Oracle® Database
2 Day Developer's Guide

21
F32609-01
December 2020

ORACLE"

Oracle Database 2 Day Developer's Guide, 21
F32609-01

Copyright © 1996, 2020, Oracle and/or its affiliates.
Primary Author: Chuck Murray

Contributors: Eric Belden, Bjorn Engsig, Nancy Greenberg, Pat Huey, Christopher Jones, Sharon Kennedy,
Thomas Kyte, Simon Law, Bryn Llewellen, Sheila Moore

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not

be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience Xii
Documentation Accessibility Xii
Related Documents Xii
Conventions Xiii

1 Introduction to 2 Day Oracle Database Development
1.1 About This Document 1-1
1.2 About Oracle Database 1-2
1.2.1 About Schema Objects 1-2
1.2.2 About Oracle Database Access 1-3
1.2.2.1 About SQL*Plus 1-3
1.2.2.2 About SQL Developer 1-4
1.2.2.3 About Structured Query Language (SQL) 1-5
1.2.2.4 About Procedural Language/SQL (PL/SQL) 1-5
1.2.2.5 About Other Client Programs, Languages, and Development Tools 1-5
1.3 About Sample Schema HR 1-10
2 Connecting to Oracle Database and Exploring It

2.1 Connecting to Oracle Database from SQL*Plus 2-1
2.2 Connecting to Oracle Database from SQL Developer 2-2
2.3 Connecting to Oracle Database as User HR 2-4
2.3.1 Unlocking the HR Account 2-4
2.3.2 Connecting to Oracle Database as User HR from SQL*Plus 2-5
2.3.3 Connecting to Oracle Database as User HR from SQL Developer 2-6
2.4 Exploring Oracle Database with SQL*Plus 2-6
2.4.1 Viewing HR Schema Objects with SQL*Plus 2-7
2.4.2 Viewing EMPLOYEES Table Properties and Data with SQL*Plus 2-8
2.5 Exploring Oracle Database with SQL Developer 2-9
2.5.1 Tutorial: Viewing HR Schema Objects with SQL Developer 2-9

ORACLE iii

252

Tutorial: Viewing EMPLOYEES Table Properties and Data with SQL

Developer 2-10
2.6 Selecting Table Data 2-11
2.6.1 About Queries 2-11
2.6.2 Running Queries in SQL Developer 2-12
2.6.3 Tutorial: Selecting All Columns of a Table 2-13
2.6.4 Tutorial: Selecting Specific Columns of a Table 2-13
2.6.5 Displaying Selected Columns Under New Headings 2-14
2.6.6 Selecting Data that Satisfies Specified Conditions 2-15
2.6.7 Sorting Selected Data 2-17
2.6.8 Selecting Data from Multiple Tables 2-18
2.6.9 Using Operators and Functions in Queries 2-20
2.6.9.1 Using Arithmetic Operators in Queries 2-20
2.6.9.2 Using Numeric Functions in Queries 2-21
2.6.9.3 Using the Concatenation Operator in Queries 2-22
2.6.9.4 Using Character Functions in Queries 2-22
2.6.9.5 Using Datetime Functions in Queries 2-23
2.6.9.6 Using Conversion Functions in Queries 2-25
2.6.9.7 Using Aggregate Functions in Queries 2-26
2.6.9.8 Using NULL-Related Functions in Queries 2-28
2.6.9.9 Using CASE Expressions in Queries 2-29
2.6.9.10 Using the DECODE Function in Queries 2-31
3 About DML Statements and Transactions
3.1 About Data Manipulation Language (DML) Statements 3-1
3.1.1 About the INSERT Statement 3-1
3.1.2 About the UPDATE Statement 3-4
3.1.3 About the DELETE Statement 3-5
3.2 About Transaction Control Statements 3-5
3.3 Committing Transactions 3-6
3.4 Rolling Back Transactions 3-8
3.5 Setting Savepoints in Transactions 3-10
4 Creating and Managing Schema Objects
4.1 About Data Definition Language (DDL) Statements 4-1
4.2 Creating and Managing Tables 4-1
4.2.1 About SQL Data Types 4-2
4.2.2 Creating Tables 4-2
4.2.2.1 Tutorial: Creating a Table with the Create Table Tool 4-3
4.2.2.2 Creating Tables with the CREATE TABLE Statement 4-4
ORACLE v

4.2.3 Ensuring Data Integrity in Tables 4-4
4.2.3.1 About Constraints 4-5
4.2.3.2 Tutorial: Adding Constraints to Existing Tables 4-6
4.2.4 Tutorial: Adding Rows to Tables with the Insert Row Tool 4-10
4.2.5 Tutorial: Changing Data in Tables in the Data Pane 4-12

4.2.6 Tutorial: Deleting Rows from Tables with the Delete Selected Row(s)
Tool 4-13
4.2.7 Managing Indexes 4-13
4.2.7.1 Tutorial: Adding an Index with the Create Index Tool 4-14
4.2.7.2 Tutorial: Changing an Index with the Edit Index Tool 4-15
4.2.7.3 Tutorial: Dropping an Index 4-16
4.2.8 Dropping Tables 4-16
4.3 Creating and Managing Views 4-17
4.3.1 Creating Views 4-17
4.3.1.1 Tutorial: Creating a View with the Create View Tool 4-17
4.3.1.2 Creating Views with the CREATE VIEW Statement 4-18
4.3.2 Changing Queries in Views 4-19
4.3.3 Tutorial: Changing View Names with the Rename Tool 4-19
4.3.4 Dropping a View 4-20
4.4 Creating and Managing Sequences 4-20
4.4.1 Tutorial: Creating a Sequence 4-21
4.4.2 Dropping Sequences 4-22
4.5 Creating and Managing Synonyms 4-23
45.1 Creating Synonyms 4-23
4.5.2 Dropping Synonyms 4-24

5 Developing Stored Subprograms and Packages

5.1 About Stored Subprograms 5-1
5.2 About Packages 5-2
5.3 About PL/SQL ldentifiers 5-3
5.4 About PL/SQL Data Types 5-3
5.5 Creating and Managing Standalone Subprograms 5-4
5.5.1 About Subprogram Structure 5-4
5.5.2 Tutorial: Creating a Standalone Procedure 5-5
5.5.3 Tutorial: Creating a Standalone Function 5-7
5.5.4 Changing Standalone Subprograms 5-9
5.5.5 Tutorial: Testing a Standalone Function 5-10
5.5.6 Dropping Standalone Subprograms 5-11
5.6 Creating and Managing Packages 5-11
5.6.1 About Package Structure 5-12
5.6.2 Tutorial: Creating a Package Specification 5-12
ORACLE v

5.6.3
5.6.4
5.6.5

Tutorial: Changing a Package Specification
Tutorial: Creating a Package Body
Dropping a Package

5.7 Declaring and Assigning Values to Variables and Constants

57.1
57.2

5.7.3
574

Tutorial: Declaring Variables and Constants in a Subprogram

Ensuring that Variables, Constants, and Parameters Have Correct Data
Types

Tutorial: Changing Declarations to Use the %TYPE Attribute
Assigning Values to Variables

5.7.4.1 Assigning Values to Variables with the Assignment Operator
5.7.4.2 Assigning Values to Variables with the SELECT INTO Statement
5.8 Controlling Program Flow

581
5.8.2
5.8.3
5.8.4
5.8.5
5.8.6

About Control Statements

Using the IF Statement

Using the CASE Statement

Using the FOR LOOP Statement

Using the WHILE LOOP Statement

Using the Basic LOOP and EXIT WHEN Statements

5.9 Using Records and Cursors

59.1
5.9.2
593
59.4
595
5.9.6

5.9.7
5.9.8
5.9.9

About Records

Tutorial: Declaring a RECORD Type

Tutorial: Creating and Invoking a Subprogram with a Record Parameter
About Cursors

Using a Declared Cursor to Retrieve Result Set Rows One at a Time
Tutorial: Using a Declared Cursor to Retrieve Result Set Rows One at a
Time

About Cursor Variables

Using a Cursor Variable to Retrieve Result Set Rows One at a Time

Tutorial: Using a Cursor Variable to Retrieve Result Set Rows One at a
Time

5.10 Using Associative Arrays

5.10.1
5.10.2
5.10.3
5.10.4
5.10.5
5.10.6

About Collections

About Associative Arrays

Declaring Associative Arrays
Populating Associative Arrays
Traversing Dense Associative Arrays
Traversing Sparse Associative Arrays

5.11 Handling Exceptions (Runtime Errors)

5.11.1
5.11.2
5.11.3

ORACLE

About Exceptions and Exception Handlers
When to Use Exception Handlers
Handling Predefined Exceptions

5-13
5-14
5-15
5-16
5-16

5-18
5-19
5-20
5-21
5-21
5-23
5-23
5-23
5-24
5-26
5-27
5-29
5-30
5-31
5-32
5-33
5-35
5-36

5-37
5-38
5-39

5-40
5-43
5-43
5-44
5-44
5-46
5-47
5-48
5-49
5-49
5-50
5-51

Vi

5.11.4 Declaring and Handling User-Defined Exceptions 5-52

6 Using Triggers

6.1 About Triggers 6-1
6.2 Creating Triggers 6-2
6.2.1 About OLD and NEW Pseudorecords 6-3
6.2.2 Tutorial: Creating a Trigger that Logs Table Changes 6-3
6.2.3 Tutorial: Creating a Trigger that Generates a Primary Key for a Row
Before It Is Inserted 6-4
6.2.4 Creating an INSTEAD OF Trigger 6-5
6.2.5 Tutorial: Creating Triggers that Log LOGON and LOGOFF Events 6-6
6.3 Changing Triggers 6-7
6.4 Disabling and Enabling Triggers 6-8
6.4.1 Disabling or Enabling a Single Trigger 6-8
6.4.2 Disabling or Enabling All Triggers on a Single Table 6-8
6.5 About Trigger Compilation and Dependencies 6-9
6.6 Dropping Triggers 6-9
V4 Working in a Global Environment
7.1 About Globalization Support Features 7-1
7.1.1 About Language Support 7-1
7.1.2 About Territory Support 7-2
7.1.3 About Date and Time Formats 7-2
7.1.4 About Calendar Formats 7-3
7.1.5 About Numeric and Monetary Formats 7-4
7.1.6 About Linguistic Sorting and String Searching 7-5
7.1.7 About Length Semantics 7-5
7.1.8 About Unicode and SQL National Character Data Types 7-5
7.2 About Initial NLS Parameter Values 7-6
7.3 Viewing NLS Parameter Values 7-7
7.4 Changing NLS Parameter Values 7-8
7.4.1 Changing NLS Parameter Values for All SQL Developer Connections 7-9
7.4.2 Changing NLS Parameter Values for the Current SQL Function
Invocation 7-9
7.5 About Individual NLS Parameters 7-11
7.5.1 About Locale and the NLS_LANG Parameter 7-11
7.5.2 About the NLS_LANGUAGE Parameter 7-12
7.5.3 About the NLS_TERRITORY Parameter 7-13
7.5.4 About the NLS DATE_FORMAT Parameter 7-15
7.5.5 About the NLS_DATE_LANGUAGE Parameter 7-17

ORACLE vii

7.5.6 About NLS TIMESTAMP_FORMAT and
NLS TIMESTAMP_TZ FORMAT Parameters 7-18
7.5.7 About the NLS_CALENDAR Parameter 7-19
7.5.8 About the NLS NUMERIC_CHARACTERS Parameter 7-20
7.5.9 About the NLS CURRENCY Parameter 7-22
7.5.10 Aboutthe NLS_ISO_CURRENCY Parameter 7-23
7.5.11 About the NLS_DUAL_CURRENCY Parameter 7-24
7.5.12 About the NLS _SORT Parameter 7-25
7.5.13 About the NLS_COMP Parameter 7-26
7.5.14 About the NLS_LENGTH_SEMANTICS Parameter 7-28
7.6 Using Unicode in Globalized Applications 7-29
7.6.1 Representing Unicode String Literals in SQL and PL/SQL 7-29
7.6.2 Avoiding Data Loss During Character-Set Conversion 7-30

8 Building Effective Applications

8.1 Building Scalable Applications 8-1
8.1.1 About Scalable Applications 8-1
8.1.2 Using Bind Variables to Improve Scalability 8-1
8.1.3 Using PL/SQL to Improve Scalability 8-4
8.1.3.1 How PL/SQL Minimizes Parsing 8-4
8.1.3.2 About the EXECUTE IMMEDIATE Statement 8-4
8.1.3.3 About OPEN FOR Statements 8-5
8.1.3.4 About the DBMS_SQL Package 8-5
8.1.3.5 About Bulk SQL 8-6
8.1.4 About Concurrency and Scalability 8-8
8.1.4.1 About Sequences and Concurrency 8-9
8.1.4.2 About Latches and Concurrency 8-9
8.1.4.3 About Nonblocking Reads and Writes and Concurrency 8-10
8.1.4.4 About Shared SQL and Concurrency 8-10
8.1.5 Limiting the Number of Concurrent Sessions 8-10
8.1.6 Comparing Programming Techniques with Runstats 8-11
8.1.6.1 About Runstats 8-11
8.1.6.2 Setting Up Runstats 8-11
8.1.6.3 Using Runstats 8-14
8.1.7 Real-World Performance and Data Processing Techniques 8-15
8.1.7.1 About Iterative Data Processing 8-15
8.1.7.2 About Set-Based Processing 8-18
8.2 Recommended Programming Practices 8-19
8.2.1 Use Instrumentation Packages 8-19
8.2.2 Statistics Gathering and Application Tracing 8-20
8.2.3 Use Existing Functionality 8-20
ORACLE viii

8.2.4 Cover Database Tables with Editioning Views 8-23

8.3 Recommended Security Practices 8-23
9 Developing a Simple Oracle Database Application

9.1 About the Application 9-1
9.1.1 Purpose of the Application 9-1
9.1.2 Structure of the Application 9-1
9.1.2.1 Schema Objects of the Application 9-1

9.1.2.2 Schemas for the Application 9-2

9.1.3 Naming Conventions in the Application 9-3

9.2 Creating the Schemas for the Application 9-4
9.3 Granting Privileges to the Schemas 9-5
9.3.1 Granting Privileges to the app_data Schema 9-6
9.3.2 Granting Privileges to the app_code Schema 9-6
9.3.3 Granting Privileges to the app_admin Schema 9-6
9.3.4 Granting Privileges to the app_user and app_admin_user Schemas 9-7

9.4 Creating the Schema Objects and Loading the Data 9-7
9.4.1 Creating the Tables 9-7
9.4.2 Creating the Editioning Views 9-10
9.4.3 Creating the Triggers 9-10
9.4.3.1 Creating the Trigger to Enforce the First Business Rule 9-11

9.4.3.2 Creating the Trigger to Enforce the Second Business Rule 9-12

9.4.4 Creating the Sequences 9-13
9.4.5 Loading the Data 9-14
9.4.6 Adding the Foreign Key Constraint 9-16
9.4.7 Granting Privileges on the Schema Objects to Users 9-16

9.5 Creating the employees pkg Package 9-17
9.5.1 Creating the Package Specification for employees_pkg 9-18
9.5.2 Creating the Package Body for employees_pkg 9-19
9.5.3 Tutorial: Showing How the employees_pkg Subprograms Work 9-21
9.5.4 Granting the Execute Privilege to app_user and app_admin_user 9-24
9.5.5 Tutorial: Invoking get_job_history as app_user or app_admin_user 9-25

9.6 Creating the admin_pkg Package 9-25
9.6.1 Creating the Package Specification for admin_pkg 9-26
9.6.2 Creating the Package Body for admin_pkg 9-27
9.6.3 Tutorial: Showing How the admin_pkg Subprograms Work 9-28
9.6.4 Granting the Execute Privilege to app_admin_user 9-30
9.6.5 Tutorial: Invoking add_department as app_admin_user 9-30

ORACLE iX

10 Deploying an Oracle Database Application

10.1 About Development and Deployment Environments 10-1
10.2 About Installation Scripts 10-1
10.2.1 About DDL Statements and Schema Object Dependencies 10-1
10.2.2 About INSERT Statements and Constraints 10-2
10.3 Creating Installation Scripts 10-3
10.3.1 Creating Installation Scripts with the Cart 10-3
10.3.2 Creating an Installation Script with the Database Export Wizard 10-4
10.3.3 Editing Installation Scripts that Create Sequences 10-6
10.3.4 Editing Installation Scripts that Create Triggers 10-7
10.3.5 Creating Installation Scripts for the Sample Application 10-8
10.3.5.1 Creating Installation Script schemas.sq| 10-8
10.3.5.2 Creating Installation Script objects.sql 10-9
10.3.5.3 Creating Installation Script employees.sq| 10-13
10.3.5.4 Creating Installation Script admin.sql 10-16
10.3.5.5 Creating Master Installation Script create_app.sql 10-18
10.4 Deploying the Sample Application 10-18
10.5 Checking the Validity of an Installation 10-20
10.6 Archiving the Installation Scripts 10-21
Index
ORACLE X

List of Tables

5-1 Cursor Attribute Values 5-35
7-1 Initial Values of NLS Parameters in SQL Developer 7-6

ORACLE Xi

Preface

Preface

Audience

This is the preface to the Oracle Database 2 Day Developer’s Guide.

This document explains basic concepts behind application development with Oracle
Database. It provides instructions for using the basic features of topics through
Structured Query Language (SQL), and the Oracle server-based procedural extension
to the SQL database language, Procedural Language/Structured Query Language
(PL/SQL).

This document is intended for anyone who wants to learn about Oracle Database
application development, and is primarily an introduction to application development
for developers who are new to Oracle Database.

This document assumes that you have a general understanding of relational database
concepts and an understanding of the operating system environment that you will use
to develop applications with Oracle Database.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

ORACLE

When you are comfortable with the concepts and tasks in Oracle Database 2 Day
Developer’s Guide, Oracle recommends that you consult these other Oracle Database
development documents.

e Oracle Application Express App Builder User's Guide
e Oracle Database 2 Day + Java Developer's Guide
For more information, see:

* Oracle Database Concepts

* Oracle Database Development Guide

Xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

e Oracle Database SQL Language Reference

* Oracle Database PL/SQL Language Reference

Conventions

Oracle Database 2 Day Developer’s Guide uses these text conventions.

ORACLE

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

Xiii

Introduction to 2 Day Oracle Database
Development

An Oracle Database developer is responsible for creating or maintaining the database
components of an application that uses the Oracle technology stack. Oracle Database
developers either develop applications or convert existing applications to run in the
Oracle Database environment.

¢ See Also:

Oracle Database Concepts for more information about the duties of Oracle
Database developers

1.1 About This Document

ORACLE

This document is the entry into the Oracle Database documentation set for application
developers.

This document does the following:

* Explains the basic concepts behind development with Oracle Database

* Shows, with tutorials and examples, how to use basic features of SQL and
PL/SQL

* Provides references to detailed information about subjects that it introduces
* Shows how to develop and deploy a simple Oracle Database application

Introduction to 2 Day Oracle Database Development (this chapter) describes the
reader for whom this document is intended, outlines the organization of this document,
introduces important Oracle Database concepts, and describes the sample schema
used in the tutorials and examples in this document.

Connecting to Oracle Database and Exploring It explains how to connect to Oracle
Database, how to view schema objects and the properties and data of Oracle
Database tables, and how to use queries to retrieve data from an Oracle Database
table.

About DML Statements and Transactions introduces data manipulation language
(DML) statements and transactions. DML statements add, change, and delete Oracle
Database table data. A transaction is a sequence of one or more SQL statements that
Oracle Database treats as a unit; either all of the statements are performed, or none of
them are.

Creating and Managing Schema Objects introduces data definition language (DDL)
statements, which create, change, and drop schema objects.

1-1

Chapter 1
About Oracle Database

Developing Stored Subprograms and Packages introduces stored subprograms and
packages, which can be used as building blocks for many different database
applications.

Using Triggers introduces triggers, which are stored PL/SQL units that automatically
execute ("fire") in response to specified events.

Working in a Global Environment introduces globalization support—National Language
Support (NLS) parameters and Unicode-related features of SQL and PL/SQL.

Building Effective Applications explains how to build scalable applications and use
recommended programming and security practices.

Developing a Simple Oracle Database Application shows how to develop a simple
Oracle Database application.

Deploying an Oracle Database Application explains how to deploy an Oracle Database
application—that is, how to install it in one or more environments where other users
can run it—using the application developed in Developing a Simple Oracle Database
Application as an example.

1.2 About Oracle Database

Oracle Database groups related information into logical structures called schemas.
The logical structures contain schema objects.

When you connect to the database by providing your user name and password, you
specify the schema and indicate that you are its owner. In Oracle Database, the user
name and the name of the schema to which the user connects are the same.

1.2.1 About Schema Objects

ORACLE

Every object in an Oracle Database belongs to only one schema, and has a unique
name with that schema.

Some of the objects that schemas can contain are:

e Tables

Tables are the basic units of data storage in Oracle Database. Tables hold all
user-accessible data. Each table contains rows that represent individual data
records. Rows are composed of columns that represent the fields of the records.

* Indexes

Indexes are optional objects that can improve the performance of data retrieval
from tables. Indexes are created on one or more columns of a table, and are
automatically maintained in the database.

* Views

You can create a view that combines information from several different tables into
a single presentation. A view can rely on information from both tables and other
views.

* Sequences

When all records of a table must be distinct, you can use a sequence to generate
a serial list of unique integers for numeric columns, each of which represents the
ID of one record.

1-2

Chapter 1
About Oracle Database

* Synonyms

Synonyms are aliases for schema objects. You can use synonyms for security and
convenience; for example, to hide the ownership of an object or to simplify SQL
statements.

* Stored subprograms

Stored subprograms (also called schema-level subprograms) are procedures
and functions that are stored in the database. They can be invoked from client
applications that access the database.

Triggers are stored subprograms that are automatically run by the database when
specified events occur in a particular table or view. Triggers can restrict access to
specific data and perform logging.

* Packages

A package is a group of related subprograms, along with the explicit cursors and
variables they use, stored in the database as a unit, for continued use. Like stored
subprograms, package subprograms can be invoked from client applications that
access the database.

Typically, the objects that an application uses belong to the same schema.

¢ See Also:

e Oracle Database Concepts for a comprehensive introduction to schema
objects

e Creating and Managing Tables

e Managing Indexes

e Creating and Managing Views

e Creating and Managing Sequences

e Creating and Managing Synonyms

e Developing Stored Subprograms and Packages

e Using Triggers

1.2.2 About Oracle Database Access

You can access Oracle Database only through a client program, such as SQL*Plus or
SQL Developer.

The client program's interface to Oracle Database is Structured Query Language
(SQL). Oracle provides an extension to SQL called Procedural Language/SQL (PL/
SQL).

1.2.2.1 About SQL*Plus

SQL*Plus (pronounced sequel plus) is an interactive and batch query tool that is
installed with every Oracle Database installation. It has a command-line user interface
that acts as the client when connecting to the database.

ORACLE 1-3

Chapter 1
About Oracle Database

SQL*Plus has its own commands and environment. In the SQL*Plus environment, you
can enter and run SQL*Plus commands, SQL statements, PL/SQL statements, and
operating system commands to perform tasks such as:

* Formatting, performing calculations on, storing, and printing query results
* Examining tables and object definitions

» Developing and running batch scripts

» Performing database administration

You can use SQL*Plus to generate reports interactively, to generate reports as batch
processes, and to output the results to text file, to screen, or to HTML file for browsing
on the Internet. You can generate reports dynamically using the HTML output facility.

You can use SQL*Plus in SQL Developer. For details, see Oracle SQL Developer
User's Guide.

¢ See Also:

e "Connecting to Oracle Database from SQL*Plus"

e SQL*Plus User's Guide and Reference for information about SQL*Plus

1.2.2.2 About SQL Developer

SQL Developer (pronounced sequel developer) is a graphical user interface for
Oracle Database, that is available in the default installation of Oracle Database and by
free download from the Oracle Technology Network.

SQL Developer serves as a modern integrated development environment (IDE) for
SQL and PL/SQL, and provides a graphical interface for managing database objects.
You can also create reports, design data models, migrate third-party databases to
Oracle, REST-enable tables and views, and deploy and manage Oracle REST Data
Services. The SQL Worksheet allows you to enter and run SQL statements, PL/SQL
statements, and SQL*Plus commands and scripts.

" Note:

SQL Developer often offers several ways to do a task, but this document
does not explain every possible way.

See Also:

e "Connecting to Oracle Database from SQL Developer"

e Oracle SQL Developer User's Guide for information about SQL
Developer

ORACLE 1-4

Chapter 1
About Oracle Database

1.2.2.3 About Structured Query Language (SQL)

Structured Query Language (SQL) (pronounced sequel) is the set-based, high-
level computer language with which all programs and users access data in Oracle
Database.

SQL is a declarative, or nonprocedural, language; that is, it describes what to do,
but not how. You specify the desired result set (for example, the names of current
employees), but not how to get it.

¢ See Also:

e Oracle Database Concepts for a complete overview of SQL

e Oracle Database SQL Language Reference for complete information
about SQL

1.2.2.4 About Procedural Language/SQL (PL/SQL)

Procedural Language/SQL (PL/SQL) (pronounced P L sequel) is a native Oracle
Database extension to SQL. It bridges the gap between declarative and imperative
program control by adding procedural elements, such as conditional control and loops.

In PL/SQL, you can declare constants and variables, procedures and functions, types
and variables of those types, and triggers. You can handle exceptions (runtime errors).
You can create PL/SQL units—procedures, functions, packages, types, and triggers—
that are stored in the database for reuse by applications that use any of the Oracle
Database programmatic interfaces.

The basic unit of a PL/SQL source program is the block, which groups related
declarations and statements. A block has an optional declarative part, a required
executable part, and an optional exception-handling part.

¢ See Also:

e Oracle Database Concepts for a complete overview of PL/SQL

e Oracle Database PL/SQL Language Reference for complete information
about PL/SQL

1.2.2.5 About Other Client Programs, Languages, and Development Tools

Several other client programs, languages, and tools are available.

ORACLE 1-5

Chapter 1
About Oracle Database

< Note:

Some of the products on the preceding list do not ship with Oracle Database
and must be downloaded separately.

¢ See Also:

e Oracle Database Concepts for more information about tools for Oracle
Database developers

e Oracle Database Development Guide for information about choosing a
programming environment

1.2.2.5.1 Oracle Application Express

Oracle Application Express is an application development and deployment tool that
enables you to quickly create secure and scalable web applications even if you have
limited previous programming experience. The embedded Application Builder tool
assembles an HTML interface or a complete application that uses schema objects,
such as tables or stored procedures, into a collection of pages that are linked through
tabs, buttons, or hypertext links.

¢ See Also:

Oracle Application Express App Builder User's Guide for more information
about Oracle Application Express

1.2.2.5.2 Oracle Java Database Connectivity (JDBC)

Oracle Java Database Connectivity (JDBC) is an API that enables Java to send
SQL statements to an object-relational database, such as Oracle Database. Oracle
Database JDBC provides complete support for the JDBC 3.0 and JDBC RowSet
(JSR-114) standards, advanced connection caching for both XA and non-XA
connections, exposure of SQL and PL/SQL data types to Java, and fast SQL data
access.

" See Also:
For more information about JDBC:

e Oracle Database Concepts
e Oracle Database Development Guide

e Oracle Database 2 Day + Java Developer's Guide

ORACLE 1-6

Chapter 1
About Oracle Database

1.2.2.5.3 Hypertext Preprocessor (PHP)

The Hypertext Preprocessor (PHP) is a powerful interpreted server-side scripting
language for quick web application development. PHP is an open source language
that is distributed under a BSD-style license. PHP is designed for embedding database
access requests directly into HTML pages.

1.2.2.5.4 Oracle Call Interface (OCI)

Oracle Call Interface (OCI) is the native C language API for accessing Oracle
Database directly from C applications.

The OCI Software Development Kit is installed as part of the Oracle Instant Client,
which enables you to run applications without installing the standard Oracle client or
having an ORACLE_HOME. Your applications work without change, using significantly less
disk space.

See Also:

e Oracle Database Development Guide for more information about OCI

e Oracle Call Interface Programmer's Guide for complete information
about OCI

1.2.2.5.5 Oracle C++ Call Interface (OCCI)

Oracle C++ Call Interface (OCCI) is the native C++ language API for accessing Oracle
Database directly from C++ applications. Like OCI, OCCI supports both relational and
object-oriented programming paradigms.

The OCCI Software Development Kit is also installed as part of the Oracle Instant
Client, which enables you to run applications without installing the standard Oracle
client or having an ORACLE_HOME. Your applications work without change, using
significantly less disk space.

See Also:

e Oracle Database Development Guide for more information about OCCI

e Oracle C++ Call Interface Programmer's Guide for complete information
about OCCI

1.2.2.5.6 Open Database Connectivity (ODBC)

ORACLE

Open Database Connectivity (ODBC) is a set of database access APIs that connect to
the database, prepare, and then run SQL statements on the database. An application
that uses an ODBC driver can access nonuniform data sources, such as spreadsheets
and comma-delimited files.

1-7

Chapter 1
About Oracle Database

The Oracle ODBC driver conforms to ODBC 3.51 specifications. It supports all core
APIs and a subset of Level 1 and Level 2 functions. Microsoft supplies the Driver
manager component for the Windows platform.

Like OCI, OCCI, and JDBC, ODBC is part of the Oracle Instant Client installation.

¢ See Also:

e Oracle Database Concepts

e Oracle Services for Microsoft Transaction Server Developer's Guide for
Microsoft Windows for information about using the Oracle ODBC driver
with Windows

* Oracle Database Administrator's Reference for Linux and UNIX-Based
Operating Systems for information about using Oracle ODBC driver on
Linux

1.2.2.5.7 Pro*C/C++ Precompiler

The Pro*C/C++ precompiler lets you embed SQL statements in a C or C++ source file.
The precompiler accepts the source program as input, translates the embedded SQL
statements into standard Oracle runtime library calls, and generates a modified source
program that you can compile, link, and run.

¢ See Also:

e Oracle Database Concepts for more information about Oracle
precompilers

e Oracle Database Development Guide for more information about the
Pro*C/C++ precompiler

e Pro*C/C++ Programmer's Guide for complete information about the
Pro*C/C++ precompiler

1.2.2.5.8 Pro*COBOL Precompiler

The Pro*COBOL precompiler lets you embed SQL statements in a COBOL source file.
The precompiler accepts the source program as input, translates the embedded SQL
statements into standard Oracle runtime library calls, and generates a modified source
program that you can compile, link, and run.

ORACLE 1-8

Chapter 1
About Oracle Database

¢ See Also:

e Oracle Database Concepts for more information about Oracle
precompilers

e Oracle Database Development Guide for more information about the
Pro*COBOL precompiler

* Pro*COBOL Programmer's Guide for complete information about the
Pro*COBOL precompiler

1.2.2.5.9 Microsoft .NET Framework

ORACLE

The Microsoft .NET Framework is a multilanguage environment for building, deploying,
and running applications and XML web services.

The main components of the Microsoft .NET Framework are:

e Common Language Runtime (CLR)

The Common Language Runtime (CLR) is a language-neutral development and
runtime environment that provides services that help manage running applications.

» Framework Class Libraries (FCL)

The Framework Class Libraries (FCL) provide a consistent, object-oriented library
of prepackaged functionality.

Oracle Data Provider for .NET (ODP.NET)

Oracle Data Provider for .NET (ODP.NET) provides fast and efficient ADO.NET data
access from .NET applications to Oracle Database. ODP.NET allows developers to
take advantage of advanced Oracle Database functionality that exists in Oracle
Database, including SecureFiles, XML DB, and Advanced Queuing.

Oracle Developer Tools for Visual Studio (ODT)

Oracle Developer Tools for Visual Studio (ODT) is a set of application tools that
integrate with the Visual Studio environment. These tools provide graphic user
interface access to Oracle functionality, enable the user to perform a wide range of
application development tasks, and improve development productivity and ease of
use. Oracle Developer Tools supports the programming and implementation of .NET
stored procedures using Visual Basic, C#, and other .NET languages.

.NET Stored Procedures

Oracle Database Extensions for .NET is a database option for Oracle Database on
Windows. It makes it possible to build and run .NET stored procedures or functions
with Oracle Database for Microsoft Windows using Visual Basic .NET or Visual C#.

After building .NET procedures and functions into a .NET assembly, you can deploy
them in Oracle Database using the Oracle Deployment Wizard for .NET, a component
of the Oracle Developer Tools for Visual Studio.

Oracle Providers for ASP.NET

Oracle Providers for ASP.NET offer ASP.NET developers an easy way to store state
common to web applications within Oracle Database. These providers are modeled

1-9

Chapter 1
About Sample Schema HR

on existing Microsoft ASP.NET providers, sharing similar schema and programming
interfaces to provide .NET developers a familiar interface. Oracle supports the
Membership, Profile, Role, and other providers.

See Also:

e Oracle Data Provider for .NET Developer's Guide for Microsoft Windows

e Oracle Database Extensions for .NET Developer's Guide for Microsoft
Windows

e Oracle Database Development Guide

1.2.2.5.10 Oracle Provider for OLE DB (OraOLEDB)

Oracle Provider for OLE DB (OraOLEDB) is an open standard data access
methodology that uses a set of Component Object Model (COM) interfaces for
accessing and manipulating different types of data. These interfaces are available from
various database providers.

¢ See Also:

Oracle Provider for OLE DB Developer's Guide for Microsoft Windows for
more information about OraOLEDB

1.3 About Sample Schema HR

The HR sample schema can be installed with Oracle Database. This schema contains
information about employees—departments, locations, work histories, and related
information. Like all schemas, HR has tables, views, indexes, procedures, functions,
and other attributes. The examples and tutorials in this document use the schema.

¢ See Also:

e Oracle Database Sample Schemas for a complete description of the HR
schema

e "Connecting to Oracle Database as User HR" for instructions for
connecting to Oracle Database as the user HR

ORACLE 1-10

Connecting to Oracle Database and
Exploring It

You can connect to Oracle Database only through a client program, such as SQL*Plus
or SQL Developer. When connected to the database, you can view schema objects,
view the properties and data of Oracle Database tables, and use queries to retrieve
data from Oracle Database tables.

After connecting to Oracle Database through a client program, you enter and run
commands in that client program. For details, see the documentation for your client
program.

2.1 Connecting to Oracle Database from SQL*Plus

ORACLE

SQL*Plus is a client program from which you can access Oracle Database. This topic
shows how to start SQL*Plus and connect to Oracle Database.

Note:

For steps 3 and 4 of the following procedure, you need a user name and
password.

To connect to Oracle Database from SQL*Plus:

1. If you are on a Windows system, display a Windows command prompt.

2. Atthe command prompt, type sqlplus and then press the key Enter.

3. Atthe user name prompt, type your user name and then press the key Enter.
4

At the password prompt, type your password and then press the key Enter.

Note:

For security, your password is not visible on your screen.

The system connects you to an Oracle Database instance.

You are in the SQL*Plus environment. At the SQL> prompt, you can enter and run
SQL*Plus commands, SQL statements, PL/SQL statements, and operating system
commands.

To exit SQL*Plus, type exit and press the key Enter.

2-1

Chapter 2
Connecting to Oracle Database from SQL Developer

< Note:

Exiting SQL*Plus ends the SQL*Plus session, but does not shut down
the Oracle Database instance.

Example 2-1 starts SQL*Plus, connects to Oracle Database, runs a SQL SELECT
statement, and exits SQL*Plus. User input is bold.

Example 2-1 Connecting to Oracle Database from SQL*Plus

> sqlplus
SQL*Plus: Release 12.1.0.1.0 Production on Thu Dec 27 07:43:41 2012

Copyright (c) 1982, 2012, Oracle. All rights reserved.

Enter user-name: your _user_name
Enter password: your_password

Connected to:
Oracle Database 12c Enterprise Edition Release - 12.1.0.1.0 64bit Production

SQL> select count(*) from employees;
COUNT(*)
SQL> exit

Disconnected from Oracle Database 12c Enterprise Edition Release - 12.1.0.1.0 64bit Production
>

¢ See Also:

e "Connecting to Oracle Database as User HR from SQL*Plus"
e "About SQL*Plus" for a brief description of SQL*Plus

e SQL*Plus User's Guide and Reference for more information about
starting SQL*Plus and connecting to Oracle Database

2.2 Connecting to Oracle Database from SQL Developer

SQL Developer is a client program with which you can access Oracle Database.

You are encouraged to use the currently available release of SQL Developer, which
you can download from:

http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/

This section assumes that SQL Developer is installed on your system, and shows how
to start it and connect to Oracle Database. If SQL Developer is not installed on your
system, then see Oracle SQL Developer User's Guide for installation instructions.

ORACLE 2-2

http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/

Chapter 2
Connecting to Oracle Database from SQL Developer

< Note:
For the following procedure:

e If you're using a SQL Developer kit that does not include the JDK, then
the first time you start SQL Developer on your system, you must provide
the path to the Java Development Kit.

* When prompted, you need to enter a user name and password.

To connect to Oracle Database from SQL Developer:

1. Start SQL Developer.
For instructions, see Oracle SQL Developer User's Guide.

If this is the first time you have started SQL Developer on your system, you are
prompted to enter the path to the Java Development Kit (JDK) installation (for
example, C:\Program Files\Java\jdk1.8.0_65). Either type the path after the
prompt or browse to it, and then press the key Enter.

2. Inthe Connections frame, click the icon New Connection.
3. Inthe New/Select Database Connection window:

a. Type the appropriate values in the fields Connection Name, Username, and
Password.

For security, the password characters that you type appear as asterisks.

Near the Password field is the check box Save Password. By default, it is
deselected. Oracle recommends accepting the default.

b. If the Oracle pane is not showing, click the tab Oracle.
c. Inthe Oracle pane, accept the default values.

(The default values are: Connection Type, Basic; Role, default, Hostname,
localhost; Port, 1521; SID option, selected; SID field, xe.)

d. Click the button Test.

The connection is tested. If the connection succeeds, the Status indicator
changes from blank to Success.

e. If the test succeeded, click the button Connect.

The New/Select Database Connection window closes. The Connections frame
shows the connection whose name you entered in the Connection Name field
in step 3.

You are in the SQL Developer environment.

To exit SQL Developer, select Exit from the File menu.

ORACLE 2-3

Chapter 2
Connecting to Oracle Database as User HR

< Note:

Exiting SQL Developer ends the SQL Developer session, but does not shut
down the Oracle Database instance. The next time you start SQL Developer,
the connection you created using the preceding procedure still exists. SQL
Developer prompts you for the password that you supplied in step 3 (unless
you selected the check box Save Password).

See Also:

e "Connecting to Oracle Database as User HR from SQL Developer"
e "About SQL Developer" for a brief description of SQL Developer

e Oracle SQL Developer User's Guide for more information about using
SQL Developer to create connections to Oracle Database

2.3 Connecting to Oracle Database as User HR

To do the tutorials and examples in this document, you must connect to Oracle
Database as the user HR.

The user HR owns the HR sample schema that the examples and tutorials in this
document use.

2.3.1 Unlocking the HR Account

ORACLE

You must unlock the HR account and reset its password before you can connect to
Oracle Database as the user HR.

By default, when the HR schema is installed, the HR account is locked and its
password is expired.

" Note:

For the following procedure, you need the name and password of a user who
has the ALTER USERsystem privilege.

To unlock the HR account and reset its password:

1. Using SQL*Plus, connect to Oracle Database as a user with the ALTER USER
system privilege.

2. Atthe SQL> prompt, unlock the HR account and reset its password:

2-4

Chapter 2
Connecting to Oracle Database as User HR

Caution:

Choose a secure password. For guidelines for secure passwords, see
Oracle Database Security Guide.

ALTER USER HR ACCOUNT UNLOCK IDENTIFIED BY password;

The system responds:

User altered.

The HR account is unlocked and its password is password.

Now you can connect to Oracle Database as user HR with the password password.

¢ See Also:

e Oracle SQL Developer User's Guide for information about accessing
SQL*Plus within SQL Developer

2.3.2 Connecting to Oracle Database as User HR from SQL*Plus

You can use SQL*Plus to connect to Oracle Database as the HR user.

< Note:

If the HR account is locked, see "Unlocking the HR Account" and then return
to this section.

To connect to Oracle Database as user HR from SQL*Plus:

< Note:

For this task, you need the password for the HR account.

1. If you are connected to Oracle Database, close your current connection.

2. Follow the directions in "Connecting to Oracle Database from SQL*Plus", entering
the user name HR at step 3 and the password for the HR account at step 4.

You are now connected to Oracle Database as the user HR.

ORACLE 2-5

Chapter 2
Exploring Oracle Database with SQL*Plus

¢ See Also:

SQL*Plus User's Guide and Reference for an example of using SQL*Plus to
create an HR connection

2.3.3 Connecting to Oracle Database as User HR from SQL Developer

You can use SQL Developer to connect to Oracle Database as the HR user.

¢ Note:

If the HR account is locked, see "Unlocking the HR Account" and then return
to this section.

To connect to Oracle Database as user HR from SQL Developer:

< Note:

For this task, you need the password for the HR account.

Follow the directions in "Connecting to Oracle Database from SQL Developer”,
entering the following values at steps 3:

* For Connection Name, enter hr_conn.

(You can enter a different name, but the tutorials in this document assume that you
named the connection hr_conn.)

* For Username, enter HR.
* For Password, enter the password for the HR account.

You are now connected to Oracle Database as the user HR.

2.4 Exploring Oracle Database with SQL*Plus

If you are connected to Oracle Database from SQL*Plus as the user HR, you can view
HR schema objects and the properties of the EMPLOYEES table.

¢ Note:

If you are not connected to Oracle Database as user HR from SQL*Plus, see
"Connecting to Oracle Database as User HR from SQL*Plus" and then return
to this section.

ORACLE 2-6

Chapter 2
Exploring Oracle Database with SQL*Plus

2.4.1 Viewing HR Schema Objects with SQL*Plus

With SQL*Plus, you can view the objects that belong to the HR schema by querying
the static data dictionary view USER_OBJECTS.

ORACLE

Example 2-2 shows how to view the names and data types of the objects that belong

to the HR schema.

Example 2-2 Viewing HR Schema Objects with SQL*Plus

COLUMN OBJECT_NAME FORMAT A25
COLUMN OBJECT_TYPE FORMAT A25

SELECT OBJECT_NAME, OBJECT_TYPE FROM USER_OBJECTS
ORDER BY OBJECT_TYPE, OBJECT_NAME;

Result is similar to:

OBJECT_NAME

COUNTRY_C_ID_PK
DEPT_ID_PK
DEPT_LOCATION_IX
EMP_DEPARTMENT _IX
EMP_EMAIL_UK
EMP_EMP_ID_PK
EMP_JOB_IX
EMP_MANAGER_IX
EMP_NAME_IX
JHIST_DEPARTMENT _IX
JHIST_EMPLOYEE_IX
JHIST_EMP_ID_ST_DATE_PK
JHIST_JOB_IX
JOB_ID_PK
LOC_CITY_IX
LOC_COUNTRY_IX
LOC_ID_PK
LOC_STATE_PROVINCE_IX
REG_ID_PK
ADD_JOB_HISTORY
SECURE_DML
DEPARTMENTS_SEQ
EMPLOYEES_SEQ
LOCATIONS_SEQ
COUNTRIES
DEPARTMENTS
EMPLOYEES

JOBS

JOB_HISTORY
LOCATIONS

REGIONS
SECURE_EMPLOYEES
UPDATE_JOB_HISTORY
EMP_DETAILS_VIEW

34 rows selected.

OBJECT_TYPE

INDEX
PROCEDURE
PROCEDURE
SEQUENCE
SEQUENCE
SEQUENCE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TRIGGER
TRIGGER
VIEW

2-7

Chapter 2
Exploring Oracle Database with SQL*Plus

¢ See Also:

e Oracle Database Reference for information about USER_OBJECTS

e "Selecting Table Data" for information about using queries to view table
data

e "About Sample Schema HR" for general information about the schema
HR

2.4.2 Viewing EMPLOYEES Table Properties and Data with SQL*Plus

ORACLE

You can a SQL*Plus command, the SQL SELECTstatement, and static data dictionary
views to view the properties and data of the HR.EMPLOYEES table.

You can use the SQL*Plus command DESCRIBE to view the properties of the columns
of the EMPLOYEES table in the HR schema and the SQL statement SELECT to view
the data. To view other properties of the table, use static data dictionary views (for
example, USER_CONSTRAINTS, USER_INDEXES, and USER_TRIGGERS).

Example 2-3 shows how to view the properties of the EMPLOYEES table in the HR
schema.

Example 2-3 Viewing EMPLOYEES Table Properties with SQL*Plus

DESCRIBE EMPLOYEES

Result:

Name Null? Type
EMPLOYEE_ID NOT NULL NUMBER(6)
FIRST_NAME VARCHAR2(20)
LAST_NAME NOT NULL VARCHAR2(25)
EMAIL NOT NULL VARCHAR2(25)
PHONE_NUMBER VARCHAR2(20)
HIRE_DATE NOT NULL DATE

JOB_ID NOT NULL VARCHAR2(10)
SALARY NUMBER(8,2)
COMMISSION_PCT NUMBER(2,2)
MANAGER_ID NUMBER(6)
DEPARTMENT_ID NUMBER(4)

Example 2-4 shows how to view some data in the EMPLOYEES table in the HR
schema.

Example 2-4 Viewing EMPLOYEES Table Data with SQL*Plus

COLUMN FIRST_NAME FORMAT A20
COLUMN LAST_NAME FORMAT A25
COLUMN PHONE_NUMBER FORMAT A20

SELECT LAST_NAME, FIRST_NAME, PHONE_NUMBER FROM EMPLOYEES
ORDER BY LAST_NAME;

Result is similar to:

2-8

Chapter 2
Exploring Oracle Database with SQL Developer

LAST_NAME FIRST_NAME PHONE_NUMBER
Abel Ellen 011.44.1644.429267
Ande Sundar 011.44.1346.629268
Atkinson Mozhe 650.124.6234
Austin David 590.423.4569
Baer Hermann 515.123.8888
Baida Shelli 515.127.4563
Banda Amit 011.44.1346.729268
Bates Elizabeth 011.44.1343.529268
Urman Jose Manuel 515.124.4469
Vargas Peter 650.121.2004
Vishney Clara 011.44.1346.129268
VollIman Shanta 650.123.4234
Walsh Alana 650.507.9811
Weiss Matthew 650.123.1234
Whalen Jennifer 515.123.4444
Zlotkey Eleni 011.44.1344.429018

107 rows selected.

See Also:

e SQL*Plus User's Guide and Reference for information about DESCRIBE

e "Selecting Table Data" for information about using queries to view table
data

e Oracle Database Reference for information about static data dictionary
views

2.5 Exploring Oracle Database with SQL Developer

If you are connected to Oracle Database from SQL Developer as the user HR, you can
view HR schema objects and the properties of the EMPLOYEES table.

2.5.1 Tutorial: Viewing HR Schema Objects with SQL Developer

This tutorial shows how to use SQL Developer to view the objects that belong to the
HR schema—that is, how to browse the HR schema.

< Note:

If you are not connected to Oracle Database as user HR from SQL
Developer, see "Connecting to Oracle Database as User HR from SQL
Developer" and then return to this tutorial.

To browse the HR schema:

1. Inthe Connections frame, to the left of the hr_conn icon, click the plus sign (+).

ORACLE 2-9

Chapter 2
Exploring Oracle Database with SQL Developer

If you are not connected to the database, the Connection Information window
opens. If you are connected to the database, the hr_conn information expands
(see the information that follows "Click OK" in step 2).

If the Connection Information window opens:

a. Inthe User Name field, enter hr.

b. Inthe Password field, enter the password for the user HR.
c. Click OK.

The hr_conn information expands: The plus sign becomes a minus sign (-), and
under the hr_conn icon, a list of schema object types appears—Tables, Views,
Indexes, and so on. (If you click the minus sign, the hr_conn information collapses:
The minus sign becomes a plus sign, and the list disappears.)

¢ See Also:

e Oracle SQL Developer User's Guide for more information about the SQL
Developer user interface

e "About Sample Schema HR" for general information about schema HR

2.5.2 Tutorial: Viewing EMPLOYEES Table Properties and Data with
SQL Developer

This tutorial shows how to use SQL Developer to view the properties and data of the
EMPLOYEES table in the HR schema.

ORACLE

< Note:

If you are not browsing the HR schema, see "Tutorial: Viewing HR Schema
Objects with SQL Developer" and then return to this tutorial.

To view the properties and data of the EMPLOYEES table:

1.

In the Connections frame, expand Tables.
Under Tables, a list of the tables in the HR schema appears.
Select the table EMPLOYEES.

In the right frame of the Oracle SQL Developer window, in the Columns pane, a list
of all columns of this table appears. To the right of each column are its properties
—name, data type, and so on. (To see all column properties, move the horizontal
scroll bar to the right.)

In the right frame, click the tab Data.

The Data pane appears, showing a numbered list of all records in this table. (To
see more records, move the vertical scroll bar down. To see more columns of the
records, move the horizontal scroll bar to the right.)

2-10

Chapter 2
Selecting Table Data

4. Inthe right frame, click the tab Constraints.

The Constraints pane appears, showing a list of all constraints on this table. To the
right of each constraint are its properties—name, type, search condition, and so
on. (To see all constraint properties, move the horizontal scroll bar to the right.)

5. Explore the other properties by clicking on the appropriate tabs.

To see the SQL statement for creating the EMPLOYEES table, click the SQL tab.
The SQL statement appears in a pane named EMPLOYEES. To close this pane,
click the x to the right of the name EMPLOYEES.

¢ See Also:

Oracle SQL Developer User's Guide for more information about the SQL
Developer user interface

2.6 Selecting Table Data

Note:

To do the tutorials and examples in this section, you must be connected to
Oracle Database as the user HR from SQL Developer. For instructions, see
"Connecting to Oracle Database as User HR from SQL Developer".

2.6.1 About Queries

ORACLE

A query, or SQL SELECT statement, selects data from one or more tables or views.
The simplest form of query has this syntax:

SELECT sel ect _list FROM source_li st

The select_list specifies the columns from which the data is to be selected, and the
source_list specifies the tables or views that have these columns.

A query nested within another SQL statement is called a subquery.

In the SQL*Plus environment, you can enter a query (or any other SQL statement)
after the SQL> prompt.

In the SQL Developer environment, you can enter a query (or any other SQL
statement) in the Worksheet.

Note:

When the result of a query is displayed, records can be in any order, unless
you specify their order with the ORDER BY clause. For more information,
see "Sorting Selected Data".

2-11

Chapter 2
Selecting Table Data

¢ See Also:

e Oracle Database SQL Language Reference for more information about
queries and subqueries

e Oracle Database SQL Language Reference for more information about
the SELECT statement

e SQL*Plus User's Guide and Reference for more information about the
SQL*Plus command line interface

e Oracle SQL Developer User's Guide for information about using the
Worksheet in SQL Developer

2.6.2 Running Queries in SQL Developer

This section explains how to run queries in SQL Developer, using the Worksheet.

ORACLE

¢ Note:

The Worksheet is not limited to queries; you can use it to run any SQL
statement.

To run queries in SQL Developer:

1.

If the right frame of SQL Developer shows the hr_conn pane:

a. If the Worksheet subpane does not show, click the tab Worksheet.
b. Go to step 4.

Click the icon SQL Worksheet.

If the Select Connection window opens:

a. If the Connection field does not have the value hr_conn, select that value
from the menu.

b. Click OK.

A pane appears with a tab labeled hr_conn and two subpanes, Worksheet and
Query Builder. In the Worksheet, you can enter a SQL statement.

In the Worksheet, type a query (a SELECT statement).
Click the icon Run Statement.

The query runs. Under the Worksheet, the Query Result pane appears, showing
the query result.

Under the hr_conn tab, click the icon Clear.

The query disappears, and you can enter another SQL statement in the
Worksheet. When you run another SQL statement, its result appears in the Query
Result pane, replacing the result of the previously run SQL statement.

2-12

Chapter 2
Selecting Table Data

¢ See Also:

Oracle SQL Developer User's Guide for information about using the
Worksheet in SQL Developer

2.6.3 Tutorial: Selecting All Columns of a Table

This tutorial shows how to select all columns of the EMPLOYEES table.

To select all columns of the EMPLOYEES Table:

1.

If a pane with the tab hr_conn is there, select it. Otherwise, click the icon
SQL Worksheet, as in "Running Queries in SQL Developer".

In the Worksheet, enter this query:
SELECT * FROM EMPLOYEES;
Click the icon Run Statement.

The query runs. Under the Worksheet, the Query Result pane appears, showing
all columns of the EMPLOYEES table.

Caution:

Be very careful about using SELECT * on tables with columns that store
sensitive data, such as passwords or credit card information.

¢ See Also:

"Tutorial: Viewing EMPLOYEES Table Properties and Data with SQL
Developer"” for information about another way to view table data with SQL
Developer

2.6.4 Tutorial: Selecting Specific Columns of a Table

This tutorial shows how to select only the columns FIRST_NAME, LAST_NAME, and
DEPARTMENT_ID of the EMPLOYEES table.

ORACLE

To select only FIRST_NAME, LAST_NAME, and DEPARTMENT _ID:

1.

If a pane with the tab hr_conn is there, select it. Otherwise, click the icon
SQL Worksheet, as in "Running Queries in SQL Developer".

If the Worksheet pane contains a query, clear the query by clicking the icon Clear.
In the Worksheet, enter this query:
SELECT FIRST_NAME, LAST_NAME, DEPARTMENT_ID FROM EMPLOYEES;

Click the icon Run Statement.

2-13

Chapter 2
Selecting Table Data

The query runs. Under the Worksheet, the Query Result pane appears, showing

the results of the query, which are similar to:

FIRST_NAME LAST_NAME
Donald OConnell
Douglas Grant
Jennifer Whalen
Michael Hartstein
Pat Fay

Susan Mavris
Hermann Baer
Shelley Higgins
William Gietz
Steven King
Neena Kochhar
FIRST_NAME LAST_NAME
Lex De Haan
Kevin Feeney

107 rows selected.

DEPARTMENT_ID

90
90

DEPARTMENT_ID

2.6.5 Displaying Selected Columns Under New Headings

In displayed query results, default column headings are column names. To display a
column under a new heading, specify the new heading (alias) immediately after the
column name. The alias renames the column for the duration of the query, but does

ORACLE

not change its name in the database.

The query in Example 2-5 selects the same columns as the query in "Tutorial:

Selecting Specific Columns of a Table", but it also specifies aliases for them. Because

the aliases are not enclosed in double quotation marks, they are displayed in

uppercase letters.

If you enclose column aliases in double quotation marks, case is preserved, and the

aliases can include spaces, as in Example 2-6.

¢ See Also:

Example 2-5 Displaying Selected Columns Under New Headings

SELECT FIRST_NAME First, LAST_NAME last, DEPARTMENT_ID DepT

FROM EMPLOYEES;

Result is similar to:

FIRST LAST
Donald OConnell
Douglas Grant
Jennifer Whalen

Oracle Database SQL Language Reference for more information about the
SELECT statement, including the column alias (c_alias)

2-14

Chapter 2
Selecting Table Data

Michael Hartstein 20
Pat Fay 20
Susan Mavris 40
Hermann Baer 70
Shelley Higgins 110
William Cietz 110
Steven King 90
Neena Kochhar 90
FIRST LAST DEPT
Lex De Haan 90
Kevin Feeney 50

107 rows selected.

Example 2-6 Preserving Case and Including Spaces in Column Aliases

SELECT FIRST_NAME "Given Name", LAST_NAME "Family Name"
FROM EMPLOYEES;

Result is similar to:

Given Name Family Name
Donald OConnell
Douglas Grant
Jennifer Whalen
Michael Hartstein
Pat Fay

Susan Mavris
Hermann Baer
Shelley Higgins
William Gietz
Steven King

Neena Kochhar
Given Name Family Name
Lex De Haan
Kevin Feeney

107 rows selected.

2.6.6 Selecting Data that Satisfies Specified Conditions

To select only data that matches a specified condition, include the WHERE clause in
the SELECT statement.

The condition in the WHERE clause can be any SQL condition (for information about
SQL conditions, see Oracle Database SQL Language Reference).

The query in Example 2-7 selects data only for employees in department 90.

To select data only for employees in departments 100, 110, and 120, use this WHERE
clause:

WHERE DEPARTMENT_ID IN (100, 110, 120);

ORACLE 2-15

Chapter 2
Selecting Table Data

The query in Example 2-8 selects data only for employees whose last names start with
"Ma".

To select data only for employees whose last names include "ma", use this WHERE
clause:

WHERE LAST_NAME LIKE “%ma%";

The query in Example 2-9 tests for two conditions—whether the salary is at least
11000, and whether the commission percentage is not null.

¢ See Also:
e Oracle Database SQL Language Reference for more information about
the SELECT statement, including the WHERE clause

e Oracle Database SQL Language Reference for more information about
SQL conditions

Example 2-7 Selecting Data from One Department

SELECT FIRST_NAME, LAST_NAME, DEPARTMENT_ID
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 90;

Result is similar to:

FIRST_NAME LAST_NAME DEPARTMENT_ID
Steven King 90
Neena Kochhar 90
Lex De Haan 90

3 rows selected.

Example 2-8 Selecting Data for Last Names that Start with the Same Substring

SELECT FIRST_NAME, LAST_NAME
FROM EMPLOYEES
WHERE LAST_NAME LIKE “Ma%";

Result is similar to:

FIRST_NAME LAST NAME
Jason Mallin
Steven Markle
James Mar low
Mattea Marvins
Randall Matos
Susan Mavris

6 rows selected.

ORACLE 2-16

Chapter 2
Selecting Table Data

Example 2-9 Selecting Data that Satisfies Two Conditions

SELECT FIRST_NAME, LAST_NAME, SALARY, COMMISSION_PCT "%
FROM EMPLOYEES
WHERE (SALARY >= 11000) AND (COMMISSION_PCT IS NOT NULL);

Result is similar to:

FIRST_NAME LAST_NAME SALARY %
John Russell 14000 4
Karen Partners 13500 .3
Alberto Errazuriz 12000 .3
Gerald Cambrault 11000 .3
Lisa Ozer 11500 .25
Ellen Abel 11000 3

6 rows selected.

2.6.7 Sorting Selected Data

When query results are displayed, records can be in any order, unless you specify
their order with the ORDER BY clause.

The query results in Example 2-10 are sorted by LAST _NAME, in ascending order (the
default).

Alternatively, in SQL Developer, you can omit the ORDER BY clause and double-click
the name of the column to sort.

The sort criterion need not be included in the select list, as Example 2-11 shows.

¢ See Also:

Oracle Database SQL Language Reference for more information about the
SELECT statement, including the ORDER BY clause

Example 2-10 Sorting Selected Data by LAST_NAME

SELECT FIRST_NAME, LAST_NAME, HIRE_DATE
FROM EMPLOYEES
ORDER BY LAST_NAME;

Result:

FIRST_NAME LAST_NAME HIRE_DATE
Ellen Abel 11-MAY-04
Sundar Ande 24-MAR-08
Mozhe Atkinson 30-0CT-05
David Austin 25-JUN-05
Hermann Baer 07-JUN-02
Shelli Baida 24-DEC-05
Amit Banda 21-APR-08
Elizabeth Bates 24-MAR-07
FIRST_NAME LAST_NAME HIRE_DATE

ORACLE 2-17

2.6.8 Selecting Data from Multiple Tables

ORACLE

Jose Manuel Urman
Peter Vargas
Clara Vishney
Shanta Vol Iman
Alana Walsh
Matthew Weiss
Jennifer Whalen
Eleni Zlotkey

107 rows selected

Example 2-11 Sorting Selected Data by an Unselected Column

SELECT FIRST_NAME, HIRE_DATE
FROM EMPLOYEES
ORDER BY LAST_NAME;

Result:

FIRST_NAME HIRE_DATE
Ellen 11-MAY-04
Sundar 24-MAR-08
Mozhe 30-0CT-05
David 25-JUN-05
Hermann 07-JUN-02
Shelli 24-DEC-05
Amit 21-APR-08
Elizabeth 24-MAR-07
FIRST_NAME HIRE_DATE
Jose Manuel 07-MAR-06
Peter 09-JUL-06
Clara 11-NOV-05
Shanta 10-0CT-05
Alana 24-APR-06
Matthew 18-JUL-04
Jennifer 17-SEP-03
Eleni 29-JAN-08

107 rows selected.

07-MAR-06
09-JUL-06
11-NOV-05
10-0CT-05
24-APR-06
18-JUL-04
17-SEP-03
29-JAN-08

Chapter 2
Selecting Table Data

To select data from multiple tables, you use a query that is called a join. The tables in

a join must share at least one column name.

Suppose that you want to select the FIRST_NAME, LAST_NAME, and
DEPARTMENT_NAME of every employee. FIRST_NAME and LAST_NAME are in the
EMPLOYEES table, and DEPARTMENT_NAME is in the DEPARTMENTS table. Both
tables have DEPARTMENT _ID. You can use the query in Example 2-12.

Table-name qualifiers are optional for column names that appear in only one table of a
join, but are required for column names that appear in both tables. The following query

is equivalent to the query in Example 2-12:

SELECT FIRST_NAME "First",
LAST_NAME "Last",

2-18

ORACLE

Chapter 2
Selecting Table Data

DEPARTMENT_NAME ''Dept. Name"

FROM EMPLOYEES, DEPARTMENTS

WHERE EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID
ORDER BY DEPARTMENT_NAME, LAST_NAME;

To make queries that use qualified column names more readable, use table aliases, as
in the following example:

SELECT FIRST_NAME "First”,

LAST_NAME "Last",

DEPARTMENT_NAME "Dept. Name"

FROM EMPLOYEES e, DEPARTMENTS d

WHERE e.DEPARTMENT_ID = d.DEPARTMENT_ID
ORDER BY d.DEPARTMENT_NAME, e.LAST_NAME;

Although you create the aliases in the FROM clause, you can use them earlier in the
query, as in the following example:

SELECT e.FIRST_NAME "First",

e.LAST_NAME "Last™,

d.DEPARTMENT_NAME "Dept. Name™

FROM EMPLOYEES e, DEPARTMENTS d

WHERE e.DEPARTMENT_ID = d.DEPARTMENT_ID
ORDER BY d.DEPARTMENT_NAME, e.LAST_NAME;

¢ See Also:

Oracle Database SQL Language Reference for more information about joins

Example 2-12 Selecting Data from Two Tables (Joining Two Tables)

SELECT EMPLOYEES.FIRST_NAME “First",

EMPLOYEES.LAST_NAME "Last",

DEPARTMENTS .DEPARTMENT_NAME "'Dept. Name™

FROM EMPLOYEES, DEPARTMENTS

WHERE EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID
ORDER BY DEPARTMENTS.DEPARTMENT_NAME, EMPLOYEES.LAST_NAME;

Result:

First Last Dept. Name
William Gietz Accounting
Shelley Higgins Accounting
Jennifer Whalen Administration
Lex De Haan Executive
Steven King Executive
Neena Kochhar Executive
John Chen Finance

Jose Manuel Urman Finance

Susan Mavris Human Resources
David Austin IT

Valli Pataballa IT

Pat Fay Marketing
Michael Hartstein Marketing

2-19

Chapter 2
Selecting Table Data

Hermann Baer Public Relations
Shelli Baida Purchasing

Sigal Tobias Purchasing

Ellen Abel Sales

Eleni Zlotkey Sales

Mozhe Atkinson Shipping

Matthew Weiss Shipping

106 rows selected.

2.6.9 Using Operators and Functions in Queries

The select_list of a query can include SQL expressions, which can include SQL
operators and SQL functions. These operators and functions can have table data
as operands and arguments. The SQL expressions are evaluated, and their values
appear in the results of the query.

¢ See Also:

e Oracle Database SQL Language Reference for more information about
SQL operators

e Oracle Database SQL Language Reference for more information about
SQL functions

2.6.9.1 Using Arithmetic Operators in Queries

ORACLE

The basic arithmetic operators—+ (addition), - (subtraction), * (multiplication), and /
(division)—operate on column values.

The query in Example 2-13 displays LAST_NAME, SALARY (monthly pay), and
annual pay for each employee in department 90, in descending order of SALARY.

Example 2-13 Using an Arithmetic Expression in a Query

SELECT LAST_NAME,

SALARY "Monthly Pay",
SALARY * 12 "Annual Pay"
FROM EMPLOYEES

WHERE DEPARTMENT_ID = 90

ORDER BY SALARY DESC;

Result:

LAST_NAME Monthly Pay Annual Pay
King 24000 288000
De Haan 17000 204000
Kochhar 17000 204000

2-20

Chapter 2
Selecting Table Data

2.6.9.2 Using Numeric Functions in Queries

Numeric functions accept numeric input and return numeric values. Each numeric
function returns a single value for each row that is evaluated.

The numeric functions that SQL supports are listed and described in Oracle Database
SQL Language Reference.

The query in Example 2-14 uses the numeric function ROUND to display the daily pay of
each employee in department 100, rounded to the nearest cent.

The query in Example 2-15 uses the numeric function TRUNC to display the daily pay of
each employee in department 100, truncated to the nearest dollar.

¢ See Also:

Oracle Database SQL Language Reference for more information about SQL
numeric functions

Example 2-14 Rounding Numeric Data

SELECT LAST_NAME,
ROUND (((SALARY * 12)/365), 2) "Daily Pay"
FROM EMPLOYEES

WHERE DEPARTMENT ID = 100

ORDER BY LAST NAME;

Result:

LAST_NAME Daily Pay
Chen 269.59
Faviet 295.89
Greenberg 394.52
Popp 226.85
Sciarra 253.15
Urman 256.44

6 rows selected.

Example 2-15 Truncating Numeric Data

SELECT LAST_NAME,
TRUNC ((SALARY * 12)/365) "Daily Pay"
FROM EMPLOYEES

WHERE DEPARTMENT ID = 100

ORDER BY LAST NAME;

Result:

LAST_NAME Daily Pay
Chen 269
Faviet 295
Greenberg 394
Popp 226

ORACLE 2-21

Chapter 2
Selecting Table Data

Sciarra 253
Urman 256

6 rows selected.

2.6.9.3 Using the Concatenation Operator in Queries

The concatenation operator (] |) combines two strings into one string, by appending
the second string to the first. For example, "a®" || *b"="ab". You can use this operator
to combine information from two columns or expressions in the same column of a
query result.

The query in Example 2-16 concatenates the first name, a space, and the last name of
each selected employee.

¢ See Also:

Oracle Database SQL Language Reference for more information about the
concatenation operator

Example 2-16 Concatenating Character Data

SELECT FIRST_NAME || * * || LAST_NAME “Name"
FROM EMPLOYEES

WHERE DEPARTMENT ID = 100

ORDER BY LAST NAME;

Result:

John Chen

Daniel Faviet
Nancy Greenberg
Luis Popp

Ismael Sciarra
Jose Manuel Urman

6 rows selected.

2.6.9.4 Using Character Functions in Queries

ORACLE

Character functions accept character input. Most return character values, but some
return numeric values. Each character function returns a single value for each row that
is evaluated.

The character functions that SQL supports are listed and described in Oracle
Database SQL Language Reference.

The functions UPPER, INITCAP, and LOWER display their character arguments in
uppercase, initial capital, and lowercase, respectively.

The query in Example 2-17 displays LAST_NAME in uppercase, FIRST_NAME with
the first character in uppercase and all others in lowercase, and EMAIL in lowercase.

2-22

Chapter 2
Selecting Table Data

¢ See Also:

Oracle Database SQL Language Reference for more information about SQL
character functions

Example 2-17 Changing the Case of Character Data

SELECT UPPER(LAST_NAME) "Last",
INITCAP(FIRST_NAME) "First",
LOWER(EMAIL) "E-Mail"

FROM EMPLOYEES

WHERE DEPARTMENT_ID = 100
ORDER BY EMAIL;

Result:

Last First E-Mail
FAVIET Daniel dfaviet
SCIARRA Ismael isciarra
CHEN John jchen
URMAN Jose Manuel jmurman
POPP Luis Ipopp
GREENBERG Nancy ngreenbe

6 rows selected.

2.6.9.5 Using Datetime Functions in Queries

ORACLE

Datetime functions operate on DATE, time stamp, and interval values. Each datetime
function returns a single value for each row that is evaluated.

The datetime functions that SQL supports are listed and described in Oracle Database
SQL Language Reference.

For each DATE and time stamp value, Oracle Database stores this information:

* Year

* Month

« Date

* Hour

* Minute
* Second

For each time stamp value, Oracle Database also stores the fractional part of the
second, whose precision you can specify. To store the time zone also, use the
data type TIMESTAMP WITH TIME ZONE or TIMESTAMP WITH LOCAL TIME
ZONE.

For more information about the DATE data type, see Oracle Database SQL Language
Reference.

For more information about the TIMESTAMP data type, see Oracle Database SQL
Language Reference.

2-23

ORACLE

Chapter 2
Selecting Table Data

For information about the other time stamp data types and the interval data types, see
Oracle Database SQL Language Reference.

The query in Example 2-18 uses the EXTRACT and SYSDATE functions to show how
many years each employee in department 100 has been employed. The SYSDATE
function returns the current date of the system clock as a DATE value. For more
information about the SYSDATE function, see Oracle Database SQL Language
Reference. For information about the EXTRACT function, see Oracle Database SQL
Language Reference.

The query in Example 2-19 uses the SYSTIMESTAMP function to display the current
system date and time. The SYSTIMESTAMP function returns a TIMESTAMP value.
For information about the SYSTIMESTAMP function, see Oracle Database SQL
Language Reference.

The table in the FROM clause of the query, DUAL, is a one-row table that Oracle
Database creates automatically along with the data dictionary. Select from DUAL when
you want to compute a constant expression with the SELECT statement. Because
DUAL has only one row, the constant is returned only once. For more information
about selecting from DUAL, see Oracle Database SQL Language Reference.

See Also:

Oracle Database SQL Language Reference for more information about SQL
datetime functions

Example 2-18 Displaying the Number of Years Between Dates

SELECT LAST_NAME,

(EXTRACT(YEAR FROM SYSDATE) - EXTRACT(YEAR FROM HIRE_DATE)) "Years Employed"
FROM EMPLOYEES

WHERE DEPARTMENT_ID = 100

ORDER BY "Years Employed";

Result:

LAST_NAME Years Employed

5
6
7
Sciarra 7
Greenberg 0
Faviet 0

6 rows selected.

Example 2-19 Displaying System Date and Time

SELECT EXTRACT(HOUR FROM SYSTIMESTAMPY |1 ":* |1
EXTRACT(MINUTE FROM SYSTIMESTAMP) || “:* ||
ROUND(EXTRACT(SECOND FROM SYSTIMESTAMP), 0) || =, * I
EXTRACT(MONTH FROM SYSTIMESTAMP) |1 “/* |1

EXTRACT(DAY FROM SYSTIMESTAMP) || */" ||

EXTRACT(YEAR FROM SYSTIMESTAMP) “System Time and Date"
FROM DUAL;

2-24

Chapter 2
Selecting Table Data

Results depend on current SYSTIMESTAMP value, but have this format:

System Time and Date

18:17:53, 12/27/2012

2.6.9.6 Using Conversion Functions in Queries

ORACLE

Conversion functions convert one data type to another.

The conversion functions that SQL supports are listed and described in Oracle
Database SQL Language Reference.

The query in Example 2-20 uses the TO_CHAR function to convert HIRE_DATE
values (which are of type DATE) to character values that have the format FMMonth DD
YYYY . FM removes leading and trailing blanks from the month name. FMMonth DD YYYY
is an example of a datetime format model. For information about datetime format
models, see Oracle Database SQL Language Reference.

The query in Example 2-21 uses the TO_NUMBER function to convert
POSTAL_CODE values (which are of type VARCHARZ2) to values of type NUMBER,
which it uses in calculations.

¢ See Also:

e Oracle Database SQL Language Reference for more information about
SQL conversion functions

e "About the NLS DATE_FORMAT Parameter"”

Example 2-20 Converting Dates to Characters Using a Format Template

SELECT LAST_NAME,

HIRE_DATE,

TO_CHAR(HIRE_DATE, “FMMonth DD YYYY") "Date Started"
FROM EMPLOYEES

WHERE DEPARTMENT_ID = 100

ORDER BY LAST_NAME;

Result:

LAST_NAME HIRE_DATE Date Started

Chen 28-SEP-05 September 28 2005
Faviet 16-AUG-02 August 16 2002
Greenberg 17-AUG-02 August 17 2002
Popp 07-DEC-07 December 7 2007
Sciarra 30-SEP-05 September 30 2005
Urman 07-MAR-06 March 7 2006

6 rows selected.

Example 2-21 Converting Characters to Numbers

SELECT CITY,
POSTAL_CODE "Old Code",
TO_NUMBER(POSTAL_CODE) + 1 “New Code"

2-25

Chapter 2
Selecting Table Data

FROM LOCATIONS
WHERE COUNTRY_ID = "US*
ORDER BY POSTAL_CODE;

Result:

CITY 0ld Code New Code
Southlake 26192 26193
South Brunswick 50090 50091
Seattle 98199 98200
South San Francisco 99236 99237

4 rows selected.

2.6.9.7 Using Aggregate Functions in Queries

ORACLE

An aggregate function takes a group of rows and returns a single result row. The group
of rows can be an entire table or view.

The aggregate functions that SQL supports are listed and described in Oracle
Database SQL Language Reference.

Aggregate functions are especially powerful when used with the GROUP BY clause,
which groups query results by one or more columns, with a result for each group.

The query in Example 2-22 uses the COUNT function and the GROUP BY clause to
show how many people report to each manager. The wildcard character, *, represents
an entire record.

Example 2-22 shows that one employee does not report to a manager. The following
guery selects the first name, last name, and job title of that employee:

COLUMN FIRST_NAME FORMAT A10;
COLUMN LAST_NAME FORMAT A10;
COLUMN JOB_TITLE FORMAT A10;

SELECT e.FIRST_NAME,
e.LAST_NAME,

j.JOB_TITLE

FROM EMPLOYEES e, JOBS j
WHERE e.JOB_ID = j.JOB_ID
AND MANAGER_ID 1S NULL;

Result:

FIRST_NAME LAST_NAME JOB_TITLE

Steven King President

To have the query return only rows where aggregate values meet specified conditions,
use an aggregate function in the HAVING clause of the query.

The query in Example 2-23 shows how much each department spends annually on
salaries, but only for departments for which that amount exceeds $1,000,000.

The query in Example 2-24 uses several aggregate functions to show statistics for the
salaries of each JOB_ID.

2-26

Chapter 2
Selecting Table Data

¢ See Also:

Oracle Database SQL Language Reference for more information about SQL
aggregate functions

Example 2-22 Counting the Number of Rows in Each Group

SELECT MANAGER_ID **Manager",
COUNT(*) "Number of Reports"
FROM EMPLOYEES

GROUP BY MANAGER_ID

ORDER BY MANAGER_ID;

Result:

Manager Number of Reports

[EnY
N
w

PP P OOOOOBDOWOOoOOoOoOo ohsEFob

19 rows selected.

Example 2-23 Limiting Aggregate Functions to Rows that Satisfy a Condition

SELECT DEPARTMENT_ID "Department",
SUM(SALARY*12) "All Salaries"

FROM EMPLOYEES

HAVING SUM(SALARY * 12) >= 1000000
GROUP BY DEPARTMENT_ID;

Result:

Department All Salaries

50 1876800
80 3654000

Example 2-24 Using Aggregate Functions for Statistical Information
SELECT JOB_ID,

COUNT(*) "#",
MIN(SALARY) "Minimum",

ORACLE 2-27

ORACLE

Chapter 2
Selecting Table Data

ROUND(AVG(SALARY), 0) “Average",
MEDIAN(SALARY) "Median,
MAX(SALARY) "Maximum",
ROUND(STDDEV(SALARY)) "'Std Dev"
FROM EMPLOYEES

GROUP BY JOB_ID

ORDER BY JOB_ID;

Result:

AC_ACCOUNT
AC_MGR
AD_ASST
AD_PRES
AD_VP
FI_ACCOUNT
FI_MGR
HR_REP
IT_PROG
MK_MAN
MK_REP
PR_REP
PU_CLERK
PU_MAN
SA_MAN
SA_REP
SH_CLERK
ST_CLERK
ST_MAN

Minimum Average Median Max imum Std Dev
1 8300 8300 8300 8300 0
1 12008 12008 12008 12008 0
1 4400 4400 4400 4400 0
1 24000 24000 24000 24000 0
2 17000 17000 17000 17000 0
5 6900 7920 7800 9000 766
1 12008 12008 12008 12008 0
1 6500 6500 6500 6500 0
5 4200 5760 4800 9000 1926
1 13000 13000 13000 13000 0
1 6000 6000 6000 6000 0
1 10000 10000 10000 10000 0
5 2500 2780 2800 3100 239
1 11000 11000 11000 11000 0
5 10500 12200 12000 14000 1525
30 6100 8350 8200 11500 1524
20 2500 3215 3100 4200 548
20 2100 2785 2700 3600 453
5 5800 7280 7900 8200 1066

19 rows selected.

2.6.9.8 Using NULL-Related Functions in Queries

The NULL-
The NULL-

related functions facilitate the handling of NULL values.

related functions that SQL supports are listed and described in Oracle

Database SQL Language Reference.

The query in Example 2-25 returns the last name and commission of the employees

whose last

names begin with 'B'. If an employee receives no commission (that is, if

COMMISSION_PCT is NULL), the NVL function substitutes "Not Applicable" for NULL.

The query in Example 2-26 returns the last name, salary, and income of

the employees whose last names begin with 'B', using the NVL2 function: If
COMMISSION_PCT is not NULL, the income is the salary plus the commission; if
COMMISSION_PCT is NULL, income is only the salary.

¢ See Also:

Oracle Database SQL Language Reference for more information about
the NVL function

Oracle Database SQL Language Reference for more information about
the NVL2 function

2-28

Chapter 2
Selecting Table Data

Example 2-25 Substituting a String for a NULL Value

SELECT LAST_NAME,

NVL(TO_CHAR(COMMISSION_PCT), *Not Applicable™) "COMMISSION"
FROM EMPLOYEES

WHERE LAST_NAME LIKE "B%"

ORDER BY LAST NAME;

Result:

LAST_NAME COMMISSION
Baer Not Applicable
Baida Not Applicable
Banda .1

Bates .15

Bell Not Applicable
Bernstein .25

Bissot Not Applicable
Bloom .2

Bull Not Applicable

9 rows selected.

Example 2-26 Specifying Different Expressions for NULL and Not NULL Values

SELECT LAST_NAME, SALARY,

NVL2(COMMISSION_PCT, SALARY + (SALARY * COMMISSION_PCT), SALARY) INCOME
FROM EMPLOYEES WHERE LAST_NAME LIKE "B%"

ORDER BY LAST_NAME;

Result:

LAST_NAME SALARY INCOME
Baer 10000 10000
Baida 2900 2900
Banda 6200 6820
Bates 7300 8395
Bell 4000 4000
Bernstein 9500 11875
Bissot 3300 3300
Bloom 10000 12000
Bull 4100 4100

9 rows selected.

2.6.9.9 Using CASE Expressions in Queries

A CASE expression lets you use IF ... THEN ... ELSE logic in SQL statements
without invoking subprograms. There are two kinds of CASE expressions, simple and
searched.

The query in Example 2-27 uses a simple CASE expression to show the country name
for each country code.

The query in Example 2-28 uses a searched CASE expression to show proposed
salary increases (15%, 10%, 5%, or 0%), based on date ranges associated with length
of service.

ORACLE 2-29

ORACLE

Chapter 2
Selecting Table Data

¢ See Also:

e Oracle Database SQL Language Reference for more information about
CASE expressions

e Oracle Database PL/SQL Language Reference for more information
about CASE expressions

e "Using the DECODE Function in Queries"
e "Using the CASE Statement"

Example 2-27 Using a Simple CASE Expression in a Query

SELECT UNIQUE COUNTRY_ID 1ID,
CASE COUNTRY_ID
WHEN "AU®" THEN "Australia®
WHEN "BR" THEN "Brazil*
WHEN "CA®" THEN "Canada“”
WHEN "CH" THEN "Switzerland®
WHEN "CN® THEN "China®
WHEN "DE" THEN "Germany®
WHEN "IN® THEN "India®
WHEN "IT" THEN "ltaly"
WHEN *JP*" THEN "Japan®
WHEN *MX®" THEN “Mexico"
WHEN *NL® THEN “Netherlands®
WHEN "SG*" THEN "Singapore”®
WHEN "UK® THEN "United Kingdom®
WHEN "US®" THEN "United States”
ELSE "Unknown*
END COUNTRY
FROM LOCATIONS
ORDER BY COUNTRY_ID;

Result:

ID COUNTRY

AU Australia

BR Brazil

CA Canada

CH Switzerland
CN China

DE Germany

IN India

1T Italy

JP Japan

MX Mexico

NL Netherlands
SG Singapore

UK United Kingdom
US United States

14 rows selected.

2-30

Chapter 2
Selecting Table Data

Example 2-28 Using a Searched CASE Expression in a Query

SELECT LAST_NAME *'Name",
HIRE_DATE "Started",
SALARY "Salary",
CASE
WHEN HIRE_DATE < TO_DATE("01-Jan-03", "dd-mon-yy")
THEN TRUNC(SALARY*1.15, 0)
WHEN HIRE_DATE >= TO_DATE("01-Jan-03", "dd-mon-yy") AND
HIRE_DATE < TO_DATE("01-Jan-06", "dd-mon-yy")
THEN TRUNC(SALARY*1.10, 0)
WHEN HIRE_DATE >= TO_DATE("01-Jan-06", "dd-mon-yy") AND
HIRE_DATE < TO_DATE("01-Jan-07", "dd-mon-yy")
THEN TRUNC(SALARY*1.05, 0)
ELSE SALARY
END "Proposed Salary"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 100
ORDER BY HIRE_DATE;

Result:

Name Started Salary Proposed Salary
Faviet 16-AUG-02 9000 10350
Greenberg 17-AUG-02 12008 13809
Chen 28-SEP-05 8200 9020
Sciarra 30-SEP-05 7700 8470
Urman 07-MAR-06 7800 8190
Popp 07-DEC-07 6900 6900

6 rows selected.

2.6.9.10 Using the DECODE Function in Queries

The DECODE function compares an expression to several search values. Whenever
the value of the expression matches a search value, DECODE returns the result
associated with that search value. If DECODE finds no match, then it returns the
default value (if specified) or NULL (if no default value is specified).

The query in Example 2-29 uses the DECODE function to show proposed salary
increases for three different jobs. The expression is JOB_ID; the search values are
'PU_CLERK', 'SH_CLERK', and 'ST_CLERK'"; and the default is SALARY.

Note:

The arguments of the DECODE function can be any of the SQL numeric

or character types. Oracle automatically converts the expression and each
search value to the data type of the first search value before comparing.
Oracle automatically converts the return value to the same data type as the
first result. If the first result has the data type CHAR or if the first result is
NULL, then Oracle converts the return value to the data type VARCHAR?2.

ORACLE 2-31

ORACLE

¢ See Also:

Example 2-29 Using the DECODE Function in a Query

SELECT LAST_NAME, JOB_ID, SALARY,

DECODE(JOB_ID,

"PU_CLERK", SALARY * 1.10,
"SH_CLERK®", SALARY * 1.15,
"ST_CLERK", SALARY * 1.20,
SALARY) "Proposed Salary"

FROM EMPLOYEES

WHERE JOB_ID LIKE "%_CLERK"

AND LAST_NAME < "E*
ORDER BY LAST_NAME;

Result:

LAST_NAME

Atkinson
Baida
Bell
Bissot
Bull
Cabrio
Chung
Colmenares
Davies
Dellinger
Dilly

11 rows selected.

ST_CLERK
PU_CLERK
SH_CLERK
ST_CLERK
SH_CLERK
SH_CLERK
SH_CLERK
PU_CLERK
ST_CLERK
SH_CLERK
SH_CLERK

e "Using CASE Expressions in Queries"

SALARY Proposed Salary

Chapter 2
Selecting Table Data

e Oracle Database SQL Language Reference for information about the
DECODE function

2-32

About DML Statements and Transactions

Data manipulation language (DML) statements add, change, and delete Oracle
Database table data. A transaction is a sequence of one or more SQL statements
that Oracle Database treats as a unit: either all of the statements are performed, or
none of them are.

3.1 About Data Manipulation Language (DML) Statements

Data manipulation language (DML) statements access and manipulate data in
existing tables.

In the SQL*Plus environment, you can enter a DML statement after the SQL> prompt.

In the SQL Developer environment, you can enter a DML statement in the Worksheet.
Alternatively, you can use the SQL Developer Connections frame and tools to access
and manipulate data.

To see the effect of a DML statement in SQL Developer, you might have to select the
schema object type of the changed object in the Connections frame and then click the
Refresh icon.

The effect of a DML statement is not permanent until you commit the transaction that
includes it. A transaction is a sequence of SQL statements that Oracle Database
treats as a unit (it can be a single DML statement). Until a transaction is committed,
it can be rolled back (undone). For more information about transactions, see "About
Transaction Control Statements".

" See Also:

Oracle Database SQL Language Reference for more information about DML
statements

3.1.1 About the INSERT Statement

ORACLE

The INSERT statement inserts rows into an existing table.
The simplest recommended form of the INSERT statement has this syntax:

INSERT INTO tabl e_name (list_of _col ums)
VALUES (list_of values);

Every column in list_of _columns must have a valid value in the corresponding position
in list_of values. Therefore, before you insert a row into a table, you must know

what columns the table has, and what their valid values are. To get this information
using SQL Developer, see "Tutorial: Viewing EMPLOYEES Table Properties and Data
with SQL Developer". To get this information using SQL*Plus, use the DESCRIBE
statement. For example:

3-1

ORACLE

DESCRIBE EMPLOYEES;

Result:

Chapter 3

About Data Manipulation Language (DML) Statements

EMPLOYEE_ID
FIRST_NAME
LAST_NAME
EMAIL
PHONE_NUMBER
HIRE_DATE
JOB_ID

SALARY
COMMISSION_PCT
MANAGER_ID
DEPARTMENT _ID

NOT NULL

NOT NULL
NOT NULL

NOT NULL
NOT NULL

NUMBER(6)
VARCHAR2 (20)
VARCHAR2(25)
VARCHAR2(25)
VARCHAR2(20)
DATE
VARCHAR2(10)
NUMBER(8,2)
NUMBER(2,2)
NUMBER(6)
NUMBER(4)

The INSERT statement in Example 3-1 inserts a row into the EMPLOYEES table for
an employee for which all column values are known.

You need not know all column values to insert a row into a table, but you must know
the values of all NOT NULL columns. If you do not know the value of a column that
can be NULL, you can omit that column from list_of columns. Its value defaults to

NULL.

The INSERT statement in Example 3-2 inserts a row into the EMPLOYEES table
for an employee for which all column values are known except SALARY. For now,
SALARY can have the value NULL. When you know the salary, you can change it with
the UPDATE statement (see Example 3-4).

The INSERT statement in Example 3-3 tries to insert a row into the EMPLOYEES
table for an employee for which LAST_NAME is not known.

Example 3-1 Using the INSERT Statement When All Information Is Available

INSERT INTO EMPLOYEES (

EMPLOYEE_ID,
FIRST_NAME,
LAST_NAME,
EMAIL,
PHONE_NUMBER,
HIRE_DATE,
JOB_ID,

SALARY,
COMMISSION_PCT,
MANAGER_ID,
DEPARTMENT _ID

)

VALUES (
10,
"George*,
"Gordon*,
"GGORDON",
"650.506.2222",
"01-JAN-07",
"SA REP",
9000,
.1,
148,

EMPLOYEE_ID
FIRST_NAME
LAST_NAME
EMAIL
PHONE_NUMBER
HIRE_DATE
JOB_ID

SALARY
COMMISSION_PCT
MANAGER_ID

3-2

ORACLE

);

80

Result:

1

row created.

-- DEPARTMENT_ID

Chapter 3
About Data Manipulation Language (DML) Statements

Example 3-2 Using the INSERT Statement When Not All Information Is
Available

INSERT INTO EMPLOYEES (

)

EMPLOYEE_ID,
FIRST_NAVME,
LAST_NAME,
EMAIL,
PHONE_NUMBER,
HIRE_DATE,
JOB_ID,
COMMISSION_PCT,
MANAGER_ID,
DEPARTMENT _ID

VALUES (

);

20,

*John",
"Keats",
"JKEATS",
"650.506.3333",
"01-JAN-07",
"SA_REP*®,

.1,

148,

80

Result:

1

row created.

Omit SALARY; its value defaults to NULL.

EMPLOYEE_ID
FIRST_NAME
LAST_NAME
EMAIL
PHONE_NUMBER
HIRE_DATE
JOB_ID
COMMISSION_PCT
MANAGER_ID
DEPARTMENT__ID

Example 3-3 Using the INSERT Statement Incorrectly

INSERT INTO EMPLOYEES (

)

EMPLOYEE_ID,
FIRST_NAME,
EMAIL,
PHONE_NUMBER,
HIRE_DATE,
JOB_ID,
COMMISSION_PCT,
MANAGER_ID,
DEPARTMENT _ID

VALUES (

20,

John,

"JOHN",
"650.506.3333",
"01-JAN-07",
*SA_REP",

.1,

148,

EMPLOYEE_ID
FIRST_NAME
EMAIL
PHONE_NUMBER
HIRE_DATE
JOB_ID
COMMISSION_PCT
MANAGER_I1D

-— Omit LAST_NAME (error)

3-3

Chapter 3
About Data Manipulation Language (DML) Statements

80 —— DEPARTMENT_ID
);

Result:

ORA-01400: cannot insert NULL into (“HR™."EMPLOYEES"."LAST_NAME™)

¢ See Also:

e Oracle Database SQL Language Reference for information about the
INSERT statement

e Oracle Database SQL Language Reference for information about data
types

e "Tutorial: Adding Rows to Tables with the Insert Row Tool"

3.1.2 About the UPDATE Statement

ORACLE

The UPDATE statement updates (changes the values of) a set of existing table rows.
A simple form of the UPDATE statement has this syntax:

UPDATE t abl e_nane
SET col um_nanme = value [, colum_nanme = val ue]...
[WHERE condition 1;

Each value must be valid for its column_name. If you include the WHERE clause, the
statement updates column values only in rows that satisfy condition.

The UPDATE statement in Example 3-4 updates the value of the SALARY column
in the row that was inserted into the EMPLOYEES table in Example 3-2, before the
salary of the employee was known.

The UPDATE statement in Example 3-5 updates the commission percentage for every
employee in department 80.

Example 3-4 Using the UPDATE Statement to Add Data

UPDATE EMPLOYEES
SET SALARY = 8500
WHERE LAST_NAME = "Keats";

Result:

1 row updated.

Example 3-5 Using the UPDATE Statement to Update Multiple Rows

UPDATE EMPLOYEES
SET COMMISSION_PCT = COMMISSION_PCT + 0.05
WHERE DEPARTMENT_ID = 80;

Result:

34 rows updated.

3-4

Chapter 3
About Transaction Control Statements

¢ See Also:

e Oracle Database SQL Language Reference for information about the
UPDATE statement

e Oracle Database SQL Language Reference for information about data
types

e "Tutorial: Changing Data in Tables in the Data Pane"

3.1.3 About the DELETE Statement

The DELETE statement deletes rows from a table.
A simple form of the DELETE statement has this syntax:

DELETE FROM tabl e_nane [WHERE condition];

If you include the WHERE clause, the statement deletes only rows that satisfy
condition. If you omit the WHERE clause, the statement deletes all rows from the
table, but the empty table still exists. To delete a table, use the DROP TABLE
statement.

The DELETE statement in Example 3-6 deletes the rows inserted in Example 3-1 and
Example 3-2.

Example 3-6 Using the DELETE Statement

DELETE FROM EMPLOYEES
WHERE HIRE_DATE = TO_DATE("01-JAN-07", "dd-mon-yy");

Result:

2 rows deleted.

¢ See Also:

e Oracle Database SQL Language Reference for information about the
DELETE statement

e Oracle Database SQL Language Reference for information about the
DROP TABLE statement

e "Tutorial: Deleting Rows from Tables with the Delete Selected Row(s)
Tool"

3.2 About Transaction Control Statements

ORACLE

A transaction is a sequence of one or more SQL statements that Oracle Database
treats as a unit: either all of the statements are performed, or none of them are. You
need transactions to model business processes that require that several operations be
performed as a unit.

3-5

Chapter 3
Committing Transactions

For example, when a manager leaves the company, a row must be inserted into
the JOB_HISTORY table to show when the manager left, and for every employee
who reports to that manager, the value of MANAGER_ID must be updated in the
EMPLOYEES table. To model this process in an application, you must group the
INSERT and UPDATE statements into a single transaction.

The basic transaction control statements are:

e SAVEPOINT, which marks a savepoint in a transaction—a point to which you
can later roll back. Savepoints are optional, and a transaction can have multiple
savepoints.

e« COMMIT, which ends the current transaction, makes its changes permanent,
erases its savepoints, and releases its locks.

¢ ROLLBACK, which rolls back (undoes) either the entire current transaction or only
the changes made after the specified savepoint.

In the SQL*Plus environment, you can enter a transaction control statement after the
SQL> prompt.

In the SQL Developer environment, you can enter a transaction control statement

in the Worksheet. SQL Developer also has Commit Changes and Rollback
Changes icons, which are explained in "Committing Transactions" and "Rolling Back
Transactions".

Caution:

If you do not explicitly commit a transaction, and the program terminates
abnormally, then the database automatically rolls back the last uncommitted
transaction.

Oracle recommends that you explicitly end transactions in application
programs, by either committing them or rolling them back.

¢ See Also:

e Oracle Database Concepts for more information about transaction
management

e Oracle Database SQL Language Reference for more information about
transaction control statements

3.3 Committing Transactions

ORACLE

Committing a transaction makes its changes permanent, erases its savepoints, and
releases its locks.

To explicitly commit a transaction, use either the COMMIT statement or (in the SQL
Developer environment) the Commit Changes icon.

3-6

ORACLE

Chapter 3
Committing Transactions

< Note:

Oracle Database issues an implicit COMMIT statement before and after
any data definition language (DDL) statement. For information about DDL
statements, see "About Data Definition Language (DDL) Statements".

Before you commit a transaction:
* Your changes are visible to you, but not to other users of the database instance.
* Your changes are not final—you can undo them with a ROLLBACK statement.

After you commit a transaction:

* Your changes are visible to other users, and to their statements that run after you
commit your transaction.

* Your changes are final—you cannot undo them with a ROLLBACK statement.

Example 3-7 adds one row to the REGIONS table (a very simple transaction), checks
the result, and then commits the transaction.

Example 3-7 Committing a Transaction
Before transaction:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

REGION_ID REGION_NAME

1 Europe

2 Americas

3 Asia

4 Middle East and Africa

4 rows selected.

Transaction (add row to table):

INSERT INTO regions (region_id, region_name) VALUES (5, "Africa");

Result:

1 row created.

Check that row was added:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

REGION_ID REGION_NAME

1 Europe
2 Americas
3 Asia

3-7

Chapter 3
Rolling Back Transactions

4 Middle East and Africa
5 Africa

5 rows selected.

Commit transaction:

COMMIT;

Result:

Commit complete.

¢ See Also:

Oracle Database SQL Language Reference for information about the
COMMIT statement

3.4 Rolling Back Transactions

Rolling back a transaction undoes its changes. You can roll back the entire current
transaction, or you can roll it back only to a specified savepoint.

ORACLE

To roll back the current transaction only to a specified savepoint, you must use the
ROLLBACK statement with the TO SAVEPOINT clause.

To roll back the entire current transaction, use either the ROLLBACK statement
without the TO SAVEPOINT clause, or (in the SQL Developer environment) the
Rollback Changes icon.

Rolling back the entire current transaction:

Ends the transaction
Reverses all of its changes
Erases all of its savepoints

Releases any transaction locks

Rolling back the current transaction only to the specified savepoint:

Does not end the transaction
Reverses only the changes made after the specified savepoint

Erases only the savepoints set after the specified savepoint (excluding the
specified savepoint itself)

Releases all table and row locks acquired after the specified savepoint

Other transactions that have requested access to rows locked after the specified
savepoint must continue to wait until the transaction is either committed or rolled
back. Other transactions that have not requested the rows can request and access
the rows immediately.

To see the effect of a rollback in SQL Developer, you might have to click the Refresh
icon.

3-8

ORACLE

Chapter 3
Rolling Back Transactions

As a result of Example 3-7, the REGIONS table has a region called 'Middle East and
Africa' and a region called 'Africa’. Example 3-8 corrects this problem (a very simple
transaction) and checks the change, but then rolls back the transaction and checks the
rollback.

Example 3-8 Rolling Back an Entire Transaction

Before transaction:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

REGION_ID REGION_NAME

1 Europe

2 Americas

3 Asia

4 Middle East and Africa
5 Africa

5 rows selected.

Transaction (change table):

UPDATE REGIONS
SET REGION_NAME = “Middle East"
WHERE REGION_NAME = "Middle East and Africa";

Result:

1 row updated.

Check change:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

REGION_ID REGION_NAME

1 Europe

2 Americas

3 Asia

4 Middle East
5 Africa

5 rows selected.

Roll back transaction:

ROLLBACK;

Result:

Rollback complete.

Check rollback:

3-9

Chapter 3
Setting Savepoints in Transactions

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

REGION_ID REGION_NAME

1 Europe

2 Americas

3 Asia

4 Middle East and Africa
5 Africa

5 rows selected.

¢ See Also:

Oracle Database SQL Language Reference for information about the
ROLLBACK statement

3.5 Setting Savepoints in Transactions

The SAVEPOINT statement marks a savepoint in a transaction—a point to which
you can later roll back. Savepoints are optional, and a transaction can have multiple
savepoints.

Example 3-9 does a transaction that includes several DML statements and several
savepoints, and then rolls back the transaction to one savepoint, undoing only the
changes made after that savepoint.

Example 3-9 Rolling Back a Transaction to a Savepoint
Check REGIONS table before transaction:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

REGION_ID REGION_NAME
1 Europe
2 Americas
3 Asia
4 Middle East and Africa
5 Africa

5 rows selected.

Check countries in region 4 before transaction:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES

WHERE REGION_ID = 4

ORDER BY COUNTRY_NAME;

Result:

ORACLE 3-10

ORACLE

COUNTRY_NAME CO REGION_ID
Egypt EG 4
Israel IL 4
Kuwait KW 4
Nigeria NG 4
Zambia M 4
Zimbabwe W 4

6 rows selected.

Check countries in region 5 before transaction:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES

WHERE REGION_ID = 5

ORDER BY COUNTRY_NAME;

Result:

no rows selected

Transaction, with several savepoints:

UPDATE REGIONS
SET REGION_NAME = "Middle East”

WHERE REGION_NAME = “"Middle East and Africa“;

UPDATE COUNTRIES

SET REGION_ID = 5

WHERE COUNTRY_ID = "ZM*";
SAVEPOINT zambia;

UPDATE COUNTRIES

SET REGION_ID = 5

WHERE COUNTRY_ID = "NG";
SAVEPOINT nigeria;

UPDATE COUNTRIES

SET REGION_ID = 5

WHERE COUNTRY_ID = "ZW*";
SAVEPOINT zimbabwe;

UPDATE COUNTRIES
SET REGION_ID = 5
WHERE COUNTRY_ID = "EG";
SAVEPOINT egypt;

Check REGIONS table after transaction:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

REGION_ID REGION_NAME
1 Europe
2 Americas
3 Asia
4 Middle East
5 Africa

Chapter 3
Setting Savepoints in Transactions

3-11

Chapter 3
Setting Savepoints in Transactions

5 rows selected.

Check countries in region 4 after transaction:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES

WHERE REGION_ID = 4

ORDER BY COUNTRY_NAME;

Result:

COUNTRY_NAME CO REGION_ID
Israel IL 4
Kuwait KW 4

2 rows selected.

Check countries in region 5 after transaction:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES

WHERE REGION_ID = 5

ORDER BY COUNTRY_NAME;

Result:

COUNTRY_NAME CO REGION_ID
Egypt EG 5
Nigeria NG 5
Zambia M 5
Zimbabwe ZW 5

4 rows selected.
ROLLBACK TO SAVEPOINT nigeria;

Check REGIONS table after rollback:

SELECT * FROM REGIONS
ORDER BY REGION_ID;

Result:

REGION_ID REGION_NAME
1 Europe
2 Americas
3 Asia
4 Middle East
5 Africa

5 rows selected.

Check countries in region 4 after rollback:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES

WHERE REGION_ID = 4

ORDER BY COUNTRY_NAME;

ORACLE 3-12

ORACLE

Chapter 3
Setting Savepoints in Transactions

Result:

COUNTRY_NAME CO REGION_ID
Egypt EG 4
Israel IL 4
Kuwait KW 4
Zimbabwe ZW 4

4 rows selected.

Check countries in region 5 after rollback:

SELECT COUNTRY_NAME, COUNTRY_ID, REGION_ID
FROM COUNTRIES

WHERE REGION_ID = 5

ORDER BY COUNTRY_NAME;

Result:

COUNTRY_NAME CO REGION_ID
Nigeria NG 5
Zambia M 5

2 rows selected.

¢ See Also:

Oracle Database SQL Language Reference for information about the
SAVEPOINT statement

3-13

Creating and Managing Schema Objects

To create, change, and drop schema objects, you use data definition language (DDL)
statements.

4.1 About Data Definition Language (DDL) Statements

Data definition language (DDL) statements create, change, and drop schema
objects. Before and after a DDL statement, Oracle Database issues an implicit
COMMIT statement; therefore, you cannot roll back a DDL statement.

" Note:

When creating schema objects, you must observe the schema object naming
rules in Oracle Database SQL Language Reference.

In the SQL*Plus environment, you can enter a DDL statement after the SQL> prompt.

In the SQL Developer environment, you can enter a DDL statement in the Worksheet.
Alternatively, you can use SQL Developer tools to create, change, and drop objects.

Some DDL statements that create schema objects have an optional OR REPLACE
clause, which allows a statement to replace an existing schema object with another
that has the same name and type. When SQL Developer generates code for one of
these statements, it always includes the OR REPLACE clause.

To see the effect of a DDL statement in SQL Developer, you might have to select the
schema object type of the newly created object in the Connections frame and then
click the Refresh icon.

See Also:

e Oracle Database SQL Language Reference for more information about
DDL statements

e "Committing Transactions"

4.2 Creating and Managing Tables

Tables are the basic units of data storage in Oracle Database. Tables hold all user-
accessible data. Each table contains rows that represent individual data records. Rows
are composed of columns that represent the fields of the records.

ORACLE 4-1

Chapter 4
Creating and Managing Tables

< Note:

To do the tutorials in this document, you must be connected to Oracle
Database as the user HR from SQL Developer.

¢ See Also:

e "Tutorial: Viewing EMPLOYEES Table Properties and Data with SQL
Developer"

e Oracle SQL Developer User's Guide for a SQL Developer tutorial that
includes creating and populating tables

e Oracle Database Concepts for general information about tables

4.2.1 About SQL Data Types

When you create a table, you must specify the SQL data type for each column, which
determines what values the column can contain.

For example, a column of type DATE can contain the value "01-MAY-05", but it cannot
contain the numeric value 2 or the character value 'shoe'. SQL data types fall into two
categories: built-in and user-defined. (PL/SQL has additional data types—see "About

PL/SQL Data Types".)

¢ See Also:

e Oracle Database SQL Language Reference for a summary of built-in
SQL data types

e Oracle Database Concepts for introductions to each of the built-in SQL
data types

e Oracle Database SQL Language Reference for more information about
user-defined data types

e "About PL/SQL Data Types"

4.2.2 Creating Tables

ORACLE

To create tables, use either the SQL Developer tool Create Table or the DDL
statement CREATE TABLE.

This section shows how to use both of these ways to create these tables, which will
contain data about employee evaluations:

» PERFORMANCE_PARTS, which contains the categories of employee
performance that are evaluated and their relative weights

4-2

Chapter 4
Creating and Managing Tables

EVALUATIONS, which contains employee information, evaluation date, job,
manager, and department

SCORES, which contains the scores assigned to each performance category for
each evaluation

These tables appear in many tutorials and examples in this document.

4.2.2.1 Tutorial: Creating a Table with the Create Table Tool

This tutorial shows how to create the PERFORMANCE_PARTS table using the SQL
Developer tool Create Table.

To create the PERFORMANCE_PARTS table using the Create Table tool:

1.
2.
3.

10.
11.
12.
13.
14.

ORACLE

In the Connections frame, expand hr_conn.
In the list of schema object types, right-click Tables.
In the list of choices, click New Table.

The Create Table window opens, with default values for a new table, which has
only one row.

For Schema, accept the default value, HR.

For Name, enter PERFORMANCE_ PARTS.

In the default row:

* For PK (primary key), accept the default option, deselected.
e For Column Name, enter PERFORMANCE__ID.

* For Type, accept the default value, VARCHAR2.

* For Size, enter 2.

e For Not Null, accept the default option, deselected.
Click Add Column.

For Column Name, enter NAME.

For Type, accept the default value, VARCHAR?2.

For Size, enter 80.

Click Add Column.

For Column Name, enter WEIGHT.

For Type, select NUMBER from the menu.

Click OK.

The table PERFORMANCE_PARTS is created. Its name appears under Tables in the
Connections frame.

To see the CREATE TABLE statement for creating this table, select
PERFORMANCE_PARTS and click the tab SQL.

4-3

Chapter 4
Creating and Managing Tables

¢ See Also:

Oracle SQL Developer User's Guide for more information about using SQL
Developer to create tables

4.2.2.2 Creating Tables with the CREATE TABLE Statement

This section shows how to use the CREATE TABLE statement to create the
EVALUATIONS and SCORES tables.

The CREATE TABLE statement in Example 4-1 creates the EVALUATIONS table.
The CREATE TABLE statement in Example 4-2 creates the SCORES table.

In SQL Developer, in the Connections frame, if you expand Tables, you can see the
tables EVALUATIONS and SCORES.

Example 4-1 Creating the EVALUATIONS Table with CREATE TABLE

CREATE TABLE EVALUATIONS (
EVALUATION_ID NUMBER(8,0),

EMPLOYEE_ID NUMBER(6,0),
EVALUATION _DATE DATE,
JOB_ID VARCHAR2(10),
MANAGER_ 1D NUMBER(6,0),
DEPARTMENT _ID NUMBER(4,0),
TOTAL_SCORE NUMBER(3,0)
);
Result:

Table created.

Example 4-2 Creating the SCORES Table with CREATE TABLE

CREATE TABLE SCORES (

EVALUATION_ID NUMBER(S8,0),
PERFORMANCE_ID VARCHAR2(2),
SCORE NUMBER(Z,0)

):

Result:

Table created.

¢ See Also:

Oracle Database SQL Language Reference for information about the
CREATE TABLE statement

4.2.3 Ensuring Data Integrity in Tables

To ensure that the data in your tables satisfies the business rules that your application
models, you can use constraints, application logic, or both.

ORACLE 4-4

Chapter 4
Creating and Managing Tables

Tip:

Wherever possible, use constraints instead of application logic. Oracle
Database checks that all data obeys constraints much faster than application
logic can.

¢ See Also:

e Oracle Database Concepts for additional general information about data
integrity

e Oracle Database SQL Language Reference for syntactic information
about constraints

e Oracle Database Development Guide for information about enabling and
disabling constraints

4.2.3.1 About Constraints

ORACLE

Constraints restrict the values that columns can have. Trying to change the data in a
way that violates a constraint causes an error and rolls back the change. Trying to add
a constraint to a populated table causes an error if existing data violates the constraint.

Constraints can be enabled and disabled. By default, they are created in the enabled
state.

The constraint types are:

* Not Null, which prevents a value from being null

In the EMPLOYEES table, the column LAST_NAME has the NOT NULL
constraint, which enforces the business rule that every employee must have a
last name.

* Unique, which prevents multiple rows from having the same value in the same
column or combination of columns, but allows some values to be null

In the EMPLOYEES table, the column EMAIL has the UNIQUE constraint, which
enforces the business rule that an employee can have no email address, but
cannot have the same email address as another employee.

* Primary Key, which is a combination of NOT NULL and UNIQUE

In the EMPLOYEES table, the column EMPLOYEE_ID has the PRIMARY KEY
constraint, which enforces the business rule that every employee must have a
unigue employee identification number.

» Foreign Key, which requires values in one table to match values in another table

In the EMPLOYEES table, the column JOB_ID has a FOREIGN KEY constraint
that references the JOBS table, which enforces the business rule that an
employee cannot have a JOB_ID that is not in the JOBS table.

* Check, which requires that a value satisfy a specified condition

4-5

Chapter 4
Creating and Managing Tables

The EMPLOYEES table does not have CHECK constraints. However, suppose
that EMPLOYEES needs a new column, EMPLOYEE_AGE, and that every
employee must be at least 18. The constraint CHECK (EMPLOYEE_AGE >= 18)
enforces the business rule.

Tip:

Use check constraints only when other constraint types cannot provide
the necessary checking.

* REF, which further describes the relationship between a REF column and the
object that it references

A REF column references an object in another object type or in a relational table.

For information about REF constraints, see Oracle Database Concepts.

¢ See Also:

e Oracle Database SQL Language Reference for syntactic information
about constraints

4.2.3.2 Tutorial: Adding Constraints to Existing Tables

This tutorial shows how to add constraints to existing tables using both SQL Developer
tools and the ALTER TABLE statement.

To add constraints to existing tables, use either SQL Developer tools or the DDL
statement ALTER TABLE. This topic shows how to use both of these ways to add
constraints to the tables created in "Creating Tables".

This tutorial has several procedures. The first procedure uses the Edit Table tool to

add a Not Null constraint to the NAMES column of the PERFORMANCE_PARTS table. The

remaining procedures show how to use other tools to add constraints; however, you
could add the same constraints using the Edit Table tool.

Note:
After any step of the tutorial, you can view the constraints that a table has:
1. Inthe Connections frame, select the name of the table.

2. Inthe right frame, click the tab Constraints.

For more information about viewing table properties and data, see "Tutorial:
Viewing EMPLOYEES Table Properties and Data with SQL Developer".

To add a Not Null constraint using the Edit Table tool:

1. Inthe Connections frame, expand hr_conn.

ORACLE 4-6

Chapter 4
Creating and Managing Tables

In the list of schema object types, expand Tables.

In the list of tables, right-click PERFORMANCE_PARTS.
In the list of choices, click Edit.

In the Edit Table window, click the column NAME.

Select the property Not Null.

Click OK.

The Not Null constraint is added to the NAME column of the PERFORMANCE_PARTS
table.

N o g M w bN

The following procedure uses the ALTER TABLE statement to add a Not Null
constraint to the WEIGHT column of the PERFORMANCE_PARTS table.

To add a Not Null constraint using the ALTER TABLE statement:

1. If a pane with the tab hr_conn is there, select it. Otherwise, click the icon
SQL Worksheet, as in "Running Queries in SQL Developer".

2. In the Worksheet pane, type this statement:

ALTER TABLE PERFORMANCE_PARTS
MODIFY WEIGHT NOT NULL;

3. Click the icon Run Statement.

The statement runs, adding the Not Null constraint to the WEIGHT column of the
PERFORMANCE_PARTS table.

The following procedure uses the Add Unique tool to add a Unique constraint to the
SCORES table.

To add a Unique constraint using the Add Unique tool:

In the Connections frame, expand hr_conn.

In the list of schema object types, expand Tables.
In the list of tables, right-click SCORES.

In the list of choices, select Constraint.

In the list of choices, click Add Unique.

© g M w N PR

In the Add Unique window:

a. For Constraint Name, enter SCORES_EVAL_PERF_UNIQUE.
b. For Column 1, select EVALUATION_ID from the menu.

c. For Column 2, select PERFORMANCE_ID from the menu.
d. Click Apply.

7. In the Confirmation window, click OK.

A unique constraint named SCORES_EVAL_PERF_UNIQUE is added to the SCORES
table.

The following procedure uses the Add Primary Key tool to add a Primary Key
constraint to the PERFORMANCE_ID column of the PERFORMANCE_PARTS table.

ORACLE 47

ORACLE

Chapter 4
Creating and Managing Tables

To add a Primary Key constraint using the Add Primary Key tool:

In the Connections frame, expand hr_conn.

In the list of schema object types, expand Tables.

In the list of tables, right-click PERFORMANCE_PARTS.
In the list of choices, select Constraint.

In the list of choices, click Add Primary Key.

© g M w N PR

In the Add Primary Key window:

a. For Primary Key Name, enter PERF_PERF_1D_PK.

b. For Column 1, select PERFORMANCE_ID from the menu.
c. Click Apply.

7. In the Confirmation window, click OK.

A primary key constraint named PERF_PERF_ID PK is added to the PERFORMANCE 1D
column of the PERFORMANCE_PARTS table.

The following procedure uses the ALTER TABLE statement to add a Primary Key
constraint to the EVALUATION_ID column of the EVALUATIONS table.

To add a Primary Key constraint using the ALTER TABLE statement:

1. If a pane with the tab hr_conn is there, select it. Otherwise, click the icon
SQL Worksheet, as in "Running Queries in SQL Developer".

2. In the Worksheet pane, type this statement:

ALTER TABLE EVALUATIONS
ADD CONSTRAINT EVAL_EVAL_ID_PK PRIMARY KEY (EVALUATION_ID);

3. Click the icon Run Statement.

The statement runs, adding the Primary Key constraint to the EVALUATION_ID
column of the EVALUATIONS table.

The following procedure uses the Add Foreign Key tool to add two Foreign Key
constraints to the SCORES table.

To add two Foreign Key constraints using the Add Foreign Key tool:

In the Connections frame, expand hr_conn.

In the list of schema object types, expand Tables.
In the list of tables, right-click SCORES.

In the list of choices, select Constraint.

In the list of choices, click Add Foreign Key.

@ o » ® N P

In the Add Foreign Key window:

a. For Constraint Name, enter SCORES_EVAL_FK.

b. For Column Name, select EVALUATION_ID from the menu.

c. For References Table Name, select EVALUATIONS from the menu.
d. For Referencing Column, select EVALUATION_ID from the menu.

4-8

ORACLE

10.

11.

12.

Chapter 4
Creating and Managing Tables

e. Click Apply.
In the Confirmation window, click OK.

A foreign key constraint named SCORES_EVAL_FK is added to the EVALUTION_ID
column of the SCORES table, referencing the EVALUTION_ID column of the
EVALUATIONS table.

The following steps add another foreign key constraint to the SCORES table.
In the list of tables, right-click SCORES.

In the list of tables, select Constraint.

In the list of choices, click Add Foreign Key.

The Add Foreign Key window opens.

In the Add Foreign Key window:

a. For Constraint Name, enter SCORES_PERF_FK.

b. For Column Name, select PERFORMANCE_ID from the menu.

c. For Reference Table Name, select PERFORMANCE_PARTS from the menu.
d. For Referencing Column, select PERFORMANCE_ID from the menu.
e. Click Apply.

In the Confirmation window, click OK.

A foreign key constraint named SCORES_PERF_FK is added to the EVALUTION_ID
column of the SCORES table, referencing the EVALUTION_ID column of the
EVALUATIONS table.

The following procedure uses the ALTER TABLE statement to add a Foreign Key
constraint to the EMPLOYEE_ ID column of the EVALUATIONS table, referencing the
EMPLOYEE_ID column of the EMPLOYEES table.

To add a Foreign Key constraint using the ALTER TABLE statement:

1.

If a pane with the tab hr_conn is there, select it. Otherwise, click the icon
SQL Worksheet, as in "Running Queries in SQL Developer".

In the Worksheet pane, type this statement:

ALTER TABLE EVALUATIONS
ADD CONSTRAINT EVAL_EMP_ID_FK FOREIGN KEY (EMPLOYEE_ID)
REFERENCES EMPLOYEES (EMPLOYEE_ID);

Click the icon Run Statement.

The statement runs, adding the Foreign Key constraint to the EMPLOYEE_ID column
of the EVALUATIONS table, referencing the EMPLOYEE_ 1D column of the EMPLOYEES
table.

The following procedure uses the Add Check tool to add a Check constraint to the
SCORES table.

To add a Check constraint using the Add Check tool:

1.
2.
3.

In the Connections frame, expand hr_conn.
In the list of schema object types, expand Tables.
In the list of tables, right-click SCORES.

4-9

Chapter 4
Creating and Managing Tables

4. In the list of choices, select Constraint.
5. In the list of choices, click Add Check.
6. Inthe Add Check window:

a. For Constraint Name, enter SCORE_VALID.
b. For Check Condition, enter score >= 0 and score <+ 9.
c. For Status, accept the default, ENABLE.
d. Click Apply.
7. In the Confirmation window, click OK.
A Check constraint named SCORE_VALID is added to the SCORES table.

¢ See Also:

e Oracle Database SQL Language Reference for more information about
the ALTER TABLE statement

e Oracle SQL Developer User's Guide for information about adding
constraints to a table when you create it with SQL Developer

e Oracle Database SQL Language Reference for information about adding
constraints to a table when you create it with the CREATE TABLE
statement

4.2.4 Tutorial: Adding Rows to Tables with the Insert Row Tool

ORACLE

This tutorial shows how to use the Insert Row tool to add six populated rows to the
PERFORMANCE_PARTS table.

To add rows to the PERFORMANCE_PARTS table using the Insert Row tool:

1. Inthe Connections frame, expand hr_conn.

2. Inthe list of schema object types, expand Tables.

3. Inthe list of tables, select PERFORMANCE_PARTS.
4. In the right frame, click the tab Data.

The Data pane appears, showing the names of the columns of the
PERFORMANCE_PARTS table and no rows.

5. In the Data pane, click the icon Insert Row.

A new row appears, with empty columns. A green border around the row number
indicates that the insertion has not been committed.

6. Click the cell under the column heading PERFORMANCE_ID.

7. Type the value of PERFORMANCE_ID: WM

8. Either press the key Tab or click the cell under the column heading NAME.

9. Type the value of NAME: Workload Management

10. Either press the key Tab or click the cell under the column heading WEIGHT.

4-10

ORACLE

11.
12.
13.

14.

15.

16.

17.

18.

19.
20.

Chapter 4
Creating and Managing Tables

Type the value of WEIGHT: 0.2
Press the key Enter.

Add and populate a second row by repeating steps 5 through 12 with these
values:

« For PERFORMANCE_ID, type BR.

* For NAME, type Building Relationships.

e For WEIGHT, type 0.2.

Add and populate a third row by repeating steps 5 through 12 with these values:
« For PERFORMANCE_ID, type CF.

¢ For NAME, type Customer Focus.

* For WEIGHT, type 0.2.

Add and populate a fourth row by repeating steps 5 through 12 with these values:
e For PERFORMANCE_ID, type CM.

e For NAME, type Communication.

* For WEIGHT, type 0.2.

Add and populate a fifth row by repeating steps 5 through 12 with these values:

* For PERFORMANCE_ID, type TW.

e For NAME, type Teamwork.

* For WEIGHT, type 0.2.

Add and populate a sixth row by repeating steps 5 through 12, using these values:
« For PERFORMANCE_ID, type RO.

* For NAME, type Results Orientation.

* For WEIGHT, type 0.2.

Click the icon Commit Changes.
The green borders around the row numbers disappear.
Under the Data pane is the label Messages - Log.
Check the Messages - Log pane for the message Commit Successful.
In the Data Pane, check the new rows.
" See Also:

"About the INSERT Statement"

4-11

Chapter 4
Creating and Managing Tables

4.2.5 Tutorial: Changing Data in Tables in the Data Pane

This tutorial shows how to change three of the WEIGHT values in the
PERFORMANCE_PARTS table in the Data pane.

The PERFORMANCE_PARTS table was populated in "Tutorial: Adding Rows to
Tables with the Insert Row Tool".

To change data in the PERFORMANCE_PARTS table using the Data pane:
In the Connections frame, expand hr_conn.

In the list of schema object types, expand Tables.

In the list of tables, select PERFORMANCE_PARTS.

In the right frame, click the tab Data.

CAE A

In the Data Pane, in the row where NAME is "Workload Management":
a. Click the WEIGHT value.

b. Enter the value 0.3.

c. Pressthe key Enter.

An asterisk appears to the left of the row number to indicate that the change
has not been committed.

6. In the row where NAME is "Building Relationships":
a. Click the WEIGHT value.
b. Enter the value 0.15.
c. Press the key Enter.

An asterisk appears to the left of the row number to indicate that the change
has not been committed.

7. In the row where NAME is "Customer Focus" :
a. Click the WEIGHT value.
b. Enter the value 0.15.
c. Press the key Enter.

An asterisk appears to the left of the row number to indicate that the change
has not been committed.

8. Click the icon Commit Changes.
The asterisks to the left of the row numbers disappear.

9. Under the Data pane, check the Messages - Log pane for the message Commit
SuccessTful.

10. In the Data Pane, check the new data.

¢ See Also:
"About the UPDATE Statement"

ORACLE 4-12

Chapter 4
Creating and Managing Tables

4.2.6 Tutorial: Deleting Rows from Tables with the Delete Selected

Row(s) Tool

This tutorial shows how to use the Delete Selected Row(s) tool to delete a row from
the PERFORMANCE_PARTS table.

The PERFORMANCE_PARTS table was populated in "Tutorial: Adding Rows to
Tables with the Insert Row Tool").

To delete row from PERFORMANCE_PARTS using Delete Selected Row(s) tool:

1. Inthe Connections frame, expand hr_conn.

2. Inthe list of schema object types, expand Tables.

3. Inthe list of tables, select PERFORMANCE_PARTS.

4. In the right frame, click the tab Data.

5. In the Data pane, click the row where NAME is "Results Orientation".
6. Click the icon Delete Selected Row(s).

A red border appears around the row number to indicate that the deletion has not
been committed.

7. Click the icon Commit Changes.
The row is deleted.

8. Under the Data pane, check the Messages - Log pane for the message Commit
Successful.

Note:

If you delete every row of a table, the empty table still exists. To delete a
table, see "Dropping Tables".

¢ See Also:
"About the DELETE Statement"

4.2.7 Managing Indexes

ORACLE

You can create indexes on one or more columns of a table to speed SQL statement
execution on that table. When properly used, indexes are the primary means of
reducing disk input/output (I/O).

When you define a primary key on a table:

» If an existing index starts with the primary key columns, then Oracle Database
uses that existing index for the primary key. The existing index need not be
Unique.

4-13

Chapter 4
Creating and Managing Tables

For example, if you define the primary key (A, B), Oracle Database uses the
existing index (A, B, C).

» If no existing index starts with the primary key columns and the constraint is
immediate, then Oracle Database creates a Unique index on the primary key.

» If no existing index starts with the primary key columns and the constraint is
deferrable, then Oracle Database creates a non-Unique index on the primary key.

For example, in "Tutorial: Adding Constraints to Existing Tables", you added a
Primary Key constraint to the EVALUATION_ID column of the EVALUATIONS table.
Therefore, if you select the EVALUATIONS table in the SQL Developer Connections
frame and click the Indexes tab, the Indexes pane shows a Unigue index on the
EVALUATION_ID column.

See Also:
For more information about indexes:

e Oracle Database Concepts

e Oracle Database Development Guide

4.2.7.1 Tutorial: Adding an Index with the Create Index Tool

ORACLE

This tutorial shows how to use the Create Index tool to add an index to the
EVALUATIONS table.

The EVALUATIONS table was created in Example 4-1.

To create an index, use either the SQL Developer tool Create Index or the DDL
statement CREATE INDEX. The equivalent DDL statement is:

CREATE INDEX EVAL_JOB_IX
ON EVALUATIONS (JOB_ID ASC) NOPARALLEL;

To add an index to the EVALUATIONS table using the Create Index tool:

1. Inthe Connections frame, expand hr_conn.
2. Inthe list of schema object types, expand Tables.
3. Inthe list of tables, right-click EVALUATIONS.
4. In the list of choices, select Index.
5. In the list of choices, select Create Index.
6. Inthe Create Index window:

a. For Schema, accept the default, HR.

b. For Name, type EVAL_JOB_IX.

c. If the Definition pane does not show, select the tab Definition.

d. In the Definition pane, for Index Type, select Unique from the menu.

e. Click the icon Add Expression.

The Expression EMPLOYEE_ID with Order <Not Specified> appears.

4-14

Chapter 4
Creating and Managing Tables

f. Over EMPLOYEE_ID, type JOB_ID.
g. For Order, select ASC (ascending) from the menu.
Click OK.

Now the EVALUATIONS table has an index named EVAL_JOB_IX on the
column JOB_ID.

¢ See Also:

Oracle Database SQL Language Reference for information about the
CREATE INDEXstatement

4.2.7.2 Tutorial: Changing an Index with the Edit Index Tool

This tutorial shows how to use the Edit Index tool to reverse the sort order of the index
EVAL JOB_IX.

To change an index, use either the SQL Developer tool Edit Index or the DDL
statements DROP INDEX and CREATE INDEX.

The equivalent DDL statements are:

DROP INDEX EVAL_JOB_ID;

CREATE INDEX EVAL_JOB_IX
ON EVALUATIONS (JOB_ID DESC) NOPARALLEL;

To reverse the sort order of the index EVAL_JOB_IX using the Edit Index tool:

In the Connections frame, expand hr_conn.

In the list of schema object types, expand Indexes.
In the list of indexes, right-click EVAL_JOB_IX.

In the list of choices, click Edit.

In the Edit Index window, change Order to DESC.
Click OK.

N o g kM w b PR

In the Confirm Replace window, click either Yes or No.

See Also:

Oracle Database SQL Language Reference for information about the ALTER
INDEX statement

ORACLE 4-15

Chapter 4
Creating and Managing Tables

4.2.7.3 Tutorial: Dropping an Index

This tutorial shows how to use the Connections frame and Drop tool to drop the index
EVAL_JOB_IX.

To drop an index, use either the SQL Developer Connections frame and Drop tool or
the DDL statement DROP INDEX. The equivalent DDL statement is:

DROP INDEX EVAL_JOB_ID;

To drop the index EVAL_JOB_IX:

In the Connections frame, expand hr_conn.

In the list of schema object types, expand Indexes.
In the list of indexes, right-click EVAL_JOB_IX.

In the list of choices, click Drop.

In the Drop window, click Apply.

e g » w d PR

In the Confirmation window, click OK.

¢ See Also:

Oracle Database SQL Language Reference for information about the DROP
INDEX statement

4.2.8 Dropping Tables

ORACLE

To drop a table, use either the SQL Developer Connections frame and Drop tool, or
the DDL statement DROP TABLE.

Caution:

Do not drop any tables that you created in "Creating Tables"—you need them
for later tutorials. If you want to practice dropping tables, create simple ones
and then drop them.

To drop a table using the Drop tool:

In the Connections frame, expand hr_conn.
In the list of schema object types, expand Tables.

In the list of tables, right-click the name of the table to drop.

In the list of choices, click Drop.

1

2

3

4. In the list of choices, select Table.
5

6. Inthe Drop window, click Apply.
7

In the Confirmation window, click OK.

4-16

Chapter 4
Creating and Managing Views

¢ See Also:

Oracle Database SQL Language Reference for information about the
statement DROP TABLE

4.3 Creating and Managing Views

A view presents a query result as a table. In most places that you can use a table, you
can use a view. Views are useful when you need frequent access to information that is
stored in several different tables.

See Also:

e "Selecting Table Data" for information about queries

e Oracle Database Concepts for additional general information about
views

4.3.1 Creating Views

To create views, use either the SQL Developer tool Create View or the DDL statement
CREATE VIEW.

This topic shows how to use both of these ways to create these views:

* SALESFORCE, which contains the names and salaries of the employees in the
Sales department

« EMP_LOCATIONS, which contains the names and locations of all employees

This view is used in "Creating an INSTEAD OF Trigger".

See Also:

e Oracle SQL Developer User's Guide for more information about using
SQL Developer to create a view

e Oracle Database SQL Language Reference for more information about
the statement CREATE VIEW

4.3.1.1 Tutorial: Creating a View with the Create View Tool

This tutorial shows how to create the SALESFORCE view using the Create View tool.

To create the SALESFORCE view using the Create View tool:

1. Inthe Connections frame, expand hr_conn.

ORACLE 4-17

Chapter 4
Creating and Managing Views

2. Inthe list of schema object types, right-click Views.

3. In the list of choices, click New View.

The Create View window opens, with default values for a new view.
For Schema, accept the default value, HR.

For Name, enter SALESFORCE.

If the SQL Query pane does not show, click the tab SQL Query.

In the SQL Query pane, in the SQL Query field:

e After SELECT, type:

N o o »

FIRST_NAME || * " || LAST_NAME "Name", SALARY*12 "Annual Salary"
o After FROM, type:
EMPLOYEES WHERE DEPARTMENT_ID = 80
8. Click Check Syntax.

9. Under Syntax Results, if the message is not No errors found in SQL, then
return to step 7 and correct the syntax errors in the query.

10. Click OK.

The view SALESFORCE is created. To see it, expand Views in the Connections
frame.

To see the CREATE VIEW statement for creating this view, select its name and
click the tab SQL.

¢ See Also:

Oracle SQL Developer User's Guide for more information about using SQL
Developer to create views

4.3.1.2 Creating Views with the CREATE VIEW Statement

ORACLE

This example shows how to use the CREATE VIEW statement to create the
EMP_LOCATIONS view, which joins four tables.

The CREATE VIEW statement in Example 4-3 creates the EMP_LOCATIONS view,
which joins four tables. (For information about joins, see "Selecting Data from Multiple
Tables".)

Example 4-3 Creating the EMP_LOCATIONS View with CREATE VIEW

CREATE VIEW EMP_LOCATIONS AS
SELECT e.EMPLOYEE_ID,

e.LAST NAME || *. " || e.FIRST_NAME NAME,

d.DEPARTMENT _NAME DEPARTMENT,

1.CITY CITY,

c.COUNTRY_NAME COUNTRY
FROM EMPLOYEES e, DEPARTMENTS d, LOCATIONS I, COUNTRIES c
WHERE e.DEPARTMENT ID = d.DEPARTMENT ID AND

d.LOCATION_ID = I.LOCATION_ID AND

1.COUNTRY_ID = c.COUNTRY_ID
ORDER BY LAST NAME;

4-18

Chapter 4
Creating and Managing Views

Result:

View EMP_LOCATIONS created.

¢ See Also:

Oracle Database SQL Language Reference for information about the
CREATE VIEW statement

4.3.2 Changing Queries in Views

To change the query in a view, use the DDL statement CREATE VIEW with the OR
REPLACE clause.

The CREATE OR REPLACE VIEW statement in Example 4-4 changes the query in the
SALESFORCE view.

Example 4-4 Changing the Query in the SALESFORCE View

CREATE OR REPLACE VIEW SALESFORCE AS
SELECT FIRST_NAME || " " || LAST_NAME "Name",
SALARY*12 "Annual Salary"
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 80 OR DEPARTMENT_ID = 20;

Result:

View SALESFORCE created.

See Also:

Oracle Database SQL Language Reference for information about the
CREATE VIEW with the OR REPLACE clause

4.3.3 Tutorial: Changing View Names with the Rename Tool

ORACLE

This tutorial shows how to use the Rename tool to change the name of the
SALESFORCE view.

To change the name of a view, use either the SQL Developer tool Rename or the
RENAME statement. The equivalent DDL statement is:

RENAME SALESFORCE to SALES_MARKETING;

To change the SALESFORCE view using the Rename tool:

1. Inthe Connections frame, expand hr_conn.

2. Inthe list of schema object types, expand Views.
3. Inthe list of views, right-click SALESFORCE.
4

In the list of choices, select Rename.

4-19

Chapter 4
Creating and Managing Sequences

5. In the Rename window, in the New View Name field, type SALES_MARKET ING.
6. Click Apply.

7. In the Confirmation window, click OK.

¢ See Also:

Oracle Database SQL Language Reference for information about the
RENAME statement

4.3.4 Dropping a View

To drop a view, use either the SQL Developer Connections frame and Drop tool or the
DDL statement DROP VIEW.

The following ttutorial shows how to use the Connections frame and Drop tool to drop
the view SALES_MARKETING (changed in "Tutorial: Changing View Names with the
Rename Tool"). The equivalent DDL statement is:

DROP VIEW SALES_MARKETING;
To drop the view SALES_MARKETING using the Drop tool:

In the Connections frame, expand hr_conn.
In the a list of schema object types, expand Views.
In the a list of views, right-click SALES_MARKETING.

1

2

3

4. Inthe a list of choices, click Drop.
5. In the Drop window, click Apply.
6

In the Confirmation window, click OK.

¢ See Also:

Oracle Database SQL Language Reference for information about the DROP
VIEW statement

4.4 Creating and Managing Sequences

ORACLE

Sequences are schema objects from which you can generate unique sequential
values, which are very useful when you need unique primary keys. Sequences are
used through the pseudocolumns CURRVAL and NEXTVAL, which return the current
and next values of the sequence, respectively.

After creating a sequence, you must initialize it by using NEXTVAL to get its first value.
Only after you initialize a sequence does CURRVAL return its current value.

The HR schema has three sequences: DEPARTMENTS SEQUENCE,
EMPLOYEES_SEQUENCE, and LOCATIONS_SEQUENCE.

4-20

Chapter 4
Creating and Managing Sequences

Tip:

When you plan to use a sequence to populate the primary key of a table,
give the sequence a name that reflects this purpose. (This topic uses the
naming convention TABLE_ NAME_SEQUENCE.)

See Also:

e Oracle Database Concepts for an overview of sequences

e Oracle Database SQL Language Reference for more information about
the CURRVAL and NEXTVAL pseudocolumns

e Oracle Database Administrator's Guide for information about managing
sequences

e "Editing Installation Scripts that Create Sequences”

e "About Sequences and Concurrency"

4.4.1 Tutorial: Creating a Sequence

ORACLE

This tutorial shows how to use the Create Database Sequence tool to create a
sequence to use to generate primary keys for the EVALUATIONS table.

The EVALUATIONS table was created in Example 4-1.

To create a sequence, use either the SQL Developer tool Create Sequence or the DDL
statement CREATE SEQUENCE. The equivalent DDL statement is:

CREATE SEQUENCE evaluations_sequence
INCREMENT BY 1
START WITH 1 ORDER;

To create EVALUATIONS_SEQUENCE using the Create Database Sequence tool:

1. Inthe Connections frame, expand hr_conn.

2. Inthe list of schema object types, right-click Sequences.
3. Inthe list of choices, click New Sequence.
4

In the Create Sequence window, in the Name field, type
EVALUATIONS_SEQUENCE over the default value "SEQUENCE1".

o

If the Properties pane does not show, click the tab Properties.
6. Inthe Properties pane:

a. Inthe field Increment, type 1.

b. In the field Start with, type 1.

c. For the remaining fields, accept the default values.

d. Click OK.

4-21

Chapter 4
Creating and Managing Sequences

The sequence EVALUATIONS_SEQUENCE is created. Its name appears
under Sequences in the Connections frame.

¢ See Also:

e Oracle SOL Developer User's Guide for more information about using
SQL Developer to create a sequence

e Oracle Database SQL Language Reference for information about the
CREATE SEQUENCE statement

e "Tutorial: Creating a Trigger that Generates a Primary Key for a Row
Before It Is Inserted" to learn how to create a trigger that inserts
the primary keys created by EVALUATIONS SEQUENCE into the
EVALUATIONS table

4.4.2 Dropping Sequences

To drop a sequence, use either the SQL Developer Connections frame and Drop tool,
or the DDL statement DROP SEQUENCE.

This statement drops the sequence EVALUATIONS SEQUENCE:
DROP SEQUENCE EVALUATIONS_SEQUENCE;

Caution:

Do not drop the sequence EVALUATIONS_SEQUENCE—you need it for
Example 5-3. If you want to practice dropping sequences, create others and
then drop them.

To drop a sequence using the Drop tool:

In the Connections frame, expand hr_conn.

In the list of schema object types, expand Sequences.

In the list of sequences, right-click the name of the sequence to drop.
In the list of choices, click Drop.

In the Drop window, click Apply.

o g kM B NP

In the Confirmation window, click OK.

" See Also:

Oracle Database SQL Language Reference for information about the DROP
SEQUENCE statement

ORACLE 4-22

Chapter 4
Creating and Managing Synonyms

4.5 Creating and Managing Synonyms

A synonym is an alias for another schema object. Some reasons to use synonyms are
security (for example, to hide the owner and location of an object) and convenience.

Examples of convenience are:

e Using a short synonym, such as SALES, for a long object name, such as
ACME_CO.SALES_DATA

» Using a synonym for a renamed object, instead of changing that object name
throughout the applications that use it

For example, if your application uses a table named DEPARTMENTS, and its name
changes to DIVISIONS, you can create a DEPARTMENTS synonym for that table and
continue to reference it by its original name.

See Also:

Oracle Database Concepts for additional general information about
synonyms

4.5.1 Creating Synonyms

ORACLE

To create a synonym, use either the SQL Developer tool Create Database Synonym or
the DDL statement CREATE SYNONYM .

The following tutorial shows how to use the Create Database Synonym tool to create
the synonym EMP for the EMPLOYEES table. The equivalent DDL statement is:

CREATE SYNONYM EMPL FOR EMPLOYEES;

To create the synonym EMP using the Create Database Synonym tool:

1. Inthe Connections frame, expand hr_conn.
2. Inthe list of schema object types, right-click Synonyms.
3. Inthe list of choices, click New Synonym.
4. In the New Synonym window:

a. Inthe Synonym Name field, type EMPL.

b. Inthe Object Owner field, select HR from the menu.

c. Inthe Object Name field, select EMPLOYEES from the menu.

The synonym refers to a specific schema object; in this case, the table
EMPLOYEES.

d. Click Apply.
5. In the Confirmation window, click OK.

The synonym EMPL is created. To see it, expand Synonyms in the Connections
frame. You can now use EMPL instead of EMPLOYEES.

4-23

Chapter 4
Creating and Managing Synonyms

¢ See Also:

Oracle Database SQL Language Reference for information about the
CREATE SYNONYM statement

4.5.2 Dropping Synonyms

ORACLE

To drop a synonym, use either the SQL Developer Connections frame and Drop tool,
or the DDL statement DROP SYNONYM.

This statement drops the synonym EMP:

DROP SYNONYM EMP;

To drop a synonym using the Drop tool:

1
2
3
4.
5
6

In the Connections frame, expand hr_conn.

In the list of schema object types, expand Synonyms.

In the list of synonyms, right-click the name of the synonym to drop.
In the list of choices, click Drop.

In the Drop window, click Apply.

In the Confirmation window, click OK.

" See Also:

Oracle Database SQL Language Reference for information about the DROP
SYNONYM statement

4-24

Developing Stored Subprograms and
Packages

Stored subprograms and packages can be used as building blocks for many different
database applications.

5.1 About Stored Subprograms

A stored subprogram is a subprogram that is stored in the database. Because they
are stored in the database, stored programs can be used as building blocks for many
different database applications.

A subprogram is a PL/SQL unit that consists of SQL and PL/SQL statements that
solve a specific problem or perform a set of related tasks. A subprogram can have
parameters, whose values are supplied by the invoker. A subprogram can be either
a procedure or a function. Typically, you use a procedure to perform an action and a
function to compute and return a value.

Because stored subprograms are stored in the database, stored programs can be
used as building blocks for many different database applications. A subprogram that is
declared within another subprogram, or within an anonymous block, is called a nested
subprogram or local subprogram. It cannot be invoked from outside the subprogram
or block in which it is declared. An anonymous block is a block that is not stored in
the database.

There are two kinds of stored subprograms:

» Standalone subprogram, which is created at schema level
» Package subprogram, which is created inside a package

Standalone subprograms are useful for testing pieces of program logic, but when
you are sure that they work as intended, Oracle recommends that you put them into
packages.

¢ See Also:

* Oracle Database Concepts for general information about stored
subprograms

e Oracle Database PL/SQL Language Reference for complete information
about PL/SQL subprograms

ORACLE 5-1

Chapter 5
About Packages

5.2 About Packages

A package is a PL/SQL unit that consists of related subprograms and the
declared cursors and variables that they use. Oracle recommends that you put your
subprograms into packages.

Some reasons that Oracle recommends that you put your subprograms into packages
are:

e Packages allow you to hide implementation details from client programs.

Hiding implementation details from client programs is a widely accepted best
practice. Many Oracle customers follow this practice strictly, allowing client
programs to access the database only by invoking PL/SQL subprograms. Some
customers allow client programs to use SELECT statements to retrieve information
from database tables, but require them to invoke PL/SQL subprograms for all
business functions that change the database.

e Package subprograms must be qualified with package names when invoked from
outside the package, which ensures that their names will always work when
invoked from outside the package.

For example, suppose that you developed a schema-level procedure named
CONTINUE before Oracle Database 11g . Oracle Database 11g introduced
the CONTINUE statement. Therefore, if you ported your code to Oracle
Database 11g , it would no longer compile. However, if you had developed
your procedure inside a package, your code would refer to the procedure as
package_name.CONTINUE, so the code would still compile.

Note:

Oracle Database supplies many PL/SQL packages to extend database
functionality and provide PL/SQL access to SQL features. You can use the
supplied packages when creating your applications or for ideas in creating
your own stored procedures. For information about these packages, see
Oracle Database PL/SQL Packages and Types Reference.

¢ See Also:

e Oracle Database Concepts for general information about packages

e Oracle Database PL/SQL Language Reference for more reasons to use
packages

e Oracle Database PL/SQL Language Reference for complete information
about PL/SQL packages

e Oracle Database PL/SQL Packages and Types Reference for complete
information about the PL/SQL packages that Oracle provides

ORACLE 5-2

Chapter 5
About PL/SQL Identifiers

5.3 About PL/SQL Identifiers

Every PL/SQL subprogram, package, parameter, variable, constant, exception, and
declared cursor has a name, which is a PL/SQL identifier.

The minimum length of an identifier is one character; the maximum length is 30
characters. The first character must be a letter, but each later character can be either a
letter, numeral, dollar sign ($), underscore (_), or number sign (#). For example, these
are acceptable identifiers:

X

2

phone#
credit_limit
LastName
oracle$number
money$$$tree
SN##
try_again_

PL/SQL is not case-sensitive for identifiers. For example, PL/SQL considers these to
be the same:

lastname
LastName
LASTNAME

You cannot use a PL/SQL reserved word as an identifier. You can use a PL/SQL
keyword as an identifier, but it is not recommended. For lists of PL/SQL reserved
words and keywords, see Oracle Database PL/SQL Language Reference.

See Also:

e Oracle Database PL/SQL Language Reference for additional general
information about PL/SQL identifiers

e Oracle Database PL/SQL Language Reference for additional information
about PL/SQL naming conventions

e Oracle Database PL/SQL Language Reference for information about the
scope and visibility of PL/SQL identifiers

e Oracle Database PL/SQL Language Reference for information how to
collect data on PL/SQL identifiers

e Oracle Database PL/SQL Language Reference for information about
how PL/SQL resolves identifier names

5.4 About PL/SQL Data Types

Every PL/SQL constant, variable, subprogram parameter, and function return value
has a data type that determines its storage format, constraints, valid range of values,
and operations that can be performed on it.

ORACLE 5-3

Chapter 5
Creating and Managing Standalone Subprograms

A PL/SQL data type is either a SQL data type (such as VARCHAR2, NUMBER, or
DATE) or a PL/SQL-only data type. The latter include BOOLEAN, RECORD, REF
CURSOR, and many predefined subtypes. PL/SQL also lets you define your own
subtypes.

A subtype is a subset of another data type, which is called its base type. A subtype
has the same valid operations as its base type, but only a subset of its valid values.
Subtypes can increase reliability, provide compatibility with ANSI/ISO types, and
improve readability by indicating the intended use of constants and variables.

The predefined numeric subtype PLS_INTEGER is especially useful, because its
operations use hardware arithmetic, rather than the library arithmetic that its base
type uses.

You cannot use PL/SQL-only data types at schema level (that is, in tables or
standalone subprograms). Therefore, to use these data types in a stored subprogram,
you must put them in a package.

" See Also:

e Oracle Database PL/SQL Language Reference for general information
about PL/SQL data types

e Oracle Database PL/SQL Language Reference for information about the
PLS_INTEGER data type

e "About SQL Data Types"

5.5 Creating and Managing Standalone Subprograms

You can create and manage standalone PL/SQL subprograms.

¢ Note:

To do the tutorials in this document, you must be connected to Oracle
Database as the user HR from SQL Developer.

5.5.1 About Subprogram Structure

ORACLE

A subprogram follows PL/SQL block structure; that is, it has:

* Declarative part (optional)

The declarative part contains declarations of types, constants, variables,
exceptions, declared cursors, and nested subprograms. These items are local to
the subprogram and cease to exist when the subprogram completes execution.

* Executable part (required)

The executable part contains statements that assign values, control execution,
and manipulate data.

5-4

Chapter 5
Creating and Managing Standalone Subprograms

* Exception-handling part (optional)
The exception-handling part contains code that handles exceptions (runtime
errors).

Comments can appear anywhere in PL/SQL code. The PL/SQL compiler ignores
them. Adding comments to your program promotes readability and aids understanding.
A single-line comment starts with a double hyphen (--) and extends to the end of
the line. A multiline comment starts with a slash and asterisk (/*) and ends with an
asterisk and a slash (*/).

The structure of a procedure is:

PROCEDURE name [(paraneter_list)]

{IS]| AS}
[declarative_part]
BEGIN -- executable part begins

statement ; [statenment;]J...
[EXCEPTION -- executable part ends, exception-handling part begins]
exception_handler; [exception_handler; J...]
END; /* exception-handling part ends if it exists;
otherwise, executable part ends */

The structure of a function is like that of a procedure, except that it includes a RETURN
clause and at least one RETURN statement (and some optional clauses that are beyond
the scope of this document):

FUNCTION name [(parameter_list)] RETURN data type [clauses]

{ IS] AS}
[declarative_part]
BEGIN -- executable part begins

-- at least one statement must be a RETURN statement
statement; [statement;]...
[EXCEPTION -- executable part ends, exception-handling part begins]
exception_handl er; [exception_handler; J... 1
END; /* exception-handling part ends if it exists;
otherwise, executable part ends */

The code that begins with PROCEDURE or FUNCTION and ends before IS or AS
is the subprogram signature. The declarative, executable, and exception-handling
parts comprise the subprogram body. The syntax of exception-handler is in "About
Exceptions and Exception Handlers".

¢ See Also:

Oracle Database PL/SQL Language Reference for more information about
subprogram parts

5.5.2 Tutorial: Creating a Standalone Procedure

This tutorial shows how to use the Create Procedure tool to create a standalone
procedure named ADD_EVALUATION that adds a row to the EVALUATIONS table.

The EVALUATIONS table was created in Example 4-1.

ORACLE 5-5

ORACLE

Chapter 5
Creating and Managing Standalone Subprograms

To create a standalone procedure, use either the SQL Developer tool Create
Procedure or the DDL statement CREATE PROCEDURE.

To create a standalone procedure using Create Procedure tool:

1.
2.
3.

10.
11.

12.

13.

14.

15.

16.

17.

In the Connections frame, expand hr_conn.

In the list of schema object types, right-click Procedures.
In the list of choices, click New Procedure.

The Create Procedure window opens.

For Schema, accept the default value, HR.

For Name, change PROCEDUREL1 to ADD_EVALUATION.
Click the icon Add Parameter.

A row appears under the column headings. Its fields have these default values:
Name, PARAM1; Mode, IN; No Copy, deselected; Data Type, VARCHARZ2; Default
Value, empty.

For Name, change PARAML1 to EVALUATION_ID.
For Mode, accept the default value, IN.

For Data Type, select NUMBER from the menu.
Leave Default Value empty.

Add a second parameter by repeating steps 6 through 10 with the Name
EMPLOYEE_ID and the Data Type NUMBER.

Add a third parameter by repeating steps 6 through 10 with the Name
EVALUATION_DATE and the Data Type DATE.

Add a fourth parameter by repeating steps 6 through 10 with the Name JOB_ 1D
and the Data Type VARCHARZ2.

Add a fifth parameter by repeating steps 6 through 10 with the Name
MANAGER__ID and the Data Type NUMBER.

Add a sixth parameter by repeating steps 6 through 10 with the Name
DEPARTMENT _ID and the Data Type NUMBER.

Add a seventh parameter by repeating steps 6 through 10 with the Name
TOTAL_SCORE and the Data Type NUMBER.

Click OK.

CREATE OR REPLACE PROCEDURE ADD_EVALUATION
(
EVALUATION_ID IN NUMBER
, EMPLOYEE_ID IN NUMBER
, EVALUATION_DATE IN DATE
, JOB_ID IN VARCHAR2
, MANAGER_ID IN NUMBER
, DEPARTMENT_ID IN NUMBER
, TOTAL_SCORE IN NUMBER
) AS
BEGIN
NULL;
END ADD_EVALUATION;

5-6

Chapter 5
Creating and Managing Standalone Subprograms

The title of the ADD_EVALUATION pane is in italic font, indicating that the
procedure is not yet saved in the database.

Because the execution part of the procedure contains only the NULL statement,
the procedure does nothing.

18. Replace the NULL statement with this statement:

INSERT INTO EVALUATIONS (
evaluation_id,
employee_id,
evaluation_date,
job_id,
manager_id,
department_id,
total_score

)

VALUES (
ADD_EVALUATION.evaluation_id,
ADD_EVALUATION.employee_id,
ADD_EVALUATION.evaluation_date,
ADD_EVALUATION. job_id,
ADD_EVALUATION.manager_id,
ADD_EVALUATION.department_id,
ADD_EVALUATION.total_score

):
(Qualifying the parameter names with the procedure name ensures that they are
not confused with the columns that have the same names.)

19. From the File menu, select Save.

Oracle Database compiles the procedure and saves it. The title of the
ADD_EVALUATION pane is no longer in italic font. The Message - Log pane has
the message Compi led.

¢ See Also:

e Oracle SQL Developer User's Guide for another example of using SQL
Developer to create a standalone procedure

e "About Data Definition Language (DDL) Statements" for general
information that applies to the CREATE PROCEDURE statement

e Oracle Database PL/SQL Language Reference for information about the
CREATE PROCEDURE statement

5.5.3 Tutorial: Creating a Standalone Function

This tutorial shows how to use the Create Function tool to create a standalone function
named CALCULATE_SCORE that has three parameters and returns a value of type
NUMBER.

To create a standalone function, use either the SQL Developer tool Create Function or
the DDL statement CREATE FUNCTION.

ORACLE .

ORACLE

Chapter 5
Creating and Managing Standalone Subprograms

To create a standalone function using Create Function tool:

1.
2.

N o o »

10.
11.
12.

13.

14.

15.
16.

In the Connections frame, expand hr_conn.

In the list of schema object types, right-click Functions.
In the list of choices, click New Function.

The Create Function window opens.

For Schema, accept the default value, HR.

For Name, change FUNCTION1 to CALCULATE_SCORE.
For Return Type, select NUMBER from the menu.

Click the icon Add Parameter.

A row appears under the column headings. Its fields have these default values:
Name, PARAM1; Mode, IN; No Copy, deselected; Data Type, VARCHARZ2; Default
Value, empty.

For Name, change PARAML1 to cat.

For Mode, accept the default value, IN.

For Data Type, accept the default, VARCHAR?2.
Leave Default Value empty.

Add a second parameter by repeating steps 7 through 11 with the Name score
and the Data Type NUMBER.

Add a third parameter by repeating steps 7 through 11 with the Name weight and
the Data Type NUMBER.

Click OK.

The CALCULATE_SCORE pane opens, showing the CREATE FUNCTION
statement that created the function:

CREATE OR REPLACE FUNCTION CALCULATE_SCORE

(
CAT IN VARCHARZ2

, SCORE IN NUMBER
, WEIGHT IN NUMBER
) RETURN NUMBER AS
BEGIN

RETURN NULL;
END CALCULATE_SCORE;

The title of the CALCULATE_SCORE pane is in italic font, indicating that the
function is not yet saved in the database.

Because the only statement in the execution part of the function is the statement
RETURN NULL, the function does nothing.

Replace NULL with score * weight.
From the File menu, select Save.

Oracle Database compiles the function and saves it. The title of the
CALCULATE_SCORE pane is no longer in italic font. The Message - Log pane
has the message Compi led.

5-8

Chapter 5
Creating and Managing Standalone Subprograms

¢ See Also:
e "About Data Definition Language (DDL) Statements" for general
information that applies to the CREATE FUNCTION statement

e Oracle Database PL/SQL Language Reference for information about the
CREATE FUNCTION statement

5.5.4 Changing Standalone Subprograms

To change a standalone subprogram, use either the SQL Developer tool Edit or the
DDL statement ALTER PROCEDURE or ALTER FUNCTION.

To change a standalone subprogram using the Edit tool:

1. Inthe Connections frame, expand hr_conn.

2. In the list of schema object types, expand either Functions or Procedures.
A list of functions or procedures appears.

3. Click the function or procedure to change.

To the right of the Connections frame, a frame appears. Its top tab has the name
of the subprogram to change. The Code pane shows the code that created the
subprogram.

The Code pane is in write mode. (Clicking the pencil icon switches the mode from
write mode to read only, or the reverse.)

4. Inthe Code pane, change the code.

The title of the pane changes to italic font, indicating that the change is not yet
saved in the database.

5. From the File menu, select Save.

Oracle Database compiles the subprogram and saves it. The title of the pane is no
longer in italic font. The Message - Log pane has the message Compiled.

¢ See Also:

e "About Data Definition Language (DDL) Statements" for general
information that applies to the ALTER PROCEDURE and ALTER
FUNCTION statements

e Oracle Database PL/SQL Language Reference for information about the
ALTER PROCEDURE statement

e Oracle Database PL/SQL Language Reference for information about the
ALTER FUNCTION statement

ORACLE 5-9

Chapter 5
Creating and Managing Standalone Subprograms

5.5.5 Tutorial: Testing a Standalone Function

This tutorial shows how to use the SQL Developer tool Run to test the standalone
function CALCULATE_SCORE.

To test the CALCULATE_SCORE function using the Run tool:

1
2
3.
4

ORACLE

In the Connections frame, expand hr_conn.

In the list of schema object types, expand Functions.

In the list of functions, right-click CALCULATE_SCORE.

In the list of choices, click Run.

The Run PL/SQL window opens. Its PL/SQL Block frame includes this code:

v_Return := CALCULATE_SCORE (
CAT => CAT,

SCORE => SCORE,

WEIGHT => WEIGHT

);
Change the values of SCORE and WEIGHT to 8 and 0. 2, respectively:

v_Return := CALCULATE_SCORE (
CAT => CAT,
SCORE => 8,
WEIGHT => 0.2
);
Click OK.
Under the Code pane, the Running window opens, showing this result:

Connecting to the database hr_conn.
Process exited.
Disconnecting from the database hr_conn.

To the right of the tab Running is the tab Output Variables.
Click the tab Output Variables.

Two frames appear, Variable and Value, which contain the values <Return Value>
and 1.6, respectively.

See Also:

Oracle SQL Developer User's Guide for information about using SQL
Developer to run and debug procedures and functions

5-10

Chapter 5
Creating and Managing Packages

5.5.6 Dropping Standalone Subprograms

To drop a standalone subprogram, use either the SQL Developer Connections frame
and Drop tool, or the DDL statement DROP PROCEDURE or DROP FUNCTION.

Caution:

Do not drop the procedure ADD_EVALUATION or the function CALCULATE_SCORE
—you need them for later tutorials. If you want to practice dropping
subprograms, create simple ones and then drop them.

To drop a standalone subprogram using the Drop tool:

1. Inthe Connections frame, expand hr_conn.
2. Inthe list of schema object types, expand either Functions or Procedures.

3. Inthe list of functions or procedures, right-click the name of the function or
procedure to drop.

4. In the list of choices, click Drop.
5. In the Drop window, click Apply.

6. In the Confirmation window, click OK.

See Also:

e "About Data Definition Language (DDL) Statements" for general
information that applies to the DROP PROCEDURE and DROP
FUNCTION statements

e Oracle Database SQL Language Reference for information about the
DROP PROCEDURE statement

e Oracle Database SQL Language Reference for information about the
DROP FUNCTION statement

5.6 Creating and Managing Packages

You can create and manage PL/SQL packages.

¢ See Also:

"Tutorial: Declaring Variables and Constants in a Subprogram", which shows
how to change a package body

ORACLE 5-11

Chapter 5
Creating and Managing Packages

5.6.1 About Package Structure

A package always has a specification, and usually has a body. The specification
defines the package itself, and is an application program interface (API). The body
defines the queries for the declared cursors, and the code for the subprograms, that
are declared in the package specification.

The package specification defines the package, declaring the types, variables,
constants, exceptions, declared cursors, and subprograms that can be referenced
from outside the package. A package specification is an application program
interface (API): It has all the information that client programs need to invoke its
subprograms, but no information about their implementation.

The package body defines the queries for the declared cursors, and the code for the
subprograms, that are declared in the package specification (therefore, a package with
neither declared cursors nor subprograms does not need a body). The package body
can also define local subprograms, which are not declared in the specification and
can be invoked only by other subprograms in the package. Package body contents are
hidden from client programs. You can change the package body without invalidating
the applications that call the package.

¢ See Also:

e Oracle Database PL/SQL Language Reference for more information
about the package specification

e Oracle Database PL/SQL Language Reference for more information
about the package body

5.6.2 Tutorial: Creating a Package Specification

ORACLE

This tutorial shows how to use the Create Package tool to create a specification for
a package named EMP_EVAL, which appears in many tutorials and examples in this
document.

To create a package specification, use either the SQL Developer tool Create Package
or the DDL statement CREATE PACKAGE.

To create a package specification using Create Package tool:

1. In the Connections frame, expand hr_conn.
2. In the list of schema object types, right-click Packages.
3. Inthe list of choices, click New Package.

The Create Package window opens. The field Schema has the value HR, the field
Name has the default value PACKAGE1, and the check box Add New Source In
Lowercase is deselected.

4. For Schema, accept the default value, HR.
5. For Name, change the value PACKAGEL to EMP_EVAL.
6. Click OK.

5-12

Chapter 5
Creating and Managing Packages

The EMP_EVAL pane opens, showing the CREATE PACKAGE statement that
created the package:

CREATE OR REPLACE PACKAGE emp_eval AS
/* TODO enter package declarations (types, exceptions, methods etc) here */
END emp_eval;

The title of the pane is in italic font, indicating that the package is not saved to the
database.

7. (Optional) In the CREATE PACKAGE statement, replace the comment with
declarations.

If you do not do this step now, you can do it later, as in "Tutorial: Changing a
Package Specification”.

8. From the File menu, select Save.

Oracle Database compiles the package and saves it. The title of the EMP_EVAL
pane is no longer in italic font.

¢ See Also:

Oracle Database PL/SQL Language Reference for information about the
CREATE PACKAGE statement (for the package specification)

5.6.3 Tutorial: Changing a Package Specification

ORACLE

This tutorial shows how to use the Edit tool to change the specification for

the EMP_EVAL package, which appears in many tutorials and examples in this
document. Specifically, the tutorial shows how to add declarations for a procedure,
EVAL_DEPARTMENT, and a function, CALCULATE_SCORE.

To change a package specification, use either the SQL Developer tool Edit or the DDL
statement CREATE PACKAGE with the OR REPLACE clause.

To change EMP_EVAL package specification using the Edit tool:
1. Inthe Connections frame, expand hr_conn.

2. In the list of schema object types, expand Packages.

3. Inthe list of packages, right-click EMP_EVAL.

4. In the list of choices, click Edit.

The EMP_EVAL pane opens, showing the CREATE PACKAGE statement that
created the package:

CREATE OR REPLACE PACKAGE emp_eval AS
/* TODO enter package declarations (types, exceptions, methods etc) here */
END emp_eval;

The title of the pane is not in italic font, indicating that the package is saved in the
database.

5-13

Chapter 5
Creating and Managing Packages

5. Inthe EMP_EVAL pane, replace the comment with this code:

PROCEDURE eval_department (dept_id IN NUMBER);

FUNCTION calculate_score (evaluation_id IN NUMBER
, performance_id IN NUMBER)
RETURN NUMBER;

The title of the EMP_EVAL pane changes to italic font, indicating that the changes
have not been saved to the database.

6. Click the icon Compile.

The changed package specification compiles and is saved to the database. The
title of the EMP_EVAL pane is no longer in italic font.

" See Also:

Oracle Database PL/SQL Language Reference for information about the
CREATE PACKAGE statement with the OR REPLACE clause

5.6.4 Tutorial: Creating a Package Body

ORACLE

This tutorial shows how to use the Create Body tool to create a body for the
EMP_EVAL package, which appears in many examples and tutorials in this document.

To create a package body, use either the SQL Developer tool Create Body or the DDL
statement CREATE PACKAGE BODY.

To create a body for the package EMP_EVAL using the Create Body tool:

1. Inthe Connections frame, expand hr_conn.

2. Inthe list of schema object types, expand Packages.
3. Inthe list of packages, right-click EMP_EVAL.

4. Inthe list of choices, click Create Body.

The EMP_EVAL Body pane appears, showing the automatically generated code
for the package body:

CREATE OR REPLACE
PACKAGE BODY EMP_EVAL AS

PROCEDURE eval_department(dept_id IN NUMBER) AS

BEGIN
-- TODO implementation required for PROCEDURE EMP_EVAL.eval_department
NULL;

END eval_department;

FUNCTION calculate_score (evaluation_id IN NUMBER
, performance_id IN NUMBER)
RETURN NUMBER AS
BEGIN
-- TODO implementation required for FUNCTION EMP_EVAL.calculate_score
RETURN NULL;
END calculate_score;

5-14

Chapter 5
Creating and Managing Packages

END EMP_EVAL;

The title of the pane is in italic font, indicating that the code is not saved in the
database.

(Optional) In the CREATE PACKAGE BODY statement:
* Replace the comments with executable statements.

* (Optional) In the executable part of the procedure, either delete NULL or
replace it with an executable statement.

* (Optional) In the executable part of the function, either replace NULL with
another expression.

If you do not do this step now, you can do it later, as in "Tutorial: Declaring
Variables and Constants in a Subprogram".

Click the icon Compile.

The changed package body compiles and is saved to the database. The title of the
EMP_EVAL Body pane is no longer in italic font.

" See Also:

Oracle Database PL/SQL Language Reference for information about the
CREATE PACKAGE BODY statement (for the package body)

5.6.5 Dropping a Package

To drop a package (both specification and body), use either the SQL Developer
Connections frame and Drop tool, or the DDL statement DROP PACKAGE.

ORACLE

Caution:

Do not drop the package EMP_EVAL—you need it for later tutorials. If you
want to practice dropping packages, create simple ones and then drop them.

To drop a package using the Drop tool:

o a0 »

In the Connections frame, expand hr_conn.

In the list of schema object types, expand Packages.

A list of packages appears.

In the list of packages, right-click the name of the package to drop.
In the list of choices, click Drop Package.

In the Drop window, click Apply.

In the Confirmation window, click OK.

5-15

Chapter 5
Declaring and Assigning Values to Variables and Constants

¢ See Also:

Oracle Database PL/SQL Language Reference for information about the
DROP PACKAGE statement

5.7 Declaring and Assigning Values to Variables and
Constants

A variable or constant declared in a package specification is available to any program
that has access to the package. A variable or constant declared in a package body or
subprogram is local to that package or subprogram. When declaring a constant, you
must assign it an initial value.

One significant advantage that PL/SQL has over SQL is that PL/SQL lets you declare
and use variables and constants.

A variable or constant declared in a package specification is available to any program
that has access to the package. A variable or constant declared in a package body or
subprogram is local to that package or subprogram.

A variable holds a value of a particular data type. Your program can change the value
at runtime. A constant holds a value that cannot be changed.

A variable or constant can have any PL/SQL data type. When declaring a variable, you
can assign it an initial value; if you do not, its initial value is NULL. When declaring a
constant, you must assign it an initial value. To assign an initial value to a variable or
constant, use the assignment operator (:=).

Tip:

Declare all values that do not change as constants. This practice optimizes
your compiled code and makes your source code easier to maintain.

" See Also:

Oracle Database PL/SQL Language Reference for general information about
variables and constants

5.7.1 Tutorial: Declaring Variables and Constants in a Subprogram

ORACLE

This tutorial shows how to use the SQL Developer tool Edit to declare variables and
constants in the EMP_EVAL.CALCULATE_SCORE function. (This tutorial is also an
example of changing a package body.)

The EMP_EVAL.CALCULATE_SCORE function is specified in "Tutorial: Creating a
Package Specification").

5-16

Chapter 5
Declaring and Assigning Values to Variables and Constants

To declare variables and constants in CALCULATE_SCORE function:

1
2
3.
4

ORACLE

In the Connections frame, expand hr_conn.
In the list of schema object types, expand Packages.
In the list of packages, expand EMP_EVAL.
In the list of choices, right-click EMP_EVAL Body.
A list of choices appears.
In the list of choices, click Edit.
The EMP_EVAL Body pane appears, showing the code for the package body:
CREATE OR REPLACE
PACKAGE BODY EMP_EVAL AS
PROCEDURE eval_department (dept_id IN NUMBER) AS
BEGIN
-- TODO implementation required for PROCEDURE EMP_EVAL.eval_department
NULL;
END eval_department;
FUNCTION calculate_score (evaluation_id IN NUMBER
, performance_id IN NUMBER)
RETURN NUMBER AS
BEGIN
-- TODO implementation required for FUNCTION EMP_EVAL.calculate_score
RETURN NULL;
END calculate_score;
END EMP_EVAL;
Between RETURN NUMBER AS and BEGIN, add these variable and constant
declarations:
n_score NUMBER(1,0); -- variable
n_weight NUMBER; -- variable
max_score CONSTANT NUMBER(1,0) := 9; -- constant, initial value 9
max_weight CONSTANT NUMBER(8,8) := 1; -- constant, initial value 1
The title of the EMP_EVAL Bodypane changes to italic font, indicating that the
code is not saved in the database.
From the File menu, select Save.
Oracle Database compiles and saves the changed package body. The title of the
EMP_EVAL Body pane is no longer in italic font.
¢ See Also:

e Oracle Database PL/SQL Language Reference for general information
about declaring variables and constants

e "Assigning Values to Variables with the Assignment Operator"

5-17

Chapter 5
Declaring and Assigning Values to Variables and Constants

5.7.2 Ensuring that Variables, Constants, and Parameters Have
Correct Data Types

Ensure that variables, constants, and parameters have the correct data types by
declaring them with the %TYPE attribute.

After "Tutorial: Declaring Variables and Constants in a Subprogram", the code for the
EMP_EVAL.CALCULATE_SCORE function is:

FUNCTION calculate_score (evaluation_id IN NUMBER
, performance_id IN NUMBER)
RETURN NUMBER AS

n_score NUMBER(1,0); -- variable
n_weight NUMBER; -- variable
max_score CONSTANT NUMBER(1,0) := 9; -- constant, initial value 9
max_weight CONSTANT NUMBER(8,8) := 1; -- constant, initial value 1

BEGIN
-- TODO implementation required for FUNCTION EMP_EVAL.calculate_score
RETURN NULL;

END calculate_score;

The variables, constants, and parameters of the function represent values from the
tables SCORES and PERFORMANCE_PARTS (created in "Creating Tables"):

* Variable n_score will hold a value from the column SCORE.SCORES and constant
max_score will be compared to such values.

e Variable n_weight will hold a value from the column
PERFORMANCE_PARTS.WEIGHT and constant max_weight will be compared
to such values.

* Parameter evaluation_id will hold a value from the column
SCORE.EVALUATION_ID.

» Parameter performance_id will hold a value from the column
SCORE.PERFORMANCE_ID.

Therefore, each variable, constant, and parameter has the same data type as its
corresponding column.

If the data types of the columns change, you want the data types of the variables,
constants, and parameters to change to the same data types; otherwise, the
CALCULATE_SCORE function is invalidated.

To ensure that the data types of the variables, constants, and parameters always
match those of the columns, declare them with the %TYPE attribute. The %TYPE
attribute supplies the data type of a table column or another variable, ensuring the
correct data type assignment.

ORACLE 5-18

Chapter 5
Declaring and Assigning Values to Variables and Constants

¢ See Also:
e Oracle Database PL/SQL Language Reference for more information
about the %TYPE attribute

e Oracle Database PL/SQL Language Reference for the syntax of the
%TYPE attribute

5.7.3 Tutorial: Changing Declarations to Use the %TYPE Attribute

This tutorial shows how to use the SQL Developer tool Edit to change
the declarations of the variables, constants, and formal parameters of the
EMP_EVAL.CALCULATE_SCORE function to use the %TYPE attribute.

The EMP_EVAL.CALCULATE_SCORE function is shown in "Tutorial: Declaring
Variables and Constants in a Subprogram”.

To change the declarations in CALCULATE_SCORE to use %TYPE:

In the Connections frame, expand hr_conn.

In the list of schema object types, expand Packages.
In the list of packages, expand EMP_EVAL.

In the list of choices, right-click EMP_EVAL Body.

g M w b P

In the list of choices, click Edit.
The EMP_EVAL Bodypane appears, showing the code for the package body:

CREATE OR REPLACE
PACKAGE BODY emp_eval AS

PROCEDURE eval_department (dept_id IN NUMBER) AS

BEGIN
-- TODO implementation required for PROCEDURE EMP_EVAL.eval_department
NULL;

END eval_department;

FUNCTION calculate_score (evaluation_id IN NUMBER
, performance_id IN NUMBER)
RETURN NUMBER AS

n_score NUMBER(1,0); -- variable
n_weight NUMBER; -- variable
max_score CONSTANT NUMBER(1,0) := 9; -- constant, initial value 9
max_weight CONSTANT NUMBER(8,8) := 1; -- constant, initial value 1

BEGIN
-- TODO implementation required for FUNCTION EMP_EVAL.calculate_score
RETURN NULL;

END calculate_score;

END emp_eval;
6. In the code for the function, make the changes shown in bold font:

FUNCTION calculate_score (evaluation_id IN SCORES.EVALUATION_ID%TYPE
, performance_id IN SCORES.PERFORMANCE_ID%TYPE)
RETURN NUMBER AS

ORACLE 5-19

10.
11.
12.
13.

Chapter 5
Declaring and Assigning Values to Variables and Constants

n_score SCORES.SCORE%TYPE ;

n_weight PERFORMANCE_PARTS.WEIGHT%TYPE;

max_score CONSTANT SCORES.SCORE%TYPE := 9;

max_weight CONSTANT PERFORMANCE_PARTS.WEIGHT%TYPE := 1;

Right-click EMP_EVAL.
In the list of choices, click Edit.

The EMP_EVAL paneopens, showing the CREATE PACKAGE statement that
created the package:

CREATE OR REPLACE PACKAGE EMP_EVAL AS

PROCEDURE eval_department(dept_id IN NUMBER);
FUNCTION calculate_score(evaluation_id IN NUMBER
, performance_id IN NUMBER)
RETURN NUMBER;

END EMP_EVAL;
In the code for the function, make the changes shown in bold font:

FUNCTION calculate_score(evaluation_id IN scores.evaluation_id%TYPE
, performance_id IN scores.performance_id%TYPE)

Right-click EMP_EVAL.
In the list of choices, click Compile.
Right-click EMP_EVAL Body.

In the list of choices, click Compile.

5.7.4 Assigning Values to Variables

You can assign a value to a variable in these ways:

ORACLE

Use the assignment operator to assign it the value of an expression.
Use the SELECT INTO or FETCH statement to assign it a value from a table.

Pass it to a subprogram as an OUT or IN OUT parameter, and then assign the
value inside the subprogram.

Bind the variable to a value.

¢ See Also:

e Oracle Database PL/SQL Language Reference for more information
about assigning values to variables

e Oracle Database 2 Day + Java Developer's Guide for information about
binding variables

5-20

Chapter 5
Declaring and Assigning Values to Variables and Constants

5.7.4.1 Assigning Values to Variables with the Assignment Operator

With the assignment operator (:=), you can assign the value of an expression to a
variable in either the declarative or executable part of a subprogram.

In the declarative part of a subprogram, you can assign an initial value to a variable
when you declare it. The syntax is:

vari abl e_nane data_type := expression;

In the executable part of a subprogram, you can assign a value to a variable with an
assignment statement. The syntax is:

vari abl e_nanme := expression;

Example 5-1 shows, in bold font, the changes to make to the
EMP_EVAL.CALCULATE_SCORE function to add a variable, running_total, and
use it as the return value of the function. The assignment operator appears

in both the declarative and executable parts of the function. (The data type

of running_total must be NUMBER, rather than SCORES.SCORE%TYPE or
PERFORMANCE_PARTS.WEIGHT%TYPE, because it holds the product of two
NUMBER values with different precisions and scales.)

¢ See Also:

e Oracle Database PL/SQL Language Reference for variable declaration
syntax

e Oracle Database PL/SQL Language Reference for assignment
statement syntax

Example 5-1 Assigning Values to a Variable with Assignment Operator

FUNCTION calculate_score(evaluation_id IN SCORES.EVALUATION_ID%TYPE
, performance_id IN SCORES.PERFORMANCE_ID%TYPE)
RETURN NUMBER AS
n_score SCORES.SCORE%TYPE;
n_weight PERFORMANCE_PARTS .WEIGHT%TYPE;
running_total NUMBER := 0;
max_score CONSTANT SCORES.SCORE%TYPE := 9;
max_weight CONSTANT PERFORMANCE_PARTS_WEIGHT%TYPE:= 1;
BEGIN
running_total := max_score * max_weight;
RETURN running_total;
END calculate_score;

5.7.4.2 Assigning Values to Variables with the SELECT INTO Statement

ORACLE

To use table values in subprograms or packages, you must assign them to variables
with SELECT INTO statements.

Example 5-2 shows, in bold font, the changes to make to the
EMP_EVAL.CALCULATE_SCORE function to have it calculate running_total from
table values.

5-21

ORACLE

Chapter 5
Declaring and Assigning Values to Variables and Constants

The ADD_EVAL procedure in Example 5-3 inserts a row into the EVALUATIONS
table, using values from the corresponding row in the EMPLOYEES table. Add

the ADD_EVAL procedure to the body of the EMP_EVAL package, but not to the
specification. Because it is not in the specification, ADD_EVAL is local to the package
—it can be invoked only by other subprograms in the package, not from outside the
package.

" See Also:

Oracle Database PL/SQL Language Reference for more information about
the SELECT INTO statement

Example 5-2 Assigning Table Values to Variables with SELECT INTO

FUNCTION calculate_score (evaluation_id IN scores.evaluation_id%TYPE
, performance_id IN scores.performance_id%TYPE)
RETURN NUMBER AS

n_score scores.score%TYPE;

n_weight performance_parts.weight%TYPE;

running_total NUMBER := 0;

max_score CONSTANT scores.score%TYPE := 9;

max_weight CONSTANT performance_parts.weight%TYPE:= 1;
BEGIN

SELECT s.score INTO n_score

FROM SCORES s

WHERE evaluation_id = s.evaluation_id
AND performance_id = s.performance_id;

SELECT p.weight INTO n_weight
FROM PERFORMANCE_PARTS p
WHERE performance_id = p.performance_id;

running_total := n_score * n_weight;
RETURN running_total;
END calculate_score;

Example 5-3 Inserting a Table Row with Values from Another Table

PROCEDURE add_eval (employee_id IN EMPLOYEES.EMPLOYEE_ID%TYPE
, today IN DATE)
AS
job_id EMPLOYEES.JOB_ID%TYPE;
manager_id EMPLOYEES .MANAGER_ID%TYPE;
department_id EMPLOYEES.DEPARTMENT_ID%TYPE;
BEGIN
INSERT INTO EVALUATIONS (
evaluation_id,
employee_id,
evaluation_date,
job_id,
manager_id,
department_id,
total_score
)
SELECT
evaluations_sequence_NEXTVAL, -- evaluation_id

5-22

Chapter 5
Controlling Program Flow

add_eval .employee_id, -- employee_id
add_eval . today, -- evaluation_date
e_job_id, -- job_id
e.manager_id, -- manager_id
e.department_id, -- department_id
0 -- total_score

FROM employees e;

IF SQL%ROWCOUNT = O THEN
RAISE NO_DATA_FOUND;
END IF;
END add_eval;

5.8 Controlling Program Flow

Unlike SQL, which runs statements in the order in which you enter them, PL/SQL has
control statements that let you control the flow of your program.

5.8.1 About Control Statements

PL/SQL has three categories of control statements: conditional selection statements,
loop statements, and sequential control statements.

Conditional selection statements let you execute different statements for different
data values. The conditional selection statements are IF and CASE.

Loop statements let you repeat the same statements with a series of different data
values. The loop statements are FOR LOOP, WHILE LOOP, and basic LOOP. The EXIT
statement transfers control to the end of a loop. The CONTINUE statement exits the
current iteration of a loop and transfers control to the next iteration. Both EXIT and
CONTINUE have an optional WHEN clause, in which you can specify a condition.

Sequential control statements let you go to a specified labeled statement or to do
nothing. The sequential control statements are GOTO and NULL.

¢ See Also:

Oracle Database PL/SQL Language Reference for an overview of PL/SQL
control statements

5.8.2 Using the IF Statement

ORACLE

The IF statement either executes or skips a sequence of statements, depending on the
value of a Boolean expression.

The IF statement has this syntax:

IF bool ean_expression THEN statement [, statenent]

[ELSIF bool ean_expression THEN statement [, statement]]...
[ELSE statement [, statement]]

END IF;

Suppose that your company evaluates employees twice a year in the first 10 years
of employment, but only once a year afterward. You want a function that returns the

5-23

Chapter 5
Controlling Program Flow

evaluation frequency for an employee. You can use an IF statement to determine the
return value of the function, as in Example 5-4.

Add the EVAL_FREQUENCY function to the body of the EMP_EVAL package, but not
to the specification. Because it is not in the specification, EVAL_FREQUENCY is local
to the package—it can be invoked only by other subprograms in the package, not from
outside the package.

Tip:

When using a PL/SQL variable in a SQL statement, as in the second
SELECT statement in Example 5-4, qualify the variable with the subprogram
name to ensure that it is not mistaken for a table column.

¢ See Also:

e Oracle Database PL/SQL Language Reference for the syntax of the IF
statement

e Oracle Database PL/SQL Language Reference for more information
about using the IF statement

Example 5-4 IF Statement that Determines Return Value of Function

FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
RETURN PLS_INTEGER

AS
h_date EMPLOYEES.HIRE_DATE%TYPE;
today EMPLOYEES.HIRE_DATE%TYPE;
eval_freq PLS_INTEGER;

BEGIN

SELECT SYSDATE INTO today FROM DUAL;

SELECT HIRE_DATE INTO h_date
FROM EMPLOYEES
WHERE EMPLOYEE_ID = eval_frequency.emp_id;

IF ((h_date + (INTERVAL "120" MONTH)) < today) THEN
eval_freq := 1;

ELSE
eval_freq := 2;

END IF;

RETURN eval_freq;
END eval_frequency;

5.8.3 Using the CASE Statement

ORACLE

The CASE statement chooses from a sequence of conditions, and executes the
corresponding statement.

The simple CASE statement evaluates a single expression and compares it to several
potential values. It has this syntax:

5-24

ORACLE

Chapter 5
Controlling Program Flow

CASE expression

WHEN val ue THEN st at enent

[WHEN val ue THEN statement]...

[ELSE statenent [, statement J...]
END CASE;

The searched CASE statement evaluates multiple Boolean expressions and chooses
the first one whose value is TRUE. For information about the searched CASE
statement, see Oracle Database PL/SQL Language Reference.

Tip:

When you can use either a CASE statement or nested IF statements, use a
CASE statement—it is both more readable and more efficient.

Suppose that, if an employee is evaluated only once a year, you want the
EVAL_FREQUENCY function to suggest a salary increase, which depends on the
JOB_ID.

Change the EVAL_FREQUENCY function as shown in bold font in Example 5-5. (For
information about the procedures that prints the strings, DBMS_OUTPUT.PUT_LINE,
see Oracle Database PL/SQL Packages and Types Reference.)

Example 5-5 CASE Statement that Determines Which String to Print

FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
RETURN PLS_INTEGER

AS
h_date EMPLOYEES.HIRE_DATE%TYPE;
today EMPLOYEES.HIRE_DATE%TYPE;
eval_freq PLS_INTEGER;
j_id EMPLOYEES.JOB_ID%TYPE;
BEGIN

SELECT SYSDATE INTO today FROM DUAL;

SELECT HIRE_DATE, JOB_ID INTO h_date, j_id
FROM EMPLOYEES
WHERE EMPLOYEE_ID = eval_frequency.emp_id;

IF ((h_date + (INTERVAL "12" MONTH)) < today) THEN
eval_freq := 1;

CASE j_id

WHEN "PU_CLERK" THEN DBMS_OUTPUT.PUT_LINE(

"Consider 8% salary increase for employee # " || emp_id);
WHEN "SH_CLERK®" THEN DBMS_OUTPUT.PUT_LINE(

"Consider 7% salary increase for employee # " || emp_id);
WHEN "ST_CLERK" THEN DBMS_OUTPUT.PUT_LINE(

"Consider 6% salary increase for employee # " || emp_id);
WHEN "HR_REP® THEN DBMS_OUTPUT.PUT_LINE(

"Consider 5% salary increase for employee # " || emp_id);
WHEN "PR_REP" THEN DBMS_OUTPUT.PUT_LINE(

"Consider 5% salary increase for employee # " || emp_id);
WHEN "MK_REP® THEN DBMS_OUTPUT.PUT_LINE(

"Consider 4% salary increase for employee # " || emp_id);
ELSE DBMS_OUTPUT.PUT_LINE(

"Nothing to do for employee #" || emp_id);

5-25

Chapter 5
Controlling Program Flow

END CASE;
ELSE

eval_freq := 2;
END IF;

RETURN eval_freq;
END eval_frequency;

¢ See Also:

e "Using CASE Expressions in Queries"

e Oracle Database PL/SQL Language Reference for the syntax of the
CASE statement

e Oracle Database PL/SQL Language Reference for more information
about using the CASE statement

5.8.4 Using the FOR LOOP Statement

ORACLE

The FOR LOOP statement repeats a sequence of statements once for each integer in
the range lower_bound through upper_bound.

The syntax of the FOR LOORP is:

FOR counter IN | ower_bound. .upper_bound LOOP
statement [, statenent]...
END LOOP;

The statements between LOOP and END LOOP can use counter, but cannot change
its value.

Suppose that, instead of only suggesting a salary increase, you want the
EVAL_FREQUENCY function to report what the salary would be if it increased by
the suggested amount every year for five years.

Change the EVAL_FREQUENCY function as shown in bold font in Example 5-6. (For
information about the procedure that prints the strings, DBMS_OUTPUT.PUT_LINE, see
Oracle Database PL/SQL Packages and Types Reference.)

Example 5-6 FOR LOOP Statement that Computes Salary After Five Years

FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
RETURN PLS_INTEGER

AS
h_date EMPLOYEES .HIRE_DATE%TYPE;
today EMPLOYEES.HIRE_DATE%TYPE;
eval_freq PLS_INTEGER;
j_id EMPLOYEES.JOB_ID%TYPE;
sal EMPLOYEES . SALARY%TYPE;

sal_raise NUMBER(3,3) := 0;

BEGIN
SELECT SYSDATE INTO today FROM DUAL;

SELECT HIRE_DATE, JOB_ID, SALARY INTO h_date, j_id, sal
FROM EMPLOYEES

5-26

Chapter 5
Controlling Program Flow

WHERE EMPLOYEE_ID = eval_frequency.emp_id;

IF ((h_date + (INTERVAL "12" MONTH)) < today) THEN
eval_freq := 1;

CASE j_id
WHEN "PU_CLERK®" THEN sal_raise := 0.08;
WHEN "SH_CLERK®" THEN sal_raise := 0.07;
WHEN "ST_CLERK" THEN sal_raise := 0.06;
WHEN "HR_REP" THEN sal_raise := 0.05;
WHEN "PR_REP" THEN sal_raise := 0.05;
WHEN "MK_REP®" THEN sal_raise := 0.04;
ELSE NULL;

END CASE;

IF (sal_raise !'= 0) THEN
BEGIN
DBMS_OUTPUT.PUT_LINE("If salary " || sal || " increases by " ||
ROUND((sal_raise * 100),0) ||
"% each year for 5 years, it will be:");

FOR & IN 1..5 LOOP
sal := sal * (1 + sal_raise);
DBMS_OUTPUT.PUT_LINE(ROUND(sal, 2) || " after " || i || " year(s)");
END LOOP;
END;
END IF;

ELSE
eval_freq := 2;
END IF;

RETURN eval_freq;
END eval_frequency;

" See Also:
e Oracle Database PL/SQL Language Reference for the syntax of the
FOR LOOP statement

e Oracle Database PL/SQL Language Reference for more information
about using the FOR LOOP statement

5.8.5 Using the WHILE LOOP Statement

The WHILE LOOP statement repeats a sequence of statements while a condition is
TRUE.

The syntax of the WHILE LOOP statement is:

WHILE condi tion LOOP
statement [, statement]...
END LOOP;

ORACLE 5-27

ORACLE

Chapter 5
Controlling Program Flow

< Note:

If the statements between LOOP and END LOOP never cause condition to
become FALSE, then the WHILE LOOP statement runs indefinitely.

Suppose that the EVAL_FREQUENCY function uses the WHILE LOOP statement
instead of the FOR LOOP statement and ends after the proposed salary exceeds the
maximum salary for the JOB_ID.

Change the EVAL_FREQUENCY function as shown in bold font in Example 5-7. (For
information about the procedures that prints the strings, DBMS_OUTPUT.PUT_LINE,
see Oracle Database PL/SQL Packages and Types Reference.)

Example 5-7 WHILE LOOP Statement that Computes Salary to Maximum

FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
RETURN PLS_INTEGER

AS
h_date EMPLOYEES .HIRE_DATE%TYPE;
today EMPLOYEES .HIRE_DATE%TYPE;
eval_freq PLS_INTEGER;
j_id EMPLOYEES.JOB_ID%TYPE;
sal EMPLOYEES . SALARY%TYPE;

sal_raise NUMBER(3,3) := 0;
sal_max JOBS .MAX_SALARY%TYPE;

BEGIN
SELECT SYSDATE INTO today FROM DUAL;

SELECT HIRE_DATE, j.JOB_ID, SALARY, MAX_SALARY INTO h_date, j_id, sal, sal_max
FROM EMPLOYEES e, JOBS j
WHERE EMPLOYEE_ID = eval_frequency.emp_id AND JOB_ID = eval_frequency.j_id;

IF ((h_date + (INTERVAL "12" MONTH)) < today) THEN
eval_freq := 1;

CASE j_id
WHEN "PU_CLERK®" THEN sal_raise := 0.08;
WHEN "SH_CLERK®" THEN sal_raise := 0.07;
WHEN "ST_CLERK®" THEN sal_raise := 0.06;
WHEN "HR_REP® THEN sal_raise := 0.05;
WHEN "PR_REP® THEN sal_raise := 0.05;
WHEN “"MK_REP® THEN sal_raise := 0.04;
ELSE NULL;

END CASE;

IF (sal_raise !'= 0) THEN
BEGIN
DBMS_OUTPUT.PUT_LINE("If salary " || sal || " increases by " ||
ROUND((sal_raise * 100),0) ||
"% each year, it will be:");

WHILE sal <= sal_max LOOP

sal := sal * (1 + sal_raise);
DBMS_OUTPUT.PUT_LINE(ROUND(sal, 2));
END LOOP;

DBMS_OUTPUT.PUT_LINE("Maximum salary for this job is " || sal_max);

5-28

Chapter 5
Controlling Program Flow

END;
END IF;
ELSE
eval_freq := 2;
END IF;

RETURN eval_freq;
END eval_frequency;

¢ See Also:
e Oracle Database PL/SQL Language Reference for the syntax of the
WHILE LOOP statement

e Oracle Database PL/SQL Language Reference for more information
about using the WHILE LOOP statement

5.8.6 Using the Basic LOOP and EXIT WHEN Statements

ORACLE

The basic LOOP statement repeats a sequence of statements.
The syntax of the basic LOOP statement is:

LOOP
statement [, statement]...
END LOOP;

At least one statement must be an EXIT statement; otherwise, the LOOP statement
runs indefinitely.

The EXIT WHEN statement (the EXIT statement with its optional WHEN clause) exits
a loop when a condition is TRUE and transfers control to the end of the loop.

In the EVAL_FREQUENCY function, in the last iteration of the WHILE LOOP
statement, the last computed value usually exceeds the maximum salary.

Change the WHILE LOOP statement to a basic LOOP statement that includes an
EXIT WHEN statement, as in Example 5-8.

Example 5-8 Using the EXIT WHEN Statement

FUNCTION eval_frequency (emp_id IN EMPLOYEES.EMPLOYEE_ID%TYPE)
RETURN PLS_INTEGER

AS
h_date EMPLOYEES.HIRE_DATE%TYPE;
today EMPLOYEES.HIRE_DATE%TYPE;
eval_freq PLS_INTEGER;
j_id EMPLOYEES.JOB_ID%TYPE;
sal EMPLOYEES . SALARY%TYPE;

sal_raise NUMBER(3,3) := 0;
sal_max JOBS.MAX_SALARY%TYPE;

BEGIN
SELECT SYSDATE INTO today FROM DUAL;

SELECT HIRE_DATE, j.JOB_ID, SALARY, MAX_SALARY INTO h_date, j_id, sal, sal_max
FROM EMPLOYEES e, JOBS j

5-29

Chapter 5
Using Records and Cursors

WHERE EMPLOYEE_ID = eval_frequency.emp_id AND JOB_ID = eval_frequency.j_id;

IF ((h_date + (INTERVAL "12" MONTH)) < today) THEN
eval_freq := 1;

CASE j_id
WHEN "PU_CLERK" THEN sal_raise := 0.08;
WHEN "SH_CLERK®" THEN sal_raise := 0.07;
WHEN "ST_CLERK" THEN sal_raise := 0.06;
WHEN "HR_REP" THEN sal_raise := 0.05;
WHEN "PR_REP" THEN sal_raise := 0.05;
WHEN "MK_REP®" THEN sal_raise := 0.04;
ELSE NULL;

END CASE;

IF (sal_raise !'= 0) THEN
BEGIN
DBMS_OUTPUT.PUT_LINE("If salary " || sal || " increases by " ||
ROUND((sal_raise * 100),0) ||
"% each year, it will be:");

LOOP
sal := sal * (1 + sal_raise);
EXIT WHEN sal > sal_max;
DBMS_OUTPUT.PUT_LINE(ROUND(sal,2));
END LOOP;

DBMS_OUTPUT.PUT_LINE(*Maximum salary for this job is " || sal_max);
END;
END IF;
ELSE
eval_freq := 2;
END IF;

RETURN eval_freq;
END eval_frequency;

" See Also:

e Oracle Database PL/SQL Language Reference for the syntax of the
LOOP statement

e Oracle Database PL/SQL Language Reference for the syntax of the
EXIT statement

e Oracle Database PL/SQL Language Reference for more information
about using the LOOP and EXIT statements

5.9 Using Records and Cursors

You can store data values in records, and use a cursor as a pointer to a result set and
related processing information.

ORACLE 5-30

Chapter 5
Using Records and Cursors

¢ See Also:

Oracle Database PL/SQL Language Reference for more information about
records

5.9.1 About Records

A record is a PL/SQL composite variable that can store data values of different types.
You can treat Internal components (fields) like scalar variables. You can pass entire
records as subprogram parameters. Records are useful for holding data from table
rows, or from certain columns of table rows.

A record is a PL/SQL composite variable that can store data values of different
types, similar to a struct type in C, C++, or Java. The internal components of

a record are called fields. To access a record field, you use dot notation:
record_name.field_name.

You can treat record fields like scalar variables. You can also pass entire records as
subprogram parameters.

Records are useful for holding data from table rows, or f