a stepped range iteration control go from lower bound
to upper bound by step. When REVERSE is specified the values are decremented from
the upper bound to lower bound by step. If the iterand has a floating point type, some
combinations of loop control values may create an infinite loop because of rounding
errors. No semantic or dynamic analysis will report this. When the iterand is mutable
and is modified in the loop body, the modified value is used for the increment and loop
exhaustion test in the next iterand update. This may change the sequence of values
processed by the loop.

5-15

ORACLE

Chapter 5
LOOP Statements

Example 5-15 FOR LOOP Statements Range Iteration Control

In this example, the iterand i has al ower _bound of 1 and an upper_bound of 3. The
loop prints the numbers from 1 to 3.

BEGIN
FOR i IN 1..3 LOOP
DBMS_OUTPUT.PUT_LINE (i);
END LOOP;
END;
/

Result:

1
2
3

Example 5-16 Reverse FOR LOOP Statements Range Iteration Control

The FOR LOOP statement in this example prints the numbers from 3 to 1. The loop
variable i is implicitly declared as a PLS_INTEGER (the default for counting and indexing
loops).

BEGIN
FOR i IN REVERSE 1..3 LOOP
DBMS_OUTPUT.PUT_LINE (i);
END LOOP;
END;
/

Result:

3
2
1

Example 5-17 Stepped Range Iteration Controls

This example shows a loop variable n declared explicitly as a NUMBER(5,1). The
increment for the counter is 0.5.

BEGIN
FOR n NUMBER(5,1) IN 1.0 .. 3.0 BY 0.5 LOOP
DBMS_OUTPUT.PUT_LINE(n);
END LOOP;
END;
/

Result:

1
1.5

2
2.5
3

5-16

Chapter 5
LOOP Statements

Example 5-18 STEP Clause in FOR LOOP Statement

In this example, the FOR LOOP effectively increments the index by five.

BEGIN
FOR i IN 5..15 BY 5 LOOP
DBMS_OUTPUT.PUT_LINE (i);
END LOOP;
END;

Result:

5
10
15

Example 5-19 Simple Step Filter Using FOR LOOP Stepped Range Iterator

This example illustrates a simple step filter. This filter is used in signal processing
and other reduction applications. The predicate specifies that every Kth element of the
original collection is passed to the collection being created.

FOR i IN start..finish LOOP
IF (i - start) MOD k = O THEN
newcol (i) := col(i)
END IF;
END LOOP;

You can implement the step filter using a stepped range iterator.

FOR i IN start.._finish BY k LOOP
newcol (i) := col(i)
END LOOP;

You can implement the same filter by creating a new collection using a stepped
iteration control embedded in a qualified expression.

newcol := col_t(FOR 1 IN start..finish BY k => col(i));

5.2.2.5 Single Expression Iteration Controls

ORACLE

A single expression iteration control generates a single value.
singl e_expression_control ::= [REPEAT] expr
A single expression iteration control has no controlling expressions.

When the iterand is mutable, changes made to it in the loop body will be seen when
reevaluating the expression in the repeat form.

Expanding Single Expression Iteration Controls Into PL/SQL

The expression is evaluated, converted to the iterand type to create the next value.
Any stopping predicate is evaluated. If it fails to evaluate to TRUE, the iteration control
is exhausted. Any skipping predicate is evaluated. If it fails to evaluate to TRUE, skip
the next step. Evaluate the loop body. If REPEAT is specified, evaluate the expression
again. Otherwise, the iteration control is exhausted.

5-17

Chapter 5
LOOP Statements

Example 5-20 Single Expression Iteration Control

This example shows the loop body being executed once.

BEGIN
FOR i IN 1 LOOP
DBMS_OUTPUT.PUT_LINE(i);
END LOOP;
END;
/

Result:

1

This example shows the iterand starting with 1, then j*2 is evaluated repeatedly until
the stopping predicate evaluates to true.

BEGIN
FOR i IN 1, REPEAT i*2 WHILE i < 100 LOOP
DBMS_OUTPUT.PUT_LINE(i);
END LOOP;
END;
/

Result:

5.2.2.6 Collection Iteration Controls

ORACLE

VALUES OF, INDICES OF, and PAIRS OF iteration controls generate sequences of
values for an iterand derived from a collection.

collection_iteration_control ::= values_of_contro
| indices_of_contro
| pairs_of contro

val ues_of _control ::= VALUES OF expr
| VALUES OF (cursor_object)
| VALUES OF (sql _statenent)
| VALUES OF cursor_variable
| VALUES OF (dynanic_sql)

i ndi ces_of _control ::= INDICES OF expr
| INDICES OF (cursor_object)
| INDICES OF (sql _statenent)
| INDICES OF cursor_variable
| INDICES OF (dynam c_sql)

pai rs_of _control ::= PAIRS OF expr
| PAIRS OF (cursor_object)

5-18

ORACLE

Chapter 5
LOOP Statements

| PAIRS OF (sqgl _statenent)
| PAIRS OF cursor_variable
| PAIRS OF (dynamic_sql)

The collection itself is the controlling expression. The collection can be a vector value
expression, a cursor object, cursor variable, or dynamic SQL. If a collection is null, it is
treated as if it were defined and empty.

A cursor_object is an explicit PL/SQL cursor object. A sql_statement is an implicit
PL/SQL cursor object created for a SQL statement specified directly in the iteration
control. A cursor_variable is a PL/ISQL REF CURSOR object.

When the iterand for a values of iteration control or the value iterand for a VALUES OF
iteration control is modified in the loop body, those changes have no effect on the next
value generated by the iteration control.

If the collection is modified in the loop body, behavior is unspecified. If a cursor
variable is accessed other than through the iterand during execution of the loop body,
the behavior is unspecified. Most INDICES OF iteration controls produce a numeric
sequence unless the collection is a vector variable.

Expanding VALUES OF Iteration Controls into PL/SQL

The collection is evaluated and assigned to a vector. If the collection is empty, the
iteration control is exhausted. A temporary hidden index is initialized with the index of
the first element (or last element if REVERSE is specified). A value is fetched from the
collection based on the temporary index to create the next value for the iterand. Any
stopping predicate is evaluated. If it fails to evaluate to TRUE, the iteration control is
exhausted. Any skipping predicate is evaluated. If it fails to evaluate to TRUE, skip the
next step. Evaluate the loop body. Advance the index temporary to the index of the
next element in the vector (previous element for REVERSE). Determine the next value
and reiterate with each iterand value until the iteration control is exhausted.

Example 5-21 VALUES OF Iteration Control

This example prints the values from the collection vec: [11, 10, 34]. The iterand values
of the iteration control variable i is the value of the first element in the vector, then the
next element, and the last one.

DECLARE
TYPE intvec_t IS TABLE OF PLS_INTEGER INDEX BY PLS_INTEGER;
vec intvec_t := intvec_t(3 => 10, 1 => 11, 100 => 34);
BEGIN
FOR 1 IN VALUES OF vec LOOP
DBMS_OUTPUT.PUT_LINE(1);
END LOOP;
END;
/

Result:

11 10 34

5-19

ORACLE

Chapter 5
LOOP Statements

Expanding INDICES OF Iteration Controls into PL/SQL

The collection is evaluated and assigned to a vector. If the collection is empty, the
iteration control is exhausted. The next value for the iterand is determined (index of the
first element or last element if REVERSE is specified). The next value is assigned to the
iterand. Any stopping predicate is evaluated. If it fails to evaluate to TRUE, the iteration
control is exhausted. Any skipping predicate is evaluated. If it fails to evaluate to TRUE,
skip the next step. The loop body is evaluated. Advance the iterand to the next value
which is the index of the next element in the vector (previous element for REVERSE).
Reiterate with each iterand value (assigned the index of the next or previous element)
until the iteration control is exhausted.

Example 5-22 INDICES OF Iteration Control

This example prints the indices of the collection vec : [1, 3, 100]. The iterand values
of the iteration control variable i is the index of the first element in the vector, then the
next element, and the last one.

DECLARE
TYPE intvec_t IS TABLE OF PLS_INTEGER INDEX BY PLS_INTEGER;
vec intvec_t := intvec_t(3 => 10, 1 => 11, 100 => 34);
BEGIN
FOR 1 IN INDICES OF vec LOOP
DBMS_OUTPUT.PUT_LINE(1);
END LOOP;
END;
/

Result:

1 3 100

Expanding PAIRS OF Iteration Controls into PL/SQL

The collection is evaluated and assigned to a vector. If the collection is empty, the
iteration control is exhausted. The next index value for the iterand is determined (index
of the first element or last element if REVERSE is specified). The next value of the
element indexed by the next value is assigned to the iterand. Any stopping predicate is
evaluated. If it fails to evaluate to TRUE, the iteration control is exhausted. Any skipping
predicate is evaluated. If it fails to evaluate to TRUE, skip the next step. The loop body
is evaluated. Advance the iterand to the next index value which is the index of the next
element in the vector (previous element for REVERSE). Reiterate with each iterand value
until the iteration control is exhausted.

Example 5-23 PAIRS OF Iteration Control

This example inverts a collection vec into a collection result and prints the resulting
index value pairs (10 => 3, 11 => 1, 34 => 100).

DECLARE
TYPE intvec_t IS TABLE OF PLS_INTEGER INDEX BY PLS_INTEGER;
vec intvec_ t := intvec t(3 => 10, 1 => 11, 100 => 34);
result intvec t;

BEGIN

5-20

Chapter 5
LOOP Statements

result := intvec_t(FOR i,j IN PAIRS OF vec INDEX j => i);
FOR 1,j IN PAIRS OF result LOOP
DBMS_OUTPUT.PUT_LINECT || "=>"1] 1);
END LOOP;
END;
/

Result:

10=>3 11=>1 34=>100

5.2.2.7 Cursor lteration Controls

Cursor iteration controls generate the sequence of records returned by an explicit or
implicit cursor.

The cursor definition is the controlling expression. You cannot use REVERSE with a
cursor iteration control.

cursor_iteration__control ::= { cursor _object
| sql _statement
| cursor_variable
| dynamc_sql }

A cursor_object is an explicit PL/SQL cursor object. A sql_statement is an implicit
PL/SQL cursor object created for a SQL statement specified directly in the iteration
control. A cursor_variable is a PL/ISQL REF CURSOR object. A cursor iteration control

is equivalent to a VALUES OF iteration control whose collection is a cursor. When the
iterand is modified in the loop body, it has no effect on the next value generated by
the iteration control. When the collection is a cursor variable, it must be open when the
iteration control is encountered or an exception will be raised. It remains open when
the iteration control is exhausted. If the cursor variable is accessed other than through
the iterand during execution of the loop body, the behavior is unspecified.

Expanding Cursor Iteration Controls Into PL/SQL

The cursor is evaluated to create a vector of iterands. If the vector is empty, the
iteration control is exhausted. A value is fetched in the vector to create the next value
for the iterand. Any stopping predicate is evaluated. If it fails to evaluate to TRUE, the
iteration control is exhausted. Any skipping predicate is evaluated. If it fails to evaluate
to TRUE, skip the next step. Evaluate the loop body. Reiterate the same with each
iterand value fetched until the iteration control is exhausted.

Example 5-24 Cursor Iteration Controls
This example creates an associative array mapping of id to data from table t.
OPEN ¢ FOR SELECT id, data FROM T;
FOR r rec_t IN c LOOP
result(r.id) := r.data;

END LOOP;
CLOSE c;

5.2.2.8 Using Dynamic SQL in Iteration Controls

ORACLE 5-21

Chapter 5
LOOP Statements

dynani c_sql ::= EXECUTE IMMEDIATE dynanic_sql _stnt [using_clause]
using_clause ::= USING [[IN] (bind_argurent [,]D+]

Dynamic SQL may be used in a cursor or collection iteration control. Such a construct
cannot provide a default type; if it is used as the frst iteration control, an explicit type
must be specified for the iterand (or for the value iterand for a pairs of control). The
using_clause is the only clause allowed. No INTO or dynamic returning clauses may be
used. If the specified SQL statement is a kind that cannot return any rows, a runtime
error will be reported similar to that reported if a bulk collect into or into clause were
specified on an ordinary execute immediate statement.

Example 5-25 Using Dynamic SQL As An Iteration Control

This example shows the iteration control generates all the records from a dynamic
SQL. It prints the last_name and employee_id of all employees having an employee _id
less than 103. It executes the loop body when the stopping predicate is TRUE.

DECLARE

cursor_str VARCHAR2(500) := "SELECT last_name, employee_id FROM hr.employees
ORDER BY last_name";

TYPE rec_t IS RECORD (last_name VARCHAR2(25),

employee_id NUMBER);

BEGIN

FOR r rec_t IN VALUES OF (EXECUTE IMMEDIATE cursor_str) WHEN r.employee_id <
103 LOOP

DBMS_OUTPUT.PUT_LINE(r.last_name || ", " || r-employee_id);

END LOOP;
END;
/

Result:

De Haan, 102
King, 100
Kochhar, 101

Example 5-26 Using Dynamic SQL As An Iteration Control In a Qualified
Expression

v = vec_rec_t(FOR r rec_t IN (EXECUTE IMMEDIATE query_var) SEQUENCE => r);

5.2.2.9 Stopping and Skipping Predicate Clauses

ORACLE

A stopping predicate clause can cause the iteration control to be exhausted while a
skipping predicate clause can cause the loop body to be skipped for some values.

The expressions in these predicate clauses are not controlling expressions.

A stopping predicate clause can cause the iteration control to be exhausted. The
boolean_expression is evaluated at the beginning of each iteration of the loop. If it fails
to evaluate to TRUE, the iteration control is exhausted.

A skipping predicate clause can cause the loop body to be skipped for some values.
The boolean_expression is evaluated. If it fails to evaluate to TRUE, the iteration control
skips to the next value.

5-22

Chapter 5
LOOP Statements

pred_cl ause_seq ::= [stopping_pred] [skipping_pred]

st oppi ng_pred ::= WHILE bool ean_expression

ski ppi ng_pred ::= WHEN bool ean_expressi on

Example 5-27 Using FOR LOOP Stopping Predicate Clause

This example shows an iteration control with a WHILE stopping predicate clause The
iteration control is exhausted if the stopping predicate does not evaluate to TRUE.

BEGIN
FOR power IN 1, REPEAT power*2 WHILE power <= 64 LOOP
DBMS_OUTPUT .PUT_L INE(power) ;
END LOOP;
END;
/

Result:

Example 5-28 Using FOR LOOP Skipping Predicate Clause

This example shows an iteration control with a WHEN skipping predicate clause. If
the skipping predicate does not evaluate to TRUE, the iteration control skips to the next
value.

BEGIN
FOR power IN 2, REPEAT power*2 WHILE power <= 64 WHEN MOD(power, 32)= 0 LOOP
DBMS_OUTPUT .PUT_LINE(power);
END LOOP;
END;
/

Result:

2
32
64

5.2.3 WHILE LOOP Statement

ORACLE

The WHILE LOOP statement runs one or more statements while a condition is true.
It has this structure:

[1'abel] WHILE condition LOOP
statenents
END LOOP [Iabel];

If the condi ti on is true, the st at ement s run and control returns to the top of the loop,
where condi ti on is evaluated again. If the condi ti on is not true, control transfers to
the statement after the WHILE LOOP statement. To prevent an infinite loop, a statement

5-23

Chapter 5
Sequential Control Statements

inside the loop must make the condition false or null. For complete syntax, see
"WHILE LOOP Statement".

An EXIT, EXIT WHEN, CONTINUE, or CONTINUE WHEN in the st at ement s can cause the loop
or the current iteration of the loop to end early.

Some languages have a LOOP UNTIL or REPEAT UNTIL structure, which tests a condition
at the bottom of the loop instead of at the top, so that the statements run at least once.
To simulate this structure in PL/SQL, use a basic LOOP statement with an EXIT WHEN
statement:

LOOP

statenents

EXIT WHEN condition;
END LOOP;

5.3 Sequential Control Statements

Unlike the IF and LOOP statements, the sequential control statements GOTO and NULL
are not crucial to PL/SQL programming.

The GOTO statement, which goes to a specified statement, is seldom needed.
Occasionally, it simplifies logic enough to warrant its use.

The NULL statement, which does nothing, can improve readability by making the
meaning and action of conditional statements clear.

Topics
e GOTO Statement
¢ NULL Statement

5.3.1 GOTO Statement

The GOTO statement transfers control to a label unconditionally. The label must be
unique in its scope and must precede an executable statement or a PL/SQL block.
When run, the GOTO statement transfers control to the labeled statement or block.

For GOTO statement restrictions, see "GOTO Statement".

Use GOTO statements sparingly—overusing them results in code that is hard to
understand and maintain. Do not use a GOTO statement to transfer control from a
deeply nested structure to an exception handler. Instead, raise an exception. For
information about the PL/SQL exception-handling mechanism, see PL/SQL Error
Handling.

The GOTO statement transfers control to the first enclosing block in which the
referenced label appears.

5.3.2 NULL Statement

The NULL statement only passes control to the next statement. Some languages refer
to such an instruction as a no-op (no operation).

Some uses for the NULL statement are:

e To provide a target for a GOTO statement

ORACLE 5-24

ORACLE

Chapter 5
Sequential Control Statements

* To improve readability by making the meaning and action of conditional statements
clear

» To create placeholders and stub subprograms

* To show that you are aware of a possibility, but that no action is necessary

Note:

Using the NULL statement might raise an unreachable code warning if
warnings are enabled. For information about warnings, see "Compile-Time
Warnings".

Example 5-29 NULL Statement Showing No Action
The NULL statement emphasizes that only salespersons receive commissions.

DECLARE
v_job_id VARCHAR2(10);
v_emp_id NUMBER(6) := 110;
BEGIN
SELECT job_id INTO v_job_id
FROM employees
WHERE employee_id = v_emp_id;

IF v_job_id = "SA_REP" THEN
UPDATE employees
SET commission_pct = commission_pct * 1.2;
ELSE
NULL; -- Employee is not a sales rep
END IF;
END;
/

Example 5-30 NULL Statement as Placeholder During Subprogram Creation
The NULL statement lets you compile this subprogram and fill in the real body later.

CREATE OR REPLACE PROCEDURE award_bonus (
emp_id NUMBER,
bonus NUMBER
) AUTHID DEFINER AS
BEGIN -- Executable part starts here
NULL; -- Placeholder
-- (raises "unreachable code" if warnings enabled)
END award_bonus;
/

Example 5-31 NULL Statement in ELSE Clause of Simple CASE Statement

The NULL statement shows that you have chosen to take no action for grades other
than A, B, C, D, and F.

CREATE OR REPLACE PROCEDURE print_grade (
grade CHAR
) AUTHID DEFINER AS
BEGIN
CASE grade
WHEN "A® THEN DBMS_OUTPUT.PUT_LINE("Excellent”);

5-25

Chapter 5
Sequential Control Statements

WHEN "B*® THEN DBMS_OUTPUT.PUT_LINE("Very Good");
WHEN "C*® THEN DBMS_OUTPUT.PUT_LINE("Good");
WHEN "D*® THEN DBMS_OUTPUT.PUT_LINE("Fair®);
WHEN "F® THEN DBMS_OUTPUT.PUT_LINE("Poor*");
ELSE NULL;
END CASE;
END;
/
BEGIN
print_grade("A");
print_grade("S");
END;
/

Result:

Excellent

ORACLE 5-26

PL/SQL Collections and Records

ORACLE

PL/SQL lets you define two kinds of composite data types: collection and record.

A composite data type stores values that have internal components. You can pass
entire composite variables to subprograms as parameters, and you can access
internal components of composite variables individually. Internal components can
be either scalar or composite. You can use scalar components wherever you can
use scalar variables. You can use composite components wherever you can use
composite variables of the same type.

Note:

If you pass a composite variable as a parameter to a remote subprogram,
then you must create a redundant loop-back DATABASE LINK, so that when
the remote subprogram compiles, the type checker that verifies the source
uses the same definition of the user-defined composite variable type as the
invoker uses.

In a collection, the internal components always have the same data type, and are
called elements. You can access each element of a collection variable by its unique
index, with this syntax: vari abl e_name(i ndex). To create a collection variable, you
either define a collection type and then create a variable of that type or use %TYPE.

In a record, the internal components can have different data types, and are called
fields. You can access each field of a record variable by its name, with this syntax:
variabl e_nare. fi el d_nane. To create a record variable, you either define a RECORD
type and then create a variable of that type or use %ROWTYPE or %TYPE.

You can create a collection of records, and a record that contains collections.

Collection Topics

e Collection Types

e Associative Arrays

* Varrays (Variable-Size Arrays)

* Nested Tables

e Collection Constructors

* Qualified Expressions Overview

* Assigning Values to Collection Variables
e Multidimensional Collections

» Collection Comparisons

e Collection Methods

6-1

Chapter 6
Collection Types

Collection Types Defined in Package Specifications

See Also:

e Oracle Database SQL Language Reference for information about the
CREATE DATABASE LINK statement

e "Querying a Collection"

e "BULK COLLECT Clause" for information about retrieving query results
into a collection

e "Collection Variable Declaration" for syntax and semantics of collection
type definition and collection variable declaration

Record Topics

Record Variables

Assigning Values to Record Variables
Record Comparisons

Inserting Records into Tables
Updating Rows with Records

Restrictions on Record Inserts and Updates

¢ Note:

The components of an explicitly listed composite data structure (such as a
collection constructor or record initializer) can be evaluated in any order. If a
program determines order of evaluation, then at the point where the program
does so, its behavior is undefined.

6.1 Collection Types

PL/SQL has three collection types—associative array, VARRAY (variable-size array),
and nested table.

Table 6-1 summarizes their similarities and differences.

Table 6-1 PL/SQL Collection Types
]

Collection Type Number of Index Dense or Uninitialized Where Defined Can Be ADT
Elements Type Sparse Status Attribute Data
Type
Associative array (or Unspecified String or Either Empty In PL/SQL block No
index-by table) PLS_INTEG or package
ER
ORACLE 6-2

Chapter 6
Collection Types

Table 6-1 (Cont.) PL/ISQL Collection Types

Collection Type Number of Index Dense or Uninitialized Where Defined Can Be ADT
Elements Type Sparse Status Attribute Data
Type
VARRAY (variable- Specified Integer Always dense Null In PL/SQL block Only if defined
size array) or package or at at schema level
schema level
Nested table Unspecified Integer Starts dense, Null In PL/SQL block Only if defined
can become or package or at at schema level
sparse schema level

Number of Elements

If the number of elements is specified, it is the maximum number of elements in the
collection. If the number of elements is unspecified, the maximum number of elements
in the collection is the upper limit of the index type.

Dense or Sparse

A dense collection has no gaps between elements—every element between the first
and last element is defined and has a value (the value can be NULL unless the element
has a NOT NULL constraint). A sparse collection has gaps between elements.

Uninitialized Status

An empty collection exists but has no elements. To add elements to an empty
collection, invoke the EXTEND method (described in "EXTEND Collection Method").

A null collection (also called an atomically null collection) does not exist. To
change a null collection to an existing collection, you must initialize it, either by
making it empty or by assigning a non-NULL value to it (for details, see "Collection
Constructors" and "Assigning Values to Collection Variables"). You cannot use the
EXTEND method to initialize a null collection.

Where Defined

A collection type defined in a PL/SQL block is a local type. It is available only

in the block, and is stored in the database only if the block is in a standalone

or package subprogram. (Standalone and package subprograms are explained in
"Nested, Package, and Standalone Subprograms".)

A collection type defined in a package specification is a public item. You can
reference it from outside the package by qualifying it with the package name
(package_nane. type_nane). It is stored in the database until you drop the package.
(Packages are explained in PL/SQL Packages.)

A collection type defined at schema level is a standalone type. You create it with
the "CREATE TYPE Statement". It is stored in the database until you drop it with the
"DROP TYPE Statement".

ORACLE 6-3

Chapter 6
Associative Arrays

< Note:

A collection type defined in a package specification is incompatible with an
identically defined local or standalone collection type (see Example 6-35 and
Example 6-36).

Can Be ADT Attribute Data Type

To be an ADT attribute data type, a collection type must be a standalone collection
type. For other restrictions, see Restrictions on datatype.

Translating Non-PL/SQL Composite Types to PL/ISQL Composite Types

If you have code or business logic that uses another language, you can usually
translate the array and set types of that language directly to PL/SQL collection types.
For example:

Non-PL/SQL Composite Type Equivalent PL/ISQL Composite Type

Hash table Associative array
Unordered table Associative array
Set Nested table
Bag Nested table
Array VARRAY

" See Also:

Oracle Database SQL Language Reference for information about the CAST
function, which converts one SQL data type or collection-typed value into
another SQL data type or collection-typed value.

6.2 Associative Arrays

ORACLE

An associative array (formerly called PLISQL table or index-by table) is a set of
key-value pairs. Each key is a unique index, used to locate the associated value with
the syntax vari abl e_nane(i ndex).

The data type of i ndex can be either a string type (VARCHAR2, VARCHAR, STRING, or
LONG) or PLS_INTEGER. Indexes are stored in sort order, not creation order. For string
types, sort order is determined by the initialization parameters NLS_SORT and NLS_COMP.

Like a database table, an associative array:

* Is empty (but not null) until you populate it

» Can hold an unspecified number of elements, which you can access without
knowing their positions

Unlike a database table, an associative array:

6-4

ORACLE

Chapter 6
Associative Arrays

* Does not need disk space or network operations

e Cannot be manipulated with DML statements

Topics
» Declaring Associative Array Constants
* NLS Parameter Values Affect Associative Arrays Indexed by String

* Appropriate Uses for Associative Arrays

¢ See Also:

e Table 6-1 for a summary of associative array characteristics

e "assoc_array_type_def ::=" for the syntax of an associative array type
definition

Example 6-1 Associative Array Indexed by String

This example defines a type of associative array indexed by string, declares a variable
of that type, populates the variable with three elements, changes the value of one
element, and prints the values (in sort order, not creation order). (FIRST and NEXT are
collection methods, described in "Collection Methods".)

¢ Live SQL:

You can view and run this example on Oracle Live SQL at Associative Array
Indexed by String

DECLARE
-- Associative array indexed by string:

TYPE population 1S TABLE OF NUMBER -- Associative array type
INDEX BY VARCHAR2(64); -- indexed by string

Associative array variable
Scalar variable

city_population population; -
i VARCHAR2(64); -

BEGIN
-- Add elements (key-value pairs) to associative array:
city_population("Smallville®) := 2000;
city_population(*"Midland®) := 750000;
city_population(“Megalopolis®) := 1000000;

-- Change value associated with key “"Smallville®:
city_population("Smallville®) := 2001;
-- Print associative array:

i = city_population.FIRST; -- Get first element of array

6-5

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites1.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites1.html

ORACLE

Chapter 6
Associative Arrays

WHILE i IS NOT NULL LOOP
DBMS_Output.PUT_LINE
("Population of " || 1 || " is " || city_population(i));

i := city_population.NEXT(i); -- Get next element of array
END LOOP;
END;
/
Result:

Population of Megalopolis is 1000000
Population of Midland is 750000
Population of Smallville is 2001

Example 6-2 Function Returns Associative Array Indexed by PLS_INTEGER

This example defines a type of associative array indexed by PLS_INTEGER and a
function that returns an associative array of that type.

¢ Live SQL:

You can view and run this example on Oracle Live SQL at Function Returns
Associative Array Indexed by PLS_INTEGER

DECLARE
TYPE sum_multiples IS TABLE OF PLS_ INTEGER INDEX BY PLS_INTEGER;
n PLS_INTEGER := 5; -- number of multiples to sum for display
sn PLS_INTEGER := 10; -- number of multiples to sum
m PLS_INTEGER := 3; -- multiple

FUNCTION get_sum_multiples (
multiple IN PLS_INTEGER,
num IN PLS_INTEGER

) RETURN sum multiples

1S
s sum_multiples;

BEGIN
FOR i IN 1..num LOOP

s(i) = multiple * (i * (i + 1)) / 2); -- sum of multiples
END LOOP;
RETURN s;
END get_sum multiples;

BEGIN
DBMS_OUTPUT.PUT_LINE (
"Sum of the first " || TO_CHAR(n) || " multiples of " ||
TO_CHAR(m) || " is " || TO_CHAR(get_sum_multiples (m, sn)(n))

END;
/

Result:

Sum of the Ffirst 5 multiples of 3 is 45

6-6

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites16.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites16.html

Chapter 6
Associative Arrays

6.2.1 Declaring Associative Array Constants

ORACLE

When declaring an associative array constant, you can use qualified expressions to
initialize the associative array with its initial values in a compact form.

For information about constructors, see "Collection Constructors".
Example 6-3 Declaring Associative Array Constant

You can use a qualified expression indexed association aggregate to initialize a
constant associative array index expression and value expression.

DECLARE
TYPE My _AA 1S TABLE OF VARCHAR2(20) INDEX BY PLS_INTEGER;
v CONSTANT My_AA := My AA(-10=>"-ten", 0=>"zero", 1=>"one", 2=>"two",
3 => "three", 4 => "four", 9 => "nine");
BEGIN
DECLARE
Idx PLS_INTEGER := v.FIRST();
BEGIN
WHILE ldx IS NOT NULL LOOP
DBMS_OUTPUT.PUT_LINE(TO_CHAR(ldx, *999%)||LPAD(v(1dx), 7));
ldx = v.NEXT(1dX);
END LOOP;
END;
END;
/

Prior to Oracle Database Release 18c, to achieve the same result, you had to create
the function for the associative array constructor. You can observe by comparing
both examples that qualified expressions improve program clarity and developer
productivity by being more compact.

¢ Live SQL:

You can view and run this example on Oracle Live SQL at Declaring
Associative Array Constant

CREATE OR REPLACE PACKAGE My _Types AUTHID CURRENT USER IS
TYPE My AA 1S TABLE OF VARCHAR2(20) INDEX BY PLS_INTEGER;
FUNCTION Init_My AA RETURN My AA;

END My Types;

/

CREATE OR REPLACE PACKAGE BODY My Types IS
FUNCTION Init_My AA RETURN My AA IS

Ret My_AA;

BEGIN
Ret(-10) := "-ten";
Ret(0) := "zero";
Ret(1l) := “one";
Ret(2) := "two";

6-7

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites89.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites89.html

Chapter 6
Associative Arrays

Ret(3) := "three";
Ret(4) := "four";
Ret(9) := "nine";

RETURN Ret;
END Init_My AA;
END My Types;
/

DECLARE
v CONSTANT My Types.My AA := My Types.Init My AAQ);
BEGIN
DECLARE
ldx PLS_INTEGER := v.FIRSTQ);
BEGIN

WHILE Idx IS NOT NULL LOOP
DBMS_OUTPUT.PUT_LINE(TO_CHAR(Idx, "999%)||LPAD(v(ldx), 7));
ldx = v.NEXT(1dx);
END LOOP;
END;
END;
/

Result:

-10 -ten
Zero
one
two
three
four
nine

O b~ WNEF O

6.2.2 NLS Parameter Values Affect Associative Arrays Indexed by

String

ORACLE

National Language Support (NLS) parameters such as NLS_SORT, NLS_COMP, and
NLS_DATE_FORMAT affect associative arrays indexed by string.

Topics
e Changing NLS Parameter Values After Populating Associative Arrays
e Indexes of Data Types Other Than VARCHAR2

e Passing Associative Arrays to Remote Databases

¢ See Also:

Oracle Database Globalization Support Guide for information about linguistic
sort parameters

6-8

Chapter 6
Associative Arrays

6.2.2.1 Changing NLS Parameter Values After Populating Associative Arrays

The initialization parameters NLS_SORT and NLS_COMP determine the storage order of
string indexes of an associative array.

If you change the value of either parameter after populating an associative array
indexed by string, then the collection methods FIRST, LAST, NEXT, and PRIOR

might return unexpected values or raise exceptions. If you must change these
parameter values during your session, restore their original values before operating
on associative arrays indexed by string.

¢ See Also:
Collection Methods for more information about FIRST, LAST, NEXT, and PRIOR

6.2.2.2 Indexes of Data Types Other Than VARCHAR?2

In the declaration of an associative array indexed by string, the string type must be
VARCHAR2 or one of its subtypes.

However, you can populate the associative array with indexes of any data type that the
TO_CHAR function can convert to VARCHAR2.

If your indexes have data types other than VARCHAR2 and its subtypes, ensure that
these indexes remain consistent and unique if the values of initialization parameters
change. For example:

* Do not use TO_CHAR(SYSDATE) as an index.

If the value of NLS_DATE_FORMAT changes, then the value of (TO_CHAR(SYSDATE))
might also change.

* Do not use different N\VARCHAR2 indexes that might be converted to the same
VARCHAR2 value.

* Do not use CHAR or VARCHAR? indexes that differ only in case, accented characters,
or punctuation characters.

If the value of NLS_SORT ends in _CIl (case-insensitive comparisons) or _Al
(accent- and case-insensitive comparisons), then indexes that differ only in case,
accented characters, or punctuation characters might be converted to the same
value.

¢ See Also:

Oracle Database SQL Language Reference for more information about
TO_CHAR

6.2.2.3 Passing Associative Arrays to Remote Databases

If you pass an associative array as a parameter to a remote database, and the local
and the remote databases have different NLS_SORT or NLS_COMP values, then:

ORACLE 6-9

Chapter 6
Varrays (Variable-Size Arrays)

The collection method FIRST, LAST, NEXT or PRIOR (described in "Collection
Methods") might return unexpected values or raise exceptions.

Indexes that are unigue on the local database might not be unique on the remote
database, raising the predefined exception VALUE_ERROR.

6.2.3 Appropriate Uses for Associative Arrays

An associative array is appropriate for:

A relatively small lookup table, which can be constructed in memory each time you
invoke the subprogram or initialize the package that declares it

Passing collections to and from the database server

Declare formal subprogram parameters of associative array types. With Oracle
Call Interface (OCI) or an Oracle precompiler, bind the host arrays to the
corresponding actual parameters. PL/SQL automatically converts between host
arrays and associative arrays indexed by PLS_INTEGER.

" Note:

You cannot bind an associative array indexed by VARCHAR.

" Note:

You cannot declare an associative array type at schema level. Therefore,
to pass an associative array variable as a parameter to a standalone
subprogram, you must declare the type of that variable in a package
specification. Doing so makes the type available to both the invoked
subprogram (which declares a formal parameter of that type) and the
invoking subprogram or anonymous block (which declares and passes
the variable of that type). See Example 11-2.

Tip:

The most efficient way to pass collections to and from the database
server is to use associative arrays with the FORALL statement or BULK
COLLECT clause. For details, see "FORALL Statement" and "BULK
COLLECT Clause".

An associative array is intended for temporary data storage. To make an associative
array persistent for the life of a database session, declare it in a package specification
and populate it in the package body.

6.3 Varrays (Variable-Size Arrays)

A varray (variable-size array) is an array whose number of elements can vary from
zero (empty) to the declared maximum size.

ORACLE

6-10

ORACLE

Chapter 6
Varrays (Variable-Size Arrays)

To access an element of a varray variable, use the syntax vari abl e_nane(i ndex).
The lower bound of i ndex is 1; the upper bound is the current number of elements.
The upper bound changes as you add or delete elements, but it cannot exceed the
maximum size. When you store and retrieve a varray from the database, its indexes
and element order remain stable.

Figure 6-1 shows a varray variable named Grades, which has maximum size 10 and
contains seven elements. Grades(n) references the nth element of Grades. The upper
bound of Grades is 7, and it cannot exceed 10.

Figure 6-1 Varray of Maximum Size 10 with 7 Elements

Varray Grades
lefelalajefofe] [[|
m @ & @ 6 © O

Maximum
Size =10

The database stores a varray variable as a single object. If a varray variable is less
than 4 KB, it resides inside the table of which it is a column; otherwise, it resides
outside the table but in the same tablespace.

An uninitialized varray variable is a null collection. You must initialize it, either by
making it empty or by assigning a non-NULL value to it. For details, see "Collection
Constructors" and "Assigning Values to Collection Variables".

Topics

* Appropriate Uses for Varrays

¢ See Also:

e Table 6-1 for a summary of varray characteristics
e "varray_type_def ::=" for the syntax of a VARRAY type definition

e "CREATE TYPE Statement" for information about creating standalone
VARRAY types

e Oracle Database SQL Language Reference for more information about
varrays

Example 6-4 Varray (Variable-Size Array)

This example defines a local VARRAY type, declares a variable of that type (initializing
it with a constructor), and defines a procedure that prints the varray. The example
invokes the procedure three times: After initializing the variable, after changing the
values of two elements individually, and after using a constructor to the change the
values of all elements. (For an example of a procedure that prints a varray that might
be null or empty, see Example 6-28.)

6-11

Chapter 6
Varrays (Variable-Size Arrays)

¢ Live SQL:

You can view and run this example on Oracle Live SQL at Varray (Variable-
Size Array)

DECLARE
TYPE Foursome IS VARRAY(4) OF VARCHAR2(15); -- VARRAY type

-- varray variable initialized with constructor:
team Foursome := Foursome("John®, “"Mary®, “"Alberto®, "Juanita®);
PROCEDURE print_team (heading VARCHAR2) IS
BEGIN
DBMS_OUTPUT.PUT_LINE(heading);

FOR i IN 1..4 LOOP
DBMS_OUTPUT.PUT LINEGi || "-" |l team(i));

END LOOP;
DBMS_OUTPUT.PUT_LINE("---");
END;
BEGIN
print_team("2001 Team:");
team(3) := "Pierre”; -- Change values of two elements
team(4) := "Yvonne";

print_team("2005 Team:");
-- Invoke constructor to assign new values to varray variable:

team := Foursome("Arun®, “Amitha®, “Allan®, "Mae");
print_team("2009 Team:");

END;

/

Result:

2001 Team:
1.John
2.Mary
3.Alberto
4 _Juanita

2005 Team:
1.John
2.Mary
3.Pierre
4 _Yvonne

2009 Team:
1.Arun
2.Amitha

3.Allan
4 Mae

ORACLE 6-12

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites57.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites57.html

Chapter 6
Nested Tables

6.3.1 Appropriate Uses for Varrays

A varray is appropriate when:
* You know the maximum number of elements.
* You usually access the elements sequentially.

Because you must store or retrieve all elements at the same time, a varray might be
impractical for large numbers of elements.

6.4 Nested Tables

ORACLE

In the database, a nested table is a column type that stores an unspecified number of
rows in no particular order.

When you retrieve a nested table value from the database into a PL/SQL nested

table variable, PL/SQL gives the rows consecutive indexes, starting at 1. Using these
indexes, you can access the individual rows of the nested table variable. The syntax is
vari abl e_name (i ndex). The indexes and row order of a nested table might not remain
stable as you store and retrieve the nested table from the database.

The amount of memory that a nested table variable occupies can increase or decrease
dynamically, as you add or delete elements.

An uninitialized nested table variable is a null collection. You must initialize it, either
by making it empty or by assigning a non-NULL value to it. For details, see "Collection
Constructors" and "Assigning Values to Collection Variables".

Note:

Example 6-21, Example 6-23, and Example 6-24 reuse nt_type and
print_nt.

Topics
* Important Differences Between Nested Tables and Arrays

* Appropriate Uses for Nested Tables

6-13

Chapter 6
Nested Tables

¢ See Also:

e Table 6-1 for a summary of nested table characteristics

e "nested_table_type_def ::=" for the syntax of a nested table type
definition

e "CREATE TYPE Statement" for information about creating standalone
nested table types

e "INSTEAD OF DML Triggers" for information about triggers that update
nested table columns of views

e Oracle Database SQL Language Reference for more information about
nested tables

Example 6-5 Nested Table of Local Type

This example defines a local nested table type, declares a variable of that type
(initializing it with a constructor), and defines a procedure that prints the nested table.
(The procedure uses the collection methods FIRST and LAST, described in "Collection
Methods".) The example invokes the procedure three times: After initializing the
variable, after changing the value of one element, and after using a constructor to the
change the values of all elements. After the second constructor invocation, the nested
table has only two elements. Referencing element 3 would raise error ORA-06533.

\J -
Live SQL:
You can view and run this example on Oracle Live SQL at Nested Table of
Local Type
DECLARE
TYPE Roster 1S TABLE OF VARCHAR2(15); -- nested table type

-- nested table variable initialized with constructor:
names Roster := Roster("D Caruso®, *J Hamil®, °D Piro", "R Singh");
PROCEDURE print_names (heading VARCHAR2) IS
BEGIN
DBMS_OUTPUT.PUT_LINE(heading);
FOR 1 IN names.FIRST .. names.LAST LOOP -- For first to last element
DBMS_OUTPUT.PUT_LINE(names(i));
END LOOP;

DBMS_OUTPUT.PUT_LINE("---");
END;

BEGIN
print_names("Initial Values:");

names(3) := "P Perez"; -- Change value of one element
print_names("Current Values:");

ORACLE 6-14

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites56.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites56.html

ORACLE

Chapter 6
Nested Tables

names := Roster("A Jansen®, "B Gupta"); -- Change entire table
print_names("Current Values:");

END;

/

Result:

Initial Values:
D Caruso

J Hamil

D Piro

R Singh
Current Values:
D Caruso

J Hamil

P Perez

R Singh
Current Values:
A Jansen

B Gupta

Example 6-6 Nested Table of Standalone Type

This example defines a standalone nested table type, nt_type, and a standalone
procedure to print a variable of that type, print_nt. An anonymous block declares
a variable of type nt_type, initializing it to empty with a constructor, and invokes
print_nt twice: After initializing the variable and after using a constructor to the
change the values of all elements.

¢ Live SQL:

You can view and run this example on Oracle Live SQL at Nested Table of
Standalone Type

CREATE OR REPLACE TYPE nt_type IS TABLE OF NUMBER;

/

CREATE OR REPLACE PROCEDURE print_nt (nt nt_type) AUTHID DEFINER IS
i NUMBER;

BEGIN
i = nt.FIRST;

IF i IS NULL THEN
DBMS_OUTPUT.PUT_LINE("nt is empty");
ELSE
WHILE § IS NOT NULL LOOP
DBMS_OUTPUT.PUTC*nt. (" |l i |l ™) = *);
DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(nt(i)),
i = nt.NEXT(i);
END LOOP;
END IF;

"NULL"));

DBMS_OUTPUT.PUT_LINE("---");
END print_nt;
/

6-15

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites86.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites86.html

Chapter 6

Nested Tables
DECLARE
nt nt_type := nt_type(); -- nested table variable initialized to empty
BEGIN

print_nt(nt);
nt := nt_type(90, 9, 29, 58);
print_nt(nt);

END;

/

Result:

nt is empty
ot (1)
nt.(2)
nt.(3)
nt.(4)

0

OIN © O
o ©

6.4.1 Important Differences Between Nested Tables and Arrays

Conceptually, a nested table is like a one-dimensional array with an arbitrary number
of elements. However, a nested table differs from an array in these important ways:

e An array has a declared number of elements, but a nested table does not. The
size of a nested table can increase dynamically.

e Anarray is always dense. A nested array is dense initially, but it can become
sparse, because you can delete elements from it.

Figure 6-2 shows the important differences between a nested table and an array.
Figure 6-2 Array and Nested Table

Array of Integers
|321| 17 | 99 | 407 | 83 [622 | 105 | 19 | 67 | 278 | | Fixed

Upper
x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10) Bound
Nested Table after Deletions gfpi':nfirel)i(mit
El Bl EIEKEE EIRE R

x(1) x(3) x(4) x(6) x(7) x(8) x(10)

6.4.2 Appropriate Uses for Nested Tables

ORACLE

A nested table is appropriate when:

* The number of elements is not set.
* Index values are not consecutive.
* You must delete or update some elements, but not all elements simultaneously.

Nested table data is stored in a separate store table, a system-generated
database table. When you access a nested table, the database joins the nested
table with its store table. This makes nested tables suitable for queries and
updates that affect only some elements of the collection.

6-16

Chapter 6
Collection Constructors

* You would create a separate lookup table, with multiple entries for each row of the
main table, and access it through join queries.

6.5 Collection Constructors

A collection constructor (constructor) is a system-defined function with the same
name as a collection type, which returns a collection of that type.

Note:

This topic applies only to varrays and nested tables. In this topic, collection
means varray or nested table. Associative arrays use qualified expressions
and aggregates (see Qualified Expressions Overview).

The syntax of a constructor invocation is:

collection_type ([value [, value J-.. 1)

If the parameter list is empty, the constructor returns an empty collection. Otherwise,
the constructor returns a collection that contains the specified values. For semantic
details, see "collection_constructor".

You can assign the returned collection to a collection variable (of the same type) in the
variable declaration and in the executable part of a block.

Example 6-7 Initializing Collection (Varray) Variable to Empty

This example invokes a constructor twice: to initialize the varray variable team to
empty in its declaration, and to give it new values in the executable part of the block.
The procedure print_team shows the initial and final values of team. To determine
when team is empty, print_team uses the collection method COUNT, described in
"Collection Methods". (For an example of a procedure that prints a varray that might be
null, see Example 6-28.)

¢ Live SQL:

You can view and run this example on Oracle Live SQL at Initializing
Collection (Varray) Variable to Empty

DECLARE
TYPE Foursome 1S VARRAY(4) OF VARCHAR2(15);
team Foursome := Foursome(); -- initialize to empty

PROCEDURE print_team (heading VARCHAR2)
1S
BEGIN

DBMS_OUTPUT.PUT_LINE(heading);

IF team.COUNT = 0 THEN
DBMS_OUTPUT.PUT_LINE("Empty");
ELSE
FOR i IN 1..4 LOOP

ORACLE 6-17

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites58.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites58.html

Chapter 6
Qualified Expressions Overview

DBMS_OUTPUT.PUT_LINE(i || "." || team(i));
END LOOP;
END IF;

DBMS_OUTPUT.PUT_LINE("---");
END;

BEGIN
print_team("Team:");
team := Foursome("John®, "Mary®, "Alberto", "Juanita®);
print_team("Team:");

END;

/

Result:

Team:
Empty

Team:
1.John
2.Mary
3.Alberto
4 _Juanita

6.6 Qualified Expressions Overview

Qualified expressions improve program clarity and developer productivity by providing
the ability to declare and define a complex value in a compact form where the value is
needed.

A qualified expression combines expression elements to create values of almost any
type. They are most useful for records, associative arrays, nested tables, and variable
arrays .

Qualified expressions use an explicit type indication to provide the type of the qualified
item. This explicit indication is known as a typemark.

Qualified expressions have this structure:

qual ified_expression ::= typemark (aggregate)
aggregate ::= [positional _choice list] [explicit_choice_list]
positional choice list ::= (expr)+

| sequence_iterator_choice
sequence_iterator_choice ::= FOR iterator SEQUENCE => expr
explicit_choice_list ::= named_choice_|ist
| indexed_choice_|ist
| basic_iterator_choice
| index_iterator_choice

named_choice_list ::=identifier => expr [,]+

i ndexed_choice_list ::= expr => expr [,] +

ORACLE 6-18

ORACLE

Chapter 6
Qualified Expressions Overview

basic_iterator_choice ::= FOR iterator => expr

index_iterator_choice -:= FOR iterator INDEX expr => expr

See "qualified_expression ::=" for more information about the syntax and semantics.

Expanding Basic Iterator Choice Association Into PL/SQL
The basic iterator choice association uses the iterand as an index.

For each iterand value, the expression is evaluated and added to the collection using
the iterand value as the index.

typemark (FOR iterand IN iteration_controls => expr)
— Create an empty collection of type typemark
FOR iterand IN iteration_controls LOOP
DECLARE
expr_temp typemark%valuetype := expr;
BEGIN
— Extend collection_temp to iterand if appropriate for typemark
collection_temp(iterand) := expr_temp;
END;
END LOOP;

Expansion of basic iterator choice association can be described informally as follows.

For each value of iterand generated by the iteration controls:
1. Evaluate the expression producing an expression value.

2. If appropriate for the collection type, extend the collection to the index specified by
the iterand.

3. Add the expression value to the collection at the index specified by the iterand
value.

Example 6-8 Basic Iterator Choice Association in Qualified Expressions

This example creates a vector of the first N fibonacci numbers.

result := vec_t (FOR i IN 1.n => fib(i));

This example creates a vector of the first N even numbers.

result := vec_t (FOR i IN 1.n => 2*i);

Expanding Index Iterator Choice Association Into PL/SQL

The index iterator choice association provides an index expression along with the
value expression.

For each iterand value, the index expression and value expression are evaluated.
Then the expanded value is added to the collection using the expanded index.

typemark (FOR iterand IN iteration_controls
INDEX exprl => expr2)
— Create an empty collection of type typemark
FOR iterand IN iteration_controls LOOP
DECLARE
index_temp typemark%indextype := expril;

6-19

ORACLE

Chapter 6
Qualified Expressions Overview

expr_temp typemark%valuetype := expr2;
BEGIN
— Extend collection_temp to index_temp if appropriate for typemark
collection_temp(index_temp) := expr_temp;
END;
END LOOP;

Expansion of index iterator choice association can be described informally as follows.

For each value of iterand generated by the iteration controls:
1. Evaluate the expression producing an expression value.
2. Evaluate the index expression producing an index value.

3. If appropriate for the collection type, extend the collection to the index specified by
the index value.

4. Add the expression value to the collection at the index specified by the index
value.

Example 6-9 Index Iterator Choice Association in Qualified Expressions

This example creates a copy of vec with values incremented by N.

result := vec_t (FOR I,j IN PAIRS OF vec INDEX I => j+n);

This example creates a vector of the first N even numbers.

result := vec_t (FOR i IN 2.n BY 2 INDEX i/2 => i);

Expanding Sequence Iterator Choice Association Into PL/SQL

The sequence iterator choice association allows a sequence of values to be added
to the end of a collection. In each case, the expressions specified may reference the
iterands.

For each iterand value, the value expression is evaluated and added to the end of the
collection.

typemark (FOR iterand IN iteration_controls
SEQUENCE => expr)
— Create an empty collection of type typemark
DECLARE
col_size PLS_INTEGER := current_end_of_collection;
FOR iterand IN iteration_controls LOOP
col_size := col_size + 1;
DECLARE
expr_temp typemarkl%valuetype := expr;
BEGIN
— Extend collection_temp by one if appropriate for typemark
collection_temp(col_size) := expr_temp;
END;
END LOOP;

Expansion of sequence iterator choice association can be described informally as
follows.

For each value of iterand generated by the iteration controls:

1. Evaluate the expression producing an expression value.

6-20

ORACLE

Chapter 6
Qualified Expressions Overview

2. If appropriate for the collection type, extend the collection by one.

3. Add the expression value to the collection at its end.

Example 6-10 Sequence Iterator Choice Association in Qualified Expressions
This example concatenates vectors v1 and reversed v2 together.

result := vec_t (FOR v IN VALUES OF vi,

REVERSE VALUES OF v2
SEQUENCE => v);

This example creates a vector of the prime numbers less than or equal to N.

result := vec_t (FOR i IN 1.n WHEN is_prime(i)
SEQUENCE => i);

Example 6-11 Assigning Values to Associative Array Type Variables Using
Qualified Expressions

This example uses a function to display the values of a table of BOOLEAN.

¢ Live SQL:

You can view and run this example on Oracle Live SQL at "18c Assigning
Values to RECORD Type Variables Using Qualified Expressions"

CREATE FUNCTION print_bool (v IN BOOLEAN)
RETURN VARCHAR2
1S
v_rtn VARCHAR2(10);
BEGIN
CASE v
WHEN TRUE THEN
v_rtn = "TRUE";
WHEN FALSE THEN
v_rtn = "FALSE";
ELSE
v_rtn = "NULL";
END CASE;
RETURN v_rtn;
END print_bool;

The variable v_aal is initialized using index key-value pairs.

DECLARE
TYPE t_aa IS TABLE OF BOOLEAN INDEX BY PLS_INTEGER;
v_aal t aa := t aa(1=>FALSE,
2=>TRUE,
3=>NULL);
BEGIN

6-21

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/aa-agg.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/aa-agg.html

Chapter 6
Assigning Values to Collection Variables

DBMS_OUTPUT.PUT_LINE(print_bool(v_aal(1)));

DBMS_OUTPUT.PUT_LINE(print_bool(v_aal(2)));

DBMS_OUTPUT.PUT_LINE(print_bool(v_aal(3)));
END;

FALSE
TRUE
NULL

6.7 Assigning Values to Collection Variables

You can assign a value to a collection variable in these ways:

* Invoke a constructor to create a collection and assign it to the collection variable.

» Use the assignment statement to assign it the value of another existing collection
variable.

e Pass it to a subprogram as an OUT or IN OUT parameter, and then assign the value
inside the subprogram.

* Use a qualified expression to assign values to an associative array (see
Example 6-11).

To assign a value to a scalar element of a collection variable, reference the element as
col l ection_variabl e_nane(i ndex) and assign it a value.

Topics

e Data Type Compatibility

e Assigning Null Values to Varray or Nested Table Variables

e Assigning Set Operation Results to Nested Table Variables

¢ See Also:

e "Collection Constructors"
e "Assignment Statement" syntax diagram

e "Assigning Values to Variables" for instructions on how to assign a value
to a scalar element of a collection variable

° "BULK COLLECT Clause"

6.7.1 Data Type Compatibility

ORACLE

You can assign a collection to a collection variable only if they have the same data
type. Having the same element type is not enough.

Example 6-12 Data Type Compatibility for Collection Assignment

In this example, VARRAY types triplet and trio have the same element type,
VARCHAR(15). Collection variables groupl and group2 have the same data type,

6-22

Chapter 6
Assigning Values to Collection Variables

triplet, but collection variable group3 has the data type trio. The assignment of
groupl to group2 succeeds, but the assignment of groupl to group3 fails.

¢ Live SQL:

You can view and run this example on Oracle Live SQL at Data Type
Compatibility for Collection Assignment

DECLARE
TYPE triplet IS VARRAY(3) OF VARCHAR2(15);
TYPE trio IS VARRAY(3) OF VARCHAR2(15);

groupl triplet := triplet("Jones”, "Wong", "Marceau®);
group2 triplet;
group3 trio;

BEGIN
group2 := groupl; -- succeeds
group3 := groupl; -- fails
END;
/
Result:

ORA-06550: line 10, column 13:
PLS-00382: expression is of wrong type

6.7.2 Assigning Null Values to Varray or Nested Table Variables

ORACLE

To a varray or nested table variable, you can assign the value NULL or a null collection
of the same data type. Either assignment makes the variable null.

Example 6-13 initializes the nested table variable dept_names to a non-null value;
assigns a null collection to it, making it null; and re-initializes it to a different non-null
value.

Example 6-13 Assigning Null Value to Nested Table Variable

¢ Live SQL:

You can view and run this example on Oracle Live SQL at Assigning Null
Value to Nested Table Variable

DECLARE
TYPE dnames_tab 1S TABLE OF VARCHAR2(30);

dept_names dnames_tab := dnames_tab(
"Shipping®,“Sales®,"Finance","Payroll®); -- Initialized to non-null value

empty_set dnames_tab; -- Not initialized, therefore null
PROCEDURE print_dept_names_status IS

BEGIN
IF dept_names IS NULL THEN

6-23

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites59err.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites59err.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites18.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites18.html

Chapter 6
Assigning Values to Collection Variables

DBMS_OUTPUT.PUT_LINE("dept_names is null.");
ELSE
DBMS_OUTPUT.PUT_LINE("dept_names is not null.");
END IF;
END print_dept_names_status;

BEGIN
print_dept_names_status;
dept_names := empty_set; -- Assign null collection to dept_names.

print_dept_names_status;
dept_names := dnames_tab (
"Shipping®, "Sales", "Finance", "Payroll"); -- Re-initialize dept_names
print_dept_names_status;
END;
/

Result:

dept_names is not null.
dept_names is null.
dept_names is not null.

6.7.3 Assigning Set Operation Results to Nested Table Variables

ORACLE

To a nested table variable, you can assign the result of a SQL MULTISET operation or
SQL SET function invocation.

The SQL MULTISET operators combine two nested tables into a single nested table.
The elements of the two nested tables must have comparable data types. For
information about the MULTISET operators, see Oracle Database SQL Language
Reference.

The SQL SET function takes a nested table argument and returns a nested table of
the same data type whose elements are distinct (the function eliminates duplicate
elements). For information about the SET function, see Oracle Database SQL
Language Reference.

Example 6-14 Assigning Set Operation Results to Nested Table Variable

This example assigns the results of several MULTISET operations and one SET
function invocation of the nested table variable answer, using the procedure
print_nested_table to print answer after each assignment. The procedure uses the
collection methods FIRST and LAST, described in "Collection Methods".

¢ Live SQL:

You can view and run this example on Oracle Live SQL at Assigning Set
Operation Results to Nested Table Variable

DECLARE
TYPE nested_typ 1S TABLE OF NUMBER;

ntl nested_typ :
nt2 nested_typ :
nt3 nested_typ :
nt4 nested_typ :

nested_typ(1,2,3);
nested_typ(3,2,1);
nested_typ(2,3,1,3);
nested_typ(1,2,4);

6-24

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites19.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites19.html

Chapter 6
Multidimensional Collections

answer nested_typ;

PROCEDURE print_nested_table (nt nested_typ) IS
output VARCHAR2(128);
BEGIN
IF nt IS NULL THEN
DBMS_OUTPUT.PUT_LINE("Result: null set");
ELSIF nt.COUNT = O THEN
DBMS_OUTPUT.PUT_LINE("Result: empty set");

ELSE
FOR i1 IN nt.FIRST .. nt.LAST LOOP -- For first to last element
output := output || nt(@) || " °;
END LOOP;
DBMS_OUTPUT.PUT_LINE("Result: " || output);
END 1F;

END print_nested_table;

BEGIN
answer := ntl MULTISET UNION nt4;
print_nested_table(answer);
answer := ntl MULTISET UNION nt3;
print_nested_table(answer);
answer := ntl MULTISET UNION DISTINCT nt3;
print_nested_table(answer);
answer := nt2 MULTISET INTERSECT nt3;
print_nested_table(answer);
answer := nt2 MULTISET INTERSECT DISTINCT nt3;
print_nested_table(answer);
answer := SET(nt3);
print_nested_table(answer);
answer := nt3 MULTISET EXCEPT nt2;
print_nested_table(answer);
answer := nt3 MULTISET EXCEPT DISTINCT nt2;
print_nested_table(answer);

END;

/

Result:

Result:
Result:
Result:
Result:
Result:
Result:
Result:
Result: empty set

WNWWEF R
WNPNDDNDNDDN
P FRPPFPOOWWLWW

N =
w N
NN

6.8 Multidimensional Collections

ORACLE

Although a collection has only one dimension, you can model a multidimensional
collection with a collection whose elements are collections.

Example 6-15 Two-Dimensional Varray (Varray of Varrays)

In this example, nva is a two-dimensional varray—a varray of varrays of integers.

6-25

Chapter 6
Multidimensional Collections

¢ Live SQL:

You can view and run this example on Oracle Live SQL at Two-Dimensional
Varray (Varray of Varrays)

DECLARE
TYPE t1 IS VARRAY(10) OF INTEGER; -- varray of integer
va tl1 := t1(2,3,5);

TYPE ntl IS VARRAY(10) OF t1; -- varray of varray of integer
nva ntl := ntl(va, t1(55,6,73), t1(2,4), va);

i INTEGER;
val t1;
BEGIN
i = nva(2)(3);
DBMS_OUTPUT.PUT_LINEC"1 = * |] 1);

nva.EXTEND;

nva(5) := t1(56, 32); -- replace inner varray elements
nva(4) := t1(45,43,67,43345); -- replace an inner integer element
nva(4)(4) = 1; -- replace 43345 with 1
nva(4) .EXTEND; -- add element to 4th varray element
nva(4)(5) := 89; -- store integer 89 there

END;

/

Result:

i=73

Example 6-16 Nested Tables of Nested Tables and Varrays of Integers

In this example, ntbl is a nested table of nested tables of strings, and ntb2 is a nested
table of varrays of integers.

¢ Live SQL:

You can view and run this example on Oracle Live SQL at Nested Tables of
Nested Tables and Varrays of Integers

DECLARE
TYPE tbhl IS TABLE OF VARCHAR2(20); -- nested table of strings
vtbl tbl := thl("one", "three");

TYPE ntbl IS TABLE OF tbl; -- nested table of nested tables of strings
vntbl ntbl := ntbl(vtbl);

TYPE tvl IS VARRAY(10) OF INTEGER; -- varray of integers
TYPE ntb2 1S TABLE OF tvl; -- nested table of varrays of integers
vntb2 ntb2 := ntb2(tvl1l(3,5), tvl1(5,7,3));

BEGIN

ORACLE 6-26

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites25.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites25.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites26.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites26.html

Chapter 6
Collection Comparisons

vntbl.EXTEND;
vnth1(2) := vntbl(1l);

vntbl_DELETE(1); -- delete first element of vntbl

vntbh1(2) .DELETE(1); -- delete first string from second table in nested table
END;
/

Example 6-17 Nested Tables of Associative Arrays and Varrays of Strings

In this example, aal is an associative array of associative arrays, and ntb2 is a nested
table of varrays of strings.

¢ Live SQL:

You can view and run this example on Oracle Live SQL at Nested Tables of
Associative Arrays and Varrays of Strings

DECLARE
TYPE tbl IS TABLE OF INTEGER INDEX BY PLS_INTEGER; -- associative arrays
v4 tbl;
v5 tbl;
TYPE aal IS TABLE OF tbl INDEX BY PLS_INTEGER; -- associative array of
v2 aal; -- associative arrays

TYPE val IS VARRAY(10) OF VARCHAR2(20); -- varray of strings
vl val := val("hello®, "world");

TYPE ntb2 IS TABLE OF val INDEX BY PLS_INTEGER; -- associative array of
varrays
v3 ntbh2;
BEGIN
v4(1l) = 34; -- populate associative array
va(2) = 46456;
v4(456) := 343;
v2(23) := v4; -- populate associative array of associative arrays
v3(34) := val(33, 456, 656, 343); -- populate associative array varrays
v2(35) := Vv5; -- assign empty associative array to v2(35)
v2(35)(2) := 78;
END;
/

6.9 Collection Comparisons

ORACLE

To determine if one collection variable is less than another (for example), you must
define what less than means in that context and write a function that returns TRUE or
FALSE.

You cannot compare associative array variables to the value NULL or to each other.

Except for Comparing Nested Tables for Equality and Inequality, you cannot natively
compare two collection variables with relational operators. This restriction also applies

6-27

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites27.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/composites27.html

Chapter 6
Collection Comparisons

to implicit comparisons. For example, a collection variable cannot appear in a
DISTINCT, GROUP BY, or ORDER BY clause.

Topics

e Comparing Varray and Nested Table Variables to NULL
e Comparing Nested Tables for Equality and Inequality

e Comparing Nested Tables with SQL Multiset Conditions

¢ See Also:

e Table 3-5

e PL/SQL Subprograms for information about writing functions

6.9.1 Comparing Varray and Nested Table Variables to NULL

ORACLE

Use the IS[NOT] NULL operator when comparing to the NULL value.

You can compare varray and nested table variables to the value NULL with the "IS
[NOT] NULL Operator", but not with the relational operators equal (=) and not equal
(<>, 1=, ~=, or ~=).

Example 6-18 Comparing Varray and Nested Table Variables to NULL

This example compares a varray variable and a nested table variable to NULL correctly.

¢ Live SQL:

You can view and run this example on Oracle Live SQL at Comparing Varray
and Nested Table Variables to NULL

DECLARE
TYPE Foursome IS VARRAY(4) OF VARCHAR2(15); -- VARRAY type
team Foursome; -- varray variable
TYPE Roster 1S TABLE OF VARCHAR2(15); -- nested table type
names Roster := Roster(“Adams®, "Patel”); -- nested table variable
BEGIN

IF team IS NULL THEN
DBMS_OUTPUT.PUT_LINE("team IS NULL®);
ELSE
DBMS_OUTPUT.PUT_LINE("team IS NOT NULL");
END IF;

IF names 1S NOT NULL THEN
DBMS_OUTPUT.PUT_LINE("names IS NOT NULL");
ELSE
DBMS_OUTPUT.PUT_LINE("names IS NULL");
END IF;

6-28

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites60.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites60.html

Chapter 6
Collection Comparisons

END;
/

Result:

team IS NULL
names IS NOT NULL

6.9.2 Comparing Nested Tables for Equality and Inequality

Two nested table variables are equal if and only if they have the same set of elements
(in any order).

If two nested table variables have the same nested table type, and that nested table
type does not have elements of a record type, then you can compare the two variables

for equality or inequality with the relational operators equal (=) and not equal (<>, 1=,
~:,A:)

" See Also:

"Record Comparisons"

Example 6-19 Comparing Nested Tables for Equality and Inequality

This example compares nested table variables for equality and inequality with
relational operators.

¢ Live SQL:

You can view and run this example on Oracle Live SQL at Comparing
Nested Tables for Equality and Inequality

DECLARE
TYPE dnames_tab 1S TABLE OF VARCHAR2(30); -- element type is not record type

dept_namesl dnames_tab :=
dnames_tab("Shipping”,"Sales”, "Finance”, "Payroll™);

dept_names2 dnames_tab :=
dnames_tab("Sales", "Finance", "Shipping”, "Payroll™);

dept_names3 dnames_tab :=
dnames_tab("Sales”, "Finance", "Payroll™);

BEGIN
IF dept_namesl = dept_names2 THEN
DBMS_OUTPUT.PUT_LINE("dept_namesl = dept_names2®);
END IF;

IF dept_names2 != dept_names3 THEN

DBMS_OUTPUT.PUT_LINE("dept_names2 != dept_names3");
END IF;

ORACLE 6-29

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/lnplscomposites95.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/lnplscomposites95.html

Chapter 6
Collection Comparisons

END;
/

Result:

dept_namesl = dept_names?2
dept_names2 = dept_names3

6.9.3 Comparing Nested Tables with SQL Multiset Conditions

You can compare nested table variables, and test some of their properties, with SQL
multiset conditions.

¢ See Also:

e Oracle Database SQL Language Reference for more information about
multiset conditions

e Oracle Database SQL Language Reference for details about
CARDINALITY syntax

e Oracle Database SQL Language Referencefor details about SET syntax

Example 6-20 Comparing Nested Tables with SQL Multiset Conditions

This example uses the SQL multiset conditions and two SQL functions that take
nested table variable arguments, CARDINALITY and SET .

¢ Live SQL:

You can view and run this example on Oracle Live SQL at Comparing
Nested Tables with SQL Multiset Conditions

DECLARE
TYPE nested typ IS TABLE OF NUMBER;
ntl nested_typ := nested_typ(1,2,3);
nt2 nested_typ := nested_typ(3,2,1);
nt3 nested_typ := nested_typ(2,3,1,3);
nt4 nested_typ := nested_typ(1,2,4);

PROCEDURE testify (
truth BOOLEAN := NULL,
quantity NUMBER := NULL
) IS
BEGIN
IF truth IS NOT NULL THEN
DBMS_OUTPUT.PUT_LINE (
CASE truth
WHEN TRUE THEN *"True®
WHEN FALSE THEN "False”
END
);
END IF;

ORACLE 6-30

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites24.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites24.html

6.10 Collection Methods

ORACLE

Chapter 6
Collection Methods

IF quantity IS NOT NULL THEN
DBMS_OUTPUT.PUT_LINE(quantity);

END IF;

END;

BEGIN
testify(truth => (ntl IN (nt2,nt3,nt4))); -- condition
testify(truth => (ntl SUBMULTISET OF nt3)); -- condition
testify(truth => (ntl NOT SUBMULTISET OF nt4)); -- condition
testify(truth => (4 MEMBER OF ntl)); -- condition
testify(truth => (nt3 IS A SET)); -- condition
testify(truth => (nt3 1S NOT A SET)); -- condition
testify(truth => (ntl 1S EMPTY)); -- condition
testify(quantity => (CARDINALITY(nt3))); -- function
testify(quantity => (CARDINALITY(SET(nt3)))); -- 2 functions

END;

/

Result:

True

True

True

False

False

True

False

4

3

A collection method is a PL/SQL subprogram—either a function that returns
information about a collection or a procedure that operates on a collection. Collection
methods make collections easier to use and your applications easier to maintain.

Table 6-2 summarizes the collection methods.

< Note:

With a null collection, EXISTS is the only collection method that does not raise
the predefined exception COLLECTION_IS_NULL.

Table 6-2 Collection Methods

Method Type

Description

DELETE Procedure
TRIM Procedure
EXTEND Procedure
EXISTS Function

FIRST Function
LAST Function

Deletes elements from collection.
Deletes elements from end of varray or nested table.
Adds elements to end of varray or nested table.

Returns TRUE if and only if specified element of varray or nested
table exists.

Returns first index in collection.

Returns last index in collection.

6-31

Chapter 6
Collection Methods

Table 6-2 (Cont.) Collection Methods

Method Type Description

COUNT Function Returns number of elements in collection.

LIMIT Function Returns maximum number of elements that collection can have.
PRIOR Function Returns index that precedes specified index.

NEXT Function Returns index that succeeds specified index.

The basic syntax of a collection method invocation is:

col | ecti on_nane.net hod

For detailed syntax, see "Collection Method Invocation".

A collection method invocation can appear anywhere that an invocation of a PL/SQL
subprogram of its type (function or procedure) can appear, except in a SQL statement.
(For general information about PL/SQL subprograms, see PL/SQL Subprograms.)

In a subprogram, a collection parameter assumes the properties of the argument
bound to it. You can apply collection methods to such parameters. For varray
parameters, the value of LIMIT is always derived from the parameter type definition,
regardless of the parameter mode.

Topics

 DELETE Collection Method

* TRIM Collection Method

e EXTEND Collection Method

e EXISTS Collection Method

* FIRST and LAST Collection Methods

* COUNT Collection Method

e LIMIT Collection Method

* PRIOR and NEXT Collection Methods

6.10.1 DELETE Collection Method

ORACLE

DELETE is a procedure that deletes elements from a collection.
This method has these forms:

e DELETE deletes all elements from a collection of any type.
This operation immediately frees the memory allocated to the deleted elements.
* From an associative array or nested table (but not a varray):

— DELETE(n) deletes the element whose index is n, if that element exists;
otherwise, it does nothing.

— DELETE(m n) deletes all elements whose indexes are in the range m..n, if both
m and n exist and m <= n; otherwise, it does nothing.

6-32

ORACLE

Chapter 6
Collection Methods

For these two forms of DELETE, PL/SQL keeps placeholders for the deleted
elements. Therefore, the deleted elements are included in the internal size of the
collection, and you can restore a deleted element by assigning a valid value to it.

Example 6-21 DELETE Method with Nested Table

This example declares a nested table variable, initializing it with six elements; deletes
and then restores the second element; deletes a range of elements and then restores
one of them; and then deletes all elements. The restored elements occupy the same
memory as the corresponding deleted elements. The procedure print_nt prints the
nested table variable after initialization and after each DELETE operation. The type
nt_type and procedure print_nt are defined in Example 6-6.

DECLARE
nt nt_type := nt_type(11, 22, 33, 44, 55, 66);

BEGIN
print_nt(nt);
nt.DELETE(2); -- Delete second element
print_nt(nt);
nt(2) := 2222; -- Restore second element
print_nt(nt);
nt.DELETE(2, 4); -- Delete range of elements
print_nt(nt);
nt(3) := 3333; -- Restore third element
print_nt(nt);
nt.DELETE; -- Delete all elements
print_nt(nt);

END;

/

Result:

nt.(1) =11

nt.(2) = 22

nt.(3) = 33

nt.(4) = 44

nt.(5) = 55

nt.(6) = 66

nt.(1) = 11

nt.(3) = 33

nt.(4) = 44

nt.(5) = 55

nt.(6) = 66

nt.(1) = 11

nt.(2) = 2222

nt.(3) = 33

nt.(4) = 44

nt.(5) = 55

nt.(6) = 66

nt.(1) = 11

nt.(5) = 55

nt.(6) = 66

6-33

ORACLE

Chapter 6
Collection Methods

nt.(1) = 11
nt.(3) = 3333
nt.(5) = 55
nt.(6) = 66
nt is empty

Example 6-22 DELETE Method with Associative Array Indexed by String

This example populates an associative array indexed by string and deletes all
elements, which frees the memory allocated to them. Next, the example replaces

the deleted elements—that is, adds new elements that have the same indexes as the
deleted elements. The new replacement elements do not occupy the same memory
as the corresponding deleted elements. Finally, the example deletes one element
and then a range of elements. The procedure print_aa_str shows the effects of the
operations.

DECLARE
TYPE aa_type_str IS TABLE OF INTEGER INDEX BY VARCHAR2(10);
aa_str aa_type_str;

PROCEDURE print_aa_str IS
i VARCHAR2(10);

BEGIN
i := aa_str.FIRST;

IF i IS NULL THEN
DBMS_OUTPUT.PUT_LINE("aa_str is empty");
ELSE
WHILE & IS NOT NULL LOOP
DBMS_OUTPUT.PUT("aa_str.C" |1 i |l ™) = *);
DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(aa_str(i)), "NULL"));
i ;= aa_str.NEXT(i);
END LOOP;
END IF;

DBMS_OUTPUT.PUT_LINE("---");
END print_aa_str;

BEGIN
aa_str("M") := 13;
aa_str("Z") := 26;
aa_str("C") := 3;
print_aa_str;
aa_str.DELETE; -- Delete all elements
print_aa_str;
aa_str("M") := 13; -- Replace deleted element with same value
aa_str("Z") := 260; -- Replace deleted element with new value
aa_str("C") := 30; -- Replace deleted element with new value
aa_str("W") := 23; -- Add new element
aa_str("J") := 10; -- Add new element
aa_str("N") := 14; -- Add new element
aa_str("P") := 16; -- Add new element
aa_str("W") :=23; -- Add new element
aa_str("J") := 10; -- Add new element
print_aa_str;
aa_str.DELETE("C"); -- Delete one element

6-34

Chapter 6
Collection Methods

print_aa_str;

aa_str_ DELETE("N","W"); -- Delete range of elements
print_aa_str;

aa_str.DELETE("Z","M"); -- Does nothing
print_aa_str;

END;

/

Result:

aa_str.(C) =
aa_str.(M)
aa_str.(2)
aa_str is empty

3
13
26

aa_str.(C) = 30
aa_str.(J) = 10
aa_str.(M) = 13
aa_str.(N) = 14
aa_str.(P) = 16
aa_str.(W) = 23
aa_str.(2) = 260
aa_str.(J) = 10
aa_str.(M) = 13
aa_str.(N) = 14
aa_str.(P) = 16
aa_str.(W) = 23
aa_str.(2) = 260
aa_str.(J) = 10
aa_str.(M) = 13
aa_str.(2) = 260
aa_str.(J) = 10
aa_str.(M) = 13
aa_str.(2) = 260

6.10.2 TRIM Collection Method

TRIM is a procedure that deletes elements from the end of a varray or nested table.
This method has these forms:

* TRIM removes one element from the end of the collection, if the collection
has at least one element; otherwise, it raises the predefined exception
SUBSCRIPT_BEYOND_COUNT.

e TRIM(n) removes n elements from the end of the collection, if there are at
least n elements at the end; otherwise, it raises the predefined exception
SUBSCRIPT_BEYOND_COUNT.

TRIM operates on the internal size of a collection. That is, if DELETE deletes an element
but keeps a placeholder for it, then TRIM considers the element to exist. Therefore,
TRIM can delete a deleted element.

ORACLE 6-35

ORACLE

Chapter 6
Collection Methods

PL/SQL does not keep placeholders for trimmed elements. Therefore, trimmed
elements are not included in the internal size of the collection, and you cannot restore
a trimmed element by assigning a valid value to it.

Caution:

Do not depend on interaction between TRIM and DELETE. Treat nested tables
like either fixed-size arrays (and use only DELETE) or stacks (and use only
TRIM and EXTEND).

Example 6-23 TRIM Method with Nested Table

This example declares a nested table variable, initializing it with six elements; trims the
last element; deletes the fourth element; and then trims the last two elements—one of
which is the deleted fourth element. The procedure print_nt prints the nested table
variable after initialization and after the TRIM and DELETE operations. The type nt_type
and procedure print_nt are defined in Example 6-6.

DECLARE

nt nt_type := nt_type(11, 22, 33, 44, 55, 66);
BEGIN

print_nt(nt);

nt.TRIM; -- Trim last element
print_nt(nt);

nt.DELETE(4); -- Delete fourth element
print_nt(nt);
nt.TRIM(2); -- Trim last two elements
print_nt(nt);
END;
/
Result:
nt.(1) =11
nt.(2) = 22
nt.(3) = 33
nt.(4) = 44
nt.(5) =55
nt.(6) = 66
nt.(1) =11
nt.(2) = 22
nt.(3) = 33
nt.(4) = 44
nt.(5) = 55
nt.(1) =11
nt.(2) = 22
nt.(3) = 33
nt.(5) =55
nt.(1) =11
nt.(2) = 22

6-36

Chapter 6
Collection Methods

nt.(3) = 33

6.10.3 EXTEND Collection Method

ORACLE

EXTEND is a procedure that adds elements to the end of a varray or nested table.

The collection can be empty, but not null. (To make a collection empty or add
elements to a null collection, use a constructor. For more information, see "Collection
Constructors".)

The EXTEND method has these forms:

* EXTEND appends one null element to the collection.
e EXTEND(n) appends n null elements to the collection.

e EXTEND(n,i) appends n copies of the ith element to the collection.

Note:

EXTEND(n,i) is the only form that you can use for a collection whose
elements have the NOT NULL constraint.

EXTEND operates on the internal size of a collection. That is, if DELETE deletes an
element but keeps a placeholder for it, then EXTEND considers the element to exist.

Example 6-24 EXTEND Method with Nested Table

This example declares a nested table variable, initializing it with three elements;
appends two copies of the first element; deletes the fifth (last) element; and then
appends one null element. Because EXTEND considers the deleted fifth element to
exist, the appended null element is the sixth element. The procedure print_nt
prints the nested table variable after initialization and after the EXTEND and DELETE
operations. The type nt_type and procedure print_nt are defined in Example 6-6.

DECLARE

nt nt_type := nt_type(11, 22, 33);
BEGIN

print_nt(nt);

nt.EXTEND(2,1); -- Append two copies of first element
print_nt(nt);

nt.DELETE(5); -- Delete fifth element
print_nt(nt);

nt.EXTEND; -- Append one null element
print_nt(nt);

END;

/

Result:

nt.(1) = 11
nt.(2) = 22
nt.(3) = 33

6-37

6.10.4 EXISTS Collection Method

ORACLE

nt.(1) = 11
nt.(2) = 22
nt.(3) = 33
nt.(4) = 11
nt.(5) = 11
nt.(1) = 11
nt.(2) = 22
nt.(3) = 33
nt.(4) = 11
nt.(1) = 11
nt.(2) = 22
nt.(3) = 33
nt.(4) = 11
nt.(6) = NULL

Chapter 6
Collection Methods

EXISTS is a function that tells you whether the specified element of a varray or nested

table exists.

EXISTS(n) returns TRUE if the nth element of the collection exists and FALSE otherwise.
If n is out of range, EXISTS returns FALSE instead of raising the predefined exception

SUBSCRIPT_OUTSIDE_LIMIT.

For a deleted element, EXISTS(n) returns FALSE, even if DELETE kept a placeholder for

it.

Example 6-25 EXISTS Method with Nested Table

This example initializes a nested table with four elements, deletes the second element,

and prints either the value or status of elements 1 through 6.

DECLARE

TYPE NumList IS TABLE OF INTEGER;
n NumList := NumList(1,3,5,7);

BEGIN

n.DELETE(2); -- Delete second element

FOR i IN 1..6 LOOP

IF n.EXISTS(i) THEN
DBMS_OUTPUT.PUT LINEC'nC* |1 i Il ™) = " Il n(i));

ELSE

DBMS_OUTPUT.PUT_LINE(*n(™ || 1 || ") does not exist");

END IF;
END LOOP;
END;
/

Result:

n(l) =1
n(2) does not exist
n@@) =5
n(4) =7
n(5) does not exist
n(6) does not exist

6-38

Chapter 6
Collection Methods

6.10.5 FIRST and LAST Collection Methods

FIRST and LAST are functions.

If the collection has at least one element, FIRST and LAST return the indexes of the
first and last elements, respectively (ignoring deleted elements, even if DELETE kept
placeholders for them). If the collection has only one element, FIRST and LAST return
the same index. If the collection is empty, FIRST and LAST return NULL.

Topics

* FIRST and LAST Methods for Associative Array

FIRST and LAST Methods for Varray

e FIRST and LAST Methods for Nested Table

6.10.5.1 FIRST and LAST Methods for Associative Array

ORACLE

For an associative array indexed by PLS_INTEGER, the first and last elements are those
with the smallest and largest indexes, respectively. For an associative array indexed
by string, the first and last elements are those with the lowest and highest key values,
respectively.

Key values are in sorted order (for more information, see "NLS Parameter Values
Affect Associative Arrays Indexed by String").

Example 6-26 FIRST and LAST Values for Associative Array Indexed by
PLS_INTEGER

This example shows the values of FIRST and LAST for an associative array indexed by
PLS_INTEGER, deletes the first and last elements, and shows the values of FIRST and
LAST again.

DECLARE
TYPE aa_type_int IS TABLE OF INTEGER INDEX BY PLS_INTEGER;
aa_int aa_type_int;

PROCEDURE print_first_and_last IS
BEGIN
DBMS_OUTPUT.PUT_LINE("FIRST = * || aa_int.FIRST);
DBMS_OUTPUT.PUT_LINE("LAST = * || aa_int.LAST);
END print_first_and_last;

BEGIN
aa_int(l) :
aa_int(2) :
aa_int(3) :
aa_int(4) :

P O o w

2;

DBMS_OUTPUT.PUT_LINE("Before deletions:");
print_first_and_last;

aa_int.DELETE(L);
aa_int.DELETE(4);

DBMS_OUTPUT.PUT_LINE("After deletions:");
print_first_and_last;

6-39

Chapter 6
Collection Methods

END;
/

Result:

Before deletions:
FIRST = 1

LAST = 4

After deletions:
FIRST = 2

LAST = 3

Example 6-27 FIRST and LAST Values for Associative Array Indexed by String

This example shows the values of FIRST and LAST for an associative array indexed
by string, deletes the first and last elements, and shows the values of FIRST and LAST
again.

DECLARE
TYPE aa_type_str IS TABLE OF INTEGER INDEX BY VARCHAR2(10);
aa_str aa_type_str;

PROCEDURE print_first_and last IS
BEGIN
DBMS_OUTPUT.PUT_LINE(*FIRST = * || aa_str.FIRST);
DBMS_OUTPUT.PUT_LINE("LAST = * || aa_str.LAST);
END print_first_and_last;

BEGIN
aa_str("Z") := 26;
aa_str("A") := 1;
aa_str("K") := 11;
aa_str("R") := 18;

DBMS_OUTPUT.PUT_LINE("Before deletions:");
print_first_and_last;

aa_str.DELETE("A");
aa_str.DELETE("Z");

DBMS_OUTPUT.PUT_LINE("After deletions:*);
print_first_and_last;

END;

/

Result:

Before deletions:
FIRST = A

LAST = Z

After deletions:
FIRST = K

LAST = R

6.10.5.2 FIRST and LAST Methods for Varray

ORACLE

For a varray that is not empty, FIRST always returns 1. For every varray, LAST always
equals COUNT.

6-40

Chapter 6
Collection Methods

Example 6-28 Printing Varray with FIRST and LAST in FOR LOOP

This example prints the varray team using a FOR LOOP statement with the bounds
team.FIRST and team.LAST. Because a varray is always dense, team(i) inside the loop
always exists.

DECLARE
TYPE team type IS VARRAY(4) OF VARCHAR2(15);
team team_type;

PROCEDURE print_team (heading VARCHAR2)
IS
BEGIN

DBMS_OUTPUT.PUT_LINE(heading);

IF team IS NULL THEN
DBMS_OUTPUT.PUT_LINE("Does not exist");

ELSIF team.FIRST IS NULL THEN
DBMS_OUTPUT.PUT_LINE("Has no members");

ELSE
FOR i IN team.FIRST..team.LAST LOOP

DBMS_OUTPUT.PUT_LINEGi || *- " |I team(i));

END LOOP;

END IF;

DBMS_OUTPUT.PUT_LINE("---");
END;

BEGIN
print_team("Team Status:");

team := team type(); -- Team is funded, but nobody is on it.
print_team("Team Status:");

team := team_type("John*", "Mary®"); -- Put 2 members on team.
print_team("Initial Team:");

team := team_type("Arun®, “Amitha®, "Allan®, "Mae"); -- Change team.
print_team("New Team:");

END;

/

Result:

Team Status:
Does not exist
Team Status:
Has no members
Initial Team:
1. John

2. Mary

New Team:

1. Arun

2. Amitha

3. Allan

4. Mae

ORACLE 6-41

Chapter 6
Collection Methods

Related Topic
* Example 6-30

6.10.5.3 FIRST and LAST Methods for Nested Table

ORACLE

For a nested table, LAST equals COUNT unless you delete elements from its middle, in
which case LAST is larger than COUNT.

Example 6-29 Printing Nested Table with FIRST and LAST in FOR LOOP

This example prints the nested table team using a FOR LOOP statement with the bounds
team.FIRST and team.LAST. Because a nested table can be sparse, the FOR LOOP
statement prints team(i) only if team.EXISTS(i) is TRUE.

DECLARE
TYPE team_type IS TABLE OF VARCHAR2(15);
team team_type;

PROCEDURE print_team (heading VARCHAR2) IS
BEGIN
DBMS_OUTPUT.PUT_LINE(heading);

IF team IS NULL THEN
DBMS_OUTPUT.PUT_LINE("Does not exist");
ELSIF team.FIRST IS NULL THEN
DBMS_OUTPUT.PUT_LINE("Has no members");
ELSE
FOR i IN team.FIRST..team.LAST LOOP
DBMS_OUTPUT.PUT(i |] *. *);
IF team.EXISTS(i) THEN
DBMS_OUTPUT.PUT_LINE(team(i));
ELSE
DBMS_OUTPUT.PUT_LINE(" (to be hired)");
END IF;
END LOOP;
END IF;

DBMS_OUTPUT.PUT_LINE("---");
END;

BEGIN
print_team("Team Status:");

team := team type(); -- Team is funded, but nobody is on it.
print_team("Team Status:");

team := team_type("Arun®, “Amitha®, "Allan®, "Mae®"); -- Add members.
print_team("Initial Team:");

team.DELETE(2,3); -- Remove 2nd and 3rd members.
print_team("Current Team:");

END;

/

Result:

Team Status:
Does not exist

6-42

Chapter 6
Collection Methods

Team Status:
Has no members

Initial Team:
1. Arun

2. Amitha

3. Allan

4. Mae

Current Team:

1. Arun

2. (to be hired)
3. (to be hired)
4. Mae

Related Topic
* Example 6-31

6.10.6 COUNT Collection Method

COUNT is a function that returns the number of elements in the collection (ignoring
deleted elements, even if DELETE kept placeholders for them).

Topics

* COUNT Method for Varray

¢ COUNT Method for Nested Table

6.10.6.1 COUNT Method for Varray

For a varray, COUNT always equals LAST. If you increase or decrease the size of a
varray (with the EXTEND or TRIM method), the value of COUNT changes.

Example 6-30 COUNT and LAST Values for Varray

This example shows the values of COUNT and LAST for a varray after initialization with
four elements, after EXTEND(3), and after TRIM(5).

DECLARE
TYPE NumList 1S VARRAY(10) OF INTEGER;
n NumList := NumList(1,3,5,7);

PROCEDURE print_count_and_last 1S

BEGIN
DBMS_OUTPUT.PUT("n.COUNT = " || n.COUNT |] ", ");
DBMS_OUTPUT.PUT_LINE("n.LAST = " || n.LAST);

END print_count_and_last;

BEGIN
print_count_and_last;

n.EXTEND(3);
print_count_and_last;

n.TRIM(5);
print_count_and_last;

ORACLE 6-43

Chapter 6
Collection Methods

END;

/

Result:

n.COUNT = 4, n.LAST = 4
n.COUNT = 7, n.LAST = 7
n.COUNT = 2, n.LAST = 2

6.10.6.2 COUNT Method for Nested Table

For a nested table, COUNT equals LAST unless you delete elements from the middle of
the nested table, in which case COUNT is smaller than LAST.

Example 6-31 COUNT and LAST Values for Nested Table

This example shows the values of COUNT and LAST for a nested table after initialization
with four elements, after deleting the third element, and after adding two null elements
to the end. Finally, the example prints the status of elements 1 through 8.

DECLARE
TYPE NumList IS TABLE OF INTEGER;
n NumList := NumList(1,3,5,7);

PROCEDURE print_count_and_last IS

BEGIN
DBMS_OUTPUT.PUT(*n.COUNT = * || n.COUNT || *, *);
DBMS_OUTPUT.PUT_LINE("n.LAST = * || n.LAST);

END print_count_and_last;

BEGIN
print_count_and_last;

n.DELETE(3); -- Delete third element
print_count_and_last;

n.EXTEND(2); -- Add two null elements to end
print_count_and_last;

FOR i IN 1..8 LOOP
IF n.EXISTS(i) THEN
IF n(i) 1S NOT NULL THEN
DBMS_OUTPUT.PUT_LINEC*nC" [l i Il ™) = Il n(i));

ELSE
DBMS_OUTPUT.PUT_LINEC*n(™ || i || ") = NULL");
END IF;
ELSE
DBMS_OUTPUT.PUT_LINE(*n(" || i || ") does not exist");
END 1IF;
END LOOP;
END;
/
Result:
n.COUNT = 4, n.LAST = 4
n.COUNT = 3, n.LAST = 4
n.COUNT = 5, n.LAST = 6
n(l) =1
n(2) =3

n(3) does not exist

ORACLE 6-44

Chapter 6
Collection Methods

n4) =7
n(5) = NULL
n(6) = NULL

n(7) does not exist
n(8) does not exist

6.10.7 LIMIT Collection Method

ORACLE

LIMIT is a function that returns the maximum number of elements that the collection
can have. If the collection has no maximum number of elements, LIMIT returns NULL.
Only a varray has a maximum size.

Example 6-32 LIMIT and COUNT Values for Different Collection Types

This example prints the values of LIMIT and COUNT for an associative array with four
elements, a varray with two elements, and a nested table with three elements.

DECLARE
TYPE aa_type IS TABLE OF INTEGER INDEX BY PLS_INTEGER;
aa aa_type; -- associative array

TYPE va_type IS VARRAY(4) OF INTEGER;
va va_type := va_type(2,4); -- varray

TYPE nt_type IS TABLE OF INTEGER;
nt nt_type := nt_type(1,3,5); -- nested table

BEGIN
aa(1):=3; aa(2):=6; aa(3):=9; aa(4):= 12;

DBMS_OUTPUT.PUT("aa.COUNT = *);

DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(aa.COUNT), “NULL"));
DBMS_OUTPUT.PUT("aa.LIMIT = 7);
DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(aa.LIMIT), "NULL"));
DBMS_OUTPUT.PUT("va.COUNT = ");
DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(va.COUNT), “NULL"));
DBMS_OUTPUT.PUT("va.LIMIT = 7);
DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(va.LIMIT), “NULL"));
DBMS_OUTPUT.PUT("nt.COUNT = *);
DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(Nt.COUNT), “"NULL"));
DBMS_OUTPUT.PUT("nt_LIMIT = 7);
DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(NE.LIMIT), “"NULL"));

END;

/

Result:

aa.COUNT = 4

aa.LIMIT = NULL

va.COUNT = 2

va.LIMIT = 4

nt.COUNT = 3

nt.LIMIT = NULL

6-45

Chapter 6
Collection Methods

6.10.8 PRIOR and NEXT Collection Methods

ORACLE

PRIOR and NEXT are functions that let you move backward and forward in the
collection (ignoring deleted elements, even if DELETE kept placeholders for them).
These methods are useful for traversing sparse collections.

Given an index:

* PRIOR returns the index of the preceding existing element of the collection, if one
exists. Otherwise, PRIOR returns NULL.

For any collection ¢, c.PRIOR(c.FIRST) returns NULL.

e NEXT returns the index of the succeeding existing element of the collection, if one
exists. Otherwise, NEXT returns NULL.

For any collection ¢, c.NEXT(c.LAST) returns NULL.

The given index need not exist. However, if the collection c is a varray, and the index
exceeds c.LIMIT, then:

e C.PRIOR(i ndex) returns c.LAST.
e C.NEXT(i ndex) returns NULL.
For example:

DECLARE
TYPE Arr_Type IS VARRAY(10) OF NUMBER;
v_Numbers Arr_Type := Arr_Type();
BEGIN
v_Numbers.EXTEND(4);

v_Numbers (1) := 10;
v_Numbers (2) := 20;
v_Numbers (3) := 30;
v_Numbers (4) := 40;

DBMS_OUTPUT.PUT_LINE(NVL(v_Numbers.prior (3400), -1));
DBMS_OUTPUT.PUT_LINE(NVL(v_Numbers.next (3400), -1));
END;
/

Result:

4
-1

For an associative array indexed by string, the prior and next indexes are determined
by key values, which are in sorted order (for more information, see "NLS Parameter
Values Affect Associative Arrays Indexed by String"). Example 6-1 uses FIRST, NEXT,
and a WHILE LOOP statement to print the elements of an associative array.

Example 6-33 PRIOR and NEXT Methods

This example initializes a nested table with six elements, deletes the fourth element,
and then shows the values of PRIOR and NEXT for elements 1 through 7. Elements 4
and 7 do not exist. Element 2 exists, despite its null value.

DECLARE
TYPE nt_type IS TABLE OF NUMBER;

6-46

Chapter 6
Collection Methods

nt nt_type := nt_type(18, NULL, 36, 45, 54, 63);

BEGIN
nt.DELETE(4);
DBMS_OUTPUT.PUT_LINE("nt(4) was deleted.”);

FOR i IN 1..7 LOOP
DBMS_OUTPUT.PUT(*nt.PRIORC" || i Il ™) = ");
DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(Nt.PRIOR(i)), *NULL®));

DBMS_OUTPUT.PUTC"nt.NEXTC" [l i |l ™) = ");
DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(NE.NEXT(i)), *NULL"));
END LOOP;
END;
/
Result:

nt(4) was deleted.
nt.PRIOR(L) = NULL
nt.NEXT(1) = 2

nt.PRIOR(2)
nt.NEXT(2)
nt.PRIOR(3)
nt.NEXT(3)
nt.PRIOR(4)
nt.NEXT(4)
nt.PRIOR(5)
nt.NEXT(5)
nt.PRIOR(6)
nt.NEXT(6)
nt.PRIOR(7)
nt.NEXT(7)

1
3
2
5
3
5
3
6
5
NULL
6

NULL

Example 6-34 Printing Elements of Sparse Nested Table

This example prints the elements of a sparse nested table from first to last, using
FIRST and NEXT, and from last to first, using LAST and PRIOR.

DECLARE
TYPE NumList 1S TABLE OF NUMBER;
n NumList := NumList(l, 2, NULL, NULL, 5, NULL, 7, 8, 9, NULL);
idx INTEGER;

BEGIN

DBMS_OUTPUT.PUT_LINE("First to last:");

idx = n.FIRST;

WHILE idx IS NOT NULL LOOP
DBMS_OUTPUT.PUT("n(™ || idx |] ™) = ");
DBMS_OUTPUT .PUT_LINE(NVL(TO_CHAR(n(idx)), °NULL"));
idx = n.NEXT(idx);

END LOOP;

DBMS_OUTPUT.PUT_LINE("----===--——==-);

DBMS_OUTPUT.PUT_LINE("Last to first:");

idx = n.LAST;

WHILE idx IS NOT NULL LOOP
DBMS_OUTPUT.PUT("n(™ || idx |] ™) = ");
DBMS_OUTPUT .PUT_LINE(NVL(TO_CHAR(n(idx)), °NULL"));
idx = n.PRIOR(idx);

ORACLE 6-47

END LOOP;
END;
/

Result:

First to last:

n(l) =1
n2) =2
n(3) = NULL
n(4) = NULL
n5) =5
n(6) = NULL
n(@) =7
n(8 =8
n(® =9
n(10) = NULL
Last to first:
n(10) = NULL
n(® =9
n(8 =8
n(@) =7
n(6) = NULL
n5) =5
n(4) = NULL
n(3) = NULL
n2) =2
n(l) =1

Chapter 6
Collection Types Defined in Package Specifications

6.11 Collection Types Defined in Package Specifications

A collection type defined in a package specification is incompatible with an identically

ORACLE

defined local or standalone collection type.

" Note:

Example 6-35

The examples in this topic define packages and procedures, which are
explained in PL/SQL Packages and PL/SQL Subprograms, respectively.

Identically Defined Package and Local Collection Types

In this example, the package specification and the anonymous block define the
collection type NumList identically. The package defines a procedure, print_numlist,
which has a NumList parameter. The anonymous block declares the variable nl of the
type pkg.NumList (defined in the package) and the variable n2 of the type NumList
(defined in the block). The anonymous block can pass nl to print_numlist, but it

cannot pass n2 to print_numlist.

6-48

Chapter 6
Collection Types Defined in Package Specifications

¢ Live SQL:

You can view and run this example on Oracle Live SQL at Identically Defined
Package and Local Collection Types

CREATE OR REPLACE PACKAGE pkg AS
TYPE NumList IS TABLE OF NUMBER;
PROCEDURE print_numlist (nums NumList);

END pkg;

/

CREATE OR REPLACE PACKAGE BODY pkg AS
PROCEDURE print_numlist (nums NumList) IS
BEGIN

FOR i IN nums.FIRST..nums.LAST LOOP
DBMS_OUTPUT .PUT_LINE(nums(i));

END LOOP;
END;
END pkg;
/
DECLARE
TYPE NumList IS TABLE OF NUMBER; -- local type identical to package type
nl pkg-NumList := pkg.NumList(2,4); -- package type
n2 NumList := NumList(6,8); -- local type
BEGIN
pkg.print_numlist(nl); -- succeeds
pkg.print_numlist(n2); -- fails
END;
/
Result:
pkg.print_numlist(n2); -- fails
*

ERROR at line 7:

ORA-06550: line 7, column 3:

PLS-00306: wrong number or types of arguments in call to "PRINT_NUMLIST®
ORA-06550: line 7, column 3:

PL/SQL: Statement ignored

Example 6-36 Identically Defined Package and Standalone Collection Types

This example defines a standalone collection type NumList that is identical to the
collection type NumList defined in the package specification in Example 6-35. The
anonymous block declares the variable nl of the type pkg.NumList (defined in the
package) and the variable n2 of the standalone type NumList. The anonymous block
can pass nl to print_numlist, but it cannot pass n2 to print_numlist.

¢ Live SQL:

You can view and run this example on Oracle Live SQL at Identically Defined
Package and Standalone Collection Types

CREATE OR REPLACE TYPE NumList IS TABLE OF NUMBER;
-- standalone collection type identical to package type

ORACLE 6-49

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites40err.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites40err.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites74err.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites74err.html

Chapter 6
Record Variables

/
DECLARE
nl pkg.NumList := pkg.-NumList(2,4); -- package type
n2 NumList := NumList(6,8); -- standalone type
BEGIN
pkg.print_numlist(nl); -- succeeds
pkg.print_numlist(n2); -- fails
END;
/
Result:
pkg.print_numlist(n2); -- fails
*

ERROR at line 7:

ORA-06550: line 7, column 3:

PLS-00306: wrong number or types of arguments in call to "PRINT_NUMLIST"
ORA-06550: line 7, column 3:

PL/SQL: Statement ignored

6.12 Record Variables

You can create a record variable in any of these ways:

e Define a RECORD type and then declare a variable of that type.

* Use %ROWTYPE to declare a record variable that represents either a full or partial
row of a database table or view.

» Use %TYPE to declare a record variable of the same type as a previously declared
record variable.

For syntax and semantics, see "Record Variable Declaration".
Topics

* Initial Values of Record Variables

e Declaring Record Constants

* RECORD Types
e Declaring Items using the %ROWTYPE Attribute

6.12.1 Initial Values of Record Variables

For a record variable of a RECORD type, the initial value of each field is NULL unless you
specify a different initial value for it when you define the type.

For a record variable declared with %ROWTYPE or %TYPE, the initial value of each field is
NULL. The variable does not inherit the initial value of the referenced item.

6.12.2 Declaring Record Constants

When declaring a record constant, you can use qualified expressions positional or
named association notations to initialize values in a compact form.

ORACLE 6-50

ORACLE

Chapter 6
Record Variables

Example 6-37 Declaring Record Constant

This example shows the record constant r being initialized with a qualified expression.
The values of 0 and 1 are assigned by explicitly indicating the My_Rec typemark and
an aggregate specified using the positional notation.

¢ Live SQL:

You can view and run this example on Oracle Live SQL at Declaring Record
Constant

DECLARE
TYPE My _Rec IS RECORD (a NUMBER, b NUMBER);
r CONSTANT My_Rec := My Rec(0,1);

BEGIN

DBMS_OUTPUT.PUT_LINE("r.a = * || r.a);
DBMS_OUTPUT.PUT_LINE("r.b = * || r.b);
END;
/

Prior to Oracle Database Release 18c, to achieve the same result, you had to declare
a record constant using a function that populates the record with its initial value and
then invoke the function in the constant declaration. You can observe by comparing
both examples that qualified expressions improve program clarity and developer
productivity by being more compact.

CREATE OR REPLACE PACKAGE My_Types AUTHID CURRENT_USER IS
TYPE My _Rec 1S RECORD (a NUMBER, b NUMBER);
FUNCTION Init_My Rec RETURN My Rec;

END My_Types;

/

CREATE OR REPLACE PACKAGE BODY My_Types IS
FUNCTION Init_My Rec RETURN My Rec IS

Rec My Rec;
BEGIN

Rec.a := 0;

Rec.b := 1;

RETURN Rec;
END Init_My Rec;
END My _Types;
/

DECLARE

r CONSTANT My Types.My Rec := My Types.Init My Rec();
BEGIN
DBMS_OUTPUT.PUT_LINE("r.a = *
DBMS_OUTPUT.PUT_LINE("r.b
END;

/

Result:

6-51

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites90.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites90.html

Chapter 6
Record Variables

0
1

r.a
r.b
Example 6-38 Declaring Record Constant

This example shows a record constant ¢c_small initialized with a qualified expression
using the positional notation. The c_large record constant is initialized with a qualified
expression using the named association notation.

DECLARE
TYPE t_size IS RECORD (x NUMBER, y NUMBER);
c_small CONSTANT t size := t _size(32,36);
c_large CONSTANT t_size := t size(x => 192, y => 292);

BEGIN

DBMS_OUTPUT.PUT_LINE("Small size is " || c_small.x || " by *]I
c_small.y);

DBMS_OUTPUT.PUT_LINE("Large size is " || c_large.x || " by *]I
c_large.y);
END;
/
Result:

Small size is 32 by 36
Large size is 192 by 292

6.12.3 RECORD Types

A RECORD type defined in a PL/SQL block is a local type. It is available only in the
block, and is stored in the database only if the block is in a standalone or package
subprogram.

A RECORD type defined in a package specification is a public item. You can
reference it from outside the package by qualifying it with the package name
(package_nane. type_nane). It is stored in the database until you drop the package
with the DROP PACKAGE statement.

You cannot create a RECORD type at schema level. Therefore, a RECORD type cannot be
an ADT attribute data type.

To define a RECORD type, specify its name and define its fields. To define a field, specify
its name and data type. By default, the initial value of a field is NULL. You can specify
the NOT NULL constraint for a field, in which case you must also specify a non-NULL
initial value. Without the NOT NULL constraint, a non-NULL initial value is optional.

A RECORD type defined in a package specification is incompatible with an identically
defined local RECORD type.

ORACLE 6-52

ORACLE

Chapter 6
Record Variables

¢ See Also:

e PL/SQL Packages
e PL/SQL Subprograms
* Nested, Package, and Standalone Subprograms

¢ Example 6-42, "™

Example 6-39 RECORD Type Definition and Variable Declaration

This example defines a RECORD type named DeptRecTyp, specifying an initial value for
each field. Then it declares a variable of that type named dept_rec and prints its fields.

¢ Live SQL:

You can view and run this example on Oracle Live SQL at RECORD Type
Definition and Variable Declaration

DECLARE
TYPE DeptRecTyp 1S RECORD (
dept_id NUMBER(4) NOT NULL := 10,
dept_name VARCHAR2(30) NOT NULL := "Administration”,

mgr_id NUMBER(6) := 200,
loc_id NUMBER(4) := 1700
);
dept_rec DeptRecTyp;
BEGIN

DBMS_OUTPUT.PUT_LINE("dept_id: " || dept_rec.dept_id);
DBMS_OUTPUT.PUT_LINE("dept_name: " || dept_rec.dept_name);
DBMS_OUTPUT.PUT_LINE("mgr_id: " || dept_rec.mgr_id);
DBMS_OUTPUT.PUT_LINE("loc_id: " || dept_rec.loc_id);

END;

/

Result:

dept_id: 10

dept_name: Administration
mgr_id: 200

loc_id: 1700

Example 6-40 RECORD Type with RECORD Field (Nested Record)

This example defines two RECORD types, name_rec and contact. The type contact has
a field of type name_rec.

6-53

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites76.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites76.html

ORACLE

Chapter 6
Record Variables

¢ Live SQL:

You can view and run this example on Oracle Live SQL at RECORD Type
with RECORD Field (Nested Record)

DECLARE

TYPE name_rec IS RECORD (
first employees.first_name%TYPE,
last employees.last_name%TYPE

);

TYPE contact 1S RECORD (
name name_rec, -- nested record
phone employees.phone_number%TYPE

);

friend contact;

BEGIN
friend.name.first := "John";
friend.name.last := "Smith";
friend.phone := "1-650-555-1234";

friend.name.first
friend.name. last
friend.phone
);
END;
/

DBMS_OUTPUT.PUT_LINE (
In--
(I I |

Result:
John Smith, 1-650-555-1234
Example 6-41 RECORD Type with Varray Field

This defines a VARRAY type, full_name, and a RECORD type, contact. The type contact
has a field of type full_name.

¢ Live SQL:

You can view and run this example on Oracle Live SQL at RECORD Type
with Varray Field

DECLARE
TYPE full_name IS VARRAY(2) OF VARCHAR2(20);

TYPE contact IS RECORD (
name Ffull_name := full_name("John*, "Smith"), -- varray field
phone employees.phone_number%TYPE

);

friend contact;
BEGIN

6-54

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites77.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites77.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites78.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites78.html

ORACLE

Chapter 6
Record Variables

friend.phone := "1-650-555-1234";

DBMS_OUTPUT.PUT_LINE (
friend.name(®) || " " |1
friend.name(2) || ", " |1
friend.phone

);
END;
/

Result:

John Smith, 1-650-555-1234

Example 6-42 Identically Defined Package and Local RECORD Types

In this example, the package pkg and the anonymous block define the RECORD type
rec_type identically. The package defines a procedure, print_rec_type, which has a
rec_type parameter. The anonymous block declares the variable r1 of the package
type (pkg.rec_type) and the variable r2 of the local type (rec_type). The anonymous
block can pass rl1 to print_rec_type, but it cannot pass r2 to print_rec_type.

¢ Live SQL:

You can view and run this example on Oracle Live SQL at Identically Defined
Package and Local RECORD Types

CREATE OR REPLACE PACKAGE pkg AS
TYPE rec_type IS RECORD (-- package RECORD type
f1 INTEGER,
2 VARCHAR2(4)
);
PROCEDURE print_rec_type (rec rec_type);
END pkg;
/
CREATE OR REPLACE PACKAGE BODY pkg AS
PROCEDURE print_rec_type (rec rec_type) IS
BEGIN
DBMS_OUTPUT.PUT_LINE(rec.f1);
DBMS_OUTPUT.PUT_LINE(rec.f2);
END;
END pkg;
/
DECLARE
TYPE rec_type IS RECORD (-- local RECORD type
f1 INTEGER,
2 VARCHAR2(4)
):
rl pkg.rec_type; -- package type
r2 rec_type; -- local type

BEGIN
ri.fl :
r2.fl1 :

10; rl1.f2 :
25; r2.f2 :

"abcd®;
"wxyz*;

pkg.print_rec_type(rl); -- succeeds
pkg.print_rec_type(r2); -- fails

6-55

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites75err.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites75err.html

Chapter 6
Record Variables

END;
/

Result:
pkg.print_rec_type(r2); -- fails
ERROR at line 14:

ORA-06550: line 14, column 3:
PLS-00306: wrong number or types of arguments in call to "PRINT_REC TYPE"

6.12.4 Declaring ltems using the %ROWTYPE Attribute

The %ROWTYPE attribute lets you declare a record variable that represents either a full or
partial row of a database table or view.

For the syntax and semantics details, see %ROWTYPE Attribute.
Topics

» Declaring a Record Variable that Always Represents Full Row
* Declaring a Record Variable that Can Represent Partial Row

* %ROWTYPE Attribute and Virtual Columns
« %ROWTYPE Attribute and Invisible Columns

6.12.4.1 Declaring a Record Variable that Always Represents Full Row

To declare a record variable that always represents a full row of a database table or
view, use this syntax:

vari abl e_nane tabl e_or_vi ew_nane%ROWTYPE;

For every column of the table or view, the record has a field with the same name and
data type.

¢ See Also:
"0bROWTYPE Attribute" for more information about %ROWTYPE

Example 6-43 %ROWTYPE Variable Represents Full Database Table Row

This example declares a record variable that represents a row of the table
departments, assigns values to its fields, and prints them. Compare this example to
Example 6-39.

¢ Live SQL:

You can view and run this example on Oracle Live SQL at %o ROWTYPE
Variable Represents Full Database Table Row

ORACLE 6-56

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites80.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites80.html

ORACLE

Chapter 6
Record Variables

DECLARE

dept_rec departments%ROWTYPE;
BEGIN

-- Assign values to fields:

dept_rec.department_id = 10;
dept_rec.department_name := “"Administration”;
dept_rec.manager_id = 200;
dept_rec.location_id = 1700;

-- Print fields:

DBMS_OUTPUT.PUT_LINE("dept_id: *
DBMS_OUTPUT.PUT_LINE("dept_name: "
DBMS_OUTPUT.PUT LINE("mgr_id: "
DBMS_OUTPUT.PUT_LINE("loc_id: *
END;
/

ept_rec.department_id);
ept_rec.department_name);
ept_rec.manager_id);
ept_rec.location_id);

Result:

dept_id: 10

dept_name: Administration
mgr_id: 200

loc_id: 1700

Example 6-44 %ROWTYPE Variable Does Not Inherit Initial Values or
Constraints

This example creates a table with two columns, each with an initial value and a NOT
NULL constraint. Then it declares a record variable that represents a row of the table
and prints its fields, showing that they did not inherit the initial values or NOT NULL
constraints.

¢ Live SQL:

You can view and run this example on Oracle Live SQL at %ROWTYPE
Variable Does Not Inherit Initial Values or Constraints

DROP TABLE t1;

CREATE TABLE t1 (

cl INTEGER DEFAULT O NOT NULL,
c2 INTEGER DEFAULT 1 NOT NULL

);

DECLARE
tl row t1%ROWTYPE;

BEGIN
DBMS_OUTPUT.PUT("tl.cl = *);
DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(t1_row.cl), “NULL®));

DBMS_OUTPUT.PUT("tl.c2 = "); print(tl_row.c2);
DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(t1_row.c2), "NULL"));
END;
/

6-57

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites79.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites79.html

Chapter 6
Record Variables

Result:
tl.cl = NULL
tl.c2 = NULL

6.12.4.2 Declaring a Record Variable that Can Represent Partial Row

ORACLE

To declare a record variable that can represent a partial row of a database table or
view, use this syntax:

vari abl e_nane cur sor %ROWTYPE;

A cursor is associated with a query. For every column that the query selects, the
record variable must have a corresponding, type-compatible field. If the query selects
every column of the table or view, then the variable represents a full row; otherwise,
the variable represents a partial row. The cursor must be either an explicit cursor or a
strong cursor variable.

¢ See Also:

* "FETCH Statement" for complete syntax

e "Cursors Overview" for information about cursors

e "Explicit Cursors" for information about explicit cursors

e "Cursor Variables" for information about cursor variables

e Oracle Database SQL Language Reference for information about joins

Example 6-45 %ROWTYPE Variable Represents Partial Database Table Row

This example defines an explicit cursor whose query selects only the columns
first_name, last_name, and phone_number from the employees table in the sample
schema HR. Then the example declares a record variable that has a field for each
column that the cursor selects. The variable represents a partial row of employees.
Compare this example to Example 6-40.

¢ Live SQL:

You can view and run this example on Oracle Live SQL at %ROWTYPE
Variable Represents Partial Database Table Row

DECLARE
CURSOR c IS
SELECT first_name, last_name, phone_number
FROM employees;

friend ch%ROWTYPE;
BEGIN
friend.first_name
friend. last_name
friend.phone_number :

*John";
"Smith";
"1-650-555-1234";

6-58

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites81.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites81.html

Chapter 6
Record Variables

friend.first_name
friend. last_name
friend.phone_number

);
END;
/

DBMS_OUTPUT.PUT_LINE (
II - L
[IR

Result:
John Smith, 1-650-555-1234
Example 6-46 %ROWTYPE Variable Represents Join Row

This example defines an explicit cursor whose query is a join and then declares a
record variable that has a field for each column that the cursor selects.

¢ Live SQL:

You can view and run this example on Oracle Live SQL at %ROWTYPE
Variable Represents Join Row

DECLARE
CURSOR c2 IS
SELECT employee_id, email, employees.manager_id, location_id
FROM employees, departments
WHERE employees.department_id = departments.department_id;

join_rec c2%ROWTYPE; -- includes columns from two tables

BEGIN
NULL;

END;

/

6.12.4.3 %ROWTYPE Attribute and Virtual Columns

ORACLE

If you use the %ROWTYPE attribute to define a record variable that represents a full row
of a table that has a virtual column, then you cannot insert that record into the table.
Instead, you must insert the individual record fields into the table, excluding the virtual
column.

Example 6-47 Inserting %ROWTYPE Record into Table (Wrong)

This example creates a record variable that represents a full row of a table that has
a virtual column, populates the record, and inserts the record into the table, causing
ORA-54013.

DROP TABLE plch_departure;

CREATE TABLE plch_departure (

destination VARCHAR2(100),

departure_time DATE,

delay NUMBER(10),

expected GENERATED ALWAYS AS (departure_time + delay/24/60/60)

);

6-59

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites82.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/tdlnplscomposites82.html

Chapter 6
Record Variables

DECLARE

dep_rec plch_departure%ROWTYPE;

BEGIN
dep_rec.destination := "X";
dep_rec.departure_time := SYSDATE;
dep_rec.delay := 1500;

INSERT INTO plch_departure VALUES dep_rec;
END;
/

Result:

DECLARE

*

ERROR at line 1:
ORA-54013: INSERT operation disallowed on virtual columns
ORA-06512: at line 8

Example 6-48 Inserting %ROWTYPE Record into Table (Right)

This solves the problem in Example 6-47 by inserting the individual record fields into
the table, excluding the virtual column.

DECLARE
dep_rec plch_departure%rowtype;
BEGIN
dep_rec.destination := "X";
dep_rec.departure_time := SYSDATE;
dep_rec.delay := 1500;

INSERT INTO plch_departure (destination, departure_time, delay)
VALUES (dep_rec.destination, dep_rec.departure_time, dep_rec.delay);
end;
/

Result:

PL/SQL procedure successfully completed.

6.12.4.4 %ROWTYPE Attribute and Invisible Columns

Suppose that you use the %ROWTYPE attribute to define a record variable that
represents a row of a table that has an invisible column, and then you make the
invisible column visible.

If you define the record variable with a cursor, as in "Declaring a Record Variable that
Can Represent Partial Row", then making the invisible column visible does not change
the structure of the record variable.

However, if you define the record variable as in "Declaring a Record Variable that
Always Represents Full Row" and use a SELECT * INTO statement to assign values to
the record, then making the invisible column visible does change the structure of the
record—see Example 6-49.

ORACLE 6-60

ORACLE

Chapter 6
Record Variables

¢ See Also:

Oracle Database SQL Language Reference for general information about
invisible columns

Example 6-49 %ROWTYPE Affected by Making Invisible Column Visible

CREATE TABLE t (a INT, b INT, ¢ INT INVISIBLE);
INSERT INTO t (a, b, c) VALUES (1, 2, 3);
COMMIT;

DECLARE
t_rec t%ROWTYPE; -- t_rec has fields a and b, but not c

BEGIN
SELECT * INTO t_rec FROM t WHERE ROWNUM < 2; -- t_rec(a)=1, t_rec(b)=2
DBMS_OUTPUT.PUT _LINE(*c = " || t_rec.c);

END;

/

Result:

DBMS_OUTPUT.PUT_LINE(*c = * || t_rec.c);
*

ERROR at line 5:

ORA-06550: line 5, column 40:

PLS-00302: component "C" must be declared
ORA-06550: line 5, column 3:

PL/SQL: Statement ignored

Make invisible column visible:

ALTER TABLE t MODIFY (c VISIBLE);

Result:

Table altered.

Repeat preceding anonymous block:

DECLARE
t_rec tYROWTYPE; -- t_rec has fields a, b, and ¢

BEGIN
SELECT * INTO t_rec FROM t WHERE ROWNUM < 2; -- t_rec(a)=1, t_rec(b)=2,

-- t_rec(c)=3

DBMS_OUTPUT.PUT_LINE(*c = " || t_rec.c);

END;

/

Result:
c=3

PL/SQL procedure successfully completed.

6-61

Chapter 6
Assigning Values to Record Variables

6.13 Assigning Values to Record Variables

A record variable means either a record variable or a record component of a
composite variable.

To any record variable, you can assign a value to each field individually.
You can assign values using qualified expressions.

In some cases, you can assign the value of one record variable to another record
variable.

If a record variable represents a full or partial row of a database table or view, you can
assign the represented row to the record variable.

Topics

* Assigning Values to RECORD Type Variables Using Qualified Expressions

* Assigning One Record Variable to Another

* Assigning Full or Partial Rows to Record Variables

e Assigning NULL to a Record Variable

6.13.1 Assigning Values to RECORD Type Variables Using Qualified
Expressions

ORACLE

You can assign values to RECORD type variables using qualified expressions positional
association or named association aggregates.

A qualified expression combines expression elements to create values of a RECORD
type. An aggregate defines a compound type value. You can assign values to a RECORD
type using qualified expressions. Positional and named associations are allowed for
qualified expressions of RECORD type. A positional association may not follow a named
association in the same construct (and vice versa).

A qualified expression is this context has this structure:

qual ified_expression ::= typemark (aggregate)

aggregate :-:= positional _association | named_association
positional _association ::= (expr)+

named_association ::= identifier => expr [,]+

Example 6-50 Assigning Values to RECORD Type Variables Using Qualified
Expressions

This example shows the declaration, initialization, and definition of RECORD type
variables.

Type rec_t is defined and partially initialized in package pkg.

Variable v_recl is declared with that type and assigned initial values using a positional
aggregate.

6-62

ORACLE

Chapter 6
Assigning Values to Record Variables

Variable v_rec?2 is declared with that type as well and assigned initial values using a
named association aggregate.

Variable v_rec3 is assigned the NULL values.

The procedure print_rec displays the values of the local variable v_rec1, followed
by the procedure parameter pi_rec variable values. If no parameter is passed to the
procedure, it displays the initial values set in the procedure definition.

¢ Live SQL:

You can view and run this example on Oracle Live SQL at "18c Assigning
Values to RECORD Type Variables Using Qualified Expressions"

CREATE PACKAGE pkg 1S
TYPE rec_t 1S RECORD
(year PLS_INTEGER := 2,
name VARCHAR2 (100));
END;
/
DECLARE
v_recl pkg.rec_t := pkg.rec t(1847,"ONE EIGHT FOUR SEVEN");
v_rec2 pkg.rec_t := pkg.rec_t(year => 1, name => "ONE");
v_rec3 pkg.rec_t := pkg.rec t(NULL,NULL);

PROCEDURE print_rec (pi_rec pkg.rec_t := pkg.rec_t(1847+1, "a"||"b"))
IS

v_recl pkg.rec_t := pkg.rec t(2847,"TWO EIGHT FOUR SEVEN");
BEGIN

DBMS_OUTPUT.PUT_LINE(NVL(v_recl.year,0) ||® " |INVL(v_recl.name, "N/
A™));

DBMS_OUTPUT.PUT_LINE(NVL(pi_rec.year,0) ||® " |INVL(pi_rec.name, "N/
A™));
END;
BEGIN

print_rec(v_recl);

print_rec(v_rec2);

print_rec(v_rec3);

print_recQ;
END;
/

2847 TWO EIGHT FOUR SEVEN
1847 ONE EIGHT FOUR SEVEN
2847 TWO EIGHT FOUR SEVEN
1 ONE

2847 TWO EIGHT FOUR SEVEN
0 N/A

2847 TWO EIGHT FOUR SEVEN
1848 ab

6-63

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/rec-agg.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-collections-and-records/rec-agg.html

Chapter 6
Assigning Values to Record Variables

6.13.2 Assigning One Record Variable to Another

ORACLE

You can assign the value of one record variable to another record variable only in
these cases:

e The two variables have the same RECORD type.

* The target variable is declared with a RECORD type, the source variable is declared
with %ROWTYPE, their fields match in number and order, and corresponding fields
have the same data type.

For record components of composite variables, the types of the composite variables
need not match.

Example 6-51 Assignhing Record to Another Record of Same RECORD Type

In this example, namel and name2 have the same RECORD type, so you can assign
the value of namel to name2.

DECLARE

TYPE name_rec IS RECORD (

first employees.first_name%TYPE DEFAULT *"John®,
last employees. last_name%TYPE DEFAULT "Doe*

);

namel name_rec;
name2 name_rec;

BEGIN
namel.first := "Jane"; namel.last := "Smith";
DBMS_OUTPUT.PUT_LINE("namel: * || namel.first || " " || namel.last);
name2 := namel;
DBMS_OUTPUT.PUT_LINE("name2: * || name2.Ffirst || " " || name2.last);
END;
/

Result:

namel: Jane Smith
name2: Jane Smith

Example 6-52 Assigning %ROWTYPE Record to RECORD Type Record

In this example, the target variable is declared with a RECORD type, the source variable
is declared with YROWTYPE, their fields match in number and order, and corresponding
fields have the same data type.

DECLARE

TYPE name_rec IS RECORD (

first employees.first_name%TYPE DEFAULT ®"John®,
last employees.last_name%TYPE DEFAULT "Doe*

);
CURSOR c IS
SELECT first_name, last_name
FROM employees;

target name_rec;
source C%UROWTYPE;

6-64

ORACLE

Chapter 6
Assigning Values to Record Variables

BEGIN
source.first_name := "Jane"; source.last_name := "Smith";

DBMS_OUTPUT.PUT_LINE (
"source: " || source.first_name || * " || source.last_name

);
target := source;

DBMS_OUTPUT.PUT_LINE (
"target: " || target.first || " " || target.last

);
END;
/

Result:

source: Jane Smith
target: Jane Smith

Example 6-53 Assigning Nested Record to Another Record of Same RECORD
Type

This example assigns the value of one nested record to another nested record. The
nested records have the same RECORD type, but the records in which they are nested
do not.

DECLARE
TYPE name_rec IS RECORD (
first employees._first_name%TYPE,
last employees.last_name%TYPE

);

TYPE phone_rec IS RECORD (
name name_rec, -- nested record
phone employees.phone_number%TYPE

);

TYPE email_rec IS RECORD (
name name_rec, -- nested record

email employees.email%TYPE

);

phone_contact phone_rec;
email_contact email _rec;

BEGIN
phone_contact._name.first := "John*;
phone_contact._name.last := "Smith*";
phone_contact._phone := "1-650-555-1234";

email_contact.name := phone_contact.name;

email_contact.email := (
email_contact.name._first || "."
email_contact.name_last || "@"
"example._com®

);

DBMS_OUTPUT.PUT_LINE (email_contact.email);
END;
/

6-65

Chapter 6
Assigning Values to Record Variables

Result:

John.Smith@example.com

6.13.3 Assigning Full or Partial Rows to Record Variables

If a record variable represents a full or partial row of a database table or view, you can
assign the represented row to the record variable.

Topics

e Using SELECT INTO to Assign a Row to a Record Variable

e Using FETCH to Assign a Row to a Record Variable

» Using SQL Statements to Return Rows in PL/SQL Record Variables

6.13.3.1 Using SELECT INTO to Assign a Row to a Record Variable

ORACLE

The syntax of a simple SELECT INTO statement is:

SELECT sel ect _|ist INTO record_variable_name FROM table_or_view nane;

For each column in sel ect _I i st, the record variable must have a corresponding,
type-compatible field. The columns in sel ect _| i st must appear in the same order as
the record fields.

¢ See Also:

"SELECT INTO Statement" for complete syntax

Example 6-54 SELECT INTO Assigns Values to Record Variable

In this example, the record variable recl represents a partial row of the employees

table—the columns last_name and employee_id. The SELECT INTO statement selects
from employees the row for which job_id is *AD_PRES" and assigns the values of the
columns last_name and employee_id in that row to the corresponding fields of recl.

DECLARE
TYPE RecordTyp IS RECORD (
last employees.last_name%TYPE,
id employees.employee id%TYPE
):
recl RecordTyp;
BEGIN
SELECT last_name, employee_id INTO recl
FROM employees
WHERE job_id = "AD_PRES";

DBMS_OUTPUT.PUT_LINE ("Employee #* || recl.id || ® = " || recl.last);
END;
/

Result:

Employee #100 = King

6-66

Chapter 6
Assigning Values to Record Variables

6.13.3.2 Using FETCH to Assign a Row to a Record Variable

The syntax of a simple FETCH statement is:

FETCH cursor INTO record_variabl e_nane;

A cursor is associated with a query. For every column that the query selects, the
record variable must have a corresponding, type-compatible field. The cursor must be
either an explicit cursor or a strong cursor variable.

See Also:

e "FETCH Statement" for complete syntax
e "Cursors Overview" for information about all cursors
e "Explicit Cursors" for information about explicit cursors

e "Cursor Variables" for information about cursor variables

Example 6-55 FETCH Assigns Values to Record that Function Returns

In this example, each variable of RECORD type EmpRecTyp represents a partial row of
the employees table—the columns employee_id and salary. Both the cursor and the
function return a value of type EmpRecTyp. In the function, a FETCH statement assigns
the values of the columns employee_id and salary to the corresponding fields of a
local variable of type EmpRecTyp.

DECLARE

TYPE EmpRecTyp IS RECORD (
emp_id employees.employee id%TYPE,
salary employees.salary%TYPE

);

CURSOR desc_salary RETURN EmpRecTyp IS
SELECT employee_id, salary
FROM employees
ORDER BY salary DESC;

highest_paid_emp EmpRecTyp;
next_highest_paid_emp EmpRecTyp;

FUNCTION nth_highest_salary (n INTEGER) RETURN EmpRecTyp IS
emp_rec EmpRecTyp;
BEGIN
OPEN desc_salary;
FOR i IN 1..n LOOP
FETCH desc_salary INTO emp_rec;
END LOOP;
CLOSE desc_salary;
RETURN emp_rec;
END nth_highest_salary;

BEGIN

highest_paid_emp := nth_highest_salary(1);
next_highest_paid_emp := nth_highest_salary(2);

ORACLE 6-67

Chapter 6
Assigning Values to Record Variables

DBMS_OUTPUT.PUT_LINE(
"Highest Paid: #" ||
highest_paid_emp.emp_id || ", $" |I
highest_paid_emp.salary
);
DBMS_OUTPUT .PUT_LINE(
"Next Highest Paid: #" ||
next_highest_paid_emp.emp_id || ", $" ||
next_highest_paid_emp.salary

);
END;
/

Result:

Highest Paid: #100, $24000
Next Highest Paid: #101, $17000

6.13.3.3 Using SQL Statements to Return Rows in PL/SQL Record Variables

The SQL statements INSERT, UPDATE, and DELETE have an optional RETURNING INTO
clause that can return the affected row in a PL/SQL record variable.

For information about this clause, see "RETURNING INTO Clause".
Example 6-56 UPDATE Statement Assigns Values to Record Variable

In this example, the UPDATE statement updates the salary of an employee and returns
the name and new salary of the employee in a record variable.

DECLARE

TYPE EmpRec 1S RECORD (

last_name employees.last_name%TYPE,
salary employees.salary%TYPE
):

emp_info EmpRec;

old_salary employees.salary%TYPE;
BEGIN

SELECT salary INTO old_salary

FROM employees
WHERE employee_id = 100;

UPDATE employees
SET salary = salary * 1.1
WHERE employee_id = 100
RETURNING last_name, salary INTO emp_info;

DBMS_OUTPUT.PUT_LINE (
"Salary of " || emp_info.last_name || " raised from * ||
old_salary || " to * || emp_info.salary

);
END;
/

Result:

Salary of King raised from 24000 to 26400

ORACLE 6-68

Chapter 6
Record Comparisons

6.13.4 Assigning NULL to a Record Variable

Assigning the value NULL to a record variable assigns the value NULL to each of its
fields.

This assignment is recursive; that is, if a field is a record, then its fields are also
assigned the value NULL.

Example 6-57 Assigning NULL to Record Variable

This example prints the fields of a record variable (one of which is a record) before and
after assigning NULL to it.

DECLARE
TYPE age_rec IS RECORD (
years INTEGER DEFAULT 35,
months INTEGER DEFAULT 6

);

TYPE name_rec IS RECORD (
first employees.first_name%TYPE DEFAULT ®"John®,
last employees.last_name%TYPE DEFAULT "Doe*,
age age_rec

);
name name_rec;

PROCEDURE print_name AS

BEGIN
DBMS_OUTPUT.PUT(NVL(name.first, *NULL*) || * *);:
DBMS_OUTPUT.PUT(NVL(name.last, *NULL*) [] ", ™);
DBMS_OUTPUT.PUT(NVL(TO_CHAR(name.age.years), °"NULL®") || " yrs ");
DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(name.age.months), *NULL®") || " mos");

END;

BEGIN
print_name;
name := NULL;
print_name;

END;

/

Result:

John Doe, 35 yrs 6 mos
NULL NULL, NULL yrs NULL mos

6.14 Record Comparisons

Records cannot be tested natively for nullity, equality, or inequality.
These BOOLEAN expressions are illegal:

e My Record IS NULL

* My Record_1 = My Record_2

* My_Record_1 > My_Record_2

ORACLE 6-69

Chapter 6
Inserting Records into Tables

You must write your own functions to implement such tests. For information about
writing functions, see PL/SQL Subprograms.

6.15 Inserting Records into Tables

ORACLE

The PL/SQL extension to the SQL INSERT statement lets you insert a record into a
table.

The record must represent a row of the table. For more information, see
"INSERT Statement Extension”. For restrictions on inserting records into tables, see
"Restrictions on Record Inserts and Updates".

To efficiently insert a collection of records into a table, put the INSERT statement
inside a FORALL statement. For information about the FORALL statement, see "FORALL
Statement”.

Example 6-58 Initializing Table by Inserting Record of Default Values

This example creates the table schedule and initializes it by putting default values in
a record and inserting the record into the table for each week. (The COLUMN formatting
commands are from SQL*Plus.)

DROP TABLE schedule;

CREATE TABLE schedule (
week NUMBER,
Mon VARCHAR2(10),
Tue VARCHAR2(10),
Wed VARCHAR2(10),
Thu VARCHAR2(10),
Fri VARCHAR2(10),
Sat VARCHAR2(10),
Sun VARCHAR2(10)

);
DECLARE
default week schedule%ROWTYPE;
i NUMBER;
BEGIN
default_week.Mon := "0800-1700";
default_week.Tue := "0800-1700";
default_week.Wed := "0800-1700";
default _week.Thu := "0800-1700";
default _week.Fri := "0800-1700";
default_week.Sat := "Day Off~;
default_week.Sun := "Day Off~;
FOR & IN 1..6 LOOP
default_week.week =03
INSERT INTO schedule VALUES default _week;
END LOOP;
END;
/

COLUMN week FORMAT 99
COLUMN Mon FORMAT A9
COLUMN Tue FORMAT A9
COLUMN Wed FORMAT A9
COLUMN Thu FORMAT A9
COLUMN Fri FORMAT A9

6-70

Chapter 6
Updating Rows with Records

COLUMN Sat FORMAT A9
COLUMN Sun FORMAT A9

SELECT * FROM schedule;

Result:

1 0800-1700 0800-1700 0800-1700 0800-1700 0800-1700 Day Off Day OFf
2 0800-1700 0800-1700 0800-1700 0800-1700 0800-1700 Day Off Day Off
3 0800-1700 0800-1700 0800-1700 0800-1700 0800-1700 Day Off Day Off
4 0800-1700 0800-1700 0800-1700 0800-1700 0800-1700 Day Off Day Off
5 0800-1700 0800-1700 0800-1700 0800-1700 0800-1700 Day Off Day Off
6 0800-1700 0800-1700 0800-1700 0800-1700 0800-1700 Day Off Day Off

6.16 Updating Rows with Records

ORACLE

The PL/SQL extension to the SQL UPDATE statement lets you update one or more table
rows with a record.

The record must represent a row of the table. For more information, see "UPDATE
Statement Extensions".

For restrictions on updating table rows with a record, see "Restrictions on Record
Inserts and Updates".

To efficiently update a set of rows with a collection of records, put the UPDATE
statement inside a FORALL statement. For information about the FORALL statement,
see "FORALL Statement".

Example 6-59 Updating Rows with Record

This example updates the first three weeks of the table schedule (defined in
Example 6-58) by putting the new values in a record and updating the first three rows
of the table with that record.

DECLARE
default week schedule%ROWTYPE;

BEGIN
default_week.Mon :
default_week.Tue :
default_week.Wed
default_week.Thu
default_week.Fri
default_week.Sat

“Day Off~;

"0900-1800";
"0900-1800";
"0900-1800";
"0900-1800";
"0900-1800";

default_week.Sun "Day Off~;
FOR i IN 1..3 LOOP
default_week.week =03

UPDATE schedule
SET ROW = default_week
WHERE week = 1i;
END LOOP;
END;
/

SELECT * FROM schedule;

6-71

Chapter 6
Restrictions on Record Inserts and Updates

1 Day OFf 0900-1800 0900-1800 0900-1800 0900-1800 0900-1800 Day OFf
2 Day Off 0900-1800 0900-1800 0900-1800 0900-1800 0900-1800 Day Off
3 Day Off 0900-1800 0900-1800 0900-1800 0900-1800 0900-1800 Day Off
4 0800-1700 0800-1700 0800-1700 0800-1700 0800-1700 Day Off Day Off
5 0800-1700 0800-1700 0800-1700 0800-1700 0800-1700 Day Off Day Off
6 0800-1700 0800-1700 0800-1700 0800-1700 0800-1700 Day OFf Day Off

6.17 Restrictions on Record Inserts and Updates

These restrictions apply to record inserts and updates:

ORACLE

Record variables are allowed only in these places:

— On the right side of the SET clause in an UPDATE statement
— Inthe VALUES clause of an INSERT statement

— Inthe INTO subclause of a RETURNING clause

Record variables are not allowed in a SELECT list, WHERE clause, GROUP BY clause,
or ORDER BY clause.

The keyword ROW is allowed only on the left side of a SET clause. Also, you cannot
use ROW with a subquery.

In an UPDATE statement, only one SET clause is allowed if ROW is used.

If the VALUES clause of an INSERT statement contains a record variable, no other
variable or value is allowed in the clause.

If the INTO subclause of a RETURNING clause contains a record variable, no other
variable or value is allowed in the subclause.

These are not supported:

— Nested RECORD types

— Functions that return a RECORD type

— Record inserts and updates using the EXECUTE IMMEDIATE statement.

6-72

PL/SQL Static SQL

Static SQL is a PL/SQL feature that allows SQL syntax directly in a PL/SQL
statement.

This chapter describes static SQL and explains how to use it.

Topics

e Description of Static SQL

* Cursors Overview

e Processing Query Result Sets

* Cursor Variables

e CURSOR Expressions

e Transaction Processing and Control

e Autonomous Transactions

¢ See Also:

"Resolution of Names in Static SQL Statements”

7.1 Description of Static SQL

Static SQL has the same syntax as SQL, except as noted.

Topics
e Statements

e Pseudocolumns

7.1.1 Statements

ORACLE

These are the PL/SQL static SQL statements, which have the same syntax as the
corresponding SQL statements, except as noted:

e SELECT (this statement is also called a query)
For the PL/SQL syntax, see "SELECT INTO Statement".
« Data manipulation language (DML) statements:
— INSERT
For the PL/SQL syntax, see "INSERT Statement Extension".
— UPDATE

7-1

ORACLE

Chapter 7
Description of Static SQL

For the PL/SQL syntax, see "UPDATE Statement Extensions".
— DELETE
For the PL/SQL syntax, see "DELETE Statement Extension".

— MERGE (for syntax, see Oracle Database SQL Language Reference)

" Note:

Oracle Database SQL Language Reference defines DML differently.

e Transaction control language (TCL) statements:

— COMMIT (for syntax, see Oracle Database SQL Language Reference)

— ROLLBACK (for syntax, see Oracle Database SQL Language Reference)

— SAVEPOINT (for syntax, see Oracle Database SQL Language Reference)

— SET TRANSACTION (for syntax, see Oracle Database SQL Language Reference)
* LOCK TABLE (for syntax, see Oracle Database SQL Language Reference)

A PL/SQL static SQL statement can have a PL/SQL identifier wherever its SQL
counterpart can have a placeholder for a bind variable. The PL/SQL identifier must
identify either a variable or a formal parameter.

To use PL/SQL identifiers for table names, column names, and so on, use the EXECUTE
IMMEDIATE statement, explained in "Native Dynamic SQL"

¢ Note:

After PL/SQL code runs a DML statement, the values of some variables are
undefined. For example:

e After a FETCH or SELECT statement raises an exception, the values of the
define variables after that statement are undefined.

« After a DML statement that affects zero rows, the values of the OUT
bind variables are undefined, unless the DML statement is a BULK or
multiple-row operation.

Example 7-1 Static SQL Statements

In this example, a PL/SQL anonymous block declares three PL/SQL variables and
uses them in the static SQL statements INSERT, UPDATE, DELETE. The block also uses
the static SQL statement COMMIT.

DROP TABLE employees_temp;

CREATE TABLE employees_temp AS
SELECT employee_id, first_name, last_name
FROM employees;

DECLARE
emp_id employees_temp.employee_id%TYPE := 299;
emp_first_name employees_temp.first_name%TYPE := "Bob";
emp_last_name employees_temp.last_name%TYPE = "Henry";

7-2

Chapter 7
Description of Static SQL

BEGIN

INSERT INTO employees_temp (employee_id, first_name, last_name)
VALUES (emp_id, emp_first_name, emp_last_name);

UPDATE employees_temp
SET first_name = "Robert"
WHERE employee_id = emp_id;

DELETE FROM employees_temp

WHERE employee_id = emp_id
RETURNING first_name, last_name
INTO emp_first_name, emp_last_name;

COMMIT;
DBMS_OUTPUT.PUT_LINE (emp_first_name || * " || emp_last_name);

END;

/

Result:

Robert Henry

7.1.2 Pseudocolumns

A pseudocolumn behaves like a table column, but it is not stored in the table.

For general information about pseudocolumns, including restrictions, see Oracle
Database SQL Language Reference.

Static SQL includes these SQL pseudocolumns:

CURRVAL and NEXTVAL, described in "CURRVAL and NEXTVAL in PL/SQL".
LEVEL, described in Oracle Database SQL Language Reference
OBJECT_VALUE, described in Oracle Database SQL Language Reference

See Also:

"OBJECT_VALUE Pseudocolumn" for information about using
OBJECT_VALUE in triggers
ROWID, described in Oracle Database SQL Language Reference

See Also:
"Simulating CURRENT OF Clause with ROWID Pseudocolumn”

ROWNUM, described in Oracle Database SQL Language Reference

7.1.2.1 CURRVAL and NEXTVAL in PL/SQL

After a sequence is created, you can access its values in SQL statements with the
CURRVAL pseudocolumn, which returns the current value of the sequence, or the
NEXTVAL pseudocolumn, which increments the sequence and returns the new value.

ORACLE

7-3

Chapter 7
Description of Static SQL

To reference these pseudocolumns, use dot notation—for example,
sequence_name.CURRVAL.

Note:

Each time you reference sequence_nane.NEXTVAL, the sequence is
incremented immediately and permanently, whether you commit or roll back
the transaction.

You can use sequence_nane.CURRVAL and sequence_nanme.NEXTVAL in a PL/SQL
expression wherever you can use a NUMBER expression. However:

e Using sequence_nane.CURRVAL or sequence_name.NEXTVAL to provide a default
value for an ADT method parameter causes a compilation error.

* PL/SQL evaluates every occurrence of sequence_name.CURRVAL and
sequence_name.NEXTVAL (unlike SQL, which evaluates a sequence expression for
every row in which it appears).

¢ See Also:

e Oracle Database SQL Language Reference for general information
about sequences

e Oracle Database SQL Language Reference for CURRVAL and NEXTVAL
complete syntax

Example 7-2 CURRVAL and NEXTVAL Pseudocolumns

This example generates a sequence number for the sequence HR.EMPLOYEES_SEQ and
refers to that number in multiple statements.

DROP TABLE employees_temp;

CREATE TABLE employees_temp AS
SELECT employee_id, first_name, last_name
FROM employees;

DROP TABLE employees_temp2;

CREATE TABLE employees_temp2 AS
SELECT employee_id, first_name, last_name
FROM employees;

DECLARE
seq_value NUMBER;

BEGIN
-- Generate initial sequence number
seq_value := employees_seq.NEXTVAL;

-- Print initial sequence number:

DBMS_OUTPUT.PUT_LINE (
"Initial sequence value: " || TO_CHAR(seq_value)

ORACLE 7-4

/*

END;
/

Chapter 7
Cursors Overview

Use NEXTVAL to create unique number when inserting data:

INSERT INTO employees_temp (employee_id, first_name, last_name)
VALUES (employees_seq.NEXTVAL, "Lynette®, "Smith");

Use CURRVAL to store same value somewhere else:

INSERT INTO employees_temp2 VALUES (employees_seq.CURRVAL,
"Morgan®, "Smith");

Because NEXTVAL values might be referenced

by different users and applications,

and some NEXTVAL values might not be stored in database,
there might be gaps in sequence. */

Use CURRVAL to specify record to delete:
seq_value := employees_seq.CURRVAL;

DELETE FROM employees_temp2
WHERE employee_id = seq_value;

Update employee_id with NEXTVAL for specified record:
UPDATE employees_temp

SET employee_id = employees_seq.NEXTVAL

WHERE first_name = "Lynette"

AND last_name = "Smith";

Display final value of CURRVAL:

seq_value := employees_seq.CURRVAL;

DBMS_OUTPUT.PUT_LINE (
"Ending sequence value: " || TO_CHAR(seq_value)
):

7.2 Cursors Overview

A cursor is a pointer to a private SQL area that stores information about processing a
specific SELECT or DML statement.

ORACLE

Note:

The cursors that this topic explains are session cursors. A session cursor
lives in session memory until the session ends, when it ceases to exist.

A cursor that is constructed and managed by PL/SQL is an implicit cursor. A cursor
that you construct and manage is an explicit cursor.

You can get information about any session cursor from its attributes (which you can
reference in procedural statements, but not in SQL statements).

7-5

Chapter 7
Cursors Overview

To list the session cursors that each user session currently has opened and parsed,
query the dynamic performance view VSOPEN_CURSOR.

The number of cursors that a session can have open simultaneously is determined by:

e The amount of memory available to the session

e The value of the initialization parameter OPEN_CURSORS

< Note:

Generally, PL/SQL parses an explicit cursor only the first time the session
opens it and parses a SQL statement (creating an implicit cursor) only the
first time the statement runs.

All parsed SQL statements are cached. A SQL statement is reparsed only

if it is aged out of the cache by a new SQL statement. Although you must
close an explicit cursor before you can reopen it, PL/SQL need not reparse
the associated query. If you close and immediately reopen an explicit cursor,
PL/SQL does not reparse the associated query.

Topics
* Implicit Cursors

* Explicit Cursors

¢ See Also:
e Oracle Database Reference for information about the dynamic
performance view VSOPEN_CURSOR

* Oracle Database Reference for information about the initialization
parameter OPEN_CURSORS

7.2.1 Implicit Cursors

ORACLE

An implicit cursor is a session cursor that is constructed and managed by PL/SQL.
PL/SQL opens an implicit cursor every time you run a SELECT or DML statement. You
cannot control an implicit cursor, but you can get information from its attributes.

The syntax of an implicit cursor attribute value is SQLat t ri but e (therefore, an implicit
cursor is also called a SQL cursor). SQLat t ri but e always refers to the most
recently run SELECT or DML statement. If no such statement has run, the value of
SQLattribute is NULL.

An implicit cursor closes after its associated statement runs; however, its attribute
values remain available until another SELECT or DML statement runs.

The most recently run SELECT or DML statement might be in a different scope. To save
an attribute value for later use, assign it to a local variable immediately. Otherwise,

7-6

Chapter 7
Cursors Overview

other operations, such as subprogram invocations, might change the value of the
attribute before you can test it.

The implicit cursor attributes are:

* SQL%ISOPEN Attribute: Is the Cursor Open?

¢ SQL%FOUND Attribute: Were Any Rows Affected?

e SQL%NOTFOUND Attribute: Were No Rows Affected?

e SQL%ROWCOUNT Attribute: How Many Rows Were Affected?

e SQL%BULK_ROWCOUNT (see "Getting Number of Rows Affected by FORALL
Statement"

e SQL%BULK_EXCEPTIONS (see "Handling FORALL Exceptions After FORALL
Statement Completes™

" See Also:

"Implicit Cursor Attribute" for complete syntax and semantics

7.2.1.1 SQL%ISOPEN Attribute: Is the Cursor Open?

SQL%ISOPEN always returns FALSE, because an implicit cursor always closes after its
associated statement runs.

7.2.1.2 SQL%FOUND Attribute: Were Any Rows Affected?

SQL%FOUND returns:
e NULL if no SELECT or DML statement has run

» TRUE if a SELECT statement returned one or more rows or a DML statement
affected one or more rows

e FALSE otherwise

Example 7-3 uses SQL%FOUND to determine if a DELETE statement affected any rows.
Example 7-3 SQL%FOUND Implicit Cursor Attribute

DROP TABLE dept_temp;
CREATE TABLE dept_temp AS
SELECT * FROM departments;

CREATE OR REPLACE PROCEDURE p (
dept_no NUMBER

) AUTHID CURRENT_USER AS

BEGIN
DELETE FROM dept_temp
WHERE department_id = dept_no;

IF SQL%FOUND THEN
DBMS_OUTPUT.PUT_LINE (
"Delete succeeded for department number
);
ELSE

|1 dept_no

ORACLE 7.7

Chapter 7
Cursors Overview

DBMS_OUTPUT.PUT_LINE ("No department number * || dept_no);
END IF;
END;
/
BEGIN
p(270);
p(400);
END;
/

Result:

Delete succeeded for department number 270
No department number 400

7.2.1.3 SQL%NOTFOUND Attribute: Were No Rows Affected?

SQL%NOTFOUND (the logical opposite of SQL%FOUND) returns:

* NULL if no SELECT or DML statement has run

e FALSE if a SELECT statement returned one or more rows or a DML statement
affected one or more rows

e TRUE otherwise

The SQL%NOTFOUND attribute is not useful with the PL/SQL SELECT INTO statement,
because:

e If the SELECT INTO statement returns no rows, PL/SQL raises the predefined
exception NO_DATA FOUND immediately, before you can check SQL%NOTFOUND.

» A SELECT INTO statement that invokes a SQL aggregate function always returns a
value (possibly NULL). After such a statement, the SQL%NOTFOUND attribute is always
FALSE, so checking it is unnecessary.

7.2.1.4 SQL%ROWCOUNT Attribute: How Many Rows Were Affected?

SQL%ROWCOUNT returns:
e NULL if no SELECT or DML statement has run

» Otherwise, the number of rows returned by a SELECT statement or affected by a
DML statement (an INTEGER)

Note:

If a server is Oracle Database 12c or later and its client is Oracle Database
11g release 2 or earlier (or the reverse), then the maximum number that
SQL%ROWCOUNT returns is 4,294,967,295.

Example 7-4 uses SQL%ROWCOUNT to determine the number of rows that were deleted.

If a SELECT INTO statement without a BULK COLLECT clause returns multiple rows,
PL/SQL raises the predefined exception TOO_MANY_ROWS and SQL%ROWCOUNT returns 1,
not the actual number of rows that satisfy the query.

ORACLE 7-8

Chapter 7
Cursors Overview

The value of SQLYROWCOUNT attribute is unrelated to the state of a transaction.
Therefore:

* When a transaction rolls back to a savepoint, the value of SQL%ROWCOUNT is not
restored to the value it had before the savepoint.

e When an autonomous transaction ends, SQL%ROWCOUNT is not restored to the
original value in the parent transaction.

Example 7-4 SQL%ROWCOUNT Implicit Cursor Attribute

DROP TABLE employees_temp;
CREATE TABLE employees_temp AS
SELECT * FROM employees;

DECLARE
mgr_no NUMBER(6) := 122;
BEGIN
DELETE FROM employees_temp WHERE manager_id = mgr_no;
DBMS_OUTPUT.PUT_LINE
("Number of employees deleted: " || TO_CHAR(SQL%ROWCOUNT));
END;
/

Result:

Number of employees deleted: 8

7.2.2 Explicit Cursors

ORACLE

An explicit cursor is a session cursor that you construct and manage. You must
declare and define an explicit cursor, giving it a name and associating it with a query
(typically, the query returns multiple rows). Then you can process the query result set
in either of these ways:

* Open the explicit cursor (with the OPEN statement), fetch rows from the result
set (with the FETCH statement), and close the explicit cursor (with the CLOSE
statement).

» Use the explicit cursor in a cursor FOR LOOP statement (see "Processing Query
Result Sets With Cursor FOR LOOP Statements".

You cannot assign a value to an explicit cursor, use it in an expression, or use it as a
formal subprogram parameter or host variable. You can do those things with a cursor
variable (see "Cursor Variables").

Unlike an implicit cursor, you can reference an explicit cursor or cursor variable by its
name. Therefore, an explicit cursor or cursor variable is called a named cursor.
Topics

» Declaring and Defining Explicit Cursors

» Opening and Closing Explicit Cursors

* Fetching Data with Explicit Cursors

* Variables in Explicit Cursor Queries

* When Explicit Cursor Queries Need Column Aliases

» Explicit Cursors that Accept Parameters

7-9

Chapter 7
Cursors Overview

» Explicit Cursor Attributes

7.2.2.1 Declaring and Defining Explicit Cursors

You can either declare an explicit cursor first and then define it later in the same block,
subprogram, or package, or declare and define it at the same time.

An explicit cursor declaration, which only declares a cursor, has this syntax:
CURSOR cursor_nane [parameter_|ist] RETURN return_type;

An explicit cursor definition has this syntax:

CURSOR cursor_nane [paranmeter_list] [RETURN return_type]
IS sel ect_statenent ;

If you declared the cursor earlier, then the explicit cursor definition defines it;
otherwise, it both declares and defines it.

Example 7-5 declares and defines three explicit cursors.

¢ See Also:

e "Explicit Cursor Declaration and Definition" for the complete syntax and
semantics of explicit cursor declaration and definition

e "Explicit Cursors that Accept Parameters"

Example 7-5 Explicit Cursor Declaration and Definition

DECLARE
CURSOR cl1 RETURN departments%ROWTYPE; -- Declare cl1
CURSOR c2 IS -- Declare and define c2

SELECT employee_id, job_id, salary FROM employees
WHERE salary > 2000;

CURSOR cl1 RETURN departments%ROWTYPE IS -- Define cl1,
SELECT * FROM departments -- repeating return type
WHERE department_id = 110;

CURSOR c3 RETURN locations%ROWTYPE; -- Declare c3
CURSOR c3 IS -- Define c3,
SELECT * FROM locations -- omitting return type
WHERE country_id = "JP";
BEGIN
NULL;
END;

/

7.2.2.2 Opening and Closing Explicit Cursors

After declaring and defining an explicit cursor, you can open it with the OPEN statement,
which does the following:

1. Allocates database resources to process the query

ORACLE 7-10

Chapter 7
Cursors Overview

2. Processes the query; that is:
a. ldentifies the result set

If the query references variables or cursor parameters, their values affect the
result set. For details, see "Variables in Explicit Cursor Queries" and "Explicit
Cursors that Accept Parameters".

b. If the query has a FOR UPDATE clause, locks the rows of the result set
For details, see "SELECT FOR UPDATE and FOR UPDATE Cursors".
3. Positions the cursor before the first row of the result set

You close an open explicit cursor with the CLOSE statement, thereby allowing its
resources to be reused. After closing a cursor, you cannot fetch records from its
result set or reference its attributes. If you try, PL/SQL raises the predefined exception
INVALID_CURSOR.

You can reopen a closed cursor. You must close an explicit cursor before you try to
reopen it. Otherwise, PL/SQL raises the predefined exception CURSOR_ALREADY_OPEN.

¢ See Also:

* "OPEN Statement"” for its syntax and semantics

* "CLOSE Statement" for its syntax and semantics

7.2.2.3 Fetching Data with Explicit Cursors

ORACLE

After opening an explicit cursor, you can fetch the rows of the query result set with the
FETCH statement. The basic syntax of a FETCH statement that returns one row is:

FETCH cursor_nane INTO into_cl ause

The i nto_cl ause is either a list of variables or a single record variable. For each
column that the query returns, the variable list or record must have a corresponding
type-compatible variable or field. The %TYPE and %ROWTYPE attributes are useful for
declaring variables and records for use in FETCH statements.

The FETCH statement retrieves the current row of the result set, stores the column
values of that row into the variables or record, and advances the cursor to the next
row.

Typically, you use the FETCH statement inside a LOOP statement, which you exit

when the FETCH statement runs out of rows. To detect this exit condition, use the
cursor attribute %NOTFOUND (described in "%NOTFOUND Attribute: Has No Row Been
Fetched?"). PL/SQL does not raise an exception when a FETCH statement returns no
rows.

Example 7-6 fetches the result sets of two explicit cursors one row at a time, using
FETCH and %NOTFOUND inside LOOP statements. The first FETCH statement retrieves
column values into variables. The second FETCH statement retrieves column values
into a record. The variables and record are declared with %TYPE and %ROWTYPE,
respectively.

7-11

ORACLE

Chapter 7
Cursors Overview

Example 7-7 fetches the first five rows of a result set into five records, using five FETCH
statements, each of which fetches into a different record variable. The record variables
are declared with %ROWTYPE.

¢ See Also:

e "FETCH Statement" for its complete syntax and semantics

« "FETCH Statement with BULK COLLECT Clause" for information about
FETCH statements that return more than one row at a time

Example 7-6 FETCH Statements Inside LOOP Statements

DECLARE
CURSOR cl1 IS
SELECT last_name, job_id FROM employees
WHERE REGEXP_LIKE (job_id, "S[HT]_CLERK")
ORDER BY last_name;

v_lastname employees.last_name%TYPE; -- variable for last_name
v_jobid employees. job_id%TYPE; -- variable for job_id
CURSOR c2 IS

SELECT * FROM employees
WHERE REGEXP_LIKE (job_id, "[ACADFIMKSA]_M[ANGR]")
ORDER BY job_id;

v_employees employees%ROWTYPE; -- record variable for row of table
BEGIN

OPEN c1;

LOOP -- Fetches 2 columns into variables

FETCH c1 INTO v_lastname, v_jobid;

EXIT WHEN c1%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(RPAD(v_lastname, 25, * ") || v_jobid);
END LOOP;

CLOSE c1;

DBMS_OUTPUT .PUT_LINE(" === === e e e e ")s
OPEN c2;

LOOP -- Fetches entire row into the v_employees record

FETCH c2 INTO v_employees;

EXIT WHEN c2%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(RPAD(v_employees.last_name, 25, " *) ||
v_employees.job_id);

END LOOP;

CLOSE c2;
END;
/
Result:
Atkinson ST_CLERK
Bell SH_CLERK
Bissot ST_CLERK
Walsh SH_CLERK

7-12

Chapter 7
Cursors Overview

Higgins AC_MGR
Greenberg F1_MGR
Hartstein MK_MAN
Zlotkey SA_MAN

Example 7-7 Fetching Same Explicit Cursor into Different Variables

DECLARE
CURSOR ¢ IS
SELECT e.job_id, j.job_title
FROM employees e, jobs j
WHERE e.job_id = j-job_id AND e.manager_id = 100
ORDER BY last_name;

-- Record variables for rows of cursor result set:

jobl c%ROWTYPE;
job2 c%ROWTYPE;
job3 c%ROWTYPE;
job4 c%ROWTYPE;
job5 c%ROWTYPE;

BEGIN
OPEN c;
FETCH ¢ INTO jobl; -- fetches first row
FETCH ¢ INTO job2; -- fetches second row
FETCH ¢ INTO job3; -- fetches third row
FETCH ¢ INTO job4; -- fetches fourth row
FETCH ¢ INTO job5; -- fetches fifth row
CLOSE c;
DBMS_OUTPUT.PUT_LINE(jobl.job _title || * (" || Jobl.job_id || *)™);
DBMS_OUTPUT.PUT_LINE(job2.job_title || * (" || Job2.job_id || *)™);
DBMS_OUTPUT.PUT_LINE(job3.job_title || * (" || Job3.job_id || *)™);
DBMS_OUTPUT.PUT_LINE(job4.job_title || * (" || Job4.job_id || *)™);
DBMS_OUTPUT.PUT_LINE(job5.job_title || * (° || Job5.job_id || *)™);
END;
/
Result:

Sales Manager (SA_MAN)

Administration Vice President (AD_VP)
Sales Manager (SA_MAN)

Stock Manager (ST_MAN)

Marketing Manager (MK_MAN)

PL/SQL procedure successfully completed.

7.2.2.4 Variables in Explicit Cursor Queries

ORACLE

An explicit cursor query can reference any variable in its scope. When you open an
explicit cursor, PL/SQL evaluates any variables in the query and uses those values
when identifying the result set. Changing the values of the variables later does not
change the result set.

7-13

ORACLE

Chapter 7
Cursors Overview

In Example 7-8, the explicit cursor query references the variable factor. When the
cursor opens, factor has the value 2. Therefore, sal_multiple is always 2 times sal,
despite that factor is incremented after every fetch.

To change the result set, you must close the cursor, change the value of the variable,
and then open the cursor again, as in Example 7-9.

Example 7-8 Variable in Explicit Cursor Query—No Result Set Change

DECLARE
sal employees.salary%TYPE;
sal_multiple employees.salary%TYPE;
factor INTEGER := 2;

CURSOR cl1 IS
SELECT salary, salary*factor FROM employees
WHERE job_id LIKE "AD_%";

BEGIN
OPEN cl; -- PL/SQL evaluates factor

LOOP
FETCH c1 INTO sal, sal_multiple;
EXIT WHEN c1%NOTFOUND;
DBMS_OUTPUT.PUT_LINE("factor = " || factor);

DBMS_OUTPUT.PUT_LINE("sal = " || sal);
DBMS_OUTPUT.PUT_LINE("sal_multiple = " || sal_multiple);
factor := factor + 1; -- Does not affect sal_multiple
END LOOP;
CLOSE c1;
END;
/
Result:
factor = 2
sal = 4400
sal_multiple = 8800
factor = 3
sal = 24000
sal_multiple = 48000
factor = 4
sal = 17000
sal_multiple = 34000
factor = 5
sal 17000

sal_multiple = 34000

Example 7-9 Variable in Explicit Cursor Query—Result Set Change

DECLARE
sal employees.salary%TYPE;
sal_multiple employees.salary%TYPE;
factor INTEGER := 2;

CURSOR c1 IS
SELECT salary, salary*factor FROM employees
WHERE job_id LIKE "AD %";

BEGIN

7-14

Chapter 7
Cursors Overview

DBMS_OUTPUT.PUT_LINE("factor = " || factor);
OPEN cl; -- PL/SQL evaluates factor
LOOP
FETCH c1 INTO sal, sal_multiple;
EXIT WHEN c1%NOTFOUND;
DBMS_OUTPUT.PUT_LINE("sal
DBMS_OUTPUT.PUT_LINE("sal_multiple
END LOOP;
CLOSE c1;

"l sal);
" 1] sal_multiple);

factor := factor + 1;

DBMS_OUTPUT.PUT_LINE("factor = " || factor);
OPEN cl; -- PL/SQL evaluates factor
LOOP
FETCH c1 INTO sal, sal_multiple;
EXIT WHEN c1%NOTFOUND;
DBMS_OUTPUT.PUT_LINE("sal
DBMS_OUTPUT.PUT_LINE("sal_multiple

"l sal);
" 1] sal_multiple);

END LOOP;

CLOSE c1;
END;
/
Result:
factor = 2
sal = 4400
sal_multiple = 8800
sal = 24000
sal_multiple = 48000
sal = 17000
sal_multiple = 34000
sal = 17000
sal_multiple = 34000
factor = 3
sal = 4400
sal_multiple = 13200
sal = 24000
sal_multiple = 72000
sal = 17000
sal_multiple = 51000
sal = 17000
sal_multiple = 51000

7.2.2.5 When Explicit Cursor Queries Need Column Aliases

ORACLE

When an explicit cursor query includes a virtual column (an expression), that column
must have an alias if either of the following is true:

* You use the cursor to fetch into a record that was declared with %ROWTYPE.
* You want to reference the virtual column in your program.

In Example 7-10, the virtual column in the explicit cursor needs an alias for both of the
preceding reasons.

7-15

Chapter 7
Cursors Overview

¢ See Also:

Example 7-21

Example 7-10 Explicit Cursor with Virtual Column that Needs Alias

DECLARE
CURSOR c1 IS
SELECT employee_id,
(salary * .05) raise
FROM employees
WHERE job_id LIKE "%_MAN®
ORDER BY employee_id;
emp_rec C1%ROWTYPE;
BEGIN
OPEN c1;
LOOP
FETCH c1 INTO emp_rec;
EXIT WHEN c1%NOTFOUND;
DBMS_OUTPUT.PUT_LINE (
"Raise for employee #" || emp_rec.employee_id ||
" is $" || emp_rec.raise
);
END LOOP;
CLOSE c1;
END;
/

Result:

Raise for employee #114 is $550
Raise for employee #120 is $400
Raise for employee #121 is $410
Raise for employee #122 is $395
Raise for employee #123 is $325
Raise for employee #124 is $368.445
Raise for employee #145 is $700
Raise for employee #146 is $675
Raise for employee #147 is $600
Raise for employee #148 is $550
Raise for employee #149 is $525
Raise for employee #201 is $650

7.2.2.6 Explicit Cursors that Accept Parameters

You can create an explicit cursor that has formal parameters, and then pass different
actual parameters to the cursor each time you open it. In the cursor query, you can use
a formal cursor parameter anywhere that you can use a constant. Outside the cursor
query, you cannot reference formal cursor parameters.

Tip:

To avoid confusion, use different names for formal and actual cursor
parameters.

ORACLE 7-16

ORACLE

Chapter 7
Cursors Overview

Example 7-11 creates an explicit cursor whose two formal parameters represent a job
and its maximum salary. When opened with a specified job and maximum salary, the
cursor query selects the employees with that job who are overpaid (for each such
employee, the query selects the first and last name and amount overpaid). Next, the
example creates a procedure that prints the cursor query result set (for information
about procedures, see PL/SQL Subprograms). Finally, the example opens the cursor
with one set of actual parameters, prints the result set, closes the cursor, opens the
cursor with different actual parameters, prints the result set, and closes the cursor.

Topics
e Formal Cursor Parameters with Default Values

* Adding Formal Cursor Parameters with Default Values

¢ See Also:

e "Explicit Cursor Declaration and Definition" for more information about
formal cursor parameters

e "OPEN Statement" for more information about actual cursor parameters

Example 7-11 Explicit Cursor that Accepts Parameters

DECLARE
CURSOR ¢ (job VARCHAR2, max_sal NUMBER) 1S
SELECT last_name, first_name, (salary - max_sal) overpayment
FROM employees
WHERE job_id = job
AND salary > max_sal
ORDER BY salary;

PROCEDURE print_overpaid 1S
last_name_ employees. last_name%TYPE;
first_name_ employees.first_name%TYPE;
overpayment_ employees.salary%TYPE;
BEGIN
LOOP
FETCH c INTO last_name_, first_name_, overpayment_;
EXIT WHEN c%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(last_name_ || ", " || first_name_ ||
* (by " || overpayment_ || ")");
END LOOP;
END print_overpaid;

BEGIN
DBMS_OUTPUT .PUT_LINE("======—=—=—mmmm oo);
DBMS_OUTPUT.PUT_LINE("Overpaid Stock Clerks:");
DBMS_OUTPUT.PUT_LINE("======—= == mmmm oo);
OPEN c("ST_CLERK", 5000);
print_overpaid;

CLOSE c;

DBMS_OUTPUT .PUT_LINE(" ====== == m e oo e s
DBMS_OUTPUT.PUT_LINE("Overpaid Sales Representatives:");
DBMS_OUTPUT .PUT_LINE(" ====== == m e e o e DR

OPEN c("SA_REP", 10000);

7-17

Chapter 7
Cursors Overview

print_overpaid;
CLOSE c;
END;

Vishney, Clara (by 500)
Abel, Ellen (by 1000)
Ozer, Lisa (by 1500)

PL/SQL procedure successfully completed.

7.2.2.6.1 Formal Cursor Parameters with Default Values

ORACLE

When you create an explicit cursor with formal parameters, you can specify default
values for them. When a formal parameter has a default value, its corresponding
actual parameter is optional. If you open the cursor without specifying the actual
parameter, then the formal parameter has its default value.

Example 7-12 creates an explicit cursor whose formal parameter represents a location
ID. The default value of the parameter is the location ID of company headquarters.

Example 7-12 Cursor Parameters with Default Values

DECLARE
CURSOR ¢ (location NUMBER DEFAULT 1700) IS
SELECT d.department_name,
e.last_name manager,
l.city
FROM departments d, employees e, locations 1
WHERE I.location_id = location
AND I.location_id = d.location_id
AND d.department_id = e.department_id
ORDER BY d.department_id;

PROCEDURE print_depts IS
dept_name departments.department_name%TYPE;
mgr_name employees. last_name%TYPE;
city _name locations.city%TYPE;
BEGIN
LOOP
FETCH c INTO dept_name, mgr_name, city_name;
EXIT WHEN c%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(dept_name || " (Manager: * || mgr_name || ")");
END LOOP;
END print_depts;

BEGIN
DBMS_OUTPUT.PUT_LINE("DEPARTMENTS AT HEADQUARTERS:*®);
DBMS_OUTPUT .PUT LINE(" === mmm oo ");
OPEN c;
print_depts;
DBMS_OUTPUT .PUT_LINE(" === —m o oo mm oo ");
CLOSE c;

7-18

7.2.2.6.2 Adding Formal Cursor Parameters with Default Values

ORACLE

DBMS_OUTPUT.PUT_LINE("DEPARTMENTS IN CANADA:");
DBMS_OUTPUT.PUT_LINE("

OPEN c(1800); -- Toronto

print_depts;
CLOSE c;

OPEN c(1900); -- Whitehorse

print_depts;
CLOSE c;
END;
/

Result is similar to:

DEPARTMENTS AT HEADQUARTERS:

Administration (Manager: Whalen)

Purchasing (Manager:
Purchasing (Manager:
Purchasing (Manager:
Purchasing (Manager:
Purchasing (Manager:
Purchasing (Manager:

Colmenares)
Baida)
Himuro)
Raphaely)
Khoo)
Tobias)

Executive (Manager: Kochhar)
Executive (Manager: De Haan)
Executive (Manager: King)
Finance (Manager: Popp)
Finance (Manager: Greenberg)
Finance (Manager: Faviet)
Finance (Manager: Chen)
Finance (Manager: Urman)
Finance (Manager: Sciarra)

Accounting (Manager:
Accounting (Manager:

Gietz)
Higgins)

DEPARTMENTS IN CANADA:

Marketing (Manager: Hartstein)
Marketing (Manager: Fay)

PL/SQL procedure successfully completed.

Chapter 7
Cursors Overview

If you add formal parameters to a cursor, and you specify default values for the added
parameters, then you need not change existing references to the cursor. Compare
Example 7-13 to Example 7-11.

Example 7-13 Adding Formal Parameter to Existing Cursor

DECLARE

CURSOR ¢ (job VARCHAR2, max_sal NUMBER,

hired DATE DEFAULT TO_DATE("31-DEC-1999", "DD-MON-YYYY")) IS

SELECT last_name, first_name, (salary - max_sal) overpayment

FROM employees

WHERE job_id = job
AND salary > max_sal
AND hire_date > hired
ORDER BY salary;

7-19

Chapter 7
Cursors Overview

PROCEDURE print_overpaid IS
last_name_ employees. last_name%TYPE;
first_name_ employees.first_name%TYPE;
overpayment_ employees.salary%TYPE;
BEGIN
LOOP
FETCH c INTO last_name_, first_name_, overpayment_;
EXIT WHEN c%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(last_name_ || ", " || first_name_ ||
* (by " || overpayment_ || ")7);
END LOOP;

END print_overpaid;

BEGIN
DBMS_OUTPUT.PUT_LINE("-—-—-—=—— === mm e = ;
DBMS_OUTPUT.PUT_LINE("Overpaid Sales Representatives:*");
DBMS_OUTPUT.PUT_LINE("-—-—-—=—— === mm e = ;
OPEN c("SA_REP", 10000); -- existing reference
print_overpaid;

CLOSE c;

DBMS_OUTPUT.PUT_LINE(" === mmm e mm e e ");
DBMS_OUTPUT.PUT_LINE("Overpaid Sales Representatives Hired After 2004:7);
DBMS_OUTPUT.PUT_LINE(" === —mmm e e ");
OPEN c(*SA_REP*, 10000, TO_DATE("31-DEC-2004%, *DD-MON-YYYY®));
-- new reference

print_overpaid;
CLOSE c;

END;

Vishney, Clara (by 500)
Abel, Ellen (by 1000)
Ozer, Lisa (by 1500)

Vishney, Clara (by 500)
Ozer, Lisa (by 1500)

PL/SQL procedure successfully completed.

7.2.2.7 Explicit Cursor Attributes

The syntax for the value of an explicit cursor attribute is cur sor _name immediately
followed by at t ri but e (for example, c1%1SOPEN).

Note:

Explicit cursors and cursor variables (named cursors) have the same
attributes. This topic applies to all named cursors except where noted.

ORACLE 7-20

Chapter 7
Cursors Overview

The explicit cursor attributes are:

* %ISOPEN Attribute: Is the Cursor Open?

* %FOUND Attribute: Has a Row Been Fetched?

* %NOTFOUND Attribute: Has No Row Been Fetched?

* %ROWCOUNT Attribute: How Many Rows Were Fetched?

If an explicit cursor is not open, referencing any attribute except %1SOPEN raises the
predefined exception INVALID_CURSOR.

¢ See Also:

"Named Cursor Attribute" for complete syntax and semantics of named
cursor (explicit cursor and cursor variable) attributes

7.2.2.7.1 %ISOPEN Attribute: Is the Cursor Open?

ORACLE

%1SOPEN returns TRUE if its explicit cursor is open; FALSE otherwise.
%1 SOPEN is useful for:

e Checking that an explicit cursor is not already open before you try to open it.

If you try to open an explicit cursor that is already open, PL/SQL raises the
predefined exception CURSOR_ALREADY_OPEN. You must close an explicit cursor
before you can reopen it.

" Note:

The preceding paragraph does not apply to cursor variables.

e Checking that an explicit cursor is open before you try to close it.

Example 7-14 opens the explicit cursor c1 only if it is not open and closes it only if it is
open.

Example 7-14 %ISOPEN Explicit Cursor Attribute

DECLARE
CURSOR cl1 IS
SELECT last_name, salary FROM employees
WHERE ROWNUM < 11;

the_name employees. last_name%TYPE;
the_salary employees.salary%TYPE;
BEGIN
IF NOT cl1%ISOPEN THEN
OPEN c1;
END IF;

FETCH c1 INTO the_name, the_salary;

IF c1%ISOPEN THEN
CLOSE c1;

7-21

END IF;
END;
/

7.2.2.7.2 %FOUND Attribute: Has a Row Been Fetched?

7.2.2.7.3 %NOTFOUND Attribute: Has No Row Been Fetched?

ORACLE

%FOUND returns:

Chapter 7
Cursors Overview

* NULL after the explicit cursor is opened but before the first fetch

» TRUE if the most recent fetch from the explicit cursor returned a row

e FALSE otherwise

%FOUND is useful for determining whether there is a fetched row to process.

Example 7-15 loops through a result set, printing each fetched row and exiting when

there are no more rows to fetch.

Example 7-15 %FOUND Explicit Cursor Attribute

DECLARE
CURSOR c1 IS
SELECT last_name, salary FROM employees
WHERE ROWNUM < 11
ORDER BY last_name;

my_ename employees. last_name%TYPE;
my_salary employees.salary%TYPE;
BEGIN
OPEN cl1;
LOOP
FETCH c1 INTO my_ename, my salary;
IF c1%FOUND THEN -- fetch succeeded

DBMS_OUTPUT.PUT_LINE("Name = " || my_ename || ",

ELSE -- fetch failed

EXIT;
END IF;
END LOOP;
END;
/
Result:
Name = Austin, salary = 4800
Name = De Haan, salary = 17000
Name = Ernst, salary = 6000
Name = Faviet, salary = 9000
Name = Greenberg, salary = 12008
Name = Hunold, salary = 9000
Name = King, salary = 24000
Name = Kochhar, salary = 17000
Name = Lorentz, salary = 4200
Name = Pataballa, salary = 4800

%NOTFOUND (the logical opposite of %FOUND) returns:

salary = " || my_salary);

* NULL after the explicit cursor is opened but before the first fetch

* FALSE if the most recent fetch from the explicit cursor returned a row

7-22

e TRUE otherwise

Chapter 7
Cursors Overview

%NOTFOUND is useful for exiting a loop when FETCH fails to return a row, as in

Example 7-16.
Example 7-16 %NOTFOUND Explicit Cursor Attribute

DECLARE
CURSOR cl1 IS
SELECT last_name, salary FROM employees
WHERE ROWNUM < 11
ORDER BY last_name;

my_ename employees.last_name%TYPE;
my_salary employees.salary%TYPE;
BEGIN
OPEN c1;
LOOP
FETCH c1 INTO my_ename, my salary;
IF c1%NOTFOUND THEN -- fetch failed
EXIT;
ELSE -- fetch succeeded
DBMS_OUTPUT.PUT_LINE
("Name = " || my_ename || ", salary = " || my_salary);

END IF;

END LOOP;
END;
/
Result:
Name = Austin, salary = 4800
Name = De Haan, salary = 17000
Name = Ernst, salary = 6000
Name = Faviet, salary = 9000
Name = Greenberg, salary = 12008
Name = Hunold, salary = 9000
Name = King, salary = 24000
Name = Kochhar, salary = 17000
Name = Lorentz, salary = 4200
Name = Pataballa, salary = 4800

7.2.2.7.4 %ROWCOUNT Attribute: How Many Rows Were Fetched?

ORACLE

%ROWCOUNT returns:

e Zero after the explicit cursor is opened but before the first fetch

* Otherwise, the number of rows fetched (an INTEGER)

Note:

that SQL%ROWCOUNT returns is 4,294,967,295.

If a server is Oracle Database 12c or later and its client is Oracle
Database 11g2 or earlier (or the reverse), then the maximum number

Example 7-17 numbers and prints the rows that it fetches and prints a message after

fetching the fifth row.

7-23

Chapter 7
Processing Query Result Sets

Example 7-17 %ROWCOUNT Explicit Cursor Attribute

DECLARE
CURSOR c1 IS
SELECT last_name FROM employees
WHERE ROWNUM < 11
ORDER BY last_name;

name employees.last_name%TYPE;
BEGIN
OPEN c1;
LOOP
FETCH c1 INTO name;
EXIT WHEN c1%NOTFOUND OR c1%NOTFOUND IS NULL;
DBMS_OUTPUT .PUT_LINE(C1%ROWCOUNT || *- * || name);
IF c1%ROWCOUNT = 5 THEN
DBMS_OUTPUT.PUT_LINE("--- Fetched 5th row ---7);
END IF;
END LOOP;
CLOSE c1;
END;
/

Result:

1. Abel

2. Ande

3. Atkinson
4. Austin

5. Baer

--- Fetched 5th row ---
6. Baida

7. Banda

8. Bates

9. Bell

10. Bernstein

7.3 Processing Query Result Sets

ORACLE

In PL/SQL, as in traditional database programming, you use cursors to process query
result sets. However, in PL/SQL, you can use either implicit or explicit cursors.

The former need less code, but the latter are more flexible. For example, explicit
Cursors can accept parameters.

The following PL/SQL statements use implicit cursors that PL/SQL defines and
manages for you:

e SELECT INTO
e Implicit cursor FOR LOOP
The following PL/SQL statements use explicit cursors:
» Explicit cursor FOR LOOP
You define the explicit cursor, but PL/SQL manages it while the statement runs.
» OPEN, FETCH, and CLOSE

You define and manage the explicit cursor.

7-24

Chapter 7
Processing Query Result Sets

< Note:

If a query returns no rows, PL/SQL raises the exception NO_DATA_FOUND.

Topics

e Processing Query Result Sets With SELECT INTO Statements

e Processing Query Result Sets With Cursor FOR LOOP Statements

e Processing Query Result Sets With Explicit Cursors, OPEN, FETCH, and CLOSE

e Processing Query Result Sets with Subqueries

¢ See Also:

e "Explicit Cursors that Accept Parameters"

e Oracle Database Development Guide for information about returning
result sets to clients

e "Exception Handler" for information about handling exceptions

7.3.1 Processing Query Result Sets With SELECT INTO Statements

Using an implicit cursor, the SELECT INTO statement retrieves values from one or more
database tables (as the SQL SELECT statement does) and stores them in variables
(which the SQL SELECT statement does not do).

Topics
e Handling Single-Row Result Sets
e Handling Large Multiple-Row Result Sets

¢ See Also:

"SELECT INTO Statement" for its complete syntax and semantics

7.3.1.1 Handling Single-Row Result Sets

ORACLE

If you expect the query to return only one row, then use the SELECT INTO statement
to store values from that row in either one or more scalar variables, or one record
variable.

If the query might return multiple rows, but you care about only the nth row, then
restrict the result set to that row with the clause WHERE ROWNUM=n.

7-25

Chapter 7
Processing Query Result Sets

¢ See Also:

e "Assigning Values to Variables with the SELECT INTO Statement"
e "Using SELECT INTO to Assign a Row to a Record Variable"

e Oracle Database SQL Language Reference for more information about
the ROWNUM pseudocolumn

7.3.1.2 Handling Large Multiple-Row Result Sets

If you must assign a large quantity of table data to variables, Oracle recommends
using the SELECT INTO statement with the BULK COLLECT clause.

This statement retrieves an entire result set into one or more collection variables.

For more information, see "SELECT INTO Statement with BULK COLLECT Clause".

7.3.2 Processing Query Result Sets With Cursor FOR LOOP

Statements

ORACLE

The cursor FOR LOOP statement lets you run a SELECT statement and then immediately
loop through the rows of the result set.

This statement can use either an implicit or explicit cursor (but not a cursor variable).

If you use the SELECT statement only in the cursor FOR LOOP statement, then specify
the SELECT statement inside the cursor FOR LOOP statement. This form of the cursor
FOR LOOP statement uses an implicit cursor, and is called an implicit cursor FOR
LOOP statement. Because the implicit cursor is internal to the statement, you cannot
reference it with the name SQL.

If you use the SELECT statement multiple times in the same PL/SQL unit, then define
an explicit cursor for it and specify that cursor in the cursor FOR LOOP statement.

This form of the cursor FOR LOOP statement is called an explicit cursor FOR LOOP
statement. You can use the same explicit cursor elsewhere in the same PL/SQL unit.

The cursor FOR LOOP statement implicitly declares its loop index as a %4ROWTYPE record
variable of the type that its cursor returns. This record is local to the loop and exists
only during loop execution. Statements inside the loop can reference the record and its
fields. They can reference virtual columns only by aliases.

After declaring the loop index record variable, the FOR LOOP statement opens the
specified cursor. With each iteration of the loop, the FOR LOOP statement fetches a row
from the result set and stores it in the record. When there are no more rows to fetch,
the cursor FOR LOOP statement closes the cursor. The cursor also closes if a statement
inside the loop transfers control outside the loop or if PL/SQL raises an exception.

¢ See Also:

"Cursor FOR LOOP Statement" for its complete syntax and semantics

7-26

ORACLE

Chapter 7
Processing Query Result Sets

< Note:

When an exception is raised inside a cursor FOR LOOP statement, the cursor
closes before the exception handler runs. Therefore, the values of explicit
cursor attributes are not available in the handler.

Example 7-18 Implicit Cursor FOR LOOP Statement

In this example, an implicit cursor FOR LOOP statement prints the last name and job ID
of every clerk whose manager has an ID greater than 120.

BEGIN
FOR item IN (
SELECT last_name, job_id
FROM employees
WHERE job_id LIKE "%CLERK%"
AND manager_id > 120
ORDER BY last_name
)
LOOP
DBMS_OUTPUT.PUT_LINE
("Name = * || item_last_name || ", Job = " || item_job_id);
END LOOP;
END;
/

Result:

Name = Atkinson, Job = ST_CLERK
Name = Bell, Job = SH_CLERK
Name = Bissot, Job = ST_CLERK

Name = Walsh, Job = SH_CLERK

Example 7-19 Explicit Cursor FOR LOOP Statement

This example is like Example 7-18, except that it uses an explicit cursor FOR LOOP
statement.

DECLARE
CURSOR cl1 1S
SELECT last_name, job_id FROM employees
WHERE job_id LIKE "%CLERK%" AND manager_id > 120
ORDER BY last_name;
BEGIN
FOR item IN cl
LOOP
DBMS_OUTPUT.PUT_LINE
("Name = " || item.last_name || ", Job = " |] item_job_id);
END LOOP;
END;
/

Result:

Name = Atkinson, Job = ST_CLERK
Name = Bell, Job = SH_CLERK
Name = Bissot, Job = ST_CLERK

7-27

ORACLE

Chapter 7
Processing Query Result Sets

Name = Walsh, Job = SH_CLERK

Example 7-20 Passing Parameters to Explicit Cursor FOR LOOP Statement

This example declares and defines an explicit cursor that accepts two parameters,
and then uses it in an explicit cursor FOR LOOP statement to display the wages paid to
employees who earn more than a specified wage in a specified department.

DECLARE
CURSOR cl1 (job VARCHAR2, max_wage NUMBER) IS
SELECT * FROM employees
WHERE job_id = job
AND salary > max_wage;
BEGIN
FOR person IN c1("ST_CLERK", 3000)
LOOP
-- process data record
DBMS_OUTPUT.PUT_LINE (
"Name = " || person.last_name || ", salary = " ||
person.salary || *, Job Id = " || person.job_id

)

END LOOP;
END;
/
Result:
Name = Nayer, salary = 3200, Job Id = ST_CLERK
Name = Bissot, salary = 3300, Job Id = ST_CLERK
Name = Mallin, salary = 3300, Job Id = ST_CLERK
Name = Ladwig, salary = 3600, Job Id = ST_CLERK
Name = Stiles, salary = 3200, Job Id = ST_CLERK
Name = Rajs, salary = 3500, Job Id = ST_CLERK
Name = Davies, salary = 3100, Job Id = ST_CLERK

Example 7-21 Cursor FOR Loop References Virtual Columns

In this example, the implicit cursor FOR LOOP references virtual columns by their aliases,
full_name and dream_salary.

BEGIN
FOR item IN (
SELECT first_name |] " " || last_name AS full_name,
salary * 10 AS dream_salary
FROM employees
WHERE ROWNUM <= 5
ORDER BY dream salary DESC, last _name ASC
) LOOP
DBMS_OUTPUT.PUT_LINE
(item_full_name || " dreams of making " || item.dream salary);
END LOOP;
END;
/

Result:

Stephen King dreams of making 240000
Lex De Haan dreams of making 170000
Neena Kochhar dreams of making 170000
Alexander Hunold dreams of making 90000
Bruce Ernst dreams of making 60000

7-28

Chapter 7
Processing Query Result Sets

7.3.3 Processing Query Result Sets With Explicit Cursors, OPEN,
FETCH, and CLOSE

For full control over query result set processing, declare explicit cursors and manage
them with the statements OPEN, FETCH, and CLOSE.

This result set processing technigue is more complicated than the others, but it is also
more flexible. For example, you can:

e Process multiple result sets in parallel, using multiple cursors.

e Process multiple rows in a single loop iteration, skip rows, or split the processing
into multiple loops.

e Specify the query in one PL/SQL unit but retrieve the rows in another.

For instructions and examples, see "Explicit Cursors".

7.3.4 Processing Query Result Sets with Subqueries

ORACLE

If you process a query result set by looping through it and running another query for
each row, then you can improve performance by removing the second query from
inside the loop and making it a subquery of the first query.

While an ordinary subquery is evaluated for each table, a correlated subquery is
evaluated for each row.

For more information about subqueries, see Oracle Database SQL Language
Reference.

Example 7-22 Subquery in FROM Clause of Parent Query

This example defines explicit cursor c1 with a query whose FROM clause contains a
subquery.

DECLARE
CURSOR cl1 IS
SELECT tl.department_id, department_name, staff
FROM departments t1,
(SELECT department_id, COUNT(*) AS staff
FROM employees
GROUP BY department_id
) 2
WHERE (tl.department_id = t2.department_id) AND staff >= 5
ORDER BY staff;

BEGIN
FOR dept IN cl1
LOOP
DBMS_OUTPUT.PUT_LINE ("Department = *
|| dept.department_name || ", staff = " || dept.staff);

END LOOP;
END;
/
Result:
Department = IT, staff = 5
Department = Finance, staff = 6

7-29

Chapter 7
Cursor Variables

Department = Purchasing, staff = 6
Department = Sales, staff = 34
Department = Shipping, staff = 45

Example 7-23 Correlated Subquery

This example returns the name and salary of each employee whose salary exceeds
the departmental average. For each row in the table, the correlated subquery
computes the average salary for the corresponding department.

DECLARE
CURSOR cl1 IS
SELECT department_id, last_name, salary
FROM employees t
WHERE salary > (SELECT AVG(salary)
FROM employees
WHERE t.department_id = department_id

ORDER BY department_id, last_name;
BEGIN
FOR person IN cl
LOOP
DBMS_OUTPUT.PUT_LINE("Making above-average salary = " || person.last_name);
END LOOP;

END;

/

Result:

Making above-average salary = Hartstein
Making above-average salary = Raphaely
Making above-average salary = Bell
Making above-average salary = Higgins

7.4 Cursor Variables

ORACLE

A cursor variable is like an explicit cursor, except that:

e Itis not limited to one query.

You can open a cursor variable for a query, process the result set, and then use
the cursor variable for another query.

* You can assign a value to it.
* You can use it in an expression.
e It can be a subprogram parameter.
You can use cursor variables to pass query result sets between subprograms.
e It can be a host variable.

You can use cursor variables to pass query result sets between PL/SQL stored
subprograms and their clients.

e It cannot accept parameters.

You cannot pass parameters to a cursor variable, but you can pass whole queries
to it. The queries can include variables.

7-30

Chapter 7
Cursor Variables

A cursor variable has this flexibility because it is a pointer; that is, its value is the
address of an item, not the item itself.

Before you can reference a cursor variable, you must make it point to a SQL work
area, either by opening it or by assigning it the value of an open PL/SQL cursor
variable or open host cursor variable.

" Note:

Cursor variables and explicit cursors are not interchangeable—you cannot
use one where the other is expected.

Topics

e Creating Cursor Variables

e Opening and Closing Cursor Variables

e Fetching Data with Cursor Variables

e Assigning Values to Cursor Variables

e Variables in Cursor Variable Queries

* Querying a Collection

* Cursor Variable Attributes

e Cursor Variables as Subprogram Parameters

e Cursor Variables as Host Variables

¢ See Also:

e "Explicit Cursors" for more information about explicit cursors
e "Restrictions on Cursor Variables"
* Oracle Database Development Guide for advantages of cursor variables

e Oracle Database Development Guide for disadvantages of cursor
variables

7.4.1 Creating Cursor Variables

To create a cursor variable, either declare a variable of the predefined type
SYS_REFCURSOR or define a REF CURSOR type and then declare a variable of that type.

Note:

Informally, a cursor variable is sometimes called a REF CURSOR).

ORACLE 7-31

ORACLE

Chapter 7
Cursor Variables

The basic syntax of a REF CURSOR type definition is:

TYPE type_name IS REF CURSOR [RETURN return_type 1]

For the complete syntax and semantics, see "Cursor Variable Declaration".

If you specify r et ur n_t ype, then the REF CURSOR type and cursor variables of that type
are strong; if not, they are weak. SYS_REFCURSOR and cursor variables of that type are
weak.

With a strong cursor variable, you can associate only queries that return the specified
type. With a weak cursor variable, you can associate any query.

Weak cursor variables are more error-prone than strong ones, but they are also more
flexible. Weak REF CURSOR types are interchangeable with each other and with the
predefined type SYS_REFCURSOR. You can assign the value of a weak cursor variable to
any other weak cursor variable.

You can assign the value of a strong cursor variable to another strong cursor variable
only if both cursor variables have the same type (not merely the same return type).

Note:

You can partition weak cursor variable arguments to table functions only with
the PARTITION BY ANY clause, not with PARTITION BY RANGE or PARTITION BY
HASH.

For syntax and semantics, see "PARALLEL_ENABLE Clause".

Example 7-24 Cursor Variable Declarations

This example defines strong and weak REF CURSOR types, variables of those types, and
a variable of the predefined type SYS_REFCURSOR.

DECLARE
TYPE empcurtyp IS REF CURSOR RETURN employees%ROWTYPE; -- strong type
TYPE genericcurtyp IS REF CURSOR; -- weak type
cursorl empcurtyp; -- strong cursor variable
cursor2 genericcurtyp; -- weak cursor variable
my_cursor SYS_REFCURSOR; -- weak cursor variable
TYPE deptcurtyp 1S REF CURSOR RETURN departments%ROWTYPE; -- strong type
dept_cv deptcurtyp; -- strong cursor variable

BEGIN
NULL;

END;

/

Example 7-25 Cursor Variable with User-Defined Return Type
In this example, EnpRecTyp is a user-defined RECORD type.

DECLARE
TYPE EmpRecTyp IS RECORD (
employee_id NUMBER,
last_name VARCHAR2(25),
salary NUMBER(8,2));

7-32

Chapter 7
Cursor Variables

TYPE EmpCurTyp IS REF CURSOR RETURN EmpRecTyp;
emp_cv EmpCurTyp;

BEGIN
NULL ;

END;

/

7.4.2 Opening and Closing Cursor Variables

After declaring a cursor variable, you can open it with the OPEN FOR statement, which
does the following:

1. Associates the cursor variable with a query (typically, the query returns multiple
rows)

The query can include placeholders for bind variables, whose values you specify
in the USING clause of the OPEN FOR statement.

2. Allocates database resources to process the query
3. Processes the query; that is:
a. ldentifies the result set

If the query references variables, their values affect the result set. For details,
see "Variables in Cursor Variable Queries".

b. If the query has a FOR UPDATE clause, locks the rows of the result set
For details, see "SELECT FOR UPDATE and FOR UPDATE Cursors".
4. Positions the cursor before the first row of the result set

You need not close a cursor variable before reopening it (that is, using it in another
OPEN FOR statement). After you reopen a cursor variable, the query previously
associated with it is lost.

When you no longer need a cursor variable, close it with the CLOSE statement, thereby
allowing its resources to be reused. After closing a cursor variable, you cannot fetch
records from its result set or reference its attributes. If you try, PL/SQL raises the
predefined exception INVALID CURSOR.

You can reopen a closed cursor variable.

¢ See Also:

e "OPEN FOR Statement" for its syntax and semantics

e "CLOSE Statement" for its syntax and semantics

7.4.3 Fetching Data with Cursor Variables

ORACLE

After opening a cursor variable, you can fetch the rows of the query result set with the
FETCH statement.

The return type of the cursor variable must be compatible with the i nt o_cl ause of
the FETCH statement. If the cursor variable is strong, PL/SQL catches incompatibility

7-33

ORACLE

Chapter 7
Cursor Variables

at compile time. If the cursor variable is weak, PL/SQL catches incompatibility at run
time, raising the predefined exception ROWTYPE_MISMATCH before the first fetch.

¢ See Also:

e "Fetching Data with Explicit Cursors"
e "FETCH Statement" for its complete syntax and semantics

« "FETCH Statement with BULK COLLECT Clause" for information about
FETCH statements that return more than one row at a time

Example 7-26 Fetching Data with Cursor Variables

This example uses one cursor variable to do what Example 7-6 does with two explicit
cursors. The first OPEN FOR statement includes the query itself. The second OPEN FOR
statement references a variable whose value is a query.

DECLARE
cv SYS_REFCURSOR; -- cursor variable
v_lastname employees.last _name%TYPE; -- variable for last_name
v_jobid employees. job_id%TYPE; -- variable for job_id

query_2 VARCHAR2(200) :=
"SELECT * FROM employees
WHERE REGEXP_LIKE (job_id, *"[ACADFIMKSA] M[ANGR]"")
ORDER BY job_id";

v_employees employees%ROWTYPE; -- record variable row of table

BEGIN
OPEN cv FOR
SELECT last_name, job_id FROM employees
WHERE REGEXP_LIKE (job_id, *S[HT]_CLERK")
ORDER BY last_name;

LOOP -- Fetches 2 columns into variables

FETCH cv INTO v_lastname, v_jobid;

EXIT WHEN cv%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(RPAD(v_lastname, 25, * *) || v_jobid);
END LOOP;

DBMS_OUTPUT.PUT_LINE("—-=—m oo e e ");
OPEN cv FOR query_2;

LOOP -- Fetches entire row into the v_employees record
FETCH cv INTO v_employees;
EXIT WHEN cv%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(RPAD(v_employees.last_name, 25, " ") ||
v_employees.job_id);
END LOOP;

CLOSE cv;

END;
/

7-34

Chapter 7
Cursor Variables

Result:

Atkinson ST _CLERK
Bell SH_CLERK
Bissot ST_CLERK
Walsh SH_CLERK
Higgins AC_MGR
Greenberg FI1_MGR
Hartstein MK_MAN
Zlotkey SA_MAN

Example 7-27 Fetching from Cursor Variable into Collections

This example fetches from a cursor variable into two collections (nested tables), using
the BULK COLLECT clause of the FETCH statement.

DECLARE
TYPE empcurtyp IS REF CURSOR;
TYPE namelist IS TABLE OF employees.last _name%TYPE;
TYPE sallist IS TABLE OF employees.salary%TYPE;
emp_cv empcurtyp;
names namelist;
sals sallist;
BEGIN
OPEN emp_cv FOR
SELECT last_name, salary FROM employees
WHERE job_id = "SA _REP*"
ORDER BY salary DESC;

FETCH emp_cv BULK COLLECT INTO names, sals;
CLOSE emp_cv;
-- loop through the names and sals collections
FOR i IN names.FIRST .. names.LAST
LOOP
DBMS_OUTPUT .PUT_LINE
("Name = * || names(i) || °, salary = " || sals(i));
END LOOP;
END;
/

Result:

Name = Ozer, salary = 11500
Name = Abel, salary = 11000
Name = Vishney, salary = 10500

Name = Kumar, salary = 6100

7.4.4 Assigning Values to Cursor Variables

You can assign to a PL/SQL cursor variable the value of another PL/SQL cursor
variable or host cursor variable.

The syntax is:

target _cursor_variable := source_cursor_variable;

ORACLE 7-35

Chapter 7
Cursor Variables

If source_cursor _vari abl e is open, then after the assignment,
target _cursor _variabl e is also open. The two cursor variables point to the same
SQL work area.

If source_cursor _vari abl e is not open, opening t arget _cursor_vari abl e after the
assignment does not open sour ce_cursor _vari abl e.

7.4.5 Variables in Cursor Variable Queries

The query associated with a cursor variable can reference any variable in its scope.

When you open a cursor variable with the OPEN FOR statement, PL/SQL evaluates any
variables in the query and uses those values when identifying the result set. Changing
the values of the variables later does not change the result set.

To change the result set, you must change the value of the variable and then open the
cursor variable again for the same query, as in Example 7-29.

Example 7-28 Variable in Cursor Variable Query—No Result Set Change

This example opens a cursor variable for a query that references the variable factor,
which has the value 2. Therefore, sal_multiple is always 2 times sal, despite that
factor is incremented after every fetch.

DECLARE
sal employees.salary%TYPE;
sal_multiple employees.salary%TYPE;
factor INTEGER := 2;

cv SYS_REFCURSOR;

BEGIN
OPEN cv FOR
SELECT salary, salary*factor
FROM employees
WHERE job_id LIKE "AD _%"; -- PL/SQL evaluates factor

LOOP
FETCH cv INTO sal, sal_multiple;
EXIT WHEN cv%NOTFOUND;
DBMS_OUTPUT.PUT_LINE("factor = " || factor);

DBMS_OUTPUT.PUT_LINE("sal =" || sal);
DBMS_OUTPUT.PUT_LINE("sal_multiple = " || sal_multiple);
factor := factor + 1; -- Does not affect sal_multiple
END LOOP;
CLOSE cv;
END;
/
Result:
factor = 2
sal = 4400
sal_multiple = 8800
factor = 3
sal = 24000
sal_multiple = 48000
factor = 4
sal = 17000

ORACLE 7-36

ORACLE

Chapter 7
Cursor Variables

sal_multiple = 34000
factor = 5

sal = 17000
sal_multiple = 34000

Example 7-29 Variable in Cursor Variable Query—Result Set Change

DECLARE
sal employees.salary%TYPE;
sal_multiple employees.salary%TYPE;
factor INTEGER := 2;

cv SYS_REFCURSOR;

BEGIN
DBMS_OUTPUT.PUT_LINE("factor = " || factor);

OPEN cv FOR
SELECT salary, salary*factor
FROM employees
WHERE job_id LIKE "AD_%"; -- PL/SQL evaluates factor

LOOP
FETCH cv INTO sal, sal_multiple;
EXIT WHEN cv%NOTFOUND;
DBMS_OUTPUT.PUT_LINE("sal
DBMS_OUTPUT.PUT_LINE("sal_multiple
END LOOP;

T 11 sab);
" |1 sal_multiple);

factor := factor + 1;
DBMS_OUTPUT.PUT_LINE("factor = " || factor);

OPEN cv FOR
SELECT salary, salary*factor
FROM employees
WHERE job_id LIKE "AD_%"; -- PL/SQL evaluates factor

LOOP
FETCH cv INTO sal, sal_multiple;
EXIT WHEN cv%NOTFOUND;
DBMS_OUTPUT.PUT_LINE("sal
DBMS_OUTPUT.PUT_LINE("sal_multiple

* 11 sab);
" |1 sal_multiple);

END LOOP;

CLOSE cv;
END;
/
Result:
factor = 2
sal = 4400
sal_multiple = 8800
sal = 24000
sal_multiple = 48000
sal = 17000
sal_multiple = 34000
sal = 17000
sal_multiple = 34000
factor = 3

7-37

sal

sal_multiple

sal

sal_multiple

sal

sal_multiple

sal

sal_multiple

Chapter 7
Cursor Variables

4400

13200
24000
72000
17000
51000
17000
51000

7.4.6 Querying a Collection

You can query a collection if all of the following are true:

ORACLE

The data type of the collection was either created at schema level or declared in a
package specification.

The data type of the collection element is either a scalar data type, a user-defined
type, or a record type.

In the query FROM clause, the collection appears intabl e_col | ecti on_expression as
the argument of the TABLE operator.

4

Note:

In SQL contexts, you cannot use a function whose return type was declared
in a package specification.

See Also:

e Oracle Database SQL Language Reference for information about the
tabl e _col |l ection_expression

« "CREATE PACKAGE Statement" for information about the CREATE
PACKAGE statement

e "PL/SQL Collections and Records" for information about collection types
and collection variables

e Example 8-9, "Querying a Collection with Native Dynamic SQL"

Example 7-30 Querying a Collection with Static SQL

In this example, the cursor variable is associated with a query on an associative array
of records. The nested table type, mytab, is declared in a package specification.

CREATE OR REPLACE PACKAGE pkg AUTHID DEFINER AS
TYPE rec IS RECORD(f1 NUMBER, f2 VARCHAR2(30));
TYPE mytab IS TABLE OF rec INDEX BY pls_integer;

END;

DECLARE
vl pkg.mytab; -- collection of records
v2 pkg.rec;
cl SYS_REFCURSOR;

7-38

Chapter 7

Cursor Variables

BEGIN

vi(1).fl = 1;

v1(1).f2 := "one";

OPEN c1 FOR SELECT * FROM TABLE(vl1);

FETCH c1 INTO v2;

CLOSE c1;

DBMS_OUTPUT.PUT_LINE("Values in record are " || v2.f1 |] " and * || v2.f2);
END;
/
Result:

Values in record are 1 and one

7.4.7 Cursor Variable Attributes

A cursor variable has the same attributes as an explicit cursor (see Explicit

Cursor Attributes.). The syntax for the value of a cursor variable attribute is
cursor_vari abl e_name immediately followed by att ri but e (for example, cv%ISOPEN).
If a cursor variable is not open, referencing any attribute except %1SOPEN raises the
predefined exception INVALID CURSOR.

7.4.8 Cursor Variables as Subprogram Parameters

You can use a cursor variable as a subprogram parameter, which makes it useful for
passing query results between subprograms.

For example:

* You can open a cursor variable in one subprogram and process it in a different
subprogram.

* In a multilanguage application, a PL/SQL subprogram can use a cursor variable to
return a result set to a subprogram written in a different language.

< Note:

The invoking and invoked subprograms must be in the same database
instance. You cannot pass or return cursor variables to subprograms invoked
through database links.

Caution:

Because cursor variables are pointers, using them as subprogram
parameters increases the likelihood of subprogram parameter aliasing,
which can have unintended results. For more information, see "Subprogram
Parameter Aliasing with Cursor Variable Parameters".

When declaring a cursor variable as the formal parameter of a subprogram:

» If the subprogram opens or assigns a value to the cursor variable, then the
parameter mode must be IN OUT.

ORACLE 7-39

Chapter 7
Cursor Variables

» If the subprogram only fetches from, or closes, the cursor variable, then the
parameter mode can be either IN or IN OUT.

Corresponding formal and actual cursor variable parameters must have compatible
return types. Otherwise, PL/SQL raises the predefined exception RONTYPE_MISMATCH.

To pass a cursor variable parameter between subprograms in different PL/SQL units,
define the REF CURSOR type of the parameter in a package. When the type is in a
package, multiple subprograms can use it. One subprogram can declare a formal
parameter of that type, and other subprograms can declare variables of that type and
pass them to the first subprogram.

¢ See Also:

e "Subprogram Parameters" for more information about subprogram
parameters

¢ "CURSOR Expressions" for information about CURSOR expressions, which
can be actual parameters for formal cursor variable parameters

PL/SQL Packages, for more information about packages

Example 7-31 Procedure to Open Cursor Variable for One Query

This example defines, in a package, a REF CURSOR type and a procedure that opens a
cursor variable parameter of that type.

CREATE OR REPLACE PACKAGE emp_data AUTHID DEFINER AS
TYPE empcurtyp IS REF CURSOR RETURN employees%ROWTYPE;
PROCEDURE open_emp_cv (emp_cv IN OUT empcurtyp);

END emp_data;

/

CREATE OR REPLACE PACKAGE BODY emp_data AS
PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp) IS
BEGIN

OPEN emp_cv FOR SELECT * FROM employees;
END open_emp_cv;
END emp_data;
/

Example 7-32 Opening Cursor Variable for Chosen Query (Same Return Type)

In this example ,the stored procedure opens its cursor variable parameter for a chosen
guery. The queries have the same return type.

CREATE OR REPLACE PACKAGE emp_data AUTHID DEFINER AS
TYPE empcurtyp IS REF CURSOR RETURN employees%ROWTYPE;
PROCEDURE open_emp_cv (emp_cv IN OUT empcurtyp, choice INT);
END emp_data;
/
CREATE OR REPLACE PACKAGE BODY emp_data AS
PROCEDURE open_emp_cv (emp_cv IN OUT empcurtyp, choice INT) IS
BEGIN
IF choice = 1 THEN
OPEN emp_cv FOR SELECT *
FROM employees

ORACLE 7-40

Chapter 7
Cursor Variables

WHERE commission_pct IS NOT NULL;
ELSIF choice = 2 THEN
OPEN emp_cv FOR SELECT *
FROM employees
WHERE salary > 2500;
ELSIF choice = 3 THEN
OPEN emp_cv FOR SELECT *
FROM employees
WHERE department_id = 100;
END IF;
END;
END emp_data;
/

Example 7-33 Opening Cursor Variable for Chosen Query (Different Return
Types)

In this example,the stored procedure opens its cursor variable parameter for a chosen
guery. The queries have the different return types.

CREATE OR REPLACE PACKAGE admin_data AUTHID DEFINER AS
TYPE gencurtyp IS REF CURSOR;
PROCEDURE open_cv (generic_cv IN OUT gencurtyp, choice INT);
END admin_data;
/
CREATE OR REPLACE PACKAGE BODY admin_data AS
PROCEDURE open_cv (generic_cv IN OUT gencurtyp, choice INT) IS
BEGIN
IF choice = 1 THEN
OPEN generic_cv FOR SELECT * FROM employees;
ELSIF choice = 2 THEN
OPEN generic_cv FOR SELECT * FROM departments;
ELSIF choice = 3 THEN
OPEN generic_cv FOR SELECT * FROM jobs;
END IF;
END;
END admin_data;
/

7.4.9 Cursor Variables as Host Variables

ORACLE

You can use a cursor variable as a host variable, which makes it useful for passing
query results between PL/SQL stored subprograms and their clients.

When a cursor variable is a host variable, PL/SQL and the client (the host
environment) share a pointer to the SQL work area that stores the result set.

To use a cursor variable as a host variable, declare the cursor variable in the host
environment and then pass it as an input host variable (bind variable) to PL/SQL. Host
cursor variables are compatible with any query return type (like weak PL/SQL cursor
variables).

A SQL work area remains accessible while any cursor variable points to it, even if
you pass the value of a cursor variable from one scope to another. For example, in
Example 7-34, the Pro*C program passes a host cursor variable to an embedded
PL/SQL anonymous block. After the block runs, the cursor variable still points to the
SQL work area.

If you have a PL/SQL engine on the client side, calls from client to server impose no
restrictions. For example, you can declare a cursor variable on the client side, open

7-41

ORACLE

Chapter 7
Cursor Variables

and fetch from it on the server side, and continue to fetch from it on the client side. You
can also reduce network traffic with a PL/SQL anonymous block that opens or closes
several host cursor variables in a single round trip. For example:

/* PL/SQL anonymous block in host environment */
BEGIN
OPEN :emp_cv FOR SELECT * FROM employees;
OPEN :dept_cv FOR SELECT * FROM departments;
OPEN :loc_cv FOR SELECT * FROM locations;
END;
/

Because the cursor variables still point to the SQL work areas after the PL/SQL
anonymous block runs, the client program can use them. When the client program no
longer needs the cursors, it can use a PL/SQL anonymous block to close them. For
example:

/* PL/SQL anonymous block in host environment */
BEGIN
CLOSE :emp_cv;
CLOSE :dept_cv;
CLOSE :loc_cv;
END;
/

This technique is useful for populating a multiblock form, as in Oracle Forms. For
example, you can open several SQL work areas in a single round trip, like this:

/* PL/SQL anonymous block in host environment */
BEGIN
OPEN :cl FOR SELECT 1 FROM DUAL;
OPEN :c2 FOR SELECT 1 FROM DUAL;
OPEN :c3 FOR SELECT 1 FROM DUAL;
END;
/

¢ Note:

If you bind a host cursor variable into PL/SQL from an Oracle Call Interface
(OCI) client, then you cannot fetch from it on the server side unless you also
open it there on the same server call.

Example 7-34 Cursor Variable as Host Variable in Pro*C Client Program

In this example, a Pro*C client program declares a cursor variable and a selector and
passes them as host variables to a PL/SQL anonymous block, which opens the cursor
variable for the selected query.

EXEC SQL BEGIN DECLARE SECTION;

SQL_CURSOR generic_cv; -- Declare host cursor variable.
int choice; -- Declare selector.
EXEC SQL END DECLARE SECTION;
EXEC SQL ALLOCATE :generic_cv; -- Initialize host cursor variable.
-- Pass host cursor variable and selector to PL/SQL block.
/
EXEC SQL EXECUTE
BEGIN

7-42

Chapter 7
CURSOR Expressions

IF :choice = 1 THEN
OPEN :generic_cv FOR SELECT * FROM employees;
ELSIF :choice = 2 THEN
OPEN :generic_cv FOR SELECT * FROM departments;
ELSIF :choice = 3 THEN
OPEN :generic_cv FOR SELECT * FROM jobs;
END IF;
END;
END-EXEC;

7.5 CURSOR Expressions

A CURSOR expression returns a nested cursor.

It has this syntax:

CURSOR (subquery)

You can use a CURSOR expression in a SELECT statement that is not a subquery (as

in Example 7-35) or pass it to a function that accepts a cursor variable parameter

(see "Passing CURSOR Expressions to Pipelined Table Functions™). You cannot use a
cursor expression with an implicit cursor.

See Also:

Oracle Database SQL Language Reference for more information about
CURSOR expressions, including restrictions

Example 7-35 CURSOR Expression

This example declares and defines an explicit cursor for a query that includes a
cursor expression. For each department in the departments table, the nested cursor
returns the last name of each employee in that department (which it retrieves from the
employees table).

DECLARE
TYPE emp_cur_typ 1S REF CURSOR;

emp_cur emp_cur_typ;
dept_name departments.department_name%TYPE;
emp_name employees. last_name%TYPE;

CURSOR c1 IS
SELECT department_name,
CURSOR (' SELECT e.last_name
FROM employees e
WHERE e.department_id = d.department_id
ORDER BY e.last_name
) employees
FROM departments d
WHERE department_name LIKE "A%"
ORDER BY department_name;
BEGIN
OPEN cl1;
LOOP -- Process each row of query result set
FETCH c1 INTO dept_name, emp_cur;

ORACLE 7-43

Chapter 7
Transaction Processing and Control

EXIT WHEN c1%NOTFOUND;
DBMS_OUTPUT.PUT_LINE("Department: " || dept_name);

LOOP -- Process each row of subquery result set
FETCH emp_cur INTO emp_name;
EXIT WHEN emp_cur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE("-- Employee: " || emp_name);
END LOOP;
END LOOP;
CLOSE c1;
END;
/

Result:

Department: Accounting

-- Employee: Gietz

-- Employee: Higgins
Department: Administration
-- Employee: Whalen

7.6 Transaction Processing and Control

Transaction processing is an Oracle Database feature that lets multiple users work
on the database concurrently, and ensures that each user sees a consistent version of
data and that all changes are applied in the right order.

A transaction is a sequence of one or more SQL statements that Oracle Database
treats as a unit: either all of the statements are performed, or none of them are.

Different users can write to the same data structures without harming each other's
data or coordinating with each other, because Oracle Database locks data structures
automatically. To maximize data availability, Oracle Database locks the minimum
amount of data for the minimum amount of time.

You rarely must write extra code to prevent problems with multiple users accessing
data concurrently. However, if you do need this level of control, you can manually
override the Oracle Database default locking mechanisms.

Topics

» COMMIT Statement

* ROLLBACK Statement

* SAVEPOINT Statement

* Implicit Rollbacks

» SET TRANSACTION Statement

* Overriding Default Locking

ORACLE 7-44

Chapter 7
Transaction Processing and Control

¢ See Also:

Oracle Database Concepts for more information about transactions

Oracle Database Concepts for more information about transaction
processing

Oracle Database Concepts for more information about the Oracle
Database locking mechanism

Oracle Database Concepts for more information about manual data
locks

7.6.1 COMMIT Statement

The COMMIT statement ends the current transaction, making its changes permanent
and visible to other users.

ORACLE

" Note:

A transaction can span multiple blocks, and a block can contain multiple
transactions.

The WRITE clause of the COMMIT statement specifies the priority with which Oracle
Database writes to the redo log the information that the commit operation generates.

¢ Note:

The default PL/SQL commit behavior for nondistributed transactions is
BATCH NOWAIT if the COMMIT_LOGGING and COMMIT_WAIT database initialization
parameters have not been set.

See Also:

Oracle Database Concepts for more information about committing
transactions

Oracle Database Concepts for information about distributed transactions

Oracle Database SQL Language Referencefor information about the
COMMIT statement

Oracle Data Guard Concepts and Administration for information about
ensuring no loss of data during a failover to a standby database

7-45

ORACLE

Example 7-36 COMMIT Statement with COMMENT and WRITE Clauses

Chapter 7
Transaction Processing and Control

In this example, a transaction transfers money from one bank account to another. It
is important that the money both leaves one account and enters the other, hence the

COMMIT WRITE IMMEDIATE NOWAIT statement.

DROP TABLE accounts;

CREATE TABLE accounts (
account_id NUMBER(6),
balance NUMBER (10,2)

);

INSERT INTO accounts (account_id, balance)

VALUES (7715, 6350.00);

INSERT INTO accounts (account_id, balance)

VALUES (7720, 5100.50);

CREATE OR REPLACE PROCEDURE transfer (

from_acct NUMBER,
to_acct NUMBER,
amount NUMBER
) AUTHID CURRENT_USER AS
BEGIN
UPDATE accounts
SET balance = balance - amount
WHERE account_id = from_acct;

UPDATE accounts
SET balance = balance + amount
WHERE account_id = to_acct;

COMMIT WRITE IMMEDIATE NOWAIT;
END;
/

Query before transfer:

SELECT * FROM accounts;

Result:

ACCOUNT_ID BALANCE

7715 6350
7720 5100.5

BEGIN

transfer(7715, 7720, 250);
END;
/

Query after transfer:

SELECT * FROM accounts;

Result:

ACCOUNT_ID BALANCE

7-46

Chapter 7
Transaction Processing and Control

7715 6100
7720 5350.5

7.6.2 ROLLBACK Statement

ORACLE

The ROLLBACK statement ends the current transaction and undoes any changes made
during that transaction.

If you make a mistake, such as deleting the wrong row from a table, a rollback restores
the original data. If you cannot finish a transaction because a SQL statement fails or
PL/SQL raises an exception, a rollback lets you take corrective action and perhaps
start over.

See Also:

Oracle Database SQL Language Reference for more information about the
ROLLBACK statement

Example 7-37 ROLLBACK Statement

This example inserts information about an employee into three different tables. If an
INSERT statement tries to store a duplicate employee number, PL/SQL raises the
predefined exception DUP_VAL_ON_INDEX. To ensure that changes to all three tables are
undone, the exception handler runs a ROLLBACK.

DROP TABLE emp_name;

CREATE TABLE emp_name AS
SELECT employee_id, last_name
FROM employees;

CREATE UNIQUE INDEX empname_ix
ON emp_name (employee_id);

DROP TABLE emp_sal;

CREATE TABLE emp_sal AS
SELECT employee_id, salary
FROM employees;

CREATE UNIQUE INDEX empsal_ix
ON emp_sal (employee_id);

DROP TABLE emp_job;

CREATE TABLE emp_job AS
SELECT employee_id, job_id
FROM employees;

CREATE UNIQUE INDEX empjobid_ix
ON emp_job (employee_id);

DECLARE
emp_id NUMBER(6) ;
emp_lastname VARCHAR2(25);
emp_salary NUMBER(8,2);

7-47

Chapter 7
Transaction Processing and Control

emp_jobid VARCHAR2(10);

BEGIN
SELECT employee_id, last_name, salary, job_id
INTO emp_id, emp_lastname, emp_salary, emp_jobid
FROM employees
WHERE employee_id = 120;

INSERT INTO emp_name (employee_id, last_name)
VALUES (emp_id, emp_lastname);

INSERT INTO emp_sal (employee_id, salary)
VALUES (emp_id, emp_salary);

INSERT INTO emp_job (employee_id, job_id)
VALUES (emp_id, emp_jobid);

EXCEPTION
WHEN DUP_VAL_ON_INDEX THEN
ROLLBACK;
DBMS_OUTPUT.PUT_LINE("Inserts were rolled back");
END;
/

7.6.3 SAVEPOINT Statement

ORACLE

The SAVEPOINT statement names and marks the current point in the processing of a
transaction.

Savepoints let you roll back part of a transaction instead of the whole transaction. The
number of active savepoints for each session is unlimited.

When you roll back to a savepoint, any savepoints marked after that savepoint are
erased. The savepoint to which you roll back is not erased. A simple rollback or
commit erases all savepoints.

If you mark a savepoint in a recursive subprogram, new instances of the SAVEPOINT
statement run at each level in the recursive descent, but you can only roll back to the
most recently marked savepoint.

Savepoint names are undeclared identifiers. Reusing a savepoint name in a
transaction moves the savepoint from its old position to the current point in the
transaction, which means that a rollback to the savepoint affects only the current part
of the transaction.

¢ See Also:

Oracle Database SQL Language Reference for more information about the
SET TRANSACTION SQL statement

Example 7-38 SAVEPOINT and ROLLBACK Statements

This example marks a savepoint before doing an insert. If the INSERT statement tries
to store a duplicate value in the employee_id column, PL/SQL raises the predefined
exception DUP_VAL_ON_INDEX and the transaction rolls back to the savepoint, undoing
only the INSERT statement.

7-48

ORACLE

DROP TABLE emp_name;

CREATE TABLE emp_name AS
SELECT employee_id, last_name, salary
FROM employees;

CREATE UNIQUE INDEX empname_ix
ON emp_name (employee_id);

DECLARE
emp_id employees.employee_id%TYPE;
emp_lastname employees.last_name%TYPE;
emp_salary employees.salary%TYPE;

BEGIN
SELECT employee_id, last_name, salary
INTO emp_id, emp_lastname, emp_salary
FROM employees
WHERE employee_id = 120;

UPDATE emp_name
SET salary = salary * 1.1
WHERE employee_id = emp_id;

DELETE FROM emp_name
WHERE employee_id = 130;

SAVEPOINT do_insert;

Chapter 7
Transaction Processing and Control

INSERT INTO emp_name (employee_id, last_name, salary)

VALUES (emp_id, emp_lastname, emp_salary);

EXCEPTION
WHEN DUP_VAL_ON_INDEX THEN
ROLLBACK TO do_insert;

DBMS_OUTPUT.PUT_LINE("Insert was rolled back");

END;
/

Example 7-39 Reusing SAVEPOINT with ROLLBACK

DROP TABLE emp_name;

CREATE TABLE emp_name AS
SELECT employee_id, last_name, salary
FROM employees;

CREATE UNIQUE INDEX empname_ix
ON emp_name (employee_id);

DECLARE
emp_id employees.employee_i1d%TYPE;
emp_lastname employees. last_name%TYPE;
emp_salary employees.salary%TYPE;

BEGIN
SELECT employee_id, last_name, salary
INTO emp_id, emp_lastname, emp_salary
FROM employees
WHERE employee_id = 120;

SAVEPOINT my_savepoint;

7-49

Chapter 7
Transaction Processing and Control

UPDATE emp_name
SET salary = salary * 1.1
WHERE employee_id = emp_id;

DELETE FROM emp_name
WHERE employee_id = 130;

SAVEPOINT my_savepoint;

INSERT INTO emp_name (employee_id, last_name, salary)
VALUES (emp_id, emp_lastname, emp_salary);

EXCEPTION
WHEN DUP_VAL_ON_INDEX THEN
ROLLBACK TO my_savepoint;
DBMS_OUTPUT.PUT_LINE("Transaction rolled back.");
END;
/

7.6.4 Implicit Rollbacks

Before running an INSERT, UPDATE, DELETE, or MERGE statement, the database marks an
implicit savepoint (unavailable to you). If the statement fails, the database rolls back to
the savepoint.

Usually, just the failed SQL statement is rolled back, not the whole transaction. If the
statement raises an unhandled exception, the host environment determines what is
rolled back.

The database can also roll back single SQL statements to break deadlocks. The
database signals an error to a participating transaction and rolls back the current
statement in that transaction.

Before running a SQL statement, the database must parse it, that is, examine it to
ensure it follows syntax rules and refers to valid schema objects. Errors detected
while running a SQL statement cause a rollback, but errors detected while parsing the
statement do not.

If you exit a stored subprogram with an unhandled exception, PL/SQL does not assign
values to OUT parameters, and does not do any rollback.

For information about handling exceptions, see PL/SQL Error Handling

7.6.5 SET TRANSACTION Statement

ORACLE

You use the SET TRANSACTION statement to begin a read-only or read-write transaction,
establish an isolation level, or assign your current transaction to a specified rollback
segment.

Read-only transactions are useful for running multiple queries while other users
update the same tables.

During a read-only transaction, all queries refer to the same snapshot of the database,
providing a multi-table, multi-query, read-consistent view. Other users can continue to
guery or update data as usual. A commit or rollback ends the transaction.

The SET TRANSACTION statement must be the first SQL statement in a read-only
transaction and can appear only once in a transaction. If you set a transaction to READ

7-50

Chapter 7
Transaction Processing and Control

ONLY, subsequent queries see only changes committed before the transaction began.
The use of READ ONLY does not affect other users or transactions.

Only the SELECT, OPEN, FETCH, CLOSE, LOCK TABLE, COMMIT, and ROLLBACK statements
are allowed in a read-only transaction. Queries cannot be FOR UPDATE.

¢ See Also:

Oracle Database SQL Language Reference for more information about the
SQL statement SET TRANSACTION

Example 7-40 SET TRANSACTION Statement in Read-Only Transaction

In this example, a read-only transaction gather order totals for the day, the past week,
and the past month. The totals are unaffected by other users updating the database
during the transaction. The orders table is in the sample schema OE.

DECLARE
daily_order_total NUMBER(12,2);
weekly_order_total NUMBER(12,2);
monthly_order_total NUMBER(12,2);
BEGIN
COMMIT; -- end previous transaction
SET TRANSACTION READ ONLY NAME “Calculate Order Totals®;

SELECT SUM (order_total)
INTO daily_order_total

FROM orders

WHERE order_date = SYSDATE;

SELECT SUM (order_total)

INTO weekly _order_total

FROM orders

WHERE order_date = SYSDATE - 7;

SELECT SUM (order_total)

INTO monthly_order_total

FROM orders

WHERE order_date = SYSDATE - 30;

COMMIT; -- ends read-only transaction
END;
/

7.6.6 Overriding Default Locking

ORACLE

By default, Oracle Database locks data structures automatically, which lets different
applications write to the same data structures without harming each other's data or
coordinating with each other.

If you must have exclusive access to data during a transaction, you can override
default locking with these SQL statements:

* LOCK TABLE, which explicitly locks entire tables.

7-51

Chapter 7
Transaction Processing and Control

e SELECT with the FOR UPDATE clause (SELECT FOR UPDATE), which explicitly locks
specific rows of a table.

Topics

 LOCK TABLE Statement

* SELECT FOR UPDATE and FOR UPDATE Cursors

e Simulating CURRENT OF Clause with ROWID Pseudocolumn

7.6.6.1 LOCK TABLE Statement

The LOCK TABLE statement explicitly locks one or more tables in a specified lock mode
so that you can share or deny access to them.

The lock mode determines what other locks can be placed on the table. For example,
many users can acquire row share locks on a table at the same time, but only one
user at a time can acquire an exclusive lock. While one user has an exclusive lock on
a table, no other users can insert, delete, or update rows in that table.

A table lock never prevents other users from querying a table, and a query never
acquires a table lock. Only if two different transactions try to modify the same row
does one transaction wait for the other to complete. The LOCK TABLE statement lets you
specify how long to wait for another transaction to complete.

Table locks are released when the transaction that acquired them is either committed
or rolled back.

" See Also:

e Oracle Database Development Guide for more information about locking
tables explicitly

e Oracle Database SQL Language Reference for more information about
the LOCK TABLE statement

7.6.6.2 SELECT FOR UPDATE and FOR UPDATE Cursors

ORACLE

The SELECT statement with the FOR UPDATE clause (SELECT FOR UPDATE statement)
selects the rows of the result set and locks them. SELECT FOR UPDATE lets you base an
update on the existing values in the rows, because it ensures that no other user can
change those values before you update them. You can also use SELECT FOR UPDATE to
lock rows that you do not want to update, as in Example 10-6.

" Note:

In tables compressed with Hybrid Columnar Compression (HCC), DML
statements lock compression units rather than rows. HCC, a feature of
certain Oracle storage systems, is described in Oracle Database Concepts.

7-52

Chapter 7
Transaction Processing and Control

By default, the SELECT FOR UPDATE statement waits until the requested row lock is
acquired. To change this behavior, use the NOWAIT, WAIT, or SKIP LOCKED clause of
the SELECT FOR UPDATE statement. For information about these clauses, see Oracle
Database SQL Language Reference.

When SELECT FOR UPDATE is associated with an explicit cursor, the cursor is called a
FOR UPDATE cursor. Only a FOR UPDATE cursor can appear in the CURRENT OF clause of
an UPDATE or DELETE statement. (The CURRENT OF clause, a PL/SQL extension to the
WHERE clause of the SQL statements UPDATE and DELETE, restricts the statement to the
current row of the cursor.)

When SELECT FOR UPDATE queries multiple tables, it locks only rows whose columns
appear in the FOR UPDATE clause.

7.6.6.3 Simulating CURRENT OF Clause with ROWID Pseudocolumn

The rows of the result set are locked when you open a FOR UPDATE cursor, not
as they are fetched. The rows are unlocked when you commit or roll back the
transaction. After the rows are unlocked, you cannot fetch from the FOR UPDATE cursor,
as Example 7-41 shows (the result is the same if you substitute ROLLBACK for COMMIT).

The workaround is to simulate the CURRENT OF clause with the ROWID pseudocolumn
(described in Oracle Database SQL Language Reference). Select the rowid of each
row into a UROWID variable and use the rowid to identify the current row during
subsequent updates and deletes, as in Example 7-42. (To print the value of a UROWID
variable, convert it to VARCHAR2, using the ROWIDTOCHAR function described in Oracle
Database SQL Language Reference.)

" Note:

When you update a row in a table compressed with Hybrid Columnar
Compression (HCC), the ROWID of the row changes. HCC, a feature of
certain Oracle storage systems, is described in Oracle Database Concepts.

Caution:

Because no FOR UPDATE clause locks the fetched rows, other users might
unintentionally overwrite your changes.

¢ Note:

The extra space needed for read consistency is not released until the cursor
is closed, which can slow down processing for large updates.

Example 7-41 FETCH with FOR UPDATE Cursor After COMMIT Statement

DROP TABLE emp;
CREATE TABLE emp AS SELECT * FROM employees;

ORACLE 7-53

ORACLE

DECLARE
CURSOR c1 1S
SELECT * FROM emp
FOR UPDATE OF salary
ORDER BY employee_id;

emp_rec emp%ROWTYPE;
BEGIN

OPEN c1;

LOOP

Chapter 7
Transaction Processing and Control

FETCH c1 INTO emp_rec; -- fails on second iteration

EXIT WHEN c1%NOTFOUND;
DBMS_OUTPUT.PUT_LINE (
"emp_rec.employee_id = " ||
TO_CHAR(emp_rec.employee_id)
);

UPDATE emp
SET salary = salary * 1.05
WHERE employee_id = 105;

COMMIT; -- releases locks
END LOOP;
END;
/

Result:

emp_rec.employee_id = 100
DECLARE

*

ERROR at line 1:

ORA-01002: fetch out of sequence
ORA-06512: at line 11

Example 7-42 Simulating CURRENT OF Clause with ROWID Pseudocolumn

DROP TABLE emp;
CREATE TABLE emp AS SELECT * FROM employees;

DECLARE
CURSOR cl IS
SELECT last_name, job_id, rowid
FROM emp; -- no FOR UPDATE clause
my_lastname employees.last_name%TYPE;
my_jobid employees. job_1d%TYPE;
my_rowid UROWID;
BEGIN
OPEN c1;
LOOP

FETCH c1 INTO my_lastname, my_jobid, my rowid;
EXIT WHEN c1%NOTFOUND;

UPDATE emp
SET salary = salary * 1.02
WHERE rowid = my_rowid; -- simulates WHERE CURRENT OF cl
COMMIT;
END LOOP;

7-54

Chapter 7

Autonomous Transactions

CLOSE c1;
END;
/

7.7 Autonomous Transactions

An autonomous transaction is an independent transaction started by another

transaction, the main transaction.

Autonomous transactions do SQL operations and commit or roll back, without

committing or rolling back the main transaction.

Figure 7-1 shows how control flows from the main transaction (MT) to an autonomous
routine (proc2) and back again. The autonomous routine commits two autonomous

transactions (AT1 and AT2).

Figure 7-1 Transaction Control Flow

Main Transaction Autonomous Transaction
PROCEDURE procl IS PROCEDURE proc2 IS
emp_id NUMBER; PRAGMA AUTON...
BEGIN dept_id NUMBER;
emp_id := 7788; BEGIN MT suspends
INSERT ... — MT begins dept_id := 20;
SELECT ... UPDATE ... — AT1 begins
proc2; > INSERT ...
DELETE ... UPDATE ...
COMMIT; — |+ MTends COMMIT; — AT1 ends
END; INSERT ... | AT2 begins
INSERT ...
COMMIT; — AT2 ends
END; MT resumes
¢ Note:

not a nested transaction, because:

transaction.

e It does not depend on the main transaction.

back, but autonomous transactions do not.

transactions until the main transaction commits.

level rollback, not a statement-level rollback.

ORACLE

Although an autonomous transaction is started by another transaction, it is

e It does not share transactional resources (such as locks) with the main

For example, if the main transaction rolls back, nested transactions roll

e Its committed changes are visible to other transactions immediately.

A nested transaction's committed changes are not visible to other

e Exceptions raised in an autonomous transaction cause a transaction-

7-55

Chapter 7
Autonomous Transactions

Topics

* Advantages of Autonomous Transactions
e Transaction Context

e Transaction Visibility

» Declaring Autonomous Routines

» Controlling Autonomous Transactions

* Autonomous Triggers

* Invoking Autonomous Functions from SQL

¢ See Also:

Oracle Database Development Guide for more information about
autonomous transactions

7.7.1 Advantages of Autonomous Transactions

After starting, an autonomous transaction is fully independent. It shares no locks,
resources, or commit-dependencies with the main transaction. You can log events,
increment retry counters, and so on, even if the main transaction rolls back.

Autonomous transactions help you build modular, reusable software components.
You can encapsulate autonomous transactions in stored subprograms. An invoking
application needs not know whether operations done by that stored subprogram
succeeded or failed.

7.7.2 Transaction Context

The main transaction shares its context with nested routines, but not with autonomous
transactions. When one autonomous routine invokes another (or itself, recursively),
the routines share no transaction context. When an autonomous routine invokes a
nonautonomous routine, the routines share the same transaction context.

7.7.3 Transaction Visibility

ORACLE

Changes made by an autonomous transaction become visible to other transactions
when the autonomous transaction commits. These changes become visible to the
main transaction when it resumes, if its isolation level is set to READ COMMITTED (the
default).

If you set the isolation level of the main transaction to SERIALIZABLE, changes
made by its autonomous transactions are not visible to the main transaction when
it resumes:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

7-56

Chapter 7
Autonomous Transactions

< Note:

e Transaction properties apply only to the transaction in which they are set.

e Cursor attributes are not affected by autonomous transactions.

7.7.4 Declaring Autonomous Routines

ORACLE

To declare an autonomous routine, use the AUTONOMOUS _TRANSACTION pragma.
For information about this pragma, see "AUTONOMOUS_TRANSACTION Pragma".

Tip:

For readability, put the AUTONOMOUS_TRANSACTION pragma at the top of the
declarative section. (The pragma is allowed anywhere in the declarative
section.)

You cannot apply the AUTONOMOUS_TRANSACTION pragma to an entire package or ADT,
but you can apply it to each subprogram in a package or each method of an ADT.

Example 7-43 Declaring Autonomous Function in Package
This example marks a package function as autonomous.

CREATE OR REPLACE PACKAGE emp_actions AUTHID DEFINER AS -- package specification
FUNCTION raise_salary (emp_id NUMBER, sal_raise NUMBER)
RETURN NUMBER;

END emp_actions;

/

CREATE OR REPLACE PACKAGE BODY emp_actions AS -- package body
-- code for function raise_salary
FUNCTION raise_salary (emp_id NUMBER, sal_raise NUMBER)
RETURN NUMBER IS

PRAGMA AUTONOMOUS_TRANSACTION;
new_sal NUMBER(8,2);
BEGIN
UPDATE employees SET salary =
salary + sal_raise WHERE employee_id = emp_id;
COMMIT;
SELECT salary INTO new_sal FROM employees
WHERE employee_id = emp_id;
RETURN new_sal;
END raise_salary;
END emp_actions;
/

Example 7-44 Declaring Autonomous Standalone Procedure

This example marks a standalone subprogram as autonomous.

CREATE OR REPLACE PROCEDURE lower_salary
(emp_id NUMBER, amount NUMBER)
AUTHID DEFINER AS

7-57

Chapter 7
Autonomous Transactions

PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN

UPDATE employees

SET salary = salary - amount

WHERE employee_id = emp_id;

COMMIT;
END lower_salary;
/

Example 7-45 Declaring Autonomous PL/ISQL Block

This example marks a schema-level PL/SQL block as autonomous. (A nested PL/SQL
block cannot be autonomous.)

DROP TABLE emp;
CREATE TABLE emp AS SELECT * FROM employees;

DECLARE
PRAGMA AUTONOMOUS_TRANSACTION;
emp_id NUMBER(6) := 200;
amount NUMBER(6,2) := 200;
BEGIN

UPDATE employees
SET salary = salary - amount
WHERE employee_id = emp_id;

COMMIT;
END;
/

7.7.5 Controlling Autonomous Transactions

The first SQL statement in an autonomous routine begins a transaction. When

one transaction ends, the next SQL statement begins another transaction. All SQL
statements run since the last commit or rollback comprise the current transaction.
To control autonomous transactions, use these statements, which apply only to the
current (active) transaction:

e COMMIT

e ROLLBACK [TO savepoi nt _nane]
e SAVEPOINT savepoi nt _nane

e SET TRANSACTION

Topics
* Entering and Exiting Autonomous Routines
» Committing and Rolling Back Autonomous Transactions

e Savepoints

* Avoiding Errors with Autonomous Transactions

7.7.5.1 Entering and Exiting Autonomous Routines

When you enter the executable section of an autonomous routine, the main
transaction suspends. When you exit the routine, the main transaction resumes.

ORACLE 7-58

Chapter 7
Autonomous Transactions

If you try to exit an active autonomous transaction without committing or rolling back,
the database raises an exception. If the exception is unhandled, or if the transaction
ends because of some other unhandled exception, then the transaction rolls back.

To exit normally, the routine must explicitly commit or roll back all autonomous
transactions. If the routine (or any routine invoked by it) has pending transactions,
then PL/SQL raises an exception and the pending transactions roll back.

7.7.5.2 Committing and Rolling Back Autonomous Transactions

COMMIT and ROLLBACK end the active autonomous transaction but do not exit the
autonomous routine. When one transaction ends, the next SQL statement begins
another transaction. A single autonomous routine can contain several autonomous
transactions, if it issues several COMMIT statements.

7.7.5.3 Savepoints

The scope of a savepoint is the transaction in which it is defined. Savepoints

defined in the main transaction are unrelated to savepoints defined in its autonomous
transactions. In fact, the main transaction and an autonomous transaction can use the
same savepoint names.

You can roll back only to savepoints marked in the current transaction. In an
autonomous transaction, you cannot roll back to a savepoint marked in the main
transaction. To do so, you must resume the main transaction by exiting the
autonomous routine.

When in the main transaction, rolling back to a savepoint marked before you
started an autonomous transaction does not roll back the autonomous transaction.
Remember, autonomous transactions are fully independent of the main transaction.

7.7.5.4 Avoiding Errors with Autonomous Transactions

To avoid some common errors, remember:

e If an autonomous transaction tries to access a resource held by the main
transaction, a deadlock can occur. The database raises an exception in the
autonomous transaction, which rolls back if the exception is unhandled.

e The database initialization parameter TRANSACTIONS specifies the maximum
number of concurrent transactions. That number might be exceeded because an
autonomous transaction runs concurrently with the main transaction.

* If you try to exit an active autonomous transaction without committing or rolling
back, the database raises an exception. If the exception is unhandled, the
transaction rolls back.

* You cannot run a PIPE ROW statement in an autonomous routine while an
autonomous transaction is open. You must close the autonomous transaction
before running the PIPE ROW statement. This is normally accomplished by
committing or rolling back the autonomous transaction before running the PIPE
ROW statement.

7.7.6 Autonomous Triggers

A trigger must be autonomous to run TCL or DDL statements.

ORACLE 7-59

ORACLE

Chapter 7
Autonomous Transactions

To run DDL statements, the trigger must use native dynamic SQL.

¢ See Also:

PL/SQL Triggers, for general information about triggers
* "Description of Static SQL" for general information about TCL statements

e Oracle Database SQL Language Reference for information about DDL
statements

e "Native Dynamic SQL" for information about native dynamic SQL

One use of triggers is to log events transparently—for example, to log all inserts into a
table, even those that roll back.

Example 7-46 Autonomous Trigger Logs INSERT Statements

In this example, whenever a row is inserted into the EMPLOYEES table, a trigger inserts
the same row into a log table. Because the trigger is autonomous, it can commit
changes to the log table regardless of whether they are committed to the main table.

DROP TABLE emp;
CREATE TABLE emp AS SELECT * FROM employees;

-- Log table:

DROP TABLE log;

CREATE TABLE log (
log_id NUMBER(6),
up_date DATE,
new_sal NUMBER(8,2),
old_sal NUMBER(8,2)

);
-- Autonomous trigger on emp table:

CREATE OR REPLACE TRIGGER log_sal
BEFORE UPDATE OF salary ON emp FOR EACH ROW
DECLARE
PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
INSERT INTO log (
log_id,
up_date,
new_sal,
old_sal
)
VALUES (
:old.employee_id,
SYSDATE,
znew.salary,
rold.salary
):
COMMIT;
END;
/
UPDATE emp

7-60

ORACLE

Chapter 7
Autonomous Transactions

SET salary = salary * 1.05
WHERE employee_id = 115;

COMMIT;

UPDATE emp

SET salary = salary * 1.05
WHERE employee_id = 116;
ROLLBACK;

-- Show that both committed and rolled-back updates
-- add rows to log table

SELECT * FROM log
WHERE log_id = 115 OR log_id = 116;

Result:
LOG_ID UP_DATE NEW SAL OLD SAL
115 02-0CT-12 3255 3100
116 02-0CT-12 3045 2900

2 rows selected.

Example 7-47 Autonomous Trigger Uses Native Dynamic SQL for DDL

In this example, an autonomous trigger uses native dynamic SQL (an EXECUTE
IMMEDIATE statement) to drop a temporary table after a row is inserted into the table
log.

DROP TABLE temp;
CREATE TABLE temp (
temp_id NUMBER(6),
up_date DATE

);

CREATE OR REPLACE TRIGGER drop_temp_table
AFTER INSERT ON log

DECLARE
PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN
EXECUTE IMMEDIATE "DROP TABLE temp®;
COMMIT;

END;

/

-- Show how trigger works

SELECT * FROM temp;

Result:

no rows selected

INSERT INTO log (log_id, up_date, new_sal, old_sal)
VALUES (999, SYSDATE, 5000, 4500);

1 row created.

7-61

Chapter 7
Autonomous Transactions

SELECT * FROM temp;

Result:

SELECT * FROM temp
*

ERROR at line 1:
ORA-00942: table or view does not exist

7.7.7 Invoking Autonomous Functions from SQL

ORACLE

A function invoked from SQL statements must obey rules meant to control side effects.

By definition, an autonomous routine never reads or writes database state (that is, it
neither queries nor modifies any database table).

¢ See Also:

"Subprogram Side Effects” for more information

Example 7-48 Invoking Autonomous Function

The package function log_msg is autonomous. Therefore, when the query invokes the
function, the function inserts a message into database table debug_output without
violating the rule against writing database state (modifying database tables).

DROP TABLE debug_output;
CREATE TABLE debug_output (message VARCHAR2(200));

CREATE OR REPLACE PACKAGE debugging AUTHID DEFINER AS
FUNCTION log_msg (msg VARCHAR2) RETURN VARCHAR2;
END debugging;
/
CREATE OR REPLACE PACKAGE BODY debugging AS
FUNCTION log_msg (msg VARCHAR2) RETURN VARCHAR2 1S
PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
INSERT INTO debug_output (message) VALUES (msg);
COMMIT;
RETURN msg;
END;
END debugging;
/
-- Invoke package function from query
DECLARE
my_emp_id NUMBER(6) ;
my_last_name VARCHAR2(25);
my_count NUMBER;
BEGIN
my_emp_id := 120;

SELECT debugging.log_msg(last_name)
INTO my_last_name

FROM employees

WHERE employee_id = my_emp_id;

7-62

Chapter 7
Autonomous Transactions

/* Even if you roll back in this scope,
the insert into "debug_output® remains committed,
because it is part of an autonomous transaction. */

ROLLBACK;

END;
/

ORACLE 7-63

PL/SQL Dynamic SQL

Dynamic SQL is a programming methodology for generating and running SQL
statements at run time.

It is useful when writing general-purpose and flexible programs like ad hoc query
systems, when writing programs that must run database definition language (DDL)
statements, or when you do not know at compile time the full text of a SQL statement
or the number or data types of its input and output variables.

PL/SQL provides two ways to write dynamic SQL.:

* Native dynamic SQL, a PL/SQL language (that is, native) feature for building and
running dynamic SQL statements

e DBMS_SQL package, an API for building, running, and describing dynamic SQL
statements

Native dynamic SQL code is easier to read and write than equivalent code that uses
the DBMS_SQL package, and runs noticeably faster (especially when it can be optimized
by the compiler). However, to write native dynamic SQL code, you must know at
compile time the number and data types of the input and output variables of the
dynamic SQL statement. If you do not know this information at compile time, you must
use the DBMS_SQL package. You must also use the DBMS_SQL package if you want a
stored subprogram to return a query result implicitly (not through an OUT REF CURSOR
parameter).

When you need both the DBMS_SQL package and native dynamic SQL, you can
switch between them, using the "DBMS_SQL.TO REFCURSOR Function" and
"DBMS_SQL.TO_CURSOR_NUMBER Function".

Topics

* When You Need Dynamic SQL

* Native Dynamic SQL

- DBMS_SQL Package

* SQL Injection

8.1 When You Need Dynamic SQL

ORACLE

In PL/SQL, you need dynamic SQL to run:

e SQL whose text is unknown at compile time

For example, a SELECT statement that includes an identifier that is unknown at
compile time (such as a table name) or a WHERE clause in which the number of
subclauses is unknown at compile time.

* SQL that is not supported as static SQL
That is, any SQL construct not included in "Description of Static SQL".

8-1

Chapter 8
Native Dynamic SQL

If you do not need dynamic SQL, use static SQL, which has these advantages:

e Successful compilation verifies that static SQL statements reference valid
database objects and that the necessary privileges are in place to access those
objects.

» Successful compilation creates schema object dependencies.

For information about schema object dependencies, see Oracle Database
Development Guide.

For information about using static SQL statements with PL/SQL, see PL/SQL Static
SQL.

8.2 Native Dynamic SQL

Native dynamic SQL processes most dynamic SQL statements with the EXECUTE
IMMEDIATE statement.

If the dynamic SQL statement is a SELECT statement that returns multiple rows, native
dynamic SQL gives you these choices:

e Use the EXECUTE IMMEDIATE statement with the BULK COLLECT INTO clause.
» Use the OPEN FOR, FETCH, and CLOSE statements.

The SQL cursor attributes work the same way after native dynamic SQL INSERT,
UPDATE, DELETE, MERGE, and single-row SELECT statements as they do for their static
SQL counterparts. For more information about SQL cursor attributes, see "Cursors
Overview".

Topics

 EXECUTE IMMEDIATE Statement

 OPEN FOR, FETCH, and CLOSE Statements

* Repeated Placeholder Names in Dynamic SQL Statements

8.2.1 EXECUTE IMMEDIATE Statement

ORACLE

The EXECUTE IMMEDIATE statement is the means by which native dynamic SQL
processes most dynamic SQL statements.

If the dynamic SQL statement is self-contained (that is, if it has no placeholders for
bind variables and the only result that it can possibly return is an error), then the
EXECUTE IMMEDIATE statement needs no clauses.

If the dynamic SQL statement includes placeholders for bind variables, each
placeholder must have a corresponding bind variable in the appropriate clause of the
EXECUTE IMMEDIATE statement, as follows:

* If the dynamic SQL statement is a SELECT statement that can return at most one
row, put out-bind variables (defines) in the INTO clause and in-bind variables in the
USING clause.

e If the dynamic SQL statement is a SELECT statement that can return multiple
rows, put out-bind variables (defines) in the BULK COLLECT INTO clause and in-bind
variables in the USING clause.

8-2

ORACLE

Chapter 8
Native Dynamic SQL

» If the dynamic SQL statement is a DML statement without a RETURNING INTO

clause, other than SELECT, put all bind variables in the USING clause.

* If the dynamic SQL statement is a DML statement with a RETURNING INTO clause,

put in-bind variables in the USING clause and out-bind variables in the RETURNING
INTO clause.

» If the dynamic SQL statement is an anonymous PL/SQL block or a CALL

statement, put all bind variables in the USING clause.
If the dynamic SQL statement invokes a subprogram, ensure that:

— The subprogram is either created at schema level or declared and defined in a
package specification.

— Every bind variable that corresponds to a placeholder for a subprogram
parameter has the same parameter mode as that subprogram parameter and
a data type that is compatible with that of the subprogram parameter.

— No bind variable is the reserved word NULL.

To work around this restriction, use an uninitialized variable where you want to
use NULL, as in Example 8-7.

— No bind variable has a data type that SQL does not support (such as
associative array indexed by string).

If the data type is a collection or record type, then it must be declared in a
package specification.

" Note:

Bind variables can be evaluated in any order. If a program determines order
of evaluation, then at the point where the program does so, its behavior is
undefined.

In Example 8-4, Example 8-5, and Example 8-6, the dynamic PL/SQL block is an
anonymous PL/SQL block that invokes a subprogram that has a formal parameter of a
PL/SQL collection type. Collection types are not SQL data types. In each example, the
collection type is declared in a package specification, and the subprogram is declared
in the package specification and defined in the package body.

8-3

ORACLE

Chapter 8
Native Dynamic SQL

¢ See Also:

"CREATE FUNCTION Statement” for information about creating
functions at schema level

"CREATE PROCEDURE Statement" for information about creating
procedures at schema level

"PL/SQL Packages" for information about packages

"CREATE PACKAGE Statement" for information about declaring
subprograms in packages

"CREATE PACKAGE BODY Statement” for information about declaring
and defining subprograms in packages

"CREATE PACKAGE Statement" for more information about declaring
types in a package specification

"EXECUTE IMMEDIATE Statement"for syntax details of the EXECUTE
IMMEDIATE statement

"PL/SQL Collections and Records" for information about collection types

Example 8-1 Invoking Subprogram from Dynamic PL/SQL Block

In this example, the dynamic PL/SQL block is an anonymous PL/SQL block that
invokes a subprogram created at schema level.

-- Subprogram that dynamic PL/SQL block invokes:
CREATE OR REPLACE PROCEDURE create_dept (
deptid IN OUT NUMBER,

dname
mgrid
locid

) AUTHID

BEGIN

deptid

IN VARCHARZ2,
IN NUMBER,
IN NUMBER
DEFINER AS

:= departments_seq.NEXTVAL;

INSERT INTO departments (
department_id,
department_name,
manager_id,
location_id

)

VALUES (deptid, dname, mgrid, locid);

END;
/
DECLARE

plsgl_block VARCHAR2(500);
new_deptid NUMBER(4);

new_dname VARCHAR2(30) :
new_mgrid NUMBER(6)
new_locid NUMBER(4)

BEGIN

"Advertising”;
200;
1700;

-- Dynamic PL/SQL block invokes subprogram:
plsgl_block := "BEGIN create_dept(:a, :b, :c, :d); END;";

/* Specify bind variables in USING clause.

8-4

ORACLE

Chapter 8
Native Dynamic SQL

Specify mode for first parameter.
Modes of other parameters are correct by default. */

EXECUTE IMMEDIATE plsql_block
USING IN OUT new_deptid, new_dname, new_mgrid, new_locid;
END;
/

Example 8-2 Dynamically Invoking Subprogram with BOOLEAN Formal
Parameter

In this example, the dynamic PL/SQL block is an anonymous PL/SQL block that
invokes a subprogram that has a formal parameter of the PL/SQL (but not SQL) data
type BOOLEAN.

CREATE OR REPLACE PROCEDURE p (x BOOLEAN) AUTHID DEFINER AS
BEGIN
IF x THEN
DBMS_OUTPUT.PUT_LINE("X is true®);
END IF;
END;
/

DECLARE
dyn_stmt VARCHAR2(200);
b BOOLEAN := TRUE;
BEGIN
dyn_stmt := "BEGIN p(:x); END;";
EXECUTE IMMEDIATE dyn_stmt USING b;
END;
/

Result:

X is true

Example 8-3 Dynamically Invoking Subprogram with RECORD Formal
Parameter

In this example, the dynamic PL/SQL block is an anonymous PL/SQL block that
invokes a subprogram that has a formal parameter of the PL/SQL (but not SQL)

data type RECORD. The record type is declared in a package specification, and the
subprogram is declared in the package specification and defined in the package body.

CREATE OR REPLACE PACKAGE pkg AUTHID DEFINER AS
TYPE rec IS RECORD (nl NUMBER, n2 NUMBER);

PROCEDURE p (x OUT rec, y NUMBER, z NUMBER);
END pkg;
/
CREATE OR REPLACE PACKAGE BODY pkg AS

PROCEDURE p (x OUT rec, y NUMBER, z NUMBER) AS
BEGIN
x.nl :
X.n2 :
END p;
END pkg;
/
DECLARE

Ys
Z;

8-5

ORACLE

Chapter 8
Native Dynamic SQL

r pkg.rec;
dyn_str VARCHAR2(3000);
BEGIN

dyn_str := "BEGIN pkg.p(:x, 6, 8); END;";

EXECUTE IMMEDIATE dyn_str USING OUT r;

DBMS_OUTPUT.PUT_LINE("r.nl = * || r.nl);
DBMS_OUTPUT.PUT _LINE("r.n2 = * || r.n2);
END;
/

Example 8-4 Dynamically Invoking Subprogram with Assoc. Array Formal
Parameter

In this example, the dynamic PL/SQL block is an anonymous PL/SQL block that
invokes a subprogram that has a formal parameter of the PL/SQL collection type
associative array indexed by PLS_INTEGER.

< Note:

An associative array type used in this context must be indexed by
PLS_INTEGER

CREATE OR REPLACE PACKAGE pkg AUTHID DEFINER AS

TYPE number_names 1S TABLE OF VARCHAR2(5)
INDEX BY PLS_INTEGER;

PROCEDURE print_number_names (X number_names);
END pkg;
/
CREATE OR REPLACE PACKAGE BODY pkg AS
PROCEDURE print_number_names (X number_names) IS
BEGIN
FOR i IN x.FIRST .. x.LAST LOOP
DBMS_OUTPUT.PUT_LINE(x(i));
END LOOP;
END;
END pkg;
/
DECLARE
digit_names pkg.number_names;
dyn_stmt VARCHAR2(3000) ;
BEGIN

digit_names(0) := "zero";
digit_names(l) := "one";

digit_names(2) := "two";

digit_names(3) := "three";
digit_names(4) := "four";
digit_names(5) := "five";
digit_names(6) := "six";

digit_names(7) := "seven-;
digit_names(8) := “eight”;
digit_names(9) := "nine-";

dyn_stmt := "BEGIN pkg.print_number_names(:x); END;";

8-6

ORACLE

Chapter 8
Native Dynamic SQL

EXECUTE IMMEDIATE dyn_stmt USING digit_names;
END;
/

Example 8-5 Dynamically Invoking Subprogram with Nested Table Formal
Parameter

In this example, the dynamic PL/SQL block is an anonymous PL/SQL block that
invokes a subprogram that has a formal parameter of the PL/SQL collection type
nested table.

CREATE OR REPLACE PACKAGE pkg AUTHID DEFINER AS
TYPE names IS TABLE OF VARCHAR2(10);

PROCEDURE print_names (X names);

END pkg;

/

CREATE OR REPLACE PACKAGE BODY pkg AS
PROCEDURE print_names (x names) IS
BEGIN

FOR i IN X.FIRST .. x.LAST LOOP
DBMS_OUTPUT.PUT_LINE(x(i));
END LOOP;
END;

END pkg;

/

DECLARE
fruits pkg.names;
dyn_stmt VARCHAR2(3000);

BEGIN
fruits := pkg.names("apple®, "banana®, “cherry®);

dyn_stmt := "BEGIN pkg.print_names(:x); END;";
EXECUTE IMMEDIATE dyn_stmt USING fruits;

END;

/

Example 8-6 Dynamically Invoking Subprogram with Varray Formal Parameter

In this example, the dynamic PL/SQL block is an anonymous PL/SQL block that
invokes a subprogram that has a formal parameter of the PL/SQL collection type
varray.

CREATE OR REPLACE PACKAGE pkg AUTHID DEFINER AS
TYPE foursome IS VARRAY(4) OF VARCHAR2(5);

PROCEDURE print_foursome (x foursome);

END pkg;

/

CREATE OR REPLACE PACKAGE BODY pkg AS
PROCEDURE print_foursome (x foursome) IS
BEGIN

IF X.COUNT = O THEN
DBMS_OUTPUT.PUT_LINE("Empty™);
ELSE
FOR i IN x.FIRST .. Xx.LAST LOOP
DBMS_OUTPUT.PUT_LINE(X(i));
END LOOP;
END IF;

8-7

Chapter 8
Native Dynamic SQL

END;
END pkg;
/
DECLARE
directions pkg.foursome;
dyn_stmt VARCHAR2(3000);
BEGIN
directions := pkg.foursome("north®, "south®, "east”, “"west");

dyn_stmt := "BEGIN pkg.print_foursome(:x); END;";
EXECUTE IMMEDIATE dyn_stmt USING directions;

END;

/

Example 8-7 Uninitialized Variable Represents NULL in USING Clause

This example uses an uninitialized variable to represent the reserved word NULL in the
USING clause.

CREATE TABLE employees_temp AS SELECT * FROM EMPLOYEES;

DECLARE
a_null CHAR(1); -- Set to NULL automatically at run time
BEGIN
EXECUTE IMMEDIATE "UPDATE employees_temp SET commission_pct = :x"
USING a_null;
END;
/

8.2.2 OPEN FOR, FETCH, and CLOSE Statements

If the dynamic SQL statement represents a SELECT statement that returns multiple
rows, you can process it with native dynamic SQL as follows:

1. Use an OPEN FOR statement to associate a cursor variable with the dynamic SQL
statement. In the USING clause of the OPEN FOR statement, specify a bind variable
for each placeholder in the dynamic SQL statement.

The USING clause cannot contain the literal NULL. To work around this restriction,
use an uninitialized variable where you want to use NULL, as in Example 8-7.

2. Use the FETCH statement to retrieve result set rows one at a time, several at a
time, or all at once.

3. Use the CLOSE statement to close the cursor variable.

The dynamic SQL statement can query a collection if the collection meets the criteria
in "Querying a Collection".

¢ See Also:

e "OPEN FOR Statement" for syntax details
e "FETCH Statement" for syntax details
e "CLOSE Statement" for syntax details

ORACLE 8-8

Chapter 8
Native Dynamic SQL

Example 8-8 Native Dynamic SQL with OPEN FOR, FETCH, and CLOSE
Statements

This example lists all employees who are managers, retrieving result set rows one at a
time.

DECLARE
TYPE EmpCurTyp 1S REF CURSOR;
V_emp_cursor EmpCurTyp;

emp_record employees%ROWTYPE;

v_stmt_str VARCHAR2(200) ;

v_e_job employees. Job%TYPE;
BEGIN

-- Dynamic SQL statement with placeholder:
v_stmt_str := "SELECT * FROM employees WHERE job_id = :j";

-- Open cursor & specify bind variable in USING clause:
OPEN v_emp_cursor FOR v_stmt_str USING "MANAGER";

-- Fetch rows from result set one at a time:
LOOP

FETCH v_emp_cursor INTO emp_record;

EXIT WHEN v_emp_cursor%NOTFOUND;
END LOOP;

-- Close cursor:
CLOSE v_emp_cursor;
END;
/

Example 8-9 Querying a Collection with Native Dynamic SQL

This example is like Example 7-30 except that the collection variable v1 is a bind
variable.

CREATE OR REPLACE PACKAGE pkg AUTHID DEFINER AS
TYPE rec IS RECORD(f1 NUMBER, f2 VARCHAR2(30));
TYPE mytab IS TABLE OF rec INDEX BY pls_integer;

END;

/

DECLARE
vl pkg.mytab; -- collection of records
v2 pkg.rec;
cl SYS_REFCURSOR;
BEGIN
OPEN c1 FOR "SELECT * FROM TABLE(:1)" USING v1i;
FETCH c1 INTO v2;
CLOSE c1;
DBMS_OUTPUT.PUT_LINE("Values in record are * || v2.f1 |] " and * || v2.f2);
END;
/

ORACLE 8-9

Chapter 8
Native Dynamic SQL

8.2.3 Repeated Placeholder Names in Dynamic SQL Statements

If you repeat placeholder names in dynamic SQL statements, be aware that the way
placeholders are associated with bind variables depends on the kind of dynamic SQL
statement.

Topics

* Dynamic SQL Statement is Not Anonymous Block or CALL Statement

* Dynamic SQL Statement is Anonymous Block or CALL Statement

8.2.3.1 Dynamic SQL Statement is Not Anonymous Block or CALL Statement

If the dynamic SQL statement does not represent an anonymous PL/SQL block or a
CALL statement, repetition of placeholder names is insignificant.

Placeholders are associated with bind variables in the USING clause by position, not by
name.

For example, in this dynamic SQL statement, the repetition of the name :x is
insignificant:

sql_stmt := "INSERT INTO payroll VALUES (:x, X, Iy, IX)";

In the corresponding USING clause, you must supply four bind variables. They can be
different; for example:

EXECUTE IMMEDIATE sql_stmt USING a, b, c, d;
The preceding EXECUTE IMMEDIATE statement runs this SQL statement:

INSERT INTO payroll VALUES (a, b, c, d)

To associate the same hind variable with each occurrence of :x, you must repeat that
bind variable; for example:

EXECUTE IMMEDIATE sql_stmt USING a, a, b, a;

The preceding EXECUTE IMMEDIATE statement runs this SQL statement:

INSERT INTO payroll VALUES (a, a, b, a)

8.2.3.2 Dynamic SQL Statement is Anonymous Block or CALL Statement

ORACLE

If the dynamic SQL statement represents an anonymous PL/SQL block or a CALL
statement, repetition of placeholder names is significant.

Each unique placeholder name must have a corresponding bind variable in the USING
clause. If you repeat a placeholder name, you need not repeat its corresponding bind
variable. All references to that placeholder name correspond to one bind variable in
the USING clause.

Example 8-10 Repeated Placeholder Names in Dynamic PL/SQL Block

In this example, all references to the first unique placeholder name, :x, are associated
with the first bind variable in the USING clause, a, and the second unique placeholder
name, 1y, is associated with the second bind variable in the USING clause, b.

8-10

Chapter 8
DBMS_SQL Package

CREATE PROCEDURE calc_stats (
w NUMBER,
X NUMBER,
y NUMBER,
z NUMBER)
1S
BEGIN
DBMS_OUTPUT.PUT_LINE(W + X + y + Z);
END;
/
DECLARE
a NUMBER := 4;
b NUMBER := 7;
plsql_block VARCHAR2(100);
BEGIN
plsql_block := "BEGIN calc_stats(:x, :X, Iy, :X); END;";
EXECUTE IMMEDIATE plsqgl_block USING a, b; -- calc_stats(a, a, b, a)
END;
/

8.3 DBMS_SQL Package

ORACLE

The DBMS_SQL package defines an entity called a SQL cursor number. Because the
SQL cursor number is a PL/SQL integer, you can pass it across call boundaries and
store it.

You must use the DBMS_SQL package to run a dynamic SQL statement if any of the
following are true:

* You do not know the SELECT list until run time.

* You do not know until run time what placeholders in a SELECT or DML statement
must be bound.

* You want a stored subprogram to return a query result implicitly (not through
an OUT REF CURSOR parameter), which requires the DBMS_SQL.RETURN_RESULT
procedure.

In these situations, you must use native dynamic SQL instead of the DBMS_SQL
package:

e The dynamic SQL statement retrieves rows into records.

* You want to use the SQL cursor attribute %FOUND, %ISOPEN, %NOTFOUND, or
%ROWCOUNT after issuing a dynamic SQL statement that is an INSERT, UPDATE,
DELETE, MERGE, or single-row SELECT statement.

When you need both the DBMS_SQL package and native dynamic SQL, you
can switch between them, using the functions DBMS_SQL.TO_REFCURSOR and
DBMS_SQL.TO_CURSOR_NUMBER.

Topics

e DBMS_SQL.RETURN_RESULT Procedure

e DBMS_SQL.GET_NEXT_RESULT Procedure

e DBMS_SQL.TO_REFCURSOR Function

+ DBMS_SQL.TO_CURSOR_NUMBER Function

8-11

Chapter 8
DBMS_SQL Package

< Note:

You can invoke DBMS_SQL subprograms remotely.

¢ See Also:

e "Native Dynamic SQL"for information about native dynamic SQL

e Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_SQL package, including instructions for
running a dynamic SQL statement that has an unknown number of input
or output variables ("Method 4")

8.3.1 DBMS_SQL.RETURN_RESULT Procedure

ORACLE

The DBMS_SQL.RETURN_RESULT procedure lets a stored subprogram return a query
result implicitly to either the client program (which invokes the subprogram indirectly)
or the immediate caller of the subprogram. After DBMS_SQL.RETURN_RESULT returns the
result, only the recipient can access it.

The DBMS_SQL.RETURN_RESULT has two overloads:

PROCEDURE RETURN_RESULT (rc IN OUT SYS_REFCURSOR,
to_client IN BOOLEAN DEFAULT TRUE);

PROCEDURE RETURN_RESULT (rc IN OUT INTEGER,
to_client IN BOOLEAN DEFAULT TRUE);

The rc parameter is either an open cursor variable (SYS_REFCURSOR) or the cursor
number (INTEGER) of an open cursor. To open a cursor and get its cursor number,

invoke the DBMS_SQL.OPEN_CURSOR function, described in Oracle Database PL/SQL
Packages and Types Reference.

When the to_client parameter is TRUE (the default), the DBMS_SQL.RETURN_RESULT
procedure returns the query result to the client program (which invokes the
subprogram indirectly); when this parameter is FALSE, the procedure returns the query
result to the subprogram's immediate caller.

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_SQL.RETURN_RESULT

e Oracle Call Interface Programmer's Guide for information about C
and .NET support for implicit query results

e SQL*Plus User's Guide and Reference for information about SQL*Plus
support for implicit query results

8-12

ORACLE

Example 8-11 DBMS_SQL.RETURN_RESULT Procedure

Chapter 8
DBMS_SQL Package

In this example, the procedure p invokes DBMS_SQL.RETURN_RESULT without the optional
to_client parameter (which is TRUE by default). Therefore, DBMS_SQL.RETURN_RESULT

returns the query result to the subprogram client (the anonymous block that invokes p).
After p returns a result to the anonymous block, only the anonymous block can access

that result.

CREATE OR REPLACE PROCEDURE p AUTHID DEFINER AS

cl SYS_REFCURSOR;
c2 SYS_REFCURSOR;
BEGIN
OPEN cl1 FOR
SELECT first_name, last_name
FROM employees
WHERE employee_id = 176;

DBMS_SQL.RETURN_RESULT (cl);

-- Now p cannot access the result.

OPEN c2 FOR
SELECT city, state_province
FROM locations
WHERE country_id = "AU";

DBMS_SQL.RETURN_RESULT (c2);

-- Now p cannot access the result.

END;
/
BEGIN

ps
END;
/

Result:

ResultSet #1

FIRST_NAME LAST_NAME

Jonathon Taylor

ResultSet #2

Sydney New South Wales

8.3.2 DBMS_SQL.GET _NEXT RESULT Procedure

The DBMS_SQL.GET_NEXT_RESULT procedure gets the next result that the
DBMS_SQL.RETURN_RESULT procedure returned to the recipient. The two procedures

return results in the same order.

The DBMS_SQL.GET_NEXT_RESULT has two overloads:
PROCEDURE GET_NEXT_RESULT (c IN INTEGER, rc OUT SYS_REFCURSOR);

PROCEDURE GET_NEXT_RESULT (c IN INTEGER, rc OUT INTEGER);

8-13

ORACLE

Chapter 8
DBMS_SQL Package

The c parameter is the cursor number of an open cursor that directly or indirectly
invokes a subprogram that uses the DBMS_SQL.RETURN_RESULT procedure to return a
query result implicitly.

To open a cursor and get its cursor number, invoke the

DBMS_SQL.OPEN_CURSOR function. DBMS_SQL.OPEN_CURSOR has an optional parameter,
treat_as client_for_results. When this parameter is FALSE (the default), the
caller that opens this cursor (to invoke a subprogram) is not treated as the

client that receives query results for the client from the subprogram that uses
DBMS_SQL.RETURN_RESULT—those query results are returned to the client in a upper
tier instead. When this parameter is TRUE, the caller is treated as the client. For more
information about the DBMS_SQL.OPEN_CURSOR function, see Oracle Database PL/SQL
Packages and Types Reference.

The rc parameter is either a cursor variable (SYS_REFCURSOR) or the cursor number
(INTEGER) of an open cursor.

In Example 8-12, the procedure get_employee_info uses DBMS_SQL.RETURN_RESULT
to return two query results to a client program and is invoked dynamically

by the anonymous block <<main>>. Because <<main>> needs to receive the

two query results that get_employee_info returns, <<main>> opens a cursor

to invoke get_employee_info using DBMS_SQL.OPEN_CURSOR with the parameter
treat_as client_for_results set to TRUE. Therefore, DBMS_SQL.GET_NEXT RESULT
returns its results to <<main>>, which uses the cursor rc to fetch them.

Example 8-12 DBMS_SQL.GET_NEXT_RESULT Procedure

CREATE OR REPLACE PROCEDURE get_employee_info (id IN VARCHAR2) AUTHID DEFINER AS
rc SYS_REFCURSOR;

BEGIN
-- Return employee info

OPEN rc FOR SELECT first_name, last name, email, phone_number
FROM employees
WHERE employee_id = id;
DBMS_SQL.RETURN_RESULT(rc);

-- Return employee job history

OPEN RC FOR SELECT job_title, start date, end_date
FROM job_history jh, jobs j
WHERE jh.employee_id = id AND
jh.job_id = j.job_id
ORDER BY start_date DESC;
DBMS_SQL.RETURN_RESULT(rc);

END;

/

<main>>

DECLARE
(o INTEGER;
rc SYS_REFCURSOR;
n NUMBER;

first_name VARCHAR2(20);
last_name VARCHAR2(25) ;
email VARCHAR2(25) ;
phone_number VARCHAR2(20);

job_title VARCHAR2(35);

8-14

Chapter 8
DBMS_SQL Package

start_date DATE;
end_date DATE;

BEGIN

Cc := DBMS_SQL.OPEN_CURSOR(true);

DBMS_SQL.PARSE(c, "BEGIN get_employee_info(:id); END;", DBMS_SQL.NATIVE);
DBMS_SQL.BIND_VARIABLE(c, ":id", 176);

n := DBMS_SQL.EXECUTE(c);

-- Get employee info

dbms_sql .get_next_result(c, rc);
FETCH rc INTO first_name, last_name, email, phone_number;

DBMS_OUTPUT.PUT_LINE("Employee: "||Ffirst_name || " " || last_name);
DBMS_OUTPUT.PUT_LINE(*Email: * |]email);
DBMS_OUTPUT.PUT_LINE("Phone: * ||phone_number);

-- Get employee job history

DBMS_OUTPUT.PUT_LINE(*Titles:");
DBMS_SQL.GET_NEXT_RESULT(c, rc);
LOOP

FETCH rc INTO job_title, start_date, end_date;

EXIT WHEN rc%NOTFOUND;

DBMS_OUTPUT.PUT_LINE

("= "|ljob_title||" ("||start_date]]|" - " |]end_date]]|")");

END LOOP;

DBMS_SQL .CLOSE_CURSOR(c);
END main;
/

Result:

Employee: Jonathon Taylor

Email: JTAYLOR

Phone: 011.44.1644.429265

Titles:

- Sales Manager (01-JAN-07 - 31-DEC-07)

- Sales Representative (24-MAR-06 - 31-DEC-06)

PL/SQL procedure successfully completed.

8.3.3 DBMS_SQL.TO_REFCURSOR Function

ORACLE

The DBMS_SQL.TO_REFCURSOR function converts a SQL cursor number to a weak cursor
variable, which you can use in native dynamic SQL statements.

Before passing a SQL cursor number to the DBMS_SQL.TO_REFCURSOR function, you
must OPEN, PARSE, and EXECUTE it (otherwise an error occurs).

After you convert a SQL cursor number to a REF CURSOR variable, DBMS_SQL operations
can access it only as the REF CURSOR variable, not as the SQL cursor number. For
example, using the DBMS_SQL.IS_OPEN function to see if a converted SQL cursor
number is still open causes an error.

Example 8-13 uses the DBMS_SQL.TO_REFCURSOR function to switch from the DBMS_SQL
package to native dynamic SQL.

8-15

Chapter 8
DBMS_SQL Package

Example 8-13 Switching from DBMS_SQL Package to Native Dynamic SQL

CREATE OR REPLACE TYPE vc_array IS TABLE OF VARCHAR2(200);
/
CREATE OR REPLACE TYPE numlist IS TABLE OF NUMBER;
/
CREATE OR REPLACE PROCEDURE do_query_1 (
placeholder vc_array,
bindvars vc_array,
sql_stmt VARCHAR2
) AUTHID DEFINER

IS
TYPE curtype 1S REF CURSOR;
src_cur curtype;
curid NUMBER;
bindnames vc_array;
empnos numlist;
depts numlist;
ret NUMBER;
isopen BOOLEAN;

BEGIN

-- Open SQL cursor number:
curid = DBMS_SQL.OPEN_CURSOR;

-- Parse SQL cursor number:
DBMS_SQL.PARSE(curid, sql_stmt, DBMS_SQL.NATIVE);

bindnames := placeholder;

-- Bind variables:

FOR i IN 1 .. bindnames.COUNT LOOP
DBMS_SQL.BIND_VARIABLE(curid, bindnames(i), bindvars(i));

END LOOP;

-- Run SQL cursor number:
ret := DBMS_SQL.EXECUTE(curid);

-- Switch from DBMS_SQL to native dynamic SQL:
src_cur := DBMS_SQL.TO_REFCURSOR(curid);
FETCH src_cur BULK COLLECT INTO empnos, depts;

-- This would cause an error because curid was converted to a REF CURSOR:
-- isopen := DBMS_SQL.IS_OPEN(curid);

CLOSE src_cur;
END;
/

8.3.4 DBMS_SQL.TO_CURSOR_NUMBER Function

ORACLE

The DBMS_SQL.TO_CURSOR_NUMBER function converts a REF CURSOR variable (either
strong or weak) to a SQL cursor number, which you can pass to DBMS_SQL
subprograms.

Before passing a REF CURSOR variable to the DBMS_SQL.TO_CURSOR_NUMBER function, you
must OPEN it.

After you convert a REF CURSOR variable to a SQL cursor number, native dynamic SQL
operations cannot access it.

8-16

Chapter 8
DBMS_SQL Package

Example 8-14 uses the DBMS_SQL.TO_CURSOR_NUMBER function to switch from native
dynamic SQL to the DBMS_SQL package.

Example 8-14 Switching from Native Dynamic SQL to DBMS_SQL Package

CREATE OR REPLACE PROCEDURE do_query_2 (
sql_stmt VARCHAR2
) AUTHID DEFINER
IS
TYPE curtype IS REF CURSOR;
src_cur curtype;
curid NUMBER;
desctab DBMS_SQL.DESC_TAB;
colent NUMBER;
namevar VARCHAR2(50);
numvar NUMBER;
datevar DATE;
empno NUMBER := 100;
BEGIN
-- sgl_stmt := SELECT ... FROM employees WHERE employee_id = :bl";

-- Open REF CURSOR variable:
OPEN src_cur FOR sqgl_stmt USING empno;

-- Switch from native dynamic SQL to DBMS_SQL package:
curid := DBMS_SQL.TO_CURSOR_NUMBER(src_cur);
DBMS_SQL .DESCRIBE_COLUMNS(curid, colcnt, desctab);

-- Define columns:
FOR i IN 1 .. colcnt LOOP
IF desctab(i).col_type = 2 THEN
DBMS_SQL.DEFINE_COLUMN(curid, i, numvar);
ELSIF desctab(i).col_type = 12 THEN
DBMS_SQL.DEFINE_COLUMN(curid, i, datevar);
-- statements
ELSE
DBMS_SQL.DEFINE_COLUMN(curid, i, namevar, 50);
END IF;
END LOOP;

-- Fetch rows with DBMS_SQL package:
WHILE DBMS_SQL.FETCH_ROWS(curid) > 0 LOOP
FOR 1 IN 1 .. colcnt LOOP
IF (desctab(i).col_type = 1) THEN
DBMS_SQL .COLUMN_VALUE(curid, i, namevar);
ELSIF (desctab(i).col_type = 2) THEN
DBMS_SQL .COLUMN_VALUE(curid, i, numvar);
ELSIF (desctab(i).col_type = 12) THEN
DBMS_SQL.COLUMN_VALUE(curid, i, datevar);
-- statements
END IF;
END LOOP;
END LOOP;

DBMS_SQL .CLOSE_CURSOR(curid);

END;
/

ORACLE 8-17

Chapter 8
SQL Injection

8.4 SQL Injection

SQL injection maliciously exploits applications that use client-supplied data in SQL
statements, thereby gaining unauthorized access to a database to view or manipulate
restricted data.

This section describes SQL injection vulnerabilities in PL/SQL and explains how to
guard against them.

Topics

e SQL Injection Techniques

e Guards Against SQL Injection

Example 8-15 Setup for SQL Injection Examples

To try the examples, run these statements.

¢ Live SQL:

You can view and run this example on Oracle Live SQL at SQL Injection
Demo

DROP TABLE secret_records;
CREATE TABLE secret_records (
user_name VARCHAR2(9),
service_type VARCHAR2(12),
value VARCHAR2(30),

date_created DATE

);

INSERT INTO secret_records (
user_name, service_type, value, date_created

)
VALUES ("Andy", "Waiter®, "Serve dinner at Cafe Pete", SYSDATE);

INSERT INTO secret_records (
user_name, service_type, value, date_created

)
VALUES ("Chuck®, "Merger®, "Buy company XYZ", SYSDATE);

8.4.1 SQL Injection Techniques

ORACLE

All SQL injection techniques exploit a single vulnerability: String input is not correctly
validated and is concatenated into a dynamic SQL statement.

Topics
* Statement Modification
e Statement Injection

» Data Type Conversion

8-18

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-dynamic-sql/tdlnplsdynamic3.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-dynamic-sql/tdlnplsdynamic3.html

Chapter 8
SQL Injection

8.4.1.1 Statement Modification

ORACLE

Statement modification means deliberately altering a dynamic SQL statement so that
it runs in a way unintended by the application developer.

Typically, the user retrieves unauthorized data by changing the WHERE clause of a
SELECT statement or by inserting a UNION ALL clause. The classic example of this
technique is bypassing password authentication by making a WHERE clause always
TRUE.

Example 8-16 Procedure Vulnerable to Statement Modification

This example creates a procedure that is vulnerable to statement modification and
then invokes that procedure with and without statement modification. With statement
modification, the procedure returns a supposedly secret record.

¢ Live SQL:

You can view and run this example on Oracle Live SQL at SQL Injection
Demo

Create vulnerable procedure:

CREATE OR REPLACE PROCEDURE get_record (
user_name IN VARCHARZ2,
service_type IN VARCHAR2,
rec OUT VARCHAR2
) AUTHID DEFINER
IS
query VARCHAR2(4000);
BEGIN
-- Following SELECT statement is vulnerable to modification
-- because it uses concatenation to build WHERE clause.
query := "SELECT value FROM secret_records WHERE user_name="""
|l user_name
Il """ AND service_type="""
|l service_type
TIRERE
DBMS_OUTPUT.PUT_LINE("Query: " || query);
EXECUTE IMMEDIATE query INTO rec ;
DBMS_OUTPUT.PUT_LINE("Rec: " || rec);
END;
/

Demonstrate procedure without SQL injection:

SET SERVEROUTPUT ON;

DECLARE
record_value VARCHAR2(4000);
BEGIN
get_record("Andy", "Waiter", record_value);
END;
/

Result:

8-19

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-dynamic-sql/tdlnplsdynamic3.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-dynamic-sql/tdlnplsdynamic3.html

Chapter 8
SQL Injection

Query: SELECT value FROM secret_records WHERE user_name="Andy" AND
service_type="Waiter"
Rec: Serve dinner at Cafe Pete

Example of statement modification:

DECLARE
record_value VARCHAR2(4000);
BEGIN
get_record(
"Anybody " OR service_type=""Merger""--",
"Anything”,
record_value);
END;
/

Result:

Query: SELECT value FROM secret_records WHERE user_name="Anybody " OR
service_type="Merger®--" AND service_type="Anything"

Rec: Buy company XYZ

PL/SQL procedure successfully completed.

8.4.1.2 Statement Injection

Statement injection means that a user appends one or more SQL statements to a
dynamic SQL statement.

Anonymous PL/SQL blocks are vulnerable to this technique.
Example 8-17 Procedure Vulnerable to Statement Injection

This example creates a procedure that is vulnerable to statement injection and then
invokes that procedure with and without statement injection. With statement injection,
the procedure deletes the supposedly secret record exposed in Example 8-16.

¢ Live SQL:

You can view and run this example on Oracle Live SQL at SQL Injection
Demo

Create vulnerable procedure:

CREATE OR REPLACE PROCEDURE p (
user_name IN VARCHAR2,
service_type IN VARCHAR2
) AUTHID DEFINER
1S
blockl VARCHAR2(4000);
BEGIN
-- Following block is vulnerable to statement injection
-- because it is built by concatenation.
blockl :=
"BEGIN
DBMS_OUTPUT.PUT_LINE(" "user_name: " || user_name || """);"

ORACLE 8-20

https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-dynamic-sql/tdlnplsdynamic3.html
https://livesql.oracle.com/apex/livesql/docs/lnpls/plsql-dynamic-sql/tdlnplsdynamic3.html

ORACLE

Chapter 8
SQL Injection

|| "DBMS_OUTPUT.PUT_LINE(""service_type: * || service_type || """);
END;";

DBMS_OUTPUT.PUT_LINE("Blockl: " || blockl);

EXECUTE IMMEDIATE blockl;
END;
/

Demonstrate procedure without SQL injection:

SET SERVEROUTPUT ON;

BEGIN

p("Andy", "Waiter");
END;
/

Result:

Blockl: BEGIN
DBMS_OUTPUT.PUT_LINE("user_name: Andy");
DBMS_OUTPUT.PUT_LINE("service_type: Waiter®);
END;
user_name: Andy
service_type: Waiter

SQL*Plus formatting command:

COLUMN date_created FORMAT A12;

Query:
SELECT * FROM secret_records ORDER BY user_name;

Result:

USER_NAME SERVICE_TYPE VALUE DATE_CREATED
Andy Waiter Serve dinner at Cafe Pete 28-APR-10
Chuck Merger Buy company XYZ 28-APR-10

Example of statement modification:

BEGIN

p("Anybody*®, “Anything®");

DELETE FROM secret_records WHERE service_type=INITCAP(" "Merger®);
END;
/

Result:

Blockl: BEGIN
DBMS_OUTPUT.PUT_LINE("user_name: Anybody");
DBMS_OUTPUT.PUT_LINE("service_type: Anything");
DELETE FROM secret_records WHERE service_type=INITCAP("Merger®);
END;
user_name: Anybody
service_type: Anything

PL/SQL procedure successfully completed.

8-21

Chapter 8
SQL Injection

Query:
SELECT * FROM secret_records;

Result:
USER_NAME SERVICE_TYPE VALUE DATE_CREATED
Andy Waiter Serve dinner at Cafe Pete 18-MAR-09

1 row selected.

8.4.1.3 Data Type Conversion

ORACLE

A less known SQL injection technique uses NLS session parameters to modify or
inject SQL statements.

A datetime or numeric value that is concatenated into the text of a dynamic SQL
statement must be converted to the VARCHAR2 data type. The conversion can be either
implicit (when the value is an operand of the concatenation operator) or explicit (when
the value is the argument of the TO_CHAR function). This data type conversion depends
on the NLS settings of the database session that runs the dynamic SQL statement.
The conversion of datetime values uses format models specified in the parameters
NLS_DATE_FORMAT, NLS_TIMESTAMP_FORMAT, or NLS_TIMESTAMP_TZ_FORMAT, depending
on the particular datetime data type. The conversion of numeric values applies decimal
and group separators specified in the parameter NLS_NUMERIC_CHARACTERS.

One datetime format model is "'t ext "'. The t ext is copied into the conversion result.
For example, if the value of NLS_DATE_FORMAT is ""Month:" Month*", then in June,
TO_CHAR(SYSDATE) returns "Month: June®. The datetime format model can be abused
as shown in Example 8-18.

Example 8-18 Procedure Vulnerable to SQL Injection Through Data Type
Conversion

SELECT * FROM secret_records;

Result:

USER_NAME SERVICE_TYPE VALUE DATE_CREATE
Andy Waiter Serve dinner at Cafe Pete 28-APR-2010
Chuck Merger Buy company XYZ 28-APR-2010

Create vulnerable procedure:

-- Return records not older than a month

CREATE OR REPLACE PROCEDURE get_recent_record (
user_name IN VARCHARZ2,
service_type IN VARCHAR2,

rec OUT VARCHAR2
) AUTHID DEFINER
IS

query VARCHAR2(4000);
BEGIN

/* Following SELECT statement is vulnerable to modification
because it uses concatenation to build WHERE clause
and because SYSDATE depends on the value of NLS_DATE_FORMAT. */

8-22

Chapter 8
SQL Injection

query := "SELECT value FROM secret_records WHERE user_name="""
| user_name

| "°" AND service_type="""

| service_type

| """ AND date_created>"""

| (SYSDATE - 30)

DBMS_OUTPUT.PUT_LINE(*Query: * || query);
EXECUTE IMMEDIATE query INTO rec;
DBMS_OUTPUT.PUT_LINE(*Rec: " || rec);
END;
/

Demonstrate procedure without SQL injection:

SET SERVEROUTPUT ON;
ALTER SESSION SET NLS_DATE_FORMAT="DD-MON-YYYY";

DECLARE
record_value VARCHAR2(4000);
BEGIN
get_recent_record("Andy", "Waiter®, record_value);
END;
/

Result:

Query: SELECT value FROM secret_records WHERE user_name="Andy" AND
service_type="Waiter® AND date_created>"29-MAR-2010"
Rec: Serve dinner at Cafe Pete

Example of statement modification:

ALTER SESSION SET NLS_DATE_FORMAT="""" OR service_type=""Merger"";

DECLARE
record_value VARCHAR2(4000);
BEGIN
get_recent_record("Anybody", "Anything®, record_value);
END;
/

Result:

Query: SELECT value FROM secret_records WHERE user_name="Anybody® AND
service_type="Anything" AND date_created>"" OR service_type="Merger”
Rec: Buy company XYZ

PL/SQL procedure successfully completed.

8.4.2 Guards Against SQL Injection

ORACLE

If you use dynamic SQL in your PL/SQL applications, you must check the input text to
ensure that it is exactly what you expected.

You can use the following techniques:

e Bind Variables

8-23

Chapter 8
SQL Injection

* Validation Checks

* Explicit Format Models

8.4.2.1 Bind Variables

ORACLE

The most effective way to make your PL/SQL code invulnerable to SQL injection
attacks is to use bind variables.

The database uses the values of bind variables exclusively and does not interpret their
contents in any way. (Bind variables also improve performance.)

Example 8-19 Bind Variables Guarding Against SQL Injection

The procedure in this example is invulnerable to SQL injection because it builds the
dynamic SQL statement with bind variables (not by concatenation as in the vulnerable
procedure in Example 8-16). The same binding technique fixes the vulnerable
procedure shown in Example 8-17.

Create invulnerable procedure:

CREATE OR REPLACE PROCEDURE get_record_2 (
user_name IN VARCHARZ2,
service_type IN VARCHAR2,

rec OUT VARCHAR2
) AUTHID DEFINER
IS

query VARCHAR2(4000);
BEGIN

query := "SELECT value FROM secret_records
WHERE user_name=:a
AND service_type=:b";

DBMS_OUTPUT.PUT_LINE("Query: " || query);
EXECUTE IMMEDIATE query INTO rec USING user_name, service_type;

DBMS_OUTPUT.PUT LINE(*Rec: " || rec);
END;
/

Demonstrate procedure without SQL injection:

SET SERVEROUTPUT ON;
DECLARE
record_value VARCHAR2(4000);
BEGIN
get_record_2("Andy", "Waiter®", record_value);
END;
/

Result:

Query: SELECT value FROM secret_records
WHERE user_name=:a
AND service_type=:b

Rec: Serve dinner at Cafe Pete

PL/SQL procedure successfully completed.

8-24

Chapter 8
SQL Injection

Try statement modification:

DECLARE
record_value VARCHAR2(4000);
BEGIN
get_record_2("Anybody "" OR service_type=""Merger®"--",
"Anything”,
record_value);
END;
/
Result:

Query: SELECT value FROM secret_records
WHERE user_name=:a
AND service_type=:b

DECLARE

*

ERROR at line 1:

ORA-01403: no data found

ORA-06512: at "HR.GET_RECORD_2", line 15
ORA-06512: at line 4

8.4.2.2 Validation Checks

Always have your program validate user input to ensure that it is what is intended.

For example, if the user is passing a department number for a DELETE statement,
check the validity of this department number by selecting from the departments table.
Similarly, if a user enters the name of a table to be deleted, check that this table exists
by selecting from the static data dictionary view ALL_TABLES.

Caution:

When checking the validity of a user name and its password, always return
the same error regardless of which item is invalid. Otherwise, a malicious
user who receives the error message "invalid password" but not "invalid user
name" (or the reverse) can realize that he or she has guessed one of these
correctly.

In validation-checking code, the subprograms in the DBMS_ASSERT package are often
useful. For example, you can use the DBMS_ASSERT.ENQUOTE_LITERAL function to
enclose a string literal in quotation marks, as Example 8-20 does. This prevents

a malicious user from injecting text between an opening quotation mark and its
corresponding closing quotation mark.

Caution:

Although the DBMS_ASSERT subprograms are useful in validation code, they
do not replace it. For example, an input string can be a qualified SQL

name (verified by DBMS_ASSERT.QUALIFIED_SQL_NAME) and still be a fraudulent
password.

ORACLE 8-25

ORACLE

Chapter 8
SQL Injection

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about DBMS_ASSERT subprograms

Example 8-20 Validation Checks Guarding Against SQL Injection

In this example, the procedure raise_emp_salary checks the validity of the column
name that was passed to it before it updates the employees table, and then the
anonymous block invokes the procedure from both a dynamic PL/SQL block and a
dynamic SQL statement.

CREATE OR REPLACE PROCEDURE raise_emp_salary (
column_value NUMBER,
emp_column VARCHAR2,
amount NUMBER) AUTHID DEFINER
IS
v_column VARCHAR2(30);
sql_stmt VARCHAR2(200);
BEGIN
-- Check validity of column name that was given as input:
SELECT column_name INTO v_column
FROM USER_TAB_COLS
WHERE TABLE_NAME = "EMPLOYEES*®
AND COLUMN_NAME = emp_column;

sql_stmt := "UPDATE employees SET salary = salary + :1 WHERE *
|| DBMS_ASSERT.ENQUOTE_NAME(v_column,FALSE) || * = :2";

EXECUTE IMMEDIATE sqgl_stmt USING amount, column_value;

-- If column name is valid:
IF SQL%ROWCOUNT > O THEN
DBMS_OUTPUT.PUT_LINE("Salaries were updated for: *
Il emp_column |] * = *]| column_value);
END IF;

-- If column name is not valid:
EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE ("Invalid Column: * || emp_column);
END raise_emp_salary;
/

DECLARE
plsgl_block VARCHAR2(500);
BEGIN
-- Invoke raise_emp_salary from a dynamic PL/SQL block:
plsgl_block :=
"BEGIN raise_emp_salary(:cvalue, :cname, :amt); END;";

EXECUTE IMMEDIATE plsql_block
USING 110, "DEPARTMENT ID", 10;

-- Invoke raise_emp_salary from a dynamic SQL statement:

EXECUTE IMMEDIATE "BEGIN raise_emp_salary(:cvalue, :cname, :amt); END;"
USING 112, "EMPLOYEE_ID®, 10;

8-26

Chapter 8
SQL Injection

END;
/

Result:

Salaries were updated for: DEPARTMENT_ID = 110
Salaries were updated for: EMPLOYEE_ID = 112

8.4.2.3 Explicit Format Models

ORACLE

Using explicit locale-independent format models to construct SQL is recommended not
only from a security perspective, but also to ensure that the dynamic SQL statement
runs correctly in any globalization environment.

If you use datetime and numeric values that are concatenated into the text of a SQL
or PL/SQL statement, and you cannot pass them as bind variables, convert them to
text using explicit format models that are independent from the values of the NLS
parameters of the running session. Ensure that the converted values have the format
of SQL datetime or numeric literals.

Example 8-21 Explicit Format Models Guarding Against SQL Injection

This procedure is invulnerable to SQL injection because it converts the datetime
parameter value, SYSDATE - 30, to a VARCHAR2 value explicitly, using the TO_CHAR
function and a locale-independent format model (not implicitly, as in the vulnerable
procedure in Example 8-18).

Create invulnerable procedure:

-- Return records not older than a month

CREATE OR REPLACE PROCEDURE get_recent_record (
user_name IN VARCHAR2,
service_type IN VARCHAR2,
rec OUT VARCHAR2
) AUTHID DEFINER
IS
query VARCHAR2(4000);
BEGIN
/* Following SELECT statement is vulnerable to modification
because it uses concatenation to build WHERE clause. */

query := "SELECT value FROM secret_records WHERE user_name="""
| user_name

| "°° AND service_type="""
| service_type
I

I

""" AND date_created> DATE """
TO_CHAR(SYSDATE - 30, "YYYY-MM-DD*)

DBMS_OUTPUT.PUT_LINE("Query: " || query);
EXECUTE IMMEDIATE query INTO rec;
DBMS_OUTPUT.PUT_LINE("Rec: " || rec);
END;
/

Try statement modification:

ALTER SESSION SET NLS_DATE_FORMAT=""'"" OR service_type=""Merger"";

DECLARE

8-27

ORACLE

Chapter 8
SQL Injection

record_value VARCHAR2(4000);
BEGIN

get_recent_record("Anybody®, "Anything®, record_value);
END;
/

Result:

Query: SELECT value FROM secret_records WHERE user_name="Anybody" AND
service_type="Anything" AND date created> DATE "2010-03-29°

DECLARE

*

ERROR at line 1:

ORA-01403: no data found

ORA-06512: at "SYS.GET_RECENT_RECORD", line 21

ORA-06512: at line 4

8-28

PL/SQL Subprograms

A PL/SQL subprogram is a named PL/SQL block that can be invoked repeatedly. If
the subprogram has parameters, their values can differ for each invocation.

A subprogram is either a procedure or a function. Typically, you use a procedure to
perform an action and a function to compute and return a value.
Topics

e Reasons to Use Subprograms

» Nested, Package, and Standalone Subprograms

e Subprogram Invocations

e Subprogram Properties

e Subprogram Parts

* Forward Declaration

¢ Subprogram Parameters

e Subprogram Invocation Resolution

e Overloaded Subprograms

e Recursive Subprograms

e Subprogram Side Effects

e PL/SQL Function Result Cache

e PL/SQL Functions that SQL Statements Can Invoke

e Invoker's Rights and Definer's Rights (AUTHID Property)

e External Subprograms

9.1 Reasons to Use Subprograms

Subprograms support the development and maintenance of reliable, reusable code
with the following features:

* Modularity
Subprograms let you break a program into manageable, well-defined modules.
» Easier Application Design

When designing an application, you can defer the implementation details of the
subprograms until you have tested the main program, and then refine them one
step at a time. (To define a subprogram without implementation details, use the
NULL statement, as in Example 5-30.)

* Maintainability

ORACLE 9-1

Chapter 9
Nested, Package, and Standalone Subprograms

You can change the implementation details of a subprogram without changing its
invokers.

* Packageability

Subprograms can be grouped into packages, whose advantages are explained in
"Reasons to Use Packages".

* Reusability

Any number of applications, in many different environments, can use the same
package subprogram or standalone subprogram.

 Better Performance

Each subprogram is compiled and stored in executable form, which can be
invoked repeatedly. Because stored subprograms run in the database server,

a single invocation over the network can start a large job. This division of

work reduces network traffic and improves response times. Stored subprograms
are cached and shared among users, which lowers memory requirements and
invocation overhead.

Subprograms are an important component of other maintainability features, such as
packages (explained in PL/SQL Packages) and Abstract Data Types (explained in
"Abstract Data Types").

9.2 Nested, Package, and Standalone Subprograms

You can create a subprogram either inside a PL/SQL block (which can be another
subprogram), inside a package, or at schema level.

A subprogram created inside a PL/SQL block is a nested subprogram. You can either
declare and define it at the same time, or you can declare it first and then define it later
in the same block (see "Forward Declaration"). A nested subprogram is stored in the
database only if it is nested in a standalone or package subprogram.

A subprogram created inside a package is a package subprogram. You declare it in
the package specification and define it in the package body. It is stored in the database
until you drop the package. (Packages are described in PL/SQL Packages.)

A subprogram created at schema level is a standalone subprogram. You create
it with the CREATE FUNCTION or CREATE PROCEDURE statement. It is stored in the
database until you drop it with the DROP FUNCTION or DROP PROCEDURE statement.
(These statements are described in SQL Statements for Stored PL/SQL Units.)

A stored subprogram is either a package subprogram or a standalone subprogram.
A stored subprogram is affected by the AUTHID and ACCESSIBLE BY clauses, which can
appear in the CREATE FUNCTION, CREATE PROCEDURE, and CREATE PACKAGE statements.
The AUTHID clause affects the name resolution and privilege checking of SQL
statements that the subprogram issues at run time (for more information, see
"Invoker's Rights and Definer's Rights (AUTHID Property)"). The ACCESSIBLE BY clause
specifies a white list of PL/SQL units that can access the subprogram.

9.3 Subprogram Invocations

A subprogram invocation has this form:

subprogramnname [([paraneter [, parameter]... 1) 1

ORACLE 9-2

Chapter 9
Subprogram Properties

If the subprogram has no parameters, or specifies a default value for every parameter,
you can either omit the parameter list or specify an empty parameter list.

A procedure invocation is a PL/SQL statement. For example:
raise_salary(employee_id, amount);
A function invocation is an expression. For example:

new_salary := get_salary(employee_id);
IF salary_ok(new_salary, new_title) THEN ...

See Also:

"Subprogram Parameters" for more information about specifying parameters
in subprogram invocations

9.4 Subprogram Properties

Each subprogram property can appear only once in the subprogram declaration. The
properties can appear in any order. Properties appear before the 1S or AS keyword in
the subprogram heading. The properties cannot appear in nested subprograms.

Only the ACCESSIBLE BY property can appear in package subprograms. Standalone
subprograms may have the following properties in their declaration.

e ACCESSIBLE BY Clause

e DEFAULT COLLATION Clause
* Invoker's Rights and Definer's Rights (AUTHID Property)

9.5 Subprogram Parts

ORACLE

A subprogram begins with a subprogram heading, which specifies its name and
(optionally) its parameter list.

Like an anonymous block, a subprogram has these parts:

» Declarative part (optional)

This part declares and defines local types, cursors, constants, variables,
exceptions, and nested subprograms. These items cease to exist when the
subprogram completes execution.

This part can also specify pragmas.

Note:

The declarative part of a subprogram does not begin with the keyword
DECLARE, as the declarative part of an anonymous block does.

* Executable part (required)

9-3

Chapter 9
Subprogram Parts

This part contains one or more statements that assign values, control execution,
and manipulate data. (Early in the application design process, this part might
contain only a NULL statement, as in Example 5-30.)

- Exception-handling part (optional)

This part contains code that handles runtime errors.

Topics
¢ Additional Parts for Functions
¢ RETURN Statement

¢ See Also:

¢ "Pragmas"

e "Procedure Declaration and Definition" for the syntax of procedure
declarations and definitions

e "Subprogram Parameters" for more information about subprogram
parameters

Example 9-1 Declaring, Defining, and Invoking a Simple PL/SQL Procedure

In this example, an anonymous block simultaneously declares and defines a
procedure and invokes it three times. The third invocation raises the exception that
the exception-handling part of the procedure handles.

DECLARE
first_name employees.first_name%TYPE;
last_name employees.last_name%TYPE;
email employees.emai I%TYPE;
employer VARCHAR2(8) := "AcmeCorp”;

-- Declare and define procedure

PROCEDURE create_email (-- Subprogram heading begins
namel VARCHAR2,
name2 VARCHAR2,
company VARCHAR2
-- Subprogram heading ends
1S
-- Declarative part begins
error_message VARCHAR2(30) := "Email address is too long.";

BEGIN -- Executable part begins
email := namel || "." || name2 || "@" || company;
EXCEPTION -- Exception-handling part begins

WHEN VALUE_ERROR THEN
DBMS_OUTPUT.PUT_LINE(error_message);
END create_email;

BEGIN
first_name := "John";
last_name := "Doe";
create_email(First_name, last_name, employer); -- invocation

ORACLE 9-4

Chapter 9
Subprogram Parts

DBMS_OUTPUT.PUT_LINE ("With first name first, email is: " || email);

create_email(last_name, first_name, employer); -- invocation
DBMS_OUTPUT.PUT_LINE ("With last name first, email is: " |] email);

first_name := "Elizabeth";

last_name := "MacDonald";

create_email(First_name, last_name, employer); -- invocation
END;
/
Result:

With first name first, email is: John.Doe@AcmeCorp
With last name first, email is: Doe.John@AcmeCorp
Email address is too long.

9.5.1 Additional Parts for Functions

A function has the same structure as a procedure, except that:

e A function heading must include a RETURN clause, which specifies the data type
of the value that the function returns. (A procedure heading cannot have a RETURN
clause.)

* Inthe executable part of a function, every execution path must lead to a RETURN
statement. Otherwise, the PL/SQL compiler issues a compile-time warning. (In a
procedure, the RETURN statement is optional and not recommended. For details,
see "RETURN Statement".)

* A function declaration can include these options:

Option Description
DETERMINISTIC option Helps the optimizer avoid redundant function invocations.
PARALLEL_ENABLE option Enables the function for parallel execution, making it safe for
use in concurrent sessions of parallel DML evaluations.
PIPELINED option Makes a table function pipelined, for use as a row source.
RESULT_CACHE option Stores function results in the PL/SQL function result cache.
¢ See Also:

e "Function Declaration and Definition" for the syntax of function
declarations and definitions, including descriptions of the items in the
preceding table

e "PL/SQL Function Result Cache" for more information about the
RESULT_CACHE option

Example 9-2 Declaring, Defining, and Invoking a Simple PL/SQL Function

In this example, an anonymous block simultaneously declares and defines a function
and invokes it.

ORACLE 9-5

Chapter 9
Subprogram Parts

DECLARE
-- Declare and define function

FUNCTION square (original NUMBER) -- parameter list
RETURN NUMBER -- RETURN clause
AS
-- Declarative part begins
original_squared NUMBER;

BEGIN -- Executable part begins
original_squared := original * original;
RETURN original_squared; -- RETURN statement
END;
BEGIN
DBMS_OUTPUT.PUT_LINE(square(100)); -- invocation
END;
/
Result:
10000

9.5.2 RETURN Statement

The RETURN statement immediately ends the execution of the subprogram or
anonymous block that contains it. A subprogram or anonymous block can contain
multiple RETURN statements.

Topics

* RETURN Statement in Function

* RETURN Statement in Procedure
 RETURN Statement in Anonymous Block

¢ See Also:

"RETURN Statement" for the syntax of the RETURN statement

9.5.2.1 RETURN Statement in Function

In a function, every execution path must lead to a RETURN statement and every RETURN
statement must specify an expression. The RETURN statement assigns the value of the
expression to the function identifier and returns control to the invoker, where execution
resumes immediately after the invocation.

< Note:

In a pipelined table function, a RETURN statement need not specify an
expression. For information about the parts of a pipelined table function, see
"Creating Pipelined Table Functions".

ORACLE 9-6

ORACLE

Chapter 9
Subprogram Parts

In Example 9-3, the anonymous block invokes the same function twice. The first time,
the RETURN statement returns control to the inside of the invoking statement. The
second time, the RETURN statement returns control to the statement immediately after
the invoking statement.

In Example 9-4, the function has multiple RETURN statements, but if the parameter is
not 0 or 1, then no execution path leads to a RETURN statement. The function compiles
with warning PLW-05005: subprogram F returns without value at line 11.

Example 9-5 is like Example 9-4, except for the addition of the ELSE clause. Every
execution path leads to a RETURN statement, and the function compiles without warning
PLW-05005.

Example 9-3 Execution Resumes After RETURN Statement in Function

DECLARE
X INTEGER;

FUNCTION f (n INTEGER)
RETURN INTEGER
IS
BEGIN
RETURN (n*n);
END;

BEGIN
DBMS_OUTPUT.PUT_LINE (
*f returns " || f(2) || ". Execution returns here (1).°

);

x = F(2);

DBMS_OUTPUT.PUT_LINE("Execution returns here (2).7%);
END;
/

Result:

f returns 4. Execution returns here (1).Execution returns here (2).

Example 9-4 Function Where Not Every Execution Path Leads to RETURN
Statement

CREATE OR REPLACE FUNCTION f (n INTEGER)
RETURN INTEGER
AUTHID DEFINER

IS

BEGIN
IF n = 0 THEN

RETURN 1;
ELSIF n = 1 THEN
RETURN n;
END IF;
END;
/

Example 9-5 Function Where Every Execution Path Leads to RETURN
Statement

CREATE OR REPLACE FUNCTION f (n INTEGER)
RETURN INTEGER
AUTHID DEFINER

9-7

Chapter 9
Subprogram Parts

IS
BEGIN
IF n = 0 THEN
RETURN 1;
ELSIF n = 1 THEN
RETURN n;
ELSE
RETURN n*n;
END IF;
END;
/
BEGIN
FOR i IN O .. 3 LOOP
DBMS_OUTPUT.PUT_LINEC*FC* |1 i Il *) = * Il f(i));
END LOOP;
END;

[ToJ EEN

9.5.2.2 RETURN Statement in Procedure

In a procedure, the RETURN statement returns control to the invoker, where execution
resumes immediately after the invocation. The RETURN statement cannot specify an
expression.

In Example 9-6, the RETURN statement returns control to the statement immediately
after the invoking statement.

Example 9-6 Execution Resumes After RETURN Statement in Procedure

DECLARE
PROCEDURE p IS
BEGIN
DBMS_OUTPUT.PUT_LINE(" Inside p");
RETURN;
DBMS_OUTPUT.PUT_LINE("Unreachable statement.");
END;
BEGIN
p;
DBMS_OUTPUT.PUT_LINE("Control returns here.");
END;
/

Result:

Inside p
Control returns here.

9.5.2.3 RETURN Statement in Anonymous Block

In an anonymous block, the RETURN statement exits its own block and all enclosing
blocks. The RETURN statement cannot specify an expression.

In Example 9-7, the RETURN statement exits both the inner and outer block.

ORACLE 9-8

Chapter 9
Forward Declaration

Example 9-7 Execution Resumes After RETURN Statement in Ahohymous
Block

BEGIN
BEGIN
DBMS_OUTPUT.PUT_LINE(" Inside inner block.");
RETURN;
DBMS_OUTPUT.PUT_LINE("Unreachable statement.");
END;
DBMS_OUTPUT.PUT_LINE("Inside outer block. Unreachable statement.");
END;
/

Result:

Inside inner block.

9.6 Forward Declaration

If nested subprograms in the same PL/SQL block invoke each other, then one requires
a forward declaration, because a subprogram must be declared before it can be
invoked.

A forward declaration declares a nested subprogram but does not define it. You must
define it later in the same block. The forward declaration and the definition must have
the same subprogram heading.

In Example 9-8, an anonymous block creates two procedures that invoke each other.

Example 9-8 Nested Subprograms Invoke Each Other

DECLARE
-- Declare procl (forward declaration):
PROCEDURE procl(numberl NUMBER);

-- Declare and define proc2:
PROCEDURE proc2(number2 NUMBER) IS
BEGIN

procl(number2);
END;

-- Define proc 1:
PROCEDURE procl(numberl NUMBER) IS
BEGIN
proc2 (numberl);
END;
BEGIN
NULL;

END;
/

9.7 Subprogram Parameters

If a subprogram has parameters, their values can differ for each invocation.

Topics

* Formal and Actual Subprogram Parameters

ORACLE 9-9

Chapter 9
Subprogram Parameters

e Subprogram Parameter Passing Methods

e Subprogram Parameter Modes

e Subprogram Parameter Aliasing

» Default Values for IN Subprogram Parameters

* Positional, Named, and Mixed Notation for Actual Parameters

9.7.1 Formal and Actual Subprogram Parameters

ORACLE

If you want a subprogram to have parameters, declare formal parameters in the
subprogram heading. In each formal parameter declaration, specify the name and data
type of the parameter, and (optionally) its mode and default value. In the execution
part of the subprogram, reference the formal parameters by their names.

When invoking the subprogram, specify the actual parameters whose values are to
be assigned to the formal parameters. Corresponding actual and formal parameters
must have compatible data types.

" Note:
You can declare a formal parameter of a constrained subtype, like this:

DECLARE
SUBTYPE nl1 IS NUMBER(1);
SUBTYPE v1 IS VARCHAR2(1);

PROCEDURE p (n n1, v v1) IS ...

But you cannot include a constraint in a formal parameter declaration, like
this:

DECLARE
PROCEDURE p (n NUMBER(1), v VARCHAR2(1)) IS ...

Tip:

To avoid confusion, use different names for formal and actual parameters.

" Note:

e Actual parameters (including default values of formal parameters) can be
evaluated in any order. If a program determines order of evaluation, then
at the point where the program does so, its behavior is undefined.

* You cannot use LOB parameters in a server-to-server remote procedure
call (RPC).

9-10

Chapter 9
Subprogram Parameters

In Example 9-9, the procedure has formal parameters emp_id and amount. In the first
procedure invocation, the corresponding actual parameters are emp_num and bonus,
whose value are 120 and 100, respectively. In the second procedure invocation, the
actual parameters are emp_num and merit + bonus, whose value are 120 and 150,
respectively.

Topics:

* Formal Parameters of Constrained Subtypes

See Also:

e "Formal Parameter Declaration" for the syntax and semantics of a formal
parameter declaration

e "function_call ::=" and "function_call" for the syntax and semantics of a
function invocation

e "procedure_call ::=" and "procedure" for the syntax and semantics of a
procedure invocation

Example 9-9 Formal Parameters and Actual Parameters

DECLARE
emp_num NUMBER(6) := 120;
bonus NUMBER(6) := 100;
merit NUMBER(4) := 50;

PROCEDURE raise_salary (

emp_id NUMBER, -- formal parameter
amount NUMBER -- formal parameter
) IS
BEGIN
UPDATE employees
SET salary = salary + amount -- reference to formal parameter
WHERE employee_id = emp_id; -- reference to formal parameter

END raise_salary;

BEGIN
raise_salary(emp_num, bonus); -- actual parameters

/* raise_salary runs this statement:
UPDATE employees
SET salary = salary + 100
WHERE employee_id = 120; */

raise_salary(emp_num, merit + bonus); -- actual parameters

/* raise_salary runs this statement:
UPDATE employees
SET salary = salary + 150
WHERE employee_id = 120; */
END;
/

ORACLE 9-11

Chapter 9
Subprogram Parameters

9.7.1.1 Formal Parameters of Constrained Subtypes

ORACLE

If the data type of a formal parameter is a constrained subtype, then:

» If the subtype has the NOT NULL constraint, then the actual parameter inherits it.

» If the subtype has the base type VARCHAR2, then the actual parameter does not
inherit the size of the subtype.

« If the subtype has a numeric base type, then the actual parameter inherits the
range of the subtype, but not the precision or scale.

Note:

In a function, the clause RETURN dat at ype declares a hidden formal
parameter and the statement RETURN val ue specifies the corresponding
actual parameter. Therefore, if dat at ype is a constrained data type, then
the preceding rules apply to val ue (see Example 9-11).

Example 9-10 shows that an actual subprogram parameter inherits the NOT NULL
constraint but not the size of a VARCHAR2 subtype.

As PL/SQL Predefined Data Types shows, PL/SQL has many predefined data types
that are constrained subtypes of other data types. For example, INTEGER is a
constrained subtype of NUMBER:

SUBTYPE INTEGER IS NUMBER(38,0);

In Example 9-11, the function has both an INTEGER formal parameter and an INTEGER
return type. The anonymous block invokes the function with an actual parameter that
is not an integer. Because the actual parameter inherits the range but not the precision
and scale of INTEGER, and the actual parameter is in the INTEGER range, the invocation
succeeds. For the same reason, the RETURN statement succeeds in returning the
noninteger value.

In Example 9-12, the function implicitly converts its formal parameter to the
constrained subtype INTEGER before returning it.

¢ See Also:

"Constrained Subtypes" for general information about constrained subtypes

Example 9-10 Actual Parameter Inherits Only NOT NULL from Subtype

DECLARE
SUBTYPE License IS VARCHAR2(7) NOT NULL;
n License := "DLLLDDD";

PROCEDURE p (X License) IS
BEGIN

DBMS_OUTPUT.PUT_LINE(X);
END;

9-12

ORACLE

Chapter 9
Subprogram Parameters

BEGIN
p("1ABC123456789"); -- Succeeds; size is not inherited
p(NULL); -- Raises error; NOT NULL is inherited
END;
/
Result:
p(NULL); -- Raises error; NOT NULL is inherited
*

ERROR at line 12:

ORA-06550: line 12, column 5:

PLS-00567: cannot pass NULL to a NOT NULL constrained formal parameter
ORA-06550: line 12, column 3:

PL/SQL: Statement ignored

Example 9-11 Actual Parameter and Return Value Inherit Only Range From
Subtype

DECLARE
FUNCTION test (p INTEGER) RETURN INTEGER IS
BEGIN
DBMS_OUTPUT.PUT_LINE("p = " || p):
RETURN p;
END test;

BEGIN
DBMS_OUTPUT.PUT_LINE("test(p) = " || test(0.66));

END;

/

Result:

p = .66
test(p) = .66

PL/SQL procedure successfully completed.

Example 9-12 Function Implicitly Converts Formal Parameter to Constrained
Subtype

DECLARE
FUNCTION test (p NUMBER) RETURN NUMBER IS
g INTEGER := p; -- Implicitly converts p to INTEGER
BEGIN
DBMS_OUTPUT.PUT_LINE(*p = * || g); -- Display g, not p
RETURN q; -- Return g, not p
END test;

BEGIN

DBMS_OUTPUT.PUT_LINE("test(p) = " || test(0.66));
END;
/

Result:

p=1
test(p) = 1

PL/SQL procedure successfully completed.

9-13

Chapter 9
Subprogram Parameters

9.7.2 Subprogram Parameter Passing Methods

ORACLE

The PL/SQL compiler has two ways of passing an actual parameter to a subprogram:

* By reference

The compiler passes the subprogram a pointer to the actual parameter. The actual
and formal parameters refer to the same memory location.

* By value

The compiler assigns the value of the actual parameter to the corresponding
formal parameter. The actual and formal parameters refer to different memory
locations.

If necessary, the compiler implicitly converts the data type of the actual parameter
to the data type of the formal parameter. For information about implicit data
conversion, see Oracle Database SQL Language Reference.

Tip:

Avoid implicit data conversion (for the reasons in Oracle Database SQL
Language Reference), in either of these ways:

— Declare the variables that you intend to use as actual parameters
with the same data types as their corresponding formal parameters
(as in the declaration of variable x in Example 9-13).

— Explicitly convert actual parameters to the data types of their
corresponding formal parameters, using the SQL conversion
functions described in Oracle Database SQL Language Reference
(as in the third invocation of the procedure in Example 9-13).

In Example 9-13, the procedure p has one parameter, n, which is passed by value. The
anonymous block invokes p three times, avoiding implicit conversion twice.

The method by which the compiler passes a specific actual parameter depends on its
mode, as explained in "Subprogram Parameter Modes".

Example 9-13 Avoiding Implicit Conversion of Actual Parameters

CREATE OR REPLACE PROCEDURE p (
n NUMBER
) AUTHID DEFINER IS
BEGIN
NULL ;
END;
/
DECLARE
x NUMBER
y VARCHAR2(1) :
BEGIN
p(x); -- No conversion needed
pP(Y); -- z implicitly converted from VARCHAR2 to NUMBER
p(TO_NUMBER(Y)); -- z explicitly converted from VARCHAR2 to NUMBER
END;
/

1;
e

9-14

9.7.3 Subprogram Parameter Modes

The mode of a formal parameter determines its behavior.

Chapter 9
Subprogram Parameters

Table 9-1 summarizes and compares the characteristics of the subprogram parameter

modes.

Table 9-1 PL/SQL Subprogram Parameter Modes
|

Parameter Is Default? Role

Mode

IN Default mode Passes a value to the subprogram.

ouT Must be Returns a value to the invoker.
specified.

IN OUT Must be Passes an initial value to the subprogram and returns an
specified. updated value to the invoker.

Table 9-2 PL/SQL Subprogram Parameter

Modes Characteristics

Parameter Formal Parameter Actual Parameter Passed by Reference ?

Mode

IN Formal parameter acts like a Actual parameter can be a Actual parameter is
constant: When the subprogram constant, initialized variable, literal, passed by reference.
begins, its value is that of either or expression.
its actual parameter or default
value, and the subprogram
cannot change this value.

ouT Formal parameter is initialized to If the default value of the formal By default, actual
the default value of its type. The parameter type is NULL, then parameter is passed by
default value of the type is NULL the actual parameter must be a value; if you specify
except for a record type with variable whose data type is not NOCOPY, it might be
a non-NULL default value (see defined as NOT NULL. passed by reference.
Example 9-16).

When the subprogram begins,
the formal parameter has its
initial value regardless of the
value of its actual parameter.
Oracle recommends that the
subprogram assign a value to
the formal parameter.

IN OUT Formal parameter acts like an Actual parameter must be a By default, actual
initialized variable: When the variable (typically, it is a string parameter is passed by
subprogram begins, its value buffer or numeric accumulator). value (in both directions);
is that of its actual parameter. if you specify NOCOPY,
Oracle recommends that the it might be passed by
subprogram update its value. reference.

ORACLE 9-15

ORACLE

Chapter 9
Subprogram Parameters

Tip:

Do not use OUT and IN OUT for function parameters. Ideally, a function takes
zero or more parameters and returns a single value. A function with IN OUT
parameters returns multiple values and has side effects.

Note:

The specifications of many packages and types that Oracle Database
supplies declare formal parameters with this notation:

il IN VARCHAR2 CHARACTER SET ANY_CS
i2 IN VARCHAR2 CHARACTER SET 11%CHARSET

Do not use this notation when declaring your own formal or actual
parameters. It is reserved for Oracle implementation of the supplied
packages types.

Regardless of how an OUT or IN OUT parameter is passed:

» If the subprogram exits successfully, then the value of the actual parameter is the
final value assigned to the formal parameter. (The formal parameter is assigned at
least one value—the initial value.)

» If the subprogram ends with an exception, then the value of the actual parameter
is undefined.

* Formal OUT and IN OUT parameters can be returned in any order. In this example,
the final values of x and y are undefined:

CREATE OR REPLACE PROCEDURE p (x OUT INTEGER, y OUT INTEGER) AS
BEGIN
X =17; y = 93;
END;
/

When an OUT or IN OUT parameter is passed by reference, the actual and formal
parameters refer to the same memory location. Therefore, if the subprogram
changes the value of the formal parameter, the change shows immediately in the
actual parameter (see "Subprogram Parameter Aliasing with Parameters Passed by
Reference").

In Example 9-14, the procedure p has two IN parameters, one OUT parameter, and one
IN OUT parameter. The OUT and IN OUT parameters are passed by value (the default).
The anonymous block invokes p twice, with different actual parameters. Before each
invocation, the anonymous block prints the values of the actual parameters. The
procedure p prints the initial values of its formal parameters. After each invocation, the
anonymous block prints the values of the actual parameters again.

In Example 9-15, the anonymous block invokes procedure p (from Example 9-14) with
an actual parameter that causes p to raise the predefined exception ZERO_DIVIDE,
which p does not handle. The exception propagates to the anonymous block, which
handles ZERO_DIVIDE and shows that the actual parameters for the IN and IN

9-16

ORACLE

Chapter 9
Subprogram Parameters

OUT parameters of p have retained the values that they had before the invocation.
(Exception propagation is explained in "Exception Propagation".)

In Example 9-16, the procedure p has three OUT formal parameters: x, of a record type
with a non-NULL default value; y, of a record type with no non-NULL default value; and
z, which is not a record.

The corresponding actual parameters for x, y, and z are r1, r2, and s, respectively. s
is declared with an initial value. However, when p is invoked, the value of s is initialized
to NULL. The values of r1 and r2 are initialized to the default values of their record
types, "abcde” and NULL, respectively.

Example 9-14 Parameter Values Before, During, and After Procedure
Invocation

CREATE OR REPLACE PROCEDURE p (
a PLS_INTEGER, -- IN by default
b IN PLS_INTEGER,
c OUT PLS_INTEGER,
d IN OUT BINARY_FLOAT
) AUTHID DEFINER IS
BEGIN
-- Print values of parameters:

DBMS_OUTPUT.PUT_LINE(" Inside procedure p:*");

DBMS_OUTPUT.PUT("IN a = *);
DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(a), "NULL"));

DBMS_OUTPUT.PUT(*IN b = *);
DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(b), “NULL"));

DBMS_OUTPUT.PUT("OUT ¢ = *);
DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(C), "NULL"));

DBMS_OUTPUT.PUT_LINEC*IN OUT d = * || TO_CHAR(d));

-- Can reference IN parameters a and b,
-- but cannot assign values to them.

c := atl0; -- Assign value to OUT parameter

d := 10/b; -- Assign value to IN OUT parameter
END;
/
DECLARE

aa CONSTANT PLS_INTEGER := 1;

bb PLS_INTEGER := 2;
cc PLS_INTEGER := 3;
dd BINARY_FLOAT := 4;
ee PLS_INTEGER;

ff BINARY_FLOAT := 5;

BEGIN
DBMS_OUTPUT.PUT_LINE("Before invoking procedure p:*®);

DBMS_OUTPUT.PUT("aa = *);
DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(aa), "NULL"));

DBMS_OUTPUT.PUT("bb = *);
DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(bb), *NULL"));

DBMS_OUTPUT.PUT("cc = *);

9-17

ORACLE

Chapter 9
Subprogram Parameters

DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(cC), *NULL"));
DBMS_OUTPUT.PUT_LINE("dd = * || TO_CHAR(dd));

p (aa, -- constant

bb, -- initialized variable
cc, -- initialized variable
dd -- initialized variable

);

EN
/

DBMS_OUTPUT.PUT_LINE("After invoking procedure p:*);

DBMS_OUTPUT.PUT("aa = ");
DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(aa), *NULL"));

DBMS_OUTPUT.PUT("bb = *);
DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(bb), *NULL"));

DBMS_OUTPUT.PUT("cc = ");
DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(cC), *NULL™));

DBMS_OUTPUT.PUT_LINE(*dd = " || TO_CHAR(dd));
DBMS_OUTPUT.PUT_LINE("Before invoking procedure p:");

DBMS_OUTPUT.PUT("ee = ");
DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(ee), *NULL"));

DBMS_OUTPUT.PUT_LINE("Ff = * || TO_CHAR(FF));

p (1, -- literal
(bb+3)*4, -- expression
ee, -- uninitialized variable
f -- initialized variable
);

DBMS_OUTPUT.PUT_LINE("After invoking procedure p:*);

DBMS_OUTPUT.PUT("ee = ");
DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(ee), *NULL"));

DBMS_OUTPUT.PUT_LINE("Ff = " || TO_CHAR(FF));
D;

Result:

Be
aa
bb
cc
dd
In
IN
IN
ou
IN

fore invoking procedure p:
=1
2
3
4 _0E+000
side procedure p:
a=1
b=2
T ¢ = NULL
OUT d = 4_.0E+000

After invoking procedure p:

aa
bb
cc

2
11

9-18

ORACLE

dd = 5.0E+000

Before invoking procedure p:
ee = NULL

ff = 5.0E+000

Inside procedure p:
INa=1

IN b =20

OUT ¢ = NULL

IN OUT d = 5.0E+000

After invoking procedure p:
ee = 11

ff = 5.0E-001

PL/SQL procedure successfully completed.

Chapter 9
Subprogram Parameters

Example 9-15 OUT and IN OUT Parameter Values After Exception Handling

DECLARE
J PLS_INTEGER := 10;
k BINARY_FLOAT := 15;

BEGIN

DBMS_OUTPUT.PUT_LINE("Before invoking procedure p:*");

DBMS_OUTPUT.PUT("j = *);

DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(§), “NULL"));

DBMS_OUTPUT.PUT_LINE("k = * || TO_CHAR(K));

p(4, 0, j, k); -- causes p to exit with exception ZERO_DIVIDE

EXCEPTION
WHEN ZERO_DIVIDE THEN

DBMS_OUTPUT.PUT_LINE("After invoking procedure p:*");

DBMS_OUTPUT.PUT("j = *);

DBMS_OUTPUT.PUT_LINE(NVL(TO_CHAR(j), “NULL"));

DBMS_OUTPUT.PUT_LINEC*k = * || TO_CHAR(K));

END;
/

Result:

Before invoking procedure p:
j=10

k = 1.5E+001

Inside procedure p:
INa=14

INb=0

OUT ¢ = NULL

IN OUT d = 1.5E+001

After invoking procedure p:
j=10

k = 1.5E+001

PL/SQL procedure successfully completed.

Example 9-16 OUT Formal Parameter of Record Type with Non-NULL Default

Value

CREATE OR REPLACE PACKAGE r_types AUTHID DEFINER IS
TYPE r_type_1 IS RECORD (f VARCHAR2(5) :

9-19

Chapter 9
Subprogram Parameters

TYPE r_type_2 IS RECORD (f VARCHAR2(5));
END;
/

CREATE OR REPLACE PROCEDURE p (
X OUT r_types.r_type 1,
y OUT r_types.r_type 2,
z OUT VARCHAR2)
AUTHID CURRENT_USER 1S
BEGIN
DBMS_OUTPUT.PUT_LINE(*x.F is = || NVL(x.F,"NULL"));
DBMS_OUTPUT.PUT_LINE("y.f is " || NVL(y.f,"NULL"));
DBMS_OUTPUT.PUT_LINE(*z is * || NVL(z,*NULL"));
END;
/
DECLARE
rl r_types.r_type_1;
r2 r_types.r_type_2;
S VARCHAR2(5) := "fghij";
BEGIN
p (ri1, r2, s);
END;
/

Result:

x.F is abcde
y.f is NULL
z is NULL

PL/SQL procedure successfully completed.

9.7.4 Subprogram Parameter Aliasing

Aliasing is having two different names for the same memory location. If a stored item
is visible by more than one path, and you can change the item by one path, then you
can see the change by all paths.

Subprogram parameter aliasing always occurs when the compiler passes an actual
parameter by reference, and can also occur when a subprogram has cursor variable
parameters.

Topics

e Subprog