
Oracle® Database
Database Upgrade Guide

21c
F17069-10
August 2021

Oracle Database Database Upgrade Guide, 21c

F17069-10

Copyright © 1996, 2021, Oracle and/or its affiliates.

Primary Author: Douglas Williams

Contributors: Frederick Alvarez, Mike Dietrich, Joseph Errede, Cindy Lim, Wei Lin , Byron Motta, Daniel
Overby Hansen, Benjamin Speckhard, Carol Tagliaferri, Hector Vieyra, Philip Yam, Zhihai Zhang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xix

Documentation Accessibility xix

Set Up Java Access Bridge to Implement Java Accessibility xx

Related Documentation xx

Conventions xx

1 Introduction to Upgrading Oracle Database

Oracle Database Releases That Support Direct Upgrade 1-1

Overview of Oracle Database Upgrade Tools and Processes 1-3

Definition of Terms Upgrading and Migrating 1-3

Upgrade and Data Migration Methods and Processes 1-3

Where to Find the Latest Information About Upgrading Oracle Database 1-4

Major Steps in the Upgrade Process for Oracle Database 1-5

Compatibility and Interoperability Between Oracle Database Releases 1-9

About Oracle Database Release Numbers 1-10

Convention for Referring to Release Numbers in Upgrade Topics 1-11

What Is Oracle Database Compatibility? 1-11

Understanding Oracle Database Compatibility 1-12

When to Set the COMPATIBLE Initialization Parameter in Oracle Database 1-12

About the COMPATIBLE Initialization Parameter in Oracle Database 1-13

Values for the COMPATIBLE Initialization Parameter in Oracle Database 1-15

About Downgrading and Compatibility for Upgrading Oracle Database 1-15

How the COMPATIBLE Initialization Parameter Operates in Oracle Database 1-16

Checking the Compatibility Level of Oracle Database 1-16

What Is Interoperability for Oracle Database Upgrades? 1-17

About Invalid Schema Objects and Database Upgrades 1-17

About Running Multiple Oracle Database Releases 1-18

Organizing Oracle Software with Optimal Flexible Architecture 1-18

Databases in Multiple Oracle Homes on Separate Computers 1-19

Databases in Multiple Oracle Homes on the Same Computer 1-19

About the Optimal Flexible Architecture Standard 1-20

iii

About Multiple Oracle Homes Support 1-20

About Converting Databases During Upgrades 1-21

Overview of Converting Databases During Upgrades 1-22

About Upgrading Using Standby Databases 1-24

Overview of Steps for Upgrading Oracle Database Using Oracle GoldenGate 1-24

Migrating From Standard Edition to Enterprise Edition of Oracle Database 1-25

Migrating from Enterprise Edition to Standard Edition of Oracle Database 1-27

Migrating from Oracle Database Express Edition (Oracle Database XE) to Oracle
Database 1-27

About Upgrading Platforms for a New Oracle Database Release 1-27

About Upgrading Your Operating System 1-28

Options for Transporting Data to a Different Operating System 1-28

About Image-Based Oracle Database Installation 1-29

2 Preparing to Upgrade Oracle Database

Tasks to Prepare for Oracle Database Upgrades 2-1

Become Familiar with New Oracle Database Features 2-2

Pre-Upgrade Information Check with AutoUpgrade 2-3

Review Deprecated and Desupported Features 2-3

Choose an Upgrade Method for Oracle Database 2-4

The AutoUpgrade Utility Method for Upgrading Oracle Database 2-4

The Replay Upgrade Method for Upgrading Oracle Database 2-5

The Graphical User Interface Method for Upgrading Oracle Database 2-5

The Manual, Command-Line Method for Upgrading Oracle Database 2-5

The Export/Import Method for Migrating Data When Upgrading Oracle Database 2-6

Choose a New Location for Oracle Home when Upgrading 2-7

Develop a Test Plan for Upgrading Oracle Database 2-7

Upgrade Testing 2-8

Minimal Testing 2-9

Functional Testing After Upgrades 2-9

High Availability Testing 2-9

Integration Testing to Ensure Applications are Compatible 2-9

Performance Testing an Upgraded Oracle Database 2-10

Volume and Load Stress Testing for Oracle Database Upgrades 2-13

Test Plan Guidelines for Oracle Database Upgrade Planning 2-14

Schema-Only Accounts and Upgrading EXPIRED Password Accounts 2-14

Back Up Files to Preserve Downgrade and Recovery Options 2-15

Prepare a Backup Strategy Before Upgrading Oracle Database 2-15

Oracle Data Guard Broker Configuration File and Downgrades 2-16

Exporting a Broker Configuration 2-16

Installing the New Oracle Database Software for Single Instance 2-17

iv

Installing the New Oracle Database Software for Oracle RAC 2-17

Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades 2-18

Release Updates and Requirements for Upgrading Oracle Database 2-19

Upgrades and Transparent Data Encryption 2-20

Recommendations for Oracle Net Services When Upgrading Oracle Database 2-21

When You Must Disable Oracle Database Vault 2-22

Create or Migrate Your Password File with ORAPWD 2-23

Understanding Password Case Sensitivity and Upgrades 2-23

Checking for Accounts Using Case-Insensitive Password Version 2-24

Resource and Password Parameter Updates for STIG and CIS Profiles 2-27

Check for Profile Scripts (glogin.sql and login.sql) 2-28

Running Upgrades with Read-Only Tablespaces 2-28

High Availability Options for Oracle Database 2-29

Options for High Availability with Oracle Database Standard Edition 2-30

Preparing to Upgrade Standard Edition Oracle RAC or Oracle RAC One Node 2-31

Requirements for Using Standard Edition High Availability With Oracle Databases 2-31

Moving Operating System Audit Records into the Unified Audit Trail 2-31

Non-CDB Upgrades and Oracle GoldenGate 2-32

Back Up Very Large Databases Before Using AutoUpgrade 2-33

Preparing the New Oracle Home for Upgrading 2-35

Prerequisites for Preparing Oracle Home on Windows 2-37

Performing Preupgrade Checks Using AutoUpgrade 2-37

About AutoUpgrade Utility System Checks 2-38

Example of Running AutoUpgrade Prechecks Using Analyze Mode 2-38

Checking the Upgrade Checks Overview File 2-40

Creating a Configuration File to Run AutoUpgrade Prechecks On a CDB 2-41

Running AutoUpgrade Fixups on the Earlier Release Oracle Database 2-42

Testing the Upgrade Process for Oracle Database 2-42

Example of Testing Upgrades Using Priority List Emulation 2-43

Upgrade Oracle Call Interface (OCI) and Precompiler Applications 2-45

Requirements for Upgrading Databases That Use Oracle Label Security and Oracle
Database Vault 2-45

DBUA, AutoUpgrade, and Oracle Database Vault 2-46

Granting the DV_PATCH_ADMIN Role to SYS for Oracle Database Vault 2-46

Back Up Oracle Database Before Upgrading 2-47

3 Upgrading Databases with Oracle Data Guard Standbys

Preparing for Database Rolling Upgrades Using Oracle Data Guard 3-2

Before You Patch or Upgrade the Oracle Database Software 3-3

Recovering After the NOLOGGING Clause Is Specified 3-4

Enable an Appropriate Logging Mode 3-4

v

Creating a Physical Standby Task 1: Create a Backup Copy of the Primary Database Data
Files 3-6

Creating a Physical Standby Task 2: Create a Control File for the Standby Database 3-6

Creating a Physical Standby Task 3: Create a Parameter File for the Standby Database 3-6

Upgrading Oracle Database with a Physical Standby Database in Place 3-9

Creating a Physical Standby Task 4: Copy Files from the Primary System to the Standby
System 3-10

Creating a Physical Standby Task 5: Set Up the Environment to Support the Standby
Database 3-11

Creating a Physical Standby Task 6: Start the Physical Standby Database 3-12

Creating a Physical Standby Task 7: Verify the Physical Standby Database Is Performing
Properly 3-13

4 Using AutoUpgrade for Oracle Database Upgrades

About Oracle Database AutoUpgrade 4-2

Examples of How to Use AutoUpgrade 4-3

AutoUpgrade with Source and Target Database Homes on Same Server (Typical) 4-4

AutoUpgrade with Source and Target Database Homes on Different Servers 4-4

AutoUpgrade Messages and Process Description Terms 4-5

Overview of AutoUpgrade Job IDs 4-5

Overview of AutoUpgrade Stages 4-5

Overview of AutoUpgrade Stage Operations and States 4-6

About AutoUpgrade Processing Modes 4-7

Preparations for Running AutoUpgrade Processing Modes 4-7

About the AutoUpgrade Analyze Processing Mode 4-8

About the AutoUpgrade Fixups Processing Mode 4-9

About the AutoUpgrade Deploy Processing Mode 4-10

About the AutoUpgrade Upgrade Processing Mode 4-11

Understanding AutoUpgrade Workflows and Stages 4-12

Understanding Non-CDB to PDB Upgrades with AutoUpgrade 4-14

Understanding Unplug-Plug Upgrades with AutoUpgrade 4-16

AutoUpgrade Command-Line Parameters and Options 4-19

AutoUpgrade Command-Line Syntax 4-20

Debug 4-22

Clear_recovery_data 4-23

Config 4-24

Config_Values 4-25

Console 4-28

Create_sample_file 4-30

Error_code 4-31

Mode 4-32

vi

Noconsole 4-33

Preupgrade 4-34

Settings 4-37

Version 4-37

Restore 4-38

Restore_on_fail 4-38

Zip 4-39

AutoUpgrade Utility Configuration Files 4-39

Global Parameters for the AutoUpgrade User Configuration File 4-40

Local Parameters for the AutoUpgrade Configuration File 4-45

Locally Modifiable Global Parameters for AutoUpgrade Configuration File 4-58

AutoUpgrade and Oracle Database Configuration Options 4-61

Non-CDB to PDB Upgrade Guidelines and Examples 4-62

AutoUpgrade Process Flow for Oracle Grid Infrastructure Managed Configurations 4-62

Oracle RAC Requirements for Upgrade with AutoUpgrade 4-64

Preparing for Oracle RAC Upgrades Using AutoUpgrade 4-64

AutoUpgrade and Oracle Data Guard 4-65

How AutoUpgrade Performs Oracle Data Guard Upgrades 4-65

Steps AutoUpgrade Completes for Oracle Data Guard Upgrades 4-66

Steps After the Primary Database is Upgraded 4-66

How to Run AutoUpgrade Using the Fast Deploy Option 4-67

AutoUpgrade Configuration File Examples 4-68

Updating the TDE Wallet Store Location During Upgrade Using AutoUpgrade 4-69

AutoUpgrade Configuration File with Two Database Entries 4-70

Standardizing Upgrades With AutoUpgrade Configuration File Entries 4-71

AutoUpgrade Configuration File for Incremental Upgrade of a Set of PDBs 4-73

How to Run AutoUpgrade in a Script or Batch job 4-73

AutoUpgrade before_action Local Parameter Example 4-74

AutoUpgrade Internal Settings Configuration File 4-77

AutoUpgrade Log File Structure 4-78

Enabling Full Deployments for AutoUpgrade 4-81

Examples of How to Use the AutoUpgrade Console 4-83

How to Override Default Fixups 4-83

Local Configuration File Parameter Fixups Checklist Example 4-88

Proper Management of AutoUpgrade Database Changes 4-88

AutoUpgrade and Microsoft Windows ACLs and CLIs 4-89

5 Upgrading Oracle Database Using Parallel Upgrade Utility or Replay
Upgrade

Upgrading Manually with Parallel Upgrade Utility 5-1

vii

About the Parallel Upgrade Utility for Oracle Database (CATCTL.PL and
DBUPGRADE) 5-2

General Steps for Running the Parallel Upgrade Utility 5-3

Parallel Upgrade Utility (catctl.pl) Parameters 5-5

Example of Using the Parallel Upgrade Utility 5-8

Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases 5-9

About Oracle Multitenant Oracle Database Upgrades 5-10

Coordinate Upgrades of Proxy PDBs with Multitenant Upgrades 5-11

Manually Upgrading a Multitenant Container Oracle Database (CDB) 5-11

About Upgrading PDBs Using the Parallel Upgrade Utility with Priority Lists 5-17

About PDB Upgrades Using Priority Lists, Inclusion Lists, and Exclusion Lists 5-19

Oracle Label Security Integration in a Multitenant Environment 5-24

Upgrading Multitenant Architecture In Parallel 5-25

About Upgrading Pluggable Databases (PDBs) In Parallel 5-25

Upgrading Multitenant Container Databases In Parallel 5-28

Upgrading Multitenant Architecture Sequentially Using Unplug-Plug 5-31

About Upgrading Pluggable Databases (PDBs) Sequentially 5-32

Unplugging the Earlier Release PDB from the Earlier Release CDB 5-33

Plugging in the Earlier Release PDB to the Later Release CDB 5-34

Upgrading the Earlier Release PDB to the Later Release 5-35

Use Inclusion or Exclusion Lists for PDB Upgrades 5-36

About Transporting and Upgrading a Database (Full Transportable Export/Import) 5-36

Upgrading Oracle Database Releases Using Replay Upgrade 5-37

Upgrading CDBs or PDBs Using Replay Upgrade 5-37

How to Disable or Enable Replay Upgrade 5-38

About Upgrading Non-CDBs to PDBs Using Replay Upgrade 5-39

Adopting and Upgrading a Non-CDB as a PDB with Replay Upgrade 5-39

How the Replay Upgrade Procedure is Enabled or Disabled on CDBs and PDBs 5-42

Failure and Recovery Scenarios for Replay Upgrade Processes 5-42

Manual Non-CDB Oracle Database Release Upgrades to Multitenant Architecture 5-43

About Adopting a Non-CDB as a PDB Using a PDB Plugin 5-43

Adopting a Non-CDB as a PDB 5-44

Oracle Label Security Integration in a Multitenant Environment 5-47

Plugging In an Unplugged PDB 5-47

Manually Upgrading Non-CDB Architecture Oracle Databases 5-48

Upgrading Oracle Database Using Fleet Patching and Provisioning 5-53

Rerunning Upgrades for Oracle Database 5-54

About Rerunning Upgrades for Oracle Database 5-54

Rerunning Upgrades with the Upgrade (catctl.pl) Script 5-55

Options for Rerunning the Upgrade for Multitenant Databases (CDBs) 5-58

Rerun the Entire Upgrade for the CDB 5-58

viii

Rerun the Upgrade Only on Specified PDBs 5-58

Rerun the Upgrade While Other PDBs Are Online 5-60

Rerun the Upgrade Using an Inclusion List to Specify a CDB or PDBs 5-62

Restarting the Upgrade from a Specific Phase that Failed Using -p 5-64

Reviewing CDB Log Files for Failed Phases 5-64

Procedure for Finding and Restarting Multitenant Upgrades from a Failed Phase 5-64

6 Troubleshooting the Upgrade for Oracle Database

Error Upgrading Non-CDB Oracle Databases 6-2

Fixed View Queries Restriction When Starting Oracle Database in Upgrade Mode 6-3

Resolving PDBs in Restricted Mode After Successful Upgrades 6-3

Invalid Object Warnings and DBA Registry Errors 6-4

Invalid Objects and Premature Use of Postupgrade Tool 6-4

Resolving Oracle Database Upgrade Script Termination Errors 6-5

Troubleshooting Causes of Resource Limits Errors while Upgrading Oracle Database 6-5

Resolving SQL*Plus Edition Session Startup Error for Oracle Database 6-7

Error ORA-00020 Maximum Number of Processes Exceeded When Running utlrp.sql 6-7

Fixing ORA-28365: Wallet Is Not Open Error 6-7

Resolving issues with view CDB_JAVA_POLICY 6-8

Continuing Upgrades After Server Restarts (ADVM/ACFS Driver Error) 6-8

Component Status and Upgrades 6-9

Understanding Component Status With the Post-Upgrade Status Tool 6-9

Component OPTION OFF Status and Upgrades 6-10

Example of an Upgrade Summary Report 6-11

Standard Edition Starter Database and Components with Status OPTION OFF 6-14

Adjusting Oracle ASM Password File Location After Upgrade 6-14

Fixing "Warning XDB Now Invalid" Errors with Pluggable Database Upgrades 6-14

Fixing ORA-27248: sys.dra_reevaluate_open_failures is running 6-15

Fixing Failed Upgrades Where Only Datapatch Fails 6-15

Fixing Failures to Complete Registration of Listeners with DBUA 6-16

7 Postupgrade Tasks for Oracle Database

Check the Upgrade With Post-Upgrade Status Tool 7-1

How to Show the Current State of the Oracle Data Dictionary 7-1

Required Tasks to Complete After Upgrading Oracle Database 7-2

Setting Environment Variables on Linux and Unix Systems After Manual Upgrades 7-4

Recompiling All Invalid Objects 7-4

Track Invalid Object Recompilation Progress 7-5

Update Listener Files Location on Oracle RAC Cluster Member Upgrades 7-6

ix

Setting oratab and Scripts to Point to the New Oracle Location After Upgrading Oracle
Database 7-7

Check PL/SQL Packages and Dependent Procedures 7-7

Upgrading Tables Dependent on Oracle-Maintained Types 7-8

Upgrading Statistics Tables Created by the DBMS_STATS Package After Upgrading
Oracle Database 7-9

Configuring the FTP and HTTP Ports and HTTP Authentication for Oracle XML DB 7-9

Install Oracle Text Supplied Knowledge Bases After Upgrading Oracle Database 7-10

Drop Earlier Release Oracle Application Express 7-10

Replace the DEMO Directory in Read-Only Oracle Homes 7-11

Configure Access Control Lists (ACLs) to External Network Services 7-13

Enabling Oracle Database Vault After Upgrading Oracle Database 7-13

Upgrading Oracle Database Without Disabling Oracle Database Vault 7-13

Postupgrade Scenarios with Oracle Database Vault 7-14

Check for the SQLNET.ALLOWED_LOGON_VERSION Parameter Behavior 7-14

Recommended and Best Practices to Complete After Upgrading Oracle Database 7-15

Back Up the Database 7-17

Run AutoUpgrade Postupgrade Checks 7-17

Gathering Dictionary Statistics After Upgrading 7-17

Regathering Fixed Objects Statistics with DBMS_STATS 7-18

Reset Passwords to Enforce Case-Sensitivity 7-19

Finding and Resetting User Passwords That Use the 10G Password Version 7-20

Understand Oracle Grid Infrastructure, Oracle ASM, and Oracle Clusterware 7-22

Oracle Grid Infrastructure Installation and Upgrade and Oracle ASM 7-23

Add New Features as Appropriate 7-23

Develop New Administrative Procedures as Needed 7-23

Migrating From Rollback Segments To Automatic Undo Mode 7-24

Migrating Tables from the LONG Data Type to the LOB Data Type 7-24

Migrate Your Upgraded Oracle Databases to Use Unified Auditing 7-25

Understanding Unified Auditing Migration Process for Oracle Database 7-26

Migrating to Unified Auditing for Oracle Database 7-27

About Managing Earlier Audit Records After You Migrate to Unified Auditing 7-29

Removing the Unified Auditing Functionality 7-29

Obtaining Documentation References if You Choose Not to Use Unified Auditing 7-30

Identify Oracle Text Indexes for Rebuilds 7-30

Dropping and Recreating DBMS_SCHEDULER Jobs 7-31

Transfer Unified Audit Records After the Upgrade 7-31

About Transferring Unified Audit Records After an Upgrade 7-31

Transferring Unified Audit Records After an Upgrade 7-32

About Recovery Catalog Upgrade After Upgrading Oracle Database 7-33

Enabling Disabled Release Update Bug Fixes in the Upgraded Database 7-33

About Testing the Upgraded Production Oracle Database 7-34

x

Upgrading the Time Zone File Version After Upgrading Oracle Database 7-34

Recommended Tasks After Upgrading an Oracle RAC Database 7-35

Recommended Tasks After Upgrading Oracle ASM 7-35

Create a Shared Password File In the ASM Diskgroup 7-36

Reset Oracle ASM Passwords to Enforce Case-Sensitivity 7-36

Advancing the Oracle ASM and Oracle Database Disk Group Compatibility 7-36

Set Up Oracle ASM Preferred Read Failure Groups 7-37

Recommended Tasks After Upgrading Oracle Database Express Edition 7-37

Tasks to Complete Only After Manually Upgrading Oracle Database 7-38

Changing Passwords for Oracle Supplied Accounts 7-38

Migrating Your Initialization Parameter File to a Server Parameter File 7-39

Identifying and Copying Oracle Text Files to a New Oracle Home 7-40

Upgrading the Oracle Clusterware Configuration 7-40

Adjust the Initialization Parameter File for the New Release 7-40

Setting the COMPATIBLE Initialization Parameter After Upgrade 7-41

Adjust TNSNAMES.ORA and LISTENER Parameters After Upgrade 7-42

Set CLUSTER_DATABASE Initialization Parameter For Oracle RAC After Upgrade 7-42

8 Upgrading Applications After Upgrading Oracle Database

Overview of Upgrading Applications on a New Oracle Database Release 8-2

Compatibility Issues for Applications on Different Releases of Oracle Database 8-2

Software Upgrades and Client and Server Configurations for Oracle Database 8-2

Possible Client and Server Configurations for Oracle Database 8-3

Compatibility Rules for Applications When Upgrading Oracle Database Client or Server
Software 8-3

Rules for Upgrading Oracle Database Server Software 8-4

If You Do Not Change the Client Environment, Then You Are Not Required to
Relink 8-4

Applications Can Run Against Newer or Older Oracle Database Server Releases 8-4

Upgrading the Oracle Database Client Software 8-5

About Image-Based Oracle Database Client Installation 8-5

About Linking Applications with Newer Libraries 8-6

Statically Linked Applications Must Always Be Relinked 8-6

About Relinking Dynamically Linked Applications 8-6

About Upgrading Precompiler and OCI Applications in Oracle Database 8-7

Schema-Only Accounts and Upgrading EXPIRED Password Accounts 8-7

About Upgrading Options for Oracle Precompiler and OCI Applications 8-8

Option 1: Leave the Application Unchanged 8-8

Option 2: Precompile or Compile the Application Using the New Software 8-8

Option 3: Change the Application Code to Use New Oracle Database Features 8-9

Changing Oracle Precompiler and OCI Application Development Environments 8-9

xi

Changing Precompiler Applications 8-10

Changing OCI Applications 8-10

Upgrading SQL*Plus Scripts and PL/SQL after Upgrading Oracle Database 8-10

About Upgrading Oracle Forms or Oracle Developer Applications 8-10

9 Downgrading Oracle Database to an Earlier Release

Supported Releases for Downgrading Oracle Database 9-1

Check for Incompatibilities When Downgrading Oracle Database 9-3

Perform a Full Backup Before Downgrading Oracle Database 9-3

Performing Required Predowngrade Steps for Oracle Database 9-4

Using Scripts to Downgrade Oracle Database 21c 9-9

Using Dbdowngrade to Downgrade Oracle Databases To an Earlier Release 9-9

Downgrading a CDB or Non-CDB Oracle Database Manually with catdwgrd.sql 9-13

Downgrading a Single Pluggable Oracle Database (PDB) 9-20

Downgrading PDBs That Contain Oracle Application Express 9-22

Post-Downgrade Tasks for Oracle Database Downgrades 9-22

Reapply Release Update and Other Patches After Downgrade 9-23

Re-enabling Oracle Database Vault after Downgrading Oracle Database 9-23

Restoring the Configuration for Oracle Clusterware 9-24

Restoring Oracle Enterprise Manager after Downgrading Oracle Database 9-24

Requirements for Restoring Oracle Enterprise Manager After Downgrading 9-24

Running EMCA to Restore Oracle Enterprise Manager After Downgrading 9-25

Running the emdwgrd utility to restore Enterprise Manager Database Control 9-27

Restoring Oracle Application Express to the Earlier Release 9-28

Gathering Dictionary Statistics After Downgrading 9-29

Regathering Fixed Object Statistics After Downgrading 9-29

Regathering Stale CBO Statistics After Downgrade 9-30

Troubleshooting the Downgrade of Oracle Database 9-31

Errors Downgrading Oracle Database Components with catdwgrd.sql Script 9-31

Downgrading Oracle Grid Infrastructure (Oracle Restart) After Successful or Failed
Upgrade 9-34

Errors Downgrading Databases with Oracle Messaging Gateway 9-34

10

Behavior Changes, Deprecated and Desupported Features for Oracle
Database

About Deprecated and Desupported Status 10-1

Behavior Changes, Deprecations and Desupports in Oracle Database 21c 10-1

Behavior Changes for Oracle Database 21c Upgrade Planning 10-2

About Read-Only Oracle Homes 10-2

Multitenant Upgrades Only in Oracle Database 21c 10-3

xii

Logical Standby and New Data Types 10-3

Relocation of HR Sample Schema 10-3

Manage DRCP on PDBs 10-4

Deprecated Features in Oracle Database 21c 10-4

Deprecation of FILE_DATASTORE Type 10-6

Deprecation of URL_DATASTORE Text Type 10-6

Deprecation of AUTO OPTIMIZE Framework 10-6

Deprecation of CTXFILTERCACHE Query Operator 10-7

Deprecation of Policy-Managed Databases 10-7

Deprecation of Traditional Auditing 10-7

Deprecation of Older Encryption Algorithms 10-7

Deprecation of Cluster Domain - Domain Services Cluster 10-8

Deprecation of Enterprise User Security (EUS) User Migration Utility 10-8

Logical Standby and New Data Types 10-8

Deprecation of Sharded Queues 10-8

Deprecation of MySQL Client Library Driver for Oracle 10-9

Deprecation of TLS 1.0 and 1.1 Transport Layer Security 10-9

Deprecation of Unix Crypt (or MD5crypt) Password Verifier 10-9

Deprecation of ODP.NET OracleConfiguration.DirectoryType Property 10-9

Deprecation of Weaker Encryption Key Strengths 10-9

Deprecation of DBSNMP Packages for Adaptive Thresholds Feature 10-10

Deprecation of Oracle GoldenGate Replication for Oracle Sharding High
Availability 10-10

Deprecation of Anonymous Cipher Suites with Outbound TLS Connections 10-10

Deprecation of the KERBEROS5PRE Adapter 10-11

Deprecation of Oracle Wallet Manager 10-11

Deprecation of Oracle Enterprise Manager Database Express 10-11

Deprecation of SHA-1 use for SQLNET and DBMS_CRYPTO 10-11

Deprecation of Repository Events 10-11

Deprecation of Service Attribute Value SESSION_STATE_CONSISTENCY =
STATIC 10-12

Deprecation of ACFSUTIL REPL REVERSE 10-12

Deprecation of Oracle OLAP 10-12

Deprecated Views in Oracle Database 21c 10-13

Deprecation of Traditional Auditing Views 10-13

Deprecated Parameters in Oracle Database 21c 10-14

Deprecation of Traditional Auditing Initialization Parameters 10-14

Desupported Features in Oracle Database 21c 10-14

Desupport of DBMS_OBFUSCATION_TOOLKIT Package 10-16

Desupport of Several XML Database (XDB) features 10-16

Desupport of DBMS_LOB.LOADFROMFILE and LOB Buffering 10-17

Desupport of Oracle Data Guard Broker Properties and Logical Standby 10-17

xiii

Desupport of DBMS_CRYPTO_TOOLKIT_TYPES and DBMS_CRYPTO_TOOLKIT 10-18

Desupport of Non-CDB Oracle Databases 10-18

Desupport of Cluster Domain Member Clusters 10-18

Desupport of Unicode Collation Algorithm (UCA) 6.1 Collations 10-18

Desupport of ACFS on Microsoft Windows 10-19

Desupport of Oracle ACFS Security (Vault) and ACFS Auditing 10-19

Desupport of Oracle ACFS on Member Clusters (ACFS Remote) 10-19

Desupport of ACFS Encryption on Solaris and Windows 10-19

Desupport of ACFS Replication REPV1 10-19

Desupport of Vendor Clusterware Integration with Oracle Clusterware 10-20

Desupport of VERIFY_FUNCTION and VERIFY_FUNCTION_11G 10-20

Desupport of Deprecated Oracle Database Vault Roles 10-20

Desupport of Anonymous RC4 Cipher Suite 10-20

Desupport of Adobe Flash-Based Oracle Enterprise Manager Express 10-20

Desupport of Intelligent Data Placement (IDP) 10-21

Desupport of XML DB Content Connector 10-21

Desupport of DBMS_XMLSAVE 10-21

Desupport of DBMS_XMLQUERY 10-21

Desupport of FIPS Protect and Process Strength 0 10-21

Desupport of PDB Flat File Dictionary Dumps 10-21

Desupport of Oracle Fail Safe 10-22

Desupported Initialization Parameters in Oracle Database 21c 10-22

Desupport of UNIFIED_AUDIT_SGA_QUEUE_SIZE 10-22

Desupport of IGNORECASE Parameter for Passwords 10-22

Desupport of DISABLE_DIRECTORY_LINK_CHECK 10-23

Desupport of REMOTE_OS_AUTHENT Parameter 10-23

Desupport of SEC_CASE_SENSITIVE_LOGON 10-23

Behavior Changes, Deprecations and Desupports in Oracle Database 19c 10-23

Behavior Changes for Oracle Database 19c Upgrade Planning 10-24

Changes to Oracle Data Guard Properties Management 10-24

Rapid Home Provisioning (RHP) Name Change 10-25

Resupport of Direct File Placement for OCR and Voting Disks 10-25

Optional Install for the Grid Infrastructure Management Repository 10-26

Support for DBMS_JOB 10-26

About Standard Edition High Availability 10-27

Manage "Installed but Disabled" Module Bug Fixes with DBMS_OPTIM_BUNDLE 10-27

Deprecated Features in Oracle Database 19c 10-27

Oracle Data Guard Broker Deprecated Properties 10-29

Oracle Data Guard Logical Standby Properties Deprecated 10-29

Deprecation of ASMCMD PWCREATE On Command Line 10-30

Deprecation of Addnode Script 10-30

xiv

Deprecation of clone.pl Script 10-30

Deprecation of Oracle Fail Safe 10-31

Deprecation of GDSCTL Operating System Command-Line Password Resets 10-31

Deprecation of Oracle Enterprise Manager Express 10-31

Deprecation of DV_REALM_OWNER Role 10-31

Deprecation of DV_REALM_RESOURCE Role 10-32

Deprecation of DV_PUBLIC Role 10-32

Deprecation of Oracle ACFS Replication Protocol REPV1 10-32

Deprecation of Oracle ACFS Encryption on Solaris and Windows 10-32

Deprecation of Oracle ACFS on Windows 10-32

Deprecation of Oracle ACFS Security (Vault) and ACFS Auditing 10-33

Deprecation of Oracle ACFS on Member Clusters (ACFS Remote) 10-33

Deprecation of Cluster Domain - Member Clusters 10-33

Deprecation of Vendor Clusterware Integration with Oracle Clusterware 10-33

Deprecated Initialization Parameters in Oracle Database 19c 10-34

CLUSTER_DATABASE_INSTANCES Initialization Parameter Deprecated 10-34

Deprecation of SQLNET.ENCRYPTION_WALLET_LOCATION Parameter 10-34

Deprecation of the SERVICE_NAMES Initialization Parameter 10-35

Desupported Features in Oracle Database 19c 10-35

Desupport of Oracle Data Provider for .NET Promotable Transaction Setting 10-36

Desupport of Oracle Multimedia 10-36

Desupport of the CONTINUOUS_MINE feature of LogMiner 10-36

Desupport of Extended Datatype Support (EDS) 10-36

Data Guard Broker MaxConnections Property Desupported 10-37

Desupport of Leaf Nodes in Flex Cluster Architecture 10-37

Desupport of Oracle Streams 10-37

Desupport of PRODUCT_USER_PROFILE Table 10-37

Desupport of Oracle Real Application Clusters for Standard Edition 2 (SE2)
Database Edition 10-37

Desupported Parameters in Oracle Database 19c 10-38

EXAFUSION_ENABLED Initialization Parameter Desupported 10-38

MAX_CONNECTIONS attribute of LOG_ARCHIVE_DEST_n Desupported 10-38

Desupport of O7_DICTIONARY_ACCESS 10-38

Desupport of OPTIMIZE_PROGRESS_TABLE Parameter 10-39

Behavior Changes, Deprecations and Desupports in Oracle Database 18c 10-39

Behavior Changes for Oracle Database 18c Upgrade Planning 10-39

Simplified Image-Based Oracle Database Installation 10-40

Support Indexing of JSON Key Names Longer Than 64 Characters 10-41

Upgrading Existing Databases is Replaced With Image Installations 10-41

About RPM-Based Oracle Database Installation 10-41

Token Limitations for Oracle Text Indexes 10-41

xv

Changes to /ALL/USER/DBA User View and PL/SQL External Libraries 10-42

Symbolic Links and UTL_FILE 10-45

Deprecation of Direct Registration of Listeners with DBCA 10-46

UNIFORM_LOG_TIMESTAMP_FORMAT Changes in INIT.ORA 10-46

Deprecated Features in Oracle Database 18c 10-46

Data Guard MAX_CONNECTIONS Attribute is Deprecated 10-48

Extended Datatype Support (EDS) is Deprecated 10-48

GET_* Functions Deprecated in the DBMS_DATA_MINING Package 10-48

Package DBMS_XMLQUERY is deprecated 10-48

Package DBMS_XMLSAVE is Deprecated 10-49

Deprecated Columns in Oracle Label Security Views 10-49

Returning JSON True or False Values using NUMBER is Deprecated 10-49

Deprecation of MAIL_FILTER in Oracle Text 10-50

Deprecation of asmcmd showversion Option 10-50

Deprecation of NEWS_SECTION_GROUP in Oracle Text 10-50

Oracle Net Services Support for SDP is Deprecated 10-50

Deprecation of Flex Cluster (Hub/Leaf) Architecture 10-50

Deprecation of PRODUCT_USER_PROFILE Table 10-50

Desupported Features in Oracle Database 18c 10-51

Oracle Administration Assistant for Windows is Desupported 10-51

Oracle Multimedia DICOM Desupported Features 10-51

Oracle Multimedia Java Client Classes Desupported 10-52

Oracle XML DB Desupported Features 10-52

ODP.NET, Managed Driver - Distributed Transaction DLL Desupported 10-54

Data Guard Broker DGMGRL ALTER Syntax is Desupported 10-54

Desupport of CRSUSER on Microsoft Windows Systems 10-54

Desupported Initialization Parameters in Oracle Database 18c 10-55

Desupport of STANDBY_ARCHIVE_DEST Initialization Parameter 10-55

Desupport of UTL_FILE_DIR Initialization Parameter 10-55

Deprecation of Oracle Multimedia 10-56

Terminal Release of Oracle Streams 10-56

Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2) 10-56

Behavior Changes in Oracle Database 12c Release 2 (12.2) 10-56

Initialization Parameter Default Changes in Oracle Database 12c Release 2 (12.2) 10-57

Database Upgrade Assistant (DBUA) Enhancements and Changes 10-58

Enhancements to Oracle Data Guard Broker and Rolling Upgrades 10-59

About Changes in Default SGA Permissions for Oracle Database 10-60

Network Access Control Lists and Upgrade to Oracle Database 12c 10-60

Parallel Upgrade Utility Batch Scripts 10-61

Unified Auditing AUDIT_ADMIN and AUDIT_VIEWER Roles Changes 10-61

Oracle Update Batching Batch Size Settings Disabled 10-62

xvi

About Upgrading Tables Dependent on Oracle-Maintained Types 10-62

Case-Insensitive Passwords and ORA-1017 Invalid Username or Password 10-63

About Deploying Oracle Grid Infrastructure Using Oracle Fleet Patching and
Provisioning 10-64

Restrictions Using Zero Data Loss Recovery Appliance Release 12.1 Backups 10-66

Client and Foreground Server Process Memory Changes 10-66

Deprecated Initialization Parameters in Oracle Database 12c Release 2 (12.2) 10-66

Deprecated Features in Oracle Database 12c Release 2 (12.2) 10-67

Deprecation of ALTER TYPE REPLACE 10-69

Deprecation of configToolAllCommands Script 10-69

Deprecation of DBMS_DEBUG Package 10-69

Deprecation of Intelligent Data Placement (IDC) 10-69

Deprecation of CONTINUOUS_MINE Option 10-70

Deprecation of Non-CDB Architecture 10-70

Deprecation of Oracle Administration Assistant for Windows 10-70

Deprecation of Oracle Data Provider for .NET PromotableTransaction Setting 10-70

Deprecation of oracle.jdbc.OracleConnection.unwrap() 10-70

Deprecation of oracle.jdbc.rowset Package 10-71

Deprecation of oracle.sql.DatumWithConnection Classes 10-71

Deprecation of Oracle Multimedia Java APIs 10-71

Deprecation of Oracle Multimedia Support for DICOM 10-72

Deprecation of Multimedia SQL/MM Still Image Standard Support 10-72

Deprecation of Unicode Collation Algorithm (UCA) 6.1 Collations 10-72

Deprecation of UNIFIED_AUDIT_SGA_QUEUE_SIZE 10-72

Deprecation of VERIFY_FUNCTION and VERIFY_FUNCTION_11G 10-72

Deprecation of V$MANAGED_STANDBY 10-73

Deprecation of Some XML DB Functions 10-73

Deprecated Features for Oracle XML Database 10-74

Desupported Initialization Parameters in Oracle Database 12c Release 2 (12.2) 10-76

Desupported Features in Oracle Database 12c Release 2 (12.2) 10-77

Desupport of Advanced Replication 10-78

Desupport of Direct File System Placement for OCR and Voting Files 10-78

Desupport of JPublisher 10-79

Desupported Oracle Data Provider for .NET APIs for Transaction Guard 10-79

Desupported Views in Oracle Database 12c Release 2 (12.2) 10-79

SQLJ Support Inside Oracle Database 10-80

Desupport of Some XML DB Features 10-80

A Oracle Database Upgrade Utilities

Scripts for Upgrading Oracle Database A-1

Pre-Upgrade Information Tool and AutoUpgrade Preupgrade A-3

xvii

Using AutoUpgrade To Obtain Pre-Upgrade Information Tool Checks A-3

Examples of Preupgrade and Postupgrade Checks A-4

B Upgrading with Oracle Database Upgrade Assistant (DBUA)

Requirements for Using DBUA B-1

About Stopping DBUA When Upgrading B-3

How DBUA Processes the Upgrade for Oracle Database B-3

Upgrade Scripts Started by DBUA B-3

Using DBUA to Upgrade the Database on Linux, Unix, and Windows Systems B-4

Moving a Database from an Existing Oracle Home B-10

Using DBUA in Silent Mode to Upgrade Oracle Database B-11

Running DBUA in Silent Mode B-11

DBUA Command-Line Syntax for Active and Silent Mode B-11

Running DBUA with Different ORACLE_HOME Owner B-15

Migrating from Oracle ACFS to Alternative Storage Before Using DBUA B-16

C AutoUpgrade Error Messages

Index

xviii

Preface

These topics provide information about the scope of these contents for upgrading plans and
procedures.

This book guides you through the process of planning and executing Oracle Database
upgrades. In addition, this manual provides information about compatibility, upgrading
applications, and important changes in the new Oracle Database release, such as
initialization parameter changes and data dictionary changes.

Oracle Database Upgrade Guide contains information that describes the features and
functions of Oracle Database (also known as the standard edition) and Oracle Database
Enterprise Edition products. Oracle Database and Oracle Database Enterprise Edition have
the same basic features. However, several advanced features are available only with Oracle
Database Enterprise Edition. Some of these are optional. For example, to use application
failover, you must have the Enterprise Edition with the Oracle Real Application Clusters
option.

• Audience

• Documentation Accessibility

• Set Up Java Access Bridge to Implement Java Accessibility
Install Java Access Bridge so that assistive technologies on Microsoft Windows systems
can use the Java Accessibility API.

• Related Documentation

• Conventions

Audience
Oracle Database Upgrade Guide is intended for database administrators (DBAs), application
developers, security administrators, system operators, and anyone who plans or performs
Oracle Database upgrades.

To use this document, you must be familiar with the following information:

• Relational database concepts

• Your current Oracle Database release

• Your operating system environment

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

xix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Set Up Java Access Bridge to Implement Java Accessibility
Install Java Access Bridge so that assistive technologies on Microsoft Windows
systems can use the Java Accessibility API.

Java Access Bridge is a technology that enables Java applications and applets that
implement the Java Accessibility API to be visible to assistive technologies on
Microsoft Windows systems.

Refer to Java Platform, Standard Edition Accessibility Guide for information about the
minimum supported versions of assistive technologies required to use Java Access
Bridge. Also refer to this guide to obtain installation and testing instructions, and
instructions for how to use Java Access Bridge.

Related Topics

• Java Platform, Standard Edition Java Accessibility Guide

Related Documentation
Review this documentation list for additional information.

• Oracle Database Concepts for a comprehensive introduction to the concepts and
terminology used in this manual

• Oracle Database Administrator’s Guide for information about administering Oracle
Database

• Learning Database New Features for information about new features in this
relaese

• Oracle Database SQL Language Reference for information on Oracle Database
SQL commands and functions

• Oracle Database Utilities for information about utilities bundled with Oracle
Database

• Oracle Database Net Services Administrator's Guide for information about Oracle
Net Services

Many of the examples in this guide use the sample schemas, installed by default when
you select the Basic Installation option with an Oracle Database installation. For
information on how these schemas are created and how you can use them, refer to
the following guide:

Oracle Database Sample Schemas

Conventions
The following text conventions are used in this document:

Preface

xx

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xxi

1
Introduction to Upgrading Oracle Database

Oracle provides upgrade options and strategies that are designed for your database
environment, and an array of tools that automate the Oracle Database upgrade process.

• Oracle Database Releases That Support Direct Upgrade
Review the supported options for direct upgrades to Oracle Database 21c.

• Overview of Oracle Database Upgrade Tools and Processes
Review these topics to understand Oracle Database terms, tools and processes.

• Major Steps in the Upgrade Process for Oracle Database
Oracle Database upgrades consist of six major steps.

• Compatibility and Interoperability Between Oracle Database Releases
Learn how to understand and avoid compatibility and interoperability issues that can
occur because of differences in Oracle Database releases.

• About Running Multiple Oracle Database Releases
To run multiple Oracle Database releases at the same time, follow Optimal Flexible
Architecture (OFA) standards.

• About Converting Databases During Upgrades
Review these topics to determine which is the best path for you to select to upgrade
Oracle Databases.

• About Upgrading Platforms for a New Oracle Database Release
Review these topics if you upgrade your operating system or hardware for a new Oracle
Database release.

• About Image-Based Oracle Database Installation
Understand image-based installation to simplify installation and configuration of Oracle
Database software.

Oracle Database Releases That Support Direct Upgrade
Review the supported options for direct upgrades to Oracle Database 21c.

You can perform a direct upgrade to the new release from the following releases:

• 19c

• 18c

• 12c Release 2 (12.2)

The path that you must take to upgrade to the latest Oracle Database release depends on
the release number of your current database.

If your current Oracle Database is a release earlier than release 12.2, then you cannot
directly upgrade your Oracle Database to the latest release. In this case, you are required to
upgrade to an intermediate release before upgrading to Oracle Database 21c.

If you cannot carry out a direct upgrade, then carry out an upgrade to the most recent release
where direct upgrades are supported.

1-1

Note:

For any multi-step upgrade, if you must carry out two upgrades to upgrade to
the current release, then you must run the preupgrade script twice: First,
complete an upgrade to an intermediate upgrade release that is supported
for direct upgrade to the target upgrade release. Second, complete the
upgrade for the target upgrade release.

For example, if the database from which you are upgrading is running Oracle
Database 11g Release 2 (11.2) then to upgrade to Oracle Database 21c,
follow these steps:

1. Upgrade Release 11.2 to release 12.2, using the instructions in Oracle
Database Upgrade Guide 12c Release 2 (12.2), including running the
preupgrade script for 12.2.

2. Upgrade Oracle Database 12c Release 2 (12.2) directly to Oracle
Database 21c. Use the instructions in this book, Oracle Database
Upgrade Guide, including running the preupgrade script for Oracle
Database 21c.

The following table shows the required upgrade path for each release of Oracle
Database. Use the upgrade path and the specified documentation to perform an
intermediate upgrade of your database before fully upgrading to Oracle Database 21c.

Table 1-1 Examples of Upgrade Paths for Oracle Database 21c

Current Release Upgrade Options

19 (all releases),
18 (all releases),
12.2.0.1

Direct upgrade is supported. Perform the upgrade using the current
Oracle Database Upgrade Guide, which is this guide.

12.1.0.2.

12.1.0.1

11.2.0.1,
11.2.0.2,
11.2.0.3, 11.2.0.4

11.1.0.6, 11.1.0.7

10.2 or earlier
releases

Direct upgrade to Oracle Database 21c is not supported.
Solution: Upgrade to an intermediate Oracle Database release that can be
directly upgraded to the current release. Upgrade Oracle Database
releases that are not supported for direct upgrade in this release to an
intermediate Oracle Database release that is supported for direct upgrade.

When upgrading to an intermediate Oracle Database release, follow the
instructions in the intermediate release documentation, including running
the preupgrade scripts for that intermediate release. After you complete an
upgrade to the intermediate release Oracle Database, you can upgrade the
intermediate release database to the current Oracle Database release.

This restriction does not apply if you use Oracle Data Pump export/import
to migrate data to the new release.

For example:

• Releases 12.1.0.1, 12.1.0.2, 11.2.0.3, 11.2.0.4: Upgrade to Oracle
Database 12c Release 2 (12.2), and then upgrade to Oracle Database
21c.

• Releases 10.2.0.2, 10.2.0.3, 10.2.0.4, 10.2.0.5 or 10.1.0.5: Upgrade to
release 11.2.0.3 or 12.1, and then to 12.2, and then to Oracle
Database 21c.

Note: Always update to the most recent intermediate release to which you
can upgrade directly. Your case can be different from that of the examples
provided here.

Chapter 1
Oracle Database Releases That Support Direct Upgrade

1-2

Overview of Oracle Database Upgrade Tools and Processes
Review these topics to understand Oracle Database terms, tools and processes.

• Definition of Terms Upgrading and Migrating
Upgrading and migrating are different types of database changes.

• Upgrade and Data Migration Methods and Processes
Oracle provides features and products to automate the upgrade process, and to assist
you with completing upgrades efficiently.

• Where to Find the Latest Information About Upgrading Oracle Database
In addition to this document, Oracle provides information about upgrades on its support
site, and through the AutoUpgrade utility using the preupgrade parameter.

Definition of Terms Upgrading and Migrating
Upgrading and migrating are different types of database changes.

Upgrading transforms an existing Oracle Database environment (including installed
components and associated applications) into a new release Oracle Database environment.
The data dictionary for the database is upgraded to the new release. Upgrading does not
directly affect user data; no data is touched, changed, or moved during an upgrade.

Migrating data refers to moving data from one Oracle Database into another database
previously created for migrating or moving the data. You migrate data when you need to
move your database environment to a new hardware or operating system platform, or to a
new character set. Migrating does not include upgrading to the latest release. The upgrade
process is handled separately after you migrate the data.

The upgrade steps in Oracle Database Upgrade Guide apply to all operating systems, unless
otherwise specified. Some operating systems can require additional upgrade steps.

Related Topics

• Oracle Database Installation Guide

• Oracle Database Utilities

Upgrade and Data Migration Methods and Processes
Oracle provides features and products to automate the upgrade process, and to assist you
with completing upgrades efficiently.

Oracle Database supports the following methods for upgrading or migrating a database to the
new release:

• AutoUpgrade Utility

Identifies issues before upgrades, deploys upgrades, performs postupgrade actions, and
starts the upgraded Oracle Database.

• Manual upgrade using the Parallel Upgrade Utility, and other command-line utilities

Enables upgrades to be performed using shell scripts.

• Using Fleet Patching and Provisioning (FPP) to upgrade databases.

Chapter 1
Overview of Oracle Database Upgrade Tools and Processes

1-3

In a Fleet Patching and Provisioning (FPP) upgrade (formerly known as Rapid
Home Provisioning), you complete a new Oracle Database installation. After
testing the database, and modifying it in accordance with the standard operating
environment (SOE) that you want to use for your databases, you create an FPP
gold image. A DBA deploys instances of that gold image to servers that have
earlier release databases that you want to upgrade. After deployment of these
gold images, a DBA can run a single rhpctl command to move files, perform
configuration changes, and perform other steps required to use the new binaries.
Refer to Oracle Clusterware Administration and Deployment Guide for more
information about Rapid Home Provisioning.

• Using Oracle Enterprise Manager Fleet Maintenance to upgrade databases.

Fleet Maintenance, a component of Oracle Enterprise Manager, enables you to
use the emcli command-line environment to automatically patch and upgrade a
large number of databases in your enterprise. Database Fleet Maintenance
enables administrators to maintain groups or pools of Oracle Homes and
associated databases by applying database updates that include interim one-off
patches, including quarterly security patch updates.

Fleet Maintenance facilitates the creation of a gold image using a reference
environment, or by updating existing gold images by adding desired patches
(standard operating environments). With Fleet Maintenance, you can use those
gold images, and deploy them across the enterprise for both patching and upgrade
with a single emcli command. Fleet Maintenance comes with an extensive set of
precheck and intelligent rollback options, and with a user interface that facilitates
tracking deployment progress. If there is an issue with patching or upgrade
databases, then the Fleet Maintenance user interface can display the specific logs
for those databases.

For more information about Fleet Maintenance, refer to Oracle Enterprise Manager
Cloud Control Database Lifecycle Management Administrator's Guide

Related Topics

• Oracle Data Pump Import

• Oracle Clusterware Administration and Deployment Guide

• Database Fleet Maintenance

Where to Find the Latest Information About Upgrading Oracle
Database

In addition to this document, Oracle provides information about upgrades on its
support site, and through the AutoUpgrade utility using the preupgrade parameter.

Through its support website, My Oracle Support, Oracle provides late-breaking
updates, discussions, and best practices about preupgrade requirements, upgrade
processes, postupgrade tasks, compatibility, and interoperability.

Before you begin upgrades, Oracle strongly recommends that you download the latest
version of the AutoUpgrade utility, which is available on My Oracle Support. The latest
version contains the most recent checks and tests that Oracle can provide to assist
you to prepare your system for upgrades, and to complete upgrades successfully. You
can perform your upgrades directly using AutoUpgrade. If you do not use
AutoUpgrade to perform the upgrade, then to identify potential upgrade issues, you
must run AutoUpgrade using the preupgrade parameter in analyze mode. This

Chapter 1
Overview of Oracle Database Upgrade Tools and Processes

1-4

https://www.oracle.com/pls/topic/lookup?ctx=en/enterprise-manager/cloud-control/enterprise-manager-cloud-control/13.4&id=EMLCM-GUID-60B39D16-322B-435F-85F0-C39AFC80E96B

AutoUpgrade option replaces the Pre-Upgrade Information Tool that you may have used in
earlier releases.

Mike Dietrich's blog site, "Upgrade Your Database Now," Daniel Overby Hansen's site,
"Databases Are Fun," can offer you the most current insights from the upgrade and migration
product managers for Oracle. Their opinions and recommendations are based on their
experiences and interactions with Oracle customers, and can save you time and effort. They
are highly recommended.

We strive to provide you with the latest information available to us in this publication. If you
have any suggestions for how we can improve, or comments on where we succeeded or
failed, please feel free to comment directly on the Was this page helpful? links that you find
at the bottom of each HTML page. Our mission at Oracle is to help you to succeed. The
authors of this publication care what you think. If you think we can do something to make
your work easier, and your upgrades successful, then please let us know.

Related Topics

• My Oracle Support note 2485457.1

• Upgrade Your Database Now

• Databases Are Fun

Major Steps in the Upgrade Process for Oracle Database
Oracle Database upgrades consist of six major steps.

Upgrade Steps Workflow

The following figure summarizes the major procedures performed during the upgrade
process:

Chapter 1
Major Steps in the Upgrade Process for Oracle Database

1-5

https://support.oracle.com/rs?type=doc&id=2485457.1
https://mikedietrichde.com/
https://dohdatabase.com/

Figure 1-1 Upgrade Steps Workflow for Oracle Database

Step 1: Prepare to Upgrade Oracle Database

• Become familiar with the features of the new release of Oracle Database.

• Determine the upgrade path to the new release.

Chapter 1
Major Steps in the Upgrade Process for Oracle Database

1-6

• Select an upgrade method.

• Select an Oracle home directory for the new release.

• Develop a testing plan.

• Prepare a backup strategy.

• Follow preupgrade recommendations.

• Run preupgrade fixups, or carry out manual preupgrade system updates.

Note:

During the upgrade, consider running multiple releases of the database software, so
that you can use the existing release as your production environment while you test
the new release.

Consider completing a software-only installation to the new Oracle Database
release. In a software-only installation, you install the Oracle Database software but
do not create a database as part of the installation process.

Step 2: Test the Upgrade Process for Oracle Database

• Perform a test upgrade using a test database. Conduct the test upgrade in an
environment created for testing that does not interfere with the production database.
Oracle recommends that your test environment is on a server that is, as much as
possible, a replica of your production environment. For example: Oracle recommends
that the server not only uses the same operating system, but that runs the same patch
level, with the same packages, and matches other details of your production system
configuration.

Step 3: Test the Upgraded Test Oracle Database

• Perform the tests that you planned in Step 1 on the test database that you upgraded to
the new release of Oracle Database.

• Review the results, noting anomalies in the tests.

• Investigate ways to correct any anomalies that you find and then implement the
corrections.

• Repeat Step 1, Step 2, and the first parts of Step 3, as necessary, until the test upgrade
is successful and works with any required applications.

• To test for anomalies and determine potential support questions, carry out SQL plan
management. SQL plan management includes the following steps:

1. Before the upgrade, capture baselines and plans on the earlier release Oracle
Database, and store those plans.

Oracle recommends that you store the plans on staging tables, and then run the Data
Pump Export utility expdp for those tables.

2. After the upgrade, in the event of a regression or a performance issue, apply (load/
accept/evolve) an old plan that you know is good, based on the plans you captured
from the previous release Oracle Database.

Chapter 1
Major Steps in the Upgrade Process for Oracle Database

1-7

See Also:

• Oracle Database SQL Tuning Guide for more information about SQL
plan management

• Document 1948958.1 Patches to Consider for 11.2.0.3 to Avoid
Problems with SQL Plan Management (SPM)

• Document 2034706.1 Patches to Consider for 11.2.0.4 to Avoid
Problems with SQL Plan Management (SPM)

• Document 2035897.1 Patches to Consider When Upgrading From
12.1.0.1 to Avoid Problems with SQL Plan Management (SPM)

Step 4: Prepare and Preserve the Production Oracle Database

Complete these tasks before you upgrade your existing production database:

• Prepare the current production database as appropriate to ensure that the
upgrade to the new release of Oracle Database is successful.

• Schedule the downtime required for backing up and upgrading the production
database.

• Back up the current production database.

Before you carry out a major change to a system, Oracle recommends that you
make sure that you have a fallback strategy implemented. Oracle recommends
that your fallback strategy includes the following preparations:

– Test your backup strategy, and ensure that it works.

– If you need a backup strategy, then plan for the time required to apply it during
your maintenance window.

– To perform plan stability checks in preparation for upgrade, carry out SQL plan
management. Raise a service request if you need assistance.

Note:

A database upgrade that installs a new optimizer version usually results in
plan changes for a small percentage of SQL statements.

Most plan changes result in either improvement or no performance change.
However, some plan changes may cause performance regressions. SQL
plan baselines significantly minimize potential regressions resulting from an
upgrade.

When you upgrade, the database only uses plans from the plan baseline.
The database puts new plans that are not in the current baseline into a
holding area, and later evaluates them to determine whether they use fewer
resources than the current plan in the baseline. If the plans perform better,
then the database promotes them into the baseline; otherwise, the database
does not promote them.

Chapter 1
Major Steps in the Upgrade Process for Oracle Database

1-8

See Also:

Oracle Database SQL Tuning Guide

Step 5: Upgrade the Production Oracle Database

• Upgrade the production database to the new release of Oracle Database.

• After the upgrade, perform a full backup of the production database and perform other
post-upgrade tasks.

Step 6: Tune and Adjust the New Production Oracle Database

• Tune the new production database for the new release. Typically, the new production
Oracle Database performs to the same standards, or better, than the database before the
upgrade.

• Determine which features of the new Oracle Database release that you want to use, and
update your applications accordingly.

• Develop new database administration procedures as needed.

• Do not upgrade your production Oracle Database release to the new release until all
applications you must use in the upgraded database have been tested and operate
properly.

Related Topics

• https://support.oracle.com/epmos/faces/DocumentDisplay?
cmd=show&type=NOT&id=1948958.1

• https://support.oracle.com/epmos/faces/DocumentDisplay?
cmd=show&type=NOT&id=2034706.1

• https://support.oracle.com/epmos/faces/DocumentDisplay?
cmd=show&type=NOT&id=2035897.1

Compatibility and Interoperability Between Oracle Database
Releases

Learn how to understand and avoid compatibility and interoperability issues that can occur
because of differences in Oracle Database releases.

Oracle Database releases can have differences that can result in compatibility and
interoperability issues. These differences can affect both general database administration and
existing applications.

• About Oracle Database Release Numbers
Oracle Database releases are categorized by five numeric segments that indicate release
information.

• Convention for Referring to Release Numbers in Upgrade Topics
Review to understand how statements in upgrade topics apply to releases.

• What Is Oracle Database Compatibility?
Before you upgrade, review compatibility between your earlier release Oracle Database
and the new Oracle Database release as part of your upgrade plan.

Chapter 1
Compatibility and Interoperability Between Oracle Database Releases

1-9

https://support.oracle.com/epmos/faces/DocumentDisplay?cmd=show&type=NOT&id=1948958.1
https://support.oracle.com/epmos/faces/DocumentDisplay?cmd=show&type=NOT&id=1948958.1
https://support.oracle.com/epmos/faces/DocumentDisplay?cmd=show&type=NOT&id=2034706.1
https://support.oracle.com/epmos/faces/DocumentDisplay?cmd=show&type=NOT&id=2034706.1
https://support.oracle.com/epmos/faces/DocumentDisplay?cmd=show&type=NOT&id=2035897.1
https://support.oracle.com/epmos/faces/DocumentDisplay?cmd=show&type=NOT&id=2035897.1

• What Is Interoperability for Oracle Database Upgrades?
In the context of upgrading Oracle Database, interoperability is the ability of
different releases of Oracle Database to communicate and work in a distributed
environment.

• About Invalid Schema Objects and Database Upgrades
Run utlrp.sql to validate invalid objects as part of your upgrade test plan.

About Oracle Database Release Numbers
Oracle Database releases are categorized by five numeric segments that indicate
release information.

Note:

Oracle provides quarterly updates in the form of Release Updates (Updates,
or RU) and Release Update Revisions (Revisions, or RUR). Oracle no longer
releases patch sets or bundle patch sets. For more information, see My
Oracle Support Note 2285040.1.

Oracle Database releases are released in version and version_full releases.

The version release is designated in the form major release version.0.0.0.0. The
major release version is based on the last two digits of the year in which an Oracle
Database version is released for the first time. For example, the Oracle Database
version released for the first time in the year 2018 has the major release version of 18,
and thus its version release is 18.0.0.0.0.

The version_full release is an update of a version release and is designated based
on the major release version, the quarterly release update version (Update), and the
quarterly release update revision version (Revision). The version_full releases are
categorized by five numeric segments separated by periods as shown in the following
example:

Figure 1-2 Example of an Oracle Database Release Number

Chapter 1
Compatibility and Interoperability Between Oracle Database Releases

1-10

• First numeral: This numeral indicates the major release version. It also denotes the last
two digits of the year in which the Oracle Database version was released for the first
time.

• Second numeral: This numeral indicates the release update version (Update, or RU).

• Third numeral: This numeral indicates the release update revision version (Revision, or
RUR).

• Fourth numeral: This numeral is reserved for future use. Currently it is always set to 0.

• Fifth numeral: Although only the first three fields are commonly used, the fifth field can
show a numerical value that redundantly clarifies the release date of a release update
(RU), such as 19.7.0.0.200414.

Note:

The first three numerals mainly identify an Oracle Database release.

Caution:

Oracle strongly recommends that you apply the most recent Release Update to
your target databases before starting an upgrade, and before starting a downgrade.
If possible, also ensure that your source environment is patched. Release updates
are cumulative. If you are also updating an Oracle Grid Infrastructure environment,
then always apply the latest Release Update to the Grid environment first before
updating Oracle Database Oracle homes. For more information about updates,
refer to My Oracle Support note 2118136.2.

Related Topics

• My Oracle Support note 2285040.1

• My Oracle Support note 2118136.2

Convention for Referring to Release Numbers in Upgrade Topics
Review to understand how statements in upgrade topics apply to releases.

When a statement is made in an Oracle Database upgrade topic about an annual Oracle
Database release, that statement applies to the entire release. A statement about Oracle
Database 21c, Oracle Database 19c, or any other release supported for direct upgrade,
applies to all component-specific and platform-specific releases within that release, unless
otherwise specified.

When a statement is made about a specific quarterly release update (RU, or Update), that
statement applies to that quarterly Update.

What Is Oracle Database Compatibility?
Before you upgrade, review compatibility between your earlier release Oracle Database and
the new Oracle Database release as part of your upgrade plan.

Chapter 1
Compatibility and Interoperability Between Oracle Database Releases

1-11

https://support.oracle.com/rs?type=doc&id=2285040.1
https://support.oracle.com/rs?type=doc&id=2285040.1

• Understanding Oracle Database Compatibility
If new features are incompatible with your earlier release, then Database
compatibility can cause issues.

• When to Set the COMPATIBLE Initialization Parameter in Oracle Database
Oracle recommends increasing the COMPATIBLE parameter only after you have
completed testing the upgraded database.

• About the COMPATIBLE Initialization Parameter in Oracle Database
Review to understand how to set the COMPATIBLE initialization parameter for non-
CDB and multitenant architecture containers in Oracle Database 21c.

• Values for the COMPATIBLE Initialization Parameter in Oracle Database
Review to find the default and minimum values for the COMPATIBLE initialization
parameter for Oracle Database 21c.

• About Downgrading and Compatibility for Upgrading Oracle Database
Before upgrading to Oracle Database 21c, you must set the COMPATIBLE
initialization parameter to at least 12.2.0.

• How the COMPATIBLE Initialization Parameter Operates in Oracle Database
The COMPATIBLE initialization parameter enables or disables Oracle Database
features based on release compatibility.

• Checking the Compatibility Level of Oracle Database
Use this SQL query to find the COMPATIBLE initialization parameter value set for
your database.

Understanding Oracle Database Compatibility
If new features are incompatible with your earlier release, then Database compatibility
can cause issues.

Databases from different releases of Oracle Database software are compatible if they
support the same features, and if those features perform the same way. When you
upgrade to a new release of Oracle Database, certain new features can make your
database incompatible with your earlier release.

Your upgraded database becomes incompatible with your earlier release under the
following conditions:

• A new feature stores any data on disk (including data dictionary changes) that
cannot be processed with your earlier release.

• An existing feature behaves differently in the new environment as compared to the
old environment.

When to Set the COMPATIBLE Initialization Parameter in Oracle Database
Oracle recommends increasing the COMPATIBLE parameter only after you have
completed testing the upgraded database.

After the upgrade is complete, you can increase the setting of the COMPATIBLE
initialization parameter to the maximum level for the new Oracle Database release.
However, after you increase the COMPATIBLE parameter to the maximum value, you
cannot subsequently downgrade the database to an earlier release.

If you can provide for an additional maintenance window after your upgrade window,
then consider increasing the COMPATIBLE parameter 7 to 10 days after the upgrade,

Chapter 1
Compatibility and Interoperability Between Oracle Database Releases

1-12

when you have run your applications on the upgraded system, and are sure that a
downgrade is not required. If you do not have an additional maintenance window available,
then either raise COMPATIBLE after the upgrade (and lose downgrade capability), or continue
to use the earlier release COMPATIBLE setting until you are near a maintenance window, so
you have the option of downgrading available to you.

About the COMPATIBLE Initialization Parameter in Oracle Database
Review to understand how to set the COMPATIBLE initialization parameter for non-CDB and
multitenant architecture containers in Oracle Database 21c.

Oracle Database enables you to control the compatibility of your database with the
COMPATIBLE initialization parameter.

• Understanding the COMPATIBLE Initialization Parameter
Learn about what the COMPATIBLE parameter does, when to raise the parameter release
value, and what effects you can expect when you set the parameter to the new Oracle
Database release.

• Rules for COMPATIBLE Parameter Settings in Multitenant Architecture
When you plug in PDBs to a later release CDB, the CDB$ROOT COMPATIBLE parameter
setting can change the PDB COMPATIBLE parameter, or prevent plug-ins.

Understanding the COMPATIBLE Initialization Parameter
Learn about what the COMPATIBLE parameter does, when to raise the parameter release
value, and what effects you can expect when you set the parameter to the new Oracle
Database release.

In Oracle Database 21c, when the COMPATIBLE initialization parameter is not set in your
parameter file, the COMPATIBLE parameter value defaults to 21.0.0 If you do not set the
COMPATIBLE initialization parameter to 21.0.0, then you cannot use the new Oracle
Database 21c features, because your upgraded database is not running in the required
COMPATIBILITY setting for Oracle Database 21c features.

When the Oracle Database COMPATIBLE parameter is increased to 21.0.0, the first Java call
to the database initiates a "name translation" operation. This operation can require a few
minutes to complete. You should expect this delay the first time a Java call is made to the
database after you increase the compatibility parameter. This initial delay to carry out the
name translation occurs only during the initial Java call.

Note the following restrictions for COMPATIBLE values:

• The minimum Oracle Database release supported for direct upgrade is Oracle Database
12c Release 2 (12.2).

Before upgrading to Oracle Database 21c, you must set the COMPATIBLE initialization
parameter to at least 12.2.0, which is the minimum compatible setting for Oracle
Database 21c.

• In Oracle Real Application Clusters (Oracle RAC) environments, each Oracle Database
instance in the Oracle RAC cluster must run with the same COMPATIBLE setting.

• The compatible parameter must be at least 3 decimal numbers, separated by periods.
For example:

SQL> ALTER SYSTEM SET COMPATIBLE = '12.2.0 SCOPE=SPFILE;

Chapter 1
Compatibility and Interoperability Between Oracle Database Releases

1-13

Oracle strongly recommends that you only use three decimals in your COMPATIBLE
setting.

• After you increase the COMPATIBLE parameter, you cannot downgrade the
database.

Caution:

Oracle recommends that you only raise the COMPATIBLE parameter to the
current release level after you have thoroughly tested the upgraded
database.

After the COMPATIBLE parameter has been increased be aware that
downgrade to your earlier release can be unsupported, even though
upgrades from that release are supported.

When you plug in an earlier release PDB to a later release CDB where
COMPATIBLE is set to a later release than the earlier release PDB, and you
upgrade the PDB by using an unplug/plug/upgrade procedure, the
COMPATIBILE setting of the upgraded PDB is automatically updated to the
COMPATIBLE setting of the later release CDB. The COMPATIBLE setting for
PDBs must always be the same setting as CDB$ROOT.

Related Topics

• Managing Initialization Parameters Using a Server Parameter File

Rules for COMPATIBLE Parameter Settings in Multitenant Architecture
When you plug in PDBs to a later release CDB, the CDB$ROOT COMPATIBLE parameter
setting can change the PDB COMPATIBLE parameter, or prevent plug-ins.

The COMPATIBLE parameter of the container database (CDB) affects the
COMPATIBLE parameter settings of pluggable databases (PDBs) plugged into that
container database. Review the following scenarios that occur when you plug in a PDB
to a CDB:

• PDB COMPATIBLE equal to CDB$ROOT COMPATIBLE parameter setting.

Result: No change to the PDB COMPATIBLE parameter setting.

• PDB COMPATIBLE is lower than CDB$ROOT COMPATIBLE parameter setting.

Result: The PDB COMPATIBLE parameter is increased automatically to the same
COMPATIBLE parameter setting as CDB$ROOT. After you plug in the PDB, you
cannot downgrade the PDB to an earlier release.

• PDB COMPATIBLE is higher than CDB$ROOT COMPATIBLE parameter setting.

Result: The PDB cannot be plugged in. Only PDBs with a COMPATIBLE parameter
setting equal to or lower than CDB$ROOT can be plugged in to the CDB.

Chapter 1
Compatibility and Interoperability Between Oracle Database Releases

1-14

Values for the COMPATIBLE Initialization Parameter in Oracle Database
Review to find the default and minimum values for the COMPATIBLE initialization parameter
for Oracle Database 21c.

Default and Minimum COMPATIBLE Parameter Values

The minimum supported release for direct upgrade to Oracle Database 21c is Oracle
Database 12c Release 2 (12.2). The minimum COMPATIBLE parameter value for Oracle
Database 21c is 12.2.0. The default value for the COMPATIBLE parameter is 21.0.0. Before
you use a direct upgrade to Oracle Database 21c, you must set the COMPATIBLE parameter
on your source Oracle Database release to at least 12.2.0.

The COMPATIBLE parameter should not be changed for an RU or an RUR, either for CDB or
Non-CDB instances. The following table lists the default and minimum values for the
COMPATIBLE parameter in Oracle Database 21c, compared to earlier releases supported for
direct upgrade:

Caution:

After the COMPATIBLE parameter is increased, database downgrade is not
possible.

When you plug in an earlier release PDB to a later release CDB where
COMPATIBLE is set to a later release than the earlier release PDB, and you
upgrade the PDB by using an unplug/plug/upgrade procedure, the COMPATIBILE
setting of the upgraded PDB is automatically increased to the COMPATIBLE setting
of the later release CDB.

Do not alter the COMPATIBLE parameter to a value other than a default release
value. Use only one of the default values listed in the following table.

Table 1-2 The COMPATIBLE Initialization Parameter

Oracle Database Release Default Value Minimum Value

Oracle Database 21c 21.0.0 12.2.0

Oracle Database 19c 19.0.0 11.2.0

Oracle Database 18c 18.0.0 11.2.0

Oracle Database 12c Release 2
(12.2)

12.2.0 11.2.0

About Downgrading and Compatibility for Upgrading Oracle Database
Before upgrading to Oracle Database 21c, you must set the COMPATIBLE initialization
parameter to at least 12.2.0.

After upgrading to Oracle Database 21c, you can set the COMPATIBLE initialization
parameter to match the release number of the new release. Doing so enables you to use all
features of the new release, but prevents you from downgrading to your earlier release. Only

Chapter 1
Compatibility and Interoperability Between Oracle Database Releases

1-15

a subset of Oracle Database 21c features are available while the COMPATIBLE
initialization parameter is set to a lower value.

Caution:

After you increase the COMPATIBLE parameter to the current release, the
database cannot be downgraded to an earlier release.

Related Topics

• Downgrading Oracle Database to an Earlier Release

How the COMPATIBLE Initialization Parameter Operates in Oracle Database
The COMPATIBLE initialization parameter enables or disables Oracle Database features
based on release compatibility.

The COMPATIBLE initialization parameter operates in the following way:

• The COMPATIBLE initialization parameter enables or disables the use of features, to
help protect your existing application use of data.

If you run an Oracle Database 21c database with the COMPATIBLE initialization
parameter set to 12.2.0, then the database software generates database
structures on disk that are compatible with Oracle Database Release 12c Release
2 (12.2). If you try to use features that are part of a later release of Oracle
Database, and make the database incompatible with the COMPATIBLE initialization
parameter, then an error occurs. However, some new features are enabled that do
not create changes on disk that are incompatible with Oracle Database Release
12c Release 2.

• If you make changes to the database that make the database incompatible with
the COMPATIBLE initialization parameter setting for the database, then does not
start, and initialization terminates in an error. To resolve this issue, set the
COMPATIBLE initialization parameter to a value that is equivalent to the setting
required for the changes you made.

See Also:

Oracle Database Concepts for more information about database structures

Checking the Compatibility Level of Oracle Database
Use this SQL query to find the COMPATIBLE initialization parameter value set for your
database.

SQL> SELECT name, value FROM v$parameter
 WHERE name = 'compatible';

Chapter 1
Compatibility and Interoperability Between Oracle Database Releases

1-16

What Is Interoperability for Oracle Database Upgrades?
In the context of upgrading Oracle Database, interoperability is the ability of different releases
of Oracle Database to communicate and work in a distributed environment.

A distributed database system can comprise different releases of Oracle Database, and all
supported releases of Oracle Database can participate in the distributed database system.
However, the applications that work with a distributed database must also be able to
interoperate with the features and functions that are available at each node in the system.

Interoperability across disparate operating systems and operating system versions can cause
problems (especially during rolling upgrades) because the minimum requirements for the new
Oracle Database release may require you to upgrade the operating systems on some or all of
your hosts. For this reason, before you start an Oracle Database upgrade, you must check to
ensure that drivers, network, and storage are compatible for all the interim upgrade states of
the system during the rolling upgrade.

Note:

Because Oracle Database Upgrade Guide discusses upgrading and downgrading
between different releases of Oracle Database, the definition of interoperability is
for Oracle Database releases. Other Oracle documentation may use a broader
definition of the term interoperability. For example, interoperability in some cases
can describe communication between different hardware platforms and operating
systems.

My Oracle Support note 207303.1 "Client / Server / Interoperability Support
Between Different Oracle Versions" provides additional information.

Related Topics

• https://support.oracle.com/rs?type=doc&id=207303.1

About Invalid Schema Objects and Database Upgrades
Run utlrp.sql to validate invalid objects as part of your upgrade test plan.

After database upgrades, release changes can result in invalid schema objects in the
upgraded database. Typically, invalid objects fix themselves as they are accessed or run.
However, Oracle recommends that you recompile invalid objects in the database as part of
your patching and upgrade procedure, so that you resolve issues with invalid objects, and
any required dependencies, before users encounter these invalid objects.

Object validation is an operation that checks the Oracle Database Data Definition Language
(DDL) statements. These statements are used to define the database structure or schema.
Validating DDL statements can take time to complete. The following is a list of some common
factors that can affect object validation time:

• Number of invalid objects

• CPU types

• Processor speeds

Chapter 1
Compatibility and Interoperability Between Oracle Database Releases

1-17

https://support.oracle.com/rs?type=doc&id=207303.1

• System loads

• Available physical memory

The utlrp.sql command recompiles all objects in an invalid state, including
packages, procedures, and types. It is located in the $ORACLE_HOME/rdbms/admin
directory. The utlrp.sql script automatically runs in serial or in parallel
recompilation, based on the number of CPUs available (identified by the parameter
cpu_count), multiplied by the number of threads for each CPU (identified by the
parameter parallel_threads_per_cpu). On Oracle Real Application Clusters
systems (Oracle RAC), the number of parallel threads is added across all Oracle RAC
nodes.

Run the command either as the SYS user, or as another user account that is granted
the SYSDBA system privileges.

Oracle recommends that you run the utlrp.sql command in the earlier release
Oracle Database to recompile any existing invalid objects in your database.
Particularly ensure that SYS and SYSTEM user schema invalid objects are updated.
During upgrade tests, run utlrp.sql in the upgraded Oracle Database as part of
your upgrade test plan, so that you can include planning for recompilation time as part
of your upgrade. Recompilation time is proportional to the number of invalid objects in
the database. If the upgrade results in a large number of invalid objects, then
utlrp.sql can take a significant amount of time to run.

About Running Multiple Oracle Database Releases
To run multiple Oracle Database releases at the same time, follow Optimal Flexible
Architecture (OFA) standards.

• Organizing Oracle Software with Optimal Flexible Architecture
Organize Oracle software binaries using the Optimal Flexible Architecture
configuration guidelines.

• Databases in Multiple Oracle Homes on Separate Computers
Review if you want to connect to multiple releases using Oracle Database clients.

• Databases in Multiple Oracle Homes on the Same Computer
Installing earlier releases of Oracle Database on the same computer that is
running Oracle Database 21c can cause issues with client connections.

• About the Optimal Flexible Architecture Standard
Oracle Optimal Flexible Architecture (OFA) rules help you to organize database
software and configure databases to allow multiple databases, of different
versions, owned by different users to coexist.

• About Multiple Oracle Homes Support
Oracle Database supports multiple Oracle homes. You can install this release or
earlier releases of the software more than once on the same system, in different
Oracle home directories.

Organizing Oracle Software with Optimal Flexible Architecture
Organize Oracle software binaries using the Optimal Flexible Architecture
configuration guidelines.

Optimal Flexible Architecture (OFA) is a set of configuration guidelines for efficient and
reliable Oracle Database and Oracle Grid Infrastructure deployments. Oracle

Chapter 1
About Running Multiple Oracle Database Releases

1-18

recommends that you deploy all Oracle software installations in accordance with the OFA
architecture standard for Oracle Database installations. Following the OFA standard helps to
ensure that your installations are easier for you to maintain, and easier for you to obtain rapid
assistance from Oracle Support.

OFA provides the following benefits:

• Organizes large amounts of complicated software and data on disk, which can help to
avoid device bottlenecks and poor performance

• Facilitates routine administrative tasks, such as software and data backup functions,
which are often vulnerable to data corruption

• Simplifies the administration of multiple Oracle databases

• Helps eliminate fragmentation of free space in the data dictionary, isolates other
fragmentation, and helps to minimize resource contention

• Assists database administrators to deploy an effective enterprise data management
strategy

If you are not currently using the OFA standard, then switching to the OFA standard involves
modifying your directory structure and relocating your database files.

For more information about OFA, refer to your operating system-specific Oracle
documentation. For more information about managing data files and temp files, refer to
Oracle Database Administrator’s Guide.

Databases in Multiple Oracle Homes on Separate Computers
Review if you want to connect to multiple releases using Oracle Database clients.

You can install current and earlier Oracle Database releases in Oracle homes on separate
computers, and use earlier Oracle Database Client releases connecting to any or all of the
databases. However, you must install the latest release first, and install earlier releases
subsequently in descending chronological order. Installing in descending chronological order
ensures that each installation can find the Oracle inventory and register its installation, so that
you can avoid a corruption of the Oracle inventory.

Caution:

By default, when you unplug an earlier release PDB from an earlier release CDB,
and plug it into a later release CDB, the COMPATIBLE setting for the PDB is updated
to the COMPATIBLE value set for the CDB for the later release PDB. For example, if
you upgrade an Oracle Database 12.2 PDB with COMPATIBLE set to 12.2.0, using
an unplug-plug upgrade, and the CDB has a COMPATIBLE setting of 19.0.0, then the
PDB COMPATIBLE setting is automatically advanced to 19.0.0.

Databases in Multiple Oracle Homes on the Same Computer
Installing earlier releases of Oracle Database on the same computer that is running Oracle
Database 21c can cause issues with client connections.

You can find that you are not able to install earlier releases of Oracle Database on the same
computer that is running Oracle Database 21c, and then have clients connect to the

Chapter 1
About Running Multiple Oracle Database Releases

1-19

databases of the earlier releases. For example, you cannot have Oracle Database
12c, Oracle Database 18c, Oracle Database 19c and Oracle Database 21c release
databases in multiple (or separate) Oracle homes on the same computer, and have
Oracle Database 12c, Oracle Database 18c, Oracle Database 19c, and Oracle
Database 21c clients connecting to any or all of the databases on this computer. It is
possible to have a combination of some releases on one system.

Oracle recommends that you obtain the latest information about compatibility and
supported configurations from My Oracle Support Note 207303.1 "Client / Server /
Interoperability Support Between Different Oracle Versions" on My Oracle Support.

See Also:

https://support.oracle.com/CSP/main/article?
cmd=show&type=NOT&id=207303.1

About the Optimal Flexible Architecture Standard
Oracle Optimal Flexible Architecture (OFA) rules help you to organize database
software and configure databases to allow multiple databases, of different versions,
owned by different users to coexist.

In earlier Oracle Database releases, the OFA rules provided optimal system
performance by isolating fragmentation and minimizing contention. In current releases,
OFA rules provide consistency in database management and support, and simplifies
expanding or adding databases, or adding additional hardware.

By default, Oracle Universal Installer places Oracle Database components in directory
locations and with permissions in compliance with OFA rules. Oracle recommends that
you configure all Oracle components in accordance with OFA guidelines.

Oracle recommends that you accept the OFA default. Following OFA rules is
especially of value if the database is large, or if you plan to have multiple databases.

Note:

OFA assists in identification of an ORACLE_BASE with its Automatic
Diagnostic Repository (ADR) diagnostic data to properly collect incidents.

About Multiple Oracle Homes Support
Oracle Database supports multiple Oracle homes. You can install this release or
earlier releases of the software more than once on the same system, in different
Oracle home directories.

Careful selection of mount point names can make Oracle software easier to
administer. Configuring multiple Oracle homes in compliance with Optimal Flexible
Architecture (OFA) rules provides the following advantages:

Chapter 1
About Running Multiple Oracle Database Releases

1-20

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=207303.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=207303.1

• You can install this release, or earlier releases of the software, more than once on the
same system, in different Oracle home directories. However, you cannot install products
from one release of Oracle Database into an Oracle home directory of a different release.

• Multiple databases, of different versions, owned by different users can coexist
concurrently.

• To install Oracle Database software in multiple Oracle homes, you must extract the image
file in each Oracle home, and then run the setup wizard from the respective Oracle home.

• You must install a new Oracle Database release in a new Oracle home that is separate
from earlier releases of Oracle Database.

You cannot install multiple releases in one Oracle home. Oracle recommends that you
create a separate Oracle Database Oracle home for each release, in accordance with the
Optimal Flexible Architecture (OFA) guidelines.

• In production, the Oracle Database server software release is the release number in the
format of major and RU release number. For example, with the release number
19.3.0.0.0, the major release is 19 and the RU release number is 3.

• Later Oracle Database releases can access earlier Oracle Database releases. However,
this access is only for upgrades. For example, Oracle Database 19c can access an
Oracle Database 18c if the 18c database is started up in upgrade mode.

• Oracle Database Client can be installed in the same Oracle Database home if both
products are at the same release level. For example, you can install Oracle Database
Client 19c into an existing Oracle Database 19c home but you cannot install Oracle
Database Client 19c into an existing Oracle Database 18c home. If you apply a patch set
or release update before installing the client, then you must apply the patch set or release
update again.

• Structured organization of directories and files, and consistent naming for database files
simplify database administration.

• Login home directories are not at risk when database administrators add, move, or delete
Oracle home directories.

• You can test software upgrades in an Oracle home in a separate directory from the
Oracle home where your production database is located.

• For information about release support timelines, refer to My Oracle Support Doc ID
742060.1

Related Topics

• My Oracle Support Note 742060.1

About Converting Databases During Upgrades
Review these topics to determine which is the best path for you to select to upgrade Oracle
Databases.

• Overview of Converting Databases During Upgrades
There are two methods to convert non-CDBs to multitenant architecture Oracle
Databases during upgrades, and several different technologies you can use.

• About Upgrading Using Standby Databases
You can perform rolling upgrades of databases by using Active Oracle Data Guard, or by
using Oracle Enterprise Manager Cloud Control.

Chapter 1
About Converting Databases During Upgrades

1-21

https://support.oracle.com/rs?type=doc&id=742060.1

• Overview of Steps for Upgrading Oracle Database Using Oracle GoldenGate
Review these steps to obtain a high-level overview of how to upgrade Oracle
Database using Oracle GoldenGate.

• Migrating From Standard Edition to Enterprise Edition of Oracle Database
Review these options to migrate to Oracle Database Enterprise Edition from
Oracle Database Standard Edition

• Migrating from Enterprise Edition to Standard Edition of Oracle Database
Converting from Enterprise Edition to Standard Edition requires exporting and
importing data.

• Migrating from Oracle Database Express Edition (Oracle Database XE) to Oracle
Database
You must upgrade from Oracle Database Express Edition to Oracle Database
Enterprise Edition, and then upgrade to the current Oracle Database release.

Overview of Converting Databases During Upgrades
There are two methods to convert non-CDBs to multitenant architecture Oracle
Databases during upgrades, and several different technologies you can use.

Starting with Oracle Database 21c, non-CDB Oracle Database upgrades to non-CDB
architecture are desupported. Review the upgrade options for this release.

Options for Manual Migration and Upgrades of Oracle Database Non-CDB
Architecture to the Multitenant Architecture

There are two ways you can perform manual migrations and upgrades of non-CDBs to
Oracle Database container databases (CDBs) and pluggable databases (PDBs),
which use the multitenant architecture:

• Convert the non-CDB to a PDB before upgrade.

With this option, you plug in the non-CDB Oracle Database release to the same
release CDB. (For example, plug in a non-CDB Oracle Database Release 19c into
an Oracle Database 19c release CDB). Finish converting the non-CDB Oracle
Database to a PDB. Then, upgrade the entire CDB, with its PDBs, to Oracle
Database 21c.

• Plug in the non-CDB, upgrade, and finish converting the non-CDB to a PDB after
upgrade.

With this option, you plug in a non-CDB Oracle Database release to an Oracle
Database 21c CDB. Upgrade the plugged-in non-CDB Oracle Database to Oracle
Database 21c. Then, finish converting the non-CDB Oracle Database to a PDB.

Upgrade Technology Methods for Options

The following table lists methods that you can use to convert upgrades, including
references to availability issues. It also provides references to the documentation that
describes how to carry out each upgrade method.

Chapter 1
About Converting Databases During Upgrades

1-22

Table 1-3 Technology Methods for Migrating and Upgrading Databases During Upgrades

Method Description Reference

AutoUpgrade for Oracle
Database

Use the AutoUpgrade tool to automate the
upgrade of your database.

Refer to the topic "Using
AutoUpgrade for Oracle Database
Upgrades"

Oracle Data Guard Transient
Logical Standby database

Use an existing physical standby database to
perform a database upgrade by temporarily
converting it to a logical standby database, and
then converting it back to a physical standby.

Refer to the topic “About
Upgrading Using Standby
Databases”

Parallel Upgrade Utility Use the Parallel Upgrade Utility to perform a
manual upgrade of Oracle Database. If the
Oracle Database is a non-CDB, then you must
convert the database to a PDB

Refer to the topics under
"Upgrading Oracle Database with
DBUA or Parallel Upgrade Utility"

Oracle GoldenGate
synchronization of
production and standby
databases for zero downtime
upgrades

Use Oracle GoldenGate with software
upgrades and with Oracle Database data
migration procedures to carry out a
synchronization approach to maintaining
availability during an upgrade. Starting with
Oracle Database 21c, you can use the Zero
Downtime Upgrade feature of Fleet Patching
and Provisioning to convert non-container
Oracle Database instances (CDBs) to
multitenant architecture Oracle Database
instances. When you use this feature with
Oracle GoldenGate, you can initiate the entire
upgrade and conversion as a single operation.
• Use RMAN restore and upgrade to set up

a standby database running the earlier
release software using an existing backup

• Upgrade the standby database to the new
Oracle Database release

• Move the entire database and synchronize
the standby database with the production
database using the following tools:

– Oracle Data Pump
– Transportable Tablespaces (TTS)
– CREATE TABLE AS SELECT (CTIS) to

create new tables and populate them
with rows from specified queries.

– INSERT AS SELECT (IAS) to create
nonpartitioned tables

• Use Data Load/Unload to load data into
the new database release, and unload
data from the old database release

Refer to Oracle GoldenGate
documentation, and relevant
Oracle Database documentation
for your use case.

Oracle Enterprise Manager
Cloud Control

Oracle provides Cloud Control support for
performing database upgrades with Oracle
Database 12c and later releases. This option
requires that you purchase the Enterprise
Manager Lifecycle Management Pack.

Refer to Online help in Oracle
Enterprise Manager Cloud Control

Chapter 1
About Converting Databases During Upgrades

1-23

Note:

Upgrades of Oracle Grid Infrastructure (Oracle Clusterware and Oracle
Automatic Storage Management) are carried out separately, before Oracle
Database upgrades. You must complete Oracle Grid Infrastructure upgrades
before you upgrade Oracle Database installations. Other features installed
with Oracle Database can have additional upgrade requirements.

Related Topics

• Oracle Grid Infrastructure Installation Guide for your platform

• Oracle GoldenGate documentation

About Upgrading Using Standby Databases
You can perform rolling upgrades of databases by using Active Oracle Data Guard, or
by using Oracle Enterprise Manager Cloud Control.

The DBMS_ROLLING PL/SQL package enables you to upgrade the database software in
an Oracle Data Guard configuration in a rolling fashion. Rolling upgrades using Active
Data Guard uses an Oracle Data Guard physical standby database and the SQL Apply
process. Using Data Guard for rolling upgrades is supported for Oracle Database 12c
release 1 (12.1) and later Oracle Database releases.

With Oracle Database 12c release 2 (12.2) and later releases, when you perform a
rolling upgrade using the DBMS_ROLLING PL/SQL package, you no longer need to
disable the broker. In addition, the broker now reports when a rolling upgrade is in
place, and tracks its status. The status information is displayed in the output of the
DGMGRL commands SHOW CONFIGURATION and SHOW DATABASE.

Oracle Enterprise Manager Cloud Control provides options to perform a rolling
upgrade of databases in a Data Guard configuration. The procedures are described in
online help within Cloud Control.

See Also:

• Oracle Data Guard Broker for information about upgrading and
downgrading in an Oracle Data Guard broker configuration

• Oracle Data Guard Concepts and Administration for information about
using DBMS_ROLLING to perform a rolling upgrade.

Overview of Steps for Upgrading Oracle Database Using Oracle
GoldenGate

Review these steps to obtain a high-level overview of how to upgrade Oracle
Database using Oracle GoldenGate.

Chapter 1
About Converting Databases During Upgrades

1-24

http://www.oracle.com/technetwork/middleware/goldengate/documentation/index.html

Upgrading to the new Oracle Database release using Oracle GoldenGate consists of the
following steps.

1. Set up a target database running the earlier Oracle Database software release, using an
existing database backup.

2. Upgrade the target database to the new Oracle Database release.

3. Synchronize the target database with the production database.

4. Test your environment in active/live mode.

5. Switch over the application to the target database.

6. Perform comprehensive testing of the new release on the target database, including
enabling any features that were installed disabled by default that you plan to use in the
new Oracle Database release.

7. Upgrade the production database to the new Oracle Database release.

Note:

For complete details of this procedure, refer to the Oracle GoldenGate
documentation.

Related Topics

• Oracle GoldenGate documentation

• Testing a Database Upgrade

Migrating From Standard Edition to Enterprise Edition of Oracle Database
Review these options to migrate to Oracle Database Enterprise Edition from Oracle Database
Standard Edition

If you have Oracle Database Standard Edition at a release earlier than the new Oracle
Database release, then you can change it from a Standard Edition release to Oracle
Database Enterprise Edition by selecting one of the following options:

• Perform a normal upgrade procedure.

Install Oracle Enterprise Edition software in a new Oracle home, and follow the normal
upgrade procedures as described in the "Upgrading Oracle Database" chapter. The Data
Dictionary for Standard Edition and Enterprise Edition configurations are the same. The
difference between Standard Edition and Enterprise Edition is in the options that are
available in the server executable.

• Perform an In-Place Upgrade using the same Oracle home.

If you have a Standard Edition database at a release earlier than the new release of
Oracle Database, and you want to perform an in-place upgrade using the same Oracle
home, then you must first upgrade the Standard Edition Database. After you complete
the upgrade, use the procedure described here to install Oracle Database Enterprise
Edition software and to move to Oracle Database Enterprise Edition.

Chapter 1
About Converting Databases During Upgrades

1-25

unilink:ogg

Caution:

Performing this procedure deinstalls the Oracle Standard Edition software. It
results in deleting database files that exist under the Oracle home, and under
the Fast Recovery Area (FRA). Back up database files under the current
Oracle home before you begin this procedure.

1. Ensure that the release number of your Oracle Standard Edition server software is
the same release as your Oracle Enterprise Edition server software.

2. Shut down your database.

3. If your operating system is Windows, then stop all Oracle services, including the
OracleServiceSID Oracle service, where SID is the instance name.

4. Back up all database files under the current Oracle home that you must keep.

5. Deinstall the Standard Edition server software.

Caution:

This step deletes all existing database files that reside under the Oracle
home.

Run the deinstallation tool from the Oracle home. The deinstallation tool is
available as a separate command (deinstall) under the Oracle home directory
after installation. It is located under ORACLE_HOME\deinstall.

To deinstall an Oracle home on Windows, use the following syntax:

setup.exe –deinstall –home path_of_Oracle_home_to_be_deinstalled

To deinstall an Oracle home on Linux and UNIX, use the following syntax:

$./runInstaller –deinstall –home
path_of_Oracle_home_to_be_deinstalled

Note:

Starting with Oracle Database 12c, the deinstallation tool is integrated
with the database installation media. You can run the deinstallation tool
using runInstaller on Linux and UNIX, or by using setup.exe on
Windows with the -deinstall and -home options from the base
directory of the Oracle Database, Oracle Database Client, or Oracle Grid
Infrastructure installation media.

6. Install Oracle Enterprise Edition server software using Oracle Universal Installer
(OUI).

Chapter 1
About Converting Databases During Upgrades

1-26

Select the same Oracle home that was used for the Standard Edition that you uninstalled,
or select a new Oracle home. During the installation, be sure to select Enterprise Edition.
When prompted, choose Software Only from the Database Configuration screen.

7. If you have an existing database, then set your ORACLE_SID to this preexisting database.

If your existing database is on Windows, then you must recreate the database service by
using the ORADIM utility.

8. Start up your database.

Related Topics

• Upgrading Oracle Database
You can upgrade manually by using the Parallel Upgrade Utility command-line option, or
you can use the Replay Upgrade process.

Migrating from Enterprise Edition to Standard Edition of Oracle Database
Converting from Enterprise Edition to Standard Edition requires exporting and importing data.

To properly convert from an Enterprise Edition database to a Standard Edition database, you
must perform an Export/Import operation. Oracle recommends that you use the Standard
Edition Export utility to export the data. If you only install Standard Edition software, then
some data dictionary objects become invalid. These invalid objects create problems when
maintaining the database.

The Export/Import operation does not introduce data dictionary objects specific to the
Enterprise Edition, because the SYS schema objects are not exported. After the Import in the
Standard Edition database, you are only required to drop user schemas related to Enterprise
Edition features.

Migrating from Oracle Database Express Edition (Oracle Database XE) to
Oracle Database

You must upgrade from Oracle Database Express Edition to Oracle Database Enterprise
Edition, and then upgrade to the current Oracle Database release.

Oracle Database Express Edition (Oracle Database XE) is an entry-level edition of Oracle
Database.

To upgrade Oracle Database 11g release 2 (11.2) Express Edition (Oracle Database XE) to
Oracle Database 12c Release 2 or later releases, you must first upgrade from Oracle
Database XE to Oracle Database 12c Release 1 (12.1.0.2) Enterprise Edition, and then
upgrade to a later Oracle Database Enterprise Edition release.

For more information, see the "Oracle Database Express Edition (XE)" Oracle online forum:

http://forums.oracle.com

About Upgrading Platforms for a New Oracle Database Release
Review these topics if you upgrade your operating system or hardware for a new Oracle
Database release.

Chapter 1
About Upgrading Platforms for a New Oracle Database Release

1-27

http://forums.oracle.com

• About Upgrading Your Operating System
Check operating system requirements for new releases, and if necessary, upgrade
your operating system before upgrading Oracle Database.

• Options for Transporting Data to a Different Operating System
Review these restrictions and guidelines if you want to perform a cross-platform
upgrade.

About Upgrading Your Operating System
Check operating system requirements for new releases, and if necessary, upgrade
your operating system before upgrading Oracle Database.

When you upgrade to a new release of Oracle software, the operating system
requirements may have changed. If required, upgrade the operating system before
upgrading Oracle Database.

See Also:

• Oracle Database Installation Guide for your platform to obtain a list of
supported operating systems

• Your operating system-specific documentation for information about how
to perform an operating system upgrade

Options for Transporting Data to a Different Operating System
Review these restrictions and guidelines if you want to perform a cross-platform
upgrade.

When using DBUA or when performing a manual upgrade for Oracle Database, you
cannot directly migrate or transport data in a database on one operating system to a
database on another operating system. For example, you cannot migrate data in an
Oracle database on Solaris to an Oracle 12c database on Windows using DBUA. You
must follow procedures specific to your operating system platforms.

To see the platforms that support cross-platform data transport, run the following query
using SQL*Plus:

SELECT * FROM V$TRANSPORTABLE_PLATFORM ORDER BY PLATFORM_NAME;

Note:

If the source platform and the target platform are of different endianness,
then you cannot use the RMAN CONVERT DATABASE command. This process
requires both the source and target platform to be the same endian value.
Your available options are Data Pump replication, Data Pump export/import,
or Transportable Tablespace, with an RMAN CONVERT TABLESPACE. If the
platforms are of the same endianness, then no conversion is necessary and
data can be transported as if on the same platform.

Chapter 1
About Upgrading Platforms for a New Oracle Database Release

1-28

See Also:

• Oracle Database Administrator's Guide for a discussion of transporting data
across platforms

• Oracle Database Backup and Recovery User's Guide for information on using
the RMAN CONVERT DATABASE and RMAN CONVERT TABLESPACE commands

About Image-Based Oracle Database Installation
Understand image-based installation to simplify installation and configuration of Oracle
Database software.

To install Oracle Database, create the new Oracle home, extract the image file into the newly-
created Oracle home, and run the setup wizard to register the Oracle Database product.

Using image-based installation, you can install and upgrade Oracle Database for single-
instance and cluster configurations.

This installation feature streamlines the installation process and supports automation of large-
scale custom deployments. You can also use this installation method for deployment of
customized images, after you patch the base-release software with the necessary Release
Updates (Updates) or Release Update Revisions (Revisions).

Note:

You must extract the image software (db_home.zip) into the directory where you
want your Oracle Database home to be located, and then run the Oracle Database
Setup Wizard to start the Oracle Database installation and configuration. Oracle
recommends that the Oracle home directory path you create is in compliance with
the Oracle Optimal Flexible Architecture recommendations.

Chapter 1
About Image-Based Oracle Database Installation

1-29

2
Preparing to Upgrade Oracle Database

Complete preupgrade tasks and checks to assist you with completing a successful upgrade.

This chapter provides information and procedures for the pre-upgrade tasks, including
planning your upgrades, data-gathering, testing, installing the new Oracle software for the
upgrade, using the Parallel Upgrade Utility to carry out your upgrade, and performing other
checks and tasks.

• Tasks to Prepare for Oracle Database Upgrades
Carry out these tasks to prepare your upgrade.

• Installing the New Oracle Database Software for Single Instance
Use this procedure overview to assist you to install the software for the new Oracle
Database release for a single instance deployment.

• Installing the New Oracle Database Software for Oracle RAC
Use this procedure overview to assist you to install the software for the new Oracle
Database release for an Oracle RAC deployment.

• Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades
Ensure that you have completed these database preparation tasks before starting an
Oracle Database upgrade.

• Preparing the New Oracle Home for Upgrading
To prepare the new Oracle home in a new location, check to see if you must move
configuration files, or complete other tasks.

• Prerequisites for Preparing Oracle Home on Windows
Your system must meet these requirements before you can upgrade Oracle Database on
Microsoft Windows platforms.

• Performing Preupgrade Checks Using AutoUpgrade
The AutoUpgrade Utility is a Java JAR file provided by Oracle that helps to ensure that
your upgrade completes successfully.

• Testing the Upgrade Process for Oracle Database
Your test plan for Oracle Database upgrades should include these test procedures.

• Requirements for Upgrading Databases That Use Oracle Label Security and Oracle
Database Vault
You must complete these tasks before starting an upgrade with a database using Oracle
Label Security or Oracle Database Vault.

• Back Up Oracle Database Before Upgrading
Use this procedure to back up your existing Oracle Database before you attempt an
upgrade.

Tasks to Prepare for Oracle Database Upgrades
Carry out these tasks to prepare your upgrade.

Before you upgrade your database, Oracle recommends that you review the new features
and determine the best upgrade path and method to use, and carry out procedures to

2-1

prepare your database for upgrade. Oracle strongly recommends that you test the
upgrade process and prepare a backup strategy.

• Become Familiar with New Oracle Database Features
Before you plan the upgrade process, become familiar with the features of the new
Oracle Database release.

• Pre-Upgrade Information Check with AutoUpgrade
To obtain a checklist of tasks you must complete before upgrading an Oracle
Database on a physical server or virtual machine, run the AutoUpgrade utility
(autoupgrade.jar) in analyze mode.

• Review Deprecated and Desupported Features
Before you upgrade, check to see if deprecated or desupported features require
attention in your upgrade plan.

• Choose an Upgrade Method for Oracle Database
Oracle offers several methods to upgrade your database, which support the
complexities of your enterprise.

• Choose a New Location for Oracle Home when Upgrading
You must choose a location for Oracle home for the new release of Oracle
Database that is separate from the Oracle home of your current release.

• Develop a Test Plan for Upgrading Oracle Database
Review these topics to understand how to create a series of carefully designed
tests to validate all stages of the upgrade process.

• Schema-Only Accounts and Upgrading EXPIRED Password Accounts
Before starting your upgrade, determine if you want to use password
authentication to default Oracle Database accounts where their passwords are in
EXPIRED status, and their account is in LOCKED status

• Back Up Files to Preserve Downgrade and Recovery Options
To ensure that you can recover from upgrade issues, and downgrade to an earlier
release if necessary, Oracle recommends that you implement a backup strategy
for your database, and for some specific files.

Become Familiar with New Oracle Database Features
Before you plan the upgrade process, become familiar with the features of the new
Oracle Database release.

Learning Database New Features is a good starting point for learning the differences
between Oracle Database releases. Also, check specific guides in the Oracle
Database documentation library to find information about new features for a certain
component. For example, see Oracle Real Application Clusters Administration and
Deployment Guide for changes in Oracle Real Application Clusters.

Note:

Oracle Database training classes are an excellent way to learn how to take
full advantage of the features and functions available with Oracle Database.
You can find more information here:

http://education.oracle.com/

Chapter 2
Tasks to Prepare for Oracle Database Upgrades

2-2

http://education.oracle.com/

Related Topics

• Learning Database New Features

Pre-Upgrade Information Check with AutoUpgrade
To obtain a checklist of tasks you must complete before upgrading an Oracle Database on a
physical server or virtual machine, run the AutoUpgrade utility (autoupgrade.jar) in analyze
mode.

Before starting your upgrade, ensure that you have a new release Oracle Database installed
and configured that you can use as the target for your upgrade. When your target Oracle
Database home is prepared, run AutoUpgrade with the -preupgrade clause on your system,
using the instructions that you can find in this guide.

Oracle requires that you run AutoUpgrade in -analyze mode before you upgrade Oracle
Database. AutoUpgrade can identify issues for you to address before you start your upgrade.
In certain cases, AutoUpgrade can also generate scripts that can resolve some issues.

Tip:

Consider reviewing Oracle’s upgrade blog for tips and suggestions that can assist
you with your upgrade preparations.

Related Topics

• Upgrade your Database – NOW! Mike Dietrich's Oracle Database Upgrade Blog

Review Deprecated and Desupported Features
Before you upgrade, check to see if deprecated or desupported features require attention in
your upgrade plan.

Every release, Oracle modifies or removes support for features, views, and parameters, so
that Oracle can focus on improving core manageability and functionality of other features in
the database. For that reason, as part of your upgrade planning, Oracle recommends that
you review the list of features listed as deprecated or desupported in a new release, and
determine if these changes are of concern for your applications.

There are two categories of features scheduled for removal:

• Deprecated features are features that are no longer being enhanced, but are still
supported for the full life of this release of Oracle Database.

• Desupported features are features that are no longer supported by fixing bugs related to
that feature. Often, Oracle can choose to remove the code required to use the feature. A
deprecated feature can be desupported in the next Oracle Database release.

If you see that a feature is deprecated, then Oracle strongly recommends that you stop using
that feature as soon as it is practicable for you to do so. Start planning your migration away
from deprecated features at the time that they are deprecated.

Chapter 2
Tasks to Prepare for Oracle Database Upgrades

2-3

https://mikedietrichde.com/

Choose an Upgrade Method for Oracle Database
Oracle offers several methods to upgrade your database, which support the
complexities of your enterprise.

• The AutoUpgrade Utility Method for Upgrading Oracle Database
The AutoUpgrade utility identifies issues before upgrades, performs pre- and
postupgrade actions, deploys upgrades, performs postupgrade actions, and starts
the upgraded Oracle Database.

• The Replay Upgrade Method for Upgrading Oracle Database
The Replay Upgrade feature upgrades databases to the multitenant architecture
by using previously-captured statements to perform the upgrade.

• The Graphical User Interface Method for Upgrading Oracle Database
Database Upgrade Assistant (DBUA) interactively steps you through the upgrade
process and configures the database for the new Oracle Database release.

• The Manual, Command-Line Method for Upgrading Oracle Database
Manual upgrades give you finer control over the upgrade process.

• The Export/Import Method for Migrating Data When Upgrading Oracle Database
You can use Oracle Data Pump to carry out data exports and imports.

The AutoUpgrade Utility Method for Upgrading Oracle Database
The AutoUpgrade utility identifies issues before upgrades, performs pre- and
postupgrade actions, deploys upgrades, performs postupgrade actions, and starts the
upgraded Oracle Database.

Oracle recommends that you download the most recent version of the AutoUpgrade
Utility from My Oracle Support Document 2485457.1, and use autoupgrade.jar to
prepare for and to deploy your upgrade. The AutoUpgrade utility is designed to
automate the upgrade process, both before starting upgrades, during upgrade
deployments, and during postupgrade checks and configuration migration. You use
AutoUpgrade after you have downloaded binaries for the new Oracle Database
release, and set up new release Oracle homes. When you use AutoUpgrade, you can
upgrade multiple Oracle Database deployments at the same time, using a single
configuration file, customized as needed for each database deployment.

Starting with Oracle Database 21c, when you have an existing target release CDB,
you can use AutoUpgrade to convert a non-CDB Oracle Database to a PDB on the
target release CDB during the upgrade.

The minimum COMPATIBLE parameter setting for the source database must be at least
12.2.0. If the COMPATIBLE setting is a lower version, then during the conversion and
upgrade process, COMPATIBLE is set to 12.2.0. During the conversion, the original
datafiles are retained. They are not copied to create the new PDB. To enable
AutoUpgrade to perform the upgrade, edit the AutoUpgrade configuration file to set the
AutoUpgrade parameters target_version to the target CDB release, and identify the
CDB to which the upgraded database is placed using target_cdb. During the
conversion and upgrade process, AutoUpgrade uses that information to complete the
upgrade to the target CDB.

Chapter 2
Tasks to Prepare for Oracle Database Upgrades

2-4

Caution:

Before you run AutoUpgrade to complete the conversion and upgrade. Oracle
strongly recommends that you create a full backup of your source database, and
complete thorough testing of the upgrade. There is no option to roll back to the non-
CDB Oracle Database state after AutoUpgrade starts this procedure.

The Replay Upgrade Method for Upgrading Oracle Database
The Replay Upgrade feature upgrades databases to the multitenant architecture by using
previously-captured statements to perform the upgrade.

The Replay Upgrade feature uses capture tables in the CDB$ROOT of the target release CDB
Oracle Database. You install the new Oracle Database release, which uses the multitenant
architecture. If you are upgrading a CDB, then each PDB in the CDB is upgraded using
Replay Upgrade. If you are upgrading individual PDBs, or upgrading non-CDB databases,
then you upgrade each database by plugging it in to the new Oracle Database release, and
then opening the database. When the database is opened, the source database is upgraded
to the new release. If the source database is a non-CDB, then it is converted from a non-CDB
to a PDB, and upgrade statements are replayed into the new Oracle Database, updating in
the process the data dictionary for the database tables.

The Graphical User Interface Method for Upgrading Oracle Database
Database Upgrade Assistant (DBUA) interactively steps you through the upgrade process
and configures the database for the new Oracle Database release.

The preferred option for upgrading Oracle Database is to use the AutoUpgrade utility.
However, you can continue to use DBUA to upgrade multitenant architecture container
databases (CDBs), and pluggable databases (PDBs). Starting with Oracle Database 21c, you
can no longer use DBCA to upgrade to a non-CDB Oracle Database.

DBUA starts the Pre-Upgrade Information Tool, which fixes some configuration settings to the
values required for the upgrade. For example, the tool can change initialization parameters to
values required for the upgrade. The tool also provides you with a list of items that you can fix
manually before you continue with the upgrade.

The Manual, Command-Line Method for Upgrading Oracle Database
Manual upgrades give you finer control over the upgrade process.

A manual upgrade consists of running SQL scripts and utilities from a command line to
upgrade a database to the new Oracle Database release.

Before the Upgrade

• Analyze the database using AutoUpgrade (autoupgrade.jar -mode analyze)

The AutoUpgrade Analyze (analyze) processing mode checks your database to see if it is
ready for upgrade. When you run AutoUpgrade in Analyze mode, AutoUpgrade only
reads data from the database, and does not perform any updates to the database. You
can run AutoUpgrade using the Analyze mode during normal business hours. You can
run AutoUpgrade in Analyze mode on your source Oracle Database home before you
have set up your target release Oracle Database home.

Chapter 2
Tasks to Prepare for Oracle Database Upgrades

2-5

• Prepare the new Oracle home.

• Perform a backup of the database.

The Export/Import Method for Migrating Data When Upgrading Oracle
Database

You can use Oracle Data Pump to carry out data exports and imports.

Topics:

• The Effects of Export/Import on Upgraded Oracle Databases
Using Export/Import data migration to move to a new Oracle Database instance
can maintain availability, but there are restrictions and tests you should perform.

• Export/Import Benefits for Migrating Data for Oracle Database
Migrating data when upgrading Oracle Database using Oracle Data Pump Export
and Import provides benefits that can increase performance.

• Time Requirements for Migrating Data with Export/Import
Understand the time it takes for data migration using Oracle Data Pump.

The Effects of Export/Import on Upgraded Oracle Databases
Using Export/Import data migration to move to a new Oracle Database instance can
maintain availability, but there are restrictions and tests you should perform.

The Export/Import data migration method does not change the current database,
which enables the database to remain available throughout the upgrade process.
However, if a consistent snapshot of the database is required (for data integrity, or for
other purposes), then the database must run in restricted mode, or must otherwise be
protected from changes during the export procedure. Because the current database
can remain available, you can, for example, keep an existing production database
running while the newly upgraded Oracle Database is being built at the same time by
Export/Import. During the upgrade, to maintain complete database consistency,
changes to the data in the database cannot be permitted without the same changes to
the data in the newly upgraded Oracle Database.

Most importantly, the Export/Import operation results in a completely new database.
Although the current target database ultimately contains a copy of the specified data
that you migrated, the upgraded database can perform differently from the original
source database. Export/Import creates an identical copy of the database, but other
factors associated with differences between database releases can cause unexpected
performance issues. (For example: disk placement of data, and unset tuning
parameters).

Export/Import Benefits for Migrating Data for Oracle Database
Migrating data when upgrading Oracle Database using Oracle Data Pump Export and
Import provides benefits that can increase performance.

Using Oracle Data Pump Export and Import to migrate data provides the following
benefits:

• Defragments the data. You can compress the imported data to improve
performance.

Chapter 2
Tasks to Prepare for Oracle Database Upgrades

2-6

• Restructures the database. You can create new tablespaces or modify existing tables,
tablespaces, or partitions that you want to populate with imported data.

• Facilitates side-by-side testing of the earlier release (current) Oracle Database, and the
new release Oracle Database, because an entirely new database is created.

• Enables the copying of specified database objects or users. Importing only the objects,
users, and other items you need is useful for establishing a test environment for the new
software on only a subset of the production data. Oracle Data Pump Export and Import
provides flexible data-subsetting capabilities, such as INCLUDE and EXLUDE. By using
these capabilities, you can narrow the list of objects that you import. By using the QUERY
parameters, you can to filter out rows for a table at export and import time.

• Serves as a backup archive. You can use a full database export as an archive of the
current database.

• Enables you to establish the upgraded database on a different operating system or
hardware platform than the platform on which your earlier release database is placed.

• Network-based Oracle Data Pump Import enables you to load the new release Oracle
Database directly across the network used for your earlier release Oracle Database. By
using network-based Oracle Data Pump Import, you are not required to use intervening
dump files.

Time Requirements for Migrating Data with Export/Import
Understand the time it takes for data migration using Oracle Data Pump.

Migrating an entire Oracle Database by using Oracle Data Pump using Export/Import can
take a long time, especially compared to using DBUA or performing a manual upgrade. If you
use Oracle Data Pump to migrate data, then schedule the migration during non-peak hours or
make provisions for propagating to the new database any changes that are made to the
current database during the upgrade.

Choose a New Location for Oracle Home when Upgrading
You must choose a location for Oracle home for the new release of Oracle Database that is
separate from the Oracle home of your current release.

Using separate installation locations enables you to keep your existing Oracle software
installed along with the new Oracle software. By using separate installation locations, you can
test the upgrade process on a test database before replacing your production environment
entirely.

When you upgrade a database, you must install the new Oracle home in a new location (an
out-of-place upgrade).

If you are upgrading a PDB by using an unplug/plug upgrade, then the target CDB into which
you plug the PDB is the location for the PDB. There is no need to choose a new location for
installing the target Oracle homes, because the target CDB already has its Oracle home.

Develop a Test Plan for Upgrading Oracle Database
Review these topics to understand how to create a series of carefully designed tests to
validate all stages of the upgrade process.

Oracle recommends that you perform rigorous tests of your database and applications. When
you run and complete tests successfully, you help to ensure that you understand the process

Chapter 2
Tasks to Prepare for Oracle Database Upgrades

2-7

of upgrading the production database, so that the upgrade process is predictable and
successful. Oracle strongly recommends that you perform as much testing as possible
before upgrading a production database. Do not underestimate the importance of a
complete and repeatable testing process.

You can choose to perform tests manually, or you can use utilities to assist your tests,
such as Oracle Real Application Testing features like Database Replay or SQL
Performance Analyzer. In either case, the types of tests that you perform are the
same.

Your test plan must include these types of tests:

• Upgrade Testing
When you upgrade Oracle Database to a new release, Oracle strongly
recommends that you create, test, and validate an upgrade plan.

• Minimal Testing
To avoid encountering application startup or invocation problems, Oracle
recomends that you perform minimal testing of applications on a test new Oracle
Database environment.

• Functional Testing After Upgrades
Perform functional testing of the upgraded Oracle Database after the upgrade is
complete.

• High Availability Testing
To ensure that you can continue to meet your service level agreements, plan to
perform High Availability testing on your upgraded Oracle Database system.

• Integration Testing to Ensure Applications are Compatible
Integration testing for Oracle Database examines the interactions among
components of the system.

• Performance Testing an Upgraded Oracle Database
Plan performance testing comparisons between your earlier release and upgraded
Oracle Database.

• Volume and Load Stress Testing for Oracle Database Upgrades
To perform volume and load stress testing of the entire upgraded Oracle Database
under high volume and loads, use Database Replay.

• Test Plan Guidelines for Oracle Database Upgrade Planning
Perform planned tests on your earlier Oracle Database release, and on the test
database that you upgraded to the new Oracle Database release.

Upgrade Testing
When you upgrade Oracle Database to a new release, Oracle strongly recommends
that you create, test, and validate an upgrade plan.

Upgrade testing for Oracle Database entails planning and testing the upgrade path
from your current Oracle Database software to the new Oracle Database release.
Oracle strongly recommends that you plan and test your upgrade, whether you use
Oracle Database Upgrade Assistant (DBUA), perform a manual upgrade, or use the
AutoUpgrade utility. Planning and testing also applies if you use data migration
methods, such as Oracle Data Pump Export/Import, or other data-copying methods.
Regardless of the upgrade or data migration method you choose, you must plan, test,
and validate changes.

Chapter 2
Tasks to Prepare for Oracle Database Upgrades

2-8

Minimal Testing
To avoid encountering application startup or invocation problems, Oracle recomends that you
perform minimal testing of applications on a test new Oracle Database environment.

Minimal testing for Oracle Database entails moving all or part of an application from the
current Oracle Database release to a new release Oracle Database installation, and running
the application without enabling any new database features. It is possible that minimal testing
does not reveal problems that appear in an actual production environment. However, minimal
testing immediately reveals any application startup or invocation problems.

Functional Testing After Upgrades
Perform functional testing of the upgraded Oracle Database after the upgrade is complete.

Functional testing for Oracle Database is a set of tests in which new and existing features
and functions of the system are tested after the upgrade. Functional testing includes all
database, networking, and application components. The objective of functional testing is to
verify that each component of the system functions as it did before upgrading and to verify
that new functions are working properly.

High Availability Testing
To ensure that you can continue to meet your service level agreements, plan to perform High
Availability testing on your upgraded Oracle Database system.

High Availability testing for Oracle Database ensures that the upgraded database system
meets these recovery business requirements:

• Recovery Time Objective (RTO)

• Recovery Point Objective (RPO)

Oracle recommends the following test procedures for high availability testing:

• Create node or instance failures during stress testing. Node or instance failures help to
evaluate the Oracle RAC recovery capability.

• Test fallback plans and procedures to ensure that you can minimize downtime on
upgraded databases.

• Check database performance and stability, and resolve performance problems. Resolving
performance problems helps to ensure that the upgrade process runs within the time that
you have allocated.

Integration Testing to Ensure Applications are Compatible
Integration testing for Oracle Database examines the interactions among components of the
system.

Oracle recommends that you carry out the following tests as part of your integration testing:

• To ensure that Pro*C/C++ applications are compatible with the upgraded database, test
Pro*C/C++ application clients with the upgraded Oracle Database

• Test graphical user interfaces.

Chapter 2
Tasks to Prepare for Oracle Database Upgrades

2-9

• Test all applications that interact directly or indirectly with the database. Subtle
changes in an upgraded Oracle Database, such as data types, data in the data
dictionary (additional rows in the data dictionary, object type changes, and so on)
can affect front-end applications, even if those applications are not directly
connected to the upgraded Oracle Database instance.

• Test and stress-test any Oracle Net or Oracle Net Services connections between
components.

Related Topics

• C++ Applications

• Upgrade Considerations for Oracle Net Services

Performance Testing an Upgraded Oracle Database
Plan performance testing comparisons between your earlier release and upgraded
Oracle Database.

Performance testing of the upgraded Oracle Database compares the performance of
various SQL statements in the new database with the performance of those same
statements in the current database. Before upgrading, analyze the performance profile
of applications under your current Oracle Database release. Specifically, analyze and
understand the calls that applications make to the database server.

Oracle strongly recommends that you set up a testing system with the same storage,
data, and other characteristics as your production system.

• Database Replay and Performance Testing
Use the Database Replay feature to perform real-world testing of an Oracle
Database upgrade on your production workload before actually upgrading the
production database.

• SQL Performance Analyzer
To forecast the impact of Oracle Database system changes on a SQL workload,
use the SQL Performance Analyzer.

• Use SQL Plan Management to Test SQL Execution Plans After Upgrade
To avoid performance regressions after an Oracle Database upgrade, learn how to
carry out SQL plan management tests.

Database Replay and Performance Testing
Use the Database Replay feature to perform real-world testing of an Oracle Database
upgrade on your production workload before actually upgrading the production
database.

The Database Replay feature captures the actual database workload on the
production system, and replays it on the test system. Database Replay also provides
analysis and reporting to highlight potential problems; for example, errors
encountered, divergence in performance, and so forth. In addition, all the regular
Enterprise Manager performance monitoring and reporting tools such as Automatic
Database Diagnostic Monitor, Automatic Workload Repository (AWR), and Active
Session History are available to address any problems.

Chapter 2
Tasks to Prepare for Oracle Database Upgrades

2-10

Note:

You can change the stored procedure logic in the database. However, the stored
PL/SQL procedures that implement the application logic must maintain the same
interfaces as before the upgrade. If an upgrade affects the stored procedures of an
application, replaying the workload may not be possible. Using Database Replay
tool with the same interfaces provides you with good diagnostics to see if the new
application logic in the server is performing as expected after the upgrade.

Related Topics

• Introduction to Database Replay

• Managing the Automatic Workload Repository

SQL Performance Analyzer
To forecast the impact of Oracle Database system changes on a SQL workload, use the SQL
Performance Analyzer.

SQL Performance Analyzer enables you to evaluate the effect of an Oracle Database
upgrade on your SQL workloads. SQL Performance Analyzer finds possible issues by
identifying the SQL statements affected by the upgrade. It then measures the performance
divergence of SQL workloads before the upgrade, and after the upgrade. The analysis
enables you to assess the overall effect of the upgrade on SQL performance. You can then
take measures to avoid any negative outcome from SQL workload changes before they can
affect users.

Related Topics

• Introduction to SQL Performance Analyzer

Use SQL Plan Management to Test SQL Execution Plans After Upgrade
To avoid performance regressions after an Oracle Database upgrade, learn how to carry out
SQL plan management tests.

• Why Perform SQL Plan Management?
To prevent users from encountering performance regressions after an Oracle Database
upgrade, carry out SQL plan management.

• Bulk Load a SQL Management Base from the Cursor Cache
Bulk loading of execution plans or SQL plan baselines from the cursor cache is useful
when upgrading an earlier release to the latest release of Oracle Database.

• Bulk Load a SQL Management Base with a SQL Tuning Set (STS)
Bulk loading of execution plans or SQL plan baselines is useful to load historic plans from
the Automatic Workload Repository.

• Unpack Existing SQL Plan Baselines from a Staging Table
Test your critical SQL queries and execution plans by using
DBMS_SPM.LOAD_PLAN_FROM_CURSOR_CACHE to create a staging table that you can migrate
for testing.

Chapter 2
Tasks to Prepare for Oracle Database Upgrades

2-11

Why Perform SQL Plan Management?

To prevent users from encountering performance regressions after an Oracle
Database upgrade, carry out SQL plan management.

An Oracle Database upgrade that installs a new optimizer version usually results in
plan changes for a small percentage of SQL statements. Most plan changes result in
no performance change or improvement. However, certain plan changes can cause
performance regressions. SQL plan management prevents performance regressions
resulting from sudden changes to the execution plan of a SQL statement by providing
components for capturing, selecting, and evolving SQL plan information. SQL plan
management is a preventative mechanism that records and evaluates the execution
plans of SQL statements over time, and builds SQL plan baselines composed of a set
of existing plans that are proven efficient after repeated use. SQL plan management
uses the SQL plan baselines to preserve the performance of corresponding SQL
statements, regardless of changes occurring in the system.

With SQL plan management, the optimizer automatically manages execution plans
and ensures that only known or verified plans are used. When SQL Plan management
finds a new plan for a SQL statement, it does not use this plan until the database
verifies that the new plan has comparable or better performance than the current plan.
If you seed SQL plan management with your current execution plans, then those plans
becomes the SQL plan baseline for each statement. The optimizer uses these plans
after the upgrade. If the upgraded Oracle Database optimizer determines that a
different plan can result in better performance, then the new plan is queued for
verification. The new plan is not used until it has been confirmed to have comparable
or better performance than the current plan.

Bulk Load a SQL Management Base from the Cursor Cache

Bulk loading of execution plans or SQL plan baselines from the cursor cache is useful
when upgrading an earlier release to the latest release of Oracle Database.

The cursor cache is a shared SQL area. SQL plans that are bulk-loaded are
automatically accepted and added to existing or new plan histories as SQL plan
baselines.

1. In the source release of Oracle Database, use the
DBMS_SPM.LOAD_PLAN_FROM_CURSOR_CACHE procedure or Oracle Enterprise
Manager to load all of the execution plans in the cursor cache into the SQL
Management Base.

2. Upgrade the database.

Related Topics

• Loading Plans from the Shared SQL Area

Bulk Load a SQL Management Base with a SQL Tuning Set (STS)

Bulk loading of execution plans or SQL plan baselines is useful to load historic plans
from the Automatic Workload Repository.

Bulk loading of execution plans or SQL plan baselines may be done with a SQL
Tuning Set. This is useful when you want to load historic plans from your earlier Oracle
Database Automatic Workload Repository.

Chapter 2
Tasks to Prepare for Oracle Database Upgrades

2-12

1. In the source release of Oracle Database, create an STS that includes the execution plan
for each of the SQL statements.

2. Load the STS into a staging table and export the staging table into a dump file.

3. Import the staging table from a dump file into the new release of Oracle and unload the
STS.

4. Use Oracle Enterprise Manager or DBMS_SPM.LOAD_PLANS_FROM_SQLSET to load the
execution plans into the SQL Management Base.

Related Topics

• Loading Plans from a SQL Tuning Set

Unpack Existing SQL Plan Baselines from a Staging Table

Test your critical SQL queries and execution plans by using
DBMS_SPM.LOAD_PLAN_FROM_CURSOR_CACHE to create a staging table that you can migrate for
testing.

You can test and tune all of your critical SQL queries on an Oracle Database test
environment and then move those SQL execution plans to your Oracle Database production
environment. Alternatively, you can take plans for SQL queries from your pre-upgrade Oracle
Database production environment and move them to your post-upgrade production
environment.

1. On the new Oracle Database release test system, after completing all testing and tuning,
use the DBMS_SPM.LOAD_PLAN_FROM_CURSOR_CACHE procedure or Enterprise Manager to
load all of the execution plans in the cursor cache into the SQL Management Base.

2. Create a staging table using the DBMS_SPM.CREATE_STGTAB_BASELINE procedure.

3. Pack the SQL plan baselines you created in step 1 into the staging table using the
DBMS_SPM.PACK_STGTAB_BASELINE function.

4. Export the staging table into a flat file, using Oracle Data Pump.

5. Transfer this flat file to the target system.

6. Import the staging table from the flat file using Oracle Data Pump.

7. Unpack the SQL plan baselines from the staging table into the SQL Management Base
on the target system using the DBMS_SPM.UNPACK_STGTAB_BASELINE function.

Related Topics

• Loading Plans from a Staging Table

• Overview of Oracle Data Pump

Volume and Load Stress Testing for Oracle Database Upgrades
To perform volume and load stress testing of the entire upgraded Oracle Database under
high volume and loads, use Database Replay.

Oracle Replay can assist you to uncover load issues before you move an upgraded Oracle
Database release to production. Volume describes the amount of data being manipulated.
Load describes the level of concurrent demand on the system. So when you capture and
replay a real production system volume and load, you can emulate that load on your
upgraded Oracle Database, and observe how it performs under various volumes and loads.

Chapter 2
Tasks to Prepare for Oracle Database Upgrades

2-13

Volume and load stress testing is crucial. However, it is commonly overlooked. After
upgrades, Oracle has found that some customers do not conduct any kind of volume
or load stress testing. Instead, customers often rely on benchmarks that do not
characterize business applications. Benchmarks are valuable: Oracle recommends
that you conduct benchmarks of your applications. Benchmarking can help you to
uncover problems relating to functions, performance, and integration. However, using
benchmarks cannot replace volume and load stress testing.

Load testing involves running an application load against the new Oracle Database
release, using an environment with the same data and infrastructure. When you run a
load test, you are ensuring that your applications do not encounter problems, such as
new errors, or performance issues under the load conditions that you think are likely to
occur during production. Many times, problems manifest only under certain load
conditions, and are normally not seen in functional testing. The Database Replay
feature is ideal for such load testing. Database Replay enables you to capture the
system workload from a production environment, and replay it in identical fashion on
the test system.

Related Topics

• Introduction to Database Replay

Test Plan Guidelines for Oracle Database Upgrade Planning
Perform planned tests on your earlier Oracle Database release, and on the test
database that you upgraded to the new Oracle Database release.

When you perform your plan tests:

• Compare the test results, noting anomalies.

• Repeat the test upgrade as many times as necessary until issues are resolved.

To verify that your existing applications operate properly with the new Oracle Database
release:

• Test enhanced functions and new capabilities by adding available Oracle
Database features.

• Ensure that the applications operate in the same manner as they did in the current
database.

Related Topics

• Testing a Database Upgrade

Schema-Only Accounts and Upgrading EXPIRED Password Accounts
Before starting your upgrade, determine if you want to use password authentication to
default Oracle Database accounts where their passwords are in EXPIRED status, and
their account is in LOCKED status

During upgrades to Oracle Database 19c and later releases, default Oracle accounts
that have not had their passwords reset before upgrade (and are set to EXPIRED
status), and that are also set to LOCKED status, are set to NO AUTHENTICATION after the
upgrade is complete.

Because of this new feature, default accounts that are changed to schema-only
accounts become unavailable for password authentication. The benefit of this feature

Chapter 2
Tasks to Prepare for Oracle Database Upgrades

2-14

is that administrators no longer have to periodically rotate the passwords for these Oracle
Database-provided schemas. This feature also reduces the security risk of attackers using
default passwords to hack into these accounts.

If you want to prevent these Oracle accounts from being set to schema-only accounts during
the upgrade, then you must either set a valid strong password for the account before you
start the upgrade, or set a valid strong password for these accounts after upgrade, or unlock
the accounts before you log in to the upgraded Oracle Database.

After the upgrade, an administrator can also enable password authentication for schema-only
accounts. However, for better security, Oracle recommends that you keep these accounts as
schema only accounts.

Related Topics

• Oracle Database Security Guide

Back Up Files to Preserve Downgrade and Recovery Options
To ensure that you can recover from upgrade issues, and downgrade to an earlier release if
necessary, Oracle recommends that you implement a backup strategy for your database, and
for some specific files.

• Prepare a Backup Strategy Before Upgrading Oracle Database
You must design and carry out an appropriate backup strategy to ensure a successful
upgrade.

• Oracle Data Guard Broker Configuration File and Downgrades
With upgrades to Oracle Database 19c and later releases, you must back up the Data
Guard broker configuration file to preserve the capability to downgrade to an earlier
release.

• Exporting a Broker Configuration
Use the EXPORT CONFIGURATION command to export the metadata contained in the broker
configuration file to a text file.

Prepare a Backup Strategy Before Upgrading Oracle Database
You must design and carry out an appropriate backup strategy to ensure a successful
upgrade.

For Oracle Database Enterprise Edition, the primary fallback mechanism is Flashback
Database. However, you should also have a complete backup strategy in place.

To develop a backup strategy, consider the following questions:

• How long can the production database remain inoperable before business consequences
become intolerable?

• What backup strategy is necessary to meet your availability requirements?

• Are backups archived in a safe, offsite location?

• Are backups tested to ensure that they are done properly?

• How quickly can backups be restored (including backups in offsite storage)?

• Have disaster recovery procedures been tested successfully?

Chapter 2
Tasks to Prepare for Oracle Database Upgrades

2-15

Your backup strategy should answer all of these questions, and include procedures for
successfully backing up and recovering your database. For information about
implementing backup strategies using RMAN, review Oracle Database Backup and
Recovery User’s Guide.

In addition, to ensure that you are prepared for a downgrade, review the downgrade
chapter and complete any preparation steps you may need to prepare for your
release.

Related Topics

• Backing Up the Database

• Using Flashback Database and Restore Points

Oracle Data Guard Broker Configuration File and Downgrades
With upgrades to Oracle Database 19c and later releases, you must back up the Data
Guard broker configuration file to preserve the capability to downgrade to an earlier
release.

In releases before Oracle Database 19c, Oracle Database settings that are mapped to
Oracle Data Guard broker properties are maintained in the Oracle Data Guard broker
configuration file, and can be modified using the DGMGRL command-line interface.
However, starting with Oracle Database 19c, these database settings are no longer
stored in the broker configuration file. As a result of this change, although you can
continue to modify these properties using DGMGRL, the values that you modify are no
longer stored in the Oracle Data Guard broker configuration file. Instead, the DGMGRL
commands directly modify the Oracle Database initialization parameters or database
settings to which these Oracle Data Guard Broker properties are mapped.

Because of this change to the way that property settings are managed, if you use
Oracle Data Guard broker, then Oracle recommends that you export your earlier
release Oracle Data Guard broker configuration file to a secure backup location before
you start the upgrade. If you do not back up the Oracle Data Guard broker
configuration file before the upgrade, then after the upgrade, you cannot downgrade to
an earlier release and retain the property options you previously selected for Oracle
Data Guard.

Exporting a Broker Configuration
Use the EXPORT CONFIGURATION command to export the metadata contained in the
broker configuration file to a text file.

The directory in which the broker configuration file is stored must be accessible to the
Oracle server process.

1. Connect to the primary database.

DGMGRL> CONNECT sysdg@North_Sales.example.com;
Password: password
Connected to "North_Sales"
Connected as SYSDG.

2. Export the broker configuration.

Chapter 2
Tasks to Prepare for Oracle Database Upgrades

2-16

The following command exports the broker configuration and stores it in a file named
myconfig.txt in the trace directory.

DGMGRL> EXPORT CONFIGURATION TO 'myconfig.txt';
Succeeded.

Installing the New Oracle Database Software for Single Instance
Use this procedure overview to assist you to install the software for the new Oracle Database
release for a single instance deployment.

To install the new Oracle Database software for this release:

1. Follow the instructions in your Oracle operating system-specific documentation to
prepare for installation of Oracle Database software.

2. Start Oracle Universal Installer, and select a software-only installation.

When installation of Oracle Database software has completed successfully, click Exit to
close Oracle Universal Installer.

3. If you use Oracle Label Security, Oracle Database Vault, or both, then select Enterprise
Edition on the Select Database Edition page, click Select Options, and enable one or
both components from the components list.

Installing the New Oracle Database Software for Oracle RAC
Use this procedure overview to assist you to install the software for the new Oracle Database
release for an Oracle RAC deployment.

Note:

You cannot upgrade a database using Database Upgrade Assistant (DBUA) when
the source and target Oracle homes are owned by different users. Attempting to do
so returns error PRKH-1014. Either ensure that the source and target databases
have the same owner, or perform a manual upgrade.

If you are upgrading an Oracle RAC database, then you must perform the following steps in
the order shown:

1. Upgrade Oracle Clusterware:

a. Upgrade Oracle Clusterware first as described in the Oracle Grid Infrastructure
installation guide for your operating system.

b. Mount the Oracle Grid Infrastructure installation media.

c. Perform operating system prerequisite checks on each of the nodes that you intend
to upgrade, to ensure that they meet the system prerequisites for Oracle Grid
Infrastructure (Oracle Clusterware and Oracle ASM).

d. If necessary, perform patch upgrades of the earlier release of Oracle Clusterware
software to the most recent patch version.

Chapter 2
Installing the New Oracle Database Software for Single Instance

2-17

e. Ensure that you are logged in as the user that owns the Oracle Grid
Infrastructure installation, and run the Oracle Grid Infrastructure installation.
Provide information as prompted by the installer.

f. When prompted, open a separate terminal session, log in as root, and run
root.sh.

2. After upgrading Oracle Clusterware, follow the instructions in your Oracle
operating system-specific documentation to prepare for Oracle Database software
installation.

3. Run AutoUpgrade with the preupgrade parameter, run in analyze mode.
AutoUpgrade can automatically fix many issues, and list other issues in the
prefixups file it generates, which you can fix manually before the upgrade.

4. Start Oracle Universal Installer, and install the software.

When installation of Oracle Database software has completed successfully, click
Exit to close Oracle Universal Installer.

5. Run DBUA.

If you use Oracle Label Security, Oracle Database Vault, or both, then select
Enterprise Edition on the Select Database Edition page, click Select Options,
and enable one or both components from the components list.

Database Preparation Tasks to Complete Before Starting
Oracle Database Upgrades

Ensure that you have completed these database preparation tasks before starting an
Oracle Database upgrade.

• Release Updates and Requirements for Upgrading Oracle Database
Before starting upgrades, update your new release Oracle home to the latest
Release Update (Update).

• Upgrades and Transparent Data Encryption
If you use Oracle Wallet with TDE, then you must perform a one-time setup before
you create keystores and encrypt data.

• Recommendations for Oracle Net Services When Upgrading Oracle Database
You must ensure that the listener is running in your new release Oracle home.

• When You Must Disable Oracle Database Vault
You may need to disable Oracle Database Vault to perform upgrade tasks or
correct erroneous configurations.

• Create or Migrate Your Password File with ORAPWD
Review if you have REMOTE_LOGIN_PASSWORDFILE set.

• Understanding Password Case Sensitivity and Upgrades
By default, Oracle Database 12c Release 2 (12.2) and later releases are upgraded
to an Exclusive Mode. Exclusive Modes do not support case-insensitive password-
based authentication.

• Checking for Accounts Using Case-Insensitive Password Version
Use these procedures to identify if the Oracle Database that you want to upgrade
has accounts or configuration parameters that are using a case-insensitive
password version.

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-18

• Resource and Password Parameter Updates for STIG and CIS Profiles
Starting with Oracle Database 21c, the upgrade configures Oracle Recommended
Profiles, which includes updating an already existing STIG profile, and installing a CIS
profile as part of the upgrade.

• Check for Profile Scripts (glogin.sql and login.sql)
For all upgrade methods, Oracle recommends that you run upgrades without the use of
profile scripts.

• Running Upgrades with Read-Only Tablespaces
Use the Parallel Upgrade Utility with the -T option to take schema-based tablespaces
offline during upgrade.

• High Availability Options for Oracle Database
Review the high availability options available to you for Oracle Database using Standard
Edition High Availability, Oracle Restart, Oracle Real Application Clusters (Oracle RAC),
and Oracle RAC One Node.

• Options for High Availability with Oracle Database Standard Edition
To enable high availability for Oracle Database Standard Edition in releases after Oracle
Database 19c, learn how you can use Standard Edition High Availability.

• Moving Operating System Audit Records into the Unified Audit Trail
Audit records that have been written to the spillover audit files can be moved to the
unified audit trail database table.

• Non-CDB Upgrades and Oracle GoldenGate
If you are upgrading a Non-CDB Oracle Database where Oracle GoldenGate is deployed,
then you must shut down Oracle GoldenGate, and reconfigure it after conversion and
upgrade for the multitenant architecture.

• Back Up Very Large Databases Before Using AutoUpgrade
If you use partial offline backups with very large databases, then to minimize downtime in
the event you need to downgrade your database, check your tablespaces and ensure
that all tablespaces required for recovery are backed up.

Release Updates and Requirements for Upgrading Oracle Database
Before starting upgrades, update your new release Oracle home to the latest Release Update
(Update).

The software for new Oracle Database releases contains a full release that includes all the
latest updates for Oracle Database at the time of the release.

Before you start an upgrade, Oracle strongly recommends that you update your new release
Oracle home to the latest quarterly Release Update (Update).

My Oracle Support provides detailed notes about how you can obtain the updates, as well as
tools for lifecycle management.. For example:

• My Oracle Support note 2118136.2 contains a download assistant to help you select the
updates that you need for your environment. Oracle highly recommends that you start
here.

• My Oracle Support note 1227443.1 contains a list of Oracle Database PSU/BP/Update/
Revision known issues. This note provides information about all known issues notes for
Oracle Database, Oracle Grid Infrastructure, and the Oracle JavaVM Component
(OJVM).

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-19

Related Topics

• My Oracle Support Note 2118136.2

• My Oracle Support Note 1227443.1

Upgrades and Transparent Data Encryption
If you use Oracle Wallet with TDE, then you must perform a one-time setup before you
create keystores and encrypt data.

To review your existing have an Oracle Wallet value specified, enter the following
command:

SQL> show parameter WALLET_ROOT;

Create an AUTO LOGIN keystore, so that the database can be shut down and restarted
without requiring DBA intervention.

In previous Oracle Database releases, you had to copy the sqlnet.ora and the wallet
file manually to the new Oracle home before starting the upgrade, and the
SQLNET.ENCRYPTION_WALLET_LOCATION parameter was used to define the keystore
directory location. This parameter has been deprecated. Starting with Oracle Database
21c, copying the sqlnet.ora file to the new Oracle release is no longer required.
Oracle recommends that you use the WALLET_ROOT static initialization parameter and
TDE_CONFIGURATION dynamic initialization parameter instead.

You can specify in your AutoUpgrade configuration file to have the keystore location
changed during the upgrade. Alternatively, you can complete this task manually after
the upgrade. In either case, ensure that a recent backup has been made of the
keystore before you start the upgrade.

If you complete this task manually, then after the upgrade, before you can configure
keystores and begin to encrypt data, you must perform a one-time configuration using
the WALLET_ROOT and TDE_CONFIGURATION parameters to designate the location and
type of keystores that you plan to create.

The WALLET_ROOT parameter specifies the keystore directory location. Before you set
WALLET_ROOT, ensure that you have an existing directory that you can use to store
keystores. (Typically, this directory is called wallet.)

The TDE_CONFIGURATION parameter specifies the type of keystore (software keystore,
hardware keystore, or Oracle Key Vault keystore). If you omit the TDE_CONFIGURATION
parameter, then Oracle Database uses the sqlnet.ora file settings. After you set the
type of keystore using TDE_CONFIGURATION, when you create the keystore, Oracle
Database creates a directory within the WALLET_ROOT location for the keystore type. For
example, if you set TDE_CONFIGURATION to FILE, for Transparent Data Encryption
keystores, then Oracle Database creates a directory named tde (lower case) within
the wallet directory. If you want to migrate from one keystore type to another, then you
must first set TDE_CONFIGURATION parameter to the keystore type that you want to use,
and then use the ADMINISTER KEY MANAGEMENT statement to perform the migration. For
example, you can migrate from a hardware security module (HSM) keystore to a TDE
keystore.

The KEYSTORE_MODE column of the V$ENCRYPTION_WALLET dynamic view shows whether
united mode or isolated mode has been configured.

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-20

https://support.oracle.com/rs?type=doc&id=2118136.2
https://support.oracle.com/rs?type=doc&id=1227443.1

Note:

In previous releases, the SQLNET.ENCRYPTION_WALLET_LOCATION parameter was
used to define the keystore directory location. This parameter has been deprecated.
Oracle recommends that you use the WALLET_ROOT static initialization parameter
and TDE_CONFIGURATION dynamic initialization parameter instead. You can use the
AutoUpgrade utility to perform this update for you during the upgrade.

Related Topics

• Managing the Keystore and the Master Encryption Key

• Updating the TDE Wallet Store Location During Upgrade Using AutoUpgrade
See how you can use AutoUpgrade configuration file parameters to update your
Transparent Data Encryption (TDE) wallet store during upgrade.

Recommendations for Oracle Net Services When Upgrading Oracle
Database

You must ensure that the listener is running in your new release Oracle home.

If the Oracle Database that you are upgrading does not have a listener configured, then
before you start the upgrade, you must run Oracle Net Configuration Assistant (NETCA) to
configure the listening protocol address and service information for the new release of Oracle
Database, including a listener.ora file. The current listener is backward-compatible with
earlier Oracle Database releases.

If you are upgrading Oracle Real Application Clusters Oracle Database, or a release older
than Oracle Database 12c, then review the following additional information.

When you upgrade an Oracle RAC database with DBUA, it automatically migrates the
listener from your old Oracle home to the new Oracle Grid Infrastructure home. You must
administer the listener by using the lsnrctl command in the Oracle Grid Infrastructure home.
Do not attempt to use the lsnrctl commands from Oracle home locations for earlier
releases.

In Oracle Database, underlying net services parameters enable data compression, which
reduces the size of the session data unit that is transmitted over a SQL TCP connection.

The following new parameters for the sqlnet.ora file specify compression, and the preferred
compression scheme:

• SQLNET.COMPRESSION

• SQLNET.COMPRESSION_LEVELS

• SQLNET.COMPRESSION_THRESHOLD

These parameters, which were introduced with Oracle Database 12c, are not supported in
earlier releases.

Related Topics

• Oracle Database Net Services Reference

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-21

When You Must Disable Oracle Database Vault
You may need to disable Oracle Database Vault to perform upgrade tasks or correct
erroneous configurations.

You can reenable Oracle Database Vault after you complete the corrective tasks.

The following situations require you to disable Oracle Database Vault:

• You must install any of the Oracle Database optional products or features, such as
Oracle Spatial, by using Database Configuration Assistant (DBCA).

• If you did not configure backup DV_OWNER and DV_ACCTMGR accounts when you
registered Oracle Database Vault, and these accounts are inadvertently locked or
their passwords forgotten. Note that if your site only has one DV_OWNER user and
this user has lost his or her password, you will be unable to disable Oracle
Database Vault. However, if your site's only DV_ACCTMGR user has lost the
password, you can disable Database Vault. As a best practice, you should grant
the DV_OWNER and DV_ACCTMGR roles to new or existing user accounts, and use the
Database Vault Owner and Account Manager accounts that you created when you
registered Database Vault as back-up accounts.

• If you want to register Oracle Internet Directory (OID) using Oracle Database
Configuration Assistant (DBCA).

• If Oracle Database Vault is enabled and you are upgrading an entire CDB, then
use one of the following methods:

– CDB upgrade method 1: Temporarily grant the DV_PATCH_ADMIN to user SYS
commonly by logging into the root container as a common user with the
DV_OWNER role, and then issuing the GRANT DV_PATCH_ADMIN TO SYS
CONTAINER=ALL statement. Oracle Database Vault controls will be in the same
state as it was before the upgrade. When the upgrade is complete, log into the
root container as the DV_OWNER user and revoke the DV_PATCH_ADMIN role from
SYS by issuing the REVOKE DV_PATCH_ADMIN FROM SYS CONTAINER=ALL
statement.

– CDB upgrade method 2: Log into each container as a user who has the
DV_OWNER role and then execute the DBMS_MACADM.DISABLE_DV procedure. You
must first disable the PDBs (in any order) and then after that, disable the root
container last. If you are upgrading only one PDB, then you can disable Oracle
Database Vault in that PDB only. After you have completed the upgrade, you
can enable Oracle Database Vault by logging into each container as the
DV_OWNER user and then executing the DVSYS.DBMS_MACADM.ENABLE_DV
procedure. The order of enabling Oracle Database Vault must be the root
container first and PDBs afterward. You can enable the PDBs in any order, but
the root container must be enabled first.

Note:

Be aware that if you disable Oracle Database Vault, the privileges that were
revoked from existing users and roles during the Oracle Database Vault
configuration remain in effect.

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-22

Related Topics

• Verifying That Database Vault Is Configured and Enabled

• Backup Oracle Database Vault Accounts

• Privileges That Are Revoked from Existing Users and Roles

Create or Migrate Your Password File with ORAPWD
Review if you have REMOTE_LOGIN_PASSWORDFILE set.

If the REMOTE_LOGIN_PASSWORDFILE initialization parameter is set to EXCLUSIVE, then
create or migrate the password file with ORAPWD. Oracle Database 12c and later releases
provide a new option to ORAPWD for migrating the password file from your existing database.

With Oracle Database 12c release 2 (12.2) and later releases, if
REMOTE_LOGIN_PASSWORDFILE is set to SHARED, then you receive a pre-upgrade check
validation warning. You can choose one of the following options to correct this issue:

• Disable the password file-based authentication entirely by setting
REMOTE_LOGIN_PASSWORDFILE = NONE

• Limit the password file-based authentication by setting REMOTE_LOGIN_PASSWORDFILE =
EXCLUSIVE

Related Topics

• ORAPWD Syntax and Command Line Argument Descriptions

Understanding Password Case Sensitivity and Upgrades
By default, Oracle Database 12c Release 2 (12.2) and later releases are upgraded to an
Exclusive Mode. Exclusive Modes do not support case-insensitive password-based
authentication.

Accounts that have only the 10G password version become inaccessible when the server runs
in an Exclusive Mode.

Note:

Starting with Oracle Database 21c, the SEC_CASE_SENSITIVE_LOGON parameter is
desupported. You must use a case-sensitive password version. If a user with only a
10G password version is upgraded to Oracle Database 21c, then that user account
is locked, until an administrator resets the password.

In previous Oracle Database releases, you could configure the authentication protocol so that
it allows case-insensitive password-based authentication by setting
SEC_CASE_SENSITIVE_LOGON=FALSE. Starting with Oracle Database 12c release 2 (12.2), the
default password-based authentication protocol configuration excluded the use of the case-
insensitive 10G password version. By default, the SQLNET.ORA parameter
SQLNET.ALLOWED_LOGON_VERSION_SERVER is set to 12, which is an Exclusive Mode. When the
database is configured in Exclusive Mode, the password-based authentication protocol
requires that one of the case-sensitive password versions (11G or 12C) is present for the
account being authenticated. This mode excludes the use of the 10G password version used
in earlier releases. After upgrading to Oracle Database 12c release 2 and later releases,

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-23

accounts that have only the case-insensitive 10G password version become
inaccessible. This change occurs because the server runs in an Exclusive Mode by
default. When Oracle Database is configured in Exclusive Mode, it cannot use the old
10G password version to authenticate the client. The server is left with no password
version with which to authenticate the client.

Before upgrading, Oracle recommends that you determine if this change to the default
password-based authentication protocol configuration affects you. Perform the
following checks:

• Identify if you have accounts that use only 10G case-insensitive password
authentication versions.

• Identify if you have Oracle Database 11g release 2 (11.2.0.3) database or earlier
clients that have not applied critical patch update CPUOct2012, or a later patch
update, and have any account that does not have the case-insensitive 10G
password version.

Update Accounts Using Case-Insensitive Versions

If you have user accounts that have only the case-insensitive 10G password version,
then before upgrade, update the password versions for each account that has only the
10G password version. You can update the password versions by expiring user
passwords using the 10G password version, and requesting that these users log in to
their account. When they attempt to log in, the server automatically updates the list of
password versions, which includes the case-sensitive password versions.

Related Topics

• Oracle Database Net Services Reference

• Oracle Database Security Guide

Checking for Accounts Using Case-Insensitive Password Version
Use these procedures to identify if the Oracle Database that you want to upgrade has
accounts or configuration parameters that are using a case-insensitive password
version.

Note:

Starting with Oracle Database 21c, the SEC_CASE_SENSITIVE_LOGON
parameter is desupported. You must use a case-sensitive password version.

If you do not want user accounts authenticated with case-insensitive password
versions to be locked out of the database after an upgrade, then before the upgrade,
you must identify affected accounts, and ensure that they are using case-sensitive
password versions.

Example 2-1 Finding User Accounts That Use Case-Insensitive (10G) Version

Log in to SQL*Plus as an administrative user, and enter the following SQL query:

SELECT USERNAME,PASSWORD_VERSIONS FROM DBA_USERS;

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-24

The following result shows password versions for the accounts:

USERNAME PASSWORD_VERSIONS
------------------------------ -----------------
JONES 10G 11G 12C
ADAMS 10G 11G
CLARK 10G 11G
PRESTON 11G
BLAKE 10G

In this example, the backgrounds for each user account password verification version in use
are different:

• JONES was created in Oracle Database 10G, and the password for JONES was reset in
Oracle Database 12C when the setting for the SQLNET.ALLOWED_LOGON_VERSION_SERVER
parameter was set to 8. As a result, this password reset created all three versions. 11G
and 12C use case-sensitive passwords.

• ADAMS and CLARK were originally created with the 10G version, and then 11G, after they
were imported from an earlier release. These account passwords were then reset in 11G,
with the deprecated parameter SEC_CASE_SENSITIVE_LOGON set to TRUE.

• The password for BLAKE was created with the 10G version, and the password has not
been reset. As a result, user BLAKE continues to use the 10G password version, which
uses a case-insensitive password.

The user BLAKE has only the 10G password version before upgrade:

SQL> SELECT USERNAME,PASSWORD_VERSIONS FROM DBA_USERS;

USERNAME PASSWORD_VERSIONS
------------------------------ -----------------
BLAKE 10G

If you upgrade to a new Oracle Database release without taking any further action, then this
account becomes inaccessible. Ensure that the system is not configured in Exclusive Mode
(by setting the SQLNET.ORA parameter SQLNET.ALLOWED_LOGON_VERSION_SERVER to a more
permissive authentication mode) before the upgrade.

Example 2-2 Fixing Accounts with Case-Insensitive Passwords

Complete the following procedure:

1. Use the following SQL query to find the accounts that only have the 10G password
version:

 select USERNAME
 from DBA_USERS
 where (PASSWORD_VERSIONS = '10G '
 or PASSWORD_VERSIONS = '10G HTTP ')
 and USERNAME <> 'ANONYMOUS';

2. Configure the system so that it is not running in Exclusive Mode by editing the setting of
the SQLNET.ORA parameter SQLNET.ALLOWED_LOGON_VERSION_SERVER to a level
appropriate for affected accounts. For example:

SQLNET.ALLOWED_LOGON_VERSION_SERVER=11

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-25

After you make this change, proceed with the upgrade.

3. After the upgrade completes, use the following command syntax to expire the
accounts you found in step 1, where username is the name of a user returned from
the query in step 1:

ALTER USER username PASSWORD EXPIRE;

4. Ask the users for whom you have expired the passwords to log in.

5. When these users log in, they are prompted to reset their passwords. The system
internally generates the missing 11G and 12C password versions for their account,
in addition to the 10G password version. The 10G password version is still present,
because the system is running in the permissive mode.

6. Ensure that the client software with which users are connecting has the O5L_NP
capability flag.

Note:

All Oracle Database release 11.2.0.4 and later clients, and all Oracle
Database release 12.1 and later clients have the O5L_NP capability. Other
clients require the CPUOct2012 patch to acquire the O5L_NP capability.

The O5L_NP capability flag is documented in Oracle Database Net
Services Reference, in the section on the parameter
SQLNET.ALLOWED_LOGON_VERSION_SERVER.

7. After all clients have the O5L_NP capability, raise the server security back to
Exclusive Mode by using the following procedure:

a. Remove the SEC_CASE_SENSITIVE_LOGON setting from the instance initialization
file, or set the SEC_CASE_SENSITIVE_LOGON instance initialization parameter to
TRUE. For example:

SEC_CASE_SENSITIVE_LOGON = TRUE

b. Remove the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter from the
server SQLNET.ORA file, or set it back to Exclusive Mode by changing the value
of SQLNET.ALLOWED_LOGON_VERSION_SERVER in the server SQLNET.ORA file back
to 12. For example:

SQLNET.ALLOWED_LOGON_VERSION_SERVER = 12

8. Use the following SQL query to find the accounts that still have the 10G password
version:

 select USERNAME
 from DBA_USERS
 where PASSWORD_VERSIONS like '%10G%'
 and USERNAME <> 'ANONYMOUS';

9. Use the list of accounts returned from the query in step 8 to expire all the accounts
that still have the 10G password version. Expire the accounts using the following
syntax, where username is a name on the list returned by the query:

ALTER USER username PASSWORD EXPIRE;

10. Request the users whose accounts you expired to log in to their accounts.

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-26

When the users log in, they are prompted to reset their password. The system internally
generates only the 11G and 12C password versions for their account. Because the system
is running in Exclusive Mode, the 10G password version is no longer generated.

11. Check that the system is running in a secure mode by rerunning the query from step 1.
Ensure that no users are found. When the query finds no users, this result means that no
10G password version remains present in the system.

Example 2-3 Checking for the Presence of SEC_CASE_SENSITIVE_LOGON Set to
FALSE

Oracle Database does not prevent the use of the FALSE setting for
SEC_CASE_SENSITIVE_LOGON when the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter is
set to 12 or 12a. This setting can result in all accounts in the upgraded database becoming
inaccessible.

SQL> SHOW PARAMETER SEC_CASE_SENSITIVE_LOGON

NAME TYPE VALUE
------------------------------------ -----------

sec_case_sensitive_logon boolean FALSE

You can change this parameter by using the following command:

SQL> ALTER SYSTEM SET SEC_CASE_SENSITIVE_LOGON = TRUE;

System altered.

Note:

Unless the value for the parameter SQLNET.ALLOWED_LOGON_VERSION_SERVER is
changed to a version that is more permissive than 12, such as 11, do not set the
SEC_CASE_SENSITIVE_LOGON parameter to FALSE.

Related Topics

• Oracle Database Net Services Reference

• Oracle Database Security Guide

Resource and Password Parameter Updates for STIG and CIS Profiles
Starting with Oracle Database 21c, the upgrade configures Oracle Recommended Profiles,
which includes updating an already existing STIG profile, and installing a CIS profile as part
of the upgrade.

A profile is a collection of attributes that apply to a user. It enables a single point of reference
for any of multiple users that share those exact attributes.

During Oracle Database upgrades, the Oracle Supplied Profile ORA_STIG_PROFILE user profile
is updated in accordance with the most recent system configuration baselines specified by
the US Department of Defense Systems Agency (DISA) Security Technical Implementation

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-27

Guides (STIG) baselines. This update overwrites any password and resource limits
that you may have set previously in the ORA_STIG_PROFILE user profile. In addition, a
new profile is added, ORA_CIS_PROFILE, which complies with the most recent Center of
Internet Security (CIS) baseline updates available to Oracle at the time of the software
release. These two profiles are designated Oracle Recommended Profiles. These
profiles differ from a standard DEFAULT profile, because they are based on the STIG
and CIS baselines.

The profiles ORA_STIG_PROFILE and ORA_CIS_PROFILE are created as LOCAL profiles,
and the clause CONTAINER=CURRENT clause is used. However, to enhance the security
of the profiles that Oracle provides, only the SYS user has permissions to modify these
files.

If there are users associated to ORA_STIG_PROFILE, then the following parameters for
these users are made stricter after the upgrade:

• PASSWORD_LIFE_TIME, which is changed to 35.

• PASSWORD_REUSE_TIME, which is changed to 175.

• PASSWORD_GRACE_TIME, which is changed to 0.

For more information about using Oracle Recommended Profiles, refer to Oracle
Database Security Guide.

Related Topics

• Managing Resources with Profiles

Check for Profile Scripts (glogin.sql and login.sql)
For all upgrade methods, Oracle recommends that you run upgrades without the use
of profile scripts.

Depending on the content of profile scripts (glogin.sql and login.sql), there is a risk
that these scripts can interfere with the upgrade of Oracle Database, and that you can
encounter an UPG-1400 UPGRADE FAILED error, or Unexpected error encountered in
catcon, or ORA-04023: Object SYS.STANDARD could not be validated or
authorized. Oracle recommends that you remove the site profile script (glogin.sql)
from the target Oracle home (located in the Oracle home under /sqlplus/admin)
before starting the upgrade. Also ensure that no user profile script is defined, either in
the current directory, or specified using the environment variable SQLPATH.

Related Topics

• Upgrade and Profile Scripts

Running Upgrades with Read-Only Tablespaces
Use the Parallel Upgrade Utility with the -T option to take schema-based tablespaces
offline during upgrade.

Oracle Database can read file headers created in earlier releases, so you are not
required to do anything to them during the upgrade. The file headers of READ ONLY
tablespaces are updated when they are changed to READ WRITE.

If the upgrade suffers a catastrophic error, so that the upgrade is unable to bring the
tablespaces back online, then review the upgrade log files. The log files contain the

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-28

https://dohdatabase.com/2020/08/04/upgrade-and-profile-scripts/

actual SQL statements required to make the tablespaces available. To bring the tablespaces
back online, you must run the SQL statements in the log files for the database, or run the log
files for each PDB.

Viewing Tablespace Commands in Upgrade Log Files

If a catastrophic upgrade failure occurs, then you can navigate to the log directory
(Oracle_base/cfgtoologs/dbua), and run commands in the log files manually to bring up
tablespaces. You can view tablespace commands in the following log files:

• Non-CDB Upgrades: catupgrd0.log

• PDB databases: catupgrdpdbname0.log, where pdbname is the name of the PDB that you
are upgrading.

At the beginning of each log file, you find SQL statements such as the following, which sets
tables to READ ONLY:

SQL> ALTER TABLESPACE ARGROTBLSPA6 READ ONLY;

Tablespace altered.

SQL> ALTER TABLESPACE ARGROTBLSPB6 READ ONLY;

Tablespace altered.

Near the end of each log file, you find SQL statements to reset tables to READ WRITE:

SQL> ALTER TABLESPACE ARGROTBLSPA6 READ WRITE;

Tablespace altered.

SQL> ALTER TABLESPACE ARGROTBLSPB6 READ WRITE;

Tablespace altered.

See Also:

Oracle Database Administrator’s Guide for information about transporting
tablespaces between databases

High Availability Options for Oracle Database
Review the high availability options available to you for Oracle Database using Standard
Edition High Availability, Oracle Restart, Oracle Real Application Clusters (Oracle RAC), and
Oracle RAC One Node.

The following is an overview of the high availability options available to you for Oracle
Database.

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-29

Standard Edition High Availability

• Cluster-based active/passive Oracle Database failover solution

• Designed for single instance Standard Edition Oracle Databases

• Available with Oracle Database 19c release update (RU) 19.7 and later

• Requires Oracle Grid Infrastructure 19c RU 19.7 and later, installed as a
Standalone Cluster

Oracle Restart

• Oracle Database instance restart only feature and basis for Oracle Automatic
Storage Management (Oracle ASM) for standalone server deployments

• For single instance Oracle Databases

• Requires Oracle Grid Infrastructure for a standalone server (no cluster)

Oracle Real Application Clusters (Oracle RAC) One Node

• Provides a cluster-based active/passive Oracle Database failover and online
database relocation solution

• Available for Oracle RAC-enabled Oracle Databases

• Only one instance of an Oracle RAC-enabled Oracle Database is running under
normal operations

• Enables relocation of the active instance to another server in the cluster in an
online fashion. To relocate the active instance, you can temporarily start a second
instance on the destination server, and relocate the workload

• Supports Rolling Upgrades - patch set, database, and operating system

• Supports Application Continuity

• Requires Oracle Grid Infrastructure to be installed as a Standalone Cluster

Oracle Real Application Clusters (Oracle RAC)

• Provides active / active Oracle Database high availability and scalability solution

• Enables multiple servers to perform concurrent transactions on the same Oracle
Database

• Provides high availability: a failure of a database instance or server does not
interrupt the database service as a whole, because other instances and their
servers remain operational

• Supports Rolling Upgrades - patch set, database, and operating system

• Supports Application Continuity

• Requires Oracle Grid Infrastructure to be installed as a Standalone Cluster

Options for High Availability with Oracle Database Standard Edition
To enable high availability for Oracle Database Standard Edition in releases after
Oracle Database 19c, learn how you can use Standard Edition High Availability.

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-30

• Preparing to Upgrade Standard Edition Oracle RAC or Oracle RAC One Node
To maintain high availability after migrating from Standard Edition Oracle Real Application
Clusters (Oracle RAC), you can use Standard Edition High Availability.

• Requirements for Using Standard Edition High Availability With Oracle Databases
To use Standard Edition High Availability, deploy Oracle Database Standard Edition 2 in
accordance with these configuration requirements.

Preparing to Upgrade Standard Edition Oracle RAC or Oracle RAC One Node
To maintain high availability after migrating from Standard Edition Oracle Real Application
Clusters (Oracle RAC), you can use Standard Edition High Availability.

Starting with the Oracle Database 19c release, Oracle Database Standard Edition 2 does not
support Oracle RAC. To continue to meet high availability needs for Oracle Database
Standard Edition, Oracle is introducing Standard Edition High Availability.

Requirements for Using Standard Edition High Availability With Oracle Databases
To use Standard Edition High Availability, deploy Oracle Database Standard Edition 2 in
accordance with these configuration requirements.

• The database is created in a cluster running Oracle Grid Infrastructure for a Standalone
Cluster, with its database files placed in Oracle Automatic Storage Management (Oracle
ASM) or Oracle Automatic Storage Management Cluster File System (Oracle ACFS).

• When using the Database Configuration Assistant, do not create a listener when creating
an Oracle Database Standard Edition 2 database that you want to configure for Standard
Edition High Availability.

• Register the database with Single Client Access Name (SCAN) listeners as remote
listeners, and node listeners as the local listener.

• Create a database service. Use this service, instead of the default database service,
when you connect applications or database clients to the database.

• Ensure that the server parameter file (spfile) and password file are on Oracle ASM or
Oracle ACFS. If the spfile and password file were placed on a local file system when
the database was created or configured, then move these files to Oracle ASM or Oracle
ACFS.

Refer to the database installation documentation for additional requirements that must be
met.

Related Topics

• Oracle Database Installation Guide for Linux

Moving Operating System Audit Records into the Unified Audit Trail
Audit records that have been written to the spillover audit files can be moved to the unified
audit trail database table.

When the database is not writable (such as during database mounts), if the database is
closed, or if it is read-only, then Oracle Database writes the audit records to these external
files. The default location for these external files is the $ORACLE_BASE/audit/$ORACLE_SID
directory.

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-31

You can load the files into the database by running the
DBMS_AUDIT_MGMT.LOAD_UNIFIED_AUDIT_FILES procedure. Be aware that if you are
moving a large number of operating system audit records in the external files,
performance may be affected.

To move the audit records in these files to the AUDSYS schema audit table when the
database is writable:

1. Log into the CDB root as a user who has been granted the AUDIT_ADMIN role.

Before you can upgrade to the current release or Oracle Database, you must
execute the DBMS_AUDIT_MGMT.LOAD_UNIFIED_AUDIT_FILES procedure from the
CDB root to avoid losing operating system spillover files during the upgrade
process.

For example:

CONNECT c##aud_admin
Enter password: password
Connected.

2. Ensure that the database is open and writable.

To find if the database is open and writable, query the V$DATABASE view.

SELECT NAME, OPEN_MODE FROM V$DATABASE;

NAME OPEN_MODE
--------------- ----------
HRPDB READ WRITE

You can run the show pdbs command to find information about PDBs associated
with the current instance.

3. Run the DBMS_AUDIT_MGMT.LOAD_UNIFIED_AUDIT_FILES procedure.

EXEC DBMS_AUDIT_MGMT.LOAD_UNIFIED_AUDIT_FILES;

4. If you want to load individual PDB audit records, then log in to each PDB and run
the DBMS_AUDIT_MGMT.LOAD_UNIFIED_AUDIT_FILES procedure again.

The audit records are loaded into the AUDSYS schema audit table immediately, and then
deleted from the $ORACLE_BASE/audit/$ORACLE_SID directory.

Non-CDB Upgrades and Oracle GoldenGate
If you are upgrading a Non-CDB Oracle Database where Oracle GoldenGate is
deployed, then you must shut down Oracle GoldenGate, and reconfigure it after
conversion and upgrade for the multitenant architecture.

If you are using Oracle GoldenGate with the non-CDB Oracle Database that you want
to upgrade, then before you convert and upgrade the source non-CDB Oracle
Database to the multitenant architecture, you must shut down and remove the Oracle
GoldenGate processes, and then reconfigure them after conversion and upgrade for
the multitenant architecture. The following is a high level overview of the processes
required:

1. Drop Oracle GoldenGate users on the source Oracle Database.

2. Wait until the Oracle GoldenGate processes finish processing all current DML and
DDL data in the Oracle GoldenGate trails, and processes are at End of File (EOF).

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-32

3. Stop all Oracle GoldenGate processes on the source database.

4. Complete the conversion and upgrade of the source non-CDB Oracle Database to the
target Oracle Database on the target release CDB.

5. Restart the database.

6. If you are also upgrading the database from an earlier release to a later major release
family (for example, from Oracle Database 12.1 to Oracle Database 19c, which is the
terminal patch set of the Oracle Database 12.2 family), then you must install a new
version of Oracle GoldenGate that is supported for Oracle Database 19c. If you are
upgrading both Oracle Database and Oracle GoldenGate simultaneously, then you must
upgrade the database first.

After the database conversion and upgrade is complete, you can create new credentials for
the Oracle GoldenGate extract user. With the new credentials you can then create a new
Extract process and Extract pump and distribution service for the upgraded Oracle Database
PDB on the target CDB, and start up the newly created processes. For more information
about completing those procedures after the upgrade, refer to the Oracle GoldenGate
documentation.

Related Topics

• Establishing Oracle GoldenGate Credentials

• Configuring Oracle GoldenGate in a Multitenant Container Database

Back Up Very Large Databases Before Using AutoUpgrade
If you use partial offline backups with very large databases, then to minimize downtime in the
event you need to downgrade your database, check your tablespaces and ensure that all
tablespaces required for recovery are backed up.

If you are using the AutoUpgrade utility for upgrading databases where you have selected
partial offline backups as your backup option, then check that all tablespaces that are
required for upgrade are in READ WRITE mode, and only after you are sure you have identified
all required tablespaces for backup, change the status of all required tables before you take
an OFFLINE backup of the tablespaces you require for recovery before you run AutoUpgrade.

The reasons for this guideline are as follows:

During an AutoUpgrade operation, other tablespaces besides SYSTEM, SYSAUX and UNDO may
need to be maintained in READ WRITE status for the upgrade. Some of the reasons for this
requirement during an upgrade can include:

• Tablespaces that contain dictionary objects

• Tablespaces that are the default tablespace for Oracle-maintained users

• Tablespaces that are the default tablespace for the database

AutoUpgrade detects if all tablespaces needed for the upgrade are in READ WRITE status.

When there are tablespaces that must be changed to READ WRITE mode for the upgrade,
then:

• During the PRECHECKS processing mode, AutoUpgrade detects tables in READ ONLY status
as an issue.

• During the FIXUP processing mode, AutoUpgrade performs an automatic fixup to update
to READ WRITE mode any tablespaces that it detects in READ ONLY mode that must be in
READ WRITE mode.

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-33

https://docs.oracle.com/en/middleware/goldengate/core/19.1/oracle-db/establishing-oracle-goldengate-credentials.html#GUID-E40B375A-5042-4195-B563-BE7EDC251880
https://docs.oracle.com/en/middleware/goldengate/core/19.1/oracle-db/configuring-oracle-goldengate-multitenant-container-database-1.html#GUID-0B0CEB35-51C6-4319-BEE1-FA208FF4DE05

If there are any tablespaces required for upgrade that AutoUpgrade changes from
READ ONLY mode to READ WRITE mode, and these tablespaces were not included in
your backup before starting AutoUpgrade, then your recovery strategy is at risk. To
ensure that your backup is valid for recovery, you must take your OFFLINE backup only
after you are sure which tablespaces must be backed up.

To ensure that your partial offline backup contains backups for all tablespaces modified
during the upgrade, complete this procedure:

1. Put all tablespaces in READ ONLY mode, except for SYSTEM, SYSUX and UNDO and
those tablespaces that you know must be in READ WRITE.

2. Run the this query for pivot users:

(SELECT username
FROM dba_users
WHERE user_id in (
 SELECT schema# FROM sys.registry$
 WHERE namespace = 'SERVER'
 UNION
 SELECT schema# FROM sys.registry$schemas
 WHERE namespace = 'SERVER'
 UNION
 SELECT user# FROM sys.user$
 WHERE type#=1 AND bitand(spare1,256)=256))
 SELECT tablespace_name
 FROM dba_tablespaces
 WHERE status <>'ONLINE' and tablespace_name IN
 (
 SELECT property_value
 FROM database_properties
 WHERE property_name = 'DEFAULT_PERMANENT_TABLESPACE'
 UNION
 SELECT default_tablespace
 FROM dba_users
 WHERE username IN (SELECT username FROM pivot_users)
 UNION
 SELECT tablespace_name
 FROM dba_segments
 WHERE owner IN (SELECT username FROM pivot_users)
 UNION
 SELECT t.name
 FROM modeltab$ m, ts$ t, sys_objects s
 WHERE m.obj#=s.object_id and s.ts_number=t.ts#
)'

The next step you take depends on the result of the query:

• If the query returns no rows, then it means that backing up SYSTEM, SYSAUX and
UNDO, as well as those tables you specifically know must be in READ WRITE, is
sufficient to complete a partial offline backup.

• If the query return rows in tablespaces, then to complete a partial offline
backup, you must place these additional tablespaces in READ WRITE mode.

3. When you have completed identifying and placing all required tablespaces in READ
WRITE mode, take your partial offline backup of those tablespaces. Also back up

Chapter 2
Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades

2-34

SYSTEM, SYSAUX and UNDO.redo logs, control files and any other files that you consider
relevant for the restore/recovery procedure in case they are needed.

4. Run AutoUpgrade in ANALYZE mode. Review the output, and ensure that AutoUpgrade
identifies no additional tablespaces reported as READ ONLY that must be put in READ
WRITE.

(Optional) Enter the result of the procedure here.

Preparing the New Oracle Home for Upgrading
To prepare the new Oracle home in a new location, check to see if you must move
configuration files, or complete other tasks.

After backing up the database that you want to upgrade, if you are not using a Read-Only
Oracle home, then prepare the new Oracle home in a new location, and install the software
for the new Oracle Database release into the new location.

1. (Manual upgrades only) Copy configuration files from the Oracle home of the database
being upgraded to the new release Oracle Database Oracle home. If you are using a
Replay Upgrade, the AutoUpgrade Utility, or DBUA for your upgrade, or you have a
Read-Only Oracle home, then you can ignore this step, because the configuration files
are copied for you automatically.

Use the following procedure to copy configuration files to the new Oracle home:

a. If your parameter file resides within the old environment Oracle home, then copy it to
the new Oracle home. By default, Oracle looks for the parameter file in the
ORACLE_HOME/dbs directory on Linux or Unix platforms and in the
ORACLE_HOME\database directory on Windows operating systems. After upgrade, the
parameter file can reside anywhere else, but it cannot reside in the Oracle home of
the old environment.

Note:

If necessary, create a text initialization parameter file (PFILE) from the
server parameter file (SPFILE) so that you can edit the initialization
parameters.

b. If your parameter file resides within an Oracle ASM instance, then back up the
parameter file using one of the following commands:

CREATE pfile FROM spfile;

You can also create the parameter file by using the following command, where /
path/to/pfile/ is the path to the new Oracle home, and pfile_name is the name of
the parameter file:

create pfile[='/path/to/pfile/pfile_name.ora/

If you must downgrade the database and your SPFILE resided within Oracle ASM,
then you must restore the parameter file before the downgrade.

c. If your parameter file is a text-based initialization parameter file with either an IFILE
(include file) or a SPFILE (server parameter file) entry, and the file specified in the

Chapter 2
Preparing the New Oracle Home for Upgrading

2-35

IFILE or SPFILE entry resides within the earlier release environment Oracle
home, then copy the file specified by the IFILE or SPFILE entry to the new
Oracle home. The file specified in the IFILE or SPFILE entry contains
additional initialization parameters.

d. If you have a password file that resides within the old environment Oracle
home, then move or copy the password file to the new Oracle home.

The name and location of the password file are operating system-specific.
Where SID is your Oracle instance ID, you can find the password file in the
following locations:

• Linux or Unix platforms: The default password file is orapw SID. It is
located in the directory ORACLE_HOME/dbs.

• Microsoft Windows operating systems: The default password file is
pwdSID.ora. It is located in the directory ORACLE_HOME\database.

2. Adjust your parameter file in the new Oracle Database release by completing the
following steps:

a. Remove desupported initialization parameters and adjust deprecated
initialization parameters. In new releases, some parameters are desupported,
and other parameters are deprecated. Remove all desupported parameters
from any parameter file that starts the new Oracle Database instance.
Desupported parameters can cause errors in new Oracle Database releases.
Also, alter any parameter whose syntax has changed in the new release.

AutoUpgrade run with the -preupgrade parameter in analyze mode displays
any deprecated parameters and desupported parameters it finds in the
upgrade.xml file that it generates.

Adjust the values of the initialization parameters to at least the minimum
values indicated in upgrade.xml

Ensure all path names in the parameter file are fully specified. You should not
have relative path names in the parameter file.

b. If the parameter file contains an IFILE entry, then change the IFILE entry in
the parameter file. The IFILE entry should point to the new location text
initialization parameter file that you specified in step 1. Also edit the file
specified in the IFILE entry in the same way that you edited the parameter file
in step 1.

c. If you are upgrading a cluster database, then if necessary, you can modify the
SPFILE or initORACLE_SID.ora files.

After making these parameter file adjustments, make sure that you save all of the
files that you modified.

3. (Manual upgrades only) If you are upgrading a cluster database, and you are not
using AutoUpgrade or Replay Upgrade, then you must manually separate the
database instance from the cluster. Set the CLUSTER_DATABASE initialization
parameter to false. After the upgrade, you must set this initialization parameter
back to true. If you are using DBUA, then the assistant takes care of this task for
you.

Chapter 2
Preparing the New Oracle Home for Upgrading

2-36

Prerequisites for Preparing Oracle Home on Windows
Your system must meet these requirements before you can upgrade Oracle Database on
Microsoft Windows platforms.

For security reasons, different Microsoft Windows user accounts configured as Oracle home
users for different Oracle homes are not allowed to share the same Oracle Base.

• Database upgrade is supported when the same Windows user account is used as the
Oracle home user in both the source and destination Oracle homes.

• Database upgrade is supported when the Oracle home from which the database is being
upgraded uses the Windows Built-in Account. Releases earlier than Oracle Database 12c
(release 11.2 and earlier) only supported the built-in account option for the Oracle home
user on Windows.

• The Oracle home user may not have access to files outside its own Oracle Base and
Oracle home. If that is the case, then if you choose a different Oracle Base during
upgrade, it is possible that Oracle Database services cannot access files in the older
Oracle Base. Using DBUA for database upgrade ensures that the Oracle home user has
access to files outside of its own Oracle Base and its own Oracle home.

Before upgrading manually, or before using the custom files from the older Oracle Base
(for example, keystores, configuration files and other custom files), you must grant
access to the Oracle home user for these outside files, or copy these files to the new
Oracle Base.

• Microsoft Windows virtual accounts, which are managed local accounts that use
computer credentials to access network resources, require additional attention during
Oracle Database installation. Ensure that you create a virtual account for the Oracle
Home User.

See Also:

Oracle Database Platform Guide for Microsoft Windows for information about
database administration on Windows

Performing Preupgrade Checks Using AutoUpgrade
The AutoUpgrade Utility is a Java JAR file provided by Oracle that helps to ensure that your
upgrade completes successfully.

• About AutoUpgrade Utility System Checks
To help ensure that your upgrade is successful, Oracle strongly recommends that you
check your system using the AutoUpgrade Utility in Analyze mode.

• Example of Running AutoUpgrade Prechecks Using Analyze Mode
To see how you can use AutoUpgrade to check a non-CDB Oracle Database before an
upgrade, use this example to understand the procedure.

• Checking the Upgrade Checks Overview File
Learn how to use the AutoUpgrade Upgrade Checks Overview file to prepare for your
upgrade.

Chapter 2
Prerequisites for Preparing Oracle Home on Windows

2-37

• Creating a Configuration File to Run AutoUpgrade Prechecks On a CDB
See how you can control how AutoUpgrade performs upgrade prechecks to
include or exclude PDBs on a multitenant architecture Oracle Database.

• Running AutoUpgrade Fixups on the Earlier Release Oracle Database
Use this example to see how to run the AutoUpgrade Fixups that the Analyze
mode generates for your system.

About AutoUpgrade Utility System Checks
To help ensure that your upgrade is successful, Oracle strongly recommends that you
check your system using the AutoUpgrade Utility in Analyze mode.

To use the AutoUpgrade Utility for your upgrade, you must first run AutoUpgrade in
Analyze Mode.

AutoUpgrade and the Analyze Mode

The AutoUpgrade Utility includes extensive system checks that can help to prevent
many issues that can arise during an upgrade. The utility is located in the new Oracle
Database binary home. However, to obtain the latest updates, Oracle strongly
recommends that you download the most recent version of the tool from My Oracle
Support Document 2485457.1. You can place the downloaded file in any directory. To
run Analyze to check readiness of the database for upgrade to the new release while
your database is running on your earlier release you must specify the target version
manually in your configuration file, using the target_version parameter. For example:
upg1.target_version=21.

When you run AutoUpgrade in Analyze mode, AutoUpgrade only reads data from the
database, and does not perform any updates to the database. You can run
AutoUpgrade using the Analyze mode during normal business hours. You can run
AutoUpgrade in Analyze mode on your source Oracle Database home before you
have set up your target release Oracle Database home.

Related Topics

• My Oracle Support Note 2485457.1

Example of Running AutoUpgrade Prechecks Using Analyze Mode
To see how you can use AutoUpgrade to check a non-CDB Oracle Database before
an upgrade, use this example to understand the procedure.

To use AutoUpgrade, you must have Java 8 installed. Oracle Database Release 12.1
(12.1.0.2) or newer Oracle homes have a valid java version by default. Start
AutoUpgrade in Analyze mode using the following syntax, where Oracle_home is the
Oracle home directory, or the environment variable set for the Oracle home, and
yourconfig.txt is your configuration file:

java -jar autoupgrade.jar -config yourconfig.txt -mode analyze

While AutoUpgrade is running, if you want to obtain an overview of the progress, you
can enter the command lsj on Linux and Unix systems. When all checks are
completed the tool will write the and write the Preupgrade Fixup HTML File, which
provides a report on system readiness, display the status of jobs run to the screen,
and exit. If all jobs are listed as "finished successfully," then it means that you can go

Chapter 2
Performing Preupgrade Checks Using AutoUpgrade

2-38

https://support.oracle.com/rs?type=doc&id=2485457.1

ahead and upgrade the database. However, to see if there are recommendations that you
want to follow before starting the upgrade, Oracle still recommends that you look at the
Preupgrade Fixup HTML File. If any job is listed as "failed," then it means that there is an
error that prevents the upgrade from starting.

Example 2-4 Using AutoUpgrade in Analyze Mode to Check an Oracle Database 12c
Non-CDB System

This example shows running AutoUpgrade using a configuration file for upgrading from a
Non-CDB Oracle Database 12c Release 2 (12.2) system to a new Oracle Database release,
with AutoUpgrade downloaded to the folder /tmp:

java -jar /tmp/autoupgrade.jar -config 122-to-new.txt -mode analyze

The configuration file called for this check (122-to.new.txt) is as follows:

#12.2-to-19c config file
#
global.autoupg_log_dir=/home/oracle/autoupgrade
upg1.source_home=/u01/app.oracle/product/12.2.0.1
upg1.target_home=/u01/app/oracle/product/19
upg1.sid=dbsales
upg1.start_time=now

upg1.log_dir=/home/oracle/autoupgrade/dbsales
upg1.upgrade_node=localhost

Note that the pdbs parameter is not specified. You only need to specify the pdbs parameter
when you want to indicate specific PDBs that you want to check, and exclude other PDBs on
the CDB. The value you specify for log_dir is the location where AutoUpgrade places the
Preupgrade Fixup HTML File. The file is written using the following format, where log-path is
the path you specify for log files, sid is the Oracle Database system identifier, and job-
number is the AutoUpgrade job number:

/log-path/sid/job-number/prechecks

When you run AutoUpgrade, the output appears as follows:

AutoUpgrade tool launched with default options
+--------------------------------+
| Starting AutoUpgrade execution |
+--------------------------------+
1 databases will be analyzed
Type 'help' to list console commands
upg>
.
.
.
Job 100 completed
------------------- Final Summary -------------------
Number of databases [1]

Chapter 2
Performing Preupgrade Checks Using AutoUpgrade

2-39

Jobs finished successfuly [1]
Jobs failed [0]
Jobs pending [0]
------------- JOBS FINISHED SUCCESSFULLY -------------
Job 100 FOR DB12

In this case, the configuration file specifies that you want the log file placed in the
path /home/oracle/autoupgrade. Because the Oracle Database system identifier
(SID) is dbsales, and the AutoUpgrade Job is 100, the Upgrade Checks Overview file
for this job is placed in the path /home/oracle/autoupgrade/dbsales/100/prechecks.

Review the Upgrade Checks Overview file, and correct any errors that are reported
before proceeding with the upgrade. You can run AutoUpgrade in Fixup mode to
correct many errors.

With CDBs, you can use the same procedure and the same configuration file.

Note:

When you run AutoUpgrade in Analyze or Fixup mode on a CDB,
AutoUpgrade opens all PDBs in the CDB to complete the action. If a PDB is
closed, then AutoUpgrade opens the PDB, and leaves it in an OPEN state
after the analysis or fixup is completed. If you want to leave PDBs closed,
and not perform checks or fixups, then you can specify that only particular
PDBs are checked or fixed by using the configuration file parameter pdb to
list the PDBs that you want AutoUpgrade to check.

Checking the Upgrade Checks Overview File
Learn how to use the AutoUpgrade Upgrade Checks Overview file to prepare for your
upgrade.

When the AutoUpgrade Analyze mode is complete, it places files in the directory that
you specify with the configuration file log_dir parameter. The file is written using the
following format, where log-path is the path you specify for log files, sid is the Oracle
Database system identifier (SID), and job-number is the AutoUpgrade job number:

/log-path/sid/job-number/prechecks

For example, with the log directory specified as /home/oracle/autoupgrade/DB12, with
the database SID DB12, and with the job number 100:

/home/oracle/autoupgrade/DB12/DB12/100/prechecks

Review the Upgrade Checks Overview file, and correct any errors that are reported
before proceeding with the upgrade. You can also run AutoUpgrade in Fixup mode to
correct many errors.

Chapter 2
Performing Preupgrade Checks Using AutoUpgrade

2-40

Figure 2-1 Example of the Upgrade Checks Overview File

In the topic area of the file the results file example shows two report messages for CDB$ROOT,
which show the name of the check, whether or not a fixup is available that can be run using
AutoUpgrade in Fixup mode, the severity of the issue, and the stage of AutoUpgrade that is
being run.

Creating a Configuration File to Run AutoUpgrade Prechecks On a CDB
See how you can control how AutoUpgrade performs upgrade prechecks to include or
exclude PDBs on a multitenant architecture Oracle Database.

To check Oracle Database servers configured with multitenant container databases (CDBs)
and pluggable databases (PDBs), you can use the same procedure and configuration file that
you use with a non-CDB Oracle Database. As AutoUpgrade runs checks during an Analyze
or Fixup mode run, all of the PDBs in the CDB are opened. If you run AutoUpgrade on a
CDB, and a PDB is closed, then AutoUpgrade opens the PDB, and AutoUpgrade leaves it
open after Analyze checks or Fixup actions.

If you want to manage which PDBs are opened for checks, so that you can keep some PDBs
closed, then you can use the configuration file option pdbs to provide a list that includes only
the PDBs that you want to be checked. When you provide a list of PDBs to check,
AutoUpgrade checks CDB$ROOT, PDB$SEED, and all of the PDBs that you specify in the list. In
this example, the PDB named denver-sales2 is specified.

Example 2-5 AutoUpgrade Configuration File for a CDB and PDBs

The following example specifies that only the PDB named denver-sales2 is opened and
analyzed.

global.autoupg_log_dir=/home/oracle/autoupgrade
upg1.source_home=/u01/app/oracle/product/12.2.0
upg1.target_home=/u01/app/oracle/product/19
upg1.sid=CDB1
upg1.start_time=now

Chapter 2
Performing Preupgrade Checks Using AutoUpgrade

2-41

upg1.log_dir=/home/oracle/autoupgrade/CDB1
upg1.pdbs=denver-sales2

Running AutoUpgrade Fixups on the Earlier Release Oracle Database
Use this example to see how to run the AutoUpgrade Fixups that the Analyze mode
generates for your system.

When you run AutoUpgrade in Fixup mode, AutoUpgrade performs the checks that it
also performs in Analyze mode. After completing these checks, AutoUpgrade then
performs all automated fixups that are required for the new release before you start an
upgrade. When you plan to move your database to a new release, using the Fixup
mode prepares the database for upgrade.

Caution:

Oracle recommends that you run AutoUpgrade in Analyze mode separately
before running AutoUpgrade in Fixup mode. Fixup mode can make changes
to the source database.

As part of upgrade preparation, if the source database requires corrections for
conditions that would cause errors during an upgrade, then AutoUpgrade run in Fixup
mode performs automated fixes to the source database. Because running
AutoUpgrade in Fixup mode is a step that you perform as you are moving to another
system, it does not create a guaranteed restore point. Oracle recommends that you
run this mode outside of normal business hours.

$ java -jar autoupgrade.jar -config yourconfig.txt -mode fixup

If Java 8 is in your source Oracle home, then start AutoUpgrade in Fixup mode using
the following syntax, where Oracle_home is the Oracle home directory, or the
environment variable set for the Oracle home, and yourconfig.txt is your
configuration file:

$ java -jar autoupgrade.jar -config yourconfig.txt -mode fixup

Testing the Upgrade Process for Oracle Database
Your test plan for Oracle Database upgrades should include these test procedures.

Oracle recommends that you create a full working copy of your database environment
in which to test all the pre-upgrade, upgrade, and post-upgrade processes.

You can create a test environment that does not interfere with the current production
Oracle database. Oracle Data Guard, for example, enables you to create physical and
snapshot standby databases.

Your test environment depends on the upgrade method you choose:

• If you plan to use DBUA or perform a manual upgrade, then create a test version
of the current production database.

Chapter 2
Testing the Upgrade Process for Oracle Database

2-42

• If you plan to use Data Pump Export/Import, then export and import in stages, using
subsets of the current production database.

Practice upgrading the database using the test environment. The best practice is to perform
testing of the upgrade process on an exact copy of the database that you want to upgrade,
rather than on a downsized copy or test data. If an exact copy is impractical, then carefully
chose a representative subset of your data to move over to your test environment and test
the upgrade on that data.

• Example of Testing Upgrades Using Priority List Emulation
You can use the Parallel Upgrade Utility on multitenant architecture Oracle Databases to
run upgrade emulations to test your priority list or other parameter settings before you run
your upgrade.

• Upgrade Oracle Call Interface (OCI) and Precompiler Applications
Upgrade any Oracle Call Interface (OCI) and precompiler applications that you plan to
use with the new release of Oracle Database.

See Also:

• Oracle Database Testing Guide for information about testing a database
upgrade

• Oracle Database Utilities for information on Data Pump Export and Import
utilities

• Oracle Data Guard Concepts and Administration for information on physical
and snapshot standby databases

Example of Testing Upgrades Using Priority List Emulation
You can use the Parallel Upgrade Utility on multitenant architecture Oracle Databases to run
upgrade emulations to test your priority list or other parameter settings before you run your
upgrade.

On multitenant architecture Oracle Database systems, starting with Oracle Database 12c
release 2 (12.2), you can use priority lists to upgrade or exclude specific PDBs, or to set a
specific upgrade priority order. Running the Parallel Upgrade Utility using priority emulation is
a way to test your priority list without actually running the upgrade. Use the Parallel Upgrade
Utility emulation feature to test your upgrade plan using priority lists.

Preparing for Upgrade Emulation Tests

Before you run the emulation, you must set up your source and target upgrade locations, and
prepare your database in the same way you prepare for an actual upgrade. No upgrade
actually occurs, but the Parallel Upgrade Utility generates log files that show how an actual
upgrade is carried out.

Chapter 2
Testing the Upgrade Process for Oracle Database

2-43

Note:

You can use the -E parameter to run the Parallel Upgrade Utility in emulation
mode to test how priority lists run, or to test how other upgrade parameter
selections are carried out during an upgrade. For example, you can run an
upgrade emulation to obtain more information about how the resource
allocation choices you make using the -n and -N parameters are carried out.

Syntax for Running Priority List Emulation

You can use any of the parameter settings that you normally use with the Parallel
Upgrade Utility, However, you must create a priority list, and you must use the -L
parameter to call the list when you run the Parallel Upgrade Utility with the -E
parameter to set it to perform an upgrade emulation.

The following is an example of the minimum required syntax for running the Parallel
Upgrade Utility using priority list emulation, where priority_list_name is the name of
your priority list file:

catctl -E -L priority_list_name catupgrd.sql

Example 2-6 Example of Running the Parallel Upgrade Utility using Priority List
Emulation

The following example uses this priority list, which is named plist.txt:

1,CDB$ROOT
2,PDB$SEED
3,CDB1_PDB2
4,CDB1_PDB4
4,CDB1_PDB3
5,CDB1_PDB5
5,CDB1_PDB1

The following command runs a parallel emulation, calling this priority list:

$ORACLE_HOME/perl/bin/perl catctl.pl -L plist.txt -E -n 4 -N 2
catupgrd.sql

This command uses the following parameter settings:

• -E specifies that Parallel Upgrade Utility runs the upgrade procedures in
emulation mode.

• -n 4 specifies that the upgrade allocates four processes to perform parallel
upgrade operations.

• -N 2 specifies that the upgrade runs two SQL processors to upgrade the PDBs.
The maximum PDB upgrades running concurrently is the value of -n divided by
the value of -N, so the upgrade runs no more than two concurrent PDB upgrades.

• -L specifies the priority list that the command reads to set upgrade priority.

Chapter 2
Testing the Upgrade Process for Oracle Database

2-44

As the Parallel Upgrade Utility carries out the emulated upgrade, it displays on screen the
same output that you see during an actual upgrade.

When the upgrade emulation completes, it generates a log file, catctl_prority_run.list,
which is stored either in the default logging directory, or in a logging directory location that
you specify with the -l parameter. Because in this example we did not specify a different log
directory, and we are running the upgrade on the container database named CDB1, the output
is place in the path Oracle_base/cfgtoollogs/CDB1/run, where Oracle_base is the Oracle
base of the user running the upgrade, and CDB1 is the name of the container database (CDB)
on which you are running the upgrade.

The log file catctl_priority_run.lst displays the list of how the upgrade priority was
carried out during the upgrade emulation. It shows how the Parallel Upgrade Utility grouped
PDB upgrades. You can see a priority run that contains the groupings and priorities before
you actually carry out the upgrade. The log file generated by the upgrade is also displayed on
the screen after the upgrade completes.

At the conclusion of the upgrade log, the log will show that CDB$ROOT is upgraded first. After
the CDB$ROOT upgrade is completed, the Parallel Upgrade Utility carries out the following
concurrent upgrades of PDBs, in accordance with the priority settings in the priority list:

1. PDB$SEED and CDB1_PDB2. Output logs are generated with log ldentifiers (Log IDs)
specified as pdb_seed for PDB$SEED, and log ID mayapdb2 for CDB_1PDB2)

2. CDB1_PDB3 and CDB1_PDB4. Log IDs are specified mayapdb3 and mayapdb4

3. CDB1_PDB5 and CDB1_PDB6. Log IDs are specified mayapdb5 and mayapdb6

4. CDB1_PDB1. The log ID is specified as mayapdb1.

Related Topics

• About the Parallel Upgrade Utility for Oracle Database (CATCTL.PL and DBUPGRADE)

• Parallel Upgrade Utility (catctl.pl) Parameters

Upgrade Oracle Call Interface (OCI) and Precompiler Applications
Upgrade any Oracle Call Interface (OCI) and precompiler applications that you plan to use
with the new release of Oracle Database.

Oracle recommends that you test these applications on a test database before you upgrade
your current production database.

Related Topics

• About Upgrading Precompiler and OCI Applications in Oracle Database

Requirements for Upgrading Databases That Use Oracle Label
Security and Oracle Database Vault

You must complete these tasks before starting an upgrade with a database using Oracle
Label Security or Oracle Database Vault.

• DBUA, AutoUpgrade, and Oracle Database Vault
If you use Database Upgrade Assistant (DBUA) to upgrade Oracle Database 12c
Release 2 (12.2), Oracle Database 18c, or Oracle Database 19c, and your system uses
Oracle Database Vault, then you must use this upgrade process.

Chapter 2
Requirements for Upgrading Databases That Use Oracle Label Security and Oracle Database Vault

2-45

• Granting the DV_PATCH_ADMIN Role to SYS for Oracle Database Vault
If Oracle Database Vault is enabled, then to perform checks for Oracle Data Vault,
the upgrade process requires running three SQL scripts.

DBUA, AutoUpgrade, and Oracle Database Vault
If you use Database Upgrade Assistant (DBUA) to upgrade Oracle Database 12c
Release 2 (12.2), Oracle Database 18c, or Oracle Database 19c, and your system
uses Oracle Database Vault, then you must use this upgrade process.

If you use DBUA to perform the upgrade, then DBUA uses the AutoUpgrade utility to
complete the upgrade. However, in that case, AutoUpgrade does not automatically
disable Oracle Data Vault for upgrades from Oracle Database 12c Release 2 (12.2),
Oracle Database 18c (18.3), or Oracle Database 19c (19.3) to the new Oracle
Database release. Before you upgrade a source Oracle Database from one of these
releases, you must first disable Oracle Data Vault.

Example 2-7 Overview of Upgrade Procedure for Databases Using Oracle Data
Vault

You complete an upgrade from a source database where Oracle Database Vault is
enabled with the following steps:

1. Disable Oracle Data Vault.

2. Install the new Oracle Database release.

3. Download the latest AutoUpgrade JAR file from My Oracle Support note
2485457.1, and replace the AutoUpgrade JAR file in the new Oracle Database
release, in the path Oracle_home/rdbms/admin

4. Run the AutoUpgrade utility (or Database Upgrade Assistant), and complete the
upgrade.

5. Enable Oracle Database Vault in the upgraded Oracle Database.

Related Topics

• Disabling and Enabling Oracle Database Vault

• My Oracle Support Document 2485457.1

Granting the DV_PATCH_ADMIN Role to SYS for Oracle Database
Vault

If Oracle Database Vault is enabled, then to perform checks for Oracle Data Vault, the
upgrade process requires running three SQL scripts.

The SYS user requires the DV_PATCH_ADMIN role for the following scripts:

OLS_SYS_MOVE runs olspreupgrade.sql:

CHECK.OLS_SYS_MOVE.MIN_VERSION_INCLUSIVE=10.2
CHECK.OLS_SYS_MOVE.MAX_VERSION_EXCLUSIVE=12.1

Chapter 2
Requirements for Upgrading Databases That Use Oracle Label Security and Oracle Database Vault

2-46

https://support.oracle.com/rs?type=doc&id=2485457.1

EM_PRESENT runs emremove.sql:

CHECK.EM_PRESENT.MIN_VERSION_INCLUSIVE=NONE
CHECK.EM_PRESENT.MAX_VERSION_EXCLUSIVE=12.1.0.1

AMD_EXISTS CHECK runs catnoamd.sql:

CHECK.AMD_EXISTS.MIN_VERSION_INCLUSIVE=NONE
CHECK.AMD_EXISTS.MAX_VERSION_EXCLUSIVE=NONE

Back Up Oracle Database Before Upgrading
Use this procedure to back up your existing Oracle Database before you attempt an upgrade.

Caution:

Before you make any changes to the Oracle software, Oracle strongly recommends
that you create a backup of the Oracle software and databases. For Oracle
software running on Microsoft Windows operating systems, you must also take a
backup of the Windows registry. On Microsoft Windows, without a registry backup,
you cannot restore the Oracle software to a working state if the upgrade fails, and
you want to revert to the previous software installation.

Before you cleanly shut down the database, you must run AutoUpgrade using the
preupgrade parameter. To minimize downtime, you can perform an online backup, or create a
guaranteed restore point.

1. Sign on to Oracle RMAN:

rman "target / nocatalog"

2. Run the following RMAN commands:

RUN
{
 ALLOCATE CHANNEL chan_name TYPE DISK;
 sql 'ALTER SYSTEM ARCHIVE LOG CURRENT';
 BACKUP DATABASE FORMAT '/tmp/db%U' TAG before_upgrade
 PLUS ARCHIVELOG FORMAT '/tmp/arch%U' TAG before_upgrade;
 BACKUP CURRENT CONTROLFILE FORMAT '/tmp/ctl%U' TAG before_upgrade;
}

Caution:

You must ensure that no other RMAN backup runs during this backup. If
another RMAN command backs up and removes archive log, then this backup
could be unrecoverable, because the other RMAN command has removed the
archive logs.

Chapter 2
Back Up Oracle Database Before Upgrading

2-47

Related Topics

• About Online Backups and Backup Mode

• Using Flashback Database and Restore Points

• Backing Up the Database

Chapter 2
Back Up Oracle Database Before Upgrading

2-48

3
Upgrading Databases with Oracle Data Guard
Standbys

When you upgrade a database to a new release that uses one or more Oracle Data Guard
Standby databases, you use the redo logs from the primary database.

This scenario assumes you are using Oracle Data Guard broker.

• Preparing for Database Rolling Upgrades Using Oracle Data Guard
If you perform your upgrade using Oracle Data Guard to carry out a rolling upgrade, then
you must move the Data Guard broker configuration files before starting your upgrade.

• Before You Patch or Upgrade the Oracle Database Software
Before you patch or upgrade your Oracle Database software, review the prerequisites for
different use case scenarios.

• Recovering After the NOLOGGING Clause Is Specified
Some SQL statements allow you to specify a NOLOGGING clause so that the operation is
not logged in the online redo log file.

• Enable an Appropriate Logging Mode
As part of preparing the primary database for standby database creation, you must
enable a logging mode appropriate to the way you plan to use the Oracle Data Guard
configuration.

• Creating a Physical Standby Task 1: Create a Backup Copy of the Primary Database
Data Files
You can use any backup copy of the primary database to create the physical standby
database, as long as you have the necessary archived redo log files to completely
recover the database.

• Creating a Physical Standby Task 2: Create a Control File for the Standby Database
Create the control file for the standby database. The primary database does not have to
be open, but it must at least be mounted.

• Creating a Physical Standby Task 3: Create a Parameter File for the Standby Database
Create a parameter file (PFILE) from the server parameter file (SPFILE) used by the
primary database.

• Upgrading Oracle Database with a Physical Standby Database in Place
These steps show how to upgrade to Oracle Database when a physical standby
database is present in the configuration.

• Creating a Physical Standby Task 4: Copy Files from the Primary System to the Standby
System
Ensure that all required directories are created. Use an operating system copy utility to
copy binary files from the primary system to their correct locations on the standby
system.

• Creating a Physical Standby Task 5: Set Up the Environment to Support the Standby
Database
Set up the environment by creating a Windows-based service, a password file, and an
SPFILE, and then setting up the Oracle Net environment.

3-1

• Creating a Physical Standby Task 6: Start the Physical Standby Database
These are the steps to start the physical standby database and Redo Apply.

• Creating a Physical Standby Task 7: Verify the Physical Standby Database Is
Performing Properly
After you create the physical standby database and set up redo transport services,
you may want to verify database modifications are being successfully transmitted
from the primary database to the standby database.

Preparing for Database Rolling Upgrades Using Oracle Data
Guard

If you perform your upgrade using Oracle Data Guard to carry out a rolling upgrade,
then you must move the Data Guard broker configuration files before starting your
upgrade.

The default location for the DB_BROKER_CONFIG files is in the dbs directory in the earlier
release Oracle Database Oracle home. When you perform a rolling upgrade of
database instances using Oracle Data Guard, you must move the DG_BROKER_CONFIG
files to a mount point location outside of the earlier release Oracle home. Also ensure
that the DG_BROKER_CONFIG_FILEn parameters specify that location, instead of a
location in the earlier release Oracle home. During database upgrade, don't migrate
the listener. After the upgrade is complete, stop the listener, shut down the database,
copy over the listener.ora and tnsnames.ora from the earlier source Oracle
Database release environment to the new Oracle Database release environment, and
start the listener and database

Tasks Before Starting Your Upgrade

To enable access to the DB_BROKER_CONFIG files during a rolling upgrade, you must
complete the following tasks before starting the upgrade

1. Before you start the upgrade, if you are not using Oracle Automatic Storage
Management (Oracle ASM) for storage, then set the Oracle Data Guard files
DG_BROKER_CONFIG_FILE1 and DG_BROKER_CONFIG_FILE2 to a separate mount point
on your server that is outside of the Oracle home path for either the source or
target Oracle Database Oracle homes.

Note:

Prior to Oracle Database 21c, the default ORACLE_HOME layout
combined ORACLE_HOME, ORACLE_BASE_HOME and
ORACLE_BASE_CONFIG into a single location. Starting with Oracle
Database 21c, the only available configuration is a read-only
ORACLE_HOME where ORACLE_BASE_HOME and
ORACLE_BASE_CONFIG are located separately from
ORACLE_HOME. Files such as the Oracle Data Guard Files, which
were previously located in the folder dbs, are now located in
ORACLE_BASE_CONFIG/dbs.

2. Complete a successful upgrade of your earlier release Oracle home to the new
Oracle Database release.

Chapter 3
Preparing for Database Rolling Upgrades Using Oracle Data Guard

3-2

Tasks During the Upgrade

Do not migrate the listener during the upgrade.

Oracle recommends that you use AutoUpgrade to complete the upgrade. See:

AutoUpgrade and Oracle Data Guard

Tasks After Completing Your Upgrade

1. Stop the listener for the new release Oracle Database.

2. Shut down the new release Oracle Database.

3. Copy over the listener.ora and tnsnames.ora files from the earlier release Oracle
Database to the new release Oracle Database.

4. Start the listener and new release Oracle Database

Refer to Oracle Data Guard Broker for information about moving your Data Guard broker
configuration files.

Related Topics

• Renaming the Broker Configuration Files

Before You Patch or Upgrade the Oracle Database Software
Before you patch or upgrade your Oracle Database software, review the prerequisites for
different use case scenarios.

• If you are using the Oracle Data Guard broker to manage your configuration, follow the
instructions in Oracle Data Guard Broker

• Use procedures described in these topics in conjunction with other upgrade procedures
and guidelines provided in Oracle Database Upgrade Guide.

• Check for NOLOGGING operations. If NOLOGGING operations have been performed then you
must update the standby database.

See Recovering After the NOLOGGING Clause Is Specified

• Make note of any tablespaces or data files that need recovery due to OFFLINE
IMMEDIATE. Before starting an upgrade, tablespaces or data files should be recovered,
and either online or offline.

• In an Oracle Data Guard configuration, all physical and snapshot standby databases
must use a copy of the password file from the primary database. Password file changes
done on the primary database are automatically propagated to standby databases.
Password file changes are events such as when an administrative privilege (SYSDG,
SYSOPER, SYSDBA, and so on) is granted or revoked, and when the password of any user
with administrative privileges is changed.

Far sync instances are an exception to the automatic updating feature. Updated
password files must still be manually copied to far sync instances, because far sync
instances receive redo, but do not apply it. When a password file is manually updated at
a far sync instance, the redo containing the same password changes from the primary
database is automatically propagated to any standby databases that are set up to receive
redo from that far sync instance. The password file is updated on the standby when the
redo is applied.

Chapter 3
Before You Patch or Upgrade the Oracle Database Software

3-3

Note:

If there are cascaded standbys in your configuration, then those cascaded
standbys must follow the same rules as any other standby, but should be
shut down last, and restarted in the new home first.

Related Topics

• Oracle Data Guard Broker Upgrading and Downgrading

Recovering After the NOLOGGING Clause Is Specified
Some SQL statements allow you to specify a NOLOGGING clause so that the operation is
not logged in the online redo log file.

In actuality, when you specify NOLOGGING, a redo record is still written to the online redo
log file, but there is no data associated with the record. This specification can result in
log application or data access errors at the standby site. Manual recovery might be
required to resume applying log files. Depending on whether you have a logical
standby or physical standby, you can avoid these errors by doing the following:

• Logical standbys

Specify the FORCE LOGGING clause in the CREATE DATABASE or ALTER DATABASE
statements.

• Physical standbys

Specify a logging mode that is appropriate to the way in which you plan to use
your Data Guard configuration.

See Enable an Appropriate Logging Mode.

You can see the current logging mode in the V$DATABASE.FORCE_LOGGING column (for
CDBs), or the DBA_PDBS.FORCE_LOGGING column (for PDBs).

Enable an Appropriate Logging Mode
As part of preparing the primary database for standby database creation, you must
enable a logging mode appropriate to the way you plan to use the Oracle Data Guard
configuration.

The default logging mode of a database that is not part of an Oracle Data Guard
configuration allows certain data loading operations to be performed in a nonlogged
manner. This default mode is not appropriate to a database with a standby, because it
leads to the loaded data being missing from the standby, which requires manual
intervention to fix.

In addition to the default logging mode, there are three other modes that are
appropriate for a primary database:

• FORCE LOGGING mode prevents any load operation from being performed in a
nonlogged manner. This mode can slow down the load process, because the

Chapter 3
Recovering After the NOLOGGING Clause Is Specified

3-4

loaded data must be copied into the redo logs. FORCE LOGGING mode is enabled using the
following command:

SQL> ALTER DATABASE FORCE LOGGING;

• STANDBY NOLOGGING FOR DATA AVAILABILITY mode causes the load operation to send
the loaded data to each standby through its own connection to the standby. The commit
is delayed until all the standbys have applied the data as part of running managed
recovery in an Active Data Guard environment. It is enabled with the following command:

SQL> ALTER DATABASE SET STANDBY NOLOGGING FOR DATA AVAILABILITY;

• STANDBY NOLOGGING FOR LOAD PERFORMANCE is similar to the previous mode except that
the loading process can stop sending the data to the standbys if the network cannot keep
up with the speed at which data is being loaded to the primary. In this mode it is possible
that the standbys may have missing data, but each standby automatically fetches the
data from the primary as a normal part of running managed recovery in an Active Data
Guard environment. It is enabled with the following command:

SQL> ALTER DATABASE SET STANDBY NOLOGGING FOR LOAD PERFORMANCE;

When you issue any of these statements, the primary database must at least be mounted
(and it can also be open). The statement can take a considerable amount of time to
complete, because it waits for all unlogged direct write I/O to finish.

Note:

When you enable STANDBY NOLOGGING FOR DATA AVAILABILITY or STANDBY
NOLOGGING FOR LOAD PERFORMANCE on the primary database, any standbys that are
using multi-instance redo apply functionality will stop applying redo with the error
ORA-10892. You must first restart redo apply and allow the affected standbys to
progress past the NOLOGGING operation period and then enable multi-instance
redo apply.

Related Topics

• Specifying FORCE LOGGING Mode

See Also:

Oracle Database Administrator’s GuideFor more information about the ramifications
of specifying FORCE LOGGING mode

Chapter 3
Enable an Appropriate Logging Mode

3-5

Creating a Physical Standby Task 1: Create a Backup Copy
of the Primary Database Data Files

You can use any backup copy of the primary database to create the physical standby
database, as long as you have the necessary archived redo log files to completely
recover the database.

You can use any backup copy of the primary database to create the physical standby
database, as long as you have the necessary archived redo log files to completely
recover the database. Oracle recommends that you use the Recovery Manager utility
(RMAN).

Related Topics

• Backing Up the Database, Oracle Database Backup and Recovery User’s Guide

Creating a Physical Standby Task 2: Create a Control File
for the Standby Database

Create the control file for the standby database. The primary database does not have
to be open, but it must at least be mounted.

You must create a control file for the standby database. You cannot use a single
control file for both the primary and standby databases. They each must have their
own file.

Example 3-1 Creating the Control File for the Standby Database

The ALTER DATABASE command designates the database that you want to operate in
the standby role. In this example, that standby database is named boston:

SQL> ALTER DATABASE CREATE STANDBY CONTROLFILE AS '/tmp/boston.ctl';

Note:

If a control file backup is taken on the primary, and restored on a standby (or
vice-versa), then the location of the snapshot control file on the restored
system is configured to be the default. The default value for the snapshot
control file name is platform-specific, and dependent on the Oracle home.
Manually reconfigure it to the correct value by using the RMAN command
CONFIGURE SNAPSHOT CONTROLFILE.

Creating a Physical Standby Task 3: Create a Parameter
File for the Standby Database

Create a parameter file (PFILE) from the server parameter file (SPFILE) used by the
primary database.

To create a parameter file for the standby database, perform the following steps:

Chapter 3
Creating a Physical Standby Task 1: Create a Backup Copy of the Primary Database Data Files

3-6

1. On the primary database, issue a SQL statement to create a copy of the primary
database parameter file.

In the following example,

SQL> CREATE PFILE='/tmp/initboston.ora' FROM SPFILE;

2. Modify the parameter values in the copy parameter file as needed to use this copy as the
parameter file for the standby database.

Although most of the initialization parameter settings in the parameter file are also
appropriate for the physical standby database, some modifications must be made.

Example 3-2 Modifying Initialization Parameters for a Physical Standby Database

This example shows the parameters created earlier on the primary that must be changed.
The parameters that you must change are in bold typeface.

.

.

.
DB_NAME=chicago
DB_UNIQUE_NAME=boston
LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,boston)'
CONTROL_FILES='/arch1/boston/control1.ctl', '/arch2/boston/control2.ctl'
DB_FILE_NAME_CONVERT='/chicago/','/boston/'
LOG_FILE_NAME_CONVERT='/chicago/','/boston/'
LOG_ARCHIVE_FORMAT=log%t_%s_%r.arc
LOG_ARCHIVE_DEST_1=
 'LOCATION=USE_DB_RECOVERY_FILE_DEST
 VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_2=
 'SERVICE=chicago ASYNC
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=chicago'
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE
STANDBY_FILE_MANAGEMENT=AUTO
FAL_SERVER=chicago
.
.
.

Ensure the COMPATIBLE initialization parameter is set to the same value on both the primary
and standby databases. If the values differ, then redo transport services may be unable to
transmit redo data from the primary database to the standby databases.

It is always a good practice to use the SHOW PARAMETERS command to verify that no other
parameters need to be changed.

The following table provides a brief explanation about the parameter settings shown in that
have different settings from the primary database.

Parameter Recommended Setting

DB_UNIQUE_NAME Specify a unique name for this database. This name uniquely identifies
this database, and does not change even if the primary and standby
databases reverse roles.

Chapter 3
Creating a Physical Standby Task 3: Create a Parameter File for the Standby Database

3-7

Parameter Recommended Setting

CONTROL_FILES Specify the path name for the control files on the standby database. The
example in this topic shows how to specify the path name for two control
files. Oracle recommends that you ensure a copy of the control file is
available, so that if a control file is corrupted, an instance can be easily
restarted after copying the good control file to the location of the bad
control file.

DB_FILE_NAME_CONVERT Specify the path name and filename location of the primary database data
files, followed by the standby location. The CONTROL_FILES parameter
converts the path names of the primary database data files to the standby
data file path names.

LOG_FILE_NAME_CONVERT Specify the location of the primary database online redo log files followed
by the standby location. This parameter converts the path names of the
primary database log files to the path names on the standby database.

LOG_ARCHIVE_DEST_n Specify where the redo data is to be archived. In the example in this topic,
the following destinations are specified:

• LOG_ARCHIVE_DEST_1 archives redo data received from the primary
database to archived redo log files in /arch1/boston/.

• LOG_ARCHIVE_DEST_2 is currently ignored, because this destination
is valid only for the primary role. If a switchover occurs, and this
instance becomes the primary database, then this parameter
specification provides the path to transmit redo data to the remote
Chicago destination.

Note: If a fast recovery area was configured (using the
DB_RECOVERY_FILE_DEST initialization parameter), and you have not
explicitly configured a local archiving destination with the LOCATION
attribute, then Oracle Data Guard automatically uses the
LOG_ARCHIVE_DEST_1 initialization parameter (if it has not already been
set) as the default destination for local archiving.

FAL_SERVER Specify the Oracle Net service name of the FAL (fetch archive log) server
for a standby database. Typically, this service name is for the database
running in the primary role. When the Boston database is running in the
standby role, it uses the Chicago database as the FAL server from which
to fetch (request) missing archived redo log files, if Chicago is unable to
automatically send the missing log files.

Note:

Review the initialization parameter file for additional parameters that may
need to be modified. For example, you may need to modify the dump
destination parameters if the directory location on the standby database is
different from those specified on the primary database.

Related Topics

• LOG_ARCHIVE_DEST_n Parameter Attributes

Chapter 3
Creating a Physical Standby Task 3: Create a Parameter File for the Standby Database

3-8

Upgrading Oracle Database with a Physical Standby Database
in Place

These steps show how to upgrade to Oracle Database when a physical standby database is
present in the configuration.

Note:

If the database being upgraded is a member of an Oracle Data Guard broker
configuration, then before proceeding, you must disable fast-start failover and shut
down the broker. For information about how to do this, see Oracle Data Guard
Broker .

1. Review and perform the standard preupgrade preparation tasks described in Oracle
Database Upgrade Guide.

2. Install the new release of the Oracle software into a new Oracle home on the physical
standby database and primary database systems, as described in Oracle Database
Upgrade Guide

3. Shut down the primary database.

4. Shut down physical standby databases.

5. Stop all listeners, agents, and other processes running in the Oracle homes that you want
to upgrade (Source Oracle homes). Perform this step on all nodes in an Oracle Real
Application Clusters (Oracle RAC) environment.

6. In the new Oracle home (Target Oracle home), restart all listeners, agents, and other
processes that you stopped in the source Oracle home

7. Mount physical standby databases on the target Oracle home (upgraded version).

Caution:

Do not open standby databases until the primary database upgrade is
completed.

See Start the Physical Standby Database for information on how to start a physical
standby database.

8. Start Redo Apply on the physical standby databases.

Chapter 3
Upgrading Oracle Database with a Physical Standby Database in Place

3-9

Note:

By default, AutoUpgrade disables log shipping. If you have modified your
AutoUpgrade configuration file to enable log shipping, then modify your
AutoUpgrade configuration file to set the AutoUpgrade locally modifiable
global parameter defer_standby_log_shipping to no. For example:
upg1.defer_standby_log_shipping=no

See Start the Physical Standby Database for information on how to start Redo
Apply.

9. Upgrade the primary database. Physical standby databases are upgraded when
the redo generated by the primary database as it is upgraded is applied to
standbys.

10. Open the upgraded primary database.

11. If Oracle Active Data Guard was being used before the upgrade, then you must
reenable it after upgrading.

See Real-time query

12. (Optional) When ready. modify the COMPATIBLE initialization parameter.

Note:

On Microsoft Windows platforms, it is necessary to use the ORADIM
utility to delete the database service (for the old database version), and
to create a new database service for the new database version. You
must replace the OracleServiceSID on both the primary and standby
servers.

Related Topics

• Oracle Data Guard Broker Upgrading and Downgrading

• Preparing to Upgrade Oracle Database, Oracle Database Upgrade Guide

• Modifying the COMPATIBLE Initialization Parameter After Upgrading

Creating a Physical Standby Task 4: Copy Files from the
Primary System to the Standby System

Ensure that all required directories are created. Use an operating system copy utility to
copy binary files from the primary system to their correct locations on the standby
system.

Copy these binary files to the correct locations on the standby system:

1. The primary Oracle Database backup.

See Create a Backup Copy of the Primary Database Data Files

2. the standby control file.

Chapter 3
Creating a Physical Standby Task 4: Copy Files from the Primary System to the Standby System

3-10

See Create a Control File for the Standby Database

3. Standby database initialization parameter file.

See Create a Parameter File for the Standby Database

Creating a Physical Standby Task 5: Set Up the Environment to
Support the Standby Database

Set up the environment by creating a Windows-based service, a password file, and an
SPFILE, and then setting up the Oracle Net environment.

To set up the environment, perform the following steps:

1. If the standby database is going to be hosted on a Windows system, then use the ORADIM
utility to create a Windows service.

For example:

oradim –NEW –SID boston –STARTMODE manual

The ORADIM utility automatically determines the username for which this service should be
created and prompts for a password for that username (if that username needs a
password).

See Oracle Database Administrator’s Reference for Microsoft Windows for more
information about using the ORADIM utility.

2. Copy the remote login password file from the primary database system to the standby
database system.

This step is optional if operating system authentication is used for administrative users,
and if SSL is used for redo transport authentication. If that is not the case, then copy the
remote login password file from the primary database to the appropriate directory on the
physical standby database system.

Any subsequent changes to the password file on the primary are automatically
propagated to the standby. Changes to a password file can include when administrative
privileges (SYSDG, SYSOPER, SYSDBA, and so on) are granted or revoked, and when
passwords of any user with administrative privileges is changed. Updated password files
must still be manually copied to far sync instances because far sync instances receive
redo, but do not apply it. Once the password file is up-to-date at the far sync instance, the
redo containing the password update at the primary is automatically propagated to any
standby databases that are set up to receive redo from that far sync instance. The
password file is updated on the standby when the redo is applied.

3. Configure and start a listener on the standby system if one is not already configured.

See Configuring and Administering Oracle Net Listener in Oracle Database Net Services
Administrator's Guide.

4. Create Oracle Net service names.

On both the primary and standby systems, use Oracle Net Manager to create a network
service name for the primary and standby databases that are to be used by redo
transport services. The Net service names in this example are chicago and boston.

The Oracle Net service name must resolve to a connect descriptor that uses the same
protocol, host address, port, and service that you specified when you configured the

Chapter 3
Creating a Physical Standby Task 5: Set Up the Environment to Support the Standby Database

3-11

listeners for the primary and standby databases. The connect descriptor must also
specify that a dedicated server be used.

See Understanding Database Services in Oracle Database Net Services
Administrator's Guide for more information about service names.

5. On an idle standby database, use the SQL CREATE statement to create a server
parameter file for the standby database from the text initialization parameter file
that was edited in Task 3.

For example:

SQL> CREATE SPFILE FROM PFILE='initboston.ora';

6. If the primary database has a database encryption wallet, then copy it to the
standby database system and configure the standby database to use this wallet.

Note:

The database encryption wallet must be copied from the primary
database system to each standby database system whenever the
master encryption key is updated.

Encrypted data in a standby database cannot be accessed unless the
standby database is configured to point to a database encryption wallet
or hardware security module that contains the current master encryption
key from the primary database.

Creating a Physical Standby Task 6: Start the Physical
Standby Database

These are the steps to start the physical standby database and Redo Apply.

1. On the standby database, issue the following SQL statement to start and mount
the database:

SQL> STARTUP MOUNT;

2. Restore the backup of the data files taken from the primary database data files,
and copied to the standby system.

3. On the standby database, issue the following command to start Redo Apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE -
> DISCONNECT FROM SESSION;

The statement includes the DISCONNECT FROM SESSION option, so that Redo Apply
runs in a background session.

Chapter 3
Creating a Physical Standby Task 6: Start the Physical Standby Database

3-12

Creating a Physical Standby Task 7: Verify the Physical Standby
Database Is Performing Properly

After you create the physical standby database and set up redo transport services, you may
want to verify database modifications are being successfully transmitted from the primary
database to the standby database.

To verify that redo is being transmitted from the primary database and applied to the standby
database, connect to the standby database, and query the V$DATAGUARD_PROCESS view.

Example 3-3 Querying V$DATAGUARD_PROCESS to Verify Redo Transmission from
Primary to Secondary Database

SQL> SELECT ROLE, THREAD#, SEQUENCE#, ACTION FROM V$DATAGUARD_PROCESS;

ROLE THREAD# SEQUENCE# ACTION
------------------------ ---------- ---------- ------------
RFS ping 1 9 IDLE
recovery apply slave 0 0 IDLE
recovery apply slave 0 0 IDLE
managed recovery 0 0 IDLE
recovery logmerger 1 9 APPLYING_LOG
RFS archive 0 0 IDLE
RFS async 1 9 IDLE

The recovery logmerger role shows that redo is being applied at the standby.

Note:

Use the V$DATAGUARD_PROCESS view instead of the V$MANAGED_STANDBY view.
V$MANAGED_STANDBY was deprecated in Oracle Database 12c Release 2
(12.2.0.1) and can be desupported in a future release.

Chapter 3
Creating a Physical Standby Task 7: Verify the Physical Standby Database Is Performing Properly

3-13

4
Using AutoUpgrade for Oracle Database
Upgrades

Learn how to use AutoUpgrade to simplify your upgrade tasks.

• About Oracle Database AutoUpgrade
The AutoUpgrade utility identifies issues before upgrades, performs pre- and
postupgrade actions, deploys upgrades, performs postupgrade actions, and starts the
upgraded Oracle Database.

• Examples of How to Use AutoUpgrade
To guide your upgrade, use the AutoUpgrade workflow example that matches your
upgrade use case.

• AutoUpgrade Messages and Process Description Terms
To understand how your upgrade checks and operations are proceeding, learn about the
AutoUpgrade utility messages that are generated as the utility runs.

• About AutoUpgrade Processing Modes
The four AutoUpgrade processing modes (Analyze, Fixup, Deploy, and Upgrade)
characterize the actions that AutoUpgrade performs as it runs.

• Understanding AutoUpgrade Workflows and Stages
The AutoUpgrade workflow automates each step of a typical upgrade process. The
stages that run depend on the processing mode that you select.

• Understanding Non-CDB to PDB Upgrades with AutoUpgrade
You can upgrade and convert a non-CDB to a PDB in a new CDB in a single operation, or
upgrade and then convert a Non-CDB database to a PDB in a pre-existing CDB.

• Understanding Unplug-Plug Upgrades with AutoUpgrade
AutoUpgrade can perform an unplug of a pluggable database (PDB) from an earlier
release source container database (CDB), plug it into a later release target CDB, and
then complete all the steps required to upgrade the PDB to the target CDB release.

• AutoUpgrade Command-Line Parameters and Options
Review the AutoUpgrade parameters and select the parameters and options for your
Oracle Database upgrade use case.

• AutoUpgrade Utility Configuration Files
AutoUpgrade configuration files contain all the information required to perform Oracle
Database upgrades.

• AutoUpgrade and Oracle Database Configuration Options
When you run AutoUpgrade, it determines the type of database (Oracle Database,
Oracle Database Standalone with Oracle ASM, or Oracle RAC), and performs an
upgrade for that type of database

• AutoUpgrade Configuration File Examples
Use these examples to understand how you can modify your own AutoUpgrade
configuration files to perform a variety of configuration actions during the upgrade.

4-1

• AutoUpgrade before_action Local Parameter Example
To install Oracle Database features as part of your upgrade plan, you can use the
before_action local parameter to run scripts.

• AutoUpgrade Internal Settings Configuration File
Internal configuration settings control how AutoUpgrade runs.

• AutoUpgrade Log File Structure
The AutoUpgrade utility produces a log file structure that includes job status and
configuration files.

• Enabling Full Deployments for AutoUpgrade
To enable a guaranteed restore point (GRP) so that you can flashback an
upgrade, you must set up archive logging, and you should complete other tasks to
enable AutoUpgrade to complete the upgrade.

• Examples of How to Use the AutoUpgrade Console
The AutoUpgrade console provides a set of commands to monitor the progress of
AutoUpgrade jobs. The console starts by default when you run the AutoUpgrade
utility, and is enabled or disabled by the parameters console and noconsole.

• How to Override Default Fixups
You can use the RUNFIX column entry to disable automated fixups, except in cases
where disabling the fixup violates security or Oracle policy.

• Local Configuration File Parameter Fixups Checklist Example
To include or exclude specific fixups for individual databases during upgrades, use
the local configuration file checklist.

• Proper Management of AutoUpgrade Database Changes
AutoUpgrade is a powerful utility, which requires that you use it responsibly.
Review and avoid using AutoUpgrade in ways that put the database at risk.

• AutoUpgrade and Microsoft Windows ACLs and CLIs
When running AutoUpgrade on Microsoft Windows systems, Oracle recommends
additional best practices with access control lists (ACLs) and command-line
interfaces (CLIs).

About Oracle Database AutoUpgrade
The AutoUpgrade utility identifies issues before upgrades, performs pre- and
postupgrade actions, deploys upgrades, performs postupgrade actions, and starts the
upgraded Oracle Database.

Oracle recommends that you download the most recent version of the AutoUpgrade
Utility from My Oracle Support Document 2485457.1, and use autoupgrade.jar to
prepare for and to deploy your upgrade. The AutoUpgrade utility is designed to
automate the upgrade process, both before starting upgrades, during upgrade
deployments, and during postupgrade checks and configuration migration. You use
AutoUpgrade after you have downloaded binaries for the new Oracle Database
release, and set up new release Oracle homes. When you use AutoUpgrade, you can
upgrade multiple Oracle Database deployments at the same time, using a single
configuration file, customized as needed for each database deployment.

The autoupgrade.jar file exists by default in the Oracle home. However, before you
use AutoUpgrade, Oracle strongly recommends that you download the latest
AutoUpgrade version. AutoUpgrade is included with each release update (RU), but the
most recent AutoUpgrade version is always available from My Oracle Support
Document 2485457.1.

Chapter 4
About Oracle Database AutoUpgrade

4-2

Note:

AutoUpgrade is available for Oracle Database Enterprise Edition, and Oracle
Database Standard Edition. It is not available for Oracle Database Express Edition.

Preventing Issues: Analyze and Fixup Modes

Before the upgrade, in Analyze mode, the AutoUpgrade utility performs read-only analysis of
databases before upgrade, so that it can identify issues that require fixing. You can run the
utility during normal database operations. In Fixup Mode, the AutoUpgrade utility detects and
identifies both fixes that require manual intervention, and fixes that the AutoUpgrade utility
can perform during the upgrade deployment phase.

Simplifying Upgrades: Deploy and Upgrade Modes

In Deploy phase, the AutoUpgrade utility modifies the databases you indicate in your
configuration file. It enables you to call your own custom scripts during the upgrade to
configure databases. In many cases, the AutoUpgrade utility can perform automatic fixes to
databases during the upgrade process without requiring manual intervention.

Deploy and Upgrade Postupgrade Checks and Fixes

After an upgrade completes with either Deploy or Upgrade modes, AutoUpgrade performs
postupgrade checks. It provides a process where you can enable your custom scripts to be
run on each of the upgraded databases, in accordance with the configuration instructions you
provide in the AutoUpgrade configuration file, and also can run automatic postupgrade fixups
as part of the postupgrade process. In Deploy mode, AutoUpgrade also confirms that the
upgrade has succeeded, and copies database files such as sqlnet.ora, tnsname.ora, and
listener.ora from the source home to the target home. After these actions are complete,
the upgraded Oracle Database release is started in the new Oracle home.

Related Topics

• My Oracle Support Document 2485457.1

Examples of How to Use AutoUpgrade
To guide your upgrade, use the AutoUpgrade workflow example that matches your upgrade
use case.

These examples are presented in a typical workflow sequence. To see how you can use the
configuration file to run scripts with the noconsole parameter, see examples under "How to
Use the AutoUpgrade Console."

• AutoUpgrade with Source and Target Database Homes on Same Server (Typical)
When your Oracle Database Source and Target Oracle homes are installed on the same
physical server, use this example.

• AutoUpgrade with Source and Target Database Homes on Different Servers
When your Oracle Database Source and Target Oracle homes are located on different
physical servers, you must complete tasks on both servers.

Chapter 4
Examples of How to Use AutoUpgrade

4-3

https://support.oracle.com/rs?type=doc&id=2485457.1

Related Topics

• Examples of How to Use the AutoUpgrade Console
The AutoUpgrade console provides a set of commands to monitor the progress of
AutoUpgrade jobs. The console starts by default when you run the AutoUpgrade
utility, and is enabled or disabled by the parameters console and noconsole.

AutoUpgrade with Source and Target Database Homes on Same
Server (Typical)

When your Oracle Database Source and Target Oracle homes are installed on the
same physical server, use this example.

Context: Source and Target homes are on the same server.

To start the analysis, enter the following command.

java -jar autoupgrade.jar -config config.txt -mode analyze

The command produces a report that indicates any error conditions that the command
finds. Review the error conditions.

To start the deployment of the upgrade, enter the following command:

java -jar autoupgrade.jar -config config.txt -mode deploy

AutoUpgrade with Source and Target Database Homes on Different
Servers

When your Oracle Database Source and Target Oracle homes are located on different
physical servers, you must complete tasks on both servers.

Context: Source and Target Oracle homes are on different physical servers.

To start the analysis, enter the following command.

java -jar autoupgrade.jar -config config.txt -mode analyze

The command produces a report that indicates any error conditions that the command
finds. Review the error conditions.

Because the source and target Oracle Database Oracle homes are on different
servers, you run fixups on the source server, and the upgrade on the target server.

1. Run fixups on the source server:

java -jar autoupgrade.jar -config config.txt -mode fixups

2. Complete the tasks to move the source Oracle Database from the source server to
the target server.

Chapter 4
Examples of How to Use AutoUpgrade

4-4

3. On the target server, start up the database in upgrade mode, and then run AutoUpgrade
in upgrade mode:

java -jar autoupgrade.jar -config config.txt -mode upgrade

AutoUpgrade Messages and Process Description Terms
To understand how your upgrade checks and operations are proceeding, learn about the
AutoUpgrade utility messages that are generated as the utility runs.

• Overview of AutoUpgrade Job IDs
An AutoUpgrade Job is a unit of work associated with an upgrade, which is identified by
a job identifier (jobid).

• Overview of AutoUpgrade Stages
AutoUpgrade utility jobs pass through a series of phases, called stages, during which
specific actions are performed.

• Overview of AutoUpgrade Stage Operations and States
In AutoUpgrade, operation describes actions performed during stages, and state
indicates the status of a stage operation.

Overview of AutoUpgrade Job IDs
An AutoUpgrade Job is a unit of work associated with an upgrade, which is identified by a job
identifier (jobid).

A job represents a set of actions that AutoUpgrade performs. Each job goes through a set of
stages to accomplish its purpose. The job is identified by a unique positive integer, which is
called a jobid. Each new AutoUpgrade job produces a new job ID (jobid) for each database
found in the configuration file for the AutoUpgrade utility. If AutoUpgrade detects that a
database with a jobid that you previously started exists on your system is incomplete, then
AutoUpgrade identifies this existing jobid as a resume operation. In a resume operation,
stages of a job identified by a jobid that did not complete during the previous AutoUpgrade
run are continued from the point where they were stopped.

Overview of AutoUpgrade Stages
AutoUpgrade utility jobs pass through a series of phases, called stages, during which
specific actions are performed.

The actions that occur during a stage are defined by the processing mode that you select
for AutoUpgrade: Analyze, Fixups, Deploy, and Upgrade.

AutoUpgrade has the following stages:

• SETUP: The initial stage that the AutoUpgrade utility job manager creates as part of the
preparation for starting a job.

• PREUPGRADE: The stage in which AutoUpgrade performs checks of your system,
based on your current system configuration to determine its readiness for upgrade, such
as checking to determine if you have sufficient available disk space.

• PRECHECKS: The stage in which AutoUpgrade analyzes your source Oracle home to
determine if the database meets the requirements for upgrade.

Chapter 4
AutoUpgrade Messages and Process Description Terms

4-5

• GRP: The guaranteed restore point (GRP), which AutoUpgrade creates before
starting the upgrade process. This option is only available for Oracle Database
Enterprise Edition releases. It is not available for Oracle Database Standard
Edition. Even though AutoUpgrade creates a GRP by default, Oracle highly
recommends that you perform a backup before starting your upgrade.

• PREFIXUPS: The stage in which AutoUpgrade performs preupgrade fixups before
starting the upgrade. For example, this is the stage in which AutoUpgrade gathers
dictionary statistics on the source Oracle home.

• DRAIN: The stage during which AutoUpgrade shuts down the database.

• DBUPGRADE: The stage in which AutoUpgrade performs the upgrade, and
compiles any invalid objects that are found after the upgrade completes.

• POSTCHECKS: The stage in which AutoUpgrade performs checks on the target
Oracle home (the upgraded Oracle Database) before starting postupgrade fixups.

• POSTFIXUPS: The stage in which AutoUpgrade performs processing of
postupgrade fixups, such as upgrading the time zone.

• POSTUPGRADE: The stage in which AutoUpgrade copies or merges the source
Oracle home configuration files (tnsnames.ora, sqlnet.ora, and other files) to the
target Oracle home.

Overview of AutoUpgrade Stage Operations and States
In AutoUpgrade, operation describes actions performed during stages, and state
indicates the status of a stage operation.

Understanding Operation Messages

An operation message is an internal phase message that describes what is happening
during an AutoUpgrade state. There are two types of operation messages.

PREPARING: An AutoUpgrade instance is being created, initialized, or called, in
preparation for completing an AutoUpgrade stage. This is an information message.
When you see this message, there is no action for you to perform.

EXECUTING: AutoUpgrade is in the process of performing the main workflow of a
stage. This is an information message. There is no action for you to perform.

Understanding State Messages

State messages indicate the status of the current workflow of the stage for which the
message is displayed. There are four state messages:

• ABORTED: AutoUpgrade stopped performing the stage workflow, in response to a
user request.

• ERROR: An error was encountered while the stage workflow was being
performed. Review the cause of the error.

• FINISHED: AutoUpgrade successfully completed the workflow for the stage.

• RUNNING: AutoUpgrade is performing the stage workflow.

Chapter 4
AutoUpgrade Messages and Process Description Terms

4-6

About AutoUpgrade Processing Modes
The four AutoUpgrade processing modes (Analyze, Fixup, Deploy, and Upgrade)
characterize the actions that AutoUpgrade performs as it runs.

• Preparations for Running AutoUpgrade Processing Modes
You must complete preparations before you can run an AutoUpgrade processing mode.

• About the AutoUpgrade Analyze Processing Mode
The AutoUpgrade Analyze (analyze) processing mode checks your database to see if it
is ready for upgrade.

• About the AutoUpgrade Fixups Processing Mode
The AutoUpgrade Fixups (fixups) processing mode analyzes your database, and
performs fixups of items that must be corrected before you can perform an upgrade.

• About the AutoUpgrade Deploy Processing Mode
The AutoUpgrade Deploy (deploy) processing mode performs the actual upgrade of the
database, and performs any pending fixups.

• About the AutoUpgrade Upgrade Processing Mode
The AutoUpgrade Upgrade (upgrade) processing mode enables you to upgrade either
the source or target Oracle home.

Preparations for Running AutoUpgrade Processing Modes
You must complete preparations before you can run an AutoUpgrade processing mode.

Before you can use an AutoUpgrade processing mode, confirm that you meet the following
requirements:

• You have created a user configuration file.

• The source Oracle Database release is up and running in the original Oracle home. In
case of a restart of AutoUpgrade, you must start the database in the Oracle home that
corresponds to the phase in the upgrade flow.

• The server on which the database is running is registered on the server hosts file (for
example, /etc/hosts), or on a domain name server (DNS).

If you are logged in to the server on which the target database is located, and the
database is running either on localhost, or where AutoUpgrade is running, then remove
the hostname parameter from the AutoUpgrade config file.

• On container databases (CDBs), if you want to upgrade a subset of pluggable databases
(PDBs), then the PDBs on which you want to run the upgrade are open, and they are
configured in the user configuration file, using the AutoUpgrade local parameter pdbs. If
you do not specify a list of PDBs, then AutoUpgrade upgrades all PDBs on the CDB.

• You have the AutoUpgrade jar file (autoupgrade.jar) downloaded or available, and you
are able to run it using a Java 8 distribution.

• If you want to run AutoUpgrade in a batch or script , then you have called AutoUpgrade
using the noconsole parameter in the command.

In Oracle Database 19c (19.3) and later target Oracle homes, the autoupgrade.jar file exists
by default. However, before you use AutoUpgrade, Oracle strongly recommends that you
download the latest version, which is available form My Oracle Support Document
2485457.1.

Chapter 4
About AutoUpgrade Processing Modes

4-7

Related Topics

• My Oracle Support Document 2485457.1

About the AutoUpgrade Analyze Processing Mode
The AutoUpgrade Analyze (analyze) processing mode checks your database to see if
it is ready for upgrade.

When you run AutoUpgrade in Analyze mode, AutoUpgrade only reads data from the
database, and does not perform any updates to the database. You can run
AutoUpgrade using the Analyze mode during normal business hours. You can run
AutoUpgrade in Analyze mode on your source Oracle Database home before you
have set up your target release Oracle Database home.

You start AutoUpgrade in Analyze mode using the following syntax, where Java-8-
home is the location of your Java 8 distribution, or the environment variable set for the
Java 8 home, and path/yourconfig.txt is the path and filename of your configuration
file:

Java-8-home/bin/java -jar autoupgrade.jar -config /path/yourconfig.txt -
mode analyze

For example, suppose you have copied the most recent AutoUpgrade release to the
new release Oracle home under rdbms/admin, and set an environment variable for
that home to 21CHOME, and copied the configuration file under the Oracle user home,
under the directory /scripts, and called it 21config.cfg, you then enter the following
command:

java -jar $21CHOME/rdbms/admin/autoupgrade.jar -config /scratch/scripts/
21config.cfg -mode analyze -mode analyze

Oracle Database Release 12.2 (12.2.0.1) or newer Oracle homes have a valid java
version by default.

PRECHECKSSETUP

The AutoUpgrade Analyze mode produces two output files, which are given the name
of the system identifier (SID) of the database that you check:

• SID.html: View this file using a web browser.

• SID_preupgrade.log: View this file using a text editor.

Each report identifies upgrade errors that would occur if you do not correct them,
either by running an automatic fixup script, or by manual correction. If errors occur,
then they are reported in the user log file, and also in the status.json file.

The Analyze mode also generates a status directory in the path cfgtoollogs/
upgrade/auto/status. This directory contains files that indicate if the analysis was
successful or failed. This directory has two JSON files, status.json and
progress.json:

• status.json : A high-level status JSON file that contains the final status of the
upgrade.

Chapter 4
About AutoUpgrade Processing Modes

4-8

https://support.oracle.com/rs?type=doc&id=2485457.1

• progress.json: A JSON file that contains the current progress of all upgrades being
performed on behalf of the configuration file. If errors occur, then they are reported in the
log file of the user running AutoUpgrade, and also in the status.json file.

If your target database Oracle home is not available on the server, then in your configuration
file, you must set the source Oracle home parameters to the same path, so that the
AutoUpgrade analyze processing mode can run. For example:

#
Source Home
#
sales3.source_home=d:\app\oracle\product\12.2.0\dbhome_1
#
Target Oracle Home
#
sales3.target_home=d:\app\oracle\product\21.0.0\dbhome_1

Earlier releases of AutoUpgrade required you to set target_home. In later releases of
AutoUpgrade, this restriction has been lifted for both Analyze and Fixups modes.

About the AutoUpgrade Fixups Processing Mode
The AutoUpgrade Fixups (fixups) processing mode analyzes your database, and performs
fixups of items that must be corrected before you can perform an upgrade.

When you run AutoUpgrade in Fixups mode, AutoUpgrade performs the checks that it also
performs in Analyze mode. After completing these checks, AutoUpgrade then performs all
automated fixups that are required to fix before you start an upgrade. When you plan to move
your database to a different platform, using the Fixups mode prepares the database for
upgrade.

Caution:

Oracle recommends that you run AutoUpgrade in Analyze mode separately before
running AutoUpgrade in Fixups mode. Fixup mode can make changes to the source
database.

As part of upgrade preparation, if the source database requires corrections for conditions that
would cause errors during an upgrade, then AutoUpgrade run in Fixups mode performs
automated fixes to the source database. Because running AutoUpgrade in Fixups mode is a
step that you perform as you are moving to another system, it does not create a guaranteed
restore point. Oracle recommends that you run this mode outside of normal business hours.

You start AutoUpgrade in Fixups mode using the following syntax, where Java-8-home is the
location of your Java 8 distribution, or the environment variable set for the Java 8 home:

Java-8-home/bin/java -jar autoupgrade.jar -config yourconfig.txt -mode fixups

Chapter 4
About AutoUpgrade Processing Modes

4-9

If Java 8 is in your source Oracle home, then start AutoUpgrade in Fixups mode using
the following syntax, where Oracle_home is the Oracle home directory, or the
environment variable set for the Oracle home, and yourconfig.txt is your
configuration file:

Oracle_home/jdk8/bin/java -jar autoupgrade.jar -config yourconfig.txt -
mode fixups

PREFIXUPSSETUP PRECHECKS

As AutoUpgrade runs in Fixups mode, it starts out by running the same prechecks that
are run in Analyze mode. It then runs automated fixups in the source database in
preparation for upgrade, and generates a high-level status file that indicates the
success or failure of fixup operations. If errors occur, then they are reported in the log
file of the user running AutoUpgrade.

Caution:

AutoUpgrade in Fixups mode does not create a guaranteed restore point.
Before starting AutoUpgrade in Fixups mode, ensure that your database is
backed up.

About the AutoUpgrade Deploy Processing Mode
The AutoUpgrade Deploy (deploy) processing mode performs the actual upgrade of
the database, and performs any pending fixups.

Before you run Deploy, you must have the target Oracle home already installed, and
you must have a backup plan in place, in addition to the backup plan run as part of the
AutoUpgrade script.

You start AutoUpgrade in Deploy mode using the following syntax, where
Oracle_home is the Oracle home directory, or the environment variable set for the
Oracle home, and yourconfig.txt is your configuration file:

Oracle_home/jdk8/bin/java -jar autoupgrade.jar -config yourconfig.txt -
mode deploy

When you run AutoUpgrade in Deploy mode, AutoUpgrade runs all upgrade
operations on the database, from preupgrade source database analysis to post-
upgrade checks. Each operation prepares for the next operation. If errors occur, then
the operation is stopped. All errors are logged to relevant log files, and to the console,
if enabled. A high level status file is generated for each operation, which shows the
success or failure of the operation. If there are fixups that are still pending (for
example, if you run AutoUpgrade in Deploy mode without running AutoUpgrade first in

Chapter 4
About AutoUpgrade Processing Modes

4-10

Analyze and Fixups mode) then AutoUpgrade can complete fixups during the Deploy mode.

About the AutoUpgrade Upgrade Processing Mode
The AutoUpgrade Upgrade (upgrade) processing mode enables you to upgrade either the
source or target Oracle home.

You can use the Upgrade mode to divide an upgrade into two parts:

1. (Strongly Recommended) Run the Prefixups mode on the source database running on its
Oracle home.

2. (Optional) Move the source database to a new Oracle home on a different system.

3. Perform the upgrade of the database using the Upgrade mode.

Note:

When run in the source Oracle home, AutoUpgrade will start processing the
upgrade immediately after skipping the PRECHECKS and PREFIXUPS stages.
All other stages (except POSTUPGRADE) typically run during a DEPLOY will be run.

To use the Upgrade mode, the database must be up and running in either the source or the
target Oracle home before you run AutoUpgrade in Upgrade mode. This option is particularly
of value when you have moved your Oracle Database to a different system from the original
source system, so that you cannot use the AutoUpgrade Deploy mode.

This procedure runs the upgrade, and postfixups operations on the database in the new
Oracle home location.

AutoUpgrade Upgrade Mode in Target Oracle Home

When the database is open in the target Oracle home, the process flow is as follows:

As AutoUpgrade runs in Upgrade mode, errors are logged to the log file of the user running
the AutoUpgrade script. A high level status file is generated for each operation, which shows
the success or failure of the operation.

Note:

When you run AutoUpgrade in Upgrade mode, no postupgrade operations are
performed, so you must complete those steps separately. For example, the
following postupgrade operations are not performed:

• Copy of network files (tnsnames.ora, sqlnet.ora, listener.ora and other
listener files, LDAP files, oranfstab

• Removal of the guaranteed restore point (GRP) created during the upgrade

• Final restart of an Oracle Real Application Clusters database

Chapter 4
About AutoUpgrade Processing Modes

4-11

AutoUpgrade Upgrade Mode in Source Oracle Home

When the database in open in the source Oracle home, the stages run in the upgrade
home depend on whether Fixups have been run on the source Oracle home before
you start AutoUpgrade in Upgrade mode:

• If Fixups have already been run on the Source Oracle home, then all of the stages
of a typical Deploy mode are run, except for Prechecks and Prefixups.
Use this option if you can run the Prechecks and Prefixups separately, because
AutoUpgrade bypasses running the Prechecks and Prefixups stages during the
upgrade itself, which reduces your downtime.

• If fixups on the source Oracle home have not been run within the previous 3 days,
then Upgrade mode includes those stages. The result is that running AutoUpgrade
in Upgrade mode on the source Oracle home is exactly the same as running
AutoUpgrade in Deploy mode, because the Prechecks and Prefixups stages are
run as part of the Upgrade mode.

Example 4-1 Running AutoUpgrade in the Target Home After Moving the
Database to a New Location

Where dbname is the name of your database, you run AutoUpgrade using the following
steps:

1. • If you ran AutoUpgrade with the Prefixups mode:

a. Copy the during_upgrade_pfile_dbname.ora file to the default location in
the target Oracle home with the default name (initSID.ora).

The during_upgrade_pfile_dbname.ora file is located under the temp
directory in the log path used to run AutoUpgrade.

b. (Optional) You can connect to SQL*Plus and create an SPFILE using
during_upgrade_pfile_dbname.ora in the temp directory. For example:

SQL> create spfile from pfile='/u01/autoupgrade/au21/CDBUP/
temp/during_upgrade_pfile_cdbupg.ora';

• If you did not run AutoUpgrade with the Prefixups mode:

a. Copy the initialization file (init.ora or spfileSID.ora from the source
Oracle home to the target Oracle home location.

2. Run AutoUpgrade in Upgrade mode using the following syntax, where
Oracle_home is the Oracle home directory path, or the environment variable set for
the Oracle home, and yourconfig.txt is your configuration file:

Oracle_home/jdk8/bin/java -jar autoupgrade.jar -config
yourconfig.txt -mode upgrade

This command runs the upgrade operations on the database.

Understanding AutoUpgrade Workflows and Stages
The AutoUpgrade workflow automates each step of a typical upgrade process. The
stages that run depend on the processing mode that you select.

Chapter 4
Understanding AutoUpgrade Workflows and Stages

4-12

AutoUpgrade is designed to enable you to perform an upgrade with as little human
intervention as possible. When you start AutoUpgrade, the configuration file you identify with
the command is passed to the AutoUpgrade job manager. The job manager creates the
required jobs for the processing mode that you selected, and passes the data structures
required for the mode to the dispatcher. The dispatcher then starts lower-level modules that
perform each individual task.

AutoUpgrade Processing Mode Workflow Processing

To understand how AutoUpgrade processes a workflow mode, review the following figure,
which shows how a deploy processing mode is processed:

AutoUpgrade Processing Mode Stages

The stages that AutoUpgrade runs for an upgrade job depends on the processing mode that
you select.

There are four AutoUpgrade modes. For each mode, AutoUpgrade steps are performed in
sequence. Note the differences in steps for each mode

• Analyze Mode: Setup, Prechecks.

• Fixups Mode: Setup, Prechecks, and Prefixups.

Chapter 4
Understanding AutoUpgrade Workflows and Stages

4-13

• Deploy Mode: Setup, Guaranteed Restore Point (GRP), Preupgrade, Prechecks,
Prefixups, Drain, DB (database) Upgrade, Postchecks, Postfixups, and
Postupgrade. You can run your own scripts before the upgrade (Preupgrade
stage) or after the upgrade (Postupgrade stage), or both before and after the
upgrade.

• Upgrade Mode: Setup, DB (database) Upgrade, Postchecks, and Postfixups.

Understanding Non-CDB to PDB Upgrades with
AutoUpgrade

You can upgrade and convert a non-CDB to a PDB in a new CDB in a single
operation, or upgrade and then convert a Non-CDB database to a PDB in a pre-
existing CDB.

All upgrades to Oracle Database 21c must use the multitenant architecture. Use of the
non-CDB Oracle Database architecture is desupported. When you migrate your
database from the non-CDB architecture to PDBs, you obtain up to three user-
configurable PDBs in a container database (CDB), without requiring a multitenant
license. If you choose to configure four or more PDBs, then a multitenant license is
required.

The non-CDB to PDB feature of the AutoUpgrade utility provides you flexible options
to control how you upgrade your earlier release non-CDB Oracle Database when you
upgrade and convert to the multitenant architecture. Starting with Oracle Database
21c, when you have an existing target release CDB, you can use AutoUpgrade to
convert a non-CDB Oracle Database to a PDB on the target release CDB during the
upgrade. To perform an upgrade and conversion of the non-CDB to a PDB, you
provide information about your non-CDB in the AutoUpgrade configuration file. If you
prefer, you can also choose to convert your non-CDB Oracle Database to a PDB in the
source release, and then plug in the PDB to a target release CDB, where the upgrade
is performed when you plug in the PDB.

After the upgrade you must configure the database listeners and local naming
parameters (tnsnames.ora files) .

Caution:

Before you run AutoUpgrade to complete the conversion and upgrade.
Oracle strongly recommends that you create a full backup of your source
database, and complete thorough testing of the upgrade. There is no option
to roll back to the non-CDB Oracle Database state after AutoUpgrade starts
this procedure.

Figure 4-1 Converting a Non-CDB to a PDB and Upgrading the PDB Using
AutoUpgrade

In the following illustration, a non-CDB Oracle Database goes through the following
steps:

1. AutoUpgrade uses the information you provide in the configuration file to move the
non-CDB source release database to the target release Oracle Database.

Chapter 4
Understanding Non-CDB to PDB Upgrades with AutoUpgrade

4-14

2. The source database is converted to a PDB on the target release.

3. The source database (now a PDB) is upgraded to the target release.

Requirements for Source Non-CDB and Target CDB

Requirements on the source non-CDB and target CDB to perform upgrades and conversions
to PDBs are as follows:

• The target CDB must be created in advance of performing the upgrade with
AutoUpgrade.

• The PDB created from the non-CDB must continue to use the source non-CDB name.
You cannot change the name of the database.

• The same set of Oracle Database options are configured for both the source and target.

• The endian format of the source and target CDBs are identical.

• The source and target CDBs have compatible character sets and national character sets.

• The source non-CDB Oracle Database release and operating system platform must be
supported for direct upgrade to the target CDB release.

• Operating system authentication is enabled for the source and target CDBs

The minimum COMPATIBLE parameter setting for the source database must be at least 12.2.0.
If the COMPATIBLE setting is a lower version, then during the conversion and upgrade process,
COMPATIBLE is set to 12.2.0. During the conversion, the original datafiles are retained. They
are not copied to create the new PDB. To enable AutoUpgrade to perform the upgrade, edit
the AutoUpgrade configuration file to set the AutoUpgrade parameters target_version to
the target CDB release, and identify the CDB to which the upgraded database is placed using
target_cdb. During the conversion and upgrade process, AutoUpgrade uses that information
to complete the upgrade to the target CDB.

Example 4-2 AutoUpgrade Configuration File for Non-CDB to PDB Conversion

To use the non-CDB to PDB option, you must set the parameters target_cdb in the
AutoUpgrade configuration file. The target_cdb parameter value defines the Oracle system

Chapter 4
Understanding Non-CDB to PDB Upgrades with AutoUpgrade

4-15

identifier (SID) of the container database into which you are plugging the non-CDB
Oracle Database. For example:

global.autoupg_log_dir=/home/oracle/autoupg
upg1.sid=s12201
upg1.source_home=/u01/product/12.2.0/dbhome_1
upg1.log_dir=/home/oracle/autoupg
upg1.target_home=/u01/product/21.1.0/dbhome_1
upg1.target_base=/u01
upg1.target_version=19.1.0
upg1.target_cdb=cdb19x

You can see a more detailed example of a non-CDB to PDB upgrade from Oracle
Database 12c (12.2) to Oracle Database 19c using the multitenant architecture in the
blog post "Unplug / Plug / Upgrade with AutoUpgrade," in Mike Dietrich's Blog,
Upgrade Your Database Now!

Related Topics

• Unplug / Plug / Upgrade with AutoUpgrade in Mike Dietrich, Upgrade Your
Database Now

• Permitted Features, Options, and Management Packs by Oracle Database
Offering

Understanding Unplug-Plug Upgrades with AutoUpgrade
AutoUpgrade can perform an unplug of a pluggable database (PDB) from an earlier
release source container database (CDB), plug it into a later release target CDB, and
then complete all the steps required to upgrade the PDB to the target CDB release.

There are two workflows for unplug-plug PDB upgrades using AutoUpgrade,
depending on how you configure the upgrade:

• You unplug one or more pluggable databases from one source CDB, and plug
them into a new release target CDB

• You unplug multiple pluggable databases from different source CDBs, and plug
them into a new release target CDB

After the upgrade, for each PDB, you must configure database listeners and local
naming parameters (tnsnames.ora files). You must also configure Oracle Wallet
management.

Caution:

As with any other change to the database, before you run AutoUpgrade to
complete the conversion and upgrade, Oracle strongly recommends that you
implement a reliable backup strategy to prevent unexpected data loss. There
is no option to roll back an unplug-plug PDB upgrade after AutoUpgrade
starts this procedure. AutoUpgrade does not support unplug-plug upgrades
of PDBs that use Transparent Data Encryption (TDE), or that have an
encrypted tablespace.

Chapter 4
Understanding Unplug-Plug Upgrades with AutoUpgrade

4-16

https://mikedietrichde.com/2021/06/07/unplug-plug-upgrade-with-autoupgrade/
https://mikedietrichde.com/2021/06/07/unplug-plug-upgrade-with-autoupgrade/

The following illustration shows the unplug-plug operation, in this case of a single PDB:

1. There is one source Oracle Database, and one target release Oracle Database. At this
stage, create your configuration file and run AutoUpgrade in Analyze mode
(autoupgrade.jar -mode analyze) to check your readiness for upgrade, and to correct
any issues that are reported.

2. You run AutoUpgrade in Deploy mode (autoupgrade.jar -mode deploy). AutoUpgrade
uses the information you provide in the configuration file to move the PDB to the target
release, and plug in the PDB.

3. AutoUpgrade runs prefixups, and then upgrades the PDB to the target release.

Figure 4-2 Unplug-Plug Upgrades from Source to Target

Requirements for Source and Target CDBs

To perform an unplug-plug upgrade, your source and target CDBs must meet the following
conditions:

• You have created the target release CDB, and opened the CDB before starting the
unplug-plug upgrade.

• The endian format of the source and target CDBs are identical.

• The set of Oracle Database components configured for the target release CDB include all
of the components available on the source CDB.

• The source and target CDBs have compatible character sets and national character sets

• The source CDB release must be supported for direct upgrade to the target CDB release.

• External authentication (operating system authentication) is enabled for the source and
target CDBs

• The Oracle Application Express installation type on the source CDBs should match the
installation type on the target CDB.

Chapter 4
Understanding Unplug-Plug Upgrades with AutoUpgrade

4-17

• There should be no existing guaranteed restore point (GRP) on the non-CDB
Oracle Database that you want to plug in to the CDB.

Caution:

Do not use AutoUpgrade to perform an unplug-plug upgrade to a CDB that is
part of an Oracle Data Guard configuration. To upgrade a PDB using an
unplug-plug to a CDB with an Oracle Data Guard configuration, you must
perform the upgrade manually using the procedure described in the following
My Oracle Support note:

Making Use Deferred PDB Recovery and the STANDBYS=NONE Feature
with Oracle Multitenant (Doc ID 1916648.1)

Features of Unplug-Plug Upgrades

When you select an unplug-plug upgrade, depending on how you configure the
AutoUpgrade configuration file, you can use AutoUpgrade to perform the following
options during the upgrade:

• You can either keep the PDB name that you have in the source CDB, or you can
change the PDB name.

• You can make a copy of the data files to the target CDB, while preserving all of the
old files.

• You can copy the data files to the target location, and then delete the old files on
the source CDB

• You can process one PDB, or you can link to an inclusion list and process many
PDBs in one upgrade procedure; the only limit for the number of PDBs you can
process are the server limits, and the limits for PDBS on the CDB.

Example 4-3 AutoUpgrade Configuration File for Unplug-Plug Upgrades

To use the unplug-plug PDB upgrade option, you must set the system identifier
parameters for the source CDB and PDB, parameter target_cdb in the AutoUpgrade
configuration file. The target_cdb parameter value defines the Oracle system identifier
(SID) of the container database into which you are plugging the non-CDB Oracle
Database. For example:

global.autoupg_log_dir=/home/oracle/autoupg
global.autoupg log_dir=/home/oracle/autoupg
upg1.sid=CDB122
upg1.source_home=/u01/app/oracle/product/12.2.0/dbhome_1
upg1.target_home=/u01/app/oracle/product/21.1.0/dbhome_1
upg1.target_version=21.1.0
upg1.target_cdb=cdb21x
upg1.target_pdb_name.pdb_2=depsales
upg1.target_pdb_copy_option.pdb_2=file_name_convert=('pdb_2','depsales')

Chapter 4
Understanding Unplug-Plug Upgrades with AutoUpgrade

4-18

https://support.oracle.com/rs?type=doc&id=1916648.1
https://support.oracle.com/rs?type=doc&id=1916648.1

AutoUpgrade Command-Line Parameters and Options
Review the AutoUpgrade parameters and select the parameters and options for your Oracle
Database upgrade use case.

Use the parameters with the command java -jar autoupgrade.jar.

• AutoUpgrade Command-Line Syntax
To see how to use AutoUpgrade to perform your upgrades, review the syntax and run
time use cases.

• Debug
The AutoUpgrade parameter debug turns on the AutoUpgrade debug message feature,
which assists you with correcting faulty AutoUpgrade job syntax.

• Clear_recovery_data
The AutoUpgrade parameter clear_recovery_data removes the recovery checkpoint,
which causes AutoUpgrade to have a fresh start the next time the tool is launched on
specified databases, or on all databases.

• Config
The AutoUpgrade parameter config identifies the configuration file that you use to
provide information about databases that you want to upgrade.

• Config_Values
The AutoUpgrade parameter config_values enables you to provide the same input
values about systems as a text configuration file. You can use it conjunction with the
config parameter.

• Console
The AutoUpgrade parameter console turns on the AutoUpgrade console, and provides a
set of commands to monitor the progress of AutoUpgrade jobs.

• Create_sample_file
The AutoUpgrade parameter create_sample_file generates either a configuration file,
or a settings file. You edit these files to create production configuration or settings files for
AutoUpgrade.

• Error_code
The AutoUpgrade parameter error_code shows the error codes for AutoUpgrade errors.

• Mode
The AutoUpgrade parameter mode value sets the mode from which AutoUpgrade runs.

• Noconsole
The AutoUpgrade parameter noconsole turns off the AutoUpgrade console, so that
AutoUpgrade runs using only configuration file information.

• Preupgrade
The AutoUpgrade parameter preupgrade runs database checks and preupgrade fixups
that fix most issues before you start an upgrade, and postupgrade fixups that fix most
issues after an upgrade is completed.

• Settings
The AutoUpgrade parameter settings identifies the configuration file that you use to
provide custom runtime configuration of the AutoUpgrade utility.

Chapter 4
AutoUpgrade Command-Line Parameters and Options

4-19

• Version
The AutoUpgrade parameter version prints to the terminal screen the current
build of the autoupgrade.jar file.

• Restore
The AutoUpgrade parameter restore performs a system-level restoration of the
AutoUpgrade jobs that you specify.

• Restore_on_fail
The AutoUpgrade parameter restore_on_fail automatically restores any job that
failed during the deployment.

• Zip
The AutoUpgrade parameter zip creates a zip file of log files required for filing an
AutoUpgrade service request.

AutoUpgrade Command-Line Syntax
To see how to use AutoUpgrade to perform your upgrades, review the syntax and run
time use cases.

Prerequisites

• You must have Java Development Kit (JDK) 8 or later installed in your source
environment.

JDK 8 is installed with every release starting with Oracle Database 12c Release 2
(12.2). For any release earlier than 12.2, you must either run AutoUpgrade using
the Java release in the target Oracle Database, or you must install JDK 8 on your
source database server.

• Oracle Database upgrades using the AutoUpgrade utility follow the same upgrade
rules that apply to manual Oracle Database upgrades. Confirm that your source
Oracle Database release is supported for upgrade.

With non-CDB to PDB conversion and upgrade, AutoUpgrade can automatically
complete both upgrade and conversion when these conditions are met:

• The target release CDB must exist.

• In the AutoUpgrade configuration file, where the target CDB system identifier is
target_cdb, you must set the local parameter target_cdb using the following
syntax:
target_cdb=target_cdb. For example:

target_cdb=cdb1

• The target_cdb value is the Oracle SID of the CDB into which you are plugging
the non-CDB.

File Path

The AutoUpgrade utility is a Java JAR file that is located in the new release Oracle
Database home.

Oracle_home/rdbms/admin/autoupgrade.jar
Oracle strongly recommends that you obtain the latest AutoUpgrade JAR file from My
Oracle Support. The JAR file and deployment instructions for the JAR file are available
from My Oracle Support note 2485457.1

Chapter 4
AutoUpgrade Command-Line Parameters and Options

4-20

Syntax

AutoUpgrade command syntax is case-sensitive. Enter commands in lowercase.

java -jar autoupgrade.jar [options]

Multiple options can be concatenated.

Run Type One (Basic) Parameters for AutoUpgrade

Run type one (Basic) parameters and options for AutoUpgrade provide a starting point for
preparing for upgrades.

Parameter Description

-version Displays the AutoUpgrade version.

-help Displays the help file for AutoUpgrade syntax.

-create_sample_file [settings | config
config-file-name]

Creates an example configuration file for
AutoUpgrade. For a description of the options, see
the create_sample_file parameter topic.

Run Type Two (Core) Parameters for AutoUpgrade

Run type two (Core) parameters and options for AutoUpgrade provide essential upgrade
functionality for most upgrade scenarios.

Parameter Description

-config [config_path | -config_values
config_values]

Identifies the configuration file that you use to
provide information about databases that you want
to upgrade. For a description of the options, see
the config parameter topic.

-mode [analyze|fixups|deploy|upgrade|
postfixups]

Sets the mode from which AutoUpgrade runs. For
a description of the options, see the mode
parameter topic.

-restore -jobs job# Performs a system-level restoration of the
AutoUpgrade jobs that you specify

-restore_on_fail If set, then when a job fails, the database is
restored automatically. Errors in PDBs are not
considered fatal, only errors in CDB$ROOT or Non-
CDBs.

-console Starts AutoUpgrade with the console enabled.

-noconsole Starts AutoUpgrade with the console disabled.

-debug Enables debug messages.

-clear_recovery_data [-jobs
job#,job#,...]

Removes the recovery information, which causes
AutoUpgrade to start from the beginning on all
databases, or on databases in a comma-delimited
list specified by -jobs. For a full description of the
options, see the clear_recovery_data
parameter topic.

Chapter 4
AutoUpgrade Command-Line Parameters and Options

4-21

Parameter Description

-restore -jobs job#,job#,... Runs a system-level restoration of the specified
jobs. The databases are flashed back to the
Guaranteed Restore Point (GRP). Before you run
this command, the GRP must already be created
by AutoUpgrade. For a full description of the
options, see the clear_recovery_data
parameter topic.

-zip [-sid sid] [-d dir] Zips up log files required for filing an AutoUpgrade
service request. For a description of the options,
see the zip parameter topic.

Run Type Three (Additional) Parameters for AutoUpgrade

Run type three (Additional) parameters and options for AutoUpgrade are useful for
particular upgrade scenarios, such as restarting from a failed point in an upgrade, or
running particular fixups.

Parameter Description

-debug Enables debug messages.

-error_code Displays the AutoUpgrade error codes.

-help Displays the help file for AutoUpgrade syntax.

-mode [analyze|fixups|postfixups] Sets the mode from which AutoUpgrade runs.
For a description of the options, see the mode
parameter topic.

-preupgrade preupgrade_options
options

Runs database checks and preupgrade fixups
that fix most issues before you start an
upgrade, and postupgrade fixups that fix most
issues after an upgrade is completed. For a
description of the options, see the
preupgrade parameter topic.

Related Topics

• My Oracle Support note 2485457.1

• Oracle Database Releases That Support Direct Upgrade

Debug
The AutoUpgrade parameter debug turns on the AutoUpgrade debug message feature,
which assists you with correcting faulty AutoUpgrade job syntax.

Property Description

Parameter type string

Syntax autoupgrade.jar -parameter -debug

Description

The AutoUpgrade debug parameter turns on debugging messages, which can assist
you with correcting AutoUpgrade command syntax.

Chapter 4
AutoUpgrade Command-Line Parameters and Options

4-22

https://support.oracle.com/rs?type=doc&id=2485457.1

Usage Notes

Use the debug parameter in concert with any other AutoUpgrade parameter.

Clear_recovery_data
The AutoUpgrade parameter clear_recovery_data removes the recovery checkpoint, which
causes AutoUpgrade to have a fresh start the next time the tool is launched on specified
databases, or on all databases.

Property Description

Parameter type string

Syntax clear_recovery_data [-jobs job_numbers]

where:

job_numbers is a comma-delimited list of jobs that you want to clear

Description

The AutoUpgrade clear_recovery_data parameter removes the recovery information, which
causes AutoUpgrade to start from the beginning on specified databases, or on all databases.

Usage Notes

Use after manually restoring a database and attempting a new upgrade. If no list of jobs is
provided, then by default, all job metadata is removed. Removing the metadata does not
remove log files, or reset the job identifier (jobid) counter. Only the AutoUpgrade files used
to keep track of the progress of each job are removed.

Examples

The following example shows how to use the clear_recovery_data option after you
encounter an issue, fix it, and then run AutoUpgrade again.

You start AutoUpgrade in deploy mode

java -jar autoupgrade.jar -config config.cfg -mode deploy

However, you encounter an issue during the upgrade. You stop AutoUpgrade, restore the
database, and make changes to the database to correct the issue. To start over the
AutoUpgrade procedure and clear out the current job state information, specify the job
number that is associated with the previously run job. If you specify the job number, then
AutoUpgrade only removes the state information for that specific job. The rest of the jobs will
remain untouched.

java -jar autoupgrade.jar -config config.cfg -mode analyze -
clear_recovery_data -jobs 100

Chapter 4
AutoUpgrade Command-Line Parameters and Options

4-23

Note:

The job ID number associates the job with the database. If you enter the
wrong job id, then that causes AutoUpgrade to restart the wrong job from the
beginning.

The analyze results are good, so you then run the deploy option again:

java -jar autoupgrade.jar -config config.cfg -mode deploy

When you run autoupgrade.jar -config with the -clear_recovery_data parameter,
AutoUpgrade only drops state files. It ignores any previously generated log files, so
you can retain log files for further reference. Running AutoUpgrade with the -
clear_recovery_data parameter also preserves the latest jobid information, so that
the jobid AutoUpgrade creates for the next job is the next ID in sequence. By
maintaining the jobid state, AutoUpgrade helps you to avoid mixing log output from
earlier AutoUpgrade jobs in the same log file.
The following are additional examples of how you can run the clear_recovery_data
parameter.

java -jar autoupgrade.jar -config config.cfg -clear_recovery_data
java -jar autoupgrade.jar -config config.cfg -clear_recovery_data -jobs 111,222

Config
The AutoUpgrade parameter config identifies the configuration file that you use to
provide information about databases that you want to upgrade.

Property Description

Parameter type string

Syntax
-config configfile

Default value None

Description

The config parameter specifies a configuration file name. It takes two arguments:

• The configuration file name

• (Optional) The path to the configuration file, as represented by config-file

Examples

Running AutoUpgrade with a configuration file named myconfig.cfg, with the
processing mode deploy:

java -jar autoupgrade.jar -config myconfig.cfg -mode deploy

Chapter 4
AutoUpgrade Command-Line Parameters and Options

4-24

Config_Values
The AutoUpgrade parameter config_values enables you to provide the same input values
about systems as a text configuration file. You can use it conjunction with the config
parameter.

Property Description

Parameter type String.

Syntax
-config_values [config-parameter1=value*,config-
parameter2=value,...]

Default value None.

Description

The config_values parameter enables you to provide values about database paths,
instances, and target releases through the AutoUpgrade command line that otherwise require
you to specify a configuration file. AutoUpgrade then creates a configuration file as the utility
runs. Using config_values enables you to run AutoUpgrade without a configuration file.

The config_values options are a comma-delimited list that can support multiple database
upgrades. Each database configuration is separated by asterisks (*) to identify different
databases. Global entries must include the global prefix in the name. For example:

global.autoupg_log_dir=/u01/app/oracle/cfgtoollogs/upgradelogs/

Local entries only need to include the name:

target_home=/u01/app/oracle/product/21.0.0.0/dbhome_1

Logging directories are resolved in the following manner.

• Case: Global autoupg_log_dir is not specified.

If the config_file parameter is not passed to AutoUpgrade, then the local directory is
used as the global log directory. If the config_file parameter is not passed to
AutoUpgrade, then the global log directory defaults to the Java temporary directory:

– Unix and Linux systems: /tmp/autoupgrade

– Microsoft Windows: C:\Users\name\AppData\Local\Temp\autoupgrade

– A configuration file is created with the name autoupgradeYYYYMMMHHMMSS.cfg, where
YYYY is year, MMM is month, HH is hour, MM is minute, and SS is second.

• Case: Global autoupg_log_dir is specified.

If the config_file parameter does not pass the directory to AutoUpgrade, then
AutoUpgrade creates a configuration file in the AutoUpgrade log directory specified by
the parameter. If the config_file parameter does not pass the directory to AutoUpgrade,
then the configuration file is created under the global log directory. If you specify a
configuration file name that already exists, then AutoUpgrade renames the existing
configuration file using the suffix YYYYMMMHHMMMMSS.cfg, where YYYY is year, MMM is month,

Chapter 4
AutoUpgrade Command-Line Parameters and Options

4-25

HH is hour, MM is minute, and SS is second. For example: on April 29, 2020, at
08:30:04, if configuration file \tmp\autoupgrade.cfg already exists, and you pass
the file name -config_file \tmp\autoupgrade.cfg to AutoUpgrade, then the
existing file is renamed to \tmp\autoupgrade.cfg20200429083004. AutoUpgrade
then creates the new configuration file \tmp\autoupgrade.cfg.

If you use the -config_values parameter, and the user account running the
AutoUpgrade command has the following operating system environment variables set,
then AutoUpgrade picks up the path defined for these variables:

• ORACLE_HOME - The Oracle home path for the source Oracle home

• ORACLE_TARGET_HOME - The target Oracle home path.

– Linux and Unix: Equivalent to an export ORACLE_TARGET_HOME command. For
example: export ORACLE_TARGET_HOME=/u01/app/oracle/product/21.0.0/

– Microsoft Windows: Equivalent to a SET ORACLE_TARGET_HOME command. For
example: SET ORACLE_TARGET_HOME=C:\oracle\21

• ORACLE_SID - The Oracle Database system identifier (SID).

– Linux and Unix: Set with the operating system shell command export
ORACLE_SID. For example: export ORACLE_SID=sales

– Microsoft Windows: Set with the operating system shell command SET
ORACLE_SID command. For example: SET ORACLE_SID=sales

• ORACLE_TARGET_VERSION - The target release of the new Oracle home. You must
set this operating system environment variable either when the target Oracle home
does not exist, or the target home is a release earlier than Oracle Database 18c.

– Linux and Unix: Set with export ORACLE_TARGET_VERSION. For example, for
Oracle Database 19c:

export ORACLE_TARGET_VERSION=19.1

For Oracle Database 21c:

export ORACLE_TARGET_VERSION=21.1

– Microsoft Windows: Set with SET ORACLE_TARGET_VERSION.

For example, for Oracle Database 19c:

SET ORACLE_TARGET_VERSION=19.1

For example, for Oracle Database 21c:

SET ORACLE_TARGET_VERSION=21.1

If you use the config_values parameter in place of a configuration file, and you do
not have these operating system environment variables set for the user account
running AutoUpgrade, then you must provide at least these four values as
arguments using config_values.

Chapter 4
AutoUpgrade Command-Line Parameters and Options

4-26

Example: Running AutoUpgrade With an Existing Configuration File

Scenario: Running AutoUpgrade with an existing configuration file, using config_values. The
following command syntax creates the global.autoupg_log_dir from the local directory
where the myconfig.cfg file is created. As a result of this command, the location for
global.autoupg_log_dir is set to /dir:

java –jar autoupgrade.jar –config /dir/myconfig.cfg –config_values
 “source_home=/srcdir, target_home=/trgdir, sid=sales” –mode
 deploy

The configuration file myconfig is created in the path /dir, with the following entries:

global.autoupg_log_dir=/dir
autoupgrade1.source_home=/srcdir
autoupgrade1.target_home=/trgdir
autoupgrade1.sid=sales

Example: Running AutoUpgrade Without Specifying a Value for –config_values

In analyze, fixup, upgrade, or deploy mode, if you have set user environment values that
AutoUpgrade requires to run, and you do not pass these values as an argument for –
config_values, then AutoUpgrade defaults to using the user environmental variables set on
the server.

To understand how this works, suppose you run AutoUpgrade as the user oracle, for which
the following environment variables are set, where the target version is Oracle Database 21c:

• ORACLE_HOME is set to /u01/app/oracle/product/12.2.0.1/dbhome_1

• ORACLE_TARGET_HOME is set to /u01/app/oracle/product/21.0.0.0/dbhome_1

• ORACLE_SID is set to sales

• ORACLE_TARGET_VERSION is set to 21.1

Now suppose you run the following command at 11:45:15 AM on September 30, 2020:

[Wed Sep 30 11:45:15] oracle@example:~$ java –jar autoupgrade.jar –
config_values –mode analyze

Because the log directory was unspecified, AutoUpgrade defaults writing the configuration file
for the run to the temporary directory. The configuration file AutoUpgrade creates resides in
the path /tmp/autoupgrade as the file/tmp/autoupgrade/autoupgrade20200501114515.cfg,
with the following entries:

global.autoupg_log_dir=/tmp/autoupgrade
Value from environmental variable ORACLE_HOME
autoupgrade1.source_home=/u02/app/oracle/122
Value from environmental variable ORACLE_TARGET_HOME
autoupgrade1.target_home=/scratch/oracle/21
Value from environmental variable ORACLE_SID
autoupgrade1.sid=sales

Chapter 4
AutoUpgrade Command-Line Parameters and Options

4-27

Value from environmental variable ORACLE_TARGET_VERSION
autoupgrade1.target_version=21.3

This option enables you to use AutoUpgrade to handle a single database upgrade
without requiring you to specify extensive details about the upgrade.

Example: Running AutoUpgrade with –config_values entries for multiple
databases

In this scenario, you run AutoUpgrade with –config_values entries for multiple
databases, using * to delimit values for each database, with a target release of Oracle
Database 21c:

 java –jar autoupgrade.jar –config /tmp/auto.cfg –config_values
"global.autoupg_log_dir=/scratch/upglogs,source_home=/scratch/
122,target_home=/scratch/21,sid=sales,*,source_home=/scratch/
18,target_home=/scratch/21,sid=employees"

The configuration file is created in the directory /tmp as /tmp/auto.cfg, with the
following entries.

global.autoupg_log_dir=/scratch/upglogs
autoupgrade1.source_home=/scratch/122
autoupgrade1.target_home=/scratch/21
autoupgrade1.sid=sales
autoupgrade2.source_home=/scratch/18
autoupgrade2.target_home=/scratch/21
autoupgrade2.sid=employees

Console
The AutoUpgrade parameter console turns on the AutoUpgrade console, and provides
a set of commands to monitor the progress of AutoUpgrade jobs.

Property Description

Parameter type string

Syntax autoupgrade.jar -config your-file -mode your-mode

Description

To monitor upgrades, use the AutoUpgrade parameter console to run the Console,
which monitors the status of upgrade jobs.

The AutoUpgrade console starts by default with the AutoUpgrade command. You can
reenable or disable the AutoUpgrade console using the option -console|-noconsole

When you use the -noconsole option, AutoUpgrade runs using only the settings in the
configuration file, without requiring console input. Use the noconsole option when you
want to create scripts for AutoUpgrade, such as in cases where you want to analyze
multiple databases. After the AutoUpgrade jobs are finished, you can review the output

Chapter 4
AutoUpgrade Command-Line Parameters and Options

4-28

of the Analyze mode logs to see what is required to upgrade each of the databases included
with your configuration script.

Note:

You can start as many instances of AutoUpgrade as you want, but each instance
must use a unique global logging directory (global.autoupg_log_dir). If you only
have one global logging directory, then you can only start one instance.

Usage Notes

When you start the console, you can use options within the console.

Console Option Description

-exit Closes and exits from the console. If there are jobs
running, then they are stopped.

-help Displays the console command help.

-lsj [(-r|-f-p|-e)|-n number] Lists jobs by status, up to the number of jobs you specify
with the numeric value number. You can use the following
flags:

-f: (Optional) Filter by finished jobs.

-r: (Optional) Filter by running jobs.

-e: (Optional) Filter by jobs with errors.

-p: (Optional) Filter by jobs in preparation.

-n number: (Required) Number of jobs to
display, specified by integer value.

-lsr Displays the restoration queue.

-lsa Displays the abort queue.

-tasks Displays the tasks that are running.

-clear Clears the terminal display.

-resume -job number Restarts from a previous job that was running, specified
by a numeric value (number) for the job.

-status [-job number|-long] Lists the status of a particular job, specified by a numeric
value (-job number). When run with -long,
AutoUpgrade displays full details about the job as it is
being run.

-restore [-job (0-9)|-all_failed] Restores the database in the AutoUpgrade job specified
by the integer value number to its state before starting the
upgrade.

When run with the all_failed option, restores all failed
jobs to their previous state before the upgrade started.

-logs Displays all log file locations.

-abort -job number Aborts the job specified by the numeric value that you
provide (number).

Chapter 4
AutoUpgrade Command-Line Parameters and Options

4-29

Console Option Description

-h[ist][/number] Displays the console command-line history, and takes the
option to run a command again, depending on the flat with
which you run it:

Flags:

/ Runs the last command again.

/ number Runs the command in the history log specified
by the command line number that you specify.

Create_sample_file
The AutoUpgrade parameter create_sample_file generates either a configuration
file, or a settings file. You edit these files to create production configuration or settings
files for AutoUpgrade.

Property Description

Parameter type string

Syntax -create_sample_file config [filename] [type =[full|
unplug|noncdbtopdb]] | settings [filename]

Default value For create_sample_file config, if you append a filename to the
command, then an example configuration file is created with the name
you provide. If you do not provide an output file name, then the
example configuration file is created with the name
sample_config.cfg.

When you add the type = clause, you select one of the following
options:

• full : A complete options AutoUpgrade configuration file
• unplug : An AutoUpgrade configuration file with options for

unplug-plug upgrades of PDBs.
• noncdbtopdb : An AutoUpgrade configuration file with options for

nonCDB to PDB upgrades.
When you add the settings clause, an internal settings configuration
file is generated. You can accept the default file name, or specify a file
name.

Usage Notes

The create_sample_file parameter is optional. It cannot be used together with other
parameters. When you specify this parameter, it requires either the settings or the
config clause:

settings: Generates an AutoUpgrade settings file, either with the name
sample_autoupg.cfg, or with a name that you specify.

config: Generates an AutoUpgrade configuration file, either with the name
sample_config.cfg, or with a name that you specify.

After you generate one of these example files, you can modify the file to control how
the AutoUpgrade utility performs upgrades.

Chapter 4
AutoUpgrade Command-Line Parameters and Options

4-30

• config: Generates a template upgrade configuration file of a configuration mode type.
AutoUpgrade generates a file named sample_config.cfg, or with a name you provide, in
the current folder

• settings AutoUpgrade generates a file named sample_autoupg.cfg, or with the name
you provide, in the current folder.

For both the config and settings options, the default file name is generated with the
extension .cfg. However, AutoUpgrade can read files without an extension, or with an
extension that you provide, as long as the file is a valid (plain text) file. The default extension
is for convenience in identifying these files as configuration files.

Generating an example configuration file is a standard part of preparing to use AutoUpgrade.
After you customize the configuration file parameters in the example configuration file, you
can use that file as the production settings and configuration file for your upgrade.

Caution:

The settings file is used to overwrite internal settings of the AutoUpgrade.
Generating an example settings file is not required for most use cases. Use
carefully.

Examples

Example of running the create_sample_file parameter with the config clause:

[oracle@example ~]$ java -jar autoupgrade.jar -create_sample_file config
Created sample configuration file /home/oracle/sample_config.cfg

Example of running the create_sample_file parameter with the config, clause specifying an
output configuration file name:

[oracle@example ~]$ java -jar autoupgrade.jar -create_sample_file config
sales01
Created sample configuration file /home/oracle/sales01.cfg

Example of running the create_sample_file parameter with the settings clause:

oracle@example ~]$ java -jar autoupgrade.jar -create_sample_file settings
Created sample settings file /home/oracle/sample_autoupg.cfg

Example of running the create_sample_file parameter with the settings, clause specifying
an output configuration file name:

oracle@example ~]$ java -jar autoupgrade.jar -create_sample_file settings
testsetting.test
Created sample settings file /home/oracle/testsetting.test

Error_code
The AutoUpgrade parameter error_code shows the error codes for AutoUpgrade errors.

Chapter 4
AutoUpgrade Command-Line Parameters and Options

4-31

Property Description

Parameter type string

Syntax -error_code [errorcode]

Default value When no error code is specified, all AutoUpgrade error codes are
displayed in the Console.

When an error code is specified, the information about the specified
error code is displayed in the Console.

Examples

When entered without a specification, Autoupgrade produces descriptions of all of the
error codes:

$ java -jar autoupgrade.jar -error_code
ERROR1000.ERROR = UPG-1000
ERROR1000.CAUSE = It was not possible to create the data file where the
jobsTable is being written or there was a problem during the writing, it might
be thrown due to a permission error or a busy resource scenario

ERROR1001.ERROR = UPG-1001
ERROR1001.CAUSE = There was a problem reading the state file perhaps there was
corruption writing the file and in the next write it might be fixed

ERROR1002.ERROR = UPG-1002
ERROR1002.CAUSE = Error deserializing the object for rerun, review log for any
errors
.
.
.

When entered with a specific error code, AutoUpgrade provides output for the error
that you specify. For example:

java -jar autoupgrade.jar -error_code UPG-3010

This command produces the following output:

ERROR3010.ERROR = UPG-3010
ERROR3010.CAUSE = Error running approot_to_pdb.sql script

Here is another example:

$ java -jar autoupgrade.jar -error_code UPG-1400

This command produces the following output:

ERROR1400.ERROR = UPG-1400
ERROR1400.CAUSE = Database upgrade failed with errors

Mode
The AutoUpgrade parameter mode value sets the mode from which AutoUpgrade runs.

Chapter 4
AutoUpgrade Command-Line Parameters and Options

4-32

Property Description

Parameter type string

Syntax -mode = [analyze|fixups|deploy|upgrade|postfixups]

Default value None. Choose one of the following options:

• analyze : Runs upgrade readiness checks in the source Oracle home.
• fixups : Runs the upgrade readiness checks and preupgrade fixups,

but does not perform the upgrade.
• deploy : Performs the upgrade of the databases from start to finish.
• upgrade : Performs the database upgrade and postupgrade actions.

Databases in the target Oracle homes must be up and running before
you start this mode.

• postfixups Runs postfixups of databases in the target Oracle home.

Examples

java -jar autoupgrade.jar -config config.cfg -mode analyze
java -jar autoupgrade.jar -config config.cfg -mode deploy
java -jar autoupgrade.jar -preupgrade "target_version=21" -mode fixups

Noconsole
The AutoUpgrade parameter noconsole turns off the AutoUpgrade console, so that
AutoUpgrade runs using only configuration file information.

Property Description

Parameter type string

Syntax -noconsole

Description

When you use the noconsole option, AutoUpgrade runs using only the settings in the
configuration file, without requiring console input. Use the noconsole option when you want to
run AutoUpgrade as part of a batch flow, or in scripts, such as in cases where you want to
analyze multiple databases. After the AutoUpgrade jobs are finished, you can review the
output of the Analyze mode logs to see what is required to upgrade each of the databases
included with your configuration script.

Note:

You can run only one AutoUpgrade instance at a time that is associated with a
given configuration file.

Chapter 4
AutoUpgrade Command-Line Parameters and Options

4-33

Usage Notes

In this example, AutoUpgrade is run in Analyze mode, using the configuration file in
noconsole mode.

java -jar autoupgrade.jar -config autoupgrade.cfg -mode analyze -
noconsole

Preupgrade
The AutoUpgrade parameter preupgrade runs database checks and preupgrade
fixups that fix most issues before you start an upgrade, and postupgrade fixups that fix
most issues after an upgrade is completed.

Property Description

Parameter type string

Syntax -preupgrade preupgrade_options -mode
 [analyze|fixups|postfixups]

Default value analyze

Description

The -preupgrade clause of AutoUpgrade replaces the functions previously preformed
by the manual Pre-Upgrade Information Tool (preupgrade.jar) in previous releases.
The -mode clause takes one of three values:

• analyze: Check your system for readiness to upgrade.

• fixups: Perform fixups as needed on your source Oracle Database release in
preparation for upgrade

• postfixups: Perform fixups on your target Oracle Database release after upgrade
is completed.

If no value for -mode is specified, then by default the -preupgrade parameter defaults
to analyze mode.

Usage Notes

Use the preupgrade clause only if you want to obtain the same features previously
made available with the Pre-Upgrade Information Tool (preupgrade.jar). For most
upgrade scenarios, you do not need to use this parameter.

The -preupgrade parameter requires preupgrade_options, which specifies a list of
comma-delimited option-value pairs in the following format:
option1=value1,option2=value2,…

Arguments

• target_version=release-number: Specifies the target Oracle Database release
version, which is the release to which you want to upgrade.

Chapter 4
AutoUpgrade Command-Line Parameters and Options

4-34

The value for this argument is required by the analyze and fixups modes. However, the
target release can be derived from target_home. Accordingly, for analyze and fixups
modes, either target_version or target_home must be specified. The value for
target_version must be 12.2, or a later release value.

• target_home=[target-path|env-variable]: Specifies the Oracle Database home
location of the target release to which you want to upgrade, which can either be the
Oracle home path, or an operating system path variable.

This argument is mandatory if you select the postfixups mode. If you select the
postfixups mode, and you do not specify a target home path, then the default value is
specified by the Oracle home environment variable for the Oracle home set for the user
running AutoUpgrade ($ORACLE_HOME on Linux and Unix systems, or %ORACLE_HOME% on
Microsoft Windows systems).

• oh=[source-path|env-variable]: Specifies the Oracle Database home location of the
source release from which you want to upgrade, which can either be the Oracle home
path, or an operating system path variable.

This argument is mandatory if you select the analyze or fixups mode. If you select either
analyze or fixups modes, and you do not specify a source home path, then the default
value is specified by the Oracle home environment variable for the Oracle home set for
the user running AutoUpgrade ($ORACLE_HOME on Linux and Unix systems,
%ORACLE_HOME% on Microsoft Windows systems).

• sid=system-identifier: Specifies an Oracle system identifier for the source database
that you want to upgrade. This argument is mandatory for analyze or fixups modes. If
you select either the analyze or the fixups mode, and you do not specify a system
identifier, then the default value is specified by the Oracle home environment variable for
the Oracle home set for the user running AutoUpgrade ($ORACLE_SID on Linux and Unix
systems, %ORACLE_SID% on Microsoft Windows systems).

• dir=path: Directs the output to a specific directory. If you do not specify an output
directory with the dir argument, then the output is directed to a folder called autoupgrade
that is placed in the temporary directory on your system. Typically, that directory is in one
of the following locations:

– Linux or Unix: /tmp, or /var/tmp.

– Microsoft Windows: C:\WINNT\TEMP

• inclusion_list=list: Specifies a list of pluggable databases (PDBs) inside a container
database (CDBs) that you want to include for processing. Provide a space-delimited list
of PDBs that you want processed, in one of the following two formats, where pdb1, pdb2,
and pdb3 are PDBs that you want processed:

– pdb1 pdb2 pdb3

– (pdb1 pdb2 pdb3)

If you do not specify a list of PDBs, then all PDBs in a CDB are processed.

• exclusion_list=list: Specifies a list of pluggable databases (PDBs) inside a container
database (CDBs) that you want to exclude for processing. Provide a space-delimited list
of PDBs that you want processed, in one of the following two formats, where pdb1, pdb2,
and pdb3 are PDBs that you want processed:

– pdb1 pdb2 pdb3

– (pdb1 pdb2 pdb3)

If you do not specify a list of PDBs, then all PDBs in a CDB are processed.

Chapter 4
AutoUpgrade Command-Line Parameters and Options

4-35

• user=username: Specifies the Oracle Database user name that the AutoUpgrade
utility uses to connect to Oracle Database If the user is specified, then
AutoUpgrade prompts for the user name password input on the command line. If
no user name is specified, then AutoUpgrade uses operating system
authentication for the Oracle Database connection.

Modes

• analyze (Default value): Runs Autoupgrade in Analyze mode, with all of the
preupgrade checks that apply for the target release argument that you specify. If
you do not specify a mode, then AutoUpgrade defaults to analyze.

• fixups: Runs preupgrade fixups (when available) for all issues reported by
AutoUpgrade Analyze preupgrade checks on the source database that must be
fixed before upgrade. All checks are run.

Fixup results are reported in the file upgrade.xml. That file is placed in the path
log_dir/db_name/jobnumber/prefixups/prefixups.xml, where log_dir is the
log directory that you specify using the dir argument, db_name is the name of the
source database, and jobnumber is the autoupgrade job number.

• postfixups: Runs postupgrade fixups (when available) for all issues reported by
AutoUpgrade Analyze preupgrade checks on the upgraded database that you
must fix after the upgrade is completed.

Postfixup results are reported in the file postfixups.xml. That file is placed in the
path log_dir/db_name/jobnumber/postfixups, where log_dir is the log directory
that you specify using the dir argument, db_name is the name of the source
database, and jobnumber is the autoupgrade job number.

Examples

Running AutoUpgrade with the preupgrade clause using analyze mode, and
specifying that the target release is Oracle Database 21c.

java -jar autoupgrade.jar -preupgrade "target_version=21" -mode analyze

Running AutoUpgrade with the preupgrade clause using fixups mode, and specifying
that the target release is Oracle Database 21c.

java -jar autoupgrade.jar -preupgrade "target_version=21" -mode fixups

Running AutoUpgrade with the preupgrade clause using postfixups mode, and
specifying that the target Oracle home is in the path
C:\app\oracle\product\21.0.0\dbhome_1.

java -jar autoupgrade.jar -preupgrade
"target_home=C:\app\oracle\product\21.0.0\dbhome_1" -mode postfixups

Running AutoUpgrade with the preupgrade clause without specifying the mode, and
specifying that the target release is Oracle Database 21c. In this case, the mode used
is the default mode, analyze.

java -jar autoupgrade.jar -preupgrade "target_version=21"

Chapter 4
AutoUpgrade Command-Line Parameters and Options

4-36

Settings
The AutoUpgrade parameter settings identifies the configuration file that you use to provide
custom runtime configuration of the AutoUpgrade utility.

Property Description

Parameter type String

Syntax -settings my-custom-advanced-settings

Default value Not applicable

Description

The settings parameter has the required argument of the name and path to the settings
configuration file, which you have modified with custom settings. The settings parameter
cannot be used alone, but rather as a configuration input file that modifies the way that
AutoUpgrade runs a processing mode.

Usage Notes

This parameter is an advanced parameter. For most upgrade scenarios, you should not need
to modify any internal AutoUpgrade parameter settings.

Example

In this example, settings specifies a settings input file called
my_custom_advanced_settings.cfg.

java -jar autoupgrade.jar -settings my_custom_advanced_settings.cfg -config
config.cfg -mode deploy

Version
The AutoUpgrade parameter version prints to the terminal screen the current build of the
autoupgrade.jar file.

Property Description

Parameter type string

Syntax -version

Default value Not applicable.

Description

Use this optional parameter to check which version of the autoupgrade.jar utility is on your
server.

Usage Notes

Command Example:

java -jar autoupgrade.jar -version

Chapter 4
AutoUpgrade Command-Line Parameters and Options

4-37

Output example:

[oracle@example ~]$ java -jar autoupgrade.jar -version

build.hash 04a58df
build.version 20201127
build.date 2020/11/27 11:40:37
build.max_target_version 20
build.type production-21.1

Restore
The AutoUpgrade parameter restore performs a system-level restoration of the
AutoUpgrade jobs that you specify.

Property Description

Parameter type string

Syntax -restore -jobs job#,job#

Default value Not applicable.

Description

Use this optional parameter to specify a system-level restoration of the jobs you
specify, using a comma-delimited list of job numbers. The databases in the upgrade
jobs that you specify are flashed back to the Guarantee Restore Point (GRP). Before
you run this command, the GRP must have been created by AutoUpgrade.

Examples

java -jar autoupgrade.jar -config config.cfg -restore -jobs 111
java -jar autoupgrade.jar -config config.cfg -restore -jobs 111,222 -console
java -jar autoupgrade.jar -config config.cfg -restore -jobs 111,222 -noconsole

Restore_on_fail
The AutoUpgrade parameter restore_on_fail automatically restores any job that
failed during the deployment.

Property Description

Parameter type string

Syntax -restore_on_fail

Default value Not applicable.

Description

Use this optional parameter to specify that AutoUpgrade restores any jobs that failed
during the upgrade deployment.

Examples

java -jar autoupgrade.jar -config config.cfg -mode deploy -restore_on_fail

Chapter 4
AutoUpgrade Command-Line Parameters and Options

4-38

Zip
The AutoUpgrade parameter zip creates a zip file of log files required for filing an
AutoUpgrade service request.

Property Description

Parameter type string

Syntax -zip [-sid sid] [-d dir]

Default value Not applicable.

Description

Use this optional parameter to create a zip file that you can send to Oracle Support that
contains the log files for jobs that are the object of your service request. Use the -sid clause
to specify a comma-delimited list of system identifiers (SIDs) of databases whose log files
you want to send. If no SID value is defined, then AutoUpgrade creates a zip file for all
databases specified in the configuration file. Use the -d clause to specify a specific output
directory. If no directory is specified, then the current directory from which the command is
run is used for the zip file output.

Usage Notes

Note:

When you use the -zip clause, you cannot use the -mode clause.

Examples

java -jar autoupgrade.jar -config yourconfig.cfg -zip
java -jar autoupgrade.jar -config yourconfig.cfg -zip -sid sales1,sales2 -d /scratch/
upgrd

AutoUpgrade Utility Configuration Files
AutoUpgrade configuration files contain all the information required to perform Oracle
Database upgrades.

Before you can use an AutoUpgrade processing mode, you must create an AutoUpgrade
configuration file for the databases that you want to upgrade.

AutoUpgrade configuration files contain global and local configuration parameters. Global
parameters by default apply to all databases addressed by the configuration file. When
specified for a specific database, local configuration parameters override global parameters
specified by the configuration file.

• Global Parameters for the AutoUpgrade User Configuration File
To specify a default behavior for a parameter for all Oracle Database upgrades
addressed in the configuration file, you can use the optional AutoUpgrade global
parameters.

Chapter 4
AutoUpgrade Utility Configuration Files

4-39

• Local Parameters for the AutoUpgrade Configuration File
To configure information for specific Oracle Databases for the AutoUpgrade utility
upgrade, you provide information in the AutoUpgrade local parameters.

• Locally Modifiable Global Parameters for AutoUpgrade Configuration File
Locally modifiable global parameters are parameters that you set both globally,
and as you require, set locally, so that you can better control AutoUpgrade job
processing.

Global Parameters for the AutoUpgrade User Configuration File
To specify a default behavior for a parameter for all Oracle Database upgrades
addressed in the configuration file, you can use the optional AutoUpgrade global
parameters.

Usage Notes

All global parameters are optional. All global parameters take the prefix global.

The add_after_upgrade_pfile and del_during_upgrade_pfile global and local
PFILE parameters operations are run in the following hierarchical order:

1. Global Actions

a. Remove global

b. Add global

2. Local Actions

a. Remove local

b. Add local

Table 4-1 Global Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

add_after_upgrade_pfile (Optional) Specifies a path and file name of a PFILE whose parameters you
want to add after the PFILE is upgraded. This specification applies to all
databases in the user configuration file.

Example:

global.add_after_upgrade_pfile=/path/to/my/add_after.ora

add_during_upgrade_pfile (Optional) Specifies a path and file name of a PFILE whose parameters you
want to have added during the PFILE upgrade. This specification applies to
all databases in the user configuration file.

global.add_during_upgrade_pfile=/path/to/my/
add_during.ora

Chapter 4
AutoUpgrade Utility Configuration Files

4-40

Table 4-1 (Cont.) Global Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

after_action (Optional) Specifies a path and a file name for a custom user script that you
want to have run after all the upgrade jobs finish successfully. The script that
you use must be in the form of name.ext (for example, myscript.sh, so
that AutoUpgrade can identify the type of script that you want to run.
Permitted extension options:

• Unix shell (.sh)
• Microsoft Windows batch (.bat, .cmd)
• Microsoft Windows PowerShell (.ps1)
By default, if the script fails, then AutoUpgrade continues to run. Use the Y
flag to specify that AutoUpgrade stops if the operating system detects that
your script fails. If the script finishes with a status different than 0, then it is
considered a failed completion.

Examples:

If the script fails, then stop AutoUpgrade:

global.after_action=/path/to/my/script.sh Y

If the script fails, then continue AutoUpgrade:

global.after_action=/path/to/my/script.sh

autoupg_log_dir (Optional) Sets the location of the log files, and temporary files that belong
to global modules, which AutoUpgrade uses.

Example:

global.autoupg_log_dir=/path/to/my/global/log/dir

Starting with AutoUpgrade 19.7, you can configure different log directory
path in the userconfig file in the logs directory for a specific prefix

global.autoupg_log_dir=/path/to/my/global/log/dir
myprefix.log_dir=global.auto_log_dir:different/path

The result of using this syntax is that log files and temporary files are placed
in the following path for databases identified by the prefix myprefix:

/path/to/my/global/log/dir/different/path

If you do not set this parameter to a path, then by default the log files are
placed in the location indicated by the orabase utility for the databases that
you include in your configuration file. In that case, the default logs directory
is in the path ORACLE_BASE/cfgtoollogs/autoupgrade.

If the orabase utility fails for all databases included in the configuration file,
then the log file location is then based on the temp directory for the user
running AutoUpgrade.

Chapter 4
AutoUpgrade Utility Configuration Files

4-41

Table 4-1 (Cont.) Global Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

before_action (Optional) Specifies a custom user script that you want to have run for all
upgrades before starting the upgrade jobs. The script that you use must be
in the form of name.ext (for example, myscript.sh), so that AutoUpgrade
can identify the type of script that you want to run. If you want to have a
script run before a specific upgrade job, then specify that script by using the
local parameter (local.before_action)

Permitted extension options:

• Unix shell (.sh)
• Microsoft Windows batch (.bat, .cmd)
• Microsoft Windows PowerShell (.ps1)
By default, if the script fails, then AutoUpgrade continues to run. Use the Y
flag to specify that AutoUpgrade stops if the operating system detects that
your script fails. If the script finishes with a status different than 0, then it is
considered a failed completion.

Examples:

If the script fails, then stop AutoUpgrade:

global.before_action=/path/to/my/script.sh Y

If the script fails, then continue AutoUpgrade:

global.before_action=/path/to/my/script.sh

catctl_options (Optional) Specifies one or more of a set of catctl.pl options that you can
select for AutoUpgrade to submit for catctl.pl to override default
behavior. For a complete description of the options, refer to "Parallel
Upgrade Utility (catctl.pl) Parameters," which is linked to at the end of
this table.

Available catctl.pl options:

• -n Number of processes to use for parallel operations. For Replay
upgrades, the number of parallel processes used for the upgrade
defaults to the value of (CPU_COUNT divided by 4) . For Classic
upgrades, the default for CDB$ROOT is 8.

• -N Number of processors to use when upgrading PDBs. For Replay
upgrades, the number of parallel processes used for the upgrade
defaults to the value of (CPU_COUNT divided by 4) For Classic upgrades,
the default is 2

• -t Run SQL in Classic upgrade overwriting default Replay upgrade
method

• -T Takes offline user schema-based table spaces.
• -z Turns on production debugging information for catcon.pm.
Example:

global.catctl_options=-t -n 24 -N 4

Chapter 4
AutoUpgrade Utility Configuration Files

4-42

Table 4-1 (Cont.) Global Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

del_after_upgrade_pfile (Optional) Specifies a path and file name of a PFILE whose parameters you
want to have removed after the PFILE upgrade. This specification applies to
all databases in the user configuration file.

Example:

global.del_after_upgrade_pfile=/path/to/my/del_after.ora

del_during_upgrade_pfile (Optional) Specifies a path and file name of a PFILE whose parameters you
want to have removed during the PFILE upgrade. This specification applies
to all databases in the user configuration file.

Example:

global.del_during_upgrade_pfile=/path/to/my/
del_during.ora

drop_grp_after_upgrade (Optional) Deletes the Guaranteed Restore Point (GRP) after database
upgrade. If you select this option, then GRP is deleted after upgrade
completes successfully. If you set raise_compatible to yes, then you
must also set the parameter drop_grp_after_upgrade to yes.

Options:

[yes | no]

The default value is no.

Example:

global.drop_grp_after_upgrade=yes

target_base (Optional) Specifies the target ORACLE_BASE path for the target Oracle
home. Use of this parameter is only required in rare cases.

Example:

global.target_base=/u01/app/oracle
sales4.target_base=/u04/app/oracle4

Chapter 4
AutoUpgrade Utility Configuration Files

4-43

Table 4-1 (Cont.) Global Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

raise_compatible (Optional) Increases the compatible parameter to the default value of the
target release after the upgrade is completed successfully.

Options:

[yes | no]

The default value is no.

CAUTION:

• After the COMPATIBLE parameter is increased, database downgrade is
not possible.

• Oracle recommends that you only raise the COMPATIBLE parameter to
the current release level after you have thoroughly tested the upgraded
database.

• Regardless of what value you use for the autoupgrade command-line
parameter restore, if you set the value of the configuration file
parameter raise_compatible to yes, then before starting the
upgrade, you must delete manually any guaranteed restore point you
have created. After the upgrade is completed successfully,
AutoUpgrade deletes the guaranteed restore point it creates before
starting the upgrade. When AutoUpgrade starts the POSTUPGRADE
stage, there is no way to restore the database.

• If you set raise_compatible to yes, then you must also set the
parameter drop_grp_after_upgrade to yes.

Example:

global.raise_compatible=yes

target_home (Optional for analyze and fixups modes. Required for upgrade and deploy
modes.) Sets a global target home for all of the databases specified in the
configuration file. Use this option to avoid specifying the same
target_home multiple times. This parameter can be overwritten locally.

Example:

global.target_home=/target/Oracle/home

Chapter 4
AutoUpgrade Utility Configuration Files

4-44

Table 4-1 (Cont.) Global Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

target_version (Optional) Specifies the target release version on which you want
AutoUpgrade to perform the upgrade. AutoUpgrade uses the release version
information that you provide in this parameter to ensure that the correct
checks and fixups are used for the target Oracle Database release to which
you are upgrading. The format for this parameter are period-delimited values
of valid Oracle versions.

Valid values

• 12.2
• 18
• 19
This option is only required if the target home is not present on the system,
or if the target home is a 12.2 release. Otherwise, AutoUpgrade can derive
the target release value.

Example:

global.target_version=18
employees.target_version=12.2

upgradexml (Optional) Generates the upgrade.xml file. Options: [yes | no]

The upgrade.xml is equivalent to the file in earlier releases that the
preupgrade package generated when you specified the XML parameter.
This file is created during the analyze mode (mode -analyze). It is
generated in the prechecks directory defined for the AutoUpgrade log files.

Example:

global.upgradexml=yes

Related Topics

• Parallel Upgrade Utility (catctl.pl) Parameters

Local Parameters for the AutoUpgrade Configuration File
To configure information for specific Oracle Databases for the AutoUpgrade utility upgrade,
you provide information in the AutoUpgrade local parameters.

Usage Notes

Local parameters take precedence over any global parameters set in the AutoUpgrade
configuration file. Except where indicated with (Optional), all local parameters are required.
All local parameters take a prefix (in examples, identified by a value you define to identify a
particular database or upgrade. The prefix identifies the specific upgrade job to which the
parameter applies in the configuration file.

Chapter 4
AutoUpgrade Utility Configuration Files

4-45

Example: The set of parameters for the first upgrade in the configuration file uses the
prefix sales, and the set of parameters for the next upgrade in the configuration file
uses the prefix employees:

sales.source_home=/u01/app/oracle/12.2/dbhome1
.
.
.
employees.sid=salescdb
employees.source_home-/03/app/oracle/21/dbhome1

Table 4-2 Local Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

add_after_upgrade_pfile (Optional) Specifies a path and file name of a PFILE whose parameters you
want to add after the upgrade.

Example:

sales3.add_after_upgrade_pfile=/path/to/my/pfile_add.ora

add_during_upgrade_pfile (Optional) Specifies a path and file name of a PFILE whose parameters you
want to add during the upgrade.

Example:

sales3.add_during_upgrade_pfile=/path/to/my/newpfile.ora

Chapter 4
AutoUpgrade Utility Configuration Files

4-46

Table 4-2 (Cont.) Local Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

after_action (Optional) Specifies a custom action that you want to have performed after
completing the upgrade job for the database identified by the prefix address.

The script that you use must be in the form of name.ext (for example,
myscript.sh, so that AutoUpgrade can identify the type of script that you
want to run. Permitted extension options:

• Unix shell (.sh)
• Microsoft Windows batch (.bat, .cmd)
• Microsoft Windows PowerShell (.ps1)
• Oracle SQL file (.sql), with a local operation only designated by the

prefix.
By default, if the script fails, then AutoUpgrade continues to run. Use the Y
flag to specify that AutoUpgrade stops if the operating system detects that
your script fails. If the script finishes with a status different than 0, then it is
considered a failed completion.

In contrast to the global after_action parameter, the local after_action
parameter can specify a SQL script, which then runs on the database using
the target Oracle Database binaries on a non-CDB Oracle home, or on
CDB$ROOT. If you want to run additional container-specific actions, then they
must be set within the code. For more complex scenarios, you can run
container-specific actions in a shell.

Examples:

Run the specified script before AutoUpgrade starts processing, with the Y
flag set to stop AutoUpgrade if the script fails:

sales2.after_action=/user/path/script.sh Y

Run the specified script before AutoUpgrade starts processing, with
AutoUpgrade set to continue to run if the script fails:

sales3.after_action=/user/path/script.sh

Chapter 4
AutoUpgrade Utility Configuration Files

4-47

Table 4-2 (Cont.) Local Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

before_action (Optional) Specifies a custom action that you want to have performed before
starting the upgrade job for the specific database job addressed by the
prefix. If you want to have a script run before all upgrade jobs, then specify
that script by using the local parameter (global.before_action)

The script that you use must be in the form of name.ext (for example,
myscript.sh), so that AutoUpgrade can identify the type of script that you
want to run. Permitted extension options:

• Unix shell (.sh)
• Microsoft Windows batch (.bat, .cmd)
• Microsoft Windows PowerShell (.ps1)
• Oracle SQL file (.sql), with a local operation only designated by the

prefix.
By default, if the script fails, then AutoUpgrade continues to run. Use the Y
flag to specify that AutoUpgrade stops if the operating system detects that
your script fails. If the script finishes with a status different than 0, then it is
considered a failed completion.

In contrast to the global before_action parameter, the local
before_action parameter can specify a SQL script, which can run on the
database in the source database Oracle home, using the earlier release
Oracle Database binaries. The script runs on a non-CDB Oracle home, or
on CDB$ROOT. If you want to run additional container-specific actions, then
they must be set within the code. For more complex scenarios, you can run
container-specific actions in a shell.

Examples:

Run the specified script before AutoUpgrade starts processing, with the Y
flag set to stop AutoUpgrade if the script fails:

sales.before_action=/user/path/script.sh Y

Run the specified script before AutoUpgrade starts processing, with
AutoUpgrade set to continue to run if the script fails:

sales4.before_action=/user/path/script.sh

Chapter 4
AutoUpgrade Utility Configuration Files

4-48

Table 4-2 (Cont.) Local Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

catctl_options (Optional) Specifies one or more of a set of catctl.pl options that you can
select for AutoUpgrade to submit for catctl.pl to override default
behavior. For a complete description of the options, refer to "Parallel
Upgrade Utility (catctl.pl) Parameters," which is linked to at the end of
this table.

Available catctl.pl options:

• -n Number of processes to use for parallel operations. For Replay
upgrades, the number of parallel processes used for the upgrade
defaults to the value of (CPU_COUNT divided by 4) . For Classic
upgrades, the default for CDB$ROOT is 8.

• -N Number of processors to use when upgrading PDBs. For Replay
upgrades, the number of parallel processes used for the upgrade
defaults to the value of (CPU_COUNT divided by 4) For Classic upgrades,
the default is 2

• -t Run SQL in Classic upgrade overwriting default Replay upgrade
method

• -T Takes offline user schema-based table spaces.
• -z Turns on production debugging information for catcon.pm.
Example:

sales4.catctl_options=-t

checklist (Optional) Specifies the path to a checklist that you can use to override the
default list of fixups that AutoUpgrade performs, such as fixups that you do
not want implemented automatically, due to policy or security concerns.

To use this parameter during other AutoUpgrade modes, you must run
AutoUpgrade in analyze mode. After AutoUpgrade finishes the analysis,
you can then find the checklist file identified by the database name under
the precheck directory (dbname_checklist.cfg). Update the file manually
to exclude the fixups that you want AutoUpgrade to bypass, and save the file
with a new name. When you run AutoUpgrade again, you can specify the
parameter pointing to the checklist file that you created, and modify fixups
that are performed for individual databases. If you do not specify a checklist
file path, then the set of fixups that run during the upgrade is the latest
version of the checklist file that is created during the deploy mode that you
specified.

Example:

sales.checklist=/u01/app/oracle/upgrade-jobs/
salesdb_checklist.cfg

In the preceding example, salesdb_checklist.cfg is the checklist
configuration file for the database salesdb.

Chapter 4
AutoUpgrade Utility Configuration Files

4-49

Table 4-2 (Cont.) Local Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

del_after_upgrade_pfile (Optional) Specifies a path and file name of a PFILE whose parameters you
want to remove after the upgrade.

Example:

sales3.del_after_upgrade_pfile=/path/to/my/pfile_del.ora

del_during_upgrade_pfile (Optional) Specifies a path and file name of a PFILE whose parameters you
want to have removed during upgrade.

Example:

sales3.del_during_upgrade_pfile=/path/to/my/oldpfile.ora

env (Optional) Specifies custom operating system environment variables set on
your operating system, excluding ORACLE_SID, ORACLE_HOME,
ORACLE_BASE, and TNS_ADMIN.

Use case:

Use this parameter to provide environment setting that are indicated in the
database sqlnet.ora file, such as secure socket layer cipher suites that
are used for Oracle Wallet.

Syntax:

prefix.env=VARIABLE1=value1/, VARIABLE2=value2/

For example, assume that for the PDB sales2, the value for
WALLET_LOCATION is set using custom environment variables:

WALLET_LOCATION=
 (SOURCE=
 (METHOD=file)
 (METHOD_DATA=(DIRECTORY=/databases/
wallets/$CUSTOM_ENV1/$CUSTOM_ENV2))

In that case, for AutoUpgrade to know what those custom environment
variables are, you must provide them using the env parameter, where dir1
is the path indicated by the environment variable CUSTOM_ENV1, and dir2 is
the path specified by CUSTOM_ENV2:

sales2.env=CUSTOM_ENV1=dir1,CUSTOM_ENV2=dir2

Chapter 4
AutoUpgrade Utility Configuration Files

4-50

Table 4-2 (Cont.) Local Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

log_dir (Optional with AutoUpgrade 19.8) Sets the location of log files that are
generated for database upgrades that are in the set of databases included in
the upgrade job identified by the prefix for the parameter.

When set, AutoUpgrade creates a hierarchical directory based on a local log
file path that you specify. For example, where the job identifier prefix is
sales, and where log_dir is identified as upgrade-jobs, and stage1,
stage2, and stagen represent stages of the upgrades:

/u01/app/oracle/upgrade-jobs
 /temp/
 /sales/
 /sales/stage1
 /sales/stage2
 /sales/stagen

You cannot use wild cards for paths, such as tilde (~). You must use a
complete path.

Example:

salesdb.log_dir=/u01/app/oracle/upgrade-jobs

By default, if the global configuration file parameter
global.autoupg_log_dir is specified, and you do not specify log_dir,
then the default is the path specified in global.autoupg_log_dir.

When neither global.autoupg_log_dir nor log_dir is specified, then
by default the log files are placed in the location indicated by the orabase
utility for the databases that you include in your configuration file. In that
case, the default logs directory is in the path ORACLE_BASE/cfgtoollogs/
autoupgrade.

If the orabase utility fails for all databases included in the configuration file,
then the log file location is then based on the temp directory for the user
running AutoUpgrade.

Chapter 4
AutoUpgrade Utility Configuration Files

4-51

Table 4-2 (Cont.) Local Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

pdbs (Optional) Sets a list of PDBs on which you want the upgrade to run. This
parameter only applies to upgrades of multitenant architecture (CDB)
databases. If you are plugging in and upgrading a non-CDB database, then
this parameter is ignored.

The PDB list is comma-deliminated. The list can contain either PDB names,
or a star character (*), which indicates that you want to upgrade all PDBs
that are open on the CDB at the time that you run AutoUpgrade. If the
parameter is not specified, then the default value is *.

If running in ANALYZE mode, AutoUpgrade ignores the PDBs in a mounted
state.

If running in FIXUPS, DEPLOY or UPGRADE mode, AutoUpgrade opens the
PDBs in mount state in read-write mode, upgrade mode, or both, depending
on the execution mode.

Example:

sales1.pdbs=pdb1, pdb2, pdbn
 upgr1.pdbs=*

raise_compatible (Optional) Increases the compatible parameter to the default value of the
target release after the upgrade is completed successfully.

Options:

[yes | no]

The default value is no.

CAUTION:

• After the COMPATIBLE parameter is increased, database downgrade is
not possible.

• Oracle recommends that you only raise the COMPATIBLE parameter to
the current release level after you have thoroughly tested the upgraded
database.

• Regardless of what value you use for the autoupgrade command-line
parameter restore, if you set the value of the configuration file
parameter raise_compatible to yes, then before starting the
upgrade, you must delete manually any guaranteed restore point you
have created. After the upgrade is completed successfully,
AutoUpgrade deletes the guaranteed restore point it creates before
starting the upgrade. When AutoUpgrade starts the POSTUPGRADE
stage, there is no way to restore the database.

Example:

sales1.raise_compatible=yes

Chapter 4
AutoUpgrade Utility Configuration Files

4-52

Table 4-2 (Cont.) Local Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

remove_underscore_parameters (Optional) Removes underscore (hidden) parameters from PFILE files
during upgrade, and after upgrade, for all Oracle Databases in the
configuration file. Underscore parameters should only be used by advice of
Oracle Support.

Options:

[yes | no]

The default value is no.

Example:

sales1.remove_underscore_parameters=yes

restoration (Optional) Generates a Guaranteed Restore Point (GRP) for database
restoration. If you set restoration=no, then both the database backup and
restoration must be performed manually. Use this option for databases that
operate in NOARCHIVELOG mode, and for Standard Edition and SE2
databases, which do not support the Oracle Flashback technology feature
Flashback Database.

Options:

[yes | no]

The default value is no.

Example:

sales1.restoration=no

run_utlrp (Optional) Enables or disables running utlrp as part of the upgrade.

The utlrp utility recompiles all Data Dictionary objects that become invalid
during a database upgrade. Oracle recommends that you run this utility after
every Oracle Database upgrade. Options: yes, no. The default is enabled
(yes).

Example:

prefix.run_utlrp=yes

sid (Required) Identifies the Oracle system identifier (SID) of the database that
you want to upgrade.

Example:

sales1.sid=salesdb

skip_tde_key_import (Optional) The default is NO. You can use this option for nonCDB-to-PDB
and unplug/plug operations. When set to YES, the upgrade is run, but import
of the source database KeyStore into the target database is skipped, without
raising an error. AutoUpgrade will leave the PDB open in upgrade mode, so
that you can import the keys manually yourself. After you import the keys,
you must then restart the database in normal mode.

Chapter 4
AutoUpgrade Utility Configuration Files

4-53

Table 4-2 (Cont.) Local Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

source_home (Required for analyze, fixups, and deploy modes. Optional for upgrade
mode.) Current Oracle home (ORACLE_HOME) of the database that you want
to upgrade. For the mode upgrade, the source home and target home
values can be the same path.

Example:

sales2.source_home=/path/to/my/source/oracle/home

source_tns_admin_dir (Optional) Specifies the path to the TNS_ADMIN directory in the source
database home. This parameter has no effect on Microsoft Windows,
because on Windows, the TNS_ADMIN environmental variable is set within
the registry.

Example:

sales1.source_tns_admin_dir=/u01/app/oracle/12.2/
dbhome01/network/admin

start_time (Optional) Sets a future start time for the upgrade job to run. Use this
parameter to schedule upgrade jobs to balance the load on your server, and
to prevent multiple jobs from starting immediately.

Values must either take the form now (start immediately), or take the English
Date Format form DD/MM/YYYY or MM/DD/YYYY, where MM is month, DD
is day, and YYYY is year. If you do not set a value, then the default is now.

Example:

sales1.start_time=now
sales2.start_time=07/11/2020 01:30:15

Permitted values:

now
30/12/2019 15:30:00
01/11/2020 01:30:15
2/5/2020 3:30:50

If more than one job is started with the start_time value set to now, then
AutoUpgrade schedules start times based on resources available in the
system, which can result in start time for jobs that are separated by a few
minutes.

Values are invalid that use the wrong deliminator for the date or time
element, or use the wrong date or hour format.

Example:

30-12-2019 15:30:00
01/11/2020 3:30:15pm
2020/06/01 01:30:15

Chapter 4
AutoUpgrade Utility Configuration Files

4-54

Table 4-2 (Cont.) Local Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

target_base (Optional) Specifies the target ORACLE_BASE path for the target Oracle
home.

Example:

target_base=/u01/app/oracle
sales4.target_base=/u04/app/oracle4

target_cdb (Optional) Specifies the SID of the target CDB into which a non-CDB Oracle
Database is plugged in. This parameter is mandatory when you want to
upgrade and convert a non-CDB Oracle Database.

Example:

emp.target_cdb=salescdb

Chapter 4
AutoUpgrade Utility Configuration Files

4-55

Table 4-2 (Cont.) Local Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

target_pdb_copy_option=file_
name_convert=('f1', 'r1',
'f2', 'r2', 'f3', 'r3'...)

(Optional) This option is only used when creating a pluggable database
within the target CDB. It specifies the file_name_convert option that will
be used by the create pluggable database statement that is executed by
AutoUpgrade when converting a non-CDB database to a PDB or an existing
PDB from a different source CDB into a PDB in the specified target CDB. If
you do not specify this parameter, then the default value of the parameter is
NOCOPY, and existing data files are reused.

On the target CDB, if you have the parameters DB_CREATE_FILE_DEST or
PDB_FILE_NAME_CONVERT set, and you want these parameters on the
target CDB to take effect, then set the value of
prefix.target_pdb_copy_option=file_name_convert=NONE

If you want one or more data file names changed during conversion, then
enter values for the parameter to indicate the filename you want to change,
and the filename to which you want the existing files copied, using the
syntax prefix.target_pdb_copy_option=('f1', 'r1', 'f2',
'r2', . . .), where f1 is the first filename pattern on your source, r1 is
the first replacement filename pattern on your target CDB, f2 is the second
filename pattern on your source, r2 is the second replacement file pattern
on your target CDB, and so on.

Example:

In this example, AutoUpgrade will copy existing datafiles during conversion
of a database specified with the prefix string upg1 to replace the file path
string and filename /old/path/pdb_2 with the file path string and
filename /new/path/depsales:

upg1.target_pdb_copy_option=file_name_convert=('/old/
path/pdb_2', '/new/path/depsales')

To convert OMF files with
target_pdb_copy_option=file_name_convert, the target Oracle home
must be Oracle Database 19c Release Update 6 or later (19.6.0), or Oracle
Database 18c Release Update 10 or later (18.10.0).

In this example, the parameter is configured so that data files that are stored
on Oracle ASM, but not stored as Oracle-managed files, are copied from
+DATA/dbname/sales to +DATA/dbname/depsales:

upg1.target_pdb_copy_option=file_name_convert=('+DATA/
dbname/sales', '+DATA/dbname/depsales')

target_pdb_name (Optional) Specifies the name that you want to assign to a non-CDB source
Oracle Database after is plugged in to the target CDB. The default value is
to use the database unique name of the non-CDB Oracle Database. If you
want to specify a name that is different from the existing name of the non-
CDB when you plug it in to the CDB, then you must set this parameter.

Example:

emp.target_pdb_name=sales2

Chapter 4
AutoUpgrade Utility Configuration Files

4-56

Table 4-2 (Cont.) Local Configuration Parameters for Oracle Database AutoUpgrade Utility

Parameter Description

target_tns_admin_dir (Optional) Specifies the path to the TNS_ADMIN directory in the target
database home.

Example:

sales1.target_tns_admin_dir=/u01/app/oracle/19/dbhome01/
network/admin

timezone_upg (Optional) Enables or disables running the time zone upgrade as part of the
AutoUpgrade process. To preserve data integrity, Oracle recommends that
you upgrade the time zone settings at the time of your database upgrade. In
particular, upgrade the timezone when you have data that depend on the
time zone, such as timestamp with time zone table columns. Note that
this setting can be disabled by overwriting the fixup on the checklist file.
Options: yes, no. The default is enabled (yes).

Example:

sales1.timezone_upg=yes

upgrade_node (Optional) Specifies the node on which the current user configuration is
valid. The default value is localhost.

The purpose of this parameter is to prevent AutoUpgrade from processing
databases that are listed in the configuration file that you use with
AutoUpgrade, where the value for the upgrade_node parameter does not
correspond to the current host name. It does not enable running
AutoUpgrade remotely. You can use the keyword localhost as a wild card
to indicate that databases on the local host should be processed.

Use case:

The configuration file config.cfg contains 10 databases. Five of the
databases have the value of upgrade_node set to denver01. The
remaining five have the value of upgrade_node set to denver02. If
AutoUpgrade is run on the server denver01 using the configuration file
config.cfg, then AutoUpgrade only processes the databases where
upgrade_node is set to denver01. It ignores the databases where
upgrade_node is set to denver02. The utility hostname identifies the value
used to resolve the upgrade node.

Example:

hostname
denver02
sales1.upgrade_node=denver01

Chapter 4
AutoUpgrade Utility Configuration Files

4-57

Locally Modifiable Global Parameters for AutoUpgrade Configuration
File

Locally modifiable global parameters are parameters that you set both globally, and as
you require, set locally, so that you can better control AutoUpgrade job processing.

Usage Notes

Locally modifiable global parameters are required parameters. You must define these
parameters in your AutoUpgrade configuration file, either globally, or locally. With
locally modifiable global parameters, you can use the prefix global to set values as
global parameters for all jobs in your AutoUpgrade configuration file, but reset the
same parameter with a local job prefix for a particular job in the same configuration
file. You can also choose to set locally modifiable global parameters only as local
parameters for each AutoUpgrade job.

Note:

These parameters are available in the latest version of AutoUpgrade that you
can download from My Oracle Support.

When a locally modifiable global parameter is set both with a global prefix, and with a
local job prefix, the locally modified parameter value overrides the global parameter
values for the job identified by the prefix that you use with the parameter. The syntax
you use is in the form global.target_home=Global target Oracle home, and
database.target_home=local target Oracle home.

Example:

In the AutoUpgrade configuration file, the required parameter target_home is set
globally to one Oracle home path. But in the configuration file, the same parameter is
set locally to a different Oracle home path. As AutoUpgrade processes the jobs in the
configuration file, it uses the locally defined path for target_home for the job defined by
the prefix upgrade3, overriding the global parameter setting:

global.target_home=/u01/app/oracle/21.0.0/dbhome01
upgrade3.target_home=/u03/app/oracle3/12.2.0.1/dbhome3

Chapter 4
AutoUpgrade Utility Configuration Files

4-58

Table 4-3 Locally Modifiable Global Parameters for AutoUpgrade Configuration Files

Parameter Description

defer_standby_log_shippin
g

(Optional) Defers shipping logs from the primary database to the
standby database before the upgrade, where you have a primary
database with a physical standby database. When Autoupgrade
defers log shipping, you will receive a notice that log shipping is
deferred, and that after the upgrade completes successfully, you
need to reenable shipping logs from the primary database to the
secondary database. The default option is No. If you change the
default to Yes, then log shipping is deferred.

drop_grp_after_upgrade (Optional) Deletes the Guaranteed Restore Point (GRP) after
database upgrade. If you select this option, then GRP is deleted
after upgrade completes successfully.

Options:

[yes | no]

The default value is no.

Examples:

global.drop_grp_after_upgrade=yes

sales.drop_grp_after_upgrade=yes

enable_local_undo (Optional) For a CDB upgrade, specifies whether or not LOCAL undo
should be enabled before the upgrade of CDB$ROOT by running the
following statement: ALTER DATABASE LOCAL UNDO ON; The
allowed values are [YES | NO]. The default value is NO.

When local undo is first enabled, the size of the undo tablespace in
PDB$SEED is determined as a factor of the size of the undo
tablespace in CDB$ROOT. The default is 30 percent of the undo
tablespace size. Every other PDB in the CDB inherits this property
from PDB$SEED. Ensure that there is enough space to allocate new
UNDO tablespaces.

manage_network_files Specifies whether network files are processed during the upgrade.

Options:

[FULL|SKIP|IGNORE_READ_ONLY]

FULL: (default) Raise all exceptions encountered during the copy
and merge of network files into the target Oracle home.

SKIP: Do not process network files during postupgrade.

IGNORE_READ_ONLY: Attempt to copy and merge network files, but
do not raise an exception during the upgrade if the target file is read
only

The following network files are processed: oranfstab, ldap.ora,
tnsnames.ora, sqlnet.ora, and listener.ora

Chapter 4
AutoUpgrade Utility Configuration Files

4-59

Table 4-3 (Cont.) Locally Modifiable Global Parameters for AutoUpgrade
Configuration Files

Parameter Description

remove_underscore_paramet
ers

(Optional) Removes underscore (hidden) parameters from PFILE
files during upgrade, and after upgrade, for all Oracle Databases in
the configuration file. Underscore parameters should only be used
by advice of Oracle Support.

Options:

[yes | no]

The default value is no.

Example:

global.remove_underscore_parameters=yes

restoration (Optional, available with Enterprise Edition only) Generates a
Guaranteed Restore Point (GRP) for database restoration. If you
select this option, then both database backup and database
restoration must be performed manually by the DBA.

Options:

[yes | no]

The default value is yes.

Example:

global.restoration=no

Standard Edition does not support Flashback Database, so this
option is not available for Standard Edition. If your database is a
Standard Edition Oracle Database, then you must ensure that you
have a separate fallback mechanism is in place.

target_version (Optional) Specifies the target release version on which you want
AutoUpgrade to perform the upgrade. AutoUpgrade uses the
release version information that you provide in this parameter to
ensure that the correct checks and fixups are used for the target
Oracle Database release to which you are upgrading. The format for
this parameter are period-delimited values of valid Oracle versions.

Valid values

• 12.2
• 18
• 19
• 21
This option is only required if the target home is not present on the
system, or if the target home is a 12.2 release. Otherwise,
AutoUpgrade can derive the target release value.

Example:

global.target_version=18
employees.target_version=12.2

Chapter 4
AutoUpgrade Utility Configuration Files

4-60

Table 4-3 (Cont.) Locally Modifiable Global Parameters for AutoUpgrade
Configuration Files

Parameter Description

target_home Specifies the target Oracle home (ORACLE_HOME) path.

Example:

global.target_home=/u01/app/oracle/21.0.0/dbhome01
sales4.target_home=/u04/app/oracle4/21.0.0/
dbhome04

If the mode is ANALYZE or FIXUPS, then the parameter
target_home is optional.

target_base (Optional) Specifies the target ORACLE_BASE path for the target
Oracle home.

Example:

global.target_base=/u01/app/oracle
sales4.target_base=/u04/app/oracle4

AutoUpgrade and Oracle Database Configuration Options
When you run AutoUpgrade, it determines the type of database (Oracle Database, Oracle
Database Standalone with Oracle ASM, or Oracle RAC), and performs an upgrade for that
type of database

• Non-CDB to PDB Upgrade Guidelines and Examples
Before conversion, back up your datafiles and database, and follow the guidelines for
your source Oracle Database release.

• AutoUpgrade Process Flow for Oracle Grid Infrastructure Managed Configurations
When AutoUpgrade detects Oracle RAC, Oracle RAC One Node, or Oracle Restart, it
proceeds to perform upgrade steps required for all Oracle RAC instances.

• Oracle RAC Requirements for Upgrade with AutoUpgrade
To determine if AutoUpgrade can upgrade your Oracle Real Application Clusters (Oracle
RAC) or Oracle RAC One Node database, review the use case requirements.

• Preparing for Oracle RAC Upgrades Using AutoUpgrade
Review to find what information you must collect before the upgrade, and other upgrade
preparation guidelines.

• AutoUpgrade and Oracle Data Guard
Starting with Oracle Database 21c, AutoUpgrade can simplify the upgrade process for
your primary and secondary databases configured for Oracle Data Guard.

• How to Run AutoUpgrade Using the Fast Deploy Option
To minimize database downtime, you can upgrade your database by running
AutoUpgrade using the Fast Deploy option.

Chapter 4
AutoUpgrade and Oracle Database Configuration Options

4-61

Non-CDB to PDB Upgrade Guidelines and Examples
Before conversion, back up your datafiles and database, and follow the guidelines for
your source Oracle Database release.

To ensure that no data is lost during the conversion, Oracle strongly recommends that
allow time in your upgrade plan to implement your backup strategy before you use
AutoUpgrade to perform a non-CDB upgrade and conversion.

Guidelines for Upgrade Planning

The non-CDB-to-PDB conversion and upgrade process is not recoverable. To ensure
a proper upgrade and conversion, and to reduce unexpected downtime, Oracle
strongly recommends that you address any error conditions found during the analyze
phase.

If you do not set the target_pdb_copy_option in your AutoUpgrade configuration file,
then the database conversion uses the same file location and file names that are used
with existing database files. To prevent potential data loss, ensure that your data is
backed up, and consider your file placement plans before starting AutoUpgrade.

GRP and Upgrades from Non-CDB to Multitenant Architecture

• During the upgrade, AutoUpgrade creates a guaranteed restore point (GRP) that
is available only in the context of the upgrade stage of the AutoUpgrade Deploy
workflow. To ensure against any potential data loss, you must implement your
backup strategy before starting AutoUpgrade.

• Database conversion from non-CDB to the multitenant architecture is performed
during the AutoUpgrade Drain stage. After this stage is complete, the GRP that
AutoUpgrade creates is removed, and it is not possible to use the AutoUpgrade
restore command to restore the database. In the event that you require a
recovery to the earlier non-CDB Oracle Database release, you must be prepared
to recover the database manually.

Example 4-4 Upgrading and Converting a Non-CDB to Oracle Database 19c
Using Multitenant Architecture

During the Deploy conversion and upgrade workflow, AutoUpgrade version 19.9 and
later creates a GRP, and runs the Prefixup stage. If any part of the Deploy workflow up
to the Prefixup stage completion fails, then AutoUpgrade can restore the database
back to the GRP created at the start of the deployment.

However, after the Prefixup stage is complete, the upgraded database is plugged in to
the target release Oracle Database container database (CDB) to complete conversion.
As soon as the non-CDB is plugged into the CDB, the GRP is no longer valid, and is
dropped.

If anything goes wrong during the plug-in, then AutoUpgrade cannot recover and
restore the database. You must restore the database manually.

AutoUpgrade Process Flow for Oracle Grid Infrastructure Managed
Configurations

When AutoUpgrade detects Oracle RAC, Oracle RAC One Node, or Oracle Restart, it
proceeds to perform upgrade steps required for all Oracle RAC instances.

Chapter 4
AutoUpgrade and Oracle Database Configuration Options

4-62

When you start AutoUpgrade, it detects when Oracle Database is configured with Oracle Grid
Infrastructure, either as a cluster member node member in Oracle Real Application Clusters
(Oracle RAC), or an Oracle RAC One Node configuration, or an Oracle Grid Infrastructure for
a Standalone Server (Oracle Restart) configuration.

Note:

Choosing this upgrade option requires downtime of the clustered database while
AutoUpgrade completes upgrades of database instances, and system configuration.
If you use Oracle Enterprise Manager, then you must reconfigure it after the
upgrade.

When AutoUpgrade detects that the Oracle Database is an Oracle Clusterware resource, it
performs the following steps, in sequence:

1. AutoUpgrade shuts down the database, or all instances of the Oracle RAC database.

2. AutoUpgrade disables Oracle RAC, Oracle RAC One Node, or Oracle Restart services.

3. If the Oracle Clusterware resource is Oracle RAC, then AutoUpgrade disables the cluster
membership of all Oracle RAC database cluster member nodes in Oracle Clusterware.

4. AutoUpgrade starts up the Oracle Database instance:

• If the instance was an Oracle RAC cluster member, then it starts the local Oracle
Database instance in upgrade mode, and with the cluster parameter set to FALSE.

• If the instance was a single-instance Oracle Database, then it starts up the instance
in upgrade mode.

5. AutoUpgrade upgrades the local Oracle Database Oracle home binaries to the new
Oracle Database release binaries.

6. AutoUpgrade runs srvctl upgrade database from the local Oracle Database home, and
for Oracle RAC, upgrades the configuration of the Oracle RAC services to the new
release.

7. AutoUpgrade enables Oracle Grid Infrastructure services for the database, using srvctl
enable database. For Oracle RAC, it adds the upgraded Oracle RAC database to the
Oracle RAC cluster as a cluster member node.

8. AutoUpgrade recreates the server parameter file (SPFILE) with the updated parameters,
and the parameter options you previously set for your environment that are not affected
by the release upgrade.

9. If the Oracle Database was a member of an Oracle RAC cluster, then AutoUpgrade
repeats this process on each other cluster member node, until all cluster members are
upgraded and added back to the cluster, and the SPFILE is recreated on each cluster
member node.

10. AutoUpgrade starts up the Oracle Database. For Oracle RAC, it starts all instances of
Oracle Real Application Clusters on the cluster.

Chapter 4
AutoUpgrade and Oracle Database Configuration Options

4-63

Note:

Before you start AutoUpgrade on an Oracle Grid Infrastructure for a
standalone server (Oracle Restart, Oracle RAC One Node, or Oracle RAC
Database, you must upgrade Oracle Grid Infrastructure to a release equal to
or more recent than the Oracle Database release to which you are
upgrading.

Oracle RAC Requirements for Upgrade with AutoUpgrade
To determine if AutoUpgrade can upgrade your Oracle Real Application Clusters
(Oracle RAC) or Oracle RAC One Node database, review the use case requirements.

Requirements for Using AutoUpgrade with Oracle RAC Databases

You can use AutoUpgrade to perform upgrades of Oracle RAC or Oracle Real
Application Clusters One Node systems. However, your system must meet all of the
following requirements:

• Must be either a Linux or Unix-based system. Microsoft Windows systems are not
supported.

• Must meet the upgrade requirements to upgrade to the new Oracle Database
release.

• Must be registered and managed through the Server Control (SRVCTL) utility.

Required Tasks for Database Administrators to Use AutoUpgrade

As the database administrator, you must complete the following tasks:

• Create an adequate backup strategy to prevent data loss from any problems
resulting from the upgrade.

• Configure Listener and Transparent Network Substrate (TNS) files, both for local
tnsnames.ora and SCAN listeners, if needed.

• Configure Oracle Wallet certificates and management (if needed), and configure
for automatic login.

Related Topics

• Enabling Full Deployments for AutoUpgrade

Preparing for Oracle RAC Upgrades Using AutoUpgrade
Review to find what information you must collect before the upgrade, and other
upgrade preparation guidelines.

To use AutoUpgrade for Oracle Real Application Clusters (Oracle RAC) upgrades, in
which Oracle Automatic Storage Management (Oracle ASM) is also upgraded, ensure
that you collect information as needed before the upgrade, and be prepared to provide
information during the upgrade.

Chapter 4
AutoUpgrade and Oracle Database Configuration Options

4-64

Scope Limits for AutoUpgrade and Oracle RAC

• AutoUpgrade does not perform upgrades of the Oracle Clusterware component of Oracle
Grid Infrastructure. Before you start AutoUpgrade to upgrade your Oracle RAC database,
you must first complete a successful Oracle Grid Infrastructure upgrade to the new
release.

File System Preparation Before Upgrades Using AutoUpgrade

AutoUpgrade can identify the PFILE and SPFILE files shared on Oracle ASM. AutoUpgrade
recreates the SPFILE as part of the upgrade. If you are sharing files on the cluster using
Oracle ASM, then you do not need to complete this procedure.

Copy all of the network files (listener.ora, tnsnames.ora, sqlnet.ora, oranfstab,
ldap.ora, ifile, and so on), keystores, and any other files located on file systems that are
needed for the Oracle RAC cluster.

AutoUpgrade and Oracle Data Guard
Starting with Oracle Database 21c, AutoUpgrade can simplify the upgrade process for your
primary and secondary databases configured for Oracle Data Guard.

• How AutoUpgrade Performs Oracle Data Guard Upgrades
AutoUpgrade can detect Oracle Data Guard configurations, and defer shipping logs to
standby databases configured for the primary database.

• Steps AutoUpgrade Completes for Oracle Data Guard Upgrades
The steps that AutoUpgrade completes vary, depending on whether standby databases
are managed manually, or through Data Guard Broker.

• Steps After the Primary Database is Upgraded
For Oracle Data Guard upgrades, after you upgrade the primary database you must
complete these procedures.

How AutoUpgrade Performs Oracle Data Guard Upgrades
AutoUpgrade can detect Oracle Data Guard configurations, and defer shipping logs to
standby databases configured for the primary database.

AutoUpgrade automatically detects the presence of an Oracle Data Guard deployment, and
whether that deployment is configured manually, or uses Data Guard Broker to manage and
monitor Oracle Data Guard configurations.

When you set the parameter defer_standby_log_shipping to no (the default) in the
configuration file, AutoUpgrade can defer the log-shipping to configured standby databases,
both when Oracle Data Guard is configured manually, and when Oracle Data Guard is
configured through Data Guard Broker.

Preparation Before AutoUpgrade Upgrades of Databases with Oracle Data Guard

Before you begin the upgrade, to be prepared in case of a failure during the primary database
upgrade, or in case the primary database must be reverted to the source Oracle home,
ensure that your standby databases are protected and recoverable.

Chapter 4
AutoUpgrade and Oracle Database Configuration Options

4-65

Steps AutoUpgrade Completes for Oracle Data Guard Upgrades
The steps that AutoUpgrade completes vary, depending on whether standby
databases are managed manually, or through Data Guard Broker.

For Oracle Data Guard earlier release (source) databases where Oracle Data Guard
is managed manually, or through Data Guard Broker, to manage log-shipping to
standby databases, you can set defer_standby_log_shipping=yes in your
AutoUpgrade configuration file (the default is no). However, the specific actions that
AutoUpgrade takes vary, depending on how you manage standby databases.

Note:

For standby databases managed either manually or through Data Guard
Broker, after the upgrade completes, you must run ENABLE DATABASE
database-name; on each of the standby archive log destinations after
successful upgrade on the primary database, and perform all steps needed
to have standby databases upgraded through the redo log apply.

Manually Managed Oracle Data Guard Standby Databases

For Oracle Data Guard standby databases supported for direct upgrade, AutoUpgrade
places in DEFER mode all VALID and ENABLED standby archive log destinations before
starting the upgrade process for both manually managed and Data Guard Broker
managed standby databases.

Data Guard Broker-Managed Oracle Data Guard Standby Databases

For Oracle Database releases supported for direct upgrade with Oracle Data Guard
standby databases that are managed using Data Guard Broker, AutoUpgrade
completes the following actions:

• The primary database state is set to TRANSPORT-OFF to all standby databases
configured with Data Guard Broker

• The Data Guard Broker files are copied from the source Oracle home to the target
Oracle home.

Note:

If the Data Guard Broker files are located outside of the Oracle home, then
files are not found and copied.

Steps After the Primary Database is Upgraded
For Oracle Data Guard upgrades, after you upgrade the primary database you must
complete these procedures.

• Ensure that redo transport is enabled on the primary database, so that the
upgrade is applied to the standby databases.

Chapter 4
AutoUpgrade and Oracle Database Configuration Options

4-66

• Check that the archives are applied, and that there is a minimal gap. Oracle recommends
that Apply Lag and Transport Lag is not bigger than 5 minutes.

Example 4-5 Checking Redo Transport Service Status

To check the status of the redo transport services on the primary database, use the Data
Guard broker command-line interface (DGMGRL) LogXptStatus monitorable property. For
example:

DGMGRL> SHOW DATABASE 'sales1' 'LogXptStatus' ;

Example 4-6 Checking Apply Lag and Transport Lag

To check that the archives are applied, and verify that Apply Lag and Transport Lag is not
bigger than 5 minutes, log in to the primary database and submit a SQL query similar to the
following:

[oracle]$ sqlplus / as sysdba
SYS@sales1>

SET LINESIZE 200
COL VALUE FOR A30
SELECT NAME,VALUE,TIME_COMPUTED,DATUM_TIME FROM V$DATAGUARD_STATS WHERE NAME
LIKE '%lag';

The result should be similar to this output:

NAME VALUE TIME_COMPUTED DATUM_TIME
-------------- -------------- --------------------- --------------------
transport lag +00 00:00:00 timestamp timestamp
apply lag +00 00:01:07 timestamp timestamp

Related Topics

• Scenario 13: Monitoring a Data Guard Configuration

How to Run AutoUpgrade Using the Fast Deploy Option
To minimize database downtime, you can upgrade your database by running AutoUpgrade
using the Fast Deploy option.

Starting with AutoUpgrade 21.2, if your applications require minimal downtime, you can now
upgrade with less downtime by using Fast Deploy. With the Fast Deploy option, you can run
the prechecks and prefixups while the database is still online. After the fixups run on the
source database, you can then run AutoUpgrade in Deploy mode, and skip the prechecks
and prefixups stages, so that only the actual upgrade requires downtime.

Chapter 4
AutoUpgrade and Oracle Database Configuration Options

4-67

Note:

Oracle recommends that you run AutoUpgrade using standard analyze and
deploy checks. If you choose to use the Fast Deploy method, then be aware
that there is a slight risk that running AutoUpgrade in the preupgrade
Analyze mode may not detect an issue that can cause issues later. Assess
that risk, and take precautions accordingly.

1. Create your AutoUpgrade configuration file, providing information about your
source and target systems, and your upgrade preferences. In the steps that follow,
that file name is myconfig.cfg.

2. Analyze the database using Analyze mode.

– java -jar autoupgrade.jar -config myconfig.cfg -mode analyze

3. Run the preupgrade fixups using Fixups mode.

– java -jar autoupgrade.jar -config myconfig.cfg -mode fixups

4. Upgrade the database using Upgrade mode.

– java -jar autoupgrade.jar -config myconfig.cfg -mode upgrade

As this command runs, the database experiences downtime.

AutoUpgrade Configuration File Examples
Use these examples to understand how you can modify your own AutoUpgrade
configuration files to perform a variety of configuration actions during the upgrade.

• Updating the TDE Wallet Store Location During Upgrade Using AutoUpgrade
See how you can use AutoUpgrade configuration file parameters to update your
Transparent Data Encryption (TDE) wallet store during upgrade.

• AutoUpgrade Configuration File with Two Database Entries
See how you can specify upgrade options for multiple databases in a configuration
file.

• Standardizing Upgrades With AutoUpgrade Configuration File Entries
See how to enforce standardization of your database configurations during
upgrades using AutoUpgrade.

• AutoUpgrade Configuration File for Incremental Upgrade of a Set of PDBs
See how you can selectively upgrade a subset of PDBs using AutoUpgrade,
without affecting the other PDBs on the source CDB.

• How to Run AutoUpgrade in a Script or Batch job
Learn how to run AutoUpgrade in your own scripts in noninteractive mode by
calling AutoUpgrade using the noconsole parameter.

Chapter 4
AutoUpgrade Configuration File Examples

4-68

Updating the TDE Wallet Store Location During Upgrade Using
AutoUpgrade

See how you can use AutoUpgrade configuration file parameters to update your Transparent
Data Encryption (TDE) wallet store during upgrade.

In previous releases, if you used Oracle Wallet with TDE, then you specified the location of
the existing keystore directory location by using the deprecated sqlnet.ora parameter
SQLNET.ENCRYPTION_WALLET_LOCATION. In Oracle Database 19c and later releases, you
should specify the keystore location by using the WALLET_ROOT system parameter in the
database initialization parameter file (PFILE). What you need to do depends on how your
source Oracle Database release is configured:

• If your source Oracle Database release has WALLET_ROOT set already, then the parameter
files that AutoUpgrade generates automatically pick up the WALLET_ROOT system
parameter from the source database during the upgrade, and use that parameter in
target database parameter files.

• If your source Oracle Database release does not have the initialization parameter
WALLET_ROOT set, then you can use AutoUpgrade to complete that task during the
upgrade.

1. Create a text file on your operating system with the WALLET_ROOT initialization parameter
value for the directory that you want to use, and that provides the configuration option
you want for the TDE_CONFIGURATION dynamic initialization parameter to create the type of
keystores that you require. For example, if you configure TDE_CONFIGURATION to use FILE
for Transparent Data Encryption software keystores, then Oracle Database creates the
software keystore in WALLET_ROOT/tde (lower case).

2. In the AutoUpgrade configuration file, use the AutoUpgrade configuration file parameters
add_during_upgrade_pfile and add_after_upgrade_pfile to refer to that file on the
operating system to set WALLET_ROOT and TDE_CONFIGURATION during the upgrade.

For example, if you want WALLET_ROOT to use the path /u01/app/oracle/admin/hr/wallet,
and Transparent Data Encryption to store software keystores in the location WALLET_ROOT/
tde, then you can create a text file called tde-upgrade, which contains the following lines:

WALLET_ROOT=/u01/app/oracle/admin/hr/wallet
tde_configuration="KEYSTORE_CONFIGURATION=FILE"

You can then specify for AutoUpgrade to set these parameters in the AutoUpgrade
configuration file. For example, to set the Transparent Data Encryption keystore during and
after the upgrade, as part of the AutoUpgrade operation, add the following line to your local
configuration file to call that text file:

Example local pfile configuration entries
upg1.add_after_upgrade_pfile=/usr/home/oracle/tde-upgrade
upg1.add_during_upgrade_pfile=/usr/home/oracle/tde-upgrade

Related Topics

• How Configuring Transparent Data Encryption Works

Chapter 4
AutoUpgrade Configuration File Examples

4-69

AutoUpgrade Configuration File with Two Database Entries
See how you can specify upgrade options for multiple databases in a configuration file.

This example is of an AutoUpgrade configuration file that specifies the upgrade of two
databases. The configuration file specifies that AutoUpgrade performs the following
actions:

Database 1

• An in-place database upgrade of the Oracle Database 12c Release 2 (12.2) CDB,
where the source and target Oracle homes use the same Oracle Base directory
(the database home directory for Oracle Database installation owner oracle
(/u01/app/oracle/) on the same server hardware, with the same system identifier
(sid=HR1).

• During the upgrade, all the PDBs of the CDB are upgraded (pdbs=*)

• The upgrade starts immediately (start_time=now)

• The database upgrade logs will be sent to the path /database/logs/hr
(log_dir=/database/logs/hr)

• The Time Zone upgrade will run on all the containers (timezone_upg=yes)

Database 2

• An in-place database upgrade of the Oracle Database 18c CDB, where the source
and target Oracle homes use the same Oracle Base directory (the database home
directory for Oracle Database installation owner oracle (/u01/app/oracle/) on
the same server hardware, with the same system identifier (sid=SALES1).

• The upgrade starts immediately (start_time=now)

• The database upgrade logs will be sent to the path /database/logs/sales
(log_dir=/database/logs/sales).

• The Time Zone upgrade will not run on any containers (timezone_upg=no).

For both databases:

• The parameter upgrade_node specifies the actual system host name (nodename-1),
and not to an alias assigned to the host name. (You can also use the keyword
localhost to refer to the current system.)

• The global AutoUpgrade log files (also known as job manager logs) are placed
under the path /database/jobmgr (autoupg_log_dir=/database/jobmgr).

#
Global logging directory pertains to all jobs
#
global.autoupg_log_dir=/database/jobmgr

#
Database 1
#
upg1.source_home=/u01/app/oracle/product/12.2.0.2/dbhome_1
upg1.target_home=/u01/app/oracle/product/21.0.0/dbhome_1
upg1.sid=HR1
upg1.start_time=now

Chapter 4
AutoUpgrade Configuration File Examples

4-70

upg1.pdbs=*
upg1.log_dir=/database/logs/hr
upg1.upgrade_node=nodename1
upg1.run_utlrp=yes
upg1.timezone_upg=yes
upg1.target_version=21

#
Database 2
#
upg2.source_home=/u01/app/oracle/product/18.0.0/dbhome_1
upg2.target_home=/u01/app/oracle/product/21.0.0/dbhome_1
upg2.sid=SALES1
upg2.start_time=now
upg2.log_dir=/database/logs/sales
upg2.upgrade_node=nodename1
upg2.timezone_upg=no
upg2.target_version=21

Standardizing Upgrades With AutoUpgrade Configuration File Entries
See how to enforce standardization of your database configurations during upgrades using
AutoUpgrade.

In the following configuration file, you can see how you can use AutoUpgrade configuration
file entries to standardize their database configurations. The global PFILE entries are applied
to all databases within the configuration file. The local PFILE entries are applied only to a
specific database in the configuration file. The syntax for these PFILE values follow the same
Oracle rules for PFILE configurations.

#
Example global pfile configuration entries
#
global.del_during_upgrade_pfile=/database/pfiles/global_during_delinit.ora
global.add_during_upgrade_pfile=/database/pfiles/global_during_addinit.ora
global.del_after_upgrade_pfile=/database/pfiles/global_after_delinit.ora
global.add_after_upgrade_pfile=/database/pfiles/global_after_addinit.ora

Example local pfile configuration entries
#
upg1.del_during_upgrade_pfile=/database/pfiles/hr_during_delinit.ora
upg1.add_during_upgrade_pfile=/database/pfiles/hr_during_addinit.ora
upg1.del_after_upgrade_pfile=/database/pfiles/hr_after_delinit.ora
upg1.add_after_upgrade_pfile=/database/pfiles/hr_after_addinit.ora

During the AutoUpgrade process, the files during_upgrade_pfile_dbname.ora and
after_upgrade_pfile_dbname.ora are both created. These files are used to start the
database during the upgrade, and after the upgrade. If you want to change a system
parameter during the upgrade, or after the upgrade, then you can modify both files.

The global PFILE entries are applied first, and then the local PFILE entries designated by the
job prefix upgl are applied. Within those two configuration files, entries in the parameter

Chapter 4
AutoUpgrade Configuration File Examples

4-71

del_upgrade_pfile are applied first, followed by entries in the parameter
add_upgrade_pfile. The parameters in these PFILE configuration entries are applied
directly either to the PFILE during_upgrade_pfile_dbname.ora or to the PFILE
after_upgrade_pfile_dbname.ora, depending on which PFILE is targeted.

Actions:

• del_during_upgrade_pfile Removes entries from
during_upgrade_pfile_dbname.ora

• add_during_upgrade_pfile Add entries to during_upgrade_pfile_dbname.ora.

• del_after_upgrade_pfile Removes entries from
after_upgrade_pfile_dbname.ora

• add_after_upgrade_pfile Add entries to after_upgrade_pfile_dbname.ora.

The files referenced by the parameters del_during_upgrade_pfile and
del_after_upgrade_pfile have a single database parameter listed on each line. You
cannot add any prefix to the parameter, because the entire line is part of the parameter
name. Consider the following example:

#
global.del_during_upgrade_pfile
#
processes
*.open_cursors

The result of this configuration setting is to remove from the PFILE for each database
listed in the configuration file all references to the processes parameter, but not
references to the open_cursors parameter: Only instances of open_cursors that have
a prefix are removed. However, the parameters removed from the PFILE includes all
parameters that are prefixed. For example, *.processes and
instance_name.processes are both removed with this syntax.

The files referenced by the parameters add_during_upgrade_pfile and
add_after_upgrade_pfile have a single parameter listed on each line with the format
parameter=value. If you delete the entry from the PFILE, then the value field can be
left empty. If the parameter is prefixed with *. or instancename., then those
references are not added to the modified PFILE. To update the value of an existing
parameter, you must first delete it. You can then add the parameter with the desired
value. Consider the following example:

#
global.add_during_upgrade_pfile
#
processes=400
*.open_cursors=250

This global configuration file entry results in adding the following entries to the PFILE
for each database that is listed in the configuration file:

processes=400
open_cursors=250

Chapter 4
AutoUpgrade Configuration File Examples

4-72

The parameter after_upgrade_pfile_dbname is used to create the database SPFILE during
the postupgrade process.

AutoUpgrade Configuration File for Incremental Upgrade of a Set of PDBs
See how you can selectively upgrade a subset of PDBs using AutoUpgrade, without affecting
the other PDBs on the source CDB.

In this scenario, you upgrade two specific PDBs, without upgrading the other PDBs in the
source CDB, To perform the incremental upgrade, you direct AutoUpgrade in the
configuration file to unplug the PDBs you specify from an earlier release CDB, plug them into
a target release CDB, and then upgrade the earlier release PDBs on the target CDB. This
selection of PDBs to unplug, plug in, and upgrade, enables you to perform an incremental
upgrade of PDBs on the earlier release CDB to reduce downtime.

The following configuration file identifies the CDB CDB122 as the source CDB. The source
CDB has 10 PDBs, PDB1 through PDB10, but only PDB1 and PDB2 are upgraded. During the
upgrade, the PDB named PDB2 has its name changed to DEPSALES, and the database file
names for PDB2 are changed to DEPSALES:

global.autoupg_log_dir=/home/oracle/autoupg
upg1.sid=CDB122
upg1.source_home=/u03/app/oracle/product/12.2.0/dbhome_1
upg1.target_home=/u01/app/oracle/product/21.0.0/dbhome_1
upg1.target_cdb=CDB21C
upg1.pdbs=PDB2, PDB1
upg1.target_pdb_name.PDB2=DEPSALES
upg1.target_pdb_name.PDB1=EMPLOYEES
upg1.target_pdb_copy_option.PDB2=file_name_convert=('PDB2','DEPSALES')

This configuration file directs AutoUpgrade to do the following:

• Select PDBs from the source Oracle Database CDB122 in the home /u03/app/oracle/
product/12.2.0/dbhome_1

• Upgrade PDBs PDB2 and PDB1 to the target Oracle Database 21c Oracle home /u01/app/
oracle/product/21.0.0/dbhome_1

• Change the name of PDB2 to DEPSALES, and copy the PDB2 files using the new filename
DEPSALES.

• Change the name of PDB1 to EMPLOYEES.

How to Run AutoUpgrade in a Script or Batch job
Learn how to run AutoUpgrade in your own scripts in noninteractive mode by calling
AutoUpgrade using the noconsole parameter.

By default, AutoUpgrade runs in console mode, which enables you to run commands to
monitor specific aspects of your AutoUpgrade jobs while they are running on your systems.

Chapter 4
AutoUpgrade Configuration File Examples

4-73

Note:

You can run only one AutoUpgrade instance at a time that is associated with
a given configuration file.

Example 4-7

In this example, AutoUpgrade is run in Deploy mode, using the settings specified in
the configuration file autoupgrade.cfg, and turning off console using the noconsole
parameter.

java -jar autoupgrade.jar -config autoupgrade.cfg -mode deploy -
noconsole

Using the noconsole mode turns off requirements for user input, so you can enter this
command in a script to run the upgrades you specify in the configuration file.

AutoUpgrade before_action Local Parameter Example
To install Oracle Database features as part of your upgrade plan, you can use the
before_action local parameter to run scripts.

The following script examples show how you can use the before_action local
parameter to install Oracle Application Express with AutoUpgrade as part of your
upgrade plan. To use these examples with your own system, modify the scripts to point
to your own ORACLE_HOME, ORACLE_SID, and Oracle Application Express (APX_HOME)
installation directories.

Example 4-8 Install Oracle Application Express as Part of the Upgrade

Linux and Unix Systems:

#!/bin/sh
Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights
reserved.
#
#
DESCRIPTION
Sample Shell Script to install Oracle APEX using AutoUpgrade Utility
#
#
NOTES
This script contains no resume capabilities. It also makes references
to
Oracle Linux Library path.
#
#
MODIFIED (MM/DD/YY)
#
Set APEX and Oracle Homes and sid
#
export APX_HOME="/scratch/kit/apx19"

Chapter 4
AutoUpgrade before_action Local Parameter Example

4-74

export ORACLE_HOME="/scratch/base/1124"
export ORACLE_SID="db1124"
#
Set Path and library
#
export PATH=$ORACLE_HOME/bin:$PATH
export LD_LIBRARY_PATH=$ORACLE_HOME/lib:$LD_LIBRARY_PATH
#
Change directory to APEX home
#
cd $APX_HOME
#
Remove and old log and list files
#
rm -f *.log
rm -f *.lst
#
Write messages to progress.log file
#
echo "Installing APEX...." >> progress.log
echo "Starting Installing APEX...." >> progress.log
#
Run the APEX Installation
#
$ORACLE_HOME/bin/sqlplus "/ as sysdba" @apexins SYSAUX SYSAUX TEMP /i/ >
sqlplus.log
#
Check for errors
#
echo "Completed Installing APEX...." >> progress.log
echo "Started checking status of the APEX Install" >> progress.log
retstat=`grep -i '^ORA-' *.log | wc -l | awk '{print $1}'`
echo "$retstat errors found" >> progress.log
echo "Finished checking status of the APEX Install" >> progress.log
#
Write final progress and exit with success or failure status
#
if [$retstat == 0]
then
 echo "Successful Install of APEX...." >> progress.log
 exit 0
fi
echo "Errors Found Installing APEX...." >> progress.log
echo "Check Installation logs at $APX_HOME" >> progress.log
exit 1

Microsoft Windows Systems:

Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights
reserved.
#
#
DESCRIPTION

Chapter 4
AutoUpgrade before_action Local Parameter Example

4-75

Sample Windows PowerShell Script to install Oracle APEX using
AutoUpgrade Utility
#
#
NOTES
This script contains no resume capabilities.
#
#
MODIFIED (MM/DD/YY)
09/24/19 - Created
#
Set APEX and Oracle Homes and sid
#
$env:APX_HOME="c:\kit\apx19"
$env:ORACLE_HOME="c:\oracle\1124"
$env:ORACLE_SID="db1124"
#
Set Path
#
$powershell_path=$env:ORACLE_HOME + "\bin" + $env:PSModulePath
#
Change directory to APEX home
#
cd $env:APX_HOME
#
Remove and old log and list files
#
Remove-item * -Filter *.log
Remove-item * -Filter *.lst
#
Write messages to progress.log file
#
Write-Output "Installing APEX...." | Out-File -FilePath .\progress.log -
Append
Write-Output "Starting Installing APEX...." | Out-File -
FilePath .\progress.log -Append
#
Run the APEX Installation
#
sqlplus "/ as sysdba" "@apexins" SYSAUX SYSAUX TEMP /i/ | Out-File -
FilePath sqlplus.log
#
Check for errors
#
Write-Output "Completed Installing APEX...." | Out-File -
FilePath .\progress.log -Append
Write-Output "Started checking status of the APEX Install" | Out-File -
FilePath .\progress.log -Append
$retstat=(sls "^ORA-" *.log | Measure-Object -line).Lines
Write-Output "$retstat errors found" | Out-File -
FilePath .\progress.log -Append
Write-Output "Finished checking status of the APEX Install" | Out-File -
FilePath .\progress.log -Append
#
Write final progress and exit with success or failure status

Chapter 4
AutoUpgrade before_action Local Parameter Example

4-76

#
if ($retstat -eq 0) {
 Write-Output "Successful Install of APEX...." | Out-File -
FilePath .\progress.log -Append
 exit 0
}
Write-Output "Errors Found Installing APEX...." | Out-File -
FilePath .\progress.log -Append
Write-Output "Check Installation logs at $env:APX_HOME" | Out-File -
FilePath .\progress.log -Append
exit 1

AutoUpgrade Internal Settings Configuration File
Internal configuration settings control how AutoUpgrade runs.

Usage Notes

These configuration settings are provided for reference only. Typically, you should not use
these parameters.

Table 4-4 Internal Settings Configuration File Parameters for AutoUpgrade

Parameter Default Description

heartbeatHeartbeatSleep 1 Number of minutes to wait between each job
heartbeat.

heartbeatHeartbeatRetries 10 Number of times to retry after a failed job
heartbeat.

shutdownJobWaitTime 10 Number of minutes to wait before a running job
is terminated in the job queue during a
scheduled upgrade.

systemChecksAbort_timer 60 Number of minutes to wait before the system
checks job is automatically terminated.

systemChecksOracleHomeReqSpac 6g Minimum adequate disk space (in GB) system
check. (g is required.).

systemChecksMinCpuIdlePct 10 Warning alert threshold percentage to indicate
that the remaining available percentage of CPU
resources on the system can be inadequate to
complete the upgrade.

systemChecksMinFreeMemPct 5 Warning alert threshold percentage to indicate
that the remaining available percentage of
system random access memory (RAM) can be
inadequate to complete the upgrade.

systemChecksMinFreeSwapPct 5 Warning alert threshold percentage to indicate
that the remaining available percentage of
system swap space memory can be inadequate
to complete the upgrade.

dbPreCheckAbortTimer 60 Number of minutes to wait before the database
preupgrade checks job is automatically
terminated.

Chapter 4
AutoUpgrade Internal Settings Configuration File

4-77

Table 4-4 (Cont.) Internal Settings Configuration File Parameters for AutoUpgrade

Parameter Default Description

dbUpgradeDurationTimer 180 Number of minutes to wait before the database
upgrade job starts additional monitoring of the
upgrade progress.

dbUpgradeWakeupTimer 3 Number of minutes to wait before the database
upgrade job restarts monitoring the upgrade.

dbUpgradeAbortTimer 1440 Number of minutes to wait before the database
upgrade is automatically terminated.

dbUpgradeFatalErrors ORA-00600,

ORA-07445

Identifies which upgrade internal errors
automatically cause a post-upgrade restore of
the database back to the guarantee restore
point. Entries are comma-delimited.

dbPostUpgradeAbortTimer 60 Number of minutes to wait before the
postupgrade job is automatically terminated.

dbRestoreAbortTimer 120 Number of minutes to wait before the
Restoration job is automatically terminated.

dbGrpAbortTimer 3 Number of minutes to wait before the guarantee
restore point job is automatically terminated.

AutoUpgrade Log File Structure
The AutoUpgrade utility produces a log file structure that includes job status and
configuration files.

AutoUpgrade Log File Base Path

The AutoUpgrade log file path is set using the global parameter autoupg_log_dir. By
default, the global parameter has the following definition:

global.autoupgr_log_dir=/database/jobmgr

AutoUpgrade configuration and status file paths are relative to the directory path that
you establish with global.autoupgr_log_dir.

/cfgtoollogs/upgrade/auto

The automatic configuration tools log directory (/cfgtoollogs/upgrade/auto) contains
three trace log files that provide specific information about each job that the
AutoUpgrade job manager processes:

• autoupgrade.log: Provides detailed logs of the job that identify any problems that
occur during job runs.

• autoupgrade_usr.log: Job information, which is formatted to enhance readability.

• autoupgrade_err.log: A report of any unexpected exceptions that occur when the
job runs.

If problems occur when jobs start or stop, then you can use information in these log
files to determine the cause of problems.

Chapter 4
AutoUpgrade Log File Structure

4-78

/config_files

The config_files directory contains AutoUpgrade internal runtime configurations and global
temporary files.

/status

The /status directory contains JSON job status files. It contains two directories:

• status.json: This directory contains the final job status of all jobs completed in the
JSON file format.

• progress.json: This directory contains the progress of all jobs currently running in the
JSON file format.

Each module in the directories contains a status file for the operation that it performed. The
module takes the following format, where the prefix dbname is the database name, operation
is the upgrade operation that was performed, and the suffix status is the completion status of
that operation:

dbname_operation-name.status

The success or the failure of that operation is indicated by the suffix, which is
either .success, indicating the successful performance of that operation, or .failure,
indicating the failure of that operation. For example, the following module name indicates a
successful run of the prechecks operation on the database sales:

sales_prechecks.success

The operation module name can be one of the following:

• preupgrade: The preupgrade stage, in which custom scripts can be run.

• prechecks: The upgrade checks completed before starting the upgrade.

• grp: Guaranteed restore point (using Oracle Flashback technology).

• prefixups: The preupgrade fixups run before starting the upgrade.

• drain: The stage where existing jobs are completed or migrated before starting the
upgrade.

• dbupgrade: The stage in which the upgrade takes place.

• postchecks: The stage in which postupgrade checks are run after the upgrade is
completed.

• postfixups: The stage in which postupgrade fixups are run.

• postupgrade: The stage in which custom postupgrade scripts can be run.

Individual Job and Database Log File Directories

Each job started by the AutoUpgrade dispatcher is given a directory with that job identifier
prefix. Inside that job directory, each database in the job is given a log directory in the path /
database/logs/sid, where sid is the system identifier for the database. For example, where

Chapter 4
AutoUpgrade Log File Structure

4-79

the job identified in the configuration file is sales1, and the database system identifier
is sales, the log file for the database sales is in the following path:

sales.log_dir=/database/logs/sales1

The log directory contain all the relevant log files for all the tasks performed for that
database. By default, a directory identified by SID is created under the /database/
logs directory. Each database job can have a separate log directory, if you choose to
set up your configuration file that way.

/#### (Job Number)

Individual job runs are placed in subdirectories identified by the run number, in the
format /####, where #### represents the job run number. For example: 0004. Job run
number directories contain the following log files:

• autoupgrade_err.log: Reports any unexpected exceptions that occur while the
job runs.

• autoupgradeYYYYMMDD.log: AutoUpgrade trace log file. Provides detailed logs of
the job that identify any problems that occur during job runs. The variable
YYYYMMDD represents year, month, and day of the job.

• autoupgrade_YYYYMMDD_user.log: AutoUpgrade job status file, which is formatted
to enhance readability. The variable YYYYYYMMDD represents year, month, and day
of the job.

/preupgrade

The preupgrade directory (/preupgrade) contains the following files and log files:

• prechecks_databasename.log: Trace log file. This file provides detailed logs that
can assist with identifying problems that occur during the preupgrade job stage.
The variable databasename is the name of the database checked.

• databasename_preupgrade.html: HTML report on the database status. The
variable databasename is the name of the database checked.

• databasename_preupgrade.log: Text report on the database status. The variable
databasename is the name of the database checked.

/dbupgrade

The database upgrade directory (/dbupgrade) contains all log files associated with the
database upgrade:

• autoupgradeYYYYMMDDHHMISCdbname.log: Log files for the source database,
identified by the date on which the upgrade was run, and by the database name,
indicating parallelism. Format:

– YYYY: Year

– MM: Month

– DD: Day

– HH: Hour

– MI: Minute

– SC: Second

Chapter 4
AutoUpgrade Log File Structure

4-80

– dbname: Database name, where dbname is the database name.

• catupgradeYYYYMMDDHHMISCdbnameN.log: log files for the source database, identified by
the date on which the upgrade was run.

Format:

– YYYY: Year

– MM: Month

– DD: Day

– HH: Hour

– MI: Minute

– SC: Second

– dbnameN: Database name, where dbname is the database name, and N indicates the
parallelism: 0...3 for CDB ROOT, and Non-CDB databases, and 0...1 for PDBs.

/temp

Temporary AutoUpgrade files (/temp). This directory can contain files such as the PFILE used
during an upgrade.

Enabling Full Deployments for AutoUpgrade
To enable a guaranteed restore point (GRP) so that you can flashback an upgrade, you must
set up archive logging, and you should complete other tasks to enable AutoUpgrade to
complete the upgrade.

For AutoUpgrade to be able to perform a full deployment of the new release Oracle
Database, the following must be true:

• The database must have a proper configuration of the fast recovery area (FRA).
Specifically, DB_RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE must be set,
and be properly sized.

• Your source Oracle Database must be running in ARCHIVELOG mode.

Note:

AutoUpgrade creates a guaranteed restore point (GRP) during Deploy processing
mode. You do not need to have a previously defined guaranteed restore point.

Example 4-9 Setting up Archive Logging and Fast Recovery Area (FRA) Before Using
AutoUpgrade

In the following example, your-directory-or-diskgroup is the directory path or disk group
where your recovery area is placed. The value for DB_RECOVERY_FILE_DEST_SIZE is specified
as 50GB, but you should use the value that you require for your recovery area.

sqlplus / as sysdba
shutdown immediate;
startup mount;

Chapter 4
Enabling Full Deployments for AutoUpgrade

4-81

alter system set db_recovery_file_dest_size = 50g scope=both sid='*';
alter system set db_recovery_file_dest ='your-directory-or-diskgroup'
scope=both sid='*';
alter database archivelog;
alter database open;
alter pluggable database all open;

Example 4-10 Password Files and Security Password File Updates

During the upgrade, the AutoUpgrade utility copies the password file from the source
Oracle Database Oracle home to the target Oracle Database Oracle home. However,
the copied password file retains the earlier release password file version. Oracle
recommends that you regenerate the password file to update it to the new release
password file version.

Example 4-11 Transparent Data Encryption and AutoUpgrade

To enable the AutoUpgrade utility to obtain the privileges required for copying
transparent data encryption keystores, you must enable auto-login for these keystores
so that AutoUpgrade can copy them to the target release Oracle home. If you do not
enable auto-login, then AutoUpgrade cannot complete the upgrade.

In addition, AutoUpgrade looks for the location of the Oracle Net administration
directory using the TNS_ADMIN environment variable. If your TNS_ADMIN environment
variable is not defined, then the path to the network administration directory defaults to
the path Oracle_home/network/admin. If you need to specify a different path, then
specify the path in your configuration file using the local configuration parameter
source_tns_admin_dir, and if necessary, the target path with target_tns_admin_dir.

Enable an Auto-Login or a Local Auto-Login Software Keystore by using the
ADMINISTRATOR KEY MANAGEMENT or SYSKM privilege on your existing keystore. For
example, to create an auto-login software keystore of the password-protected keystore
that is located in the /etc/ORACLE/WALLETS/orcl directory:

ADMINISTER KEY MANAGEMENT CREATE AUTO_LOGIN KEYSTORE
FROM KEYSTORE '/etc/ORACLE/WALLETS/tde'
IDENTIFIED BY password;

keystore altered.

Note:

After AutoUpgrade completes copying the transparent data encryption
keystores, disable auto login, so that your previous release security is
restored.

Related Topics

• Creating an Auto-Login or a Local Auto-Login Software Keystore

• Overview of Local Naming Parameters

• Oracle Database Enterprise User Security Administrator's Guide

• DB_RECOVERY_FILE_DEST

Chapter 4
Enabling Full Deployments for AutoUpgrade

4-82

Examples of How to Use the AutoUpgrade Console
The AutoUpgrade console provides a set of commands to monitor the progress of
AutoUpgrade jobs. The console starts by default when you run the AutoUpgrade utility, and is
enabled or disabled by the parameters console and noconsole.

In console mode, the AutoUpgrade console enables you to run commands to monitor specific
aspects of your AutoUpgrade jobs while they are running on your systems.

Note:

If the AutoUpgrade console is exited out before it completes, then the jobs that are
running stop, and the job that are scheduled do not start. For this reason, do not
exit the console or stop the AutoUpgrade process until all of the AutoUpgrade jobs
are completed.

Example 4-12 Example of How to Enable and Disable the AutoUpgrade Console

Note:

You can run only one AutoUpgrade instance at a time that is associated with a
given configuration file.

In this example, AutoUpgrade is run in Analyze mode, using the configuration file in
noconsole mode.

java -jar autoupgrade.jar -config autoupgrade.cfg -mode analyze -noconsole

Using the noconsole mode turns off requirements for user input, so it is suitable for use with
scripts.

In this example, AutoUpgrade is run in Analyze mode, and the console is turned on again
with the -console option:

java -jar autoupgrade.jar -config autoupgrade.cfg -mode analyze -console

Console user input is again resumed.

How to Override Default Fixups
You can use the RUNFIX column entry to disable automated fixups, except in cases where
disabling the fixup violates security or Oracle policy.

The default fixups that are part of the AutoUpgrade procedure are generated during the
Analyze processing mode stage. You can modify the generated fixups list to disable
automatic fixups, so that you can run your own fixups.

Chapter 4
Examples of How to Use the AutoUpgrade Console

4-83

The sequence of steps is as follows:

1. Run the AutoUpgrade utility in Analyze mode

2. Open and edit the sid_checklist.cfg file that is generated during Analyze mode,
so that the fixups you want to do manually are disabled from running automatically.

3. In your most recent AutoUpgrade configuration file, under your local parameters
list for the job on which you want to suppress the automatic fixup, find the
parameter sid.checklist, where sid is the system identifier (SID) of the
database on which you want to suppress an automatic fixup. By default,
AutoUpgrade uses the most recent generated file. If you want to point it to a
different configuration file, then edit the parameter to provide a path to the
checklist.cfg file that you have edited.

Note:

AutoUpgrade resume always uses the most recent sid_checklist.config
file.

For example, if you have two generated AutoUpgrade configuration files, /
logdir/100/sid_checklist.cfg, and /logdir/101/sid_checklist.cfg,
then you must either specify a direct path to the configuration file that you
want to use, or edit the most recent file, which in this case is the
sid_checklist.cfg file in /logdir/101/

Suppose you have corrected an issue manually that you found, and want to
have AutoUpgrade to use a fixup file with different checks. If you want to
direct AutoUpgrade to use a different file, then you can specify the file path
directly in the checklist.cfg file by using the prefix.checklist parameter,
where prefix is the identifier for the database. For example:
prefix.checklist=logdir/repress-standard/sid_checklist.cfg

If the AutoUpgrade utility finds an error level database condition, and there is
not a fixup available for it, or you have manually disabled the available fixup,
then the AutoUpgrade job that contains the database with the error condition
stops.

Use the examples that follow to assist you with this procedure.

Example 4-13 Starting Up the AutoUpgrade Utility in Analyze Mode

java -jar autoupgrade.jar -config config.cfg –mode analyze

Example 4-14 Creating a New Checklist for a Configuration File

In this scenario, you are running AutoUpgrade checks on an Oracle Database 11g
Release 2 (11.2) database home, in preparation for an upgrade to Oracle Database
18c, with release update 8. You start with the following configuration file, called
config.cfg:

global.autoupg_log_dir=/home/oracle/autoupg
upg1.sid=db11204
upg1.source_home=/databases/ee/product/11.2.0/dbhome_1

Chapter 4
How to Override Default Fixups

4-84

upg1.target_home=/databases/ee/product/18x/dbhome_1
upg1.target_base=/databases
upg1.target_version=18.8.0

You then complete the following steps:

1. Run the command java -jar autoupgrade.jar -config config.cfg -mode analyze

The command produces a checklist file in the following path:

/home/oracle/autoupg/db11204/100/prechecks/db11204_checklist.cfg

2. Move the checklist file to another location. For example:

oracle@example: $ cd $PRECHECKS
oracle@example: $ pwd
/home/oracle/autoupg/db11204/100/prechecks
oracle@example: $ mv ./db11204_checklist.cfg /tmp

3. Use a text editor to open up the file, and look for the checks AMD_EXISTS and
EM_PRESENT.

For example:

[SID] [db11204]
==
[container] [db11204]
==
[checkname] AMD_EXISTS
[stage] PRECHECKS
[fixup_available] YES
[runfix] YES
[severity] WARNING
--
[checkname] DICTIONARY_STATS
[stage] PRECHECKS
[fixup_available] YES
[runfix] YES
[severity] RECOMMEND
--
[checkname] EM_PRESENT
[stage] PRECHECKS
[fixup_available] YES
[runfix] YES
[severity] WARNING
--
...
[truncated]

4. Change the values for checks AMD_EXISTS and EM_PRESENT from yes to no.
For example

[SID] [db11204]

Chapter 4
How to Override Default Fixups

4-85

==
[container] [db11204]
==
[checkname] AMD_EXISTS
[stage] PRECHECKS
[fixup_available] YES
[runfix] NO
[severity] WARNING
--
[checkname] DICTIONARY_STATS
[stage] PRECHECKS
[fixup_available] YES
[runfix] YES
[severity] RECOMMEND
--
[checkname] EM_PRESENT
[stage] PRECHECKS
[fixup_available] YES
[runfix] NO
[severity] WARNING
--
...
[truncated]

Notice that with both parameters, the fixup_available value is YES. That means
that there is a fixup available, which you choose not to run. If no fixup is available,
then the value for runfix is N/A.

5. Change the location where AutoUpgrade looks for the configuration file by
updating the path for the parameter checklist. To do this, add an entry to the
configuration file with the checklist pointer to the directory where your edited file
resides. For example:

global.autoupg_log_dir=/home/oracle/autoupg
upg1.sid=db11204
upg1.source_home=/databases/ee/product/11.2.0/dbhome_1
upg1.target_home=/databases/ee/product/18x/dbhome_1
upg1.target_base=/databases
upg1.target_version=18.8.0
upg1.checklist=/home/oracle/db11204_checklist.cfg

6. Run the fixups using the configuration file that you have edited and moved. For
example:

java -jar autoupgrade.jar -config config.cfg -mode fixups

Autoupgrade uses the configuration file in /home/oracle to run the AutoUpgrade
utility.

Example 4-15 Find and Edit checklist.cfg

The Analyze mode generates a fixup file with the file name checklist.cfg. Navigate
to the file, where DATABASE_LOGS_DIR is the value set for the AutoUpgrade log_dir
parameter of the database, job-id refers to the job identifier that the AutoUpgrade

Chapter 4
How to Override Default Fixups

4-86

utility generates, and sid is the system identifier for the database on which you want to
suppress automatic fixups:

DATABASE_LOGS_DIR/job-id/prechecks/sid_checklist.cfg

Open the checklist.cfg file with a text editor. The following is an example of the
checklist.cfg file for the database with the SID DB11204:

[dbname] [DB11204]
==
[container] [DB11204]
==
[checkname] AMD_EXISTS
[stage] PRECHECKS
[fixup_available] YES
[runfix] YES
[severity] WARNING
--

[checkname] DEPEND_USR_TABLES
[stage] POSTCHECKS
[fixup_available] YES
[runfix] YES
[severity] WARNING
--

[checkname] DICTIONARY_STATS
[stage] PRECHECKS
[fixup_available] YES
[runfix] YES
[severity] RECOMMEND
--

[checkname] EM_PRESENT
[stage] PRECHECKS
[fixup_available] YES
[runfix] YES
[severity] WARNING
--
.
.
.

The file has a hierarchical structure. It starts with the database name, and the container name
for which the entries of the checklist.cfg apply. The file contains a series of fixup checks
that are applied automatically. For each entry, there are 5 relevant values parameters:

Parameter Description

[checkname] Name of the database check

[stage] AutoUpgrade stage in which the check is
performed. It can be either prechecks, or post
checks.

Chapter 4
How to Override Default Fixups

4-87

Parameter Description

[fixup available] Availability of an automatic fixup. This parameter
value is either YES (an automatic fixup is
available), or NO (an automatic fixup is not
available).

runfix Run status for the fixup. This parameter takes one
of two values:

YES: Run the fixup.

NO: Do not run the fixup.

severity Class of severity of the issue that the automatic
fixup addresses.

For each fixup that you want to perform manually, change the [runfix] parameter
value from YES to NO.

Related Topics

• My Oracle Support Doc ID 2380601.1 "Database Preupgrade tool check list"

Local Configuration File Parameter Fixups Checklist
Example

To include or exclude specific fixups for individual databases during upgrades, use the
local configuration file checklist.

In this example, there is a local checklist file called sales4_checklist.cfg, which
provides a preupgrade fixup checklist for the database sales4. A portion of the file
contains the following settings:

[checkname] DICTIONARY_STATS
[stage] PRECHECKS
[fixup_available] YES
[runfix] YES
[severity] RECOMMEND

You can change the default fixup for DICTIONARY_STATS to exclude performing a fixup
for the database sales4 by changing the runfix option for the check from YES to NO:

[checkname] DICTIONARY_STATS
[stage] PRECHECKS
[fixup_available] YES
[runfix] NO
[severity] RECOMMEND

Proper Management of AutoUpgrade Database Changes
AutoUpgrade is a powerful utility, which requires that you use it responsibly. Review
and avoid using AutoUpgrade in ways that put the database at risk.

Chapter 4
Local Configuration File Parameter Fixups Checklist Example

4-88

https://support.oracle.com/rs?type=2380601.1

The following is a list of improper uses of AutoUpgrade, and ways of attempting to work
around problems that result from these errors.

Breaking AutoUpgrade Resume Capability During Deployment

Problem Description::Using the –clean_recovery_data option prevents AutoUpgrade from
resuming or restoring the database.

Workaround: Restore from a backup copy of the database.

Cause: Running the AutoUpgrade in deploy mode, and then interrupting its execution on any
stage after the fixups are completed, and running the option clean_recovery_data before
resuming and completing successfully an AutoUpgrade deploy command. For example:

java -jar autoupgrade.jar -config config.cfg -mode deploy
Ctrl+C //sample interruption
java -jar autoupgrade.jar -config config.cfg –clean_recovery_data
java -jar autoupgrade.jar -config config.cfg -mode deploy

Changing AutoUpgrade Global Log Directory During or After Deployment

Problem Description: If you change the global directory during or after running a deploy
command, then the AutoUpgrade utility is unable to resume its pending work.

Workaround: Restore from a backup copy of the database.

Cause: The AutoUpgrade global logs directory also contains files used by the AutoUpgrade
Utility to track the state of its operations. If you run the tool in deploy mode, and the deploy
operation is stopped, and then rename or drop the global log directory, then the AutoUpgrade
utility is unable to determine the state in which the deploy operation was stopped. As a result,
when you restart AutoUpgrade, it begins the upgrade operation from the beginning, and the
initial GRP is overwritten. You cannot use that GRP to restore the original database.

Use of Keystore With Credentials Not Set With AUTOLOGIN

Problem Description: You run the tool, and you have keystore credentials configured, but
AutoUpgrade is unable to log in to the database.

Workaround: Create an Autologin Keystore, and configure the database with auto-login
enabled.

At the time of this release. AutoUpgrade does not support the use of keystore credentials
unless they are configured for automatic logins into the database

Related Topics

• Performing Operations That Require a Keystore Password

AutoUpgrade and Microsoft Windows ACLs and CLIs
When running AutoUpgrade on Microsoft Windows systems, Oracle recommends additional
best practices with access control lists (ACLs) and command-line interfaces (CLIs).

Chapter 4
AutoUpgrade and Microsoft Windows ACLs and CLIs

4-89

AutoUpgrade and Access Control Lists (ACLs)

When you use AutoUpgrade on Windows systems, there are difficulties in setting up
automated tools to work with Windows access control lists. Oracle strongly
recommends that you complete the following best practice procedures:

• Review permissions for each of your target databases, and how these permissions
relate to directories for these databases, such as the Oracle base directory, and
the oraInventory files.

• Refer to the Oracle Database Administrator's Reference section on postinstallation
configuration tasks for NTFS file systems.

• Review Microsoft's documentation regarding Windows PowerShell.

• Review the permissions for the groups ORA_DBA, ORA_HOME_USERS, and ORA_ASM
groups. The ORA_DBA group only provides SYSDBA privileges to Oracle Database.
The Oracle ASM management privileges are controlled by members of the group
ASM DISKGROUPS.

• The ORA_DBA group member permissions to perform many administration tasks is
limited, compared to the privileges available on POSIX systems. To enable
AutoUpgrade to run as expected, Oracle recommends that the user account with
Administrator rights on the Microsoft Windows server also manages Oracle base
directory elements such as traces, listeners, and configuration.

• AutoUpgrade must be run using a command console (CMD) with administrative
rights, and that console should be opened as the Oracle Installation User, or a
user with similar privileges.

• Refer to My Oracle Support notes 1529702.1, and 1595375.1.

AutoUpgrade uses the following procedure with services running on the database:

• AutoUpgrade stops the services on the source database, and creates a temporary
service on the target database Oracle home.

If a restore is required, then the service in the target is dropped, and the service in
the source is restarted.

• After Deploy Mode processing has completed successfully, the service in the
target is dropped. At that point, it is the responsibility of the DBA for the upgraded
Oracle Database to use ORADIM to create a service. Creating this service manually
is required, because AutoUpgrade does not have the password to obtain
permissions to create the ORADIM service.

AutoUpgrade and Windows Command-Line Interfaces

With command-line interfaces on Windows, applications can stop responding while
waiting for a return character to be sent to the console. This behavior can affect the
AutoUpgrade utility. The cause is a well-known Microsoft Windows console window
characteristic related to the QEM (Quick Edit Mode). Even if you disable the Quick Edit
console mode, the application can still encounter this behavior.

To avoid the program waiting for a response, press the enter key a few times after the
application starts. Doing this provides the terminal input required to help the
application proceed without awaiting a terminal response.

Related Topics

• Oracle Database Administrator’s Reference for Microsoft Windows

Chapter 4
AutoUpgrade and Microsoft Windows ACLs and CLIs

4-90

• My Oracle Support Note 1529702.1

• My Oracle Support Note 1595375.1

Chapter 4
AutoUpgrade and Microsoft Windows ACLs and CLIs

4-91

https://support.oracle.com/rs?type=doc&id=1529702.1
https://support.oracle.com/rs?type=doc&id=1595375.1

5
Upgrading Oracle Database Using Parallel
Upgrade Utility or Replay Upgrade

You can upgrade manually by using the Parallel Upgrade Utility command-line option, or you
can use the Replay Upgrade process.

Starting with Oracle Database 21c, Database Upgrade Assistant (DBUA) is replaced by the
AutoUpgrade utility.

Caution:

If you retain the old Oracle Database software, then never start the upgraded
database with the old Oracle Database software. Only start the database with the
executables in the new Oracle Database installation.

• Upgrading Manually with Parallel Upgrade Utility
To run upgrades with scripts that you run and manage manually, you can use the Parallel
Upgrade Utility (catctl.pl).

• Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases
To prepare for manual upgrades, review the manual upgrade scenarios and procedures
for Oracle Database deployed with multitenant architecture.

• About Transporting and Upgrading a Database (Full Transportable Export/Import)
You can use file-based or nonfile-based modes for transporting data.

• Upgrading Oracle Database Releases Using Replay Upgrade
To upgrade from an earlier release, you can use the Oracle Multitenant Replay Upgrade
(Replay Upgrade) procedure to adopt a non-CDB to a PDB, or upgrade a PDB.

• Manual Non-CDB Oracle Database Release Upgrades to Multitenant Architecture
To manage your non-CDB Oracle Database upgrade manually by using scripts, learn
about upgrade scenarios and procedures.

• Upgrading Oracle Database Using Fleet Patching and Provisioning
In Oracle Database 12c release 2 (12.2) and later releases, you can use Fleet Patching
and Provisioning to upgrade an earlier release Oracle Database.

• Rerunning Upgrades for Oracle Database
Use these options to rerun upgrades.

Upgrading Manually with Parallel Upgrade Utility
To run upgrades with scripts that you run and manage manually, you can use the Parallel
Upgrade Utility (catctl.pl).

5-1

• About the Parallel Upgrade Utility for Oracle Database (CATCTL.PL and
DBUPGRADE)
The Parallel Upgrade Utility (catctl.pl, and the dbupgrade script) enable you
to upgrade simultaneously components that do not require upgrades to occur in a
specific order.

• General Steps for Running the Parallel Upgrade Utility
Review to obtain an overview of how to use the Parallel Upgrade Utility for Oracle
Database.

• Parallel Upgrade Utility (catctl.pl) Parameters
Control how the Parallel Upgrade Utility (catctl.pl) runs. You can also use
these arguments to run the dbupgrade shell command.

• Example of Using the Parallel Upgrade Utility
Use this example to understand how you can run the parallel upgrade utility
manually to perform upgrades.

About the Parallel Upgrade Utility for Oracle Database (CATCTL.PL
and DBUPGRADE)

The Parallel Upgrade Utility (catctl.pl, and the dbupgrade script) enable you to
upgrade simultaneously components that do not require upgrades to occur in a
specific order.

Oracle Database 12c release 1 (12.1) introduced the Parallel Upgrade Utility,
catctl.pl. This utility reduces the total amount of time it takes to perform an
upgrade by loading the database dictionary in parallel, and by using multiple SQL
processes to upgrade the database. Performing parallel upgrades of components
enables you to take advantage of your CPU capacity. Oracle continues to make
improvements to the upgrade process to simplify both manual upgrades, and
upgrades performed with the Database Upgrade Assistant (DBUA). DBUA and the
manual upgrade procedures take advantage of the new Parallel Upgrade Utility.

You can run a shell command, dbupgrade, which starts up catctl.pl from the
command line, instead of requiring you to run it from Perl.

The dbupgrade shell command is located in the file path $ORACLE_HOME/bin on
Linux and UNIX, and %ORACLE_HOME%\bin on Windows. You can provide any
command arguments that are valid for catctl.pl to the shell command. Either run
the command directly from the new Oracle home path, or set a user environment
variable to point to the file path.

For example:

Running with default values:

$./dbupgrade

Running to specify a log directory placed in /tmp:

$./dbupgrade -l /tmp

Chapter 5
Upgrading Manually with Parallel Upgrade Utility

5-2

You can also run the Parallel Upgrade Utility using priority lists. For example:

$./dbupgrade -L priority_list_name

When you use a priority list, you can include or exclude a specific list of PDBs in your
upgrade.

You can also run the Parallel Upgrade Utility using priority emulation, so that you can see
how the priority list is read and carried out, without actually performing the upgrade. For
example:

$./dbupgrade -E

Related Topics

• Example of Testing Upgrades Using Priority List Emulation

General Steps for Running the Parallel Upgrade Utility
Review to obtain an overview of how to use the Parallel Upgrade Utility for Oracle Database.

The Parallel Upgrade Utility (catctl.pl, which you can start with the shell command
dbupgrade) loads the data dictionary and components in parallel. Loading in parallel
reduces the overall upgrade time. Before running the Parallel Upgrade Utility, follow the
procedures for backing up your database that you normally do before upgrading. Also, as a
prerequisite, you must run AutoUpgrade using the preupgrade clause to identify any
problems that a database administrator must address before the upgrade proceeds.

The general steps for upgrading your database with the Parallel Upgrade Utility are as
follows:

1. Back up your current database.

2. Install the Oracle Database software for the new release.

3. Run AutoUpgrade with the preupgrade parameter on the source database, and correct
any issues that AutoUpgrade does not fix.

4. Shut down your current database.

5. Set up the new Oracle home environment to access the new release database software,
and then start SQL*Plus from the directory ORACLE_HOME/rdbms/admin.

6. Log in to a user account with SYSDBA system privileges, and connect to the database that
you want to upgrade:

CONNECT / AS SYSDBA

7. Start the database in upgrade mode. Use the command for your configuration type.

SQL> startup upgrade;
SQL> alter pluggable database all open upgrade;

Chapter 5
Upgrading Manually with Parallel Upgrade Utility

5-3

Note:

The UPGRADE keyword performs operations that prepare the
environment for the upgrade.

You can be required to use the PFILE option in your startup command to specify
the location of your initialization parameter file.

When you start the database in upgrade mode, only queries on fixed views
execute without errors until after the catctl.pl script is run. Before you run
catctl.pl, you receive an error if you try to use PL/SQL, or if you try to run
queries on any other view.

If errors appear listing desupported initialization parameters, then make a note of
the desupported initialization parameters, and continue with the upgrade. Remove
the desupported initialization parameters the next time you shut down the
database.

8. Exit SQL*Plus.

9. Run the Parallel Upgrade Utility from the new Oracle home.

You can run the utility as a shell command (dbupgrade on Linux and Unix, and
dbupgrade.cmd on Microsoft Windows) or you can run it as a Perl command
(catctl.pl).

For example, on Linux and Unix:

cd $ORACLE_HOME/bin
./dbupgrade

For example, on Microsoft Windows:

cd %ORACLE_HOME%\bin
dbupgrade

The Parallel Upgrade Utility starts the upgrade process.

Note:

The Parallel Upgrade Utility uses other files to carry out the upgrade. On
Linux and Unix systems, these files include catconst.pm, catcom.pm,
sqlpatch, sqlpatch.pl or sqlpatch.pm, and orahome on Linux/UNIX
systems. On Windows systems, these files include orahome.exe. Do not
change or remove these files.

Related Topics

• Specifying Initialization Parameters at Startup

Chapter 5
Upgrading Manually with Parallel Upgrade Utility

5-4

Parallel Upgrade Utility (catctl.pl) Parameters
Control how the Parallel Upgrade Utility (catctl.pl) runs. You can also use these
arguments to run the dbupgrade shell command.

Note:

The shell command utility dbupgrade starts catctl.pl. The dbupgrade utility
resides in the ORACLE_HOME/bin directory. You can use the shell command utility
to start the Parallel Upgrade Utility at the command prompt. You can either run the
utility using default values, or you can use catctl.pl input parameters to specify
Parallel Upgrade Utility arguments.

Table 5-1 Parallel Upgrade Utility (catctl.pl) Parameters

Parameter Description

-c Specifies a space-delimited inclusion list for PDBs that you want to upgrade.

For example: In an Oracle Multitenant deployment with PDB1, PDB2, PDB3, and
PDB4, you want to include PDB1 and PDB2, but exclude other PDBs:

Linux and Unix (use single quotes):

-c 'PDB1 PDB2'

Windows (use double quotes):

-c "PDB1 PDB2"

As a result of this specification, PDB1 and PDB2 are upgraded, but PDB3 and PDB4
are not upgraded.

Chapter 5
Upgrading Manually with Parallel Upgrade Utility

5-5

Table 5-1 (Cont.) Parallel Upgrade Utility (catctl.pl) Parameters

Parameter Description

-C Specifies a space-delimited exclusion list for PDBs that you want to upgrade.

For example: In an Oracle Multitenant deployment with PDB1, PDB2, PDB3, and
PDB4, you can use an exclusion list to exclude PDB1 and PDB2, but include the
PDBs not named:

Linux and Unix (use single quotes):

-C 'PDB1 PDB2'

Windows (use double quotes):

-C "PDB1 PDB2"

As a result of this specification, PDB1 and PDB2 are not upgraded, but PDB3 and
PDB4 are upgraded.

Note: -c and -C are mutually exclusive.

-C 'CATCTL_LISTONLY' is an option that specifies that the Parallel Upgrade
Utility processes only the PDBs in a priority list. Use this option with the -L
parameter, specifying a list.

-d Specifies the location of the directory containing the files that you want
processed.

-e Sets echo OFF while running the scripts. The default is echo ON.

-E Enables you to run an upgrade emulation.

You can use the -E parameter to run the Parallel Upgrade Utility in emulation
mode to test how priority lists run, or to test how other upgrade parameter
selections are carried out during an upgrade. For example, you can run an
upgrade emulation to obtain more information about how the resource allocation
choices you make using the -n and -N parameters are carried out.

To carry out an upgrade emulation, complete all upgrade preparations before you
run the Parallel Upgrade Utility, and then run the command using -E.

When you run the Parallel Upgrade Utility with the -E parameter, and call a
priority list as part of the command using the -L parameter, the utility writes the
upgrade order to the file catctl_priority_run.lst. This list is placed in
the file path that you specify by the -l parameter, or in the default log file area if
you do not specify a different output file path.

-F Forces a cleanup of previous upgrade errors.

Use this option with a space-delimited inclusion list, which you specify with -c.

-i Specifies an identifier to use when creating spool log files.

-l Specifies the location for the directory to use for spool log files.

The default location is Oracle_base/cfgtoollogs/dbname/
upgradedatetime. The date and time strings are in the character string
format YYYYMMDDHHMMSC, in which YYYY designates the year, MM
designates the month, DD designates the day, HH designates the hour, MM
designates the minute, and SC designates the second.

Oracle strongly recommends that you do not write log files to the /admin
directory.

Chapter 5
Upgrading Manually with Parallel Upgrade Utility

5-6

Table 5-1 (Cont.) Parallel Upgrade Utility (catctl.pl) Parameters

Parameter Description

-L Upgrades PDBs using a priority list during an Oracle Database upgrade, and
specifies the priority list name. The priority list updates priority status in the
database during upgrade. This priority listing is maintained in future upgrades.

By default the CDB$ROOT and PDB$SEED databases are always processed first.
They are processed first even if they are not added to a priority list. All PDBs in
the priority list are processed before PDBs not in the priority list.

-M Keeps CDB$ROOT in UPGRADE mode while the PDBs are upgraded.

During upgrades, using this parameter setting places the CDB and all its PDBs in
upgrade mode, which can reduce total upgrade time. However, you cannot bring
up any of the PDBs until the CDB and all its PDBs are upgraded.

By default, if you do not use the -M parameter setting, then CDB$ROOT is
upgraded and restarted in normal mode, and the normal background processes
are started. As each PDB is upgraded, you can bring the PDB online while other
PDBs are still being upgraded.

-n Specifies the number of processes to use for parallel operations.

The number of PDBs upgraded concurrently is controlled by the value of the -n
parameter. Multiple PDB upgrades are processed together. The default value is
the number of CPUs on your system. A cpu_count equal to 24 equates to a
default value of 24 for -n.

Values for the -n parameter:

The maximum value for -n is unlimited. The minimum value is 4. The maximum
PDB upgrades running concurrently is the value of -n divided by the value of -N.

-N Specifies the number of SQL processors to use when upgrading PDBs.

The maximum value is 8. The minimum value is 1. The default value is 2.

-p Restarts from the specified phase. When you re-run an upgrade, it does not
restart phases already completed successfully.

-P Stops from the specified phase.

-R Resumes the upgrade from a failed phase. Using the -R parameter enables the
upgrade to resume at the point of failure, so that only the missing upgrade phases
are rerun.

-s Names the SQL script that initializes sessions.

-S Specifies serial upgrade instead of parallel.

-t Uses classic upgrade for the upgrade, instead of the default Replay Upgrade
process.

-T Takes offline user schema-based table spaces.

-u Specifies user name, and prompts for password.

-y Displays phases only.

-z Turns on production debugging information for catcon.pm.

-Z Turns on debug tracing information for catctl.pl.

For example, to set the number to 1, enter -Z 1.

Chapter 5
Upgrading Manually with Parallel Upgrade Utility

5-7

Example of Using the Parallel Upgrade Utility
Use this example to understand how you can run the parallel upgrade utility manually
to perform upgrades.

The Parallel Upgrade Utility (catctl.pl) is integrated with AutoUpgrade and DBUA.
The catctl.pl Perl script uses classic upgrade to upgrade CDB$ROOT, and Replay
Upgrade to upgrade the PDBs. Replay Upgrade is the default option for upgrading
PDBs starting with Oracle Database 21c. You can also run the Parallel Upgrade Utility
manually by using the command-line script dbupgrade. Run the Parallel Upgrade
Utility using the command-line parameters to specify how you want the upgrade to run.
For example, to run the utility in serial mode instead of using parallel operations,
specify the -n 1 option.

Example 5-1 Running Parallel Upgrade Utility with Parameters

If you use the option -n 4 when you run the Parallel Upgrade Utility, then the upgrade
process creates catupgrd0.log, catupgrd1.log, catupgrd2.log, and catupgrd3.log.
Check all of the catupgrd#.log files to confirm that the upgrade succeeded. If the
upgrade failed, and you fix issues and run the Parallel Upgrade Utility again, then the
previous log files are overwritten, unless you specify a different log directory by using
the -l parameter.

For example:

cd $ORACLE_HOME/bin
dbupgrade -n 4 -l $ORACLE_HOME/diagnostics

Example 5-2 Running Parallel Upgrades on Multiple Pluggable Databases
(PDBs) Using Parallel Upgrade Utility

These examples show how parameter settings change the way that the Parallel
Upgrade Utility performs the upgrade on multiple PDBs.

Note:

In your upgrade plans, be aware of the following:

• The CDB$ROOT defaults to a minimum value of 4 SQL processes, and to a
maximum value of 8

• The default value for -N is 2.

• PDB$SEED always counts as one (1) PDB in the upgrade cycles

• The default for the Parallel Upgrade Utility parameter -n is the value of
the CPU_COUNT parameter

In the following examples, the system is an Oracle Multitenant Oracle Database
system that has a CPU_COUNT value of 24.

Run the Parallel Upgrade Utility without specifying values for the parameters -n and -N
(that is, accept the default value of -N, which is 2, and accept the default value of -n as
the CPU_COUNT parameter value, which is 24). The following parallel processing occurs:

Chapter 5
Upgrading Manually with Parallel Upgrade Utility

5-8

• 12 PDBs are upgraded in parallel (CPU_COUNT divided by 2)

Note:

If you are using Replay Upgrade, then the number is derived from CPU_COUNT
divided by 4, so the number is 3.

• 2 parallel processes run for each PDB

Specify the value of -n as 64, and -N as 4. The following parallel processing occurs:

• 16 PDBs are upgraded together (64 divided by 4)

• 4 parallel processes run for each PDB

Specify the value of -n as 20, and -N as 2. The following parallel processing occurs:

• 10 PDBs are upgraded together (20 divided by 2)

• 2 parallel processes run for each PDB

Specify the value of -n as 10, and -N as 4. The following parallel processing occurs:

• 2 PDBs are upgraded together (10 divided by 4), rounded down.

• 4 parallel processes run for each PDB

Do not specify the value of -n (that is, accept the default value of -n, which is the value of the
CPU_COUNT parameter), and specify the value of -N as 1. The following parallel processing
occurs:

• 24 PDBs are upgraded together (CPU_COUNT value divided by 1)

• 1 process runs for each PDB

Specify a value for -n as 20, and do not specify the value for -N (that is, accept the default
value of -N, which is 2). The following parallel processing occurs:

• 10 PDBs are upgraded together (20 divided by 2)

• 2 parallel processes run for each PDB

Manual Upgrade Scenarios for Multitenant Architecture Oracle
Databases

To prepare for manual upgrades, review the manual upgrade scenarios and procedures for
Oracle Database deployed with multitenant architecture.

Starting with Oracle Database 21c, upgrades are supported only with using the multitenant
architecture. Multitenant architecture enables Oracle Database deployments using
multitenant container databases (CDB) that contain pluggable databases (PDBs). For
information about the number of PDBs you are permitted in a CDB for each deployment
option, refer to Oracle Database Licensing Information User Manual.

• About Oracle Multitenant Oracle Database Upgrades
You can upgrade Oracle Databases installed on multitenant architecture either in parallel,
or in sequence.

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-9

• Coordinate Upgrades of Proxy PDBs with Multitenant Upgrades
Coordinate upgrades of the CDB so that proxy PDB and PDB targets are the same
version.

• Manually Upgrading a Multitenant Container Oracle Database (CDB)
The procedure in this section provides steps for upgrading a CDB manually using
a command-line procedure.

• About Upgrading PDBs Using the Parallel Upgrade Utility with Priority Lists
uou can upgrade PDBs using a priority list to upgrade a set of PDBs ahead of
other PDBs, and you can modify that upgrade priority.

• About PDB Upgrades Using Priority Lists, Inclusion Lists, and Exclusion Lists
To control how your pluggable databases (PDBs) are upgraded, you can use
inclusion and exclusion lists with priority lists.

• Oracle Label Security Integration in a Multitenant Environment
You can use Oracle Label Security in a multitenant environment.

• Upgrading Multitenant Architecture In Parallel
Use this technique to upgrade multitenant architecture Oracle Database releases
supported for direct upgrade by upgrading container databases (CDBs), and then
upgrading multiple pluggable databases (PDBs) in parallel.

• Upgrading Multitenant Architecture Sequentially Using Unplug-Plug
To upgrade pluggable databases (PDBs) that are in an earlier release multitenant
container databases (CDBs), you can unplug the PDBs from the earlier release
CDB, and plug the PDBs into the later release CDB.

About Oracle Multitenant Oracle Database Upgrades
You can upgrade Oracle Databases installed on multitenant architecture either in
parallel, or in sequence.

You can upgrade multitenant architecture systems by using AutoUpgrade, or Oracle
Restart upgrade, or by using Parallel Upgrade Utility to carry out manual upgrades.
Starting with Oracle Database 21c, Replay Upgrade is the default option for upgrading
PDBs.

There are two techniques for upgrading Oracle Databases using the multitenant
architecture:

• In parallel. With this technique, you carry out one upgrade operation that
upgrades the CDB, and then upgrades the PDBs in parallel.

• Sequentially. With this technique, you install a new release CDB, prepare and
unplug PDBs from the earlier release CDB, plug the PDBs into a later release
CDB, and then complete the upgrade for each PDB.

The following sections provide a high-level summary of each upgrade technique.

Upgrading Oracle Multitenant In Parallel

With the In Parallel technique, you first upgrade CDB$ROOT using the Parallel Upgrade
Utility (catctl.pl), using parameters to set the degree of parallel processing and
availability:

• The -n parameter defines how many parallel processes run the upgrade, up to 8.

• The -M parameter determines if the CDB$ROOT stays in UPGRADE mode through the
entire upgrade, or becomes available for access after the CDB upgrade is

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-10

complete. If you do not run the upgrade with the -M parameter, then when the CDB$ROOT
upgrade is complete, PDBs then become available for access as soon as each PDB
completes its upgrade. If you run the upgrade with the –M parameter, then CDB$ROOT stays
in UPGRADE mode, and PDBs do not become available until upgrade of all PDBs is
complete.

Upgrading Oracle Multitenant In Sequence

With the In Sequence technique, you install the new release multitenant architecture CDB.
Next, in the earlier release multitenant architecture CDB, you run AutoUpgrade preupgrade
scripts to prepare one or more PDBs to upgrade, and shut them down. You then unplug
PDBs, plug them into the new release multitenant architecture CDB, and complete the
upgrade sequentially for each PDB.

Coordinate Upgrades of Proxy PDBs with Multitenant Upgrades
Coordinate upgrades of the CDB so that proxy PDB and PDB targets are the same version.

During upgrades, upgrade of a Proxy PDB does not upgrade its corresponding target PDB.
Upgrade of the target PDB has to be done separately.

Manually Upgrading a Multitenant Container Oracle Database (CDB)
The procedure in this section provides steps for upgrading a CDB manually using a
command-line procedure.

You must complete the following steps before using this procedure:

• Install the new release software for Oracle Database

• Prepare the new Oracle home

• Run AutoUpgrade with the preupgrade parameter

1. If you have not done so, run AutoUpgrade using the preupgrade clause. Review the
output, and correct all issues noted in the output before proceeding.

2. Back up the source database.

3. If you have not done so, prepare the new Oracle home.

4. (Conditional) For Oracle RAC environments only, use SQL*Plus to enter the following
commands to set the initialization parameter value for CLUSTER_DATABASE to FALSE:

ALTER SYSTEM SET CLUSTER_DATABASE=FALSE SCOPE=SPFILE;

Restart the database after changing the CLUSTER_DATABASE parameter.

5. Shut down the database.

SHUTDOWN IMMEDIATE

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-11

Note:

To close a PDB, you can specify it from the CDB root: alter pluggable
database PDBname close.

6. If your operating system is Microsoft Windows, then complete the following steps:

a. Stop the OracleService SID Oracle service of the database you are
upgrading, where SID is the instance name. For example, if your SID is ORCL,
then enter the following at a command prompt:

C:\> NET STOP OracleServiceORCL

b. Delete the Oracle service at a command prompt using ORADIM.

If your SID is ORCL, then enter the following command, substituting your SID for
SID.

C:\> ORADIM -DELETE -SID ORCL

c. Create the service for the new release Oracle Database at a command prompt
using the ORADIM command of the new Oracle Database release.

For example:

C:\> ORADIM -NEW -SID SID -SYSPWD PASSWORD -MAXUSERS USERS
 -STARTMODE AUTO -PFILE ORACLE_HOME\DATABASE\INITSID.ORA

Most Oracle Database services log on to the system using the privileges of the
Oracle Home User. The service runs with the privileges of this user. The
ORADIM command prompts you for the password to this user account. You
can specify other options using ORADIM.

In this example, if your SID value is ORCL, your password (SYSPWD) value is
TWxy5791, the maximum number of users (MAXUSERS) value is 10, and the
Oracle home path is C:\ORACLE\PRODUCT\21.0.0\DB, then enter the following
command:

C:\> ORADIM -NEW -SID ORCL -SYSPWD TWxy5791 -MAXUSERS 10
-STARTMODE AUTO -PFILE
C:\ORACLE\PRODUCT\21.0.0\DB\DATABASE\INITORCL.ORA

ORADIM writes a log file to the ORACLE_HOME\database directory. The log
file contains the name of the PDB in the multitenant database.

7. If your operating system is Linux or Unix, then perform the following checks:

a. Your ORACLE_SID is set correctly

b. The oratab file points to the target Oracle home.

c. The following environment variables point to the target Oracle home
directories:

• ORACLE_HOME

• PATH

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-12

d. Any scripts that clients use to set $ORACLE_HOME environment variable must point to
the new Oracle home.

Note:

If you are upgrading an Oracle Real Application Clusters database, then
perform these checks on all nodes where the Oracle Real Application Clusters
database has instances configured.

See Also:

Oracle Database and Oracle Clusterware installation guides for information
about setting other important environment variables on your operating system

8. Log in to the system as the owner of the Oracle home under the new Oracle Database
release.

9. Start SQL*Plus in the new Oracle home from the path Oracle_home/rdbms/admin
directory.

For example:

$ cd $ORACLE_HOME/rdbms/admin
$ pwd
/u01/app/oracle/product/21.0.0/dbhome_1/rdbms/admin
$ sqlplus

On Microsoft Windows platforms, to access SQL*Plus, change directory to
%ORACLE_HOME%/bin

10. Connect to the database that you want to upgrade using an account with SYSDBA
privileges:

SQL> CONNECT / AS SYSDBA

11. Start the CDB in upgrade mode:

SQL> startup upgrade

12. Start the instance by issuing the following command in SQL*Plus:

SQL> alter pluggable database all open upgrade;

If errors appear listing desupported initialization parameters, then make a note of the
desupported initialization parameters and continue with the upgrade. Remove the
desupported initialization parameters the next time you shut down the database.

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-13

Note:

Starting up the database in UPGRADE mode does the following:

• Starts up the database with a new version of the Oracle Database
instance

• Restricts logins to SYSDBA

• Disables system triggers

• Performs additional operations that prepare the database for
upgrades

13. Exit SQL*Plus before proceeding to the next step.

For example:

SQL> EXIT

14. To upgrade an entire CDB, run the Parallel Upgrade Utility (catctl.pl) from the
new Oracle home. The Parallel Upgrade Utility provides parallel upgrade options
that reduce downtime. You can run the command by using the command-line
script dbupgrade from the new Oracle home.

For example:

Linux or Unix:

cd $ORACLE_HOME/bin
./dbupgrade

Microsoft Windows:

cd %ORACLE_HOME%\bin
dbupgrade

Note:

• Use the -l option to specify the directory that you want to use for
spool log files.

• If you are upgrading an entire CDB, and there are errors in
CDB$ROOT, then the upgrade aborts.

15. To upgrade a subset of PDBs within a CDB, specify either an inclusion list, or an
exclusion list.

• This example for a Linux or Unix system uses an inclusion list to upgrade PDB1
only:

cd $ORACLE_HOME/bin
./dbupgrade -c 'PDB1'

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-14

• This example for a Microsoft Windows system uses an exclusion list to upgrade
everything in the CDB except PDB1:

cd $ORACLE_HOME\bin
dbupgrade -C "PDB1"

Note:

You can upgrade an individual PDB by unplugging it from the earlier release
CDB, and plugging it into a later release CDB.

For Microsoft Windows, when you run the dbupgrade command with the
inclusion (-c) or the exclusion (-C) options, you must specify the option with
quotes around the CDB root name and PDB seed name.

For example:

... -C "CDB$ROOT PDB$SEED"

16. For CDBs, log in to the CDB as SYSDBA and run the command alter pluggable database
all open to make databases available for recompiling code. For example:

$ sqlplus / as sysdba

SQL> alter pluggable database all open;

17. (Optional) Run catcon.pl. This command starts utlrp.sql and recompiles any
remaining stored PL/SQL and Java code. You can recompile invalid objects manually, or
let AutoUpgrade's automated postfixups recompile them for you in the next step.

If you are recompiling code in one PDB at a time, then run the following command:

$ORACLE_HOME/perl/bin/perl catcon.pl -n 1 -e -b utlrp -d '''.''' utlrp.sql

Because you run the command using -b utlrp0, the log file utlrp0.log is generated
with the recompile results.

If you are recompiling code in multiple PDBs at a time, then see the informational
message in the preupgrade output for the syntax that Oracle recommends that you use.
The recommended recompilation syntax can vary by platform.

18. Run the AutoUpgrade utility (autoupgrade.jar) with the option -preupgradeusing the
mode postfixups.

For example:

java -jar autoupgrade.jar -preupgrade "dir=/
tmp,inclusion_list=PDB1,target_home=/databases/product/19c/dbhome_1" -
mode postfixups

19. Run utlusts.sql. This command verifies that all issues are fixed.

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-15

For example, in a CDB:

$ORACLE_HOME/perl/bin/perl catcon.pl -n 1 -e -b utlu21s -d '''.'''
utlusts.sql

Because you run the command using -b utlu21s, the log file utlu21s0.log is
generated with the upgrade results. You can review the upg_summary.log file to
review the upgrade report.

To see information about the state of the database, run utlusts.sql as many
times as you want, at any time after you complete the upgrade. If the
utlusts.sql script returns errors, or if it shows components that are not marked
as VALID, or if the SQL script you run is not from the most recent release, then
refer to the troubleshooting section in this guide.

20. Ensure that the time zone data files are current by using the DBMS_DST PL/SQL
package to upgrade the time zone file. You can also update the time zone after the
upgrade. If you update the time zone, then you must update the time zone in both
CDB$ROOT and the PDBs.

21. Exit SQL*Plus.

For example:

EXIT

22. (Conditional) If you are upgrading an Oracle Real Application Clusters database,
then use the following command syntax in SQL*Plus to alter the system:

ALTER SYSTEM SET CLUSTER_DATABASE=TRUE SCOPE=SPFILE;

23. Use srvctl to upgrade the database configuration in Oracle Clusterware:

In this example, db-unique-name is the assigned database name (not the instance
name), and oraclehome is the Oracle home location in which the database is being
upgraded. The srvctl utility supports long GNU-style options, in addition to the
short CLI options used in earlier releases.

srvctl upgrade database -db db-unique-name -oraclehome oraclehome
srvctl enable database -db db-unique-name

24. Use SQL*Plus to shut down the database:

SHUTDOWN IMMEDIATE

25. Restart the database using srvctl:

srvctl start database -db db-unique-name

Your database is now upgraded. You are ready to complete post-upgrade procedures.

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-16

Caution:

If you retain the old Oracle software, then never start the upgraded database with
the old software. Only start Oracle Database using the start command in the new
Oracle Database home.

Before you remove the old Oracle Database environment, relocate any data files in
that environment to the new Oracle Database environment.

Related Topics

• Oracle Database Administrator’s Guide

See Also:

Oracle Database Administrator’s Guide for information about relocating data files

About Upgrading PDBs Using the Parallel Upgrade Utility with Priority Lists
uou can upgrade PDBs using a priority list to upgrade a set of PDBs ahead of other PDBs,
and you can modify that upgrade priority.

Priority lists enable you to group and upgrade PDBs according to their priority. A priority list is
a text file with comma-delimited lists defining the order of upgrade priority, and the PDBs in
each numeric priority group. You run the Parallel Upgrade Utility (dbupgrade,
dbupgrade.cmd, or catctl.pl) using the -L option to run the upgrade using a priority list,
and to call that list as the upgrade runs.

Create the list using the following format. In this format example, the variable numeral is a
numeric value, and pdbx is the name of a PDB.

Number, Pdb
numeral,pdb1,pdb2,pdb3
numeral,pdb4
numeral,pdb5,pdb6,pdb7,pdb8
.
.
.

The numeral represents the priority for the PDB.

PDB priorities are as follows:

1. CDB$ROOT: Priority 1. Upgrading the container database first is a mandatory priority.
You cannot change the priority for the container database upgrade. CDB$ROOT is
always processed first.

2. PDB$SEED: Priority 1. Upgrading the PDB seed database is a mandatory priority. You
cannot change the priority for the PDB seed upgrade. PDB$SEED always upgraded after
CDB$ROOT, and with the first batch of PDB upgrades.

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-17

3. Priority List 1 PDBs: Priority 1 is the highest user-selected priority. These PDBs
are upgraded second after CDB$ROOT, in the batch where the PDB$SEED PDB
is upgraded.

4. Priority List 2 PDBs: Priority 2 is the second-highest priority PDB set. These PDBs
are upgraded after the Priority 1 PDBs.

5. Priority List 3 PDBs: Priority 3 is the third-highest priority PDB set. These PDBS
are upgraded after priority 2 PDBs.

6. Priority List 4 PDBs: Priority 4 is the fourth-highest priority PDB set. These PDBS
are upgraded after priority 3 PDBs.

7. Priority List 5 PDBs: Priority 5 is the fifth-highest priority PDB set. These PDBS are
upgraded after priority 4 PDBs.

8. Priority List 6 PDBs: Priority 6 is the sixth-highest priority PDB set. These PDBS
are upgraded after priority 5 PDBs.

When you run the Parallel Upgrade Utility, the following processing rules apply:

• CDB$ROOT and PDB$SEED are always processed first, even if they are not
present in the priority list.

• All PDBs that are in priority lists are processed in order of priority

• Any PDBs that are not listed in priority lists are processed after the PDBs named
in the priority list.

For example:

Number,Pdb
1,sales1,region2,receivables1
2,sales2
3,dss1,region3,region2,dss2,dss3

Use the following syntax to run the Parallel Upgrade utility using a priority list:

dbupgrade -L priority_list_name

For example, to run the Parallel Upgrade Utility on a Windows system using the
Parallel Upgrade Utility batch command and a priority list named MyUpgrade, enter the
following command:

C:>\u01\app\21.1.0\db_home1\rdbms\admin\dbupgrade -L MyUpgrade

After you complete an upgrade using a priority list to set upgrade priorities, these PDB
priority states are maintained in the CDB for the PDBs. The next upgrade honors the
priorities set for the PDBs in the previous upgrade.

Use the following SQL command syntax to change PDB upgrade priority states, where
PDBName is the name of the PDB whose upgrade priority you want to change, and
PDBPriorityNumber is the new priority value you want to assign:

SQL> alter session set container = CDB$ROOT
SQL> alter pluggable database PDBName upgrade priorityPDBPriorityNumber

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-18

For example:

SQL> alter session set container = CDB$ROOT
SQL> alter pluggable database region2 upgrade priority 2

In this example, the PDB named region 2 that was set to upgrade priority 1 in the previous
example is changed to upgrade priority 2.

About PDB Upgrades Using Priority Lists, Inclusion Lists, and Exclusion
Lists

To control how your pluggable databases (PDBs) are upgraded, you can use inclusion and
exclusion lists with priority lists.

With Oracle Database 12c Release 1 (12.1.0.2) and later releases, the preferred method for
specifying the order in which upgrades are applied to PDBs is to set the priority on the source
Oracle Database using alter pluggable database with upgrade priority, where pdbname
is the PDB, and number is the priority that you want to assign for upgrade:

alter pluggable database pdbname upgrade priority number

For example:

alter pluggable database CDB1_PDB3 upgrade priority 2

However, you can also specify priority lists at the time of upgrade by using the procedures
described here.

Upgrade Processing and Lists

The following terms designate types of upgrade list processing:

• Priority lists: Comma-delimited lists that designate the upgrade priority of PDBs in the
list.

• Inclusion lists: Comma-delimited lists that designate PDBs that you want to upgrade.
PDBs in these lists are upgraded after the PDBs listed in priority lists.

• Exclusion lists: Comma-delimited lists that designate PDBs that you do not want to be
upgraded.

You can use inclusion lists and exclusion lists in the following ways:

• On their own, to include or exclude a set of PDBs from an upgrade

• In conjunction with priority lists to provide detailed specifications for the order in which
PDBs are upgraded, and which PDBs are excluded from an upgrade.

When inclusion lists are used with priority lists, the PDBs listed in inclusion lists are
upgraded according to the priority value they are assigned in the priority lists. PDBs listed
in inclusion lists but not listed in priority lists are upgraded after all PDBs in the priority
lists are upgraded.

When exclusion lists are used with priority lists, the PDBs listed in exclusion lists are not
upgraded.

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-19

Note:

Create priority lists using a plain text editor, such as vi on Linux and Unix, or
Notepad on Microsoft Windows.

In the examples in this topic, the cpu_count value is equal to 2.

Upgrade Priority using Default Processing

Default processing is the upgrade processing that is carried out if you do not
designate how you want to upgrade PDBs in your container databases (CDBs) using
lists.

With default processing, CDB$ROOT is upgraded, and then PDB$SEED. Depending on the
degree of parallelism you set, one or more PDBs may be updated in parallel with
PDB$SEED. As upgrades complete, PDBs are upgraded as upgrade processors
become available.

The examples that follow use the following multitenant configuration of CDB and
PDBs:

CDB$ROOT
PDB$SEED
CDB1_PDB1
CDB1_PDB2
CDB1_PDB3
CDB1_PDB4
CDB1_PDB5

In default processing, you specify no preference for which PDBs you want upgraded or
excluded from upgrade. With default processing, CDB$ROOT is upgraded first, and
PDB$SEED is updated in the first group of PDBs upgraded.

Example 5-3 Specifying Complete PDB Upgrade Priority

The following example of a priority list, where the priority setting for all PDBs is set by
the list:

1,CDB$ROOT
1,PDB$SEED
1,CDB1_PDB1
1,CDB1_PDB2
2,CDB1_PDB3
2,CDB1_PDB4
3,CDB1_PDB5

Here is another way of writing the same list, in which you group PDBs in priority order:

1,CDB$ROOT
1,PDB$SEED
1,CDB1_PDB1,CDB1_PDB2

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-20

2,CDB1_PDB3,CDB1_PDB4
3,CDB1_PDB5

In the preceding example, the PDBs listed in priority 1 are CDB1_PDB1 and CDB1_PDB2. These
PDBs are upgraded before CDB1_PDB3 and CDB1_PDB4.

Here is another way of writing the same list, using container ID values (CON_ID) to set the
priority order:

1,CDB$ROOT
1,PDB$SEED
1,3,4
2,5,6
3,7

In the preceding example, the PDBs listed in priority 1 are CDB1_PDB1 (identified by CON_ID 3)
and CDB1_PDB2 (identified by CON_ID 4). These PDBs are upgraded before CDB1_PDB3
(CON_ID 5) and CDB1_PDB4 (CON_ID 6).

When you use the CON_ID method to specify priority, the first number specifies the priority of
the group of PDBs. The second value or number specifies the PDBs (by CON_ID) number that
are in that priority grouping. CDB$ROOT is always updated first, and PDB$SEED is always
updated in the first upgrade priority group.

These examples all show a priority list upgrade with the following characteristics:

• Exclusion processing: None

• Inclusion processing: None

• Default processing: None

The upgrade order is carried out in the following sequence:

1. CDB$ROOT

2. PDB$SEED, CDB1_PDB1

3. CDB1_PDB2, CDB1_PDB3

4. CDB1_PDB4, CDB1_PDB5

Example 5-4 Specifying a Priority Subset of PDBs, and Upgrading Other PDBs with
Default Processing

The following example specifies a priority list called priority.lst, which specifies a subset
of PDBs for upgrade:

catctl -L priority.lst catupgrd.sql
1,CDB$ROOT
1,PDB$SEED
1,CDB1_PDB1,CDB1_PDB2

This example shows a priority list upgrade with the following characteristics:

• Exclusion processing: None

• Inclusion processing: None

• Default processing: CDB1_PDB3, CDB1_PDB4, CDB1_PDB5

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-21

The upgrade order is carried out in the following sequence:

1. CDB$ROOT

2. PDB$SEED, CDB1_PDB1

3. CDB1_PDB2, CDB1_PDB3

4. CDB1_PDB4, CDB1_PDB5

Example 5-5 Specifying a Priority Subset of PDBs, and Upgrading Other PDBs
with an Inclusion List

The following example specifies a priority list called priority.lst, which specifies a
priority subset of PDBs for upgrade:

catctl -L priority.lst -c 'CDB1_PDB2 CDB1_PDB4 CDB1_PDB5' catupgrd.sql

This command refers to the following priority list:

1,CDB$ROOT
1,PDB$SEED
1,CDB1_PDB2,CDB1_PDB4
2.CDB1_PDB5

This example shows a priority list upgrade with the following characteristics:

• Exclusion processing: None

• Inclusion processing: CDB1_PDB2, CDB1_PDB4, CDB1_PDB5

• Default processing: None

The upgrade order is carried out in the following sequence:

1. CDB1_PDB2, CDB1_PDB4

2. CDB1_PDB5

The Parallel Upgrade Utility processes only the PDBs that are in the inclusion list, and
in the order of the priority list.

Example 5-6 Specifying a Priority Subset of PDBs, and Excluding CDB$ROOT
with an Exclusion List

The following example runs catctl using a priority list called priority.lst. Because
this command runs with the -C option, it excludes CDB$ROOT from the upgrade:

catctl -L priority.lst -C 'CDB$ROOT' catupgrd.sql

This is the priority list:

1,CDB$ROOT
1,PDB$SEED
1,CDB1_PDB1,CDB1_PDB2
2,CDB1_PDB3,CDB1_PDB4
3,CDB1_PDB5

The upgrades are processed using the priority list to specify upgrade priority.

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-22

• Inclusion processing: None

• Exclusion processing: CDB$ROOT

• Priority processing: PDB$SEED, CDB1_PDB1, CDB1_PDB2, CDB1_PDB3, CDB1_PDB4, CDB1_PDB5

Because CDB$ROOT is excluded, the priority processing shifts. The upgrade order is carried out
in the following sequence:

1. PDB$SEED, CDB_PDB1

2. CDB_PDB2, CDB_PDB3

3. CDB1_PDB4, CDB1_PDB5

Example 5-7 Specifying an Exclusion List using CATCTL_LISTONLY

The following example specifies a priority list called priority.lst, which specifies a subset
of PDBs for upgrade. With the CATCTL_LISTONLY option, PDBs that are not in the priority list
are excluded from the upgrade:

catctl -L priority.lst -C 'CATCTL_LISTONLY' catupgrd.sql

Priority list:

1,CDB$ROOT
1,PDB$SEED
1,CDB1_PDB1,CDB1_PDB2
2,CDB1_PDB3
3,CDB1_PDB5

• Exclusion processing: CATCTL_LISTONLY (Only process inclusion priority list)

• Inclusion processing: None

• Default processing: None

The upgrade order is carried out in the following sequence:

1. CDB$ROOT

2. PDB$SEED, CDB1_PDB1, CDB1_PDB2

3. CDB1_PDB3, CDB1_PDB5

Note:

Specifying the keyword CATCTL_LISTONLY in the exclusion list turns the priority list
into an inclusion priority list. Only PDBs in the list are processed. No default
processing occurs in this scenario, so in this example, CDB1_PDB4 is not processed.

Example 5-8 Specifying a Priority List using CON_ID Values

The following example specifies a priority list called priority.lst, which specifies a subset
of PDBs for upgrade:

catctl -L priority.lst -C 'CATCTL_LISTONLY' catupgrd.sql

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-23

The upgrade order is determined by the priority list priority number. In the list called by
the -L parameter, priority.lst, the numbers following the upgrade priority number
are the CON_ID values associated with PDB names:

1,3,4
2,5,CDB1_PDB4
3,7

In the preceding list example, note that you can use a mix of CON_ID numbers and
PDB names.

The PDBs listed in priority 1 are CDB1_PDB1 (identified by CON_ID 3) and CDB1_PDB2
(identified by CON_ID 4). These PDBs are upgraded before CDB1_PDB3 (CON_ID 5),
CDB1_PDB4, which is identified by name, and CDB1_PDB5 (CON_ID 7).

• Exclusion processing: -C CATCTL_LISTONLY (Only process PDBs in the inclusion
priority list)

• Exclusion Processing: None

• Inclusion processing: Specified in priority.lst

• Default processing: CDB$ROOT, PDB$SEED

The upgrade order is determined by the priority list, which uses the CON_ID numbers
associated with the PDB.

1. CDB$ROOT

2. PDB$SEED, CDB1_PDB1

3. CDB1_PDB2, CDB1_PDB3

4. CDB1_PDB4, CDB1_PDB5

Note:

This example demonstrates the use of the CON_ID method to specify the
PDBs, and omits CDB$ROOT and PDB$SEED from the priority list. CDB$ROOT and
PDB$SEED are processed using default processing.

Oracle Label Security Integration in a Multitenant Environment
You can use Oracle Label Security in a multitenant environment.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 21c. While the documentation is being revised, legacy terminology
may persist. In most cases, "database" and "non-CDB" refer to a CDB or
PDB, depending on context. In some contexts, such as upgrades, "non-CDB"
refers to a non-CDB from a previous release.

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-24

In a multitenant environment, pluggable databases (PDBs) can be plugged in and out of a
multitenant container database (CDB) or an application container.

• rdbms/admin/catols.sql script on the database to install the label-based framework,
data dictionary, data types, and packages. This script creates the LBACSYS account.

• Because Oracle Label Security policies are scoped to individual PDBs, you can create
individual policies for each PDB. A policy defined for a PDB can be enforced on the local
tables and schema objects contained in the PDB.

• In a single CDB, there can be multiple PDBs, each configured with Oracle Label Security.

• You cannot create Oracle Label Security policies in the CDB root or the application root.

• You cannot enforce a local Oracle Label Security policy on a common CDB object or a
common application object.

• You cannot assign Oracle Label Security policy labels and privileges to common users
and application common users in a pluggable database.

• You cannot assign Oracle Label Security privileges to common procedures or functions
and application common procedures or functions in a pluggable database.

• If you are configuring Oracle Label Security with Oracle Internet Directory, then be aware
that the same configuration must be used throughout with all PDBs contained in the CDB.
You can determine if your database is configured for Oracle Internet Directory by
querying the DBA_OLS_STATUS data dictionary view as follows from within any PDB:

SELECT STATUS FROM DBA_OLS_STATUS WHERE NAME = 'OLS_DIRECTORY_STATUS';

If it returns TRUE, then Oracle Label Security is Internet Directory-enabled. Otherwise, it
returns FALSE.

Related Topics

• Oracle Database Security Guide

Upgrading Multitenant Architecture In Parallel
Use this technique to upgrade multitenant architecture Oracle Database releases supported
for direct upgrade by upgrading container databases (CDBs), and then upgrading multiple
pluggable databases (PDBs) in parallel.

• About Upgrading Pluggable Databases (PDBs) In Parallel
Using the In-Parallel technique, you can upgrade the container database (CDB), and then
immediately upgrade PDBs using parallel SQL processors.

• Upgrading Multitenant Container Databases In Parallel
Use this technique to upgrade CDB$ROOT, PDB$SEED, and all PDBs in the CDB in one
upgrade operation.

About Upgrading Pluggable Databases (PDBs) In Parallel
Using the In-Parallel technique, you can upgrade the container database (CDB), and then
immediately upgrade PDBs using parallel SQL processors.

CDBs can contain zero, one, or more PDBs. By default, the Parallel Upgrade Utility
(catctl.pl) updates the CDB and all of its PDBs in the same upgrade window. The Parallel
Upgrade Utility uses the number of computer processing units (CPUs) to determine the
maximum number of PDBs that are upgraded simultaneously. For upgrades using Replay
Upgrade (the default), the number of PDBs that are upgraded in parallel is determined by

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-25

dividing the parallel SQL process count (-n option) by the parallel PDB SQL process
count (-N option), divided by 2. For classic upgrade, the maximum PDB upgrades that
run concurrently are the number of PDBs that are upgraded in parallel, dividing the
parallel SQL process count (-n option) by the parallel PDB SQL process count (-N
option).

Note:

You must plan your upgrade window to accommodate a common downtime
for all of the database services that the PDBs on the CDB are providing.

Pluggable Database Upgrade Syntax

dbupgrade [-M] -n [-N] [-t]

• -M Specifies if CDB$ROOT is kept in upgrade mode, or if it becomes available when it
completes upgrade:

– If you run the Parallel Upgrade Utility with the -M parameter, then the upgrade
places CDB$ROOT and all of its PDBs in upgrade mode, which can reduce total
upgrade time. However, you cannot bring up any of the PDBs until the CDB
and all of its PDBs are upgraded.

– If you do not run the Parallel Upgrade Utility with the -M parameter, then
CDB$ROOT is upgraded and restarted in normal mode, and the normal
background processes are started. After a successful upgrade, only CDB$ROOT
is opened in read/write mode. All the PDBs remain in MOUNT mode. As each
PDB is upgraded, you can bring each PDB online while other PDBs are still
being upgraded.

• -n Specifies the number of in-parallel PDB upgrade processors.

If you do not specify a value for -n, then the default for -n is the CPU_COUNT value.

If you do specify a value for -n, then that value is used to determine the number of
parallel SQL processes. The maximum value is unlimited. The minimum value is 4.

• -N Specifies the number of SQL processors to use when upgrading PDBs. The
maximum value is 8. The minimum value is 1. If you do not specify a value for -N,
then the default value is 2.

For classic upgrade, the maximum PDB upgrades running concurrently is the
value of -n divided by the value of -N for classic upgrade, and for the Replay
Upgrade default, the value of -n divided by -N, divided by 2.

• -t Specifies that you want to use classic upgrade, using AutoUpgrade, instead of
using the Replay Upgrade default.

The following is a high-level list of actions during the In Parallel PDB upgrade
technique:

1. Make sure that your backup strategy is complete.

2. Run AutoUpgrade using the preupgrade clause, to determine if there are any
issues that you must correct before starting an upgrade. Fix any issue that is
reported.

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-26

For example:

java -jar autoupgrade.jar -preupgrade "dir=/tmp,oh=/u01/app/product/
12.2.0/dbhome_1,sid=db122,target_version=21" -mode analyze

3. Run the AutoUpgrade utility. In sequence, the following upgrades are carried out:

a. Cycle 1: CDB$ROOT is upgraded to the new Oracle release

b. Cycle 2 to Cycle x: PDB$SEED and PDBs are upgraded in parallel, with the number of
cycles of upgrades as determined by the parameter settings you specify with -n.

4. Complete post-upgrade steps.

Example 5-9 Example of Multitenant Architecture Upgrade Using Defaults (No
Parameters Set)

In this scenario, your CPU_COUNT value is equal to 24. If you do not specify a value for in-
parallel PDB processors using the -n option, then the default value for in-parallel PDB
processors (-n) is equal to 24. If you do not specify a value for -N, then the default value for
the number of SQL processors (-N) is 2.

Result:

For Replay Upgrade, 6 PDBs are upgraded in parallel ([CPU_COUNT divided by 2], divided by 2,
or 12 divided by 2). There are two parallel SQL processes allocated for each PDB.

For classic upgrade, 12 PDBs are upgraded in parallel (CPU_COUNT divided by 2, or 24 divided
by 2.) There are 2 parallel SQL processes allocated for each PDB.

Example 5-10 Example of Multitenant Architecture Upgrade Using 64 In Parallel PDB
Upgrade Processors and 4 Parallel SQL Processes

In this scenario you set the value of in-parallel PDB upgrade processors to 64 by specifying
the option -n 64. You specify the value of parallel SQL processors to 4 by specifying the
option -N 4.

Result:

For Replay Upgrade, 8 PDBs are upgraded in parallel ([64 divided by 4] divided by 2). There
are 4 parallel SQL processes for each PDB.

For classic upgrade, 16 PDBs are upgraded in parallel (64 divided by 4). There are 4 parallel
SQL processes for each PDB.

Example 5-11 Example of Multitenant Architecture Upgrade Using 20 In Parallel PDB
Upgrade Processors and 2 Parallel SQL Processes

In this scenario you set the value of in-parallel PDB upgrade processors to 20 by specifying
the option -n 20. You specify the value of parallel SQL processors to 2 by specifying the
option -N 2.

Result:

For Replay Upgrade, 5 PDBs are upgraded in parallel ([20 divided by 2], divided by 2). There
are 2 parallel SQL processes for each PDB.

For classic upgrade, 10 PDBs are upgraded in parallel (20 divided by 2) There are 2 parallel
SQL processes for each PDB.

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-27

Example 5-12 Example of Multitenant Architecture Upgrade Using 10 In Parallel
PDB Upgrade Processors and 4 Parallel SQL Processes

In this scenario you set the value of in-parallel PDB upgrade processors to 10 by
specifying the option -n 10. You specify the value of parallel SQL processors to 2 by
specifying the option -N 4.

Result:

For Replay Upgrade, 1 PDB is upgraded ([10 divided by 4], divided by 2). There are 4
parallel SQL processes for the PDB.

For classic upgrade, 2 PDBs are upgraded in parallel (10 divided by 4). There are 4
parallel SQL processes for each PDB.

Upgrading Multitenant Container Databases In Parallel
Use this technique to upgrade CDB$ROOT, PDB$SEED, and all PDBs in the CDB in one
upgrade operation.

If you do not choose to use the AutoUpgrade utility to complete your upgrade, or to
use Replay Upgrade, then Oracle recommends that you use this approach if you can
schedule downtime. Using this procedure upgrades in parallel all the PDBs in the
multitenant architecture container database, depending on your server’s available
processors (CPUs). This is a direct procedure for upgrades that provides simplicity of
maintenance.

Note:

When you upgrade the entire container using the In Parallel upgrade
method, all the PDBs must be down. Perform the upgrade in a scheduled
upgrade window so that you can bring all the PDBs down.

Caution:

• Always create a backup of existing databases before starting any
configuration change.

• You cannot downgrade a database after you have set the compatible
initialization parameter.

• Oracle strongly recommends that you upgrade your source and target
databases to the most recent release update (RU) or release update
revision (RUR) before starting an upgrade, and to the most recent
release update before starting a downgrade.

1. Ensure that you have a proper backup strategy in place.

2. Open all PDBs.

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-28

For example:

SQL> alter pluggable database all open;

3. To check readiness for upgrade, run AutoUpgrade using the preupgrade parameter, and
use the dir option to specify an output log directory.

java -jar autoupgrade.jar -preupgrade "dir=/tmp,oh=/u01/app/product/
12.2.0/dbhome_1,sid=db122,target_version=21" -mode analyze

4. Check the upgrade.xml file in the log directory.

On multitenant architecture Oracle Databases, running AutoUpgrade using the
preupgrade parameter with fixups mode runs fixups on every container that was open
when you ran AutoUpgrade. The scripts resolve some issues that AutoUpgrade identifies.

Complete any other preupgrade tasks identified in the upgrade.xml file.

5. (Conditional) For Oracle RAC databases, use SQL*Plus to set the cluster database
initialization parameter to FALSE:

For example;

ALTER SYSTEM SET cluster_database=FALSE SCOPE=spfile;

6. Shut down the database in the old Oracle home using srvctl.

For example, where db_unique_name is your database name:

cd $ORACLE_HOME
pwd
/u01/app/oracle/19.0.0/dbhome_1

srvctl stop database -d db_unique_name
srvctl disable database -d db_unique_name

7. Copy the PFILE or SPFILE from the old Oracle home to the new Oracle home

8. Connect with SQL*Plus:

sqlplus / as sysdba

9. Bring the CDB$ROOT instance into upgrade mode:

STARTUP UPGRADE

10. Bring all PDBs into upgrade mode:

ALTER PLUGGABLE DATABASE ALL OPEN UPGRADE;

11. Check the status of PDBs to confirm that they are ready to upgrade:

SHOW PDBS

For all PDBs, ensure that the status is set to MIGRATE.

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-29

12. Exit from SQL*Plus, and change directory to the new Oracle
home $ORACLE_HOME/rdbms/admin:

EXIT
cd $ORACLE_HOME/rdbms/admin

13. Start the upgrade using the Parallel Upgrade Utility (catctl.pl, using the shell
command dbupgrade), where -d specifies the location of the directory:

dbupgrade -d $ORACLE_HOME/rdbms/admin

Starting with Oracle Database 21c, by default the dbupgrade script calls a Replay
Upgrade, which sets parallelism to the number of CPUs divided by four. The
number of PDBs upgraded in parallel is always half of the value previously used
with legacy upgrade. On a server with 64 CPUs, 64 divided by 4 equals 16 PDBs
upgraded in parallel.

Note:

If you prefer to use classic upgrade to perform the upgrade, then start
dbupgrade using the -t option. For example:

dbupgrade -t -d $ORACLE_HOME/rdbms/admin

If you prefer to use AutoUpgrade, then refer to the AutoUpgrade script
instructions.

14. Confirm that the upgrade was successful by reviewing the upg_summary.log If
necessary, review other logs.

15. Open all PDBs using SQL*Plus, so that you can recompile the databases:

ALTER PLUGGABLE DATABASE ALL OPEN;

16. Exit from SQL*Plus, and change directory to the new Oracle home
path $ORACLE_HOME/rdbms/admin:

EXIT
cd $ORACLE_HOME/rdbms/admin

17. Run AutoUpgrade with the preupgrade parameter, run in postfixups mode.
AutoUpgrade runs all database checks, and on the basis of those results, runs
fixups automatically.

For example:

java -jar autoupgrade.jar -preupgrade "dir=/tmp,oh=u01/app/product/
12.2.0/dbhome_1,sid=db122,target_home=/databases/product/19c/
dbhome_1" -mode postfixups

18. Run utlusts.sql to verify that there are no upgrade issues.

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-30

When you use catcon.pl to run utlusts.sql, the log file utlu21s0.log is generated.
The log file provides the upgrade results. You can also review the upgrade report,
upg_summary.log.

To see information about the state of the database, run utlusts.sql as many times as
you want, at any time after the upgrade is completed. If the utlusts.sql script returns
errors, or shows components that do not have the status VALID, or if the version listed for
the component is not the most recent release, then perform troubleshooting.

19. (Conditional) For Oracle RAC environments only, enter the following commands to set
the initialization parameter value for CLUSTER_DATABASE to TRUE:

ALTER SYSTEM SET CLUSTER_DATABASE=TRUE SCOPE=SPFILE;

20. Start Oracle Database, where dbname is the name of the database.

srvctl upgrade database -db db-unique-name -oraclehome oraclehome
srvctl enable database -db db-unique-name

21. Use SQL*Plus to shut down the database.

SHUTDOWN IMMEDIATE

22. Use srvctl to start up the database.

srvctl start database -db db-unique-name

Your database is now upgraded.

Caution:

If you retain the old Oracle software, then never start the upgraded database with
the old software. Only start Oracle Database using the start command in the new
Oracle Database home.

Before you remove the old Oracle environment, relocate any data files in that
environment to the new Oracle Database environment.

Related Topics

• Managing Data Files and Temp Files

Upgrading Multitenant Architecture Sequentially Using Unplug-Plug
To upgrade pluggable databases (PDBs) that are in an earlier release multitenant container
databases (CDBs), you can unplug the PDBs from the earlier release CDB, and plug the
PDBs into the later release CDB.

• About Upgrading Pluggable Databases (PDBs) Sequentially
You can upgrade PDBs manually with the Parallel Upgrade Utility by unplugging a PDB
from an earlier release CDB, plugging it into a later release CDB, and then upgrading that
PDB to the later release.

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-31

• Unplugging the Earlier Release PDB from the Earlier Release CDB
To prepare for upgrading the PDB, use this procedure to unplug the PDB from the
earlier release CDB.

• Plugging in the Earlier Release PDB to the Later Release CDB
To Plug the PDB from the earlier release CDB to the later release CDB, use the
CREATE PLUGGABLE DATABASE command.

• Upgrading the Earlier Release PDB to the Later Release
Open PDBs in UPGRADE mode use the Parallel Upgrade Utility to carry out the
upgrade of the earlier-release PDB to the release level of the CDB.

• Use Inclusion or Exclusion Lists for PDB Upgrades
If you want to upgrade a subset of earlier release PDBs, then use inclusion or
exclusion lists to avoid reupgrading the CDB or PDBs that are at the new release
level.

About Upgrading Pluggable Databases (PDBs) Sequentially
You can upgrade PDBs manually with the Parallel Upgrade Utility by unplugging a
PDB from an earlier release CDB, plugging it into a later release CDB, and then
upgrading that PDB to the later release.

You have multiple options available to you to upgrade PDBs. CDBs can contain zero,
one, or more pluggable databases (PDBs). After you install a new Oracle Database
release, or after you upgrade the CDB (CDB$ROOT), you can upgrade one or more
PDBs without upgrading all of the PDBs on the CDB.

You can choose the upgrade plan that meets the needs for your service delivery. For
example, you can use the AutoUpgrade utility to upgrade PDBs, or you can use the
manual Parallel Upgrade Utility to upgrade PDBs individually, or with inclusion or
exclusion lists. You can upgrade the CDB and all PDBs (an In Parallel manual
upgrade), or you can upgrade the CDB, and then upgrade PDBs sequentially, either
individually, or in sets using inclusion or exclusion lists. You can also continue to use
Database Upgrade Utility (DBUA). However, the preferred option for upgrading Oracle
Database is to use the AutoUpgrade utility.

If you choose to run upgrades using the Parallel Upgrade Utility to perform manual
unplug-plug upgrades, then the following is a high-level list of the steps required for
sequential PDB upgrades using the Parallel Upgrade Utility:

1. Unplug the earlier release PDB from the earlier release CDB.

2. Drop the PDB from the CDB.

3. Plug the earlier release PDB into the later release CDB.

4. Upgrade the earlier release PDB to a later release.

If you choose to upgrade manually using the Parallel Upgrade Utility, then you can
manage PDB upgrades with lists:

• Priority lists, to set the order in which PDBs are upgraded

• Inclusion lists, which enable you to designate a set of PDBs to upgrade after the
PDBs listed in the priority list are upgraded

• Exclusion lists, which enable you to designate a set of PDBs that are not upgraded

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-32

Note:

A PDB cannot be recovered unless it is backed up. After an upgrade using the
method of creating a CDB and plugging in a PDB, be sure to back up the PDB.

Related Topics

• Backing Up CDBs and PDBs

• Unplugging a PDB from a CDB

Unplugging the Earlier Release PDB from the Earlier Release CDB
To prepare for upgrading the PDB, use this procedure to unplug the PDB from the earlier
release CDB.

1. To determine if the database is ready for upgrade, run AutoUpgrade with the
preupgrade parameter, run in analyze mode. For example, with the database salespdb
in the Oracle home /u01/app/oracle/product/12.2.0/dbhome1, checking for
readiness to upgrade to Oracle Database 21c:

a. Run setenv ORACLE_HOME /u01/app/oracle/product/12.2.0/dbhome1.

b. Run setenv ORACLE_SID salespdb.

c. Run java -jar autoupgrade.jar -preupgrade "target_version=21,dir=/
autoupgrade/test/log" –mode fixups.

d. Check prefixups.xml under the directory /autoupgrade/test/log/salespdb/
prefixups.

2. Fix any issues AutoUpgrade detected that could not be fixed automatically.

3. Close the PDB you want to unplug.

For example, use the following command to close the PDB salespdb:

SQL> ALTER PLUGGABLE DATABASE salespdb CLOSE;

4. Log back in to CDB$ROOT:

CONNECT / AS SYSDBA
SQL> ALTER SESSION SET CONTAINER=CDB$ROOT;

5. Unplug the earlier release PDB using the following SQL command syntax, where pdb is
the name of the PDB, and path is the location of the PDB XML file:

ALTER PLUGGABLE DATABASE pdb UNPLUG INTO 'path/pdb.xml';

For example, where the PDB name is salespdb and path is /home/oracle/
salespdb.xml:

SQL> ALTER PLUGGABLE DATABASE salespdb UNPLUG INTO '/home/oracle/salespdb.xml';

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-33

The following response displays when the command is completed:

Pluggable database altered

6. Drop the pluggable database salespdb, but keep data files.

Oracle recommends that you drop salespdb after this procedure to clean up
leftover information in the CDB views, and to help to avoid future issues. As a best
practice guideline, back up your PDB in the destination CDB first, and then issue
the DROP command on the source.

Caution:

After you drop the PDB from its original CDB, you cannot revert to it
using previously taken backup, because the DROP command removes
backup files.

To drop the pluggable database, enter the following command:

SQL> DROP PLUGGABLE DATABASE salespdb KEEP DATAFILES;

7. Exit.

Plugging in the Earlier Release PDB to the Later Release CDB
To Plug the PDB from the earlier release CDB to the later release CDB, use the
CREATE PLUGGABLE DATABASE command.

This procedure example shows how to plug in a PDB when you are using Oracle-
Managed Files. Refer to Oracle Database Administrator’s Guide for additional
information about plugging in PDBs.

1. Connect to the later release CDB.

2. Plug in the earlier release PDB using the following SQL command, where pdb is
the name of the PDB, and path is the path where the PDB XML file is located:

CREATE PLUGGABLE DATABASE pdb USING 'path/pdb.xml';

For example:

SQL> CREATE PLUGGABLE DATABASE salespdb USING '/home/oracle/
salespdb.xml';

The following response displays when the command is completed:

Pluggable database created.

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-34

Note:

When you plug in an earlier release PDB, the PDB is in restricted mode. You can
only open the PDB for upgrade.

Related Topics

• Oracle Database Administrator’s Guide

Upgrading the Earlier Release PDB to the Later Release
Open PDBs in UPGRADE mode use the Parallel Upgrade Utility to carry out the upgrade of the
earlier-release PDB to the release level of the CDB.

1. If needed, switch to the PDB that you want to upgrade. For example, enter the following
command to switch to the PDB salespdb:

SQL> ALTER SESSION SET CONTAINER=salespdb;

2. Open the PDB in UPGRADE mode.

SQL> ALTER PLUGGABLE DATABASE OPEN UPGRADE;

3. Upgrade the PDB using the Parallel Upgrade Utility command (catctl.pl, or the shell
utility dbupgrade).

When you upgrade a PDB, you use the commands you normally use with the Parallel
Upgrade Utility. However, you also add the option -c PDBname to specify which PDB you
are upgrading. Capitalize the name of your PDB as shown in the following example using
the PDB named salespdb:

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catctl.pl -d \
$ORACLE_HOME/rdbms/admin -c 'salespdb' -l $ORACLE_BASE catupgrd.sql

4. Review results.

The default file path for the logs is in the path Oracle_base/cfgtoollogs/dbname/
upgradedatetime, where Oracle_base is the Oracle base path, dbname is the database
name, and upgradedatetime is the date and time for the upgrade. The date and time
strings are in the character string format YYYYMMDDHHMMSC, in which YYYY
designates the year, MM designates the month, DD designates the day, HH designates
the hour, MM designates the minute, and SC designates the second.

For example:

$ORACLE_BASE/cfgtoollogs/salespdb/upgrade20181015120001/upg_summary.log

5. To run post-upgrade fixups, and to recompile the INVALID objects in the database, run the
AutoUpgrade utility (autoupgrade.jar) using the option -preupgrade option with the
mode postfixups:

Chapter 5
Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases

5-35

For example:

java -jar autoupgrade.jar -preupgrade "dir=/
tmp,inclusion_list=salespdb,target_home=/databases/product/19c/
dbhome_1" -mode postfixups

6. Use the utility catcon.pl to run utlrp.sql from the $ORACLE_HOME/rdbms/
admin directory:

$ORACLE_HOME/perl/bin/perl catcon.pl –c 'salespdb'-n 1 -e -b comp -
d '''.''' utlrp.sql

The script recompiles INVALID objects in the database, and places a log file in the
current directory with the name comp0.log.

Use Inclusion or Exclusion Lists for PDB Upgrades
If you want to upgrade a subset of earlier release PDBs, then use inclusion or
exclusion lists to avoid reupgrading the CDB or PDBs that are at the new release level.

Oracle recommends that you record the containers that you upgrade, and use
inclusion or exclusion lists to exclude these containers from successive bulk upgrades.
Excluding upgraded containers from successive bulk upgrades ensures that the
upgrade only runs on PDBs that require the upgrade. Avoiding reupgrades minimizes
the overall upgrade time, and avoids unnecessary unavailability.

For example: If you have installed Oracle Database using a multitenant architecture
deployment, then the containers CDB$ROOT, PDB$SEED, and any other PDBs created
when the CDB was created, are part of the new release multitenant architecture. If you
upgraded a CDB, and at the same time upgraded a set of PDBs to the new release,
then you do not need to upgrade either the CDB containers or the upgraded PDBs
again.

In either case, when you plug in earlier release PDBs and then upgrade them, upgrade
the PDBs with either an exclusion list, or an inclusion list:

• Use an inclusion list to specify only the set of PDBs that you want to upgrade.

• Use an exclusion list to exclude the CDB and PDB containers that are already
upgraded.

If you do not use an inclusion list or an exclusion list to limit the upgrade scope, then
the Parallel Upgrade Utility (catctl.pl) attempts to upgrade the entire CDB, not just
the PDBs that require the upgrade. During that upgrade process, your system
undergoes needless downtime. The inclusion list and the exclusion list options are
mutually exclusive.

About Transporting and Upgrading a Database (Full
Transportable Export/Import)

You can use file-based or nonfile-based modes for transporting data.

The Full Transportable Export/Import feature of Oracle Data Pump provides two
options.

Chapter 5
About Transporting and Upgrading a Database (Full Transportable Export/Import)

5-36

• Using a file-based Oracle Data Pump export/import

• Using a nonfile-based network mode Oracle Data Pump import

See Also:

• Oracle Database Administrator's Guide for information about transporting a
database using an export dump file

• Oracle Database Administrator's Guide for the procedure to transport a
database over the network

Upgrading Oracle Database Releases Using Replay Upgrade
To upgrade from an earlier release, you can use the Oracle Multitenant Replay Upgrade
(Replay Upgrade) procedure to adopt a non-CDB to a PDB, or upgrade a PDB.

• Upgrading CDBs or PDBs Using Replay Upgrade
You can upgrade an entire container database (CDB) and its pluggable databases
(PDBs) using a Replay Upgrade, or you can upgrade individual PDBs.

• How to Disable or Enable Replay Upgrade
By default, the Oracle Multitenant Replay Upgrade (Replay Upgrade) method is enabled
for upgrades on PDBs and CDBs. However, you can enable or disable the use of the
Replay Upgrade method.

• About Upgrading Non-CDBs to PDBs Using Replay Upgrade
You can automate some of the steps to upgrade non-CDB Oracle Database software to
the multitenant architecture by using the Oracle Multitenant Replay Upgrade (Replay
Upgrade) method.

• Adopting and Upgrading a Non-CDB as a PDB with Replay Upgrade
To simplify your upgrades, you can adopt (move) and upgrade a non-CDB into a PDB by
using the Oracle Multitenant Replay Upgrade (Replay Upgrade) method.

• How the Replay Upgrade Procedure is Enabled or Disabled on CDBs and PDBs
Learn how you can use the default Replay Upgrade, or choose to perform a classic
script-based upgrade.

• Failure and Recovery Scenarios for Replay Upgrade Processes
Learn how to check for errors and issues in log files and trace files for an Oracle
Multitenant Replay Upgrade (Replay Upgrade).

Upgrading CDBs or PDBs Using Replay Upgrade
You can upgrade an entire container database (CDB) and its pluggable databases (PDBs)
using a Replay Upgrade, or you can upgrade individual PDBs.

Before you start an upgrade, the following steps must be performed:

• Install the new release software for Oracle Database

• Prepare the new Oracle home

• Run AutoUpgrade with the preupgrade parameter.

Chapter 5
Upgrading Oracle Database Releases Using Replay Upgrade

5-37

Note:

When you plug in PDBs and upgrade the PDBs on PDB open using Replay
Upgrade, Oracle recommends that you upgrade a number of PDBs
equivalent to no more than one-fourth (¼) of the value of the Oracle
Database initialization parameter CPU_COUNT, which specifies the number of
CPU core (processors) available for Oracle Database to use. With traditional
upgrades, the default number of PDBs upgraded at a time is no more than
one-half (½) of the value of CPU_COUNT.

You can complete an upgrade using the Oracle Multitenant Replay Upgrade (Replay
Upgrade) method either by using classic upgrade tools, or with the AutoUpgrade
Utility.

Replay Upgrade Using Classic Upgrade Tools

To upgrade the entire CDB, including CDB$ROOT and all hosted PDBs, run the Parallel
Upgrade Utility (catctl.pl) manually or implicitly, or use the dbupgrade script. The
procedure is the same as in previous releases. However, starting with Oracle
Database 21c, the upgrade utilities by default use the Replay Upgrade procedure.
There is no change in command syntax.

Replay Upgrade Using Automatic Upgrade on PDB Plug-In To a New Release
CDB

If you plug in an earlier release PDB to a new release CDB, then the CDB detects on
opening the PDB that the PDB is an earlier release than the CDB, and automatically
starts a Replay Upgrade process. Upgrade on PDB Open automatically upgrades the
PDB using the Replay Upgrade synchronization feature. This optimization avoids
opening the PDB in restricted mode, exposing the error in the
PDB_PLUG_IN_VIOLATIONS view, so that you are not required to correct the error
manually.

How to Disable or Enable Replay Upgrade
By default, the Oracle Multitenant Replay Upgrade (Replay Upgrade) method is
enabled for upgrades on PDBs and CDBs. However, you can enable or disable the
use of the Replay Upgrade method.

To disable the Parallel Upgrade Utility (catctl.pl) default of performing a Replay
Upgrade, run the following command, on either CDB$ROOT or a particular PDB:

ALTER DATABASE UPGRADE SYNC OFF

To re-enable the Replay Upgrade behavior, enter the following command

ALTER DATABASE UPGRADE SYNC ON

You can also select a non-replay upgrade by setting the Parallel Upgrade Utility
(catctl.pl) parameter -t, which forces a non-replay upgrade that uses the classic
scripting method.

Chapter 5
Upgrading Oracle Database Releases Using Replay Upgrade

5-38

Note:

You can manage use of the Replay Upgrade method on the entire CDB, or on
individual PDBs, depending on whether you are connected to CDB$ROOT, or to a
particular PDB:

• If UPGRADE SYNC is set to OFF in CDB$ROOT, then the Replay Upgrade method is
not used for any PDBs plugged into the CDB.

• If UPGRADE SYNC is set to ON in CDB$ROOT, but set to OFF for a PDB, then the
Replay Upgrade method is not used for the PDB where UPGRADE SYNC is OFF,
but the Replay Upgrade method is used for all other PDBs plugged into the
CDB.

• If UPGRADE SYNC is set to ON in CDB$ROOT, and set to ON for all PDBs (the default),
then the Replay Upgrade method is used for all PDBs plugged into the CDB.

About Upgrading Non-CDBs to PDBs Using Replay Upgrade
You can automate some of the steps to upgrade non-CDB Oracle Database software to the
multitenant architecture by using the Oracle Multitenant Replay Upgrade (Replay Upgrade)
method.

The Replay Upgrade method is enabled by default for upgrades from earlier Oracle Database
releases that are supported for direct upgrade to this Oracle Database release. The Replay
Upgrade process is different from the classic method of running scripts, such as
noncdb_to_pdb.sql. For non-CDBs, after you describe the non-CDB by running
DBMS_PDB.DESCRIBE, you plug in the non-CDB in to the new Oracle Database CDB. The
Replay Upgrade method for upgrade is completed in two steps:

1. The non-CDB database is upgraded to the new Oracle Database release.

2. The non-CDB data dictionary is converted to a PDB data dictionary

Both of these steps are triggered when you run ALTER PLUGGABLE DATABASE OPEN. Both steps
automatically replay SQL statements stored in the dictionary and complete the task of
adopting the non-CDB to a PDB, and upgrading the database to the new release.

The benefit of using the Replay Upgrade method is to greatly simplify the upgrade workflow
that you need to perform for PDB upgrades and conversions. The implicit non-CDB to PDB
conversion simplifies the process of adopting and upgrading both non-CDB and PDB Oracle
Database releases earlier than Oracle Database 21c to PDBs in a new release CDB.

Adopting and Upgrading a Non-CDB as a PDB with Replay Upgrade
To simplify your upgrades, you can adopt (move) and upgrade a non-CDB into a PDB by
using the Oracle Multitenant Replay Upgrade (Replay Upgrade) method.

Before you start an upgrade, the following steps must be performed:

• Install the new release software for Oracle Database

• Prepare the new Oracle home

• Run AutoUpgrade with the preupgrade parameter.

Chapter 5
Upgrading Oracle Database Releases Using Replay Upgrade

5-39

To adopt a non-CDB as a PDB using the DBMS_PDB package and the Replay Upgrade
method, complete the following procedure.

1. Create the CDB if it does not exist.

2. Ensure that the non-CDB is in a transactionally-consistent state.

3. Place the non-CDB in read-only mode.

4. Connect to the non-CDB, and run the DBMS_PDB.DESCRIBE procedure to construct
an XML file that describes the non-CDB.

The current user must have SYSDBA administrative privilege. The user must
exercise the privilege using AS SYSDBA at connect time.

For example, to generate an XML file named ncdb.xml in the /disk1/oracle
directory, run the following procedure:

BEGIN
 DBMS_PDB.DESCRIBE(
 pdb_descr_file => '/disk1/oracle/ncdb.xml');
END;
/

After the procedure completes successfully, you can use the XML file and the non-
CDB database files to plug the non-CDB into a CDB.

5. Run the DBMS_PDB.CHECK_PLUG_COMPATIBILITY function to determine whether the
non-CDB is compatible with the CDB.

When you run the function, set the following parameters:

• pdb_descr_file - Set this parameter to the full path to the database
description XML file.

• pdb_name - Specify the name of the new PDB. If this parameter is omitted,
then the PDB name in the XML file is used.

For example, to determine whether a non-CDB described by the /disk1/oracle/
ncdb.xml file is compatible with the current CDB, run the following PL/SQL block:

SET SERVEROUTPUT ON
DECLARE
 compatible CONSTANT VARCHAR2(3) :=
 CASE DBMS_PDB.CHECK_PLUG_COMPATIBILITY(
 pdb_descr_file => '/disk1/oracle/ncdb.xml',
 pdb_name => 'NCDB')
 WHEN TRUE THEN 'YES'
 ELSE 'NO'
END;
BEGIN
 DBMS_OUTPUT.PUT_LINE(compatible);
END;
/

If the output is YES, then the non-CDB is compatible, and you can continue with the
next step. If the output is NO, then the non-CDB is not compatible. To see why it is
not compatible, check the view PDB_PLUG_IN_VIOLATIONS. Before you continue,
you must correct all violations. For example, any version or patch mismatches

Chapter 5
Upgrading Oracle Database Releases Using Replay Upgrade

5-40

should be resolved by running an upgrade, or running the datapatch utility. After
correcting the violations, run DBMS_PDB.CHECK_PLUG_COMPATIBILITY again to ensure that
the non-CDB is compatible with the CDB.

6. Shut down the non-CDB.

7. Plug in the non-CDB.

For example, the following SQL statement plugs in a non-CDB, copies its files to a new
location, and includes only the tbs3 user tablespace from the non-CDB:

CREATE PLUGGABLE DATABASE ncdb USING '/disk1/oracle/ncdb.xml'
 COPY
 FILE_NAME_CONVERT = ('/disk1/oracle/dbs/', '/disk2/oracle/ncdb/')
 USER_TABLESPACES=('tbs3');

If there are no violations, then do not open the new PDB. You will open it in a later step.

The USER_TABLESPACES clause enables you to separate data that was used for multiple
tenants in a non-CDB into different PDBs. You can use multiple CREATE PLUGGABLE
DATABASE statements with this clause to create other PDBs that include the data from
other tablespaces that existed in the non-CDB.

8. To enable the database open command to perform the Replay Upgrade, enter ALTER
DATABASE PROPERTY SET UPGRADE_PDB_ON_OPEN='true'. For example:

ALTER DATABASE PROPERTY SET UPGRADE_PDB_ON_OPEN='true';

9. Connect to the new PDB, and open it. At the time that the PDB is opened, the database
is upgraded, and the non-CDB database data dictionary is converted to a PDB. For
example:

ALTER PLUGGABLE DATABASE OPEN

You must open the new PDB for Oracle Database to complete upgrading the database.
An error is returned if you attempt to open the PDB in read-only mode. When the PDB is
opened, the non-CDB is adopted to a PDB, the data dictionary is converted, and the new
PDB is integrated into the CDB. Messages from the Replay Upgrade are placed in the
trace directory. After the PDB is opened, and the REPLAY UPGRADE is completed, its
status is NORMAL.

To check the status of the upgrade, you can query the following views:

• To check for Replay Upgrade errors, use the view DBA_REPLAY_UPGRADE_ERRORS

• To check completeness, use DBA_APPLICATIONS. Check the app_version value for
app_name 'APPCDBCATALOG' value. This value should be the new version of the
PDB.

• Check the view DBA_APP_ERRORS for statement errors. This view lists the error
message and statement text (app_statement) for any errors. In a successful
upgrade, this view should not contain any rows for app_name='APPCDBCATALOG'.

10. Back up the PDB.

A PDB cannot be recovered unless it is backed up.

Chapter 5
Upgrading Oracle Database Releases Using Replay Upgrade

5-41

Note:

If an error is returned during PDB creation, then the PDB being created might
be in an UNUSABLE state. You can check the state of a PDB by querying the
views CDB_PDBS or DBA_PDBS. You can learn more about PDB creation errors
by checking the alert log. An unusable PDB can only be dropped. If the PDB
is unusable, then it must be dropped before a PDB with the same name as
the unusable PDB can be created.

How the Replay Upgrade Procedure is Enabled or Disabled on CDBs
and PDBs

Learn how you can use the default Replay Upgrade, or choose to perform a classic
script-based upgrade.

By default, when you run the Parallel Upgrade Utility (catctl.pl) manually, a Replay
Upgrade is performed. When a PDB or a non-CDB is plugged into a new release
container database (CDB). the PDB open detects whether the PDB or non-CDB
requires an upgrade to be compatible with the CDB. If you have opened the database,
and for non-CDBs, run the DBMS_PDB.DESCRIBE procedure to construct an XML file that
describes the non-CDB, then the upgrade automatically occurs when the PDB is
opened. For example, using the Replay Upgrade method, you can relocate an earlier
release PDB from an earlier release CDB to an Oracle Database 21c CDB PDB on
plugging in the PDB, without needing to run the Parallel Upgrade Utility script
catctl.pl, or using AutoUpgrade, Database Upgrade Assistant (DBUA), or using the
dbupgrade command.

To perform a classic script-based upgrade, you can run catctl.pl with the option -t.
When you plug in a non-CDB, you can also turn off or turn on the Replay Upgrade
process by running ALTER DATABASE UPGRADE SYNC OFF; to turn Replay Upgrade off,
or ALTER DATABASE UPGRADE SYNC ON; to turn Replay Upgrade on. This syntax
modifies the 'PDB_UPGRADE_SYNC' property, which is a number that is set to 2 for ON
and 0 for OFF. If the number is positive, then catctl.pl uses the Replay Upgrade
process. This property can be set in CDB$ROOT, or in the PDB. When disabled in ROOT,
catctl.pl does not use the Replay Upgrade process for any PDBs. When enabled in
ROOT, the PDB can either inherit this value, or set its own value.

Failure and Recovery Scenarios for Replay Upgrade Processes
Learn how to check for errors and issues in log files and trace files for an Oracle
Multitenant Replay Upgrade (Replay Upgrade).

If a Replay Upgrade fails, then the PDB_UPGRADE_SYNC property is decremented by 1 for
the PDB. If the Replay Upgrade fails twice, then catctl.pl falls back to using the
classic script-based Parallel Upgrade Procedure method for completing the upgrade.

To determine the cause of Replay Upgrade errors, review the upgrade logs for
statements that encounter errors. After a Replay Upgrade procedure runs, whether it is
successful or unsuccessful, the query DBA_APP_ERRORS is run. Review the results of
that query to see statement text and error messages for any statements that encounter
errors. To see specific errors in the logs, you can also query the upgrade logs by using
a grep command to locate any text strings of '^ORA-'.

Chapter 5
Upgrading Oracle Database Releases Using Replay Upgrade

5-42

Another recovery option is to review the trace files (.trc) . The trace files contain output for
each statement run during the Replay Upgrade procedure. The files show statement text,
whether statements succeeded or failed, error messages (if applicable), and the amount of
time elapsed during the process. Look for lines that contain the prefix string Replay Upgrade,
PDB ID where the variable ID is the PDB ID. For example: Replay Upgrade, PDB 15.

Manual Non-CDB Oracle Database Release Upgrades to
Multitenant Architecture

To manage your non-CDB Oracle Database upgrade manually by using scripts, learn about
upgrade scenarios and procedures.

Starting with Oracle Database 21c, non-CDB architecture is desupported. You must upgrade
a non-CDB Oracle Database to a PDB on a CDB. You have two manual upgrade options
available:

• Plug in the non-CDB Oracle Database to an Oracle Database 21c container database
(CDB), and open the PDB in read-write, non-restricted mode. When the PDB is opened,
the database is upgraded, and the data dictionary is converted from a non-CDB to a
PDB.

• Plug in the non-CDB Oracle Database to a same-release Oracle Database CDB, and
convert the data dictionary from a non-CDB to a PDB. Then, upgrade the CDB and PDBs
to Oracle Database 21c.

• About Adopting a Non-CDB as a PDB Using a PDB Plugin
To manually adopt a non-CDB as a PDB, you generate an XML file that describes a non-
CDB, and use the DBMS_PDB.DESCRIBE procedure. Afterward, plug in the non-CDB, just as
you plug in an unplugged PDB.

• Adopting a Non-CDB as a PDB
You can adopt (move) a non-CDB into a PDB by using the DBMS_PDB.DESCRIBE
procedure.

• Oracle Label Security Integration in a Multitenant Environment
You can use Oracle Label Security in a multitenant environment.

• Plugging In an Unplugged PDB
You can create a PDB by plugging an unplugged PDB into a CDB.

• Manually Upgrading Non-CDB Architecture Oracle Databases
Use this procedure after you have installed a CDB to upgrade an earlier release non-
CDB architecture Oracle Database, making it a PDB, and plugging the PDB into a CDB.

About Adopting a Non-CDB as a PDB Using a PDB Plugin
To manually adopt a non-CDB as a PDB, you generate an XML file that describes a non-
CDB, and use the DBMS_PDB.DESCRIBE procedure. Afterward, plug in the non-CDB, just as
you plug in an unplugged PDB.

If you choose not to use the Capture Replay method of automatically adopting and upgrading
a non-CDB to a PDB, then you can use the manual procedure of describing the non-CDB,
and then adopting the non-CDB to a PDB. Create the PDB with the CREATE PLUGGABLE
DATABASE ... USING statement. When the non-CDB is plugged in to a CDB, it is a new PDB,
but not usable until the data dictionary is converted, using the ORACLE_HOME/rdbms/admin/
noncdb_to_pdb.sql script.

Chapter 5
Manual Non-CDB Oracle Database Release Upgrades to Multitenant Architecture

5-43

Figure 5-1 Plug In a Non-CDB Using the DBMS_PDB.DESCRIBE Procedure

New
PDB

PDBs

CDB

Seed
(PDB$SEED)

Root (CDB$ROOT)

XML

Metadata

File

Database Files

CREATE PLUGGABLE DATABASE ... USING

Non-CDB

DBMS_PDB.DESCRIBE

You can use the same technique to create a new application PDB in an application
container.

Adopting a Non-CDB as a PDB
You can adopt (move) a non-CDB into a PDB by using the DBMS_PDB.DESCRIBE
procedure.

This procedure enables you to update your non-CDB Oracle Database to a PDB on a
CDB. To use this procedure, you must first install a new Oracle Database release with
a CDB.

1. Create the CDB if it does not exist.

2. Ensure that the non-CDB is in a transactionally-consistent state.

3. Place the non-CDB in read-only mode.

Chapter 5
Manual Non-CDB Oracle Database Release Upgrades to Multitenant Architecture

5-44

4. Connect to the non-CDB, and run the DBMS_PDB.DESCRIBE procedure to construct an XML
file that describes the non-CDB.

The current user must have SYSDBA administrative privilege. The user must exercise the
privilege using AS SYSDBA at connect time.

For example, to generate an XML file named ncdb.xml in the /disk1/oracle directory,
run the following procedure:

BEGIN
 DBMS_PDB.DESCRIBE(
 pdb_descr_file => '/disk1/oracle/ncdb.xml');
END;
/

After the procedure completes successfully, you can use the XML file and the non-CDB
database files to plug the non-CDB into a CDB.

5. Run the DBMS_PDB.CHECK_PLUG_COMPATIBILITY function to determine whether the non-
CDB is compatible with the CDB.

When you run the function, set the following parameters:

• pdb_descr_file - Set this parameter to the full path to the XML file.

• pdb_name - Specify the name of the new PDB. If this parameter is omitted, then the
PDB name in the XML file is used.

For example, to determine whether a non-CDB described by the /disk1/oracle/
ncdb.xml file is compatible with the current CDB, run the following PL/SQL block:

SET SERVEROUTPUT ON
DECLARE
 compatible CONSTANT VARCHAR2(3) :=
 CASE DBMS_PDB.CHECK_PLUG_COMPATIBILITY(
 pdb_descr_file => '/disk1/oracle/ncdb.xml',
 pdb_name => 'NCDB')
 WHEN TRUE THEN 'YES'
 ELSE 'NO'
END;
BEGIN
 DBMS_OUTPUT.PUT_LINE(compatible);
END;
/

If the output is YES, then the non-CDB is compatible, and you can continue with the next
step. If the output is NO, then the non-CDB is not compatible, and you can check the
PDB_PLUG_IN_VIOLATIONS view to see why it is not compatible. All violations must be
corrected before you continue. For example, any version or patch mismatches should be
resolved by running an upgrade or the datapatch utility. After correcting the violations, run
DBMS_PDB.CHECK_PLUG_COMPATIBILITY again to ensure that the non-CDB is compatible
with the CDB.

6. Shut down the non-CDB.

7. Plug in the non-CDB.

Chapter 5
Manual Non-CDB Oracle Database Release Upgrades to Multitenant Architecture

5-45

For example, the following SQL statement plugs in a non-CDB, copies its files to a
new location, and includes only the tbs3 user tablespace from the non-CDB:

CREATE PLUGGABLE DATABASE ncdb USING '/disk1/oracle/ncdb.xml'
 COPY
 FILE_NAME_CONVERT = ('/disk1/oracle/dbs/', '/disk2/oracle/ncdb/')
 USER_TABLESPACES=('tbs3');

If there are no violations, then do not open the new PDB. You will open it in the
following step.

The USER_TABLESPACES clause enables you to separate data that was used for
multiple tenants in a non-CDB into different PDBs. You can use multiple CREATE
PLUGGABLE DATABASE statements with this clause to create other PDBs that include
the data from other tablespaces that existed in the non-CDB.

8. Run the ORACLE_HOME/rdbms/admin/noncdb_to_pdb.sql script. This script must be
run before the PDB can be opened for the first time.

If the PDB was not a non-CDB, then running the noncdb_to_pdb.sql script is not
required. To run the noncdb_to_pdb.sql script, complete the following steps:

a. Access the PDB.

The current user must have SYSDBA administrative privilege, and the privilege
must be either commonly granted or locally granted in the PDB. The user must
exercise the privilege using AS SYSDBA at connect time.

b. Run the noncdb_to_pdb.sql script:

@$ORACLE_HOME/rdbms/admin/noncdb_to_pdb.sql

The script opens the PDB, performs changes, and closes the PDB when the
changes are complete.

9. Open the new PDB in read/write mode.

You must open the new PDB in read/write mode for Oracle Database to complete
the integration of the new PDB into the CDB. An error is returned if you attempt to
open the PDB in read-only mode. After the PDB is opened in read/write mode, its
status is NORMAL.

10. Back up the PDB.

A PDB cannot be recovered unless it is backed up.

Note:

If an error is returned during PDB creation, then the PDB being created
can be in an UNUSABLE state. To check the state of a PDB, query the
CDB_PDBS or DBA_PDBS view. You can learn more about PDB creation
errors by checking the alert log. An unusable PDB can only be dropped.
You must drop an unusable PDB before you try to create a PDB with the
same name as the unusable PDB can be created.

Chapter 5
Manual Non-CDB Oracle Database Release Upgrades to Multitenant Architecture

5-46

Oracle Label Security Integration in a Multitenant Environment
You can use Oracle Label Security in a multitenant environment.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 21c. While the documentation is being revised, legacy terminology may
persist. In most cases, "database" and "non-CDB" refer to a CDB or PDB,
depending on context. In some contexts, such as upgrades, "non-CDB" refers to a
non-CDB from a previous release.

In a multitenant environment, pluggable databases (PDBs) can be plugged in and out of a
multitenant container database (CDB) or an application container.

• rdbms/admin/catols.sql script on the database to install the label-based framework,
data dictionary, data types, and packages. This script creates the LBACSYS account.

• Because Oracle Label Security policies are scoped to individual PDBs, you can create
individual policies for each PDB. A policy defined for a PDB can be enforced on the local
tables and schema objects contained in the PDB.

• In a single CDB, there can be multiple PDBs, each configured with Oracle Label Security.

• You cannot create Oracle Label Security policies in the CDB root or the application root.

• You cannot enforce a local Oracle Label Security policy on a common CDB object or a
common application object.

• You cannot assign Oracle Label Security policy labels and privileges to common users
and application common users in a pluggable database.

• You cannot assign Oracle Label Security privileges to common procedures or functions
and application common procedures or functions in a pluggable database.

• If you are configuring Oracle Label Security with Oracle Internet Directory, then be aware
that the same configuration must be used throughout with all PDBs contained in the CDB.
You can determine if your database is configured for Oracle Internet Directory by
querying the DBA_OLS_STATUS data dictionary view as follows from within any PDB:

SELECT STATUS FROM DBA_OLS_STATUS WHERE NAME = 'OLS_DIRECTORY_STATUS';

If it returns TRUE, then Oracle Label Security is Internet Directory-enabled. Otherwise, it
returns FALSE.

Related Topics

• Oracle Database Security Guide

Plugging In an Unplugged PDB
You can create a PDB by plugging an unplugged PDB into a CDB.

Chapter 5
Manual Non-CDB Oracle Database Release Upgrades to Multitenant Architecture

5-47

Manually Upgrading Non-CDB Architecture Oracle Databases
Use this procedure after you have installed a CDB to upgrade an earlier release non-
CDB architecture Oracle Database, making it a PDB, and plugging the PDB into a
CDB.

Note:

Starting with Oracle Database 21c, non-CDB architecture is desupported.
You must upgrade a non-CDB Oracle Database to a PDB on a CDB.

Before using this procedure, complete the following steps:

• Install the new release Oracle Database software

• Prepare the new multitenant architecture Oracle home

• Run AutoUpgrade with the preupgrade parameter, to check your source database
system's readiness for upgrade to the new release.

Steps:

1. If you have not done so, run AutoUpgrade using the preupgrade parameter.
Review the output, and correct all issues noted in the output before proceeding.

2. Ensure that you have a proper backup strategy in place.

3. If you have not done so, prepare the new Oracle home.

4. (Conditional) For Oracle RAC environments only, enter the following commands to
set the initialization parameter value for CLUSTER_DATABASE to FALSE:

ALTER SYSTEM SET CLUSTER_DATABASE=FALSE SCOPE=SPFILE;

5. Shut down the database. For example:

SQL> SHUTDOWN IMMEDIATE

6. If your operating system is Windows, then complete the following steps:

a. Stop the OracleServiceSID Oracle service of the database you are upgrading,
where SID is the instance name. For example, if your SID is ORCL, then enter
the following at a command prompt:

C:\> NET STOP OracleServiceORCL

b. Delete the Oracle service at a command prompt using ORADIM.

For example, if your SID is ORCL, then enter the following command.

C:\> ORADIM -DELETE -SID ORCL

c. Create the service for the new release Oracle Database at a command prompt
using the ORADIM command of the new Oracle Database release.

Chapter 5
Manual Non-CDB Oracle Database Release Upgrades to Multitenant Architecture

5-48

Use the following syntax, where SID is your database SID, PASSWORD is your system
password, USERS is the value you want to set for maximum number of users, and
ORACLE_HOME is your Oracle home:

C:\> ORADIM -NEW -SID SID -SYSPWD PASSWORD -MAXUSERS USERS
 -STARTMODE AUTO -PFILE ORACLE_HOME\DATABASE\INITSID.ORA

Most Oracle Database services log on to the system using the privileges of the
Oracle software installation owner. The service runs with the privileges of this user.
The ORADIM command prompts you to provide the password to this user account.
You can specify other options using ORADIM.

In the following example, if your SID is ORCL, your password (SYSPWD) is TWxy5791, the
maximum number of users (MAXUSERS) is 10, and the Oracle home path is
C:\ORACLE\PRODUCT\21.0.0\DB, then enter the following command:

C:\> ORADIM -NEW -SID ORCL -SYSPWD TWxy5791 -MAXUSERS 10
-STARTMODE AUTO -PFILE
C:\ORACLE\PRODUCT\21.0.0\DB\DATABASE\INITORCL.ORA

ORADIM writes a log file to the ORACLE_HOME\database directory. The log file
contains the name of the PDB in the multitenant container database.

Note:

If you use an Oracle Home User account to own the Oracle home, then the
ORADIM command prompts you for that user name and password.

The following table describes the variables for using ORADIM when upgrading
manually:

Table 5-2 ORADIM Variables and Functions

ORADIM Variable Description

-SID sid The same SID name as the SID for the database that you are
upgrading

-SYSPWD
password

The SYS password for the upgraded Oracle Database instance. This is
the password for the user connected with SYSDBA privileges.

Default Oracle Database Security settings require that passwords must
be at least eight characters. You are not permitted to use passwords
such as welcome and oracle.

- MAXUSERS
value

The maximum number of user accounts that can be granted SYSDBA or
SYSOPER privileges.

-PFILE oracle-
home-path

The location of the parameter file (PFILE) in the Oracle home location
for the upgraded Oracle Database release. Ensure that you specify the
full path name with the -PFILE option, including the drive letter of the
Oracle home location.

7. If your operating system is Linux or UNIX, then perform the following checks:

a. Your ORACLE_SID is set correctly

Chapter 5
Manual Non-CDB Oracle Database Release Upgrades to Multitenant Architecture

5-49

b. The oratab file points to the new Oracle home

c. The following environment variables point to the new Oracle Database
directories:

• ORACLE_HOME

• PATH

d. Any scripts that clients use to set the $ORACLE_HOME environment variable must
point to the new Oracle home.

Note:

If you are upgrading an Oracle Real Application Clusters database, then
perform these checks on all Oracle Grid Infrastructure nodes where the
Oracle Real Application Clusters database has instances configured.

8. Log in to the system as the Oracle installation owner for the new Oracle Database
release.

9. Copy the SPFILE.ORA or INIT.ORA file from the old Oracle home to the new
Oracle home.

10. Start SQL*Plus in the new Oracle home from the admin directory in the new
Oracle home directory.

For example:

$ cd $ORACLE_HOME/rdbms/admin
$ pwd
/u01/app/oracle/product/21.0.0/dbhome_1/rdbms/admin
$./sqlplus

11. Connect to the database that you want to upgrade using an account with SYSDBA
privileges:

Enter user-hame: connect / as sysdba

12. Start the non-CDB Oracle Database in upgrade mode:

SQL> startup upgrade

If errors appear listing desupported initialization parameters, then make a note of
the desupported initialization parameters and continue with the upgrade. Remove
the desupported initialization parameters the next time you shut down the
database.

Chapter 5
Manual Non-CDB Oracle Database Release Upgrades to Multitenant Architecture

5-50

Note:

Starting up the database in UPGRADE mode enables you to open a database
based on an earlier Oracle Database release. It also restricts log-ins to AS
SYSDBA sessions, disables system triggers, and performs additional operations
that prepare the environment for the upgrade.

13. Exit SQL*Plus.

For example:

SQL> EXIT

14. Run the Parallel Upgrade Utility (catctl.pl) script, using the upgrade options that you
require for your upgrade.

You can run the Parallel Upgrade Utility as a command-line shell command by using the
dbupgrade shell command, which is located in Oracle_home/bin. If you set the PATH
environment variable to include Oracle_home/bin, then you can run the command
directly from your command line. For example:

$ dbupgrade

Otherwise, run $ORACLE_HOME/bin/dbupgrade.

Note:

• When you run the Parallel Upgrade Utility command, use the -l option to
specify the directory that you want to use for spool log files.

15. The database is shut down after a successful upgrade. Restart the instance so that you
reinitialize the system parameters for normal operation. For example:

SQL> STARTUP

This restart, following the database shutdown, flushes all caches, clears buffers, and
performs other housekeeping activities. These measures are an important final step to
ensure the integrity and consistency of the upgraded Oracle Database software.

Note:

If you encountered a message listing desupported initialization parameters
when you started the database, then remove the desupported initialization
parameters from the parameter file before restarting it. If necessary, convert the
SPFILE to a PFILE, so that you can edit the file to delete parameters.

16. Run catcon.pl to start utlrp.sql, and to recompile any remaining invalid objects.

Chapter 5
Manual Non-CDB Oracle Database Release Upgrades to Multitenant Architecture

5-51

For example:

$ORACLE_HOME/perl/bin/perl catcon.pl -n 1 -e -b utlrp -d '''.'''
utlrp.sql

Because you run the command using -b utlrp, the log file utlrp0.log is
generated as the script is run. The log file provides results of the recompile.

17. Run the AutoUpgrade utility (autoupgrade.jar) with the option -preupgrade using
the mode postfixups.

For example:

java -jar autoupgrade.jar -preupgrade -mode postfixups

18. Run utlusts.sql. The script verifies that all issues are fixed.

For example:

SQL> @$ORACLE_HOME/rdbms/admin/utlusts.sql

The log file utlrp0.log is generated as the script is run, which provides the
upgrade results. You can also review the upgrade report in upg_summary.log.

To see information about the state of the database, run utlusts.sql as many
times as you want, at any time after the upgrade is completed. If the
utlusts.sql script returns errors, or shows components that do not have the
status VALID, or if the version listed for the component is not the most recent
release, then refer to the troubleshooting section in this guide.

19. Ensure that the time zone data files are current by using the DBMS_DST PL/SQL
package to upgrade the time zone file. You can also adjust the time zone data files
after the upgrade.

20. Exit from SQL*Plus

For example:

SQL> EXIT

21. (Conditional) If you are upgrading an Oracle Real Application Clusters database,
then use the following command syntax to upgrade the database configuration in
Oracle Clusterware:

srvctl upgrade database -db db-unique-name -oraclehome oraclehome

In this syntax example, db-unique-name is the database name (not the instance
name), and oraclehome is the Oracle home location in which the database is being
upgraded. The SRVCTL utility supports long GNU-style options, in addition to short
command-line interface (CLI) options used in earlier releases.

22. (Conditional) For Oracle RAC environments only, after you have upgraded all
nodes, enter the following commands to set the initialization parameter value for

Chapter 5
Manual Non-CDB Oracle Database Release Upgrades to Multitenant Architecture

5-52

CLUSTER_DATABASE to TRUE, and start the database, where db_unique_name is the
name of the Oracle RAC database:

ALTER SYSTEM SET CLUSTER_DATABASE=TRUE SCOPE=SPFILE;
srvctl start database -db db_unique_name

Your database is now upgraded. You are ready to complete post-upgrade procedures.

Caution:

If you retain the old Oracle software, then never start the upgraded database with
the old software. Only start Oracle Database using the start command in the new
Oracle Database home.

Before you remove the old Oracle environment, relocate any data files in that
environment to the new Oracle Database environment.

See Also:

Oracle Database Administrator’s Guide for information about relocating data files

Upgrading Oracle Database Using Fleet Patching and
Provisioning

In Oracle Database 12c release 2 (12.2) and later releases, you can use Fleet Patching and
Provisioning to upgrade an earlier release Oracle Database.

You upgrade a database with Fleet Patching and Provisioning by creating a copy of the new
or upgraded Oracle Database release, and using the command rhpctl upgrade
database to upgrade the earlier release Oracle Database in a fleet image deployment. The
upgrade is an out-of-place upgrade. After the upgrade is complete, listeners and other
initialization variables are set to point to the new Oracle home.

Use this overview of the steps to understand how to upgrade an earlier Oracle Database
release by using Fleet Patching and Provisioning:

1. Install a new Oracle Database release.

2. Patch, test, and configure the database to your specifications for a standard operating
environment (SOE).

3. Create a Fleet Patching and Provisioning Gold Image from the SOE release Oracle
Database home.

4. Complete an upgrade to a new Oracle Grid Infrastructure release on the servers where
the databases you want to upgrade are located. You can complete this upgrade by using
Fleet Patching and Provisioning. (Note: Your Oracle Grid Infrastructure software must
always be the same or a more recent release than Oracle Database software.)

Chapter 5
Upgrading Oracle Database Using Fleet Patching and Provisioning

5-53

5. Deploy a copy of the new release Oracle Database Fleet Patching and
Provisioning gold image to the servers with earlier release Oracle Databases that
you want to upgrade.

6. Run the Fleet Patching and Provisioning command rhpctl upgrade
database. This command uses the new release Fleet Patching and Provisioning
gold image to upgrade the earlier release databases. You can upgrade one, many,
or all of the earlier release Oracle Database instances on the servers provisioned
with the new release Oracle Database gold image.

Related Topics

• Fleet Patching and Provisioning

Rerunning Upgrades for Oracle Database
Use these options to rerun upgrades.

• About Rerunning Upgrades for Oracle Database
Oracle provides the features listed here to rerun or restart Oracle Database
upgrades, including after failed phases.

• Rerunning Upgrades with the Upgrade (catctl.pl) Script
You can fix upgrade issues and then rerun the upgrade with the catctl.pl
script, or the dbupgrade shell command.

• Options for Rerunning the Upgrade for Multitenant Databases (CDBs)
If you want to rerun upgrades on Oracle Database using multitenant database
architecture, then you have four options.

• Restarting the Upgrade from a Specific Phase that Failed Using -p
Use this option to complete an upgrade after fixing errors.

About Rerunning Upgrades for Oracle Database
Oracle provides the features listed here to rerun or restart Oracle Database upgrades,
including after failed phases.

Parallel Upgrade Utility and Restarts or Reruns

You can re-run or restart Oracle Database upgrade phases by using the Parallel
Upgrade Utility (catctl.pl) script . You can also run commands on PDBs that failed to
upgrade in an initial attempt, so that you can complete the upgrade.

Parallel Upgrade Utility Resume Option

With the Resume option for Parallel Upgrade Utility, you are not required to identify
failed or incomplete phases when you rerun or restart the upgrade. When you use the
Parallel Upgrade Utility using the resume option (-R), the utility automatically detects
phases from the previous upgrade that are not completed successfully. The Parallel
Upgrade Utility then reruns or restarts just these phases that did not complete
successfully, so that the upgrade is completed. Bypassing steps that already
completed successfully reduces the amount of time it takes to rerun the upgrade.

Chapter 5
Rerunning Upgrades for Oracle Database

5-54

To use the Resume option, run the Parallel Upgrade Utility using the -R parameter. For
example:

$ORACLE_HOME/perl/bin/perl catctl.pl -L plist.txt -n 4 -N 2 -R -
l $ORACLE_HOME/cfgtoollogs catupgrd.sql

You can rerun the entire upgrade at any time, regardless of which phase you encountered a
failure in your upgrade. If you plan to rerun the entire upgrade, instead of rerunning only
failed phases, then run the Parallel Upgrade Utility without using the Resume (-R) option.

Rerunning Upgrades with the Upgrade (catctl.pl) Script
You can fix upgrade issues and then rerun the upgrade with the catctl.pl script, or the
dbupgrade shell command.

Note:

Starting with Oracle Database 21c, upgrades to non-CDB architecture are
desupported.

1. Shut down the database. For a non-CDB and a CDB, the syntax is the same.

SQL> SHUTDOWN IMMEDIATE

2. Restart the database in UPGRADE mode.

For a non-CDB:

SQL> STARTUP UPGRADE

For a CDB:

SQL> STARTUP UPGRADE
SQL> alter pluggable database all open upgrade;

3. Rerun the Parallel Upgrade utility (catctl.pl, or dbupgrade shell command).

You can rerun the Parallel Upgrade Utility as many times as necessary.

With CDBs, you can use the Resume option (-R) to rerun the Parallel Upgrade Utility. The
script resumes the upgrades from failed phases.

For example:

$ORACLE_HOME/perl/bin/perl catctl.pl -n 4 -R -l $ORACLE_HOME/cfgtoollogs
catupgrd.sql

You can also provide the name of one or more specific PDBs on which you want to rerun
the upgrade.

Chapter 5
Rerunning Upgrades for Oracle Database

5-55

For example, this command reruns the upgrade on the PDB named cdb1_pdb1:

$ORACLE_HOME/perl/bin/perl catctl.pl -n 4 -R -l $ORACLE_HOME/
cfgtoollogs -c 'cdb1_pdb1' catupgrd.sql

You can use the dbupgrade shell command to run the same commands:

dbupgrade -n 4 -R -l $ORACLE_HOME/diagnostics
dbupgrade -n 4 -R -l $ORACLE_HOME/diagnostics -c 'cdb1_pdb1'

4. Run utlusts.sql, the Post-Upgrade Status Tool, which provides a summary of
the status of the upgrade in the spool log. You can run utlusts.sql any time
before or after you complete the upgrade, but not during the upgrade.

In a non-CDB:

SQL> @$ORACLE_HOME/rdbms/admin/utlusts.sql

In a CDB:

$ORACLE_HOME/perl/bin/perl catcon.pl -n 1 -e -b utlu21s -d '''.'''
utlusts.sql

If the utlusts.sql script returns errors or shows components that are not VALID or
not the most recent release, then follow troubleshooting procedures for more
information.

5. Run utlrp.sql to recompile any remaining stored PL/SQL and Java code.

$ORACLE_HOME/perl/bin/perl catcon.pl -n 1 -e -b utlrp -d '''.'''
utlrp.sql

The script generates the log file utlrp0.log , which shows the results of the re-
compilations.

Use the following SQL commands to verify that all expected packages and classes
are valid,

In a single PDB (cdb1_pdb1 in this example), open the PDB in normal mode as
follows:

alter pluggable database cdb1_pdb1 open;

Run catcon.pl to start utlrp.sql in the PDB to recompile any remaining stored
PL/SQL and Java code. Use the following syntax:

$ORACLE_HOME/perl/bin/perl catcon.pl -n 1 -e -b utlrp -d '''.''' -c
'cdb1_pdb1'
 utlrp.sql

Chapter 5
Rerunning Upgrades for Oracle Database

5-56

In a non-CDB:

SQL> SELECT count(*) FROM dba_invalid_objects;
SQL> SELECT distinct object_name FROM dba_invalid_objects;

In an entire CDB:

SQL> ALTER SESSION SET CONTAINER = "CDB$ROOT"
SQL> SELECT count(*) FROM dba_invalid_objects;
SQL> SELECT distinct object_name FROM dba_invalid_objects;
SQL> ALTER SESSION SET CONTAINER = "PDB$SEED"
SQL> SELECT count(*) FROM dba_invalid_objects;
SQL> SELECT distinct object_name FROM dba_invalid_objects;
SQL> ALTER SESSION SET CONTAINER = "cdb1_pdb1"
SQL> SELECT count(*) FROM dba_invalid_objects;
SQL> SELECT distinct object_name FROM dba_invalid_objects;

6. Run utlusts.sql again to verify that all issues have been fixed.

In a non-CDB:

SQL> @$ORACLE_HOME/rdbms/admin/utlusts.sql

In a CDB:

$ORACLE_HOME/perl/bin/perl catcon.pl -n 1 -e -b utlu21s -d '''.'''
utlusts.sql

7. Exit SQL*Plus.

8. If you are upgrading a cluster database from Release 11.2, then upgrade the database
configuration in Oracle Clusterware using the following command syntax, where db-
unique-name is the database name assigned to it (not the instance name), and
Oracle_home is the Oracle home location in which the database is being upgraded.

$ srvctl upgrade database -d db-unique-name -o Oracle_home

Your database is now upgraded. You are ready to complete post-upgrade tasks for Oracle
Database.

Related Topics

• Options for Rerunning the Upgrade for a Multitenant Database (CDB)
If you want to rerun upgrades on Oracle Database using multitenant database
architecture, then you have four options.

• Troubleshooting the Upgrade for Oracle Database
Use these troubleshooting tips to address errors or issues that you may encounter while
upgrading your database.

• Post-Upgrade Tasks for Oracle Database
After you upgrade Oracle Database, complete required postupgrade tasks, and consider
recommendations for the new release.

Chapter 5
Rerunning Upgrades for Oracle Database

5-57

Options for Rerunning the Upgrade for Multitenant Databases (CDBs)
If you want to rerun upgrades on Oracle Database using multitenant database
architecture, then you have four options.

• Rerun the Entire Upgrade for the CDB
If several different issues occur during the first upgrade attempt, then use this
procedure to re-run the entire upgrade.

• Rerun the Upgrade Only on Specified PDBs
You can rerun upgrades on specified multitenant containers by running the Parallel
Upgrade Utility with either the Resume option (-R), or with the exclusion list option
(-C).

• Rerun the Upgrade While Other PDBs Are Online
You can rerun PDB upgrades by using the Parallel Upgrade Utility Resume option,
or by explicitly including or excluding online PDBs using with inclusion or exclusion
lists.

• Rerun the Upgrade Using an Inclusion List to Specify a CDB or PDBs
Use this example as a model for rerunning an upgrade on a pluggable database
(PDB) by using an inclusion list.

Rerun the Entire Upgrade for the CDB
If several different issues occur during the first upgrade attempt, then use this
procedure to re-run the entire upgrade.

This example demonstrates running the upgrade again on the CDB$ROOT, PDB$SEED and
all PDBs after correcting for a problem occurring during the initial upgrade attempt,
such as running out of shared pool.

1. Start the upgrade again. For example:

SQL> startup upgrade;
alter pluggable database all open upgrade;

2. Run the Parallel Upgrade Utility (catctl.pl, or the dbupgrade shell script. For
example:

cd $ORACLE_HOME/bin/
./dbupgrade -d $ORACLE_HOME/rdbms/admin -l $ORACLE_HOME/rdbms/log

The upgrade runs again on all the containers, including CDB$ROOT , PDB$SEED, and
all PDBs in the CDB.

Rerun the Upgrade Only on Specified PDBs
You can rerun upgrades on specified multitenant containers by running the Parallel
Upgrade Utility with either the Resume option (-R), or with the exclusion list option (-
C).

In both the examples that follow, the multitenant container database contains five
PDBs. All upgrades ran successfully except for CDB1_PDB1 and CDB1_PDB2, which failed

Chapter 5
Rerunning Upgrades for Oracle Database

5-58

with an upgrade error. To run the upgrade on these two containers, you shut down the entire
multitenant database and restart only the PDBs you want to upgrade.

Note:

Parallel Upgrade Utility parameters are case-sensitive.

Example 5-13 Rerunning Upgrades With the Resume Option

You can use the Parallel Upgrade Utility Resume parameter option -R to rerun the upgrade
only on one or more multitenant containers (CDBs).

In the following example, the upgrade script detects that it should run on CDB1_PDB1 and
CDB1_PDB2 containers only.

1. Shut down the multitenant database, start up the database in upgrade mode, and then
start up the PDBs on which the upgrade did not complete. For example:

SQL> shutdown immediate;
 startup upgrade;
 alter pluggable database CDB1_PDB1 open upgrade;
 alter pluggable database CDB1_PDB2 open upgrade;

2. Show the CDB and PDB status:

 SQL> show pdbs

 CON_ID CON_NAME OPEN MODE RESTRICTED
 ---------- ------------------------------ ---------- ----------
 2 PDB$SEED MIGRATE YES
 3 CDB1_PDB1 MIGRATE YES
 4 CDB1_PDB2 MIGRATE YES
 5 CDB1_PDB3 MOUNTED
 6 CDB1_PDB4 MOUNTED
 7 CDB1_PDB5 MOUNTED

3. Rerun the upgrade. The upgrade automatically detects from the previous upgrade logs
that CDB$ROOT and PDB$SEED are upgraded successfully. The upgrade bypasses
CDB$ROOT and PDB$SEED, and only runs on CDB1_PDB1 and CDB_PDB2. The
command example here is for Linux/UNIX systems:

cd $ORACLE_HOME/bin
./dbupgrade -d $ORACLE_HOME/rdbms/admin -l $ORACLE_HOME/cfgtoollogs -R

The Parallel Upgrade Utility completes the upgrade on CDB1_PDB1 and CDB1_PDB2.

Example 5-14 Rerunning Upgrades With an Exclusion List

An exclusion list contains containers that you do not want to upgrade. An exclusion list uses
the Parallel Upgrade Utility -C parameter option. Run the Parallel Upgrade utility by changing
directory to Oracle_home/rdbms/admin/ and running the utility in Perl using catctl.pl,
or by changing directory to Oracle_home/bin and running the command-line script,

Chapter 5
Rerunning Upgrades for Oracle Database

5-59

dbupgrade -C. This method is useful when you have many PDBs on which you want
to rerun the upgrade.

In this following example, you provide an exclusion list to exclude the upgrade script
from running on containers where you do not require it to run.

1. Shut down the multitenant database, start up the database in upgrade mode, and
then start up the PDBs on which the upgrade did not complete. For example:

SQL> shutdown immediate;
 startup upgrade;
 alter pluggable database CDB1_PDB1 open upgrade;
 alter pluggable database CDB1_PDB2 open upgrade;

2. Show the CDB and PDB status:

 SQL> show pdbs

 CON_ID CON_NAME OPEN MODE RESTRICTED
 ---------- ------------------------------ ----------

 2 PDB$SEED MIGRATE YES
 3 CDB1_PDB1 MIGRATE YES
 4 CDB1_PDB2 MIGRATE YES
 5 CDB1_PDB3 MOUNTED
 6 CDB1_PDB4 MOUNTED
 7 CDB1_PDB5 MOUNTED

3. Rerun the upgrade, excluding CDB$ROOT and PDB$SEED from the upgrade in a
space-delimited exclusion list that you specify with single quote marks. The
command example here is for Linux/UNIX systems:

$ORACLE_HOME/bin/dbupgrade -d $ORACLE_HOME/rdbms/admin -
l $ORACLE_HOME/rdbms/log -C 'CDB$ROOT PDB$SEED'

The upgrade reruns, and completes on CDB1_PDB1 and CDB1_PDB2.

Note:

For Windows, you must specify the -C option exclusion list by using with
double quote marks to specify the exclusion list. For example:

... -C "CDB$ROOT PDB$SEED"

Rerun the Upgrade While Other PDBs Are Online
You can rerun PDB upgrades by using the Parallel Upgrade Utility Resume option, or
by explicitly including or excluding online PDBs using with inclusion or exclusion lists.

Use these examples as a model for running upgrades on PDBs, where you want to
rerun upgrades on some PDBs while other PDBs are open.

Chapter 5
Rerunning Upgrades for Oracle Database

5-60

In the examples, the upgrade failed in containers CDB1_PDB1 and CDB1_PDB2, but succeeded
in containers CDB1_PDB3, CDB1_PDB4, and CDB1_PDB5.

You start up CDB$ROOT in normal mode. You find that the following containers are online:
CDB1_PDB3, CDB1_PDB4, and CDB1_PDB5 . You review the upgrade logs for CDB1_PDB3,
CDB1_PDB4, and CDB1_PDB5 and bring these containers online.

Example 5-15 Rerunning Upgrades on PDBs Using the Resume Option

The following example shows how to complete the upgrade for CDB1_PDB1 and CDB1_PDB2 by
using the Parallel Upgrade Utility Resume option. The Resume option excludes PDBs that
are already upgraded:

1. Bring up CDB$ROOT in normal mode, and open CDB1_PDB1 and CDB1_PDB2 in upgrade
mode. CDB1_PDB3, CDB1_PDB4, CDB1_PDB5 are in normal mode. For example:

SQL> startup;
 alter pluggable database CDB1_PDB1 open upgrade;
 alter pluggable database CDB1_PDB2 open upgrade;
 alter pluggable database cdb1_pdb3 open;
 alter pluggable database cdb1_pdb4 open;
 alter pluggable database cdb1_pdb5 open;

2. Use the SQL command show pdbs to show the status of PDBs. For example:

SQL> show pdbs

 CON_ID CON_NAME OPEN MODE RESTRICTED
 ---------- ------------------------------ ---------- ----------
 2 PDB$SEED READ ONLY NO
 3 CDB1_PDB1 MIGRATE YES
 4 CDB1_PDB2 MIGRATE YES
 5 CDB1_PDB3 READ WRITE NO
 6 CDB1_PDB4 READ WRITE NO
 7 CDB1_PDB5 READ WRITE NO

3. Rerun the upgrade, excluding CDB$ROOT from the upgrade, using the Parallel Upgrade
Utility command-line script dbupgrade.

cd $ORACLE_HOME/bin
./dbupgrade -d $ORACLE_HOME/rdbms/admin/ -l $ORACLE_HOME/cfgtoollogs -R

Because you run the upgrade using the Resume option, the Parallel Upgrade Utility
checks the logs and identifies that CDB1_PDB1 and CDB1_PDB2 are the only two containers
in CDB1 that are not upgraded. The upgrade script runs on just those two PDBs. The
upgrade does not rerun on PDB$SEED, CDB$ROOT, CDB_PDB3, CDB_PDB4, and CDB_PDB5.

Example 5-16 Rerunning Upgrades on PDBs Using Exclusion Lists

The following example shows how to complete the upgrade for CDB1_PDB1 and CDB1_PDB2 by
using an exclusion list to exclude the PDBs on which you do not want the upgrade script to
run:

Chapter 5
Rerunning Upgrades for Oracle Database

5-61

1. Bring up CDB$ROOT in normal mode, and open CDB1_PDB1 and CDB1_PDB2 in
upgrade mode. CDB1_PDB3, CDB1_PDB4, CDB1_PDB5 are in normal mode. For
example:

SQL> startup;
 alter pluggable database CDB1_PDB1 open upgrade;
 alter pluggable database CDB1_PDB2 open upgrade;
 alter pluggable database cdb1_pdb3 open;
 alter pluggable database cdb1_pdb4 open;
 alter pluggable database cdb1_pdb5 open;

2. Use the SQL command show pdbs to show the status of PDBs. For example:

SQL> show pdbs

 CON_ID CON_NAME OPEN MODE RESTRICTED
 ---------- ------------------------------ ----------

 2 PDB$SEED READ ONLY NO
 3 CDB1_PDB1 MIGRATE YES
 4 CDB1_PDB2 MIGRATE YES
 5 CDB1_PDB3 READ WRITE NO
 6 CDB1_PDB4 READ WRITE NO
 7 CDB1_PDB5 READ WRITE NO

3. Rerun the upgrade, excluding CDB$ROOT from the upgrade, using the Parallel
Upgrade Utility command-line script dbupgrade:

cd $ORACLE_HOME/bin
./dbupgrade -d $ORACLE_HOME/rdbms/admin -l $ORACLE_HOME/cfgtoollogs
-R -C 'CDB$ROOT'

The Parallel Upgrade Utility runs with the Resume option (-R), and identifies from
the logs that CDB1_PDB1 and

CDB1_PDB2 have not completed the upgrade. Because the Parallel Upgrade
Utility runs with the Exclude option (-C), and you specify that CDB$ROOT is
excluded, the upgrade script is also explicitly excluded from running on CDB$ROOT.

For Windows, when you run the Parallel Upgrade Utility with the Exclude option (-
C), you must specify the targets -C option using double quotes around the CDB
root name and PDB seed name. For example:

. . . -C "CDB$ROOT PDB$SEED"

4. The upgrade reruns and completes on CDB1_PDB1 and CDB1_PDB2.

Rerun the Upgrade Using an Inclusion List to Specify a CDB or PDBs
Use this example as a model for rerunning an upgrade on a pluggable database (PDB)
by using an inclusion list.

You can use an inclusion list to specify a list of container databases (CDBs) and PDBs
where you want to re-run an upgrade, and exclude nodes not on the inclusion list.
Specify the inclusion list by running the Parallel Upgrade Utility with the inclusion

Chapter 5
Rerunning Upgrades for Oracle Database

5-62

option (-c), followed by a space-delimited list designated by single quotes of the containers
that you want to upgrade.

In the examples, the upgrade failed in containers CDB1_PDB1 and CDB1_PDB2, but succeeded
in containers CDB1_PDB3, CDB1_PDB4, and CDB1_PDB5. You start up CDB$ROOT in normal mode.
You find that the following containers are online: CDB1_PDB3, CDB1_PDB4, and CDB1_PDB5. You
review the upgrade logs for CDB1_PDB3, CDB1_PDB4, and CDB1_PDB5, and bring these
containers online.

Example 5-17 Rerunning Upgrades on PDBs Using an Inclusion List

For example:

1. Bring up CDB$ROOT in normal mode, and open CDB1_PDB1 and CDB1_PDB2 in upgrade
mode. CDB1_PDB3, CDB1_PDB4, CDB1_PDB5 are in normal mode. For example:

SQL> startup;
 alter pluggable database CDB1_PDB1 open upgrade;
 alter pluggable database CDB1_PDB2 open upgrade;
 alter pluggable database cdb1_pdb3 open;
 alter pluggable database cdb1_pdb4 open;
 alter pluggable database cdb1_pdb5 open;

2. Use the SQL command show pdbs to show the status of PDBs. For example:

SQL> show pdbs

 CON_ID CON_NAME OPEN MODE RESTRICTED
 ---------- ------------------------------ ---------- ----------
 2 PDB$SEED READ ONLY NO
 3 CDB1_PDB1 MIGRATE YES
 4 CDB1_PDB2 MIGRATE YES
 5 CDB1_PDB3 READ WRITE NO
 6 CDB1_PDB4 READ WRITE NO
 7 CDB1_PDB5 READ WRITE NO

3. Rerun the Parallel Upgrade Utility with the inclusion (-c) option, followed by a space-
delimited inclusion list that you specify with single quote marks. This option runs the
upgrade only on the PDBs that you list in the inclusion list.

For example:

cd $ORACLE_HOME/bin
./dbupgrade -d $ORACLE_HOME/rdbms/admin -l ORACLE_HOME/cfgtoollogs -R -c
'CDB1_PDB1 CDB1_PDB2'

For Windows, when you run the Parallel Upgrade Utility with the inclusion option, you
must specify the -c option targets by using double quotes around the inclusion list. For
example:

. . . -C "CDB1_PDB1 CDB1_PDB2"

4. The upgrade reruns and completes on CDB1_PDB1 and CDB1_PDB2.

Chapter 5
Rerunning Upgrades for Oracle Database

5-63

Restarting the Upgrade from a Specific Phase that Failed Using -p
Use this option to complete an upgrade after fixing errors.

You can run the Parallel Upgrade Utility (catctl.pl, or the shell scripts dbupgrade
or dbupgrade.cmd) with the -p option to rerun an upgrade and skip upgrade phases
that already have run successfully. You can also rerun the upgrade on one phase to
test the fix for failed phases.

To determine the phase number to restart, examine the upgrade log to identify where
the first error occurred, and in what phase. You can then fix the cause of the error, and
test the fix or rerun the upgrade to completion.

• Reviewing CDB Log Files for Failed Phases
Identify your log file location, and review the CDB and PDB log files.

• Procedure for Finding and Restarting Multitenant Upgrades from a Failed Phase
To restart a multitenant upgrade from a failed phase, first identify which PDB
created the error and then search its appropriate log file for the error.

Reviewing CDB Log Files for Failed Phases
Identify your log file location, and review the CDB and PDB log files.

The location of the Automatic Diagnostic Repository (ADR) and the diagnostic log files
created by the upgrade scripts can vary, depending on your environment variables and
parameter settings.

You can set log file paths when you run the Parallel Upgrade Utility (catctl) by
setting the -l option to define a log file path.

Log files for CDB$ROOT (CDBs) can span from catupgrd0...catupgrd7.log. Log
files for pluggable databases (PDBs) are identified by the PDB container name
(dbname), and span from catupgrdpdbname0...catupgrdpdbname7.log.

Procedure for Finding and Restarting Multitenant Upgrades from a Failed
Phase

To restart a multitenant upgrade from a failed phase, first identify which PDB created
the error and then search its appropriate log file for the error.

To identify the PDB that caused a multitenant upgrade failure, look at the upgrade
summary report, or review catupgrd0.log; this log contains the upgrade summary
report at the end of the file.

Use this procedure to check each log file looking for errors.

1. Locate log files with errors.

For example:

Linux and Unix

$ grep -i 'error at line' catupgrd*.log

Chapter 5
Rerunning Upgrades for Oracle Database

5-64

Windows

C:\> find /I "error at line" catupgrd*.log

The grep or find command displays the filenames of log files in which an error is found.

2. Check each log file that has an error and identify where the first error occurred. Use the
text editor of your choice to review each log file. Search for the first occurrence of the
phrase error at line'. When you find the phrase, then search backwards from the
error (reverse search) for PHASE_TIME___START.

For example:

PHASE_TIME___START 15 15-01-16 08:49:41

The number after PHASE_TIME___START is the phase number where the error has
occurred. In this example, the phase number is 15.

Each log file can have an error in it. Repeat checking for the phrase
PHASE_TIME___START, and identify the phase number with errors for each log file that
contains an error, and identify the log file that contains the lowest phase number.

The log file that contains the lowest phase number is restart phase number, which is the
phase number from which you restart the upgrade.

For example:

catupgrd0.log error occurred in phase 15:

PHASE_TIME___START 15 15-01-16 08:49:41

catupgrd1.log error occurred in phase 19:

PHASE_TIME___START 19 15-01-16 08:50:01

In this example, the restart phase number is 15. Ensure that you identify the first error
seen in all the log files, so that you can restart the upgrade from that phase.

3. Restart the upgrade from the failed phase by changing directory to the running the
Parallel Upgrade Utility (catctl.pl, which you can run from the command line using
dbupgrade on Linux and Unix, and dbupgrade.cmd on Windows). Use the -p flag to
indicate that you want to restart the upgrade from a phase, and provide the restart phase
number. In multitenant databases, also use the -c flag using the syntax -c 'PDBname',
where PDBname is the name of the PDB where the failure occurred.

For example:

Non-CDB Oracle Database on a Linux or UNIX system:

cd $ORACLE_HOME/bin
dbupgrade -p 15

Chapter 5
Rerunning Upgrades for Oracle Database

5-65

PDB in a multitenant Oracle Database (CDB) on a Windows system:

cd $ORACLE_HOME/bin
dbupgrade -p 15 -c 'PDB1'

In both examples, the upgrade is restarted from phase 15, identified with the -p
flag. In the multitenant example, the PDB with the error is identified with the -c
flag.

In these examples, the upgrade starts from phase 15 and runs to the end of the
upgrade.

4. (Optional) You can also run the phase that contained an error by specifying a stop
phase, using the -P flag. Using a stop phase allows the upgrade to just rerun that
phase in which the error occurred. You can determine quickly if the error is fixed by
running it on the phase with the error, without running the entire upgrade.

For example, using the Perl script Parallel Upgrade Utility command option:

cd $ORACLE_HOME/rdbms/admin
$ORACLE_HOME/perl/bin/perl catctl.pl -p 15 -P 15 -c 'PDB1'

After you confirm that the error is fixed in the phase with the error, you can then
resume the upgrade after that phase.

For example, if you have confirmed that the error in phase 15 of your multitenant
database upgrade of PDB1 is fixed, then you can use the following command on
Linux and Unix systems to continue the upgrade at phase 16:

cd $ORACLE_HOME/bin dbupgrade -p 16 -c 'PDB1'

Chapter 5
Rerunning Upgrades for Oracle Database

5-66

6
Troubleshooting the Upgrade for Oracle
Database

Use these troubleshooting tips to address errors or issues that you may encounter while
upgrading your database.

Also review the related links to learn about changes that affect this release, which may be
related to errors you receive, and to see how to rerun the upgrade after you resolve errors.

• Error Upgrading Non-CDB Oracle Databases
If you attempt to upgrade a non-CDB Oracle Database release, you receive the error
ORA-O1722: invalid number.

• Fixed View Queries Restriction When Starting Oracle Database in Upgrade Mode
When you start Oracle Database in upgrade mode, you can only run queries on fixed
views. If you attempt to run other views or PL/SQL, then you receive errors.

• Resolving PDBs in Restricted Mode After Successful Upgrades
If your upgrade is successful, but the upgraded PDBs are in Restricted Mode, then this
may be due to components set to OPTION OFF.

• Invalid Object Warnings and DBA Registry Errors
Before you start your upgrade, Oracle strongly recommends that you run the preupgrade
information tool (preupgrd.jar).

• Invalid Objects and Premature Use of Postupgrade Tool
Never run the postupgrade status tool for the new Oracle Database release
(utlusts.sql) until after you complete the upgrade.

• Resolving Oracle Database Upgrade Script Termination Errors
Review this section if you encounter ORA-00942, ORA-00904, or ORA-01722 errors.

• Troubleshooting Causes of Resource Limits Errors while Upgrading Oracle Database
Review this section if you encounter ORA-01650, ORA-01651, ORA-01652, ORA-01653,
ORA-01654, ORA-01655, ORA-0431, ORA-01562, ORA-19815, or other errors that suggest
resource limit errors.

• Resolving SQL*Plus Edition Session Startup Error for Oracle Database
Use this section to understand and resolve SP2–1540: "Oracle Database cannot startup
in an Edition session."

• Error ORA-00020 Maximum Number of Processes Exceeded When Running utlrp.sql
This error may indicate that your Oracle configuration does not have sufficient number of
processes available for the recompile.

• Fixing ORA-28365: Wallet Is Not Open Error
If you use Oracle wallet with Transparent Data Encryption (TDE), and you use Database
Upgrade Assistant (DBUA) to upgrade the database, then you can encounter an
ORA-28365 "wallet is not open" error.

• Resolving issues with view CDB_JAVA_POLICY
If the view CDB_JAVA_POLICY becomes invalid, then use this procedure.

6-1

• Continuing Upgrades After Server Restarts (ADVM/ACFS Driver Error)
On Windows platforms, an error may occur related to ADVM or ACFS drivers if a
server restarts during an upgrade.

• Component Status and Upgrades
Component status settings are affected both by the components that you
previously installed, and by the support of those components for upgrades.

• Standard Edition Starter Database and Components with Status OPTION OFF
Starting in Oracle Database 18c (18.1), all OPTION OFF components are upgraded
to the new release, but these options are disabled for Oracle Database Standard
Edition (SE) remain OPTION OFF.

• Adjusting Oracle ASM Password File Location After Upgrade
You must create a new password file for Oracle ASM after an Oracle Grid
Infrastructure upgrade.

• Fixing "Warning XDB Now Invalid" Errors with Pluggable Database Upgrades
Review this topic if you encounter "Warning: XDB now invalid, invalid objects
found” errors when upgrading pluggable databases (PDBs).

• Fixing ORA-27248: sys.dra_reevaluate_open_failures is running
Use this procedure to identify DRA_REEVALUATE_OPEN_FAILURES jobs that
block upgrades.

• Fixing Failed Upgrades Where Only Datapatch Fails
If only datapatch fails during an upgrade, then rerun datapatch directly.

• Fixing Failures to Complete Registration of Listeners with DBUA
On the Database Upgrade Assistant Progress step, a window appears with this
warning: "Unable to create database entry in the directory service. No Listeners
configured."

Related Topics

• Rerunning Upgrades for Oracle Database
Use these options to rerun upgrades.

Error Upgrading Non-CDB Oracle Databases
If you attempt to upgrade a non-CDB Oracle Database release, you receive the error
ORA-O1722: invalid number.

Starting with Oracle Database 21c, you must use the multitenant architecture for
Oracle Database upgrades. When you attempt to upgrade a non-CDB Oracle
Database release to Oracle Database 21c, and do not upgrade to a multitenant
architecture, you receive the following error:

SELECT TO_NUMBER('UPGRADE OF A NON-CDB TO TARGET RELEASE IS NOT
SUPPORTED') * ERROR at line 1: ORA-01722: invalid number

To resolve this issue, use one of the Non-CDB to CDB upgrade methods, so that you
upgrade to a multitenant architecture.

Chapter 6
Error Upgrading Non-CDB Oracle Databases

6-2

Fixed View Queries Restriction When Starting Oracle Database
in Upgrade Mode

When you start Oracle Database in upgrade mode, you can only run queries on fixed views.
If you attempt to run other views or PL/SQL, then you receive errors.

When the database is started in upgrade mode, only queries on fixed views execute without
errors. This restriction applies until you either run the Parallel Upgrade Utility (catctl.pl)
directly, or indirectly by using the dbupgrade script). Before running an upgrade script, using
PL/SQL on any other view, or running queries on any other view returns an error. If you
receive any of the errors described in this section, then issue the SHUTDOWN ABORT command
to shut down the database, and then correct the problem.

The following list of errors can occur when you attempt to start the new Oracle Database
release. Some of these errors write to the alert log, and not to your session.

• ORA-00401: the value for parameter compatible is not supported by this
release

The COMPATIBLE initialization parameter is set to a value less than 11.2.0.

• ORA-39701: database must be mounted EXCLUSIVE for UPGRADE or DOWNGRADE

The CLUSTER_DATABASE initialization parameter is set to TRUE instead of FALSE.

• ORA-39700: database must be opened with UPGRADE option

The STARTUP command was issued without the UPGRADE keyword.

• Ora-00704: bootstrap failure

The path variable can be pointing to the earlier release Oracle home.

• ORA-00336: log file size xxxx blocks is less than minimum 8192 blocks

A redo log file size is less than 4 MB.

If errors appear listing desupported initialization parameters, then make a note of the
desupported initialization parameters, and continue with the upgrade. Remove the
desupported initialization parameters the next time you shut down the database.

Related Topics

• https://support.oracle.com/rs?type=doc&id=1349722.1

Resolving PDBs in Restricted Mode After Successful Upgrades
If your upgrade is successful, but the upgraded PDBs are in Restricted Mode, then this may
be due to components set to OPTION OFF.

If a PDB is opened in restricted mode, then query pdb_plug_in_violations for errors to see
if this result is due to one or more components in that PDB with OPTION OFF status. If the
result of your query shows a database option mismatch for the same components, then close
and restart the PDB. After the restart, check to see of the PDB status for RESTRICTED mode is
changed from YES to NO.

Chapter 6
Fixed View Queries Restriction When Starting Oracle Database in Upgrade Mode

6-3

https://support.oracle.com/rs?type=doc&id=1349722.1

For example, look for Database option mismatch results similar to the following:

SQL> select time, message from pdb_plug_in_violations where
status='PENDING'
and type='ERROR';
TIME -------------------
MESSAGE--

11-SEP-20 12.40.56.096230 PM
Database option APS mismatch: PDB installed version 21.0.0.0.0. CDB
installed
version NULL.

11-SEP-20 12.40.56.096789 PM
Database option DV mismatch: PDB installed version 21.0.0.0.0. CDB
installed
version NULL.

11-SEP-20 12.40.56.097315 PM

Database option OLS mismatch: PDB installed version 21.0.0.0.0. CDB
installed
version NULL.

11-SEP-20 12.40.56.098157 PM
Database option XOQ mismatch: PDB installed version 21.0.0.0.0. CDB
installed
version NULL.

Invalid Object Warnings and DBA Registry Errors
Before you start your upgrade, Oracle strongly recommends that you run the
preupgrade information tool (preupgrd.jar).

The preupgrade information tool identifies invalid SYS and SYSTEM objects, as well
as other invalid objects. Use utlrp.sql to recompile invalid objects. If you fail to do
this before an upgrade, then it becomes difficult to determine which objects in your
system were invalid before starting the upgrade, and which objects become invalid as
a result of the upgrade.

Related Topics

• Pre-Upgrade Information Tool and AutoUpgrade Preupgrade

Invalid Objects and Premature Use of Postupgrade Tool
Never run the postupgrade status tool for the new Oracle Database release
(utlusts.sql) until after you complete the upgrade.

Oracle recommends that you run the postupgrade status tool only after the upgrade
process is complete, and after you have run utlrp.sql. If the postupgrade status tool
is run before you run @utlrp.sql, then the output of tool may not display the accurate
final component status value. If the tool is run before running utlrp.sql, then the

Chapter 6
Invalid Object Warnings and DBA Registry Errors

6-4

component status values may not properly reflect the final state. You can only determine the
final component state after running utlrp.sql.

Resolving Oracle Database Upgrade Script Termination Errors
Review this section if you encounter ORA-00942, ORA-00904, or ORA-01722 errors.

If you did not run AutoUpgrade with the preupgrade parameter before starting the upgrade,
then the catctl.pl and catupgrd.sql scripts terminate with errors such as the following:

ORA-00942: table or view does not exist
ORA-00904: "TZ_VERSION": invalid identifier
ORA-01722: invalid number

If you receive any of these errors, then use this procedure to correct the problem:

1. Enter a SHUTDOWN ABORT command, and wait for the command to complete running.

2. Revert to the original Oracle home directory

3. Run the AutoUpgrade utility using the preupgrade parameter, and correct the issues that
it reports in the upgrade.xml file.

Related Topics

• Pre-Upgrade Information Tool for Oracle Database
Learn how to obtain the same features previously offered through the Pre-Upgrade
information tool (preupgrade.jar) by using AutoUpgrade with the preupgrade clause.

Troubleshooting Causes of Resource Limits Errors while
Upgrading Oracle Database

Review this section if you encounter ORA-01650, ORA-01651, ORA-01652, ORA-01653,
ORA-01654, ORA-01655, ORA-0431, ORA-01562, ORA-19815, or other errors that suggest
resource limit errors.

If you run out of resources during an upgrade, then increase the resource allocation. After
increasing the resource allocation, shut down the instance with SHUTDOWN ABORT, and
restart the instance in UPGRADE mode before re-running the catupgrd.sql script. If you run
the upgrade using the Parallel Upgrade Utility (catctl.pl), then to automatically resume the
upgrade from the point of failure, run the utility with the -R option. After you fix issues,
AutoUpgrade automatically resumes upgrades.

The resources that generally require increases for a new Oracle Database release are as
follows:

• SYSTEM and SYSAUX tablespaces

If your SYSTEM tablespace size is insufficient, then typically you receive the following error
message:

ORA-01650: unable to extend rollback segment string by string in
tablespace string
ORA-01651: unable to extend save undo segment by string for tablespace
string

Chapter 6
Resolving Oracle Database Upgrade Script Termination Errors

6-5

ORA-01652: unable to extend temp segment by string in tablespace
string
ORA-01653: unable to extend table string.string by string in
tablespace string
ORA-01654: unable to extend index string.string by string in
tablespace string
ORA-01655: unable to extend cluster string.string by string in
tablespace string

To avoid these errors, set AUTOEXTEND ON MAXSIZE UNLIMITED for the SYSTEM and
SYSAUX tablespaces.

• Shared memory

In some cases, you may require larger shared memory pool sizes. The error
message indicates which shared memory initialization parameter you must
increase, in the following format:

ORA-04031: unable to allocate string bytes of shared memory
("string","string","string","string")

See Also:

Oracle Database Administrator's Guide for information about using
manual shared memory management

• Rollback segments/undo tablespace

If you are using rollback segments, then you must have a single large (100 MB)
PUBLIC rollback segment online while the upgrade scripts are being run. Smaller
public rollback segments should be taken offline during the upgrade. If your
rollback segment size is insufficient, then typically you encounter the following
error:

ORA-01562: failed to extend rollback segment number string

If you are using an undo tablespace, then be sure it is at least 400 MB.

• Fast Recovery Area

If you are using a Fast Recovery Area and it fills up during the upgrade, then the
following error appears in the alert log, followed by suggestions for recovering from
the problem:

ORA-19815: WARNING: db_recovery_file_dest_size of string bytes is
98.99%
used, and has string remaining bytes available.

Identify the root cause of the problem, and take appropriate actions to proceed
with the upgrade. To avoid issues during the upgrade, increase the amount of
space available in your Fast Recovery Area before starting the upgrade.

Chapter 6
Troubleshooting Causes of Resource Limits Errors while Upgrading Oracle Database

6-6

Resolving SQL*Plus Edition Session Startup Error for Oracle
Database

Use this section to understand and resolve SP2–1540: "Oracle Database cannot startup in an
Edition session."

If an upgrade script or a command running in SQL*Plus set the EDITION parameter, then
Oracle Database cannot start properly afterward. When you attempt to start the database,
you receive the following error:

SP2-1540: "Oracle Database cannot startup in an Edition session"

To avoid this problem, after running catugrd.sql or any SQL*Plus session where this
parameter is changed, exit the SQL*Plus session and restart the instance in a different
session.

Error ORA-00020 Maximum Number of Processes Exceeded
When Running utlrp.sql

This error may indicate that your Oracle configuration does not have sufficient number of
processes available for the recompile.

Refer to Oracle documentation for more details about setting the PROCESSES parameter.

See Also:

Oracle Database Reference

Fixing ORA-28365: Wallet Is Not Open Error
If you use Oracle wallet with Transparent Data Encryption (TDE), and you use Database
Upgrade Assistant (DBUA) to upgrade the database, then you can encounter an ORA-28365
"wallet is not open" error.

To avoid this problem, complete the following tasks before upgrading:

1. Log in as an authorized user.

2. Manually copy the sqlnet.ora file, and the wallet file, ewallet.p12, to the new release
Oracle home.

3. Open the Oracle wallet in mount.

For example:

SQL> STARTUP MOUNT;
SQL> ALTER SYSTEM SET ENCRYPTION WALLET OPEN

4. Start the upgrade as usual.

Chapter 6
Resolving SQL*Plus Edition Session Startup Error for Oracle Database

6-7

Resolving issues with view CDB_JAVA_POLICY
If the view CDB_JAVA_POLICY becomes invalid, then use this procedure.

After an upgrade to Oracle Database 12c release 2 (12.2) and later releases, or a
downgrade from release 12.2 or later releases to 12.1, you can encounter issues with
the CDB_JAVA_POLICY view. CDB_JAVA_POLICY can become invalid, or it can
encounter errors when you use it in a manner that normally works. If this happens,
then connect as SYS, and run the following commands.

Non-CDBs:

alter session set "_ORACLE_SCRIPT"=true;

exec
CDBView.create_cdbview(false,'SYS','dba_java_policy','CDB_java_policy');

grant select on SYS.CDB_java_policy to select_catalog_role
/
create or replace public synonym CDB_java_policy for SYS.CDB_java_policy
/

Multitenant architecture systems:

Run these same commands, but run them first in CDB$ROOT, and then in other
containers in the CDB.

Continuing Upgrades After Server Restarts (ADVM/ACFS
Driver Error)

On Windows platforms, an error may occur related to ADVM or ACFS drivers if a
server restarts during an upgrade.

If a server restarts during the upgrade, then you may see one of the following error
messages:

ACFS-9427: Failed to unload ADVM/ACFS drivers. A system reboot is
recommended

ACFS-9428 Failed to load ADVM/ACFS drivers. A system reboot is
recommended.

• Cause

The ADVM and ACFS drivers are still in use. You must restart the system to start
the new drivers.

• Action

Complete the steps as described in the following procedures.

For nodes other than the first node (the node on which the upgrade is started):

Chapter 6
Resolving issues with view CDB_JAVA_POLICY

6-8

1. Restart the node where the error occurs.

2. Run the root script on that node again.

For first nodes (the node on which the upgrade is started):

1. Complete the upgrade of all other nodes in the cluster.

2. Restart the first node.

3. Run the root script on the first node again.

4. To complete the upgrade, log in as root, and run the script configToolAllCommands,
located in the path Grid_home/cfgtoollogs/configToolAllCommands.

See Also:

Oracle Grid Infrastructure Installation Guide for your operating system for more
information about troubleshooting upgrade issues for clusters

Component Status and Upgrades
Component status settings are affected both by the components that you previously installed,
and by the support of those components for upgrades.

Topics:

• Understanding Component Status With the Post-Upgrade Status Tool
The Post-Upgrade Status tool, utlusts.sql, reports database component status after
an upgrade is completed.

• Component OPTION OFF Status and Upgrades
The upgrade status of OPTION OFF components is affected both by the support in the
target release for a component, and if a component must be upgraded as part of an
upgrade.

• Example of an Upgrade Summary Report
Upgrade summary reports provide information about the upgrade status of components.

Understanding Component Status With the Post-Upgrade Status Tool
The Post-Upgrade Status tool, utlusts.sql, reports database component status after an
upgrade is completed.

You can run the Post-Upgrade Status Tool utlusts.sql anytime after upgrade, post-
upgrade, or after recompiling invalid objects with utlrp.sql.

The following list briefly describes the status values that the Post-Upgrade Status tool
reports:

• INVALID

When the upgrade completed, some objects for the component remained in an invalid
state. If you find no errors in the log file for component upgrades then run the script
utlrp.sql. Running this script may change the status of invalid components to VALID

Chapter 6
Component Status and Upgrades

6-9

without rerunning the entire upgrade. Check the DBA_REGISTRY view after running
utlrp.sql.

• VALID

The component is valid with no errors.

• LOADING

The component is loading

• LOADED

The component has successfully finished loading.

• UPGRADING

The component is in process being upgraded.

• UPGRADED

The component has completed upgrading with no errors.

• DOWNGRADING

The component is in process being downgraded.

• DOWNGRADED

The component has completed downgrading with no errors.

• REMOVING

The component is in process being removed.

• REMOVED

The component was not upgraded because it was removed from the database.

• OPTION OFF

The server option required for the component was not installed or was not linked
with the server. Check the V$OPTION view and the install logs. Install the
component or relink the server with the required option, and then re-run the
Parallel Upgrade Utility.

• NO SCRIPT

The component upgrade script was not found in $ORACLE_HOME. Check the install
logs, install the component software, and then re-run the Parallel Upgrade Utility.

Note:

You can run the Parallel Upgrade Utility (catctl.pl using the command-
line scripts dbupgrade, on all supported platforms).

Component OPTION OFF Status and Upgrades
The upgrade status of OPTION OFF components is affected both by the support in the
target release for a component, and if a component must be upgraded as part of an
upgrade.

Chapter 6
Component Status and Upgrades

6-10

There are three cases where OPTION OFF components are upgraded, or are not upgraded.

Unsupported Components With Status OPTION OFF

If there is a component in the database that is in the status OPTION OFF, and that component
is no longer supported for database upgrades to the target release, then this component is
not upgraded. After the upgrade, its version and status remain unchanged.

Supported Components With Status OPTION OFF

If there is a component in the database that is in the status OPTION OFF, but that component
is supported for database upgrades to the target release, then this component is upgraded.
After the upgrade, the component’s version matches the target release version. The status for
this component is either UPGRADED (a successful upgrade), or INVALID (errors). Rerun the
upgrade as needed, until all the upgraded components have a status of UPGRADED. Then run
utlrp.sql. If a component was in the status OPTION OFF before the upgrade, then after it is
upgraded, and its compile and validation is successful, its status reverts back to OPTION OFF.

Supported Components With Required Options That Must Be Upgraded

All components with required options must be upgraded. These components are:

• RAC

• SDO

• APS

• XOQ

Components that must be upgraded follow the same procedure for upgrades as for standard
supported components with status OPTION OFF

Example of an Upgrade Summary Report
Upgrade summary reports provide information about the upgrade status of components.

After the upgrade completes, the upgrade utility script utlusts.sql displays an upgrade
report.

Example of an Upgrade Summary Report

Oracle Database Release 20 Post-Upgrade Status Tool 12-04-2019 08:18:1
Container Database: AIME1
[CON_ID: 1 => CDB$ROOT]

Component Current Full Elapsed Time
Name Status Version HH:MM:SS

Oracle Server UPGRADED 20.1.0.0.0 00:22:08
JServer JAVA Virtual Machine UPGRADED 20.1.0.0.0 00:09:35
Oracle XDK UPGRADED 20.1.0.0.0 00:01:36
Oracle Database Java Packages UPGRADED 20.1.0.0.0 00:00:14
OLAP Analytic Workspace UPGRADED 20.1.0.0.0 00:00:44
Oracle Label Security UPGRADED 20.1.0.0.0 00:00:17
Oracle Database Vault UPGRADED 20.1.0.0.0 00:01:20
Oracle Text UPGRADED 20.1.0.0.0 00:01:21
Oracle Workspace Manager UPGRADED 20.1.0.0.0 00:01:20

Chapter 6
Component Status and Upgrades

6-11

Oracle Real Application Clusters UPGRADED 20.1.0.0.0
00:00:06
Oracle XML Database UPGRADED 20.1.0.0.0
00:03:08
Oracle Multimedia UPGRADED 20.1.0.0.0
00:01:33
Spatial UPGRADED 20.1.0.0.0
00:07:51
Oracle OLAP API UPGRADED 20.1.0.0.0
00:00:12
Oracle Locator UPGRADED 20.1.0.0.0
00:00:00
Datapatch
00:00:23
Final Actions
00:00:43
Post Upgrade
00:00:17

Total Upgrade Time: 00:48:56 [CON_ID: 1 => CDB$ROOT]

Database time zone version is 31. It is older than current release time
zone version 34. Time zone upgrade is needed using the DBMS_DST package.

Oracle Database Release 20 Post-Upgrade Status Tool 12-04-2019
09:12:4
Container Database: AIME1
[CON_ID: 3 => CDB1_PDB1]

Component Current Full
Elapsed Time
Name Status Version
HH:MM:SS

Oracle Server UPGRADED 20.1.0.0.0
00:31:00
JServer JAVA Virtual Machine UPGRADED 20.1.0.0.0
00:04:25
Oracle XDK UPGRADED 20.1.0.0.0
00:01:38
Oracle Database Java Packages UPGRADED 20.1.0.0.0
00:00:13
OLAP Analytic Workspace UPGRADED 20.1.0.0.0
00:01:03
Oracle Label Security UPGRADED 20.1.0.0.0
00:00:11
Oracle Database Vault UPGRADED 20.1.0.0.0
00:01:38
Oracle Text UPGRADED 20.1.0.0.0
00:00:34
Oracle Workspace Manager UPGRADED 20.1.0.0.0
00:00:53
Oracle Real Application Clusters UPGRADED 20.1.0.0.0
00:00:00

Chapter 6
Component Status and Upgrades

6-12

Oracle XML Database UPGRADED 20.1.0.0.0 00:03:04
Oracle Multimedia UPGRADED 20.1.0.0.0 00:01:15
Spatial UPGRADED 20.1.0.0.0 00:06:48
Oracle OLAP API UPGRADED 20.1.0.0.0 00:00:18
Oracle Locator UPGRADED 20.1.0.0.0 00:00:00
Datapatch 00:00:23
Final Actions 00:00:44
Post Upgrade 00:00:20

Total Upgrade Time: 00:51:12 [CON_ID: 3 => CDB1_PDB1]

Database time zone version is 31. It is older than current release time
zone version 34. Time zone upgrade is needed using the DBMS_DST package.

Oracle Database Release 20 Post-Upgrade Status Tool 12-04-2019 09:20:0
Container Database: AIME1
[CON_ID: 2 => PDB$SEED]

Component Current Full Elapsed Time
Name Status Version HH:MM:SS

Oracle Server VALID 20.1.0.0.0 00:30:56
JServer JAVA Virtual Machine VALID 20.1.0.0.0 00:04:29
Oracle XDK VALID 20.1.0.0.0 00:01:38
Oracle Database Java Packages VALID 20.1.0.0.0 00:00:12
OLAP Analytic Workspace VALID 20.1.0.0.0 00:00:55
Oracle Label Security VALID 20.1.0.0.0 00:00:14
Oracle Database Vault VALID 20.1.0.0.0 00:01:41
Oracle Text VALID 20.1.0.0.0 00:00:40
Oracle Workspace Manager VALID 20.1.0.0.0 00:00:53
Oracle Real Application Clusters OPTION OFF 20.1.0.0.0 00:00:00
Oracle XML Database VALID 20.1.0.0.0 00:03:04
Oracle Multimedia VALID 20.1.0.0.0 00:01:15
Spatial VALID 20.1.0.0.0 00:06:49
Oracle OLAP API VALID 20.1.0.0.0 00:00:19
Oracle Locator VALID 20.1.0.0.0 00:00:00
Datapatch 00:00:25
Final Actions 00:00:45
Post Upgrade 00:00:21
Post Compile 00:07:11

Total Upgrade Time: 00:58:24 [CON_ID: 2 => PDB$SEED *]
Asterisks denotes compilation time has been included during the upgrade
process.

Database time zone version is 31. It is older than current release time
zone version 34. Time zone upgrade is needed using the DBMS_DST package.

Upgrade Times Sorted In Descending Order

Total Upgrade Time: 00:58:24 [CON_ID: 2 => PDB$SEED *]
Total Upgrade Time: 00:51:12 [CON_ID: 3 => CDB1_PDB1]

Chapter 6
Component Status and Upgrades

6-13

Total Upgrade Time: 00:48:56 [CON_ID: 1 => CDB$ROOT]
Grand Total Upgrade Time: [0d:1h:53m:17s]

Standard Edition Starter Database and Components with
Status OPTION OFF

Starting in Oracle Database 18c (18.1), all OPTION OFF components are upgraded to
the new release, but these options are disabled for Oracle Database Standard Edition
(SE) remain OPTION OFF.

When you upgrade Oracle Database Standard Edition (SE) starter databases, the
components that are not included with starter databases are turned on and upgraded.
When utlrp.sql is run, options that are not turned on with your server and not
included with SE are reset to OPTION OFF in the DBA_REGISTRY view.

Adjusting Oracle ASM Password File Location After
Upgrade

You must create a new password file for Oracle ASM after an Oracle Grid
Infrastructure upgrade.

The Oracle ASM password file location is not shown in the command output when you
run srvctl config asm after a Grid Infrastructure upgrade. The location of the
password file is not automatically passed to the new Oracle ASM disk group. To
enable SRVCTL to have the password file location after upgrade, you must advance
the diskgroup compatibility setting and create a PWFILE in the disk group. Then
SRVCTL reports the configured location of the shared PWFILE.

See Also:

Oracle Automatic Storage Management Administrator's Guide for information
about managing shared password files in disk groups

Fixing "Warning XDB Now Invalid" Errors with Pluggable
Database Upgrades

Review this topic if you encounter "Warning: XDB now invalid, invalid objects found”
errors when upgrading pluggable databases (PDBs).

You can encounter XML object errors when you plug an Oracle Database 12c release
1 (12.1) pluggable database (PDB) into an Oracle Database 12c release 2 (12.2) or
later release multitenant container database (CDB).

Common objects (objects with sharing='METADATA LINK' in dba_objects) are
created by registering system-generated names in an object-relational XML schema.
Those common types are created by registering some ORDSYS schemas with object-
relational storage.

Chapter 6
Standard Edition Starter Database and Components with Status OPTION OFF

6-14

The names of these common objects are system-generated, and the names generated in
release 12.1 can be different from the names used for these objects in release 12.2 and later
releases. Because of these possible name changes, you can find that the release 12.1 object
types do not have matching common types in the release 12.2 or later release CDB root.

Resolve this issue using the following procedure:

1. Query the view PDB_PLUG_IN_VIOLATIONS in the target CDB root to see if there is any
action containing 'GetTypeDDL'

If you find 'GetTypeDDL' actions, then the upgraded PDB has the common objects issue.

2. Run the PL/SQL packages SET SERVEROUTPUT ON and exec
xdb.DBMS_XMLSTORAGE_MANAGE.GetTypeDDL in the target PDB to generate a user-named
SQL script (for example, script1.sql).

3. Run the script you created in step 2 (for example, script1.sql in the source 12.1 CDB to
obtain the type creation script for each of the common types for which you are
encountering errors

4. Generate another user-named SQL script (for example, script2.sql) that contains these
creation scripts.

5. Run the script that you created on the source 12.1 CDB (for example, script2.sql) in
the target PDB.

The script that you generate from the release 12.1 source CDB type creation scripts
generates all of these objects in the target PDB. Making these common objects available in
the target PDB should eliminate the invalid XDB errors.

Fixing ORA-27248: sys.dra_reevaluate_open_failures is running
Use this procedure to identify DRA_REEVALUATE_OPEN_FAILURES jobs that block
upgrades.

During an upgrade, if DBUA fails with the error ORA-27248:
sys.dra_reevaluate_open_failures is running, then the job
DRA_REEVALUATE_OPEN_FAILURES is running, which causes upgrade failures. Ensure that the
job is stopped before continuing the upgrade.

In a job definition, if ALLOW_RUNS_IN_RESTRICTED_MODE is set to TRUE, and the job owner is
permitted to log in during restricted mode, then that job is permitted to run when the database
is in restricted or upgrade mode. The default setting for this parameter is FALSE.

Use the following query to see the state of any running jobs:

SQL> select OBJECT_NAME, Owner, OBJECT_TYPE from dba_objects whereobject_name like
'%DRA_REEVA%';

Fixing Failed Upgrades Where Only Datapatch Fails
If only datapatch fails during an upgrade, then rerun datapatch directly.

The Datapatch script is a shell script. In some patching operations, the final post-upgrade
patches may not run, due to errors such as ORA-20001. If only the Datapatch script fails,
then you do not need to run the upgrade again to fix this issue. Instead, run the datapatch
script directly.

Chapter 6
Fixing ORA-27248: sys.dra_reevaluate_open_failures is running

6-15

To fix a failed datapatch, log in as the Oracle user, and complete this procedure:

1. Change directory to Opatch inside the upgraded Oracle home.

$ cd $ORACLE_HOME/OPatch

2. Run the datapatch command.

On Linux and Unix:

./datapatch -verbose

On Microsoft Windows:

datapatch -verbose

Fixing Failures to Complete Registration of Listeners with
DBUA

On the Database Upgrade Assistant Progress step, a window appears with this
warning: "Unable to create database entry in the directory service. No Listeners
configured."

In this scenario, you have completed the following steps:

1. Created a listener in your earlier release Oracle home using Net Configuration
Assistant (NetCA) or Net Manager.

2. Installed the new Oracle Database release in the new Oracle home, and
registered it against the listener.

3. You want to register the listener to Oracle Internet Directory (OID), and upgrade
the database, or you want to register the listener on OID on the new Oracle home.

Note:

If the listener is running from another Oracle home on the server, or the
listener is running from the current Oracle home, but it is not configured in
the LISTENER.ORA file (that is, it uses an automatically generated default
configuration), then DBCA is unable to locate the listener.

DBUA is no longer performing direct registration of the upgraded database to OID
during the upgrade itself.

To resolve this issue, complete the following tasks:

1. De-register the listener from OID.

2. Perform the database upgrade.

3. Register again the migrated listener to the OID registry on the new release Oracle
Database Oracle home.

Chapter 6
Fixing Failures to Complete Registration of Listeners with DBUA

6-16

7
Postupgrade Tasks for Oracle Database

After you upgrade Oracle Database, complete required postupgrade tasks, and consider
recommendations for the new release.

• Check the Upgrade With Post-Upgrade Status Tool
Review the upgrade spool log file and use the Post-Upgrade Status Tool, utlusts.sql.

• How to Show the Current State of the Oracle Data Dictionary
To check the state of the Oracle Data Dictionary for diagnosing upgrades and migrations,
use one of three methods.

• Required Tasks to Complete After Upgrading Oracle Database
Review and complete these required tasks that are specified for your environment after
you complete your upgrade.

• Recommended and Best Practices to Complete After Upgrading Oracle Database
Oracle recommends that you complete these good practices guidelines for updating
Oracle Database. Except where noted, these practices are recommended for all types of
upgrades.

• Recommended Tasks After Upgrading an Oracle RAC Database
Decide if you want to configure clients to use SCAN or node listeners for connections.

• Recommended Tasks After Upgrading Oracle ASM
After you have upgraded Oracle ASM, Oracle recommends that you perform tasks such
as resetting the Oracle ASM passwords and configuring disk groups.

• Recommended Tasks After Upgrading Oracle Database Express Edition
Use DBCA or run manual scripts to install additional components into Oracle Database.

• Tasks to Complete Only After Manually Upgrading Oracle Database
After you complete your upgrade, you must perform the tasks described here if you
upgrade your database manually instead of using DBUA.

Check the Upgrade With Post-Upgrade Status Tool
Review the upgrade spool log file and use the Post-Upgrade Status Tool, utlusts.sql.

The Post-Upgrade Status Tool is located in the path $ORACLE_HOME/rdbms/admin. The
tool is a SQL script that is included with Oracle Database. You run the Post-Upgrade Status
Tool in the environment of the new release. You can run the Post-Upgrade Status Tool at any
time after you upgrade the database.

How to Show the Current State of the Oracle Data Dictionary
To check the state of the Oracle Data Dictionary for diagnosing upgrades and migrations, use
one of three methods.

Example 7-1 Run the dbupgdiag.sql Script

The dbupgdiag.sql script collects diagnostic information about the status of the database,
either before or after the upgrade. Download the script from My Oracle Support note 556610,

7-1

and run the script as the database SYS user. The script generates the diagnostic
information in a readable format, in a log file with the name file
db_upg_diag_sid_timestamp.log, where sid is the Oracle system identifier for the
database, and timestamp is the time that the file is generated.

For example, where you download and place the script in the directory /u01/
dbupgdiag-script:

/u01/dbupdiag-script/ $ sqlplus / as sysdba
sql> alter session set nls_language='American';
sql> @dbupgdiag.sql
sql> exit

You can run the script in SQL*Plus both before the upgrade on the source database,
and after the upgrade on the upgraded database. For more information about the
script, refer to the instructions and the output example file in My Oracle Support Note
556610.1.

Example 7-2 Run a SQL Query on DBA_REGISTRY

To show the current state of the dictionary, perform a SQL query similar to the
following example:

SQL> spool /tmp/regInvalid.out
SQL> set echo on
-- query registry
SQL> set lines 80 pages 100
SQL> select substr(comp_id,1,15) comp_id,substr(comp_name,1,30)
 comp_name,substr(version,1,10) version_full,status
from dba_registry order by comp_id;

Example 7-3 Run a Query to Check for Invalid Objects

To query invalid objects, perform a SQL query similar to the following example:

SQL> select owner, object_name, object_type from dba_invalid_objects
order by owner, object_type, object_name;

After you have upgraded the database, and you have run utlrp.sql, this view query
should return no rows.

Related Topics

• https://support.oracle.com/rs?type=doc&id=556610.1

Required Tasks to Complete After Upgrading Oracle
Database

Review and complete these required tasks that are specified for your environment
after you complete your upgrade.

Chapter 7
Required Tasks to Complete After Upgrading Oracle Database

7-2

https://support.oracle.com/rs?type=doc&id=556610.1

You must complete these postupgrade tasks after you upgrade Oracle Database. You must
complete these tasks both when you perform the upgrade manually, and when you upgrade
by using Database Upgrade Assistant (DBUA).

• Setting Environment Variables on Linux and Unix Systems After Manual Upgrades
Check that required operating system environment variables point to the directories of the
new Oracle Database release.

• Recompiling All Invalid Objects
Identify and recompile invalid objects on the CDB and PDBs using the catcon utility to
run utlrp.sql after you install, patch, or upgrade a database.

• Track Invalid Object Recompilation Progress
Use these SQL queries to track the progress of utlrp.sql script recompilation of
invalid objects.

• Update Listener Files Location on Oracle RAC Cluster Member Upgrades
If you do not use a shared Oracle Base Home, and you perform an upgrade on an Oracle
Database instance that is an Oracle Real Application Clusters member node, then you
must update your listener path.

• Setting oratab and Scripts to Point to the New Oracle Location After Upgrading Oracle
Database
You must set scripts to point to the new Oracle home location.

• Check PL/SQL Packages and Dependent Procedures
It is possible that packages that you installed in the earlier release Oracle Database are
not available in the new release, which can affect applications.

• Upgrading Tables Dependent on Oracle-Maintained Types
Starting with Oracle Database 12c Release 2 (12.2) and later releases, you must
manually upgrade user tables that depend on Oracle-Maintained types.

• Upgrading Statistics Tables Created by the DBMS_STATS Package After Upgrading
Oracle Database
If you created statistics tables using the DBMS_STATS.CREATE_STAT_TABLE procedure,
then upgrade these tables by running DBMS_STATS.UPGRADE_STAT_TABLE.

• Configuring the FTP and HTTP Ports and HTTP Authentication for Oracle XML DB
Oracle Database Configuration Assistant (DBCA) does not configure ports for Oracle
XML DB on Oracle Database 12c and later releases. Upgrades use digest authentication.

• Install Oracle Text Supplied Knowledge Bases After Upgrading Oracle Database
After an Oracle Database upgrade, all user extensions to the Oracle Text supplied
knowledge bases must be regenerated.

• Drop Earlier Release Oracle Application Express
To avoid invalid objects, drop Oracle Application Express releases earlier than
Application Express (APEX) 19.1.

• Replace the DEMO Directory in Read-Only Oracle Homes
After upgrading Read-Only Oracle homes, make a copy of the earlier release Oracle
Database demo directory, and replace the demo directory in the Read-Only Oracle home
with the new release demo directory.

• Configure Access Control Lists (ACLs) to External Network Services
Oracle Database 12c and later releases include fine-grained access control to the
UTL_TCP, UTL_SMTP, UTL_MAIL, UTL_HTTP, or UTL_INADDR packages.

• Enabling Oracle Database Vault After Upgrading Oracle Database
Depending on your target database release, you can be required to reenable Oracle
Database Vault, or revoke Oracle Database Vault role granted for upgrade.

Chapter 7
Required Tasks to Complete After Upgrading Oracle Database

7-3

• Check for the SQLNET.ALLOWED_LOGON_VERSION Parameter Behavior
Connections to Oracle Database from clients earlier than release 10g fail with the
error ORA-28040: No matching authentication protocol.

Setting Environment Variables on Linux and Unix Systems After
Manual Upgrades

Check that required operating system environment variables point to the directories of
the new Oracle Database release.

Confirm that the following Oracle user environment variables point to the directories of
the new Oracle home:

• ORACLE_HOME

• PATH

Related Topics

• Step 2: Ensure That the Required Environment Variables Are Set

Recompiling All Invalid Objects
Identify and recompile invalid objects on the CDB and PDBs using the catcon utility to
run utlrp.sql after you install, patch, or upgrade a database.

Note:

If you upgraded using the AutoUpgrade utility, then AutoUpgrade
automatically takes care of this task during the upgrade. You do not need to
perform this task.

Oracle recommends that you use the catcon.pl utility to run utlrp.sql on all
containers in your container database (CDB). The utlrp.sql script recompiles all
invalid objects. Run the script immediately after installation, to ensure that users do not
encounter invalid objects.

1. Change directory to Oracle_home/rdbms/admin. For example

$ cd $ORACLE_HOME/rdbms/admin

2. Use the catcon.pl script in the Oracle home to run utlrp.sql. For example:

$ORACLE_HOME/perl/bin/perl catcon.pl --n 1 --e --b utlrp --d
'''.''' utlrp.sql

Note the following conditions of this use case:

• --n parameter: is set to 1, so the script runs each PDB recompilation in
sequence.

• --e parameter: turns echo on.

Chapter 7
Required Tasks to Complete After Upgrading Oracle Database

7-4

• --b parameter: Sets the log file base name. It is set to utlrp.

Expect a time delay for the serial recompilation of PDBs to complete. Depending on the
number of PDBs that you are upgrading, the recompilation can extend significantly beyond
the time required for the upgrade scripts to complete.

The utlrp.sql script automatically recompiles invalid objects in either serial or parallel
recompilation, based on both the number of invalid objects, and on the number of CPUs
available. CPUs are calculated using the number of CPUs (cpu_count) multiplied by the
number of threads for each CPU (parallel_threads_per_cpu). On Oracle Real
Application Clusters (Oracle RAC), this number is added across all Oracle RAC nodes.

For more information about catcon utility syntax and options, refer to Oracle Multitenant
Administrator's Guide.

Related Topics

• Syntax and Parameters for catcon.pl

Track Invalid Object Recompilation Progress
Use these SQL queries to track the progress of utlrp.sql script recompilation of invalid
objects.

Note:

If you upgraded using the AutoUpgrade utility, then AutoUpgrade automatically
takes care of this task during the upgrade. You do not need to perform this task.

Oracle recommends that you run the utlrp.sql script after upgrade to recompile invalid
objects. You can run SQL queries to monitor the script.

Example 7-4 Number of Invalid Objects Remaining

Enter this query to return the number of remaining invalid objects. This number decreases
over time as the utlrp.sql script runs.

SELECT COUNT(*) FROM obj$ WHERE status IN (4, 5, 6);

Example 7-5 Number of Objects Recompiled

Enter this query to return the number of objects that utlrp.sql has compiled. This number
increases over time as the script runs.

SELECT COUNT(*) FROM UTL_RECOMP_COMPILED;

Example 7-6 Number of Objects Recompiled with Errors

Enter this query to return the number of objects that utlrp.sql has compiled with errors.

select COUNT(DISTINCT(obj#)) "OBJECTS WITH ERRORS" from utl_recomp_errors;

Chapter 7
Required Tasks to Complete After Upgrading Oracle Database

7-5

If the number is higher than expected, then examine the error messages reported with
each object. If you see errors due to system misconfiguration or resource constraints,
then fix the cause of these errors, and run utlrp.sql again.

Update Listener Files Location on Oracle RAC Cluster Member
Upgrades

If you do not use a shared Oracle Base Home, and you perform an upgrade on an
Oracle Database instance that is an Oracle Real Application Clusters member node,
then you must update your listener path.

If you do not use a shared Oracle Base Home, and you perform an upgrade on an
Oracle Database instance that is an Oracle Real Application Clusters cluster member
node, but you do not use Database Configuration Assistant (DBCA), then you must
manually update all of the remote tnsnames.ora files. If the files are not updated, then
the following error occurs:

TNS-03505: Failed to resolve name

Starting with Oracle Database 21c, the default network administration directory
changes from the previous default in the local Oracle home, Oracle_home/network (for
example, /u01/app/oracle/product/19.1.0/dbhome_1/network), to a new location.
The new default location is the shared Oracle Base Home, in the path ORACLE_BASE/
homes/HOME_NAME/network/admin. For example:/u01/app/oracle/homes/
OraDB20Home1/network/admin is the Oracle home of a specific Oracle Real Application
Clusters (Oracle RAC) instance, which is located in the default path for read-only
Oracle homes. That file path is the default location of the local tnsnames.ora and
sqlnet.ora files.

During the upgrade, Net Configuration Assistant (NetCA, or netca) updates the
location of the network listener files, tnsnames.ora and sqlnet.ora on the local host.
However, NetCA does not update the location of those network listener files for the
instance on all cluster member nodes. To ensure that all cluster member nodes can
resolve service requests to the upgraded cluster member node instance, you must do
one of the following:

• On each cluster member node, Manually copy the tnsnames.ora and sqlnet.ora
files from the existing location to ORACLE_BASE/homes/HOME_NAME/network/admin/.

• Set an environment variable on the upgraded cluster member node to point to the
existing network administration files location.

p

To ensure that WORKAROUND:-----------cp tnsnames.ora and sqlnet.ora
to $ORACLE_BASE/homes/OraDB20Home1/network/admin/sqlnet.oraorexport
TNS_ADMIN=$ORACLE_HOME/network/admin

Example 7-7 Copy TNSNAMES.ORA and SQLNET.ORA to New Default Network
Administration Directory

In this example, you copy the existing tnsnames.ora and sqlnet.ora files to the new
default network location on each cluster member node

Chapter 7
Required Tasks to Complete After Upgrading Oracle Database

7-6

1. Log in as the Oracle installation owner, and change directory to the earlier release
network administration directory. For example:

cd $ORACLE_HOME/network

2. Use secure copy (scp) to copy the listener files to the default network directory location
on another cluster member node. For example, where racnode2 is a cluster member
node to which you want to copy the listener files:

cd $OLD_ORACLE_HOME/network
scp tnsnames.ora sqlnet.ora \
oracle@racnode2:/u01/app/oracle/homes/OraDB20Home1/network/admin/

Example 7-8 Set the TNS_ADMIN Environment Variable

On the upgraded node, log in as the Oracle user, and then set an environment variable for
TNS_ADMIN to point to the location of your existing listener files. For example:

/home/oracle oracle> $ export TNS_ADMIN=$ORACLE_HOME/network/admin

Setting oratab and Scripts to Point to the New Oracle Location After
Upgrading Oracle Database

You must set scripts to point to the new Oracle home location.

After you upgrade Oracle Database to a new release, if you do not use AutoUpgrade for your
database upgrade, then you must ensure that your oratab file and any client scripts that set
the value of ORACLE_HOME point to the new Oracle home that is created for the new Oracle
Database release. If you perform your upgrade using either AutoUpgrade or DBUA, then
these utilities automatically point oratab to the new Oracle home. However, regardless of the
method you use to upgrade, you must check client scripts.

If you upgrade your database manually, then you must log in as the Oracle installation owner
for the new Oracle Database release, and update the oratab file manually. The location of
the oratab file can vary, depending on your operating system.

Related Topics

• Step 2: Set Operating System Environment Variables

• My Oracle Support Note 394251.1

Check PL/SQL Packages and Dependent Procedures
It is possible that packages that you installed in the earlier release Oracle Database are not
available in the new release, which can affect applications.

After the upgrade, if you use AutoUpgrade, review the AutoUpgrade report on invalid objects.
If you use a replay upgrade, then check to ensure that any packages that you may have used
in your own scripts, or that you call from your scripts, are available in the new release. Testing
procedures dependent on packages should be part of your upgrade plan.

Code in database applications can reference objects in the connected database. For
example, Oracle Call Interface (OCI) and precompiler applications can submit anonymous
PL/SQL blocks. Triggers in Oracle Forms applications can reference a schema object. Such

Chapter 7
Required Tasks to Complete After Upgrading Oracle Database

7-7

https://support.oracle.com/rs?type=doc&id=394251.1

applications are dependent on the schema objects they reference. Dependency
management techniques vary, depending on the development environment. Oracle
Database does not automatically track application dependencies.

Related Topics

• Oracle Database Administrator’s Guide

Upgrading Tables Dependent on Oracle-Maintained Types
Starting with Oracle Database 12c Release 2 (12.2) and later releases, you must
manually upgrade user tables that depend on Oracle-Maintained types.

Note:

If you upgraded using the AutoUpgrade utility, then AutoUpgrade
automatically takes care of this task during the upgrade. You do not need to
perform this task.

If your database has user tables that are dependent on Oracle-Maintained types (for
example, AQ queue tables), then run the utluptabdata.sql command after the
upgrade to carry out ALTER TABLE UPGRADE on any user tables affected by changes in
Oracle-Maintained types. This change in behavior enables user tables to remain in
READ ONLY state during an upgrade. Users are prevented from logging into applications
using SYSDBA privileges (AS SYSDBA), and changing application tables that are
dependent on Oracle-Maintained types.

To identify tables that you need to upgrade after the database upgrade completes,
connect to the database AS SYSDBA, and run the following query:

COLUMN owner FORMAT A30
COLUMN table_name FORMAT A30
SELECT DISTINCT owner, table_name
FROM dba_tab_cols
WHERE data_upgraded = 'NO'
ORDER BY 1,2;

This query lists all tables that are not listed as UPGRADED. However, the
utluptabdata.sql script only upgrades tables that depend on Oracle-Maintained
types. If any tables are listed by the query, then run the utluptabdata.sql script to
perform ALTER TABLE UPGRADE commands on dependent user tables, so that these
Oracle-Maintained types are upgraded to the latest version of the type.

You must run the utluptabdata.sql script either with a user account with ALTER
privileges for all of the tables dependent on Oracle-Maintained types, or with a user
granted the SYSDBA system privileges, and that is logged in AS SYSDBA.

Chapter 7
Required Tasks to Complete After Upgrading Oracle Database

7-8

When the parameter SERVEROUTPUT is set to ON, the utluptabdata.sql script displays
the names of all upgraded tables, and lists any error encountered during the table upgrade.
To set the server output to ON, run the following command:

SET SERVEROUTPUT ON
@utluptabdata.sql

Upgrading Statistics Tables Created by the DBMS_STATS Package After
Upgrading Oracle Database

If you created statistics tables using the DBMS_STATS.CREATE_STAT_TABLE procedure,
then upgrade these tables by running DBMS_STATS.UPGRADE_STAT_TABLE.

In the following example, green is the owner of the statistics table and STAT_TABLE is the
name of the statistics table.

EXECUTE DBMS_STATS.UPGRADE_STAT_TABLE('green', 'stat_table');

Perform this procedure for each statistics table.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
DBMS_STATS package

Configuring the FTP and HTTP Ports and HTTP Authentication for Oracle
XML DB

Oracle Database Configuration Assistant (DBCA) does not configure ports for Oracle XML
DB on Oracle Database 12c and later releases. Upgrades use digest authentication.

Oracle recommends that when you configure ports, you also configure the authentication for
HTTP for accessing Oracle XML DB Repository to take advantage of improved security
features.

Starting with Oracle Database 12c, Oracle enhanced database security by supporting digest
authentication. Digest authentication is an industry-standard protocol that is commonly used
with the HTTP protocol. It is supported by most HTTP clients. Digest authentication ensures
that passwords are always transmitted in a secure manner, even when an encrypted
(HTTPS) connection is not in use. Support for digest authentication enables organizations to
deploy applications that use Oracle XML DB HTTP, without having to worry about passwords
being compromised. Digest authentication support in Oracle XML DB also ensures that the
Oracle XML DB HTTP server remains compatible with Microsoft Web Folders WebDAV
clients.

After installing or upgrading for the new release, you must manually configure the FTP and
HTTP ports for Oracle XML DB as follows:

Chapter 7
Required Tasks to Complete After Upgrading Oracle Database

7-9

1. Use DBMS_XDB_CONFIG.setHTTPPort(HTTP_port_number) to set the HTTP port for
Oracle XML DB:

SQL> exec DBMS_XDB_CONFIG.setHTTPPort(port_number);

2. Use DBMS_XDB_CONFIG.setFTPPort(FTP_port_number) to set the FTP port for
Oracle XML DB:

SQL> exec DBMS_XDB_CONFIG.setFTPPort(FTP_port_number);

Note:

You can query the port numbers to use for FTP and HTTP in the
procedure by using DBMS_XDB_CONFIG.getFTPPort and
DBMS_XDB_CONFIG.getHTTPPort respectively.

3. To see all the used port numbers, query DBMS_XDB_CONFIG.usedport.

Install Oracle Text Supplied Knowledge Bases After Upgrading Oracle
Database

After an Oracle Database upgrade, all user extensions to the Oracle Text supplied
knowledge bases must be regenerated.

Regenerating the user extensions affect all databases installed in the given Oracle
home.

After an upgrade, the Oracle Text-supplied knowledge bases that are part of the
companion products for the new Oracle Database are not immediately available. Any
Oracle Text features dependent on the supplied knowledge bases that were available
before the upgrade do not function after the upgrade. To re-enable such features, you
must install the Oracle Text supplied knowledge bases from the installation media for
the new Oracle Database release.

See Also:

• Oracle Text Application Developer's Guide for information about Oracle
Text-supplied knowledge bases

• Oracle Database Installation Guide for companion products

Drop Earlier Release Oracle Application Express
To avoid invalid objects, drop Oracle Application Express releases earlier than
Application Express (APEX) 19.1.

The package DBMS_OBFUSCATION_TOOLKIT was deprecated in Oracle Database 11g
Release 2 (11.2). Starting in Oracle Database 21c, DBMS_OBFUSCATION_TOOLKIT is

Chapter 7
Required Tasks to Complete After Upgrading Oracle Database

7-10

desupported, and replaced with DBMS_CRYPT. In releases earlier than Oracle Database 21c,
Oracle Application Express (APEX) continued to have a dependency on
DBMS_OBFUSCATION_TOOLKIT. In Oracle Database 21c, which includes APEX release 19.2, this
dependency is removed.

During Oracle Database upgrade, APEX is not automatically upgraded to the release shipped
with the Oracle Database release. Before upgrade, when you run AutoUpgrade using the
preupgrade parameter, the output upgrade.xml file reports that you must upgrade APEX
releases earlier than APEX 19.1.0.00.15, because of the earlier release dependency on
DBMS_OBFUSCATION_TOOLKIT.

To avoid INVALID objects, either before or after you upgrade Oracle Database, you must
upgrade APEX to at least the version that ships with Oracle Database 21c, and then drop
earlier releases of APEX.

1. Log in to the new Oracle Database Oracle home

2. Upgrade Oracle Application Express, using at least Oracle Application Express 19.2,
which is shipped in the Oracle home (APEX 19.2), or a later version, when it is available

3. Drop earlier release APEX users.
For example:

drop user APEX_050000 cascade;
drop user APEX_040200 cascade;
drop user APEX_030100 cascade;

4. Drop earlier release APEX SYS owned objects.
For example:

drop package SYS.WWV_DBMS_SQL;

Note:

Starting with Oracle Application Express 18c (18.1), the SYS.WWV_DBMS_SQL object is
appended with the Oracle Application Express release schema.
For example:

SYS.WWV_DBMS_SQL_APEX_180100

Replace the DEMO Directory in Read-Only Oracle Homes
After upgrading Read-Only Oracle homes, make a copy of the earlier release Oracle
Database demo directory, and replace the demo directory in the Read-Only Oracle home with
the new release demo directory.

Oracle Database 18c and later releases contain a product demonstration directory in the file
path Oracle_home/rdbms/demo. These directories include examples and product
demonstrations that are specific to the options and features for each Oracle Database
release, some of which you can add to after upgrade by installing Oracle Database
Examples. In your earlier release, if you downloaded and worked with the earlier release
demonstration files, then you have two problems: you want to save your earlier release work

Chapter 7
Required Tasks to Complete After Upgrading Oracle Database

7-11

for review and testing with the new release, and you want to obtain refreshes of the
demonstrations that are specific to the new release.

After upgrading the Oracle home, and downloading and doing any other work you
want to do with the new demonstration files, you can then refresh your old
demonstration files.

Example 7-9 Copying the Earlier Release Demo Directory and Refreshing the
Demonstrations in the Read-Only Oracle Home

After the upgrade, use this procedure to save any work in your earlier demo directory in
the Read-Only Oracle home, and and replace the earlier release demo directory with
the new release demo directory:

1. Log in as the Oracle software owner user (oracle).

2. Check if the rdbms/demo directory is copied to the Read Only Oracle home.

In this example, the environment variable ORACLE_BASE_HOME is defined as the path
to the Read-Only Oracle home.

Linux and Unix platforms:

$ ls -l -d $ORACLE_BASE_HOME/rdbms/demo
/u01/app/oracle/product/19.0.0/dbhome_1/rdbms/demo

Microsoft Windows platforms

ls -l -d %ORACLE_BASE_HOME%\rdbms\demo
%ORACLE_BASE_HOME%\rdbms\demo

3. Change directory to the Read-Only Oracle home, and make a copy, where
demo.old_release18 is the name you give to your earlier release demonstration
files:

cd $ORACLE_BASE_HOME/rdbms
mv demo demo.old_release18

4. Copy the new demo directory from the upgraded Oracle home to the Read-Only
Oracle home.

In this example, the environment variable ORACLE_HOME is defined as the new
release Oracle home.

Linux and Unix:

cp -r $ORACLE_HOME/rdbms/demo demo

Microsoft Windows

xcopy c:\%ORACLE_HOME%\rdbms\demo c:%ORACLE_BASE_HOME%\rdbms\demo /E

Chapter 7
Required Tasks to Complete After Upgrading Oracle Database

7-12

Configure Access Control Lists (ACLs) to External Network Services
Oracle Database 12c and later releases include fine-grained access control to the UTL_TCP,
UTL_SMTP, UTL_MAIL, UTL_HTTP, or UTL_INADDR packages.

If you have applications that use these packages, then after upgrading Oracle Database you
must configure network access control lists (ACLs) in the database before the affected
packages can work as they did in earlier releases. Without the ACLs, your applications can
fail with the error "ORA-24247: network access denied by access control list (ACL)."

See Also:

Oracle Database Security Guide for more complicated situations, such as
connecting some users to host A and other users to host B

Enabling Oracle Database Vault After Upgrading Oracle Database
Depending on your target database release, you can be required to reenable Oracle
Database Vault, or revoke Oracle Database Vault role granted for upgrade.

• Upgrading Oracle Database Without Disabling Oracle Database Vault
To upgrade to Oracle Database 21c or later releases, either grant the DV_PATCH_ADMIN
role to SYS commonly in the root container, and revoke after the upgrade, or disable
Oracle Database Vault and reenable it after upgrade.

• Postupgrade Scenarios with Oracle Database Vault
Postupgrade tasks for Oracle Database Vault change, depending on your target Oracle
Database release, and the option you chose to prepare for upgrade.

Upgrading Oracle Database Without Disabling Oracle Database Vault
To upgrade to Oracle Database 21c or later releases, either grant the DV_PATCH_ADMIN role to
SYS commonly in the root container, and revoke after the upgrade, or disable Oracle
Database Vault and reenable it after upgrade.

If Oracle Database Vault is enabled and you are upgrading an entire CDB, then use one of
the following methods:

• CDB upgrade method 1: Temporarily grant the DV_PATCH_ADMIN to user SYS commonly by
logging into the root container as a common user with the DV_OWNER role, and then issuing
the GRANT DV_PATCH_ADMIN TO SYS CONTAINER=ALL statement. Oracle Database Vault
controls will be in the same state as it was before the upgrade. When the upgrade is
complete, log into the root container as the DV_OWNER user, and revoke the
DV_PATCH_ADMIN role from SYS by issuing the REVOKE DV_PATCH_ADMIN FROM SYS
CONTAINER=ALL statement.

• CDB upgrade method 2: Log into each container as a user who has the DV_OWNER role,
and then execute the DBMS_MACADM.DISABLE_DV procedure. You must first disable the
PDBs (in any order) and then after that, disable the root container last. If you are
upgrading only one PDB, then you can disable Oracle Database Vault in that PDB only.
After you have completed the upgrade, you can enable Oracle Database Vault by logging

Chapter 7
Required Tasks to Complete After Upgrading Oracle Database

7-13

into each container as the DV_OWNER user and then executing the
DVSYS.DBMS_MACADM.ENABLE_DV procedure. The order of enabling Oracle Database
Vault must be the root container first and PDBs afterward. You can enable the
PDBs in any order, but the root container must be enabled first.

If you manually disable Oracle Database Vault before the upgrade, then you must
enable Oracle Database Vault manually after the upgrade.

If you did not have Oracle Database Vault enabled before the upgrade, then you can
enable it manually after the upgrade.

Enable Oracle Database Vault in the upgraded database by using the procedure
dvsys.dbms_macadm.enable_dv(). Run this procedure with a user account that is
granted DV_OWNER. After you run the procedure, restart the database instance so that
the procedure takes effect.

Related Topics

• Disabling and Enabling Oracle Database Vault Oracle Database Vault
Administrator’s Guide

Postupgrade Scenarios with Oracle Database Vault
Postupgrade tasks for Oracle Database Vault change, depending on your target
Oracle Database release, and the option you chose to prepare for upgrade.

Upgrades to Oracle Database 21c and Later

You must choose one of the following options:

• Grant the DV_PATCH_ADMIN role to SYS commonly (container=all).

• Disable Oracle Database Vault before upgrade.

If you granted the DV_PATCH_ADMIN role to SYS before the upgrade, then revoke the
DV_PATCH_ADMIN role from SYS after the upgrade. If you disabled Oracle Database
Vault, then reenable it after the upgrade is complete.

Upgrades to Oracle Database 18c and 19c

You do not need to disable Oracle Database Vault.

Note:

For all upgrades, after the upgrade is complete, Oracle Database Vault has
the same enforcement status that was in place for your source database
before the upgrade.

Check for the SQLNET.ALLOWED_LOGON_VERSION Parameter
Behavior

Connections to Oracle Database from clients earlier than release 10g fail with the error
ORA-28040: No matching authentication protocol.

Chapter 7
Required Tasks to Complete After Upgrading Oracle Database

7-14

Starting with Oracle Database 18c, the default value for the SQLNET.ALLOWED_LOGON_VERSION
parameter changed from 11 in Oracle Database 12c (12.2) to 12 in Oracle Database 18c and
later releases. The use of this parameter is deprecated.

SQLNET.ALLOWED_LOGON_VERSION is now replaced with the
SQLNET.ALLOWED_LOGON_VERSION_SERVER and SQLNET.ALLOWED_LOGON_VERSION_CLIENT
parameters. If you have not explicitly set the SQLNET.ALLOWED_LOGON_VERSION_SERVER
parameter in the upgraded database, then connections from clients earlier than release 10g
fail with the error ORA-28040: No matching authentication protocol. For better security,
check the password verifiers of your database users, and then configure the database to use
the correct password verifier by setting the SQLNET.ALLOWED_LOGON_VERSION_SERVER and
SQLNET.ALLOWED_LOGON_VERSION_CLIENT parameters.

If you have password-protected roles (secure roles) in your existing database, and if you
upgrade to Oracle Database 18c and later releases with the default
SQLNET.ALLOWED_LOGON_VERSION_SERVER setting of 12, because those secure roles only have
release 10g verifiers, then the password for each secure role must be reset by the
administrator so that the secure roles can remain usable after the upgrade.

See Also:

• Oracle Database Security Guide for information about ensuring against
password security threats

• Oracle Database Security GuideOracle Database Security Guide for
information about setting the password versions of users

Recommended and Best Practices to Complete After Upgrading
Oracle Database

Oracle recommends that you complete these good practices guidelines for updating Oracle
Database. Except where noted, these practices are recommended for all types of upgrades.

• Back Up the Database
Oracle strongly recommends that you at least perform a level 1 backup, or if time allows,
perform a level 0 backup.

• Run AutoUpgrade Postupgrade Checks
If you did not run AutoUpgrade in deploy mode, then run Autoupgrade with the
preupgrade parameter, run in postfixups mode.

• Gathering Dictionary Statistics After Upgrading
To help to assure good performance, use this procedure to gather dictionary statistics
after completing your upgrade.

• Regathering Fixed Objects Statistics with DBMS_STATS
After an upgrade, or after other database configuration changes, Oracle strongly
recommends that you regather fixed object statistics after you have run representative
workloads on Oracle Database.

• Reset Passwords to Enforce Case-Sensitivity
For upgraded databases, improve security by using case-sensitive passwords for default
user accounts and user accounts.

Chapter 7
Recommended and Best Practices to Complete After Upgrading Oracle Database

7-15

• Finding and Resetting User Passwords That Use the 10G Password Version
For better security, find and reset passwords for user accounts that use the 10G
password version so that they use later, more secure password versions.

• Understand Oracle Grid Infrastructure, Oracle ASM, and Oracle Clusterware
Oracle Clusterware and Oracle Automatic Storage Management (Oracle ASM) are
both part of an Oracle Grid Infrastructure installation.

• Oracle Grid Infrastructure Installation and Upgrade and Oracle ASM
Oracle ASM is installed with Oracle Grid Infrastructure.

• Add New Features as Appropriate
Review new features as part of your database upgrade plan.

• Develop New Administrative Procedures as Needed
Plan a review of your scripts and procedures, and change as needed.

• Migrating From Rollback Segments To Automatic Undo Mode
If your database release is earlier than Oracle Database 11g, then you must
migrate the database that is being upgraded from using rollback segments
(manual undo management) to automatic undo management.

• Migrating Tables from the LONG Data Type to the LOB Data Type
You can use the ALTER TABLE statement to change the data type of a LONG column
to CLOB and that of a LONG RAW column to BLOB.

• Migrate Your Upgraded Oracle Databases to Use Unified Auditing
To use the full facilities of unified auditing, you must manually migrate to unified
auditing.

• Identify Oracle Text Indexes for Rebuilds
You can run a script that helps you to identify Oracle Text index indexes with token
tables that can benefit by being rebuilt after upgrading to the new Oracle Database
release..

• Dropping and Recreating DBMS_SCHEDULER Jobs
If DBMS_SCHEDULER jobs do not function after upgrading from an earlier
release, drop and recreate the jobs.

• Transfer Unified Audit Records After the Upgrade
Review these topics to understand how you can obtain better performance after
you upgrade and migrate to unified auditing

• About Recovery Catalog Upgrade After Upgrading Oracle Database
If you use a version of the recovery catalog schema that is older than that required
by the RMAN client, then you must upgrade it.

• Enabling Disabled Release Update Bug Fixes in the Upgraded Database
Because bug fixes in Release Updates that can cause execution plan changes are
disabled, Oracle recommends that you enable the disabled bug fixes that you want
to use.

• About Testing the Upgraded Production Oracle Database
Repeat tests on your production database that you carried out on your test
database to ensure applications operate as expected.

• Upgrading the Time Zone File Version After Upgrading Oracle Database
If the AutoUpgrade preupgrade report in upgrade.xml instructs you to upgrade the
time zone files after completing the database upgrade, and you do not set
AutoUpgrade to complete this task for you, then use the DBMS_DST PL/SQL
package to upgrade the time zone file.

Chapter 7
Recommended and Best Practices to Complete After Upgrading Oracle Database

7-16

Back Up the Database
Oracle strongly recommends that you at least perform a level 1 backup, or if time allows,
perform a level 0 backup.

Related Topics

• Backing Up the Database

Run AutoUpgrade Postupgrade Checks
If you did not run AutoUpgrade in deploy mode, then run Autoupgrade with the preupgrade
parameter, run in postfixups mode.

Note:

If you ran AutoUpgrade in deploy mode, then this step was already completed for
you, so you do not need to complete it now.

To see how to check your database after upgrades, use the following example.

Example 7-10 Running AutoUpgrade Using Postupgrade Fixup Mode

1. Set the Oracle home environment to the source Oracle Database home:

setenv ORACLE_HOME /u01/app/oracle/product/12.2.0/dbhome_1

.

2. Set the Oracle System Identifier (SID) to the source Oracle Database SID:

setenv ORACLE_SID db122

.

3. Run AutoUpgrade using the preupgrade parameter in postfixups mode, setting the target
home to the target Oracle Database Oracle home. For example:

java -jar autoupgrade.jar -preupgrade "target_home=/u01/app/oracle/
product/21.0.0/dbhome_1,dir=/autoupgrade/test/log" –mode postfixups

4. Check the results of the postfixup script checks in the file postfixups.xml under
directory /autoupgrade/test/log/db122/102/postfixups.

Gathering Dictionary Statistics After Upgrading
To help to assure good performance, use this procedure to gather dictionary statistics after
completing your upgrade.

Oracle recommends that you gather dictionary statistics both before and after upgrading the
database, because Data Dictionary tables are modified and created during the upgrade. With

Chapter 7
Recommended and Best Practices to Complete After Upgrading Oracle Database

7-17

Oracle Database 12c release 2 (12.2) and later releases, you gather statistics as a
manual procedure after the upgrade, when you bring the database up in normal mode.

Note:

If you completed your upgrade using the AutoUpgrade utility, then you do not
need to complete this task. The AutoUpgrade utility completes it for you.

CDB: Oracle recommends that you use catcon to gather Data Dictionary statistics
across the entire multitenant architecture

To gather dictionary statistics for all PDBs in a container database, use the following
syntax

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl -l /tmp -b
gatherstats -- --x"exec dbms_stats.gather_dictionary_stats"

To gather dictionary statistics on a particular PDB, use syntax similar to the following:

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl -l /tmp -c
'SALES1' -b gatherstats -- --x"exec dbms_stats.gather_dictionary_stats"

In the preceding example the -c SALES1 option specifies a PDB inclusion list for the
command that you run, specifying the database named SALES1. The option -b
gatherstats specifies the base name for the logs. The option --x specifies the SQL
command that you want to execute. The SQL command itself is inside the quotation
marks.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Regathering Fixed Objects Statistics with DBMS_STATS
After an upgrade, or after other database configuration changes, Oracle strongly
recommends that you regather fixed object statistics after you have run representative
workloads on Oracle Database.

Note:

To provide a baseline that is useful for performance tuning, Oracle
recommends that you gather baseline statistics at a point when the system is
operating at an optimal level.

Fixed objects are the X$ tables and their indexes. V$ performance views are defined
through X$ tables. Gathering fixed object statistics is valuable for database
performance, because these statistics help the optimizer to generate good execution
plans, which can improve database performance. Failing to obtain representative
statistics can lead to suboptimal execution plans, which can cause significant
performance problems.

Chapter 7
Recommended and Best Practices to Complete After Upgrading Oracle Database

7-18

Ensure that your database has run representative workloads, and then gather fixed objects
statistics by using the DBMS_STATS.GATHER_FIXED_OBJECTS_STATS PL/SQL procedure.
DBMS_STATS.GATHER_FIXED_OBJECTS_STATS also displays recommendations for removing all
hidden or underscore parameters and events from the INIT.ORA or SPFILE.

Because of the transient nature of X$ tables, you must gather fixed objects statistics when
there is a representative workload on the system. If you cannot gather fixed objects statistics
during peak load, then Oracle recommends that you do it after the system is in a runtime
state, and the most important types of fixed object tables are populated.

To gather statistics for fixed objects, run the following PL/SQL procedure:

SQL> execute dbms_stats.gather_fixed_objects_stats;

Related Topics

• Gathering Database Statistics

Reset Passwords to Enforce Case-Sensitivity
For upgraded databases, improve security by using case-sensitive passwords for default user
accounts and user accounts.

For greater security, Oracle recommends that you enable case sensitivity in passwords. Case
sensitivity increases the security of passwords by requiring that users enter both the correct
password string, and the correct case for each character in that string. For example, the
password hPP5620qr fails if it is entered as hpp5620QR or hPp5620Qr.

To secure your database, create passwords in a secure fashion. If you have default
passwords in your database, then change these passwords. By default, case sensitivity is
enforce when you change passwords. Every password should satisfy the Oracle
recommended password requirements, including passwords for predefined user accounts.

For new databases created after the upgrade, there are no additional tasks or management
requirements.

Existing Database Requirements and Guidelines for Password Changes

• If the default security settings for Oracle Database 12c release 1 (12.1) and later are in
place, then passwords must be at least eight characters, and passwords such as welcome
and oracle are not allowed.

• The IGNORECASE parameter is deprecated. Do not use this parameter.

• For existing databases, to take advantage of password case-sensitivity, you must reset
the passwords of existing users during the database upgrade procedure. Reset the
password for each existing database user with an ALTER USER statement.

• Query the PASSWORD_VERSIONS column of DBA_USERS to find the USERNAME of accounts that
only have the 10G password version, and do not have either the 11G or the 12C password
version. Reset the password for any account that has only the 10G password version.

Chapter 7
Recommended and Best Practices to Complete After Upgrading Oracle Database

7-19

See Also:

• Oracle Database Security Guide for more information about password
case sensitivity

• Oracle Database Security Guide for more information about password
strength

Finding and Resetting User Passwords That Use the 10G Password
Version

For better security, find and reset passwords for user accounts that use the 10G
password version so that they use later, more secure password versions.

Finding All Password Versions of Current Users

You can query the DBA_USERS data dictionary view to find a list of all the password
versions configured for user accounts.

For example:

SELECT USERNAME,PASSWORD_VERSIONS FROM DBA_USERS;

USERNAME PASSWORD_VERSIONS
------------------------------ -----------------
JONES 10G 11G 12C
ADAMS 10G 11G
CLARK 10G 11G
PRESTON 11G
BLAKE 10G

The PASSWORD_VERSIONS column shows the list of password versions that exist for the
account. 10G refers to the earlier case-insensitive Oracle password version, 11G refers
to the SHA-1-based password version, and 12C refers to the SHA-2-based SHA-512
password version.

• User jones: The password for this user was reset in Oracle Database 12c Release
12.1 when the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter setting was 8.
This enabled all three password versions to be created.

• Users adams and clark: The passwords for these accounts were originally created
in Oracle Database 10g and then reset in Oracle Database 11g. The Oracle
Database 11g software was using the default SQLNET.ALLOWED_LOGON_VERSION
setting of 8 at that time. Because case insensitivity is enabled by default, their
passwords are now case sensitive, as is the password for preston.

• User preston: This account was imported from an Oracle Database 11g database
that was running in Exclusive Mode (SQLNET.ALLOWED_LOGON_VERSION = 12).

• User blake: This account still uses the Oracle Database 10g password version. At
this stage, user blake is prevented from logging in.

Chapter 7
Recommended and Best Practices to Complete After Upgrading Oracle Database

7-20

Resetting User Passwords That Use the 10G Password Version

You should remove the 10G password version from the accounts of all users. In the following
procedure, to reset the passwords of users who have the 10G password version, you must
temporarily relax the SQLNET.ALLOWED_LOGON_VERSION_SERVER setting, which controls the
ability level required of clients before login can be allowed. Relaxing the setting enables these
users to log in and change their passwords, and hence generate the newer password
versions in addition to the 10G password version. Afterward, you can set the database to use
Exclusive Mode and ensure that the clients have the O5L_NP capability. Then the users can
reset their passwords again, so that their password versions no longer include 10G, but only
have the more secure 11G and 12C password versions.

1. Query the DBA_USERS view to find users who only use the 10G password version.

SELECT USERNAME FROM DBA_USERS
WHERE (PASSWORD_VERSIONS = '10G '
OR PASSWORD_VERSIONS = '10G HTTP ')
AND USERNAME <> 'ANONYMOUS';

2. Configure the database so that it does not run in Exclusive Mode, as follows:

a. Edit the SQLNET.ALLOWED_LOGON_VERSION_SERVER setting in the sqlnet.ora file so
that it is more permissive than the default. For example:

SQLNET.ALLOWED_LOGON_VERSION_SERVER=11

b. If you are in the CDB root, then restart the database (for example, SHUTDOWN
IMMEDIATE followed by STARTUP). If you are in a PDB, connect to the root using the
SYSDBA administrative privilege, and then enter the following statements:

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE pdb_name OPEN;

3. Expire the users that you found when you queried the DBA_USERS view to find users who
only use the 10G password version.

You must expire the users who have only the 10G password version, and do not have one
or both of the 11G or 12C password versions.

For example:

ALTER USER username PASSWORD EXPIRE;

4. Ask the users whose passwords you expired to log in.

When the users log in, they are prompted to change their passwords. The database
generates the missing 11G and 12C password versions for their account, in addition to the
10G password version. The 10G password version continues to be present, because the
database is running in the permissive mode.

5. Ensure that the client software with which the users are connecting has the O5L_NP ability.

All Oracle Database release 11.2.0.3 and later clients have the O5L_NP ability. If you have
an earlier Oracle Database client, then you must install the CPUOct2012 patch.

6. After all clients have the O5L_NP capability, set the security for the server back to
Exclusive Mode, as follows:

a. Remove the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter from the server
sqlnet.ora file, or set the value of SQLNET.ALLOWED_LOGON_VERSION_SERVER in the
server sqlnet.ora file back to 12, to set it to an Exclusive Mode.

Chapter 7
Recommended and Best Practices to Complete After Upgrading Oracle Database

7-21

SQLNET.ALLOWED_LOGON_VERSION_SERVER = 12

b. If you are in the CDB root, then restart the database (for example, SHUTDOWN
IMMEDIATE followed by STARTUP). If you are in a PDB, connect to the root using
the SYSDBA administrative privilege, and then enter the following statements:

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE pdb_name OPEN;

7. Find the accounts that still have the 10G password version.

SELECT USERNAME FROM DBA_USERS
WHERE PASSWORD_VERSIONS LIKE '%10G%'
AND USERNAME <> 'ANONYMOUS';

8. Expire the accounts that still have the 10G password version.

ALTER USER username PASSWORD EXPIRE;

9. Ask these users to log in to their accounts.

When the users log in, they are prompted to reset their passwords. The database
then generates only the 11G and 12C password versions for their accounts.
Because the database is running in Exclusive Mode, the 10G password version is
no longer generated.

10. Rerun the following query:

SELECT USERNAME FROM DBA_USERS
WHERE PASSWORD_VERSIONS LIKE '%10G%'
AND USERNAME <> 'ANONYMOUS';

If this query does not return any results, then it means that no user accounts have
the 10G password version. Hence, the database is running in a more secure mode
than in previous releases.

Understand Oracle Grid Infrastructure, Oracle ASM, and Oracle
Clusterware

Oracle Clusterware and Oracle Automatic Storage Management (Oracle ASM) are
both part of an Oracle Grid Infrastructure installation.

If Oracle Grid Infrastructure is installed for a single server, then it is deployed as an
Oracle Restart installation with Oracle ASM. If Oracle Grid Infrastructure is installed for
a cluster, then it is deployed as an Oracle Clusterware installation with Oracle ASM.

Oracle Restart enhances the availability of Oracle Database in a single-instance
environment. If you install Oracle Restart, and there is a temporary failure of any part
of the Oracle Database software stack, including the database, listener, and Oracle
ASM instance, Oracle Restart automatically restarts the failed component. In addition,
Oracle Restart starts all these components when the database host computer is
restarted. The components are started in the proper order, taking into consideration
the dependencies among components.

Oracle Clusterware is portable cluster software that enables clustering of single
servers so that they cooperate as a single system. Oracle Clusterware also provides
the required infrastructure for Oracle RAC. In addition, Oracle Clusterware enables the
protection of any Oracle application or any other application within a cluster. In any
case Oracle Clusterware is the intelligence in those systems that ensures required
cooperation between the cluster nodes.

Chapter 7
Recommended and Best Practices to Complete After Upgrading Oracle Database

7-22

Oracle Grid Infrastructure Installation and Upgrade and Oracle ASM
Oracle ASM is installed with Oracle Grid Infrastructure.

In earlier releases, Oracle ASM was installed as part of the Oracle Database installation.
Starting with Oracle Database release 11.2, Oracle ASM is installed when you install the Grid
Infrastructure components. Oracle ASM shares an Oracle home with Oracle Clusterware.

See Also:

Oracle Grid Infrastructure Installation Guide for your platform for information about
Oracle homes, role-allocated system privileges groups, different installation
software owner users, and other changes.

Add New Features as Appropriate
Review new features as part of your database upgrade plan.

Oracle Database New Features Guide describes many of the new features available in the
new Oracle Database release. Determine which of these new features can benefit the
database and applications. You can then develop a plan for using these features.

It is not necessary to make any immediate changes to begin using your new Oracle Database
software. You can choose to introduce new feature enhancements into your database and
applications gradually.

See Also:

Learning Database New Features

Develop New Administrative Procedures as Needed
Plan a review of your scripts and procedures, and change as needed.

After familiarizing yourself with the features of the new Oracle Database release, review your
database administration scripts and procedures to determine whether any changes are
necessary.

Coordinate your changes to the database with the changes that are necessary for each
application. For example, by enabling integrity constraints in the database, you may be able
to remove some data checking from your applications.

Chapter 7
Recommended and Best Practices to Complete After Upgrading Oracle Database

7-23

Migrating From Rollback Segments To Automatic Undo Mode
If your database release is earlier than Oracle Database 11g, then you must migrate
the database that is being upgraded from using rollback segments (manual undo
management) to automatic undo management.

Automatic undo management is the default undo space management mode. The
UNDO_MANAGEMENT initialization parameter specifies which undo space management
mode the system should use:

• If UNDO_MANAGEMENT is set to AUTO (or if UNDO_MANAGEMENT is not set), then the
database instance starts in automatic undo management mode.

A null UNDO_MANAGEMENT initialization parameter defaults to automatic undo
management mode in Oracle Database 11g Release 1 (11.1) and later. In earlier
releases it defaults to manual undo management mode. Use caution when
upgrading earlier releases.

• If UNDO_MANAGEMENT is set to MANUAL, then undo space is allocated externally as
rollback segments.

1. Set the UNDO_MANAGEMENT parameter to UNDO_MANAGEMENT=MANUAL.

2. Start the instance again and run through a standard business cycle to obtain a
representative workload. Assess the workload, and compute the size of the undo
tablespace that you require for automatic undo management.

3. After the standard business cycle completes, run the following function to collect
the undo tablespace size, and to help with the sizing of the undo tablespace. You
require SYSDBA privileges to run this function.

DECLARE
 utbsiz_in_MB NUMBER;
BEGIN
 utbsiz_in_MB := DBMS_UNDO_ADV.RBU_MIGRATION;
end;
/

This function runs a PL/SQL procedure that provides information on how to size
your new undo tablespace based on the configuration and usage of the rollback
segments in your system. The function returns the sizing information directly.

4. Create an undo tablespace of the required size and turn on the automatic undo
management by setting UNDO_MANAGEMENT=AUTO or by removing the parameter.

5. For Oracle RAC configurations, repeat these steps on all instances.

Migrating Tables from the LONG Data Type to the LOB Data Type
You can use the ALTER TABLE statement to change the data type of a LONG column to
CLOB and that of a LONG RAW column to BLOB.

The LOB data types (BFILE, BLOB, CLOB, and NCLOB) can provide many advantages over
LONG data types.

Chapter 7
Recommended and Best Practices to Complete After Upgrading Oracle Database

7-24

In the following example, the LONG column named long_col in table long_tab is changed to
data type CLOB:

SQL> ALTER TABLE Long_tab MODIFY (long_col CLOB);

After using this method to change LONG columns to LOBs, all the existing constraints and
triggers on the table are still usable. However, all the indexes, including Domain indexes and
Functional indexes, on all columns of the table become unusable and must be rebuilt using
an ALTER INDEX...REBUILD statement. Also, the Domain indexes on the LONG column must
be dropped before changing the LONG column to a LOB.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for information
about modifying applications to use LOB data

Migrate Your Upgraded Oracle Databases to Use Unified Auditing
To use the full facilities of unified auditing, you must manually migrate to unified auditing.

In unified auditing, all Oracle Database audit trails (SYS.AUD$ for the database audit trail,
SYS.FGA_LOG$ for fine-grained auditing, DVYS.AUDIT_TRAIL$ for Database Vault, and so on)
are combined into one single audit trail, which you can view by querying the
UNIFIED_AUDIT_TRAIL data dictionary view for single-instance installations and
GV$UNIFIED_AUDIT_TRAIL for Oracle Real Application Clusters environments.

• Understanding Unified Auditing Migration Process for Oracle Database
Decide which audit policies you want to use in the upgraded database.

• Migrating to Unified Auditing for Oracle Database
Use this procedure for multitenant container (CDB) databases to migrate to unified
auditing.

• About Managing Earlier Audit Records After You Migrate to Unified Auditing
Review, archive, and purge earlier audit trails in preparation for using the unified audit
trail.

• Removing the Unified Auditing Functionality
Use this procedure to remove unified auditing, and to use mixed-mode audit.

• Obtaining Documentation References if You Choose Not to Use Unified Auditing
You can access documentation listed here to obtain configuration information about how
to use non-unified auditing.

See Also:

Oracle Database Security Guide for information about how the audit features have
changed for this release

Chapter 7
Recommended and Best Practices to Complete After Upgrading Oracle Database

7-25

Understanding Unified Auditing Migration Process for Oracle Database
Decide which audit policies you want to use in the upgraded database.

By default, unified auditing is not enabled for upgraded databases. If you have
upgraded from an earlier release to Oracle Database 12c, then your database uses
the same auditing functionality that was used in the earlier release. For newly created
databases, the mixed-mode method of unified auditing is enabled by default. After you
complete the migration to unified auditing, traditional auditing is disabled, and the new
audit records write to the unified audit trail.

To enable and configure the audit policies and how they are used, choose one method
as follows:

• Use the pure unified audit facility.

Migrate to unified auditing to use the full unified auditing facility features. After you
complete the procedure to migrate to unified auditing, you can create and enable
new audit policies and also use the predefined audit policies. The audit records for
these policies write to the unified audit trail. The earlier audit trails and their audit
records remain, but no new audit records write to the earlier audit trails.

Note:

The audit configuration from the earlier release has no effect in the
unified audit system. Only unified audit policies generate audit records
inside the unified audit trail.

• Use a mixed-mode audit facility.

The mixed-mode audit facility enables both traditional and unified auditing facilities
to run simultaneously and applies to both new and upgraded databases. The
mixed-mode unified auditing facility becomes available if you enable at least one
of the unified auditing predefined audit policies. Audit records for these policies
write to the unified audit trail. The audit configuration in the earlier release of
Oracle Database is also available, and the audit records for this configuration write
to the earlier audit trails. If you decide that you prefer using the pure unified audit
facility, then you can migrate to it.

Note:

If the database is not writable, then audit records write to new format
operating system files in the $ORACLE_BASE/audit/$ORACLE_SID
directory.

Chapter 7
Recommended and Best Practices to Complete After Upgrading Oracle Database

7-26

See Also:

– Oracle Database Security Guide for information about the predefined audit
policies

– Oracle Database Security Guide for information about the
ora_SecureConfig audit policy

Migrating to Unified Auditing for Oracle Database
Use this procedure for multitenant container (CDB) databases to migrate to unified auditing.

Perform the following procedure in the root. The procedure migrates both the root CDB, and
any associated PDBs, to unified auditing.

Note:

You can disable unified auditing from the container database (CDB) root only, not
for individual pluggable databases (PDBs).

However, when unified auditing is disabled, then individual PDBs can use the mixed
mode auditing, depending on whether or not the local audit policy is enabled in that
PDB. If you have a CDB common audit policy enabled, then all PDBs use mixed
mode auditing.

1. Log in to SQL*Plus as user SYS with the SYSDBA privilege.

sqlplus sys as sysdba
Enter password: password

In the multitenant environment, this login connects you to root.

2. Check if your Oracle Database is migrated to unified auditing using this query:

SQL> SELECT VALUE FROM V$OPTION WHERE PARAMETER = 'Unified Auditing';

If the output for the VALUE column is TRUE, then unified auditing is already enabled in your
database. You can proceed to Managing Earlier Audit Records. If the output is FALSE,
then complete the remaining steps in this procedure.

3. Stop the database. For single-instance environments, enter the following commands from
SQL*Plus:

SQL> SHUTDOWN IMMEDIATE
SQL> EXIT

For Windows systems, stop the Oracle service:

net stop OracleService%ORACLE_SID%

Chapter 7
Recommended and Best Practices to Complete After Upgrading Oracle Database

7-27

For Oracle Real Application Clusters (Oracle RAC) installations, shut down each
database instance as follows:

srvctl stop database -db db_name

4. Stop the listener. (Stopping the listener is not necessary for Oracle RAC and
Oracle Grid Infrastructure listeners.)

lsnrctl stop listener_name

You can find the name of the listener by running the lsnrctl status command.
The Alias setting indicates the name.

5. Go to the directory $ORACLE_HOME/rdbms/lib.

6. Enable unified auditing for the Oracle user.

• Linux and Unix

make -f ins_rdbms.mk uniaud_on ioracle ORACLE_HOME=$ORACLE_HOME

• Microsoft Windows

Rename the file %ORACLE_HOME%/bin/orauniaud12.dll.dbl to
%ORACLE_HOME%/bin/orauniaud12.dll.

Note:

For Oracle RAC databases that have non-shared Oracle homes, you
must repeat this step on each cluster member node, so that the binaries
are updated inside the local ORACLE_HOME on each cluster node.

7. Restart the listener.

lsnrctl start listener_name

8. Restart the database.

Log in to SQL*Plus and then enter the STARTUP command:

sqlplus sys as sysoper
Enter password: password

SQL> STARTUP

For Microsoft Windows systems, start the Oracle service:

net start OracleService%ORACLE_SID%

For Oracle RAC installations, start each database instance:

srvctl start database -db db_name

Chapter 7
Recommended and Best Practices to Complete After Upgrading Oracle Database

7-28

About Managing Earlier Audit Records After You Migrate to Unified Auditing
Review, archive, and purge earlier audit trails in preparation for using the unified audit trail.

After you complete the procedure to migrate Oracle Database to use unified auditing, any
audit records that your database had before remain in their earlier audit trails. You can
archive these audit records and then purge their audit trails. With unified auditing in place,
any new audit records write to the unified audit trail.

See Also:

• "Archiving the Audit Trail" in Oracle Database Security Guide

• "Purging Audit Trail Records" in Oracle Database Security Guide

Removing the Unified Auditing Functionality
Use this procedure to remove unified auditing, and to use mixed-mode audit.

After you have enabled your databases to use unified auditing, if you decide that you do not
want unified auditing, then you can use this procedure to remove the unified auditing
functionality. In this case, your database uses the mixed-mode audit facility.

1. Stop the database.

sqlplus sys as sysoper
Enter password: password

SQL> SHUTDOWN IMMEDIATE
SQL> EXIT

For Windows systems, stop the Oracle service:

net stop OracleService%ORACLE_SID%

For Oracle RAC installations, shut down each database instance as follows:

srvctl stop database -db db_name

2. Go to the $ORACLE_HOME/rdbms/lib directory.

3. Disable the unified auditing executable.

• Unix: Run the following command:

make -f ins_rdbms.mk uniaud_off ioracle ORACLE_HOME=$ORACLE_HOME

• Microsoft Windows: Rename the %ORACLE_HOME%/bin/orauniaud12.dll file
to %ORACLE_HOME%/bin/orauniaud12.dll.dbl.

Chapter 7
Recommended and Best Practices to Complete After Upgrading Oracle Database

7-29

4. Restart the database.

sqlplus sys as sysoper
Enter password: password

SQL> STARTUP
SQL> EXIT

For Microsoft Windows systems, start the Oracle service again.

net start OracleService%ORACLE_SID%

For Oracle RAC installations, start each database instance using the following
syntax:

srvctl start database -db db_name

Obtaining Documentation References if You Choose Not to Use Unified
Auditing

You can access documentation listed here to obtain configuration information about
how to use non-unified auditing.

After upgrading to the new release Oracle Database, if you choose not to change to
unified auditing, then Oracle documentation and Oracle Technology Network provide
information about traditional non-unified auditing.

• Oracle Database Security Guide: This guide is the main source of information for
configuring auditing. You must use the Oracle Database Release 11g version of
this manual. To access this guide:

1. Visit the database page on docs.oracle.com site on Oracle Technology
Network:

https://docs.oracle.com/en/database/index.html

2. Select Oracle Database.

3. In the Downloads page, select the Documentation tab.

4. On the release list field, select Earlier Releases, and select Oracle Database
11g Release 2 (11.2).

5. From the Oracle Database 11g Release 2 (11.2) Documentation page, select
the All Books link to display publications in the documentation set.

6. Search for Security Guide.

7. Select either the HTML or the PDF link for this guide.

Identify Oracle Text Indexes for Rebuilds
You can run a script that helps you to identify Oracle Text index indexes with token
tables that can benefit by being rebuilt after upgrading to the new Oracle Database
release..

Chapter 7
Recommended and Best Practices to Complete After Upgrading Oracle Database

7-30

https://docs.oracle.com/en/database/index.html

When you upgrade from Oracle Database 12c release 1 (12.2.0.1) to Oracle Database 18c
and later releases, the Oracle Text token tables ($I, $P, and so on) are expanded from 64
bytes to 255 bytes. However, if you have indexes with existing token tables using the smaller
size range, then the Oracle Text indexes cannot take advantage of this widened token
column range. You must rebuild the indexes to use the 255 byte size range. Oracle provides
a script that can assist you to identify indexes that can benefit by being rebuilt.

Obtain the script from My Oracle Support:

https://support.oracle.com/rs?type=doc&id=2287094.1

Dropping and Recreating DBMS_SCHEDULER Jobs
If DBMS_SCHEDULER jobs do not function after upgrading from an earlier release, drop and
recreate the jobs.

If you find that DBMS_SCHEDULER jobs are not functioning after an upgrade. drop and
recreate those jobs. This issue can occur even if the upgrade process does not report issues,
and system objects are valid.

Transfer Unified Audit Records After the Upgrade
Review these topics to understand how you can obtain better performance after you upgrade
and migrate to unified auditing

• About Transferring Unified Audit Records After an Upgrade
Transferring the unified audit records from Oracle Database 12c release 12.1 to the new
relational table under the AUDSYS schema for the new Oracle Database release improves
the read performance of the unified audit trail.

• Transferring Unified Audit Records After an Upgrade
You can transfer unified audit records to the new relational table in AUDSYS by using the
DBMS_AUDIT_MGMT.TRANSFER_UNIFIED_AUDIT_RECORDS PL/SQL procedure.

About Transferring Unified Audit Records After an Upgrade
Transferring the unified audit records from Oracle Database 12c release 12.1 to the new
relational table under the AUDSYS schema for the new Oracle Database release improves the
read performance of the unified audit trail.

Starting with Oracle Database 12c Release 2, unified audit records are written directly to a
new internal relational table that is located in the AUDSYS schema. In Oracle Database 12c
release 12.1, the unified audit records were written to the common logging infrastructure
(CLI) SGA queues. If you migrated to unified auditing in that release, then to obtain better
read performance, you can transfer the unified audit records that are from that release to the
new Oracle Database release internal table. It is not mandatory that you perform this transfer,
but Oracle recommends that you do so to obtain better unified audit trail read performance.
This is a one-time operation. All new unified audit records that are generated after the
upgrade are written to the new table. The table is a read-only table. Any attempt to modify the
metadata or data of this table is mandatorily audited.

After you upgrade to the new Oracle Database release, if you have any unified audit records
present in the UNIFIED_AUDIT_TRAIL from the earlier release, then consider transferring them
to the new internal relational table by using the transfer procedure for better read
performance of the unified audit trail.

Chapter 7
Recommended and Best Practices to Complete After Upgrading Oracle Database

7-31

https://support.oracle.com/rs?type=doc&id=2287094.1

As with the SYS schema, you cannot query the AUDSYS schema if you have the
SELECT ANY TABLE system privilege. In addition, this table is not listed as a schema
object in the ALL_TABLES data dictionary view unless you have either the SELECT
ANY DICTIONARY system privilege or an explicit SELECT privilege on this internal
table. Until the database is open read write, the audit records are written to operating
system spillover files (.bin format). However, you can transfer the audit records in
these operating system files to the internal relational table after the database opens in
the read write mode by using the
DBMS_AUDIT_MGMT.LOAD_UNIFIED_AUDIT_FILES procedure.

Transferring Unified Audit Records After an Upgrade
You can transfer unified audit records to the new relational table in AUDSYS by using
the DBMS_AUDIT_MGMT.TRANSFER_UNIFIED_AUDIT_RECORDS PL/SQL procedure.

1. Log in to the database instance as a user who has been granted the
AUDIT_ADMIN role.

For example, in a non-multitenant environment:

sqlplus sec_admin
Enter password: password

For a multitenant environment, connect to the root:

sqlplus c##sec_admin@root
Enter password: password

You can perform this procedure execution in the root as well as in a PDB, because
the UNIFIED_AUDIT_TRAIL view is container specific. In addition, the transfer
procedure is container specific. That is, performing the transfer from the root does
not affect the unified audit records that are present in the unified audit trail for the
PDB.

2. For a multitenant environment, query the DBA_PDB_HISTORY view to find the
correct GUID that is associated with the CLI table that is specific to the container
from which audit records must be transferred.

For example:

SQL> SELECT PDB_NAME, PDB_GUID FROM DBA_PDB_HISTORY;

PDB_NAME PDB_GUID
-------- --------------------------------
HR_PDB 33D96CA7862D53DFE0534DC0E40A7C9B
...

3. In a multitenant environment, connect to the container for which you want to
transfer the audit records.

You cannot perform the transfer operation on a container that is different from the
one in which you are currently connected.

4. Run the DBMS_AUDIT_MGMT.TRANSFER_UNIFIED_AUDIT_RECORDS procedure.

For example:

SQL> EXEC DBMS_AUDIT_MGMT.TRANSFER_UNIFIED_AUDIT_RECORDS;

PL/SQL procedure successfully completed.

Chapter 7
Recommended and Best Practices to Complete After Upgrading Oracle Database

7-32

Or, to specify the PDB GUID:

SQL> EXEC DBMS_AUDIT_MGMT.TRANSFER_UNIFIED_AUDIT_RECORDS
('33D96CA7862D53DFE0534DC0E40A7C9B');

PL/SQL procedure successfully completed.

5. If the database is in open read write mode, then execute the
DBMS_AUDIT_MGMT.LOAD_UNIFIED_AUDIT_FILES procedure.

Until the database is in open read write mode, audit records are written to operating
system (OS) files. The DBMS_AUDIT_MGMT.LOAD_UNIFIED_AUDIT_FILES procedure
moves the unified audit records that are present in the files to database tables. You can
find the unified audit records that are present in the OS spillover files by querying the
V$UNIFIED_AUDIT_TRAIL dynamic view.

For example, if you want to execute this procedure for audit records in the HR_PDB
container, then you must connect to that PDB first:

SQL> CONNECT sec_admin@HR_PDB
Enter password: password

SQL> EXEC DBMS_AUDIT_MGMT.LOAD_UNIFIED_AUDIT_FILES;

PL/SQL procedure successfully completed.

6. Query the UNIFIED_AUDIT_TRAIL data dictionary view to check if the records
transferred correctly.

Oracle highly recommends that you query UNIFIED_AUDIT_TRAIL. After a successful
audit record transfer, you should query the UNIFIED_AUDIT_TRAIL because querying
the V$UNIFIED_AUDIT_TRAIL dynamic view will show the audit records that are
present only in the OS spillover files.

About Recovery Catalog Upgrade After Upgrading Oracle Database
If you use a version of the recovery catalog schema that is older than that required by the
RMAN client, then you must upgrade it.

See Also:

• Oracle Database Backup and Recovery User's Guide for information on
managing an RMAN recovery catalog

• Oracle Database Backup and Recovery User's Guide for complete information
about upgrading the recovery catalog and the UPGRADE CATALOG command

Enabling Disabled Release Update Bug Fixes in the Upgraded Database
Because bug fixes in Release Updates that can cause execution plan changes are disabled,
Oracle recommends that you enable the disabled bug fixes that you want to use.

After you upgrade your database, the bug fix patches that can cause execution plan changes
included in the Release Updates are installed disabled by default. These bug fixes will not be

Chapter 7
Recommended and Best Practices to Complete After Upgrading Oracle Database

7-33

activated until you enable the fixes. You can either enable these fixes manually, or use
the DBMS_OPTIM_BUNDLE package.

Oracle strongly recommends that you enable these disabled patches that you want to
use in your production system, and run complete workload performance tests using
these patches as part of your upgrade test plan.

For more information about using DBMS_OPTIM_BUNDLE to enable patches that were
disabled because they can change execution plans, see Oracle Database PL/SQL
Packages and Types Reference, and My Oracle Support note 2147007.1.

Related Topics

• DBMS_OPTIM_BUNDLE

• My Oracle Support Doc ID 2147007.1 Managing "installed but disabled" bug fixes
in Database Release Updates using DBMS_OPTIM_BUNDLE

About Testing the Upgraded Production Oracle Database
Repeat tests on your production database that you carried out on your test database
to ensure applications operate as expected.

If you upgraded a test database to the new Oracle Database release, and then tested
it, then you can now repeat those tests on the production database that you upgraded
to the new Oracle Database release. Compare the results, noting anomalies. Repeat
the test upgrade as many times as necessary.

To verify that your applications operate properly with a new Oracle Database release,
test the newly upgraded production database with your existing applications. You also
can test enhanced functions by adding available Oracle Database features, and then
testing them. However, first ensure that the applications operate in the same manner
as they did before the upgrade.

Upgrading the Time Zone File Version After Upgrading Oracle
Database

If the AutoUpgrade preupgrade report in upgrade.xml instructs you to upgrade the
time zone files after completing the database upgrade, and you do not set
AutoUpgrade to complete this task for you, then use the DBMS_DST PL/SQL package to
upgrade the time zone file.

Oracle Database supplies multiple versions of time zone files. There are two types of
files associated with each time zone file: a large file, which contains all the time zones
defined in the database, and a small file, which contains only the most commonly used
time zones. The large versions are designated as timezlrg_version_number.dat. The
small versions are designated as timezone_version_number.dat. The files are located
in the oracore/zoneinfo subdirectory under the Oracle Database home directory.

Related Topics

• Upgrading Time Zone Data Using the DBMS_DST Package

• https://support.oracle.com/rs?type=doc&id=1585343.1

Chapter 7
Recommended and Best Practices to Complete After Upgrading Oracle Database

7-34

https://support.oracle.com/rs?type=doc&id=2147007.1
https://support.oracle.com/rs?type=doc&id=2147007.1
https://support.oracle.com/rs?type=doc&id=1585343.1

Recommended Tasks After Upgrading an Oracle RAC Database
Decide if you want to configure clients to use SCAN or node listeners for connections.

Oracle Real Application Clusters 12c uses the Single Client Access Name (SCAN). The
SCAN is a single name that resolves to three IP addresses in the public network. When you
upgrade a release of an Oracle RAC database earlier than release 11.2, the Oracle RAC
database is registered with SCAN listeners as remote listeners. The Oracle RAC database
also continues to register with all node listeners. SCAN listeners offer a variety of benefits.
These benefits include enabling you to configure clients one time, and adding or removing
nodes from the cluster without needing to change client connection configurations.

You can configure clients to use SCANs, or you can continue to use listeners configured on
cluster member nodes. If you migrate all of your client connections to use SCANs, then you
can remove the node listeners from the REMOTE_LISTENERS parameter. However, you
cannot remove the node listeners themselves, because only node listeners can create
dedicated servers for the database.

See Also:

Oracle Clusterware Administration and Deployment Guide for more information
about Single Client Access Names (SCAN)

Recommended Tasks After Upgrading Oracle ASM
After you have upgraded Oracle ASM, Oracle recommends that you perform tasks such as
resetting the Oracle ASM passwords and configuring disk groups.

• Create a Shared Password File In the ASM Diskgroup
If you advance the COMPATIBLE.ASM disk group attribute, then create a shared
password file.

• Reset Oracle ASM Passwords to Enforce Case-Sensitivity
To take advantage of enforced case-sensitive passwords, you must reset the passwords
of existing users during the database upgrade procedure.

• Advancing the Oracle ASM and Oracle Database Disk Group Compatibility
You can advance the Oracle Database and the Oracle ASM disk group compatibility
settings across software versions.

• Set Up Oracle ASM Preferred Read Failure Groups
Oracle ASM administrators can specify some disks as preferred read disks for read I/O
operations.

Related Topics

• Add New Features as Appropriate
Review new features as part of your database upgrade plan.

• Develop New Administrative Procedures as Needed
Plan a review of your scripts and procedures, and change as needed.

Chapter 7
Recommended Tasks After Upgrading an Oracle RAC Database

7-35

Create a Shared Password File In the ASM Diskgroup
If you advance the COMPATIBLE.ASM disk group attribute, then create a shared
password file.

If you advanced the COMPATIBLE.ASM disk group attribute to 12.1 or later, then you
are required to create a shared password file in the ASM diskgroup.

See Also:

Oracle Automatic Storage Management Administrator's Guide for complete
information about managing a shared password file in a disk group

Reset Oracle ASM Passwords to Enforce Case-Sensitivity
To take advantage of enforced case-sensitive passwords, you must reset the
passwords of existing users during the database upgrade procedure.

In releases earlier than Oracle Database 11g Release 1 (11.1), passwords are not
case sensitive. You can enforce case sensitivity for passwords. For example, the
password hPP5620qr fails if it is entered as hpp5620QR or hPp5620Qr.

For new Oracle ASM instances, there are no additional tasks or management
requirements. For upgraded Oracle ASM instances, each user password must be
reset with an ALTER USER statement.

Note:

If the default Oracle Database security settings are in place, then passwords
must be at least eight characters, and passwords such as welcome and
oracle are not allowed. See Oracle Database Security Guide for more
information.

Advancing the Oracle ASM and Oracle Database Disk Group
Compatibility

You can advance the Oracle Database and the Oracle ASM disk group compatibility
settings across software versions.

Chapter 7
Recommended Tasks After Upgrading Oracle ASM

7-36

Caution:

If you advance the COMPATIBLE.RDBMS attribute, then you cannot revert to the
previous setting. Before advancing the COMPATIBLE.RDBMS attribute, ensure that the
values for the COMPATIBLE initialization parameter for all of the databases that use
the disk group are set to at least the new setting for COMPATIBLE.RDBMS before you
advance the attribute value.

Advancing compatibility enables new features only available in the new release. However,
doing so makes the disk group incompatible with older releases of the software. Advancing
the on disk compatibility is an irreversible operation.

Use the compatible.rdbms and compatible.asm attributes to specify the minimum software
release required by the database instance and the Oracle ASM instance, respectively, to
access the disk group. For example, the following ALTER DISKGROUP statement advances the
Oracle ASM compatibility of the disk group asmdg2:

ALTER DISKGROUP asmdg2 SET ATTRIBUTE 'compatible.asm' = '12.2'

In this case, the disk group can be managed only by Oracle ASM software of release 12.2 or
later, while any database client of release 11.2 or later can use the disk group.

Set Up Oracle ASM Preferred Read Failure Groups
Oracle ASM administrators can specify some disks as preferred read disks for read I/O
operations.

When an ASM administrator defines Oracle ASM preferred read failure groups, Oracle ASM
can then read from the extent that is in the nearest preferred read disk, rather than always
reading the primary copy.

See Also:

• Oracle Clusterware Administration and Deployment Guide for information about
specifying failure groups settings in an extended cluster

• Oracle Automatic Storage Management Administrator's Guide for complete
information about Oracle ASM preferred read failure groups, and specifying the
new ASM_PREFERRED_READ_FAILURE_GROUPS initialization parameter to list failure
group names that contain the preferred read disks for each node in a cluster

• Oracle Database Reference for the ASM_PREFERRED_READ_FAILURE_GROUPS
initialization parameter

Recommended Tasks After Upgrading Oracle Database
Express Edition

Use DBCA or run manual scripts to install additional components into Oracle Database.

Chapter 7
Recommended Tasks After Upgrading Oracle Database Express Edition

7-37

An Oracle Database Express database contains only a subset of the components
available in an Oracle Database Standard Edition or Oracle Database Enterprise
Edition database. After upgrading to the new Oracle Database release, you can use
Database Configuration Assistant (DBCA) or manual scripts to install additional
components into your database.

Tasks to Complete Only After Manually Upgrading Oracle
Database

After you complete your upgrade, you must perform the tasks described here if you
upgrade your database manually instead of using DBUA.

Note:

If you completed your upgrade using the AutoUpgrade utility, then you only
have to complete the following:

• "Identifying and Copying Oracle Text Files to a New Oracle Home"

• "Upgrading the Oracle Clusterware Configuration"

• Changing Passwords for Oracle Supplied Accounts
Oracle recommends that you carry out these tasks to protect new Oracle user
accounts.

• Migrating Your Initialization Parameter File to a Server Parameter File
If you are currently using a traditional initialization parameter file, then use this
procedure to migrate to a server parameter file.

• Identifying and Copying Oracle Text Files to a New Oracle Home
To upgrade Oracle Text, use this procedure to identify and copy required files from
your existing Oracle home to the new release Oracle home. Complete this task
after you upgrade Oracle Database.

• Upgrading the Oracle Clusterware Configuration
If you are using Oracle Clusterware, then you must upgrade the Oracle
Clusterware keys for the database.

• Adjust the Initialization Parameter File for the New Release
Review these topics to help you to check your initialization parameters after
upgrading.

• Set CLUSTER_DATABASE Initialization Parameter For Oracle RAC After Upgrade
For manual upgrades of Oracle RAC database instances, you must change the
CLUSTER_DATABASE initialization parameter to rejoin the node to the new
release cluster.

Changing Passwords for Oracle Supplied Accounts
Oracle recommends that you carry out these tasks to protect new Oracle user
accounts.

Depending on the release from which you upgraded, there may be new Oracle user
accounts on your database. Oracle recommends that you lock all Oracle supplied

Chapter 7
Tasks to Complete Only After Manually Upgrading Oracle Database

7-38

accounts except for SYS and SYSTEM, and expire their passwords, so that new passwords are
required when the accounts are unlocked.

Note:

If the default Oracle Database 12c security settings are in place, then passwords
must be at least eight characters, and passwords such as welcome and oracle are
not allowed.

See Also:

Oracle Database Security Guide about password requirements

You can view the status of all accounts by issuing the following SQL statement:

SQL> SELECT username, account_status
 FROM dba_users
 ORDER BY username;

To lock and expire passwords, issue the following SQL statement:

SQL> ALTER USER username PASSWORD EXPIRE ACCOUNT LOCK;

Migrating Your Initialization Parameter File to a Server Parameter File
If you are currently using a traditional initialization parameter file, then use this procedure to
migrate to a server parameter file.

1. If the initialization parameter file is located on a client computer, then transfer the file from
the client computer to the server computer.

2. Create a server parameter file using the CREATE SPFILE statement. This statement
reads the initialization parameter file to create a server parameter file. You are not
required to start the database to issue a CREATE SPFILE statement.

3. Start up the instance using the newly-created server parameter file.

Note:

If you are using Oracle Real Application Clusters (Oracle RAC), then you must
combine all of your instance-specific initialization parameter files into a single
initialization parameter file. Complete the procedures necessary for using a server
parameter file with cluster databases.

Related Topics

• Overview of Initialization Parameter Files in Oracle RAC

Chapter 7
Tasks to Complete Only After Manually Upgrading Oracle Database

7-39

Identifying and Copying Oracle Text Files to a New Oracle Home
To upgrade Oracle Text, use this procedure to identify and copy required files from
your existing Oracle home to the new release Oracle home. Complete this task after
you upgrade Oracle Database.

Certain Oracle Text features rely on files under the Oracle home that you have
configured. After manually upgrading to a new Oracle Database release, or after any
process that changes the Oracle home, you must identify and move these files
manually. These files include user filters, mail filter configuration files, and all
knowledge base extension files. After you identify the files, copy the files from your
existing Oracle home to the new Oracle home.

To identify and copy required files from your existing Oracle home to the new release
Oracle home:

1. Log in with the SYS, SYSTEM, or CTXSYS system privileges for the upgraded
database.

2. Under the Oracle home of the upgraded database, run the $ORACLE_HOME/ctx/
admin/ctx_oh_files.sql SQL script.

For example:

sqlplus / as sysdba
connected
SQL> @?/ctx/admin/ctx_oh_files

3. Review the output of the ctx_oh_files.sql command, and copy the files to the
new Oracle home.

Upgrading the Oracle Clusterware Configuration
If you are using Oracle Clusterware, then you must upgrade the Oracle Clusterware
keys for the database.

Run srvctl for Oracle Database 12c to upgrade the database. For example:

ORACLE_HOME/bin/srvctl upgrade database -db name -o ORACLE_HOME

Related Topics

• Oracle Real Application Clusters Administration and Deployment Guide

Adjust the Initialization Parameter File for the New Release
Review these topics to help you to check your initialization parameters after upgrading.

Each release of Oracle Database introduces new initialization parameters, deprecates
some initialization parameters, and desupports some initialization parameters. You
must adjust the parameter file to account for these changes, and to take advantage of
new initialization parameters that can be beneficial to your system. Additionally, when
you perform a manual upgrade without using DBUA, the tnsnames.ora file is not
automatically populated with new configuration information and settings. Therefore,

Chapter 7
Tasks to Complete Only After Manually Upgrading Oracle Database

7-40

you must manually update tnsnames.ora and adjust local_listener and remote_listener
parameter references if these must be resolved.

• Setting the COMPATIBLE Initialization Parameter After Upgrade
After testing, you can set the COMPATIBLE initialization parameter to the compatibility
level you want for your new database.

• Adjust TNSNAMES.ORA and LISTENER Parameters After Upgrade
After performing a manual upgrade, if you must resolve local_listener and
remote_listener in tnsnames.ora, then you must manually adjust those parameters.

See Also:

• Oracle Database Reference “Changes In this Release” section for a list of new
initialization parameters, and for information about each parameter

Setting the COMPATIBLE Initialization Parameter After Upgrade
After testing, you can set the COMPATIBLE initialization parameter to the compatibility level
you want for your new database.

The COMPATIBLE initialization parameter controls the compatibility level of your database.
Set the COMPATIBLE initialization parameter to a higher value only when you are certain that
you no longer need the ability to downgrade your database.

1. Perform a backup of your database before you raise the COMPATIBLE initialization
parameter (optional).

Raising the COMPATIBLE initialization parameter can cause your database to become
incompatible with earlier releases of Oracle Database. A backup ensures that you can
return to the earlier release if necessary.

2. If you are using a server parameter file, then complete the following steps:

a. To set or change the value of the COMPATIBLE initialization parameter, update the
server parameter file.

For example, to set the COMPATIBLE initialization parameter to 12.2.0, enter the
following statement:

SQL> ALTER SYSTEM SET COMPATIBLE = '19.1.0' SCOPE=SPFILE;

b. Shut down and restart the instance.

3. If you are using an initialization parameter file, then complete the following steps:

a. If an instance is running, then shut it down.

For example:

SQL> SHUTDOWN IMMEDIATE

b. To set or change the value of the COMPATIBLE initialization parameter, you edit the
initialization parameter file.

For example, to set the COMPATIBLE initialization parameter to for Oracle
Database release 19.1.0, enter the following in the initialization parameter file:

Chapter 7
Tasks to Complete Only After Manually Upgrading Oracle Database

7-41

COMPATIBLE = 19.1.0

c. Start the instance using STARTUP.

Note:

If you are using an ASM disk group, then the disk group compatibility
attribute must be equal to or less than the value for the database
compatibility parameter in init.ora.

Adjust TNSNAMES.ORA and LISTENER Parameters After Upgrade
After performing a manual upgrade, if you must resolve local_listener and
remote_listener in tnsnames.ora, then you must manually adjust those parameters.

DBUA handles changes to network naming and listeners during automatic upgrades.
However, during a manual upgrade, neither tnsnames.ora nor the listeners are
changed.

Related Topics

• Configuring the tnsnames.ora File After Installation

Set CLUSTER_DATABASE Initialization Parameter For Oracle RAC
After Upgrade

For manual upgrades of Oracle RAC database instances, you must change the
CLUSTER_DATABASE initialization parameter to rejoin the node to the new release
cluster.

In upgrades of cluster member nodes, you set the CLUSTER_DATABASE initialization
parameter to false before upgrading a cluster database.

After you complete the upgrade, you must set this parameter to true, so that you can
rejoin the node to the new release cluster.

Note:

If you carry out your upgrade using Database Upgrade Assistant (DBUA),
then DBUA performs this task for you.

Chapter 7
Tasks to Complete Only After Manually Upgrading Oracle Database

7-42

8
Upgrading Applications After Upgrading
Oracle Database

To take full advantage of new features, you must upgrade applications running in the new
release.

Many new features and enhancements are available after upgrading to a new release of
Oracle Database. Review these topics for guidance in planning these application upgrades.

• Overview of Upgrading Applications on a New Oracle Database Release
You are not required to modify existing applications that do not use features available in
the new Oracle Database release.

• Compatibility Issues for Applications on Different Releases of Oracle Database
You can encounter compatibility issues between different releases of Oracle Database
that can affect your applications.

• Software Upgrades and Client and Server Configurations for Oracle Database
Use these topics to understand your options for upgrading precompiler and Oracle Call
Interface (OCI) applications, depending on the type of software upgrade that you are
performing and your client and server configurations.

• Compatibility Rules for Applications When Upgrading Oracle Database Client or Server
Software
Compatibility rules apply when you upgrade Oracle Database client or server software.

• About Upgrading Precompiler and OCI Applications in Oracle Database
Review this information if you want to upgrade precompiler and Oracle Call Interface
(OCI) applications.

• Schema-Only Accounts and Upgrading EXPIRED Password Accounts
Before starting your upgrade, determine if you want to use password authentication to
default Oracle Database accounts where their passwords are in EXPIRED status, and their
account is in LOCKED status

• About Upgrading Options for Oracle Precompiler and OCI Applications
Oracle provides several options for upgrading your precompiler and Oracle Call Interface
(OCI) applications running on a new release of Oracle Database.

• Upgrading SQL*Plus Scripts and PL/SQL after Upgrading Oracle Database
To use features and functions of the new Oracle Database release, you must change
existing SQL scripts to use the syntax of the new Oracle Database release.

• About Upgrading Oracle Forms or Oracle Developer Applications
Review Oracle Forms and Oracle Developer new features to see if any of your
applications can benefit from them.

8-1

Overview of Upgrading Applications on a New Oracle
Database Release

You are not required to modify existing applications that do not use features available
in the new Oracle Database release.

Existing applications running in a new release of Oracle Database function the same
as they did in earlier releases, and achieve the same, or enhanced, performance.

Many new features and enhancements are available after upgrading to the new Oracle
Database release. Some of these changes provide added features and functions,
while others provide improved performance. Before you upgrade your applications,
Oracle recommends that you review and fully test these new features to decide which
ones you want to use.

Related Topics

• Database Features and Licensing App

Compatibility Issues for Applications on Different Releases
of Oracle Database

You can encounter compatibility issues between different releases of Oracle Database
that can affect your applications.

Compatibility issues can occur due to differences between Oracle Database releases.
Also, in each new release of Oracle Database, new Oracle reserved words can be
added, or initialization parameters can be changed, or the data dictionary can be
changed. Review the relevant topics in this documentation for more information.

When you upgrade your Oracle Database software to a new release, ensure that your
applications do not use any words reserved by Oracle, that your applications are
compatible with the initialization parameters of the database, and that your
applications are compatible with the data dictionary of the database.

Also be aware that new releases of Oracle Database can be supported only on
particular operating system releases or patch sets. An operating system release and
patch set that is supported for use with a previous release of Oracle Database can not
be supported for current releases. Check operating system requirements before you
install oracle software to perform an upgrade. In addition, to be able to use some
features, your system can require additional patch sets or kernel additions.

Related Topics

• Oracle SQL Reserved Words and Keywords

Software Upgrades and Client and Server Configurations for
Oracle Database

Use these topics to understand your options for upgrading precompiler and Oracle Call
Interface (OCI) applications, depending on the type of software upgrade that you are
performing and your client and server configurations.

Chapter 8
Overview of Upgrading Applications on a New Oracle Database Release

8-2

https://apex.oracle.com/database-features/

• Possible Client and Server Configurations for Oracle Database
Select a client/server configuration to run your precompiler and OCI applications.

Possible Client and Server Configurations for Oracle Database
Select a client/server configuration to run your precompiler and OCI applications.

Your precompiler and OCI applications run on the client in a client/server environment, where
the Oracle Database server is the server. You can use one or more of the following client/
server configurations in your environment

Oracle Database Client and Server on Different Computers

The client software and the server software are on different computers, and they are
connected through a network. The client and server environments are separate.

Oracle Database Client and Server in Different Oracle Locations on the Same
Computer

The client software and the server software are on the same computer, but they are installed
in different Oracle home directories. Again, the client and server environments are separate.

Oracle Database Client and Server in the Same Oracle Location

The client software and server software are installed in the same Oracle home on the same
computer. In this case, any upgrade of the server software is also an upgrade of the client
software.

See Also:

Oracle Database Concepts for more information about client/server environments

Compatibility Rules for Applications When Upgrading Oracle
Database Client or Server Software

Compatibility rules apply when you upgrade Oracle Database client or server software.

Compatibility rules are based on the type of software upgrade you are performing, and the
type of client/server configuration.

Note:

This section uses the terms introduced in “Software Upgrades and Client and
Server Configurations.” .

• Rules for Upgrading Oracle Database Server Software
Different rules apply when you upgrade Oracle Database server software depending on
your database environment.

Chapter 8
Compatibility Rules for Applications When Upgrading Oracle Database Client or Server Software

8-3

• Upgrading the Oracle Database Client Software
Keeping the server and client software at the same release number ensures the
maximum stability for your applications.

Rules for Upgrading Oracle Database Server Software
Different rules apply when you upgrade Oracle Database server software depending
on your database environment.

• If You Do Not Change the Client Environment, Then You Are Not Required to
Relink
Review these scenarios to determine if you must relink your applications after
upgrading.

• Applications Can Run Against Newer or Older Oracle Database Server Releases
If you run a precompiler or OCI application against a database server, then Oracle
recommends that the release of the database server software is equal to or later
than the client software release.

If You Do Not Change the Client Environment, Then You Are Not Required to
Relink

Review these scenarios to determine if you must relink your applications after
upgrading.

If your client and server are on different computers, or are in different Oracle home
directories on the same computer, and you upgrade the Oracle Database server
software without changing the client software, then you are not required to precompile,
compile, or relink your applications.

In this set of scenarios, client software using Oracle Databases are in separate
locations from the server software, and the client software continues to function
without direct effects from the upgrade.

However, if your applications are using the same Oracle home as the Oracle Database
server, then your server upgrade also upgrades your client software, and you must
follow the rules for upgrading Oracle Database client software.

Note:

You can upgrade the Oracle Database server software, but not install the
new precompiler or OCI client software, when you are using the same Oracle
home for both binaries. In this case, the client software is not upgraded.
However, Oracle does not recommend this configuration.

Applications Can Run Against Newer or Older Oracle Database Server
Releases

If you run a precompiler or OCI application against a database server, then Oracle
recommends that the release of the database server software is equal to or later than
the client software release.

Chapter 8
Compatibility Rules for Applications When Upgrading Oracle Database Client or Server Software

8-4

This recommendation configuration is not strictly required.

For example: If your client software is Oracle 12c release 2 (12.2.0.1), then if you run
precompiler applications on the client against, the server, Oracle recommends that your
server software is Oracle 12c release 2 (12.2) or later.

Upgrading the Oracle Database Client Software
Keeping the server and client software at the same release number ensures the maximum
stability for your applications.

Use this information to plan your Oracle Database Client installations. Depending on how
your applications are linked, different rules apply when you upgrade the Oracle Database
client software.

Oracle recommends that you upgrade your client software to match the current server
software. For example, when you upgrade Oracle Database to the new Oracle Database
release, Oracle recommends that you also upgrade your Oracle Database client software to
the new release. The latest Oracle Database client software can provide added features and
performance enhancements that are only available with that later release.

• About Image-Based Oracle Database Client Installation
Starting with Oracle Database 19c, installation and configuration of Oracle Database
Client software is simplified with image-based installation.

• About Linking Applications with Newer Libraries
You can link the code generated by precompiler applications and Oracle Call Interface
(OCI) with a release of the client library that equals or is later than the server release.

• Statically Linked Applications Must Always Be Relinked
Statically-linked code can be incompatible with error messages in the upgraded
ORACLE_HOME.

• About Relinking Dynamically Linked Applications
Dynamically linked OCI applications from Oracle Database 10g Release 1 (10.1) and
later releases are upward-compatible with the current release.

About Image-Based Oracle Database Client Installation
Starting with Oracle Database 19c, installation and configuration of Oracle Database Client
software is simplified with image-based installation.

To install Oracle Database Client, create the new Oracle home, extract the image file into the
newly-created Oracle home, and run the setup wizard to register the Oracle Database
product.

You must extract the image software (client_home.zip) into the directory where you want
your Oracle Database Client home to be located, and then run the Setup Wizard to start the
Oracle Database Client installation and configuration. Oracle recommends that the Oracle
home directory path you create is in compliance with the Oracle Optimal Flexible Architecture
recommendations.

Using image-based installation, you can install Oracle Database Client 32-bit and 64-bit
configurations of the Administrator installation type.

As with Oracle Database and Oracle Grid Infrastructure image file installations, Oracle
Database Client image installations simplify Oracle Database Client installations and ensure

Chapter 8
Compatibility Rules for Applications When Upgrading Oracle Database Client or Server Software

8-5

best practice deployments. Oracle Database Client installation binaries continue to be
available in the traditional format as non-image zip files.

About Linking Applications with Newer Libraries
You can link the code generated by precompiler applications and Oracle Call Interface
(OCI) with a release of the client library that equals or is later than the server release.

The OCI runtime library that you use must either be the same release, or a later
release, than the release of the OCI library with which the application was developed.

Statically Linked Applications Must Always Be Relinked
Statically-linked code can be incompatible with error messages in the upgraded
ORACLE_HOME.

You must relink statically-linked OCI applications for both major and minor releases.
The statically-linked Oracle client-side library code may be incompatible with the error
messages in the upgraded ORACLE_HOME. For example, if an error message is
updated with additional parameters, then it becomes incompatible with the statically-
linked code.

About Relinking Dynamically Linked Applications
Dynamically linked OCI applications from Oracle Database 10g Release 1 (10.1) and
later releases are upward-compatible with the current release.

The Oracle client-side dynamic library is upward-compatible with the previous version
of the library. Oracle Universal Installer creates a symbolic link for the previous version
of the library that resolves to the current version. Therefore, an application that is
dynamically linked with the previous version of the Oracle client-side dynamic library
does not require relinking to operate with the current version of the Oracle client-side
library.

Note:

If the application is linked with a run-time library search path (such as -rpath
on Linux), then the application may still run with the version of the Oracle
client-side library with which it is linked. You must relink the application to run
with the current version of the Oracle client-side library.

If the application is linked with the deferred option (for example, statically-
linked application), then it must be relinked.

If the application is from a release earlier than Oracle Database 10g Release
1 (10.1), then it must be relinked.

Chapter 8
Compatibility Rules for Applications When Upgrading Oracle Database Client or Server Software

8-6

About Upgrading Precompiler and OCI Applications in Oracle
Database

Review this information if you want to upgrade precompiler and Oracle Call Interface (OCI)
applications.

Testing precompiler and Oracle Call Interface upgrades consists of the following steps:

1. Create a test environment before you upgrade your production environment.

2. Include your upgraded application and the new Oracle Database software in your test
environment.

3. Ensure that your test environment provides a realistic test of your application.

Related Topics

• Pro*C/C++ Programmer's Guide

• Oracle Call Interface Programmer's Guide\

Schema-Only Accounts and Upgrading EXPIRED Password
Accounts

Before starting your upgrade, determine if you want to use password authentication to default
Oracle Database accounts where their passwords are in EXPIRED status, and their account is
in LOCKED status

During upgrades to Oracle Database 19c and later releases, default Oracle accounts that
have not had their passwords reset before upgrade (and are set to EXPIRED status), and that
are also set to LOCKED status, are set to NO AUTHENTICATION after the upgrade is complete.

Because of this new feature, default accounts that are changed to schema-only accounts
become unavailable for password authentication. The benefit of this feature is that
administrators no longer have to periodically rotate the passwords for these Oracle
Database-provided schemas. This feature also reduces the security risk of attackers using
default passwords to hack into these accounts.

If you want to prevent these Oracle accounts from being set to schema-only accounts during
the upgrade, then you must either set a valid strong password for the account before you
start the upgrade, or set a valid strong password for these accounts after upgrade, or unlock
the accounts before you log in to the upgraded Oracle Database.

After the upgrade, an administrator can also enable password authentication for schema-only
accounts. However, for better security, Oracle recommends that you keep these accounts as
schema only accounts.

Related Topics

• Oracle Database Security Guide

Chapter 8
About Upgrading Precompiler and OCI Applications in Oracle Database

8-7

About Upgrading Options for Oracle Precompiler and OCI
Applications

Oracle provides several options for upgrading your precompiler and Oracle Call
Interface (OCI) applications running on a new release of Oracle Database.

The upgrade options are listed in order of increasing difficulty and increasing potential
benefits. That is, Option 1 is the least difficult option, but it offers the least potential
benefits, while Option 3 is the most difficult option, but it offers the most potential
benefits.

• Option 1: Leave the Application Unchanged
Leave the application and its environment unchanged.

• Option 2: Precompile or Compile the Application Using the New Software
Application code must be changed if any APIs are deprecated or changed.

• Option 3: Change the Application Code to Use New Oracle Database Features
Make code changes to your applications to take advantage of new Oracle
Database features.

• Changing Oracle Precompiler and OCI Application Development Environments
When you have decided on the new features to use, change the code of your
application to use these features.

Option 1: Leave the Application Unchanged
Leave the application and its environment unchanged.

Do not relink, precompile, or compile the application, and do not change the
application code. The application continues to work against the new Oracle Database
release. This option requires that the Oracle home environment of the application is
not upgraded. You can leave the application unchanged, and it continues to work with
the new release Oracle Database server. The major advantage to this option is that it
is simple and easy. In addition, this option requires the least amount of administration,
because you are not required to upgrade any of your client computers. If you have a
large number of client computers, then avoiding the administrative costs of upgrading
all of them can become very important.

The major disadvantage to this option is that your application cannot use the features
that are available in the new release of Oracle Database. In addition, your application
cannot leverage all the possible performance benefits of the new Oracle Database
release.

Option 2: Precompile or Compile the Application Using the New
Software

Application code must be changed if any APIs are deprecated or changed.

Precompile or compile, and then relink the application using the new release of Oracle
Database. When upgrading to the new release of Oracle Database software, you must
precompile or compile the application with the new software after making necessary
code changes to account for APIs that are deprecated or changed.

Chapter 8
About Upgrading Options for Oracle Precompiler and OCI Applications

8-8

This option requires that you install the new Oracle Database client software on each client
computer. You are required to precompile or compile, and relink your application only one
time, regardless of the number of clients you have.

By recompiling, you perform a syntax check of your application code. Some problems in the
application code that were not detected by previous releases of the Oracle software can
emerge when you precompile or compile with the new Oracle Database software.
Precompiling and compiling with the new software helps you detect and correct problems in
the application code that previously were unnoticed.

Also, recompiling affords maximum stability for your application, because you are sure that it
works with the new Oracle Database release. Further, your environment is ready for new
development using the latest tools and features available. In addition, you might benefit from
performance improvements that are available with the new Oracle software only after you
recompile and relink.

Option 3: Change the Application Code to Use New Oracle Database
Features

Make code changes to your applications to take advantage of new Oracle Database features.

Change the application code to use new features in the new Oracle Database release. Then,
precompile or compile and then relink the code. This option is the most difficult, but it can
provide the most potential benefits. You gain all of the advantages described in Option 2:
Precompile or Compile the Application Using the New Software. In addition, you also benefit
from changes to your application that can leverage performance and scalability benefits
available with the new release of Oracle Database. You can also add new features to your
application that are available only with the new release. Consult the Oracle documentation for
your development environment so that you understand how to implement the features thaqt
you want to use.

See Also:

Learning Database New Features to become familiar with the features in this new
Oracle Database release

Changing Oracle Precompiler and OCI Application Development
Environments

When you have decided on the new features to use, change the code of your application to
use these features.

Follow the appropriate instructions in the following sections based on your development
environment.

• Changing Precompiler Applications
Complete these steps to change precompiler applications to use new Oracle Database
release features.

Chapter 8
About Upgrading Options for Oracle Precompiler and OCI Applications

8-9

• Changing OCI Applications
To use new features in your new Oracle Database release, you must recompile
your applications with the OCI calls for the new Oracle Database release.

Changing Precompiler Applications
Complete these steps to change precompiler applications to use new Oracle Database
release features.

To use new features in a new Oracle Database release, you must add new code into
your existing applications, and recompile the applications.

1. Incorporate the code for new features into your existing applications.

2. Precompile each application using the Oracle precompiler.

3. Compile each application.

4. Relink each application with the runtime library of the new Oracle Database
release, SQLLIB, which is included with the precompiler.

Changing OCI Applications
To use new features in your new Oracle Database release, you must recompile your
applications with the OCI calls for the new Oracle Database release.

1. Incorporate OCI calls of the new Oracle Database release into the existing
application

2. Compile the application.

3. Relink the application with the new Oracle Database release runtime library.

Upgrading SQL*Plus Scripts and PL/SQL after Upgrading
Oracle Database

To use features and functions of the new Oracle Database release, you must change
existing SQL scripts to use the syntax of the new Oracle Database release.

If existing SQL scripts do not use features and functions of the new Oracle Database
release, then they run unchanged on the new Oracle Database release, and require
no modification.

Be aware that because of improved error checking in the new Oracle Database
release, it may identify errors at compile time rather than at run time.

About Upgrading Oracle Forms or Oracle Developer
Applications

Review Oracle Forms and Oracle Developer new features to see if any of your
applications can benefit from them.

In Oracle Database 12c, Oracle Database Development Guide was renamed to Oracle
Database Advanced Application Developer's Guide. Review that publication and the
new features guide for information about changes to procedures for developing

Chapter 8
Upgrading SQL*Plus Scripts and PL/SQL after Upgrading Oracle Database

8-10

applications, and for new features of this Oracle Database release that affect application
development.

Chapter 8
About Upgrading Oracle Forms or Oracle Developer Applications

8-11

9
Downgrading Oracle Database to an Earlier
Release

For supported releases of Oracle Database, you can downgrade a database to the release
from which you last upgraded.

• Supported Releases for Downgrading Oracle Database
You can downgrade both major releases and release update or patchset releases, based
on the original Oracle Database release from which the database was upgraded.

• Check for Incompatibilities When Downgrading Oracle Database
To see if the database has incompatibilities that can prevent you from downgrading,
check the compatibility level of your database.

• Perform a Full Backup Before Downgrading Oracle Database
Oracle strongly recommends that you perform a full backup of your new Oracle Database
release before you downgrade to a supported earlier release.

• Performing Required Predowngrade Steps for Oracle Database
Resolve incompatibilities between releases before you downgrade Oracle Database to
the earlier release from which you upgraded.

• Using Scripts to Downgrade Oracle Database 21c
To automate downgrades, Oracle provides the dbdowngrade utility script. When
necessary, you can also continue to run catdwgrd.sql manually, as in previous releases.

• Downgrading a Single Pluggable Oracle Database (PDB)
If you are downgrading Oracle Database, then you can downgrade one PDB without
downgrading the whole CDB.

• Downgrading PDBs That Contain Oracle Application Express
Use this procedure to avoid INVALID OBJECTS OWNED BY APEX_050000 errors when
you downgrade PDBs that contain Oracle Application Express.

• Post-Downgrade Tasks for Oracle Database Downgrades
After you downgrade your Oracle Database release, you can be required to complete
additional tasks, due to changes that affect compatibility, components, and supported
protocols.

• Troubleshooting the Downgrade of Oracle Database
Use this troubleshooting information to address issues that may occur when downgrading
Oracle Database.

Supported Releases for Downgrading Oracle Database
You can downgrade both major releases and release update or patchset releases, based on
the original Oracle Database release from which the database was upgraded.

Releases Supported for Downgrades

You can downgrade a non-CDB Oracle Database from Oracle Database 21c to Oracle
Database 19c, Oracle Database 18c, and Oracle Database 12c Release 2.

9-1

You can downgrade a PDB or CDB from Oracle Database 21c to Oracle Database
19c, Oracle Database 18c, or Oracle Database 12c Release 2 (12.2).

Note:

Starting with Oracle Database 21c, non-CDB architecture is desupported.
You must upgrade a non-CDB Oracle Database to a PDB on a CDB.

The following table provides additional information about releases supported for
downgrading. When using this table, also read about compatibility in "Checking for
Incompatibilities When Downgrading Oracle Database."

Table 9-1 Supported Releases and Editions for Downgrading

Oracle Database
Release or
Edition

Downgradable
(Yes/No)

Notes

19 Yes No additional information at this time.

18 Yes Release Update Patch 32524155: DATABASE
RELEASE UPDATE 18.14.0.0.0 (Patch) or later for
your platform. Refer to "Performing Required
Predowngrade Steps for Oracle Database" for details.

12.2 Yes For PDBs, Release Update Patch DATABASE APR
2021 RELEASE UPDATE 12.2.0.1.210420 (Patch) or
later for your platform. Refer to "Performing Required
Predowngrade Steps for Oracle Database" for details.

Oracle Enterprise
Manager

No If you downgrade to an earlier supported release, then
you must reconfigure Oracle Enterprise Manager
controls.

Before you start your upgrade, you must use the
emdwgrd utility to save DB Control files and data, so
that you can restore Oracle Enterprise Manager
Database Control (DB Control) after a downgrade.

Oracle Database
Express Edition

No You cannot downgrade a database that is upgraded
from Oracle Database Express Edition.

Recommendations to Review Before Downgrading

Install the latest Release Update, Release Revision, bundle patch or patch set update
(BP or PSU) before you downgrade a CDB, or before you unplug and downgrade a
PDB. Patches are available for download on My Oracle Support. Review "Primary
Note for Database Proactive Patch Program (Doc ID 888.1)" on My Oracle Support for
your release.

The minimum compatibility setting for Oracle Database 21c is 12.2. You cannot
downgrade to releases earlier than the minimum compatibility setting for the new
Oracle Database release.

The following recommendations for earlier supported releases affect downgrading for
Oracle Database:

Chapter 9
Supported Releases for Downgrading Oracle Database

9-2

• Multitenant architecture provides architecture features for a multitenant container
database (CDB), and pluggable databases (PDBs). If you are upgrading to multitenant
architecture, and you set the compatible initialization parameter to the highest level after
upgrading to this release, then you cannot downgrade the database after an upgrade.

• Downgrade is not supported for Oracle Enterprise Manager. If you downgrade to an
earlier supported release, then you must reconfigure Oracle Enterprise Manager controls.

Related Topics

• My Oracle Support Doc ID 888.1

• READ and SELECT Object Privileges in Oracle Database Security Guide

Check for Incompatibilities When Downgrading Oracle Database
To see if the database has incompatibilities that can prevent you from downgrading, check
the compatibility level of your database.

If you have updated the COMPATIBLE parameter to set the compatibility level of your Oracle
Database release to the current release, then you are not able to downgrade to an earlier
release. This issue occurs because new releases have changes to the Data Dictionary, and
can have other feature changes that prevent downgrades.

To check the COMPATIBLE parameter setting for your database before you downgrade, enter
the following command:

SQL> SELECT name, value, description FROM v$parameter WHERE name =
 ‘compatible’;

Note:

For Oracle ASM disk groups, if you changed the compatible.asm parameter after
the upgrade to the upgraded release value, then when you downgrade to the earlier
release, you cannot mount your Oracle ASM disk groups. The value for
compatible.asm sets the minimum Oracle ASM release that can mount a disk
group.

As part of your downgrade, you must create a new disk group to your downgraded
release level, and restore data to that downgraded compatibility ASM disk group.

Perform a Full Backup Before Downgrading Oracle Database
Oracle strongly recommends that you perform a full backup of your new Oracle Database
release before you downgrade to a supported earlier release.

Related Topics

• Backing Up the Database in Oracle Database Backup and Recovery User’s Guide

Chapter 9
Check for Incompatibilities When Downgrading Oracle Database

9-3

https://support.oracle.com/rs?type=doc&id=888.1

Performing Required Predowngrade Steps for Oracle
Database

Resolve incompatibilities between releases before you downgrade Oracle Database to
the earlier release from which you upgraded.

Before you start a downgrade, you must resolve incompatibilities between database
releases. For example, determine if you must disable components in the database
before you start the downgrade.

1. If you have enabled Oracle Database Vault on your database, then disable Oracle
Database Vault before downgrading the database.

Use DBA_DV_STATUS to find out if Oracle Database Vault is enabled:

SQL> SELECT * FROM DBA_DV_STATUS;

If the output of this statement is TRUE, then Oracle Database Vault is enabled, so
you must disable it.

On multitenant architecture Oracle Database systems, use CDB_DV_STATUS on
CDB$ROOT to find out the Oracle Database Vault status on all PDBs plugged in to
the CDB:

SQL> SELECT * FROM CDB_DV_STATUS;

2. If you have enabled Unified Auditing, then use this procedure to find and purge the
unified audit trail. You can also chose to back up the unified audit trail before
purging it.

a. Find if unified audit records exist.

SQL> SELECT COUNT(*) FROM UNIFIED_AUDIT_TRAIL;

b. (Optional) Back up the existing audit data to a table. For example:

SQL> CREATE TABLE UA_DATA AS (SELECT * FROM UNIFIED_AUDIT_TRAIL);

c. Clean up the audit trail.

EXEC DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL(audit_trail_type =>
DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED, use_last_arch_timestamp =>
FALSE);

3. Before downgrade, ensure that the target Oracle home for the downgraded
database contains the version of the time zone file that your database is using.

To find which time zone file version your database is currently using, query
V$TIMEZONE_FILE using the following command:

SQL> select * from V$TIMEZONE_FILE;

For example:

Chapter 9
Performing Required Predowngrade Steps for Oracle Database

9-4

If the query returns timezlrg_35.dat in the column V$TIMEZONE_FILE.FILENAME, then
check if the file is present in the target Oracle Home:

Linux and Unix

$ORACLE_HOME/oracore/zoneinfo/timezlrg_35.dat

Windows

%ORACLE_HOME%\oracore\zoneinfo\timezlrg_35.dat

If the required time zone file is missing from the target Oracle home, then do one of the
following:

• If you installed the current version of the time zone file as a patch, and you still know
the patch number, then use the same patch number to download the corresponding
time zone file for the target release from the My Oracle Support website.

• Locate the correct patch by using the My Oracle Support website patch search
function. Enter the following search criteria: "Product is 'Oracle Database'", "Release
is 'target release'", and "Description contains 'DST'".

• If you cannot locate the patch on the My Oracle Support website, then log a service
request with Oracle Support.

After you find and download the required patch, install it in the target Oracle home.

4. If you created objects based on fixed objects, then drop these objects to avoid possible
ORA-00600 errors. You can recreate these objects after the downgrade.

5. If you have Oracle Enterprise Manager configured in your database, then drop the
Enterprise Manager user:

DROP USER sysman CASCADE;

Note:

After you drop the Enterprise Manager user, you can find that MGMT* synonyms
are invalid. You must reconfigure Oracle Enterprise Manager to use any Oracle
Enterprise Manager controls in the downgraded database.

6. Obtain the appropriate ARUs for your server operating system from the PSE listed for
your release. Download and install all the patches listed for your earlier release before
you start the downgrade:

a. Log in to My Oracle Support:

https://support.oracle.com

b. Select Patches & Updates. In the Patch Search frame, provide the patch number or
bug number listed for your release, and provide the platform for your server.

c. Download and install the patch.

d. Repeat until you have installed all required patches for your server.

Chapter 9
Performing Required Predowngrade Steps for Oracle Database

9-5

https://support.oracle.com

7. From Patches & Updates on My Oracle Support, download and apply any
additional database patches required for your download release or scenario. Refer
to the examples that follow.

Example 9-1 Downgrade CDB and PDBs from Oracle Database 21c to Oracle
Database 19c, or Oracle Database 12c (12.2)

No additional database patches are required for the downgrade.

Example 9-2 Downgrade a non-CDB upgraded to a PDB from Oracle Database
21c to Oracle Database 19c

This downgrade procedure downgrades an Oracle Database non-CDB upgraded to
Oracle Database 21c to an Oracle Database 19c PDB. At the completion of the
downgrade, the downgraded CDB is a PDB on Oracle Database 19c. No additional
patches are required

1. You start with your non-CDB on Oracle Database 19c, on Oracle home 1.

2. Install Oracle Database 21c on Oracle home 2. Note: You cannot update
compatibility to a release later then the release to which you want to downgrade.
For example, to downgrade to Oracle Database 19c, you must not set
compatibility higher than 19.0.0.

3. Convert the non-CDB from Oracle home 1 to a PDB on the Oracle Database 21c
CDB on Oracle home 2.

4. Upgrade the plugged-in 19c PDB to Oracle Database 21c.

5. Install Oracle Database 19c CDB and PDBs on Oracle home 3.

6. Downgrade: Unplug the upgraded PDB from the 21c CDB on Oracle home 2, and
plug in to the 19c CDB on Oracle home 3.

7. Run catrelod.sql on the PDB.

8. Run utlrp.sql on the PDB

Example 9-3 Downgrade a PDB from Oracle Database 21c to Oracle Database
19c PDB

No additional database patches are required for the downgrade.

1. You start with your PDB on Oracle Database 19c (CDB and PDB), on Oracle home
1.

2. Install Oracle Database 21c on Oracle home 2. Note: You cannot update
compatibility to a release later then the release to which you want to downgrade.
For example, to downgrade to Oracle Database 19c, you must not set
compatibility higher than 19.0.0.

3. Unplug the Oracle Database 19c PDB from the 19c Oracle home 1, and plug it in
to the Oracle Database 21c CDB on Oracle home 2.

4. Upgrade the plugged-in 19c PDB to Oracle Database 21c.

5. Downgrade: Unplug the upgraded PDB from the 21c CDB on Oracle home 2, and
plug back in to the 19c CDB on Oracle home 1.

6. Run catrelod.sql on the PDB.

7. Run utlrp.sql on the PDB

Chapter 9
Performing Required Predowngrade Steps for Oracle Database

9-6

Example 9-4 Downgrade CDB and PDBs from Oracle Database 21c to Oracle
Database 18c

Apply the database release update Patch 32524155: DATABASE RELEASE UPDATE
18.14.0.0.0 (Patch) or later. Without this patch, when catrelod.sql runs, you can
encounter the error SP2-0310: Unable to open file "dbms_registry_extended.sql"
during catrelod.sql execution.

Example 9-5 Downgrade a non-CDB upgraded to a PDB from Oracle Database 21c to
Oracle Database 18c

This downgrade procedure downgrades an Oracle Database non-CDB upgraded to Oracle
Database 21c to a PDB. At the completion of the downgrade, the downgraded CDB is a PDB
on Oracle Database 18c.

1. You start with your non-CDB on Oracle Database 18c, on Oracle home 1.

2. Apply the database release update Patch 32524155: DATABASE RELEASE UPDATE
18.14.0.0.0 (Patch) or later for your platform to the PDB. Without this patch, when
catrelod.sql runs, you can encounter the error SP2-0310: Unable to open file
"dbms_registry_extended.sql".

3. Install Oracle Database 21c on Oracle home 2. Note: You cannot update compatibility to
a release later then the release to which you want to downgrade. For example, to
downgrade to Oracle Database 18c, you must not set compatibility higher than 18.0.0.

4. Convert the non-CDB from Oracle home 1 to a PDB on the Oracle Database 21c CDB on
Oracle home 2.

5. Upgrade the plugged-in 18c PDB to Oracle Database 21c.

6. Install Oracle Database 18c with CDB and PDBs on Oracle home 3, and apply the
database release update Patch 32524155: DATABASE RELEASE UPDATE 18.14.0.0.0
(Patch) or later for your platform to the PDB. Without this patch, when catrelod.sql
runs, you can encounter the error SP2-0310: Unable to open file
"dbms_registry_extended.sql".

7. Downgrade: Unplug the upgraded PDB from the 21c CDB on Oracle home 2, and plug in
to the 18c CDB on Oracle home 3.

8. Run catrelod.sql on the PDB.

9. Run utlrp.sql on the PDB

Example 9-6 Downgrade a PDB from Oracle Database 21c to Oracle Database 18c

The downgrade of a PDB from Oracle Database 21c to Oracle Database 18c process is as
follows:

1. You start with your PDB on Oracle Database 18c (CDB and PDB), on Oracle home 1.

2. Apply the database release update Patch 32524155: DATABASE RELEASE UPDATE
18.14.0.0.0 (Patch) or later for your platform to the PDB. Without this patch, when
catrelod.sql runs, you can encounter the error SP2-0310: Unable to open file
"dbms_registry_extended.sql".

3. Install Oracle Database 21c on Oracle home 2. Note: You cannot update compatibility to
a release later then the release to which you want to downgrade. For example, to
downgrade to Oracle Database 18c, you must not set compatibility higher than 18.0.0.

4. Unplug the Oracle Database 18c PDB from the 18c Oracle home 1, and plug it in to the
Oracle Database 21c CDB on Oracle home 2.

Chapter 9
Performing Required Predowngrade Steps for Oracle Database

9-7

5. Upgrade the plugged-in 18c PDB to Oracle Database 21c.

6. Downgrade: Unplug the upgraded PDB from the 21c CDB on Oracle home 2, and
plug back in to the 18c CDB on Oracle home 1.

7. Run catrelod.sql on the PDB.

8. Run utlrp.sql on the PDB

Example 9-7 Downgrade an Oracle Database 12c Release 2 (12.2) Non-CDB to
Oracle Database 12c Release 2 (12.2) PDB from Oracle Database 21c

This downgrade procedure downgrades an Oracle Database non-CDB upgraded to
Oracle Database 21c to a PDB. At the completion of the downgrade, the downgraded
CDB is a PDB on Oracle Database 12c.

1. You start with your non-CDB on Oracle Database 12c, on Oracle home 1.

2. Apply the database release update patch DATABASE APR 2021 RELEASE UPDATE
12.2.0.1.210420 (Patch) or later for your platform to the PDB. Without this
patch, when catrelod.sql runs, during PDB open after you run catrelod.sql,
you can encounter pdb_plug_in_violations during PDB open.

3. Install Oracle Database 21c on Oracle home 2. Note: You cannot update
compatibility to a release later then the release to which you want to downgrade.
For example, to downgrade to Oracle Database 12c, you must not set
compatibility higher than 12.2.0.

4. Convert the Oracle Database 12c non-CDB from Oracle home 1 to a PDB on the
Oracle Database 21c CDB on Oracle home 2.

5. Upgrade the plugged-in 12c PDB to Oracle Database 21c.

6. Install Oracle Database 12c with CDB PDB on Oracle home 3 and apply the
database release update Patch DATABASE APR 2021 RELEASE UPDATE
12.2.0.1.210420 (Patch) or later for your platform to the PDB. Without this patch,
when catrelod.sql runs, during PDB open after you run catrelod.sql, you can
encounter pdb_plug_in_violations during PDB open.

7. Downgrade: Unplug the upgraded PDB from the 21c CDB on Oracle home 2, and
plug in to the 12c CDB on Oracle home 3.

8. Run catrelod.sql on the PDB.

9. Run utlrp.sql on the PDB

Example 9-8 Downgrade a PDB to Oracle Database 12c Release 2 (12.2) from
Oracle Database 21c

1. You start with your PDB on Oracle Database 12c Release 2 (CDB and PDB), on
Oracle home 1.

2. Apply the database release update patch DATABASE APR 2021 RELEASE UPDATE
12.2.0.1.210420 (Patch) or later for your platform to the PDB. Without this
patch, when catrelod.sql runs, during PDB open after you run catrelod.sql,
you can encounter pdb_plug_in_violations during PDB open.

3. Install Oracle Database 21c on Oracle home 2. Note: You cannot update
compatibility to a release later then the release to which you want to downgrade.
For example, to downgrade to Oracle Database 12c, you must not set
compatibility higher than 12.2.0.

4. Unplug the Oracle Database 12c Release 2 (12.2) PDB from the 12c CDB on
Oracle home 1, and plug it in to the Oracle Database 21c CDB on Oracle home 2.

Chapter 9
Performing Required Predowngrade Steps for Oracle Database

9-8

5. Upgrade the plugged-in 12c PDB to Oracle Database 21c.

6. Downgrade: Unplug the upgraded PDB from the 21c CDB on Oracle home 2, and plug
back in to the 12c CDB on Oracle home 1.

7. Run catrelod.sql on the PDB.

8. Run utlrp.sql on the PDB.

Related Topics

• Datetime Data Types and Time Zone Support in Oracle Database Globalization Support
Guide

• My Oracle Support Doc ID 1986687.1

Using Scripts to Downgrade Oracle Database 21c
To automate downgrades, Oracle provides the dbdowngrade utility script. When necessary,
you can also continue to run catdwgrd.sql manually, as in previous releases.

• Using Dbdowngrade to Downgrade Oracle Databases To an Earlier Release
To downgrade Oracle Database to an earlier supported major release, or to an earlier
release update, Oracle recommends that you run the downgrade script dbdowngrade.

• Downgrading a CDB or Non-CDB Oracle Database Manually with catdwgrd.sql
When you prefer to downgrade Oracle Database manually, or if you are concerned about
excessive thread issues, you can run the manual catdwgrd.sql script.

Using Dbdowngrade to Downgrade Oracle Databases To an Earlier
Release

To downgrade Oracle Database to an earlier supported major release, or to an earlier release
update, Oracle recommends that you run the downgrade script dbdowngrade.

Oracle provides the Downgrade Utility script dbdowngrade. When you use the dbdowngrade
utility, it sets appropriate values for the downgrade, and simplifies how you start a downgrade.
Specifically, it ensures that the underlying calls to catcon.pl use recommended values, so
that potential errors due to excessive threads being spawned are reduced. This feature is
especially of value for downgrades of multitenant architecture (CDB) databases. When the
potential of excessive threads exists, you can continue the downgrade by running the
catdwgrd.sql script manually, as in previous releases.

The dbdowngrade shell command is located in the file path $ORACLE_HOME/bin on Linux and
Unix, and %ORACLE_HOME%\bin on Microsoft Windows based systems. If you are downgrading
a CDB, then you can provide the inclusion list as argument to the script.

When you downgrade multitenant architecture databases (CDBs), the dbdowngrade script has
two behaviors, depending on whether you use an inclusion list.

• Without an inclusion list. The downgrade runs on all the containers that are open in the
CDB (PDB and CDB).

Run the downgrade without an inclusion list when you want to downgrade the entire
CDB. In this scenario, all open containers are downgraded. You must open all the PDBs
in the CDB manually before you start the dbdowngrade script.

• With an inclusion list. The downgrade runs only on the PDBs within the inclusion list,
and CDB$ROOT is not downgraded during the downgrade operation.

Chapter 9
Using Scripts to Downgrade Oracle Database 21c

9-9

https://support.oracle.com/rs?type=doc&id=1986687.1

Run the downgrade with an inclusion list when you want to downgrade only the set
of PDBs listed in the inclusion list. In this scenario, where you want to use unplug
and plug upgrades, only the set of PDBs that you list in the inclusion list are
downgraded. The CDB and the PDBs that are not on the inclusion list remain
upgraded to the later release.

Prerequisites:

• If you are downgrading from Oracle Database 21c to Oracle Database 19c, Oracle
Database 18c, or Oracle Database 12.2, then you can downgrade all databases in
a multitenant container database (CDB), or one pluggable database (PDB) within
a CDB. Oracle Database releases earlier than Oracle Database 12c did not use
multitenant architecture.

• If you are downgrading without an inclusion list, then you must open all PDB
containers before you run the dbdowngrade script.

1. Log in to the system as the owner of the Oracle Database Oracle home directory.

2. Set the ORACLE_HOME environment variable to the Oracle home of the upgraded
Oracle Database release.

3. Set the ORACLE_SID environment variable to the system identifier (SID) of the
Oracle Database that you want to downgrade.

4. At a system prompt, change to the directory ORACLE_HOME/rdbms/admin, where
ORACLE_HOME is the Oracle home on your system.

Note:

If you are downgrading a cluster database, then shut down the database
completely, and change the value for the initialization parameter
CLUSTER_DATABASE to FALSE. After the downgrade, set this parameter
back to TRUE.

5. Using SQL*Plus, connect to the database instance that you want to downgrade as
a user with SYSDBA privileges:

sqlplus sys as sysdba
Enter password: password

6. Start the instance in downgrade mode by issuing the following SQL*Plus
command for your Oracle Database instance type. In case of errors during startup,
you can be required to use the PFILE option to specify the location of your
initialization parameter file.

• Non-CDB instances:

SQL> startup downgrade pfile=pfile_name

• CDB instances:

SQL> startup downgrade pfile=pfile_name
SQL> alter pluggable database all open downgrade;

Specify the location of your initialization parameter file PFILE.

Chapter 9
Using Scripts to Downgrade Oracle Database 21c

9-10

See Also:

Oracle Database Administrator’s Guide for information about specifying
initialization parameters at startup and the initialization parameter file

7. Start the dbdowngrade script, either with default values, or with an inclusion list.

If you use an inclusion list, then CDB$ROOT must not be on your inclusion list.

For example:

Running with default values
Linux and Unix

$cd $ORACLE_HOME/bin
$./dbdowngrade

Microsoft Windows

$cd %ORACLE_HOME%\bin
$dbdowngrade.cmd

Running with inclusion list for CDB
Linux and Unix

$cd $ORACLE_HOME/bin
$./dbdowngrade –c 'PDB1 PDB2 PDBN'

Microsoft Windows

$cd %ORACLE_HOME%\bin
$dbdowngrade.cmd –c "PDB1 PDB2 PDBN"

8. Run catrelod.sql on non-CDB databases, or use catcon.pl to run catrelod.sql
on CDB databases.

• For a non-CDB:

SQL> $ORACLE_HOME/rdbms/admin/catrelod.sql

• For a CDB:

 $ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl -n 1 -
e -b catrelod -d $ORACLE_HOME/rdbms/admin catrelod.sql

This command reloads the appropriate version for each of the database components in
the downgraded database.

As a result of running the dbdowngrade script, the utility runs catdwgrd and catcon.pl. These
scripts perform the downgrade, using the recommended values for the release to which you
are downgrading.

Chapter 9
Using Scripts to Downgrade Oracle Database 21c

9-11

These scripts create log files. If you run dbdowngrade with the -l filepath, where
filepath is the path where you want log files created, then dbdowngrade creates the
directory you specify, and places log files there. For example:

./dbdowngrade -l /databases/downgrade/logs

If you do not specify a directory for log files, then the log files produced by the
downgrade scripts are placed under the first directory found of one of these three
options, in order of precedence:

• The Oracle base home identified by the orabasehome command

• The Oracle base home identified by the orabase command

• The Oracle home identified by the oracle_home command

For example:

$ $ORACLE_HOME/bin/orabasehome
/u01/app/oracle/product/21.0.0/dbhome_1

In this example, the $ORACLE_BASE directory is /u01/app/oracle/product/21.0.0/
dbhome_1, and the logs are located in /u01/app/oracle/product/21.0.0/dbhome_1/
cfgtoollogs/downgrade. In the directory, the log files are prefixed with the string
catdwgrd.

To further manage how the dbdowngrade script runs, you can specify the following
additional options:

• -d directory-path Specify the directory path, defined by directory-path, where
you want the catdwgrd.sql file placed

• -e Specify that you want to turn echo off while catdwgrd.sql runs (the default is
set to on).

• -n number Specify the number of parallel processes you want the dbdowngrade
command to use. By default, the number of processes is equal to the number of
CPUs divided by 2 (cpu_count/2).

• -b log-file-name-base Specify a different base file name (the value you provide
for the variable log-file-name-base) for log files generated by the manual
downgrade script catdwgrd. If you do not specify a different base file name, then
the default file base name is catdwgrd.

• -h Specify that you want dbdowngrade to display a list of command options. The
dbdowngade script then outputs command options to the screen, and exits.

Note:

• Read-write Oracle homes: the commands orabaseconfig and
orabasehome both return the environment setting for ORACLE_HOME.

• Read-only Oracle homes: the command orabaseconfig returns the read-
only path configuration for the Oracle base in the path $ORACLE_BASE/
homes.

Chapter 9
Using Scripts to Downgrade Oracle Database 21c

9-12

Downgrading a CDB or Non-CDB Oracle Database Manually with
catdwgrd.sql

When you prefer to downgrade Oracle Database manually, or if you are concerned about
excessive thread issues, you can run the manual catdwgrd.sql script.

You can use the manual catdwgrd.sql script to downgrade Oracle Database to an earlier a
supported major release, or an earlier release update.
If you are downgrading from Oracle Database 21c to Oracle Database 19c, Oracle Database
18c, or Oracle Database 12.2, then you can downgrade all databases in a multitenant
container database (CDB), or one pluggable database (PDB) within a CDB. Oracle Database
releases earlier than Oracle Database 12c did not use multitenant architecture.

Note:

Starting with Oracle Database 21c, non-CDB architecture is desupported. You must
upgrade a non-CDB Oracle Database to a PDB on a CDB.

1. Log in to the system as the owner of the Oracle Database Oracle home directory.

2. Set the ORACLE_HOME environment variable to the Oracle home of the upgraded Oracle
Database release.

3. Set the ORACLE_SID environment variable to the system identifier (SID) of the Oracle
Database that you want to downgrade.

4. At a system prompt, change to the directory ORACLE_HOME/rdbms/admin, where
ORACLE_HOME is the Oracle home on your system.

Note:

If you are downgrading a cluster database, then shut down the database
completely, and change the value for the initialization parameter
CLUSTER_DATABASE to FALSE. After the downgrade, set this parameter back to
TRUE.

5. Using SQL*Plus, connect to the database instance that you want to downgrade as a user
with SYSDBA privileges:

sqlplus sys as sysdba
Enter password: password

6. Start the instance in downgrade mode by issuing the following SQL*Plus command for
your Oracle Database instance type. In case of errors during startup, you can be required
to use the PFILE option to specify the location of your initialization parameter file.

• Non-CDB instances:

SQL> startup downgrade pfile=pfile_name

Chapter 9
Using Scripts to Downgrade Oracle Database 21c

9-13

• CDB instances:

SQL> startup downgrade pfile=pfile_name
SQL> alter pluggable database all open downgrade;

Specify the location of your initialization parameter file PFILE.

See Also:

Oracle Database Administrator’s Guide for information about specifying
initialization parameters at startup and the initialization parameter file

7. (Recommended) If you are downgrading a non-CDB, then Oracle recommends
that you set the system to spool results to a log file, so you can track the changes
and issues.

If you are downgrading a CDB, then you do not need to perform this step. CDBs
automatically spool output to the catcon_logs.

On a non-CDB, enter the following command to spool results to a log file, where
downgrade.log is the name of the log file:

SQL> SPOOL downgrade.log

8. Use the following command to start the downgrade, depending on your
configuration:

• Non-CDB:

SQL> @catdwgrd.sql

• CDB:

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl -
d $ORACLE_HOME/rdbms/admin -e -b catdwgrd -l output directory -r
catdwgrd.sql

In the CDB example, catdwgrd.sql is run on containers using catcon.pl. To
run commands with the catcon.pl utility, you first start Perl. The -d parameter
tells catcon.pl where to find catdwgrd. The -l parameter specifies the output
directory for log files (instead of writing to the rdbms/admin directory). Specifying
the -r parameter causes catdwgrd to run first on the PDBs, and second on
CDB_ROOT.

Run catdwgrd using the -r parameter when you downgrade a CDB. The –r
parameter changes the default order that scripts are run, so that scripts run in all
PDBs, and then in CDB_ROOT.

Chapter 9
Using Scripts to Downgrade Oracle Database 21c

9-14

Note:

• Use the version of the catdwgrd.sql script included with your new Oracle
Database release.

• Run catdwgrd using the -r parameter when downgrading a CDB.

• Run catdwgrd.sql in the new Oracle Database release environment.

• The catdwgrd.sql script downgrades all Oracle Database components in
the database to the release from which you upgraded. The downgrade is
either to the supported major release from which you upgraded, or to the
patch release from which you upgraded.

If you are downgrading a multitenant environment database, and the catdwgrd.sql
command encounters a failure, then review the error message. Check to see what issues
are present in the CDB$ROOT or PDBs before proceeding. Check the section
"Troubleshooting the Downgrade of Oracle Database." Fix the issues as stated in the
errors. After you resolve the errors, rerun catdgwrd.sq with the catcon.pl utility,
using the syntax catcon.pl -c 'cdb,pdb' -r.

Caution:

If the downgrade for a component fails, then an ORA-39709 error is displayed.
The SQL*Plus session terminates without downgrading the Oracle Database
data dictionary. All components must be successfully downgraded before the
Oracle Database data dictionary is downgraded. Identify and fix the problem
before rerunning the catdwgrd.sql script.

9. For Non-CDB only, if you turned the spool on, then turn off the spooling of script results to
the log file:

SQL> SPOOL OFF

Check the spool file, and verify that no errors occurred during the downgrade. You named
the spool file in Step 8, and the suggested name was downgrade.log. Correct any
problems that you find in this file. If necessary, rerun the downgrade script.

Note:

Save the results from the first time you ran the downgrade script. Before you
rerun the downgrade script, rename the file downgrade.log to a different name,
so that it is not overwritten when you rerun the script.

10. Shut down the instance:

SQL> SHUTDOWN IMMEDIATE

11. Exit SQL*Plus.

Chapter 9
Using Scripts to Downgrade Oracle Database 21c

9-15

12. If your operating system is Linux or Unix, then change the following environment
variables to point to the directories of the release to which you are downgrading:

• Linux and Unix systems

Change the following environment variables to point to the directories of the
release to which you are downgrading:

– ORACLE_HOME

– PATH

Also check that your oratab file, and any client scripts that set the value of
ORACLE_HOME, point to the downgraded Oracle home.

See Also:

Oracle Database Installation Guide for your operating system for
information about setting other important environment variables on
your operating system

• Microsoft Windows systems

a. Stop all Oracle services, including the Oracle Database OracleServiceSID
Oracle service, where SID is the instance name.

For example, if your SID is ORCL, then enter the following at a command
prompt:

C:\> NET STOP OracleServiceORCL

See Also:

Oracle Database Administrator’s Reference for Microsoft
Windows for more information about stopping Oracle services on
Windows

b. Delete the Oracle service at a command prompt by issuing the command
ORADIM.

For example, if your SID is ORCL, then enter the following command:

C:\> ORADIM -DELETE -SID ORCL

Create the Oracle service of the database that you are downgrading at a
command prompt using the command ORADIM:

C:\> ORADIM -NEW -SID SID -INTPWD PASSWORD -MAXUSERS USERS
-STARTMODE MANUAL -PFILE ORACLE_HOME\DATABASE\INITSID.ORA

The syntax for ORADIM includes the following variables:

Chapter 9
Using Scripts to Downgrade Oracle Database 21c

9-16

Variable Description

SID Same system identifier (SID) name as the SID of the database being
downgraded.

PASSWORD Password for the database instance. This password is the password
for the user connected with SYSDBA privileges. The -INTPWD option is
not required. If you are prompted for a password, then use the
password for the standard user account for this Windows platform.

USERS Maximum number of users that can be granted SYSDBA and SYSOPER
privileges.

ORACLE_HOME Oracle home directory of the database to which you are downgrading.
Ensure that you specify the full path name with the option -PFILE,
including the drive letter where the Oracle home directory is mounted.

See Oracle Database Administrator’s Guide for information about
specifying initialization parameters at startup, and for information
about the initialization parameter file.

For example, if your SID is ORCL, your PASSWORD is TWxy5791, the maximum
number of USERS is 10, and the ORACLE_HOME directory is C:\ORANT, then
enter the following command:

C:\> ORADIM -NEW -SID ORCL -INTPWD TWxy5791 -MAXUSERS 10
 -STARTMODE AUTO -PFILE C:\ORANT\DATABASE\INITORCL.ORA

Note:

The ORADIM command prompts you for the password for the Oracle
home user account. You can specify other options using ORADIM.

You are not required to change any Windows Registry settings when
downgrading a database. The ORADIM utility makes all necessary
changes automatically.

See Also:

Oracle Database Administrator’s Reference for Microsoft Windows for
information about administering an Oracle Database instance using
ORADIM

13. Restore the configuration files (for example, parameter files, password files, and so on) of
the release to which you are downgrading.

If the database is an Oracle RAC database, then run the following command to return the
database to single instance mode:

SET CLUSTER_DATABASE=FALSE

Chapter 9
Using Scripts to Downgrade Oracle Database 21c

9-17

Note:

If you are downgrading a cluster database, then perform this step on all
nodes on which this cluster database has instances configured. Set the
value for the initialization parameter CLUSTER_DATABASE to FALSE. After
the downgrade, set this initialization parameter back to TRUE.

See Also:

Oracle Real Application Clusters Administration and Deployment Guide
for information about initialization parameter use in Oracle RAC

14. At a system prompt, change to the admin directory in the Oracle home directory of
the earlier release to which you are downgrading. (ORACLE_HOME/rdbms/admin,
where ORACLE_HOME is the path to the earlier release Oracle home.)

15. Start SQL*Plus, and connect to the database instance as a user with SYSDBA
privileges.

• For a non-CDB:

SQL> CONNECT / AS SYSDBA
SQL> STARTUP UPGRADE

• For a CDB:

connect / as sysdba
startup upgrade;
alter pluggable database all open upgrade;

16. (Optional) For a non-CDB, set the system to spool results to a log file to track
changes and issues. This step is not needed for a CDB.

SQL> SPOOL reload.log

17. Run catrelod.sql on non-CDB databases, or use catcon.pl to run
catrelod.sql on CDB databases.

• For a non-CDB:

SQL> $ORACLE_HOME/rdbms/admin/catrelod.sql

• For a CDB:

 $ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl -
n 1 -e -b catrelod -d $ORACLE_HOME/rdbms/admin catrelod.sql

This command reloads the appropriate version for each of the database
components in the downgraded database.

Chapter 9
Using Scripts to Downgrade Oracle Database 21c

9-18

18. If you turned on spooling for a non-CDB, then turn off the spooling of script results to the
log file:

SQL> SPOOL OFF

Check the spool file, and verify that the packages and procedures compiled successfully.
Correct any problems that you find in this log file, and rerun the appropriate script, if
necessary.

19. Shut down and restart the instance for normal operation:

SQL> SHUTDOWN IMMEDIATE
SQL> STARTUP

You can be required to use the optionPFILE to specify the location of your initialization
parameter file.

See Also:

Oracle Database Administrator’s Guide for information about specifying
initialization parameters at startup, and in the initialization parameter file

20. If you configured your database to use Oracle Label Security, then complete this step. If
you did not configure your database to use Oracle Label Security, then proceed to the
next step.

a. Copy the script olstrig.sql from the Oracle home under Oracle Database 12c to
the Oracle home of the release number to which you are downgrading the database.

b. From the Oracle home of the downgrade release, run olstrig.sql to recreate DML
triggers on tables with Oracle Label Security policies:

SQL> @olstrig.sql

21. (Optional) For a non-CDB, set the system to spool results to a log file to track changes
and issues. This step is not needed for a CDB.

Example:

SQL> SPOOL utlrp.log

22. Run the utlrp.sql script to recompile any remaining stored PL/SQL and Java code. Use
the procedure for your configuration:

• non-CDB:

SQL> $ORACLE_HOME/rdbms/admin/utlrp.sql

• CDB:

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl -n 1 -e -b utlrp -
d $ORACLE_HOME/rdbms/admin utlrp.sql

The utlrp.sql script recompiles all existing PL/SQL modules previously in INVALID
state, such as packages, procedures, types, and so on. The log file utlrp0.log is
generated. That log file lists the recompilation results.

Chapter 9
Using Scripts to Downgrade Oracle Database 21c

9-19

If you are downgrading back to Oracle Database 18c or Oracle Database 19c, and
if Oracle Application Express (APEX) exists in the database, then after ultrp.sql
completes running, run the script sys.validate_apex to validate the APEX
downgrade. You must validate APEX manually only for Oracle Database 18c or
Oracle Database 19c. For other releases, running sys.validate_apex manually is
not required.

23. If you turn on spooling for a non-CDB when you run utlrp.sql, then turn off the
spooling of script results to the log file:

SQL> SPOOL OFF

Check the spool file, and verify that the packages and procedures compiled
successfully. Correct any problems that you find in this log file. If necessary, rerun
the appropriate script.

24. Exit SQL*Plus.

25. If you are downgrading a cluster database, then you must run the following
command to downgrade the Oracle Clusterware database configuration:

$ srvctl downgrade database -d db-unique-name -o oraclehome -t
to_version

Replace the variables in this syntax example with the values for your system:

• db-unique-name is the database name (not the instance name).

• oraclehome is the location of the old Oracle home for the downgraded
database.

• to_version is the database release to which the database is downgraded.
(For example: 19.0.0)

Note:

Run this command from the new release Oracle home, not from the
Oracle home to which the database is being downgraded.

At the completion of this procedure, your database is downgraded.

Related Topics

• Troubleshooting the Downgrade of Oracle Database

• Oracle Database Administrator’s Guide

Downgrading a Single Pluggable Oracle Database (PDB)
If you are downgrading Oracle Database, then you can downgrade one PDB without
downgrading the whole CDB.

In Oracle Database releases later than Oracle Database 12c release 2 (12.2), you can
downgrade individual PDBs. For example, you can unplug a PDB from an upgraded
CDB, downgrade the PDB, and then plug it in to an earlier release CDB, or you can
convert the PDB database to a standalone database.

Chapter 9
Downgrading a Single Pluggable Oracle Database (PDB)

9-20

Downgrade the PDB

In this procedure example, you downgrade the PDB to release 19c:

1. Start up the PDB in DOWNGRADE mode. The CDB can be in normal mode when you do
this.

SQL> alter pluggable database CDB1_PDB1 open downgrade;

2. Downgrade the PDB, either by using the dbdowngrade utility, or by running catdwgrd
manually, using catcon.pl.

In each of these options, the PDB that you are downgrading is PDB1.

• Downgrading with dbdowngrade utility.

Downgrade the PDB using the dbdowngrade script as follows:

cd $ORACLE_HOME/bin
./dbdowngrade -c 'PDB1'

• Manually downgrading with catdwgrd, using catcon.p.

Run catdwgrd as follows:

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl -d
 $ORACLE_HOME/rdbms/admin -n 1 -l <output directory> -e -b catdwgrd -c 'PDB1'
 catdwgrd.sql

In the example, catdwgrd is run with catcon.pl. The -d parameter tells
catcon.pl where to find catdwgrd. The -l parameter specifies the output
directory for log files, instead of writing to the rdbms/admin directory). You must use
the -r parameter to run the two scripts together at the same time.

The log files for the downgrade are placed in the Oracle base home (the Oracle base
identified by the commands orabasehome, or orabase, or the Oracle home identified
by the command oracle_home, in that order.

3. Close the PDB.

Unplug the PDB from the CDB

In this step you unplug the downgraded PDB from the release 20c CDB:

1. Connect to the upgraded CDB.

2. Close the PDB that you want to unplug.

SQL> alter pluggable database PDB1 close;

3. Unplug the downgraded 19c PDB, replacing the variable path with the path on your
system:

SQL> alter pluggable database PDB1 unplug into 'path/pdb1.xml';

You receive the following response when the unplug is completed:

Pluggable database altered

Chapter 9
Downgrading a Single Pluggable Oracle Database (PDB)

9-21

Plug in the Downgraded 19c PDB

In this step you plug the downgraded 19c PDB into the 19c CDB. To do this, you must
create the PDB in this CDB. The following example shows how to create a pluggable
database called PDB1:

1. Connect to the 19c CDB.

2. Plug in the 19c PDB.

SQL> create pluggable database PDB1 using 'path/pdb1.xml';

This command returns Pluggable database created.

3. Open the PDB in upgrade mode:

SQL> alter pluggable database PDB1 open upgrade;

4. Connect to the PDB:

SQL> alter session set container=PDB1;

5. Run catrelod in the PDB:

SQL> @$ORACLE_HOME/rdbms/admin/catrelod.sql

The catrelod.sql script reloads the appropriate version for each of the database
components in the downgraded database.

6. Run utlrp in the PDB:

SQL> @$ORACLE_HOME/rdbms/admin/utlrp.sql

The utlrp.sql script recompiles all existing PL/SQL modules that were previously
in an INVALID state, such as packages, procedures, types, and so on.

Downgrading PDBs That Contain Oracle Application
Express

Use this procedure to avoid INVALID OBJECTS OWNED BY APEX_050000 errors
when you downgrade PDBs that contain Oracle Application Express.

After you downgrade the PDB to an earlier release, enter a SQL statement similar to
the following to drop the Oracle Application Express user:

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl -b
drop_apex5
-c 'PDB1' -- --x'drop user apex_050000 cascade'

In this example, the PDB name is 'PDB1'.

Post-Downgrade Tasks for Oracle Database Downgrades
After you downgrade your Oracle Database release, you can be required to complete
additional tasks, due to changes that affect compatibility, components, and supported
protocols.

Chapter 9
Downgrading PDBs That Contain Oracle Application Express

9-22

• Reapply Release Update and Other Patches After Downgrade
After the downgrade is run, and catrelod.sql completes successfully, if you installed
new patches in your original Oracle home after the upgrade, but before the downgrade,
then ensure that you apply any patches that you installed.

• Re-enabling Oracle Database Vault after Downgrading Oracle Database
You must do this if you are instructed during the downgrade to disable Oracle Database
Vault.

• Restoring the Configuration for Oracle Clusterware
To restore the configuration, you must restore the release from which you upgraded.

• Restoring Oracle Enterprise Manager after Downgrading Oracle Database
The restore task described in this section is required only if you are performing a
downgrade, and Oracle Enterprise Manager is configured on the host.

• Restoring Oracle Application Express to the Earlier Release
After a downgrade, if you upgraded Oracle Application Express at the same time as you
upgraded Oracle Database, then you must complete steps to revert to the earlier Oracle
Application Express release.

• Gathering Dictionary Statistics After Downgrading
To help to assure good performance after you downgrade, use this procedure to gather
dictionary statistics.

• Regathering Fixed Object Statistics After Downgrading
After the downgrade, run representative workloads on Oracle Database, and regather
fixed object statistics.

• Regathering Stale CBO Statistics After Downgrade
Oracle recommends that you regather Oracle Cost-Based Optimizer (CBO) statistics
after completing an Oracle Database downgrade.

Reapply Release Update and Other Patches After Downgrade
After the downgrade is run, and catrelod.sql completes successfully, if you installed new
patches in your original Oracle home after the upgrade, but before the downgrade, then
ensure that you apply any patches that you installed.

If you installed new patches, then run the datapatch tool to apply those patches to the
downgraded database. If you did not change the binaries and files in your Oracle Home after
the upgrade, then there is no need to run datapatch after running catrelod.sql. However, if
you are in any doubt about whether new patches are installed, then run datapatch. There is
no safety concern that prevents you from running datapatch as many times as you require to
be certain that patches are applied to the database.

Re-enabling Oracle Database Vault after Downgrading Oracle Database
You must do this if you are instructed during the downgrade to disable Oracle Database
Vault.

If you use Oracle Database Vault, then you may have been instructed to disable it before
downgrading your database. To use Oracle Database Vault after downgrading, you must re-
enable it.

Chapter 9
Post-Downgrade Tasks for Oracle Database Downgrades

9-23

See Also:

Oracle Database Vault Administrator's Guide for the procedure to re-enable
Oracle Database Vault

Restoring the Configuration for Oracle Clusterware
To restore the configuration, you must restore the release from which you upgraded.

You can restore the Oracle Clusterware configuration to the state it was in before the
Oracle Clusterware upgrade. Any configuration changes that you have performed
during or after the new Oracle Database upgrade process are removed, and cannot be
recovered.

Restoring Oracle Enterprise Manager after Downgrading Oracle
Database

The restore task described in this section is required only if you are performing a
downgrade, and Oracle Enterprise Manager is configured on the host.

To restore Oracle Enterprise Manager, you first run Oracle Enterprise Manager
configuration assistant (EMCA), and then you run the emdwgrd utility.

• Requirements for Restoring Oracle Enterprise Manager After Downgrading
You must complete these requirements before you upgrade to be able to restore
Oracle Enterprise Manager after a downgrade to a release earlier than 12.1

• Running EMCA to Restore Oracle Enterprise Manager After Downgrading
Review these topics and select your restoration scenario to restore Oracle
Enterprise Manager after a downgrade.

• Running the emdwgrd utility to restore Enterprise Manager Database Control
You can restore the Oracle Enterprise Manager Database Control and data by
using the emdwgrd utility after you run emca -restore.

Requirements for Restoring Oracle Enterprise Manager After Downgrading
You must complete these requirements before you upgrade to be able to restore
Oracle Enterprise Manager after a downgrade to a release earlier than 12.1

The following must be true to use emca -restore to restore Oracle Enterprise
Manager to its previous state:

• Before the upgrade, you saved a backup of your Oracle Enterprise Manager
configuration files and data

• You run the emca binary located in the new Oracle Database release home for this
procedure

On Oracle Clusterware systems, to restore Oracle Enterprise Manager on an Oracle
RAC database, you must have the database registered using srvctl before you run
emca -restore. You must run emca -restore from the ORACLE_HOME/bin directory
of the earlier Oracle Database release to which the database is being downgraded.

Chapter 9
Post-Downgrade Tasks for Oracle Database Downgrades

9-24

Run the emca -restore command with the appropriate options to restore Oracle Enterprise
Manager Database Control or Grid Control to the old Oracle home.

Specify different emca options, depending on whether the database you want to downgrade
is a single-instance database, an Oracle RAC database, or an Oracle ASM database.

Related Topics

• Oracle Clusterware Administration and Deployment Guide

Running EMCA to Restore Oracle Enterprise Manager After Downgrading
Review these topics and select your restoration scenario to restore Oracle Enterprise
Manager after a downgrade.

• Running emca on a Single-Instance Oracle Database Without Oracle ASM
Use Enterprise Manager Configuration Assistant (emca) to manage your database.

• Running EMCA on an Oracle RAC Database Without Oracle ASM
Use Enterprise Manager Configuration Assistant (emca) to manage your database:

• Running EMCA on a Single-Instance Oracle ASM Instance
Use Enterprise Manager Configuration Assistant (emca) to manage your database and
storage.

• Running emca on an Oracle ASM on Oracle RAC Instance
Use Enterprise Manager Configuration Assistant (emca) to manage your database and
storage.

• Running emca on a Single-Instance Oracle Database With Oracle ASM
Use Enterprise Manager Configuration Assistant (emca) to manage your database and
storage.

• Running emca on an Oracle RAC Database and Oracle ASM Instance
Use Enterprise Manager Configuration Assistant (emca) to manage your database and
storage.

Running emca on a Single-Instance Oracle Database Without Oracle ASM
Use Enterprise Manager Configuration Assistant (emca) to manage your database.

Use this command to run Enterprise Manager Configuration Assistant.

ORACLE_HOME/bin/emca -restore db

You are prompted to enter the following information:

• Oracle home for the database that you want to restore

• Database SID

• Listener port number

Running EMCA on an Oracle RAC Database Without Oracle ASM
Use Enterprise Manager Configuration Assistant (emca) to manage your database:

Use this procedure to run Enterprise Manager Configuration Assistant:

ORACLE_HOME/bin/emca -restore db -cluster

Chapter 9
Post-Downgrade Tasks for Oracle Database Downgrades

9-25

You are prompted to enter the following information:

• Oracle home for the database that you want to restore

• Database unique name

• Listener port number

Running EMCA on a Single-Instance Oracle ASM Instance
Use Enterprise Manager Configuration Assistant (emca) to manage your database and
storage.

Use this command to run Enterprise Manager Configuration Assistant.

ORACLE_HOME/bin/emca -restore asm

You are prompted to enter the following information:

• Oracle home for the database that you want to restore

• Oracle ASM port

• Oracle ASM SID

Running emca on an Oracle ASM on Oracle RAC Instance
Use Enterprise Manager Configuration Assistant (emca) to manage your database and
storage.

Use this command to run Enterprise Manager Configuration Assistant.

ORACLE_HOME/bin/emca -restore asm -cluster

You are prompted to enter the following information:

• Oracle home for the database that you want to restore

• Oracle ASM port

Running emca on a Single-Instance Oracle Database With Oracle ASM
Use Enterprise Manager Configuration Assistant (emca) to manage your database and
storage.

Use this command to run Enterprise Manager Configuration Assistant.

ORACLE_HOME/bin/emca -restore db_asm

You are prompted to enter the following information:

• Oracle home for the Oracle Database that you want to restore

• Database SID

• Listener port number

• Oracle ASM port

• Oracle ASM home

Chapter 9
Post-Downgrade Tasks for Oracle Database Downgrades

9-26

• Oracle ASM SID [+ASM]

Running emca on an Oracle RAC Database and Oracle ASM Instance
Use Enterprise Manager Configuration Assistant (emca) to manage your database and
storage.

Use this command to run Enterprise Manager Configuration Assistant:

ORACLE_HOME/bin/emca -restore db_asm -cluster

You are prompted to enter the following information:

• Oracle home for the database that you want to restore

• Database unique name

• Listener port number

• Oracle ASM port

• Oracle ASM Oracle home

• Oracle ASM SID [+ASM]

The output of emca varies according to the options that you specify and the values that you
enter at the prompts. In Oracle RAC environments, you must repeat this step on all Oracle
RAC cluster member nodes.

You must now run the emdwgrd utility to restore Oracle Enterprise Manager Database
Control and data.

Running the emdwgrd utility to restore Enterprise Manager Database Control
You can restore the Oracle Enterprise Manager Database Control and data by using the
emdwgrd utility after you run emca -restore.

To use emdwgrd, you must do the following:

• Set ORACLE_HOME and other environment variables to point to the Oracle home from
which the upgrade originally took place.

• Run the emdwgrd utility from the new release Oracle Database Oracle home.

The following procedure is for Linux and Unix. To run it on Windows, substitute
emdwgrd.bat for emdwgrd.

1. Set ORACLE_HOME to the Oracle home from which the database upgrade originally
took place.

2. Set ORACLE_SID to the SID of the database that was upgraded and then downgraded.

3. Set PATH, LD_LIBRARY_PATH and SHLIB_PATH to point to the Oracle home from
which the database upgrade originally took place.

4. Go to the new Oracle Database release Oracle home:

cd $ORACLE_HOME/bin

5. Run emdwgrd using one of the following procedures:

a. For a single-instance database, run the following command, where SID is the SID of
the database that was upgraded and then downgraded and save_directory is the

Chapter 9
Post-Downgrade Tasks for Oracle Database Downgrades

9-27

path to the storage location you chose when saving your database control files
and data:

emdwgrd -restore -sid SID -path save_directory -tempTablespace
TEMP

b. For an Oracle RAC database, remote copy is required across the cluster
nodes. Define an environment variable to indicate which remote copy is
configured. For example:

setenv EM_REMCP /usr/bin/scp

Then, run emdwgrd —restore with the following options:

emdwgrd -restore -tempTablespace TEMP -cluster -sid SID_OldHome -
path save_directory

If the Oracle home is on a shared device, then add -shared to the emdwgrd
command options.

6. Enter the SYS and SYSMAN passwords when prompted by emdwgrd.

7. When emdwgrd completes, Oracle Enterprise Manager Database Control is
downgraded to the old Oracle home.

Restoring Oracle Application Express to the Earlier Release
After a downgrade, if you upgraded Oracle Application Express at the same time as
you upgraded Oracle Database, then you must complete steps to revert to the earlier
Oracle Application Express release.

To complete the downgrade of Oracle Application Express after a database
downgrade, complete all the steps listed in Oracle Application Express Installation
Guide to revert your Oracle Application Express release to the earlier release. The
steps to revert are different, depending on whether your architecture is a Non-CDB or
a multitenant architecture (CDB) Oracle Database.

Note:

You only need to complete these steps if you upgraded Oracle Application
Express at the same time that you upgraded the database.

Related Topics

• Oracle Application Express Installation Guide

Chapter 9
Post-Downgrade Tasks for Oracle Database Downgrades

9-28

Gathering Dictionary Statistics After Downgrading
To help to assure good performance after you downgrade, use this procedure to gather
dictionary statistics.

Oracle recommends that you gather dictionary statistics after downgrading the database, so
that the statistics are collected for the downgraded release Data Dictionary tables.

Note:

After a downgrade process, be aware that the the data dictionary can have changes
that persist in the downgraded dictionary. These changes are insignificant. The
downgraded data dictionary is functionally equivalent to an earlier release data
dictionary.

• Non-CDB Oracle Database: Oracle recommends that you use the
DBMS_STATS.GATHER_DICTIONARY_STATS procedure to gather these statistics. For
example, enter the following SQL statement:

SQL> EXEC DBMS_STATS.GATHER_DICTIONARY_STATS;

• CDB (multitenant architecture) Oracle Database: Oracle recommends that you use
catcon to gather Data Dictionary statistics across the entire multitenant architecture.

To gather dictionary statistics for all PDBs in a container database, use the following
syntax:

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl -l /tmp -b
gatherstats -- --x"exec dbms_stats.gather_dictionary_stats"

To gather dictionary statistics on a particular PDB, use syntax similar to the following:

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl -l /tmp -c
'SALES1' -b gatherstats -- --x"exec dbms_stats.gather_dictionary_stats"

In the preceding example the -c SALES1 option specifies a PDB inclusion list for the
command that you run, specifying the database named SALES1. The option -b
gatherstatsspecifies the base name for the logs. The option --x specifies the SQL
command that you want to execute. The SQL command itself is inside the quotation
marks.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Regathering Fixed Object Statistics After Downgrading
After the downgrade, run representative workloads on Oracle Database, and regather fixed
object statistics.

Fixed objects are the X$ tables and their indexes. V$ performance views are defined through
X$ tables. After you downgrade, regather fixed object statistics to ensure that the optimizer
for the restored database can generate good execution plans. These execution plans can

Chapter 9
Post-Downgrade Tasks for Oracle Database Downgrades

9-29

improve database performance. Failing to obtain representative statistics can lead to
suboptimal execution plans, which can cause performance problems

Gather fixed objects statistics by using the DBMS_STATS.GATHER_FIXED_OBJECTS_STATS
PL/SQL procedure. DBMS_STATS.GATHER_FIXED_OBJECTS_STATS also displays
recommendations for removing all hidden or underscore parameters and events from
init.ora and SPFILE.

To gather statistics for fixed objects, run the following PL/SQL procedure:

SQL> execute dbms_stats.gather_fixed_objects_stats;

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about using the GATHER_FIXED_OBJECTS_STATS procedure

Regathering Stale CBO Statistics After Downgrade
Oracle recommends that you regather Oracle Cost-Based Optimizer (CBO) statistics
after completing an Oracle Database downgrade.

When you upgrade Oracle Database and gather new CBO statistics, the upgraded
database has new database statistics. The upgraded database also can include new
histogram types. For this reason, when you downgrade the database, the statistics
that you collected for the new release can be different from the previous release. This
issue is applicable both to data dictionary tables, and to regular user tables.

Regather stale statistics either by using GATHER_DATABASE_STATS, or by using gather
commands that you typically use to update stale statistics in the dictionary and
application schemas.

For example, after a downgrade:

• Non-CDB Oracle Database: To regather statistics, Oracle recommends that you
use the GATHER_DATABASE_STATS procedure, with the option 'GATHER STALE'. For
example:

SQL> execute dbms_stats.gather_database_stats(options=>'GATHER STALE');

• CDB (multitenant architecture) Oracle Database: to regather Data Dictionary
statistics across the entire multitenant architecture, Oracle recommends that you
use catcon.

To regather stale dictionary statistics for all PDBs in a container database, use the
following syntax:

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl -l /tmp
-b gatherstats -- --x"exec
dbms_stats.gather_database_stats(options=>'GATHER STALE')"

Chapter 9
Post-Downgrade Tasks for Oracle Database Downgrades

9-30

To gather dictionary statistics on a particular PDB, use syntax similar to the following:

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl -l /tmp -c
'SALES1' -b gatherstats -- --x"exec
dbms_stats.gather_database_stats(options=>'GATHER STALE')"

In the preceding example, the -c SALES1 option specifies a PDB inclusion list for the
command that you run, specifying the database named SALES1. The option -b
gatherstatsspecifies the base name for the logs. The option --x specifies the SQL
command that you want to execute. The SQL command itself is inside the quotation
marks.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Troubleshooting the Downgrade of Oracle Database
Use this troubleshooting information to address issues that may occur when downgrading
Oracle Database.

This section contains known errors that may occur during downgrades, and workarounds to
address those errors.

• Errors Downgrading Oracle Database Components with catdwgrd.sql Script
Use this section to troubleshoot errors when you run the catdwgrd.sql script during a
downgrade, such as ORA-20001: Downgrade cannot proceed.

• Downgrading Oracle Grid Infrastructure (Oracle Restart) After Successful or Failed
Upgrade
To downgrade Oracle Restart, you must deconfigure and then reinstall Oracle Grid
Infrastructure. You can then add back the databases and services.

• Errors Downgrading Databases with Oracle Messaging Gateway
If you downgrade a database configured with Oracle Messaging Gateway , then you can
encounter ORA-02303 errors.

Errors Downgrading Oracle Database Components with catdwgrd.sql
Script

Use this section to troubleshoot errors when you run the catdwgrd.sql script during a
downgrade, such as ORA-20001: Downgrade cannot proceed.

The catdwgrd.sql script downgrades all Oracle Database components in the database to
the major release from which you originally upgraded. This script must run before the Data
Dictionary can be downgraded. If you encounter any problems when you run the script, then
correct the causes of the problems, and rerun the script.

Errors you can see include ORA-39709: incomplete component downgrade; string downgrade
aborted, and ORA-06512. When these errors occur, downgrades cannot proceed.

• Cause: One or more components that must be downgraded before proceeding with the
Data Dictionary downgrade did not downgrade.

• Action: Review the log files to determine what errors occurred before the catdwgrd.sql
script halted, and the downgrade was stopped.

Chapter 9
Troubleshooting the Downgrade of Oracle Database

9-31

Review these examples to understand how to correct this issue.

Errors typically describe what you must do to fix the issue that is preventing the
downgrade to complete. Follow the instructions in the error message. After you have
fixed the cause of the error, rerun the catdwgrd.sql script.

For example, If the CDB downgrade fails during the downgrade of CDB$ROOT due to
a check, then follow the instructions in the error message to fix the condition error.
After you fix the error, rerun catdwgrd.sql with catcon.pl. Use the -c option to run
the command with the inclusion list 'CDB$ROOT PDB1'. Use the -r option to run the
command first on the PDB, and then on CDB$ROOT. For example:

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl -
d $ORACLE_HOME/rdbms/admin -e -b catdwgrd -l /scratch/rac/downgradeLogs
-c 'CDB$ROOT, PDB1, PDB2' -r catdwgrd.sql

Example 9-9 ORA-20001 Error Due To ORA-06512

Your downgrade stops. When you review the log files, you find that catdwgrd.sql
terminates on this error:

DECLARE * ERROR at line 1: ORA-20001: Downgrade cannot proceed -
Unified Audit Trail data exists. Please clean up the data first
using DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL. ORA-06512: at line 65
ORA-06512: at line 42

You must purge the unified audit trial on CDB$ROOT and on all PDBs.

For example:

1. Look for the presence of unified audit trails:

SQL> SELECT COUNT(*) FROM UNIFIED_AUDIT_TRAIL;
COUNT(*)

 4538

2. Purge the audit trail. on the CDB.

For example, where the audit trail type is DBMS_AUDIT.MGMT.AUDIT:

EXEC DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL DBMS_AUDIT_MGMT.AUDIT

3. Run catdwngrd.sql on CDB$ROOT. If PDBs still have unified audit data, then the
script fails with ORA20001:

 62 execute immediate
 63 'select count(*) from audsys.'||'"'||tab_name||'"' into
no_rows;
 64
 65 -- If audit trail has some data, raise the application
error
 66 IF no_rows > 0 THEN
 67 RAISE_APPLICATION_ERROR(-20001, ErrMsg);
 68 END IF;

Chapter 9
Troubleshooting the Downgrade of Oracle Database

9-32

 69 END IF;
 70 END IF;
 71 EXCEPTION
 72 WHEN NO_DATA_FOUND THEN
 73 NULL;
 74 WHEN OTHERS THEN
 75 RAISE;
 76 END;
 77 /
DECLARE
*
ERROR at line 1:
ORA-20001: Downgrade cannot proceed - Unified Audit Trail data
exists.Please
clean up the data first using DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL.
ORA-06512: at line 75

4. Connect to individual PDBs, and find if they have unified audit trails. Clear the unified
audit trail for all PDBs. For example, The PDB named PDB1 has unified audit trails:

ALTER SESSION SET container = PDB1;

SQL> SELECT COUNT(*) FROM UNIFIED_AUDIT_TRAIL;
 COUNT(*)

 1330

5. Identify the unified audit trails:

SQL> CREATE TABLE UA_DATA AS (SELECT * FROM UNIFIED_AUDIT_TRAIL);

6. Purge the audit trails.

In this example, the audit trail type is DBMS_AUDIT_MGMT.AAUDIT_TRAIL_UNIFIED, the
USE_LAST_ARCH_TIMESTAMP value is set to FALSE, so that all audit records are deleted,
without considering last archive timestamp, and the CONTAINER value is set to
DBMS_AUDIT_MGMT.CONTAINER_ALL, so that audit records on all PDBs are purged.

BEGIN
 DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED,
 USE_LAST_ARCH_TIMESTAMP => FALSE,
 CONTAINER => DBMS_AUDIT_MGMT.CONTAINER_ALL
END;
/

7. Rerun catdwngrd.sql at the PDB and CDB level. For example:

$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/rdbms/admin/catcon.pl -c
'CDB$ROOT,PDB1' -d $ORACLE_HOME/rdbms/admin -e -b catdwgrd -l /u01/oracle/
product/19.0.0/downgrade_logs -r catdwgrd.sql

8. Repeat the process of finding and purging audit trails and run catdwgrd.sql until the
script completes successfully on the CDB and PDBs, and you no longer see ORA-20001
errors in logs

Chapter 9
Troubleshooting the Downgrade of Oracle Database

9-33

Related Topics

• Oracle Database Security Guide

Downgrading Oracle Grid Infrastructure (Oracle Restart) After
Successful or Failed Upgrade

To downgrade Oracle Restart, you must deconfigure and then reinstall Oracle Grid
Infrastructure. You can then add back the databases and services.

Related Topics

• https://support.oracle.com/rs?type=doc&id=1364412.1

• Oracle Grid Infrastructure Installation and Upgrade Guide

Errors Downgrading Databases with Oracle Messaging Gateway
If you downgrade a database configured with Oracle Messaging Gateway , then you
can encounter ORA-02303 errors.

If you downgrade an Oracle Database that contains Oracle Messaging Gateway
objects, then you can encounter the following error:

ORA-02303: cannot drop or replace a type with type or table dependents

• Cause The catrelod.sql script is attempting to reload Oracle Messaging
Gateway objects of a different type than the earlier Oracle Database release.

• Action No action. You can ignore this error.

Chapter 9
Troubleshooting the Downgrade of Oracle Database

9-34

https://support.oracle.com/rs?type=doc&id=1364412.1

10
Behavior Changes, Deprecated and
Desupported Features for Oracle Database

Review for information about Oracle Database 21c changes, deprecations, and desupports,
as well as deprecations and desupports in Oracle Database releases 19c, 18c, and 12.2.

• About Deprecated and Desupported Status
In addition to new features, Oracle Database releases can modify, deprecate or
desupport features, and introduce upgrade behavior changes for your database

• Behavior Changes, Deprecations and Desupports in Oracle Database 21c
Review for descriptions of Oracle Database 21c release changes.

• Behavior Changes, Deprecations and Desupports in Oracle Database 19c
Review for descriptions of Oracle Database 19c release changes.

• Behavior Changes, Deprecations and Desupports in Oracle Database 18c
Review for descriptions of Oracle Database 18c release changes.

• Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2
(12.2)
Review for descriptions of Oracle Database 12c Release 2 (12.2) changes.

About Deprecated and Desupported Status
In addition to new features, Oracle Database releases can modify, deprecate or desupport
features, and introduce upgrade behavior changes for your database

Be aware of the implications of deprecated and desupported:

• Deprecated features are features that are no longer being enhanced, but are still
supported for the full life of this release of Oracle Database.

• Desupported features are features that are no longer supported by fixing bugs related to
that feature. Often, Oracle can choose to remove the code required to use the feature. A
deprecated feature can be desupported in the next Oracle Database release.

Behavior Changes, Deprecations and Desupports in Oracle
Database 21c

Review for descriptions of Oracle Database 21c release changes.

• Behavior Changes for Oracle Database 21c Upgrade Planning
Review these behavior changes to help plan for upgrades to Oracle Database 21c

• Deprecated Features in Oracle Database 21c
As part of your upgrade plan, review the features that are deprecated in this Oracle
Database release, and review alternatives for your application strategies.

10-1

• Deprecated Views in Oracle Database 21c
As part of your upgrade plan, review the views that are deprecated starting with
this Oracle Database release.

• Deprecated Parameters in Oracle Database 21c
As part of your upgrade plan, review the initialization parameters that are
deprecated starting with this Oracle Database release.

• Desupported Features in Oracle Database 21c
As part of your upgrade plan, review the desupported features in this Oracle
Database release.

• Desupported Initialization Parameters in Oracle Database 21c
Review this list of desupported initialization parameters for changes and
replacements in parameter settings in this release.

Behavior Changes for Oracle Database 21c Upgrade Planning
Review these behavior changes to help plan for upgrades to Oracle Database 21c

• About Read-Only Oracle Homes
Starting with Oracle Database 21c, an Oracle Database installation configures all
Oracle Database homes in read-only mode by default.

• Multitenant Upgrades Only in Oracle Database 21c
Starting with Oracle Database 21c, Oracle Database is only supported using the
multitenant architecture.

• Logical Standby and New Data Types
If you use logical standby (when not used as part of DBMS_ROLLING), then you can
use only data types added before Oracle Database 12c Release 2 (12.2)

• Relocation of HR Sample Schema
Starting with Oracle Database 21c, the HR sample schema no longer ships as part
of Oracle Database.

• Manage DRCP on PDBs
Starting with Oracle Database 21c, Database Resident Connection Pool (DRCP)
can be configured and managed for individual PDBs.

About Read-Only Oracle Homes
Starting with Oracle Database 21c, an Oracle Database installation configures all
Oracle Database homes in read-only mode by default.

Before Oracle Database 21c, the default ORACLE_HOME layout combined ORACLE_HOME,
ORACLE_BASE_HOME and ORACLE_BASE_CONFIG into a single location. Starting with Oracle
Database 21c, the only available configuration is a read-only ORACLE_HOME where
ORACLE_BASE_HOME and ORACLE_BASE_CONFIG are located separately from ORACLE_HOME.

In a read-only Oracle home, all the configuration data and log files reside outside of
the read-only Oracle home. This feature allows you to use the read-only Oracle home
as a software image that can be distributed across multiple servers.

Apart from the traditional ORACLE_BASE and ORACLE_HOME directories, the following
directories contain files that used to be in ORACLE_HOME:

• ORACLE_BASE_HOME

• ORACLE_BASE_CONFIG

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 21c

10-2

Benefits of a Read-Only Oracle Home

• Enables seamless patching and updating of Oracle Database binaries without extended
downtime.

• Simplifies patching and mass rollout, as only one image needs to be updated to distribute
a patch to many servers.

• Simplifies provisioning by implementing separation of installation and configuration.

Note:

This feature does not affect how database administrators monitor, diagnose, and
tune their system performance.

Multitenant Upgrades Only in Oracle Database 21c
Starting with Oracle Database 21c, Oracle Database is only supported using the multitenant
architecture.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 21c. While the documentation is being revised, legacy terminology may
persist. In most cases, "database" and "non-CDB" refer to a CDB or PDB,
depending on context. In some contexts, such as upgrades, "non-CDB" refers to a
non-CDB from a previous release.

Logical Standby and New Data Types
If you use logical standby (when not used as part of DBMS_ROLLING), then you can use only
data types added before Oracle Database 12c Release 2 (12.2)

New data types added after Oracle Database 12c Release 1 (12.1) are not supported with
Oracle Data Guard logical standby. For example, Oracle Data Guard logical standby does not
support long identifiers, complex Abstract Data Types (ADTs), and spatial data types. Note
that this limitation does not exist with an Oracle Data Guard physical standby database,
DBMS_ROLLING, or Oracle GoldenGate. To obtain the benefits of a standby database with more
recent data types, Oracle recommends that you consider using either a physical standby
database, a snapshot standby database, or that you use the logical replication features of
Oracle GoldenGate.

Relocation of HR Sample Schema
Starting with Oracle Database 21c, the HR sample schema no longer ships as part of Oracle
Database.

To install the HR schema, refer to the section "Installing Sample Schemas" in Oracle
Database Database Sample Schemas

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 21c

10-3

Related Topics

• Installation of Sample Schemas

Manage DRCP on PDBs
Starting with Oracle Database 21c, Database Resident Connection Pool (DRCP) can
be configured and managed for individual PDBs.

When you choose to configure DRCP so that it is managed from individual PDBs, you
can configure, manage, and monitor pools on individual pluggable databases (PDBs).

In previous releases, the DRCP pool was used by the entire container database
(CDB). This feature eases the management of DRCP pool by changing the granularity
of the DRCP pool from the entire CDB to a DRCP pool for individual PDBs. This
change enables tenant administrators to configure and manage independent tenant-
specific DRCP pools.

This feature is enabled by a new database parameter, ENABLE_PER_PDB_DRCP. By
default the parameter is set to ENABLE_PER_PDB_DRCP=FALSE. If you set
ENABLE_PER_PDB_DRCP=TRUE, then this feature is enabled.

When you upgrade a PDB to Oracle Database 21c, the default connection pool for the
PDB is created in the PDB. If you then enable this feature with the initialization
parameter, then instead of managing connection pooling at the CDB, the connection
pool is managed locally by the PDB.

Deprecated Features in Oracle Database 21c
As part of your upgrade plan, review the features that are deprecated in this Oracle
Database release, and review alternatives for your application strategies.

• Deprecation of FILE_DATASTORE Type
Starting with Oracle Database 21c, the Oracle Text type FILE_DATASTORE is
deprecated. Use DIRECTORY_DATASTORE instead.

• Deprecation of URL_DATASTORE Text Type
Starting with Oracle Database 21c, the Oracle Text type URL_DATASTORE is
deprecated. Use NETWORK_DATASTORE instead.

• Deprecation of AUTO OPTIMIZE Framework
In Oracle Database Release 21c, the procedures ADD_AUTO_OPTIMIZE and
REMOVE_AUTO_OPTIMIZE, and the views CTX_AUTO_OPTIMIZE_INDEXES,
CTX_USER_AUTO_OPTIMIZE_INDEXES and CTX_AUTO_OPTIMIZE_STATUS are
deprecated.

• Deprecation of CTXFILTERCACHE Query Operator
Starting in Oracle Database Release 21c, CTXFILTERCACHE is deprecated, and also
CTX_FILTER_CACHE_STATISTICS and QUERY_FILTER_CACHE_SIZE.

• Deprecation of Policy-Managed Databases
Starting with Oracle Grid Infrastructure 21c, policy-managed databases are
deprecated.

• Deprecation of Traditional Auditing
Traditional auditing is deprecated in Oracle Database 21c. Oracle recommends
that you use unified auditing, which enables selective and more effective auditing
inside Oracle Database.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 21c

10-4

• Deprecation of Older Encryption Algorithms
Starting with Oracle Database 21c, older encryption and hashing algorithms are
deprecated.

• Deprecation of Cluster Domain - Domain Services Cluster
Starting with Oracle Grid Infrastructure 21c, Domain Services Clusters (DSC), which is
part of the Oracle Cluster Domain architecture, are deprecated.

• Deprecation of Enterprise User Security (EUS) User Migration Utility
Enterprise User Security (EUS) User Migration Utility (UMU) is deprecated in Oracle
Database 21c. Use EUS Manager (EUSM) features instead.

• Logical Standby and New Data Types
If you use logical standby (when not used as part of DBMS_ROLLING), then you can use
only data types added before Oracle Database 12c Release 2 (12.2)

• Deprecation of Sharded Queues
AQ sharded queues are deprecated in Oracle Database 21c. Use Transactional Event
Queues (TEQ) instead.

• Deprecation of MySQL Client Library Driver for Oracle
The MySQL Client Library Driver for Oracle is deprecated in Oracle Database 21c.

• Deprecation of TLS 1.0 and 1.1 Transport Layer Security
Starting with Oracle Database 21c, Transport Layer Security protocol versions 1.0 and
1.1 (TLS 1.0 and TLS 1.1) are deprecated.

• Deprecation of Unix Crypt (or MD5crypt) Password Verifier
The Unix Crypt (MD5crypt) password verifier algorithm is deprecated in Oracle Database
21c server and clients, and passwords using this algorithm will stop working in a future
release.

• Deprecation of ODP.NET OracleConfiguration.DirectoryType Property
The Oracle Data Provider for .NET OracleConfiguration DirectoryType property
and .NET configuration file DIRECTORY_TYPE setting are deprecated in Oracle Database
21c, and can be desupported in a future release.

• Deprecation of Weaker Encryption Key Strengths
The use of weaker encryption keys is deprecated in Oracle Database 21c.

• Deprecation of DBSNMP Packages for Adaptive Thresholds Feature
DBSNMP PL/SQL packages associated with the Adaptive Thresholds feature are
deprecated in Oracle Database 21c.

• Deprecation of Oracle GoldenGate Replication for Oracle Sharding High Availability
Oracle GoldenGate replication support for Oracle Sharding High Availability is
deprecated in Oracle Database 21c.

• Deprecation of Anonymous Cipher Suites with Outbound TLS Connections
Anonymous cipher suites for outbound TLS connections (Database to other services) are
deprecated with Oracle Database 21c.

• Deprecation of the KERBEROS5PRE Adapter
The use of the KERBEROS5PRE adapter is deprecated with Oracle Database 21c. Oracle
recommends that you use the KERBEROS5 adapter instead.

• Deprecation of Oracle Wallet Manager
Oracle Wallet Manager (OWM) is deprecated with Oracle Database 21c.

• Deprecation of Oracle Enterprise Manager Database Express
Oracle Enterprise Manager Database Express (EM Express) is deprecated, and will be
removed in a future Oracle Database release.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 21c

10-5

• Deprecation of SHA-1 use for SQLNET and DBMS_CRYPTO
The use of SHA-1 with DBMS_CRYPTO, SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT and
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER is deprecated.

• Deprecation of Repository Events
The use of repository events to trigger application actions is deprecated in Oracle
Database 21c (21.3). There is no replacement.

• Deprecation of Service Attribute Value SESSION_STATE_CONSISTENCY =
STATIC
The combination of session attribute values FAILOVER_TYPE = TRANSACTION with
SESSION_STATE_CONSISTENCY = STATIC is deprecated in Oracle Database 21c.

• Deprecation of ACFSUTIL REPL REVERSE
The acfsutil repl reverse command is deprecated in Oracle Database 21c.
Use repl failover or repl switchover instead.

• Deprecation of Oracle OLAP
Analytic workspaces, the OLAP DML programming language, and the OLAP Java
API are deprecated in Oracle Database 21c.

Deprecation of FILE_DATASTORE Type
Starting with Oracle Database 21c, the Oracle Text type FILE_DATASTORE is
deprecated. Use DIRECTORY_DATASTORE instead.

Oracle recommends that you replace FILE_DATASTORE text indexes with the
DIRECTORY_DATASTORE index type, which is available starting with Oracle Database
21c. DIRECTORY_DATASTORE provides greater security because it enables file access to
be based on directory objects.

Deprecation of URL_DATASTORE Text Type
Starting with Oracle Database 21c, the Oracle Text type URL_DATASTORE is deprecated.
Use NETWORK_DATASTORE instead.

The URL_DATASTORE type is used for text stored in files on the internet (accessed
through HTTP or FTP), and for text stored in local file system files (accessed through
the file protocol). It is replaced with NETWORK_DATASTORE, which uses ACLs to allow
access to specific servers. This change aligns Oracle Text more closely with the
standard operating and security model for accessing URLs from the database.

Deprecation of AUTO OPTIMIZE Framework
In Oracle Database Release 21c, the procedures ADD_AUTO_OPTIMIZE and
REMOVE_AUTO_OPTIMIZE, and the views CTX_AUTO_OPTIMIZE_INDEXES,
CTX_USER_AUTO_OPTIMIZE_INDEXES and CTX_AUTO_OPTIMIZE_STATUS are deprecated.

Basic optimization is now automatic for all indexes. You can also schedule additional
optimization declaratively in the CREATE INDEX statement. Because of this
enhancement, the AUTO_OPTIMIZE framework (procedures and views) is no longer
necessary. Two procedures are deprecated in the CTX_DDL package:
ADD_AUTO_OPTIMIZE, and REMOVE_AUTO_OPTIMIZE. In addition, the following views are
deprecated: CTX_AUTO_OPTIMIZE_INDEXES, CTX_USER_AUTO_OPTIMIZE_INDEXES and
CTX_AUTO_OPTIMIZE_STATUS.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 21c

10-6

Deprecation of CTXFILTERCACHE Query Operator
Starting in Oracle Database Release 21c, CTXFILTERCACHE is deprecated, and also
CTX_FILTER_CACHE_STATISTICS and QUERY_FILTER_CACHE_SIZE.

The CTXFILTERCACHE query operator was designed to speed up commonly-used expressions
in queries. In Oracle Database Release 21c, this function is replaced by other internal
improvements. The CTXFILTERCACHE operator is deprecated (and will pass through its
operands to be run as a normal query). Because they no longer have a function, the view
CTX_FILTER_CACHE_STATISTICS is also deprecated, and also the storage attribute
QUERY_FILTER_CACHE_SIZE.

Deprecation of Policy-Managed Databases
Starting with Oracle Grid Infrastructure 21c, policy-managed databases are deprecated.

You can continue to use existing server pools, and create new pools and policies. Resources
using existing server pools can continue to use them transparently.

The use of CRS configuration policies and the CRS policy set can be desupported in a future
release. In place of server pools and policy-managed databases, Oracle recommends that
you use the new "Merged" management style.

Deprecation of Traditional Auditing
Traditional auditing is deprecated in Oracle Database 21c. Oracle recommends that you use
unified auditing, which enables selective and more effective auditing inside Oracle Database.

Standard traditional auditing in Oracle Database has been provided for more than two
decades. Traditional auditing provided built-in support for auditing statements, privileges and
objects. Over the years, as data auditing became a key factor to ensuring the success of data
strategy, Oracle recognized that there was a need to provide selective and effective auditing
inside Oracle Database. To address this need, Oracle introduced unified auditing with Oracle
Database 12c. In addition to providing built-in audit operation support, Unified Auditing
simplifies management of auditing within the database, provides the ability to accelerate
auditing based on conditions, and increases the security of audit data generated by the
database. Unified Auditing and Traditional Auditing (mixed mode) has been the default
auditing mode from Oracle Database 12c onward. Mixed mode auditing was offered as to
enable you to become familiar with Unified Auditing, and to transition from Traditional
Auditing. With the deprecation of Traditional Auditing in this release, Oracle recommends that
you migrate to Unified Auditing. Refer to the migration procedure in Oracle Database Security
Guide.

Deprecation of Older Encryption Algorithms
Starting with Oracle Database 21c, older encryption and hashing algorithms are deprecated.

The deprecated algorithms for DBMS_CRYPTO and native network encryption include MD4,
MD5, DES, 3DES, and RC4-related algorithms as well as 3DES for Transparent Data
Encryption (TDE). Removing older, less secure cryptography algorithms prevents accidental
use of these algorithms. To meet your security requirements, Oracle recommends that you
use more modern cryptography algorithms, such as the Advanced Encryption Standard
(AES).

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 21c

10-7

As a consequence of this deprecation, Oracle recommends that you review your
network encryption configuration to see if you have specified use of any of the
deprecated algorithms. If any are found, then switch to using a more modern cipher,
such as AES. Also, if you are currently using 3DES encryption for your TDE
deployment, then you should plan to migrate to a more modern algorithm such as
AES. For more information, refer to Oracle Database Security Guide

Deprecation of Cluster Domain - Domain Services Cluster
Starting with Oracle Grid Infrastructure 21c, Domain Services Clusters (DSC), which is
part of the Oracle Cluster Domain architecture, are deprecated.

Deprecating certain clustering features with limited adoption enables Oracle to focus
on improving core scaling, availability, and manageability across all features and
functionality. Oracle Cluster Domains consist of a Domain Services Cluster (DSC) and
Member Clusters. Member Clusters were deprecated in Oracle Grid Infrastructure 19c.
The DSC continues to be available to provide services to production clusters.
However, with most of those services no longer requiring the DSC for hosting,
installation of DSCs are deprecated, and can be desupported in a future release.
Oracle recommends that you use any cluster or system of your choice for services
previously hosted on the DSC, if applicable. Oracle will continue to support the DSC
for hosting shared services, until each service can be used on alternative systems.

Deprecation of Enterprise User Security (EUS) User Migration Utility
Enterprise User Security (EUS) User Migration Utility (UMU) is deprecated in Oracle
Database 21c. Use EUS Manager (EUSM) features instead.

Because organizational directory services already have records of all employees,
there is no need to bulk-migrate database users to directory services. EUS Manager
(EUSM) has many of the same functions as the EUS UMU. Oracle recommends that
you use it place of EUS UMU.

Logical Standby and New Data Types
If you use logical standby (when not used as part of DBMS_ROLLING), then you can use
only data types added before Oracle Database 12c Release 2 (12.2)

New data types added after Oracle Database 12c Release 1 (12.1) are not supported
with Oracle Data Guard logical standby. For example, Oracle Data Guard logical
standby does not support long identifiers, complex Abstract Data Types (ADTs), and
spatial data types. Note that this limitation does not exist with an Oracle Data Guard
physical standby database, DBMS_ROLLING, or Oracle GoldenGate. To obtain the
benefits of a standby database with more recent data types, Oracle recommends that
you consider using either a physical standby database, a snapshot standby database,
or that you use the logical replication features of Oracle GoldenGate.

Deprecation of Sharded Queues
AQ sharded queues are deprecated in Oracle Database 21c. Use Transactional Event
Queues (TEQ) instead.

Starting with Oracle Database 21c, AQ sharded queues are being repackaged as
Transactional Event Queues (TEQ). In the Oracle Database 21c release, TEQs coexist
with AQ sharded queues. However, AQ sharded queues will be desupported in a

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 21c

10-8

future release and will be replaced by TEQ. Oracle recommends that you move to TEQs for
higher throughput and better performance on Oracle Real Application Clusters (Oracle RAC).

Deprecation of MySQL Client Library Driver for Oracle
The MySQL Client Library Driver for Oracle is deprecated in Oracle Database 21c.

The MySQL Client library driver, liboramysql, is deprecated. Oracle may desupport
liboramysql in a future release. There is no replacement. This deprecation does not affect
the ability of older Oracle Database Client releases that use liboramysql to connect to the
database. However, it is possible that the features available to use through these clients
eventually can be limited.

Deprecation of TLS 1.0 and 1.1 Transport Layer Security
Starting with Oracle Database 21c, Transport Layer Security protocol versions 1.0 and 1.1
(TLS 1.0 and TLS 1.1) are deprecated.

In accordance with security best practices, Oracle has deprecated the use of TLS 1.0 and
TLS 1.1. To meet your security requirements, Oracle strongly recommends that you use TLS
1.2 instead.

Deprecation of Unix Crypt (or MD5crypt) Password Verifier
The Unix Crypt (MD5crypt) password verifier algorithm is deprecated in Oracle Database 21c
server and clients, and passwords using this algorithm will stop working in a future release.

Enterprise User Security (EUS) customers with enterprise users in Oracle Internet Directory
(OID) potentially can be using older, less secure password verifiers generated by Unix Crypt,
either by OID, or by the operating system, before they were migrated to OID. Unix Crypt is a
less secure algorithm to hash passwords. When MD5crypt is removed, Oracle Database can
no longer authenticate EUS or OID users with the Unix Crypt passwrod verifier type. Oracle
recommends that you reset passwords in OID now, using newer, more secure hashing
algorithms.

Deprecation of ODP.NET OracleConfiguration.DirectoryType Property
The Oracle Data Provider for .NET OracleConfiguration DirectoryType property and .NET
configuration file DIRECTORY_TYPE setting are deprecated in Oracle Database 21c, and can be
desupported in a future release.

The OracleConfiguration DirectoryServerType property replaces the DirectoryType
property. The .NET configuration file DIRECTORY_SERVER_TYPE setting replaces the
DIRECTORY_TYPE setting. All these properties have identical functionality. Oracle recommends
to developers that you use and migrate to the new properties. The DirectoryServerType and
DIRECTORY_SERVER_TYPE names better align with the ldap.ora parameter,
DIRECTORY_SERVER_TYPE, which provides equivalent functionality.

Deprecation of Weaker Encryption Key Strengths
The use of weaker encryption keys is deprecated in Oracle Database 21c.

The security strength of the cipher algorithms have been changed in Oracle Database 21c
with the introduction of the newest RSA BSAFE Micro Edition Suite (MES) v 4.5. The
following cipher algorithms are deprecated:

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 21c

10-9

• For FIPS mode

– The FIPS default protect strength of 80 has been deprecated. This strength is
still available, but will not be the default protect strength in the future. The new
default protect strength for FIPS mode will be 112.

* When the default FIPS protect strength changes from 80 to 112 with a
later release, you can still revert to using the older, less secure FIPS
protect strength 80 by setting a parameter.

– Diffie Hellman and Digital Signature Algorithm (DH/DSA) with 1024 key size is
deprecated. The new minimum supported key size will be 2048. The 1024 key
size support will remain available when the default protect strength will be
changed to 112 bits of security strength (equivalent to 2048 key size), the
process strength remains at 80 bits of security strength (equivalent to 1024
key size).

• For non-FIPS mode

– Both protect and process strength 0 (RSA key length 512) are deprecated. By
default, both protect and process strength are now 80. Protect and process
strength 0 (RSA key 512 and equivalent) is still available, but not
recommended for use.

Related Topics

• Managing Deprecated Weaker Algorithm Keys

Deprecation of DBSNMP Packages for Adaptive Thresholds Feature
DBSNMP PL/SQL packages associated with the Adaptive Thresholds feature are
deprecated in Oracle Database 21c.

Beginning with Oracle Enterprise Manager Cloud Control 13.5, all features of
Database Server Adaptive Thresholds and Baseline Metric Thresholds will be
removed for all Oracle Database targets. The following database server side packages
that support this feature will no longer be available: DBSNMP.BSLN,
DBSNMP.BSLN_INTERNAL and DBSNMP.MGMT_RESPONSE.

For more information about this deprecation, refer to My Oracle Support 2697846.1

Related Topics

• My Oracle Support Note 2697846.1

Deprecation of Oracle GoldenGate Replication for Oracle Sharding High
Availability

Oracle GoldenGate replication support for Oracle Sharding High Availability is
deprecated in Oracle Database 21c.

Deprecation of Anonymous Cipher Suites with Outbound TLS Connections
Anonymous cipher suites for outbound TLS connections (Database to other services)
are deprecated with Oracle Database 21c.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 21c

10-10

https://support.oracle.com/rs?type=doc&id=2697846.1

Anonymous cipher suites only encrypt the connection between client and server without
authenticating either party leaving it vulnerable to a person-in-the-middle attack. The
following three anonymous cipher suites are deprecated with this release:

• NZTLS_DH_ANON_WITH_AES_256_GCM_SHA384

• NZTLS_DH_ANON_WITH_AES_128_GCM_SHA256

• NZSSL_DH_ANON_WITH_3DES_EDE_CBC_SHA

To provide better protection for your connections, Oracle recommends using the strongest
possible non-anonymous TLS cipher suites.

Deprecation of the KERBEROS5PRE Adapter
The use of the KERBEROS5PRE adapter is deprecated with Oracle Database 21c. Oracle
recommends that you use the KERBEROS5 adapter instead.

The KERBEROS5 adapter is the primary adapter supported by Oracle for Kerberos
authentication. KERBEROS5PRE is not needed anymore, and will be desupported in a future
release. This change simplifies Kerberos configuration.

Deprecation of Oracle Wallet Manager
Oracle Wallet Manager (OWM) is deprecated with Oracle Database 21c.

Instead of using Oracle Wallet Manager, Oracle recommends that you use the command line
tools orapki and mkstore.

Deprecation of Oracle Enterprise Manager Database Express
Oracle Enterprise Manager Database Express (EM Express) is deprecated, and will be
removed in a future Oracle Database release.

EM Express is a web-based database management tool that is built inside the Oracle
Database. It supports key performance management and basic database administration
functions. Many of EM Express's capabilities are also available in Oracle SQL Developer,
which is included in all Oracle Database editions. Oracle recommends that you replace your
use of EM Express with Oracle SQL Developer.

Deprecation of SHA-1 use for SQLNET and DBMS_CRYPTO
The use of SHA-1 with DBMS_CRYPTO, SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT and
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER is deprecated.

Using SHA-1 (Secure Hash Algorithm 1) with the parameters
SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT and SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER is
deprecated in this release, and can be desupported in a future release. Using SHA-1 ciphers
with DBMS_CRYPTO is also deprecated (HASH_SH1, HMAC_SH1). Instead of using SHA1, Oracle
recommends that you start using a stronger SHA-2 cipher in place of the SHA-1 cipher.

Deprecation of Repository Events
The use of repository events to trigger application actions is deprecated in Oracle Database
21c (21.3). There is no replacement.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 21c

10-11

Repository events are events that can be used to trigger application actions.
Repository events include repository changes, such as creating, deleting, locking,
unlocking, rendering, linking, unlinking, placing under version control, checking in,
checking out, unchecking out (reverting a checked out version), opening, and updating
a resource. The deprecation of the use of repository events includes deprecation of
the DBMS_XEVENT package, and the following subprogram groups:

• XDBevent

• XDBRepositoryEvent

• XDBHandler

• XDBHandlerList

• XDBPath

• XDBLink

Deprecation of Service Attribute Value SESSION_STATE_CONSISTENCY =
STATIC

The combination of session attribute values FAILOVER_TYPE = TRANSACTION with
SESSION_STATE_CONSISTENCY = STATIC is deprecated in Oracle Database 21c.

The use of session attribute values FAILOVER_TYPE = TRANSACTION with
SESSION_STATE_CONSISTENCY = STATIC is no longer a supported service attribute
combination.

Instead use one of the following combinations in the service configuration:

• FAILOVER_TYPE = AUTO with SESSION_STATE_CONSISTENCY = AUTO

• FAILOVER_TYPE = TRANSACTION with SESSION_STATE_CONSISTENCY = DYNAMIC

These configurations enforce session state tracking in Oracle Database, ensuring that
session state is preserved at session migration and session failover. Note that starting
with Oracle Database 21c, you may also wish to set the RESET_STATE attribute to clear
your session state set by applications in request at the end of the request. For more
information, see RESET_STATE.

Deprecation of ACFSUTIL REPL REVERSE
The acfsutil repl reverse command is deprecated in Oracle Database 21c. Use
repl failover or repl switchover instead.

The Oracle Automatic Cluster File System (ACFS) command utility acfsutil includes
the commands repl failover and repl switchover. These commands provide more
functionality, including all the functions of acfsutil repl reverse. For this reason,
Oracle is deprecating the acfsutil repl reverse command.

Deprecation of Oracle OLAP
Analytic workspaces, the OLAP DML programming language, and the OLAP Java API
are deprecated in Oracle Database 21c.

For new applications requiring advanced analytic capabilities, Oracle recommends that
you consider analytic views (a feature of Oracle Database), or Oracle Essbase. Oracle
analytic views are a feature of every Oracle Database edition. If your application uses

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 21c

10-12

OLAP for dimensional query and reporting applications, then Oracle recommends that you
consider Oracle analytic views as a replacement for OLAP. Analytic views provide a fast and
efficient way to create analytic queries of data stored in existing database tables and views.
With Oracle analytic views, you obtain a dimensional query model and supporting metadata
without requiring a "cube build/update" process. The elimination of the cube build/update
process relieves scalability constraints (model complexity and data volume), simplifies the
data preparation pipeline, and reduces or eliminates data latency. In addition, you can use
analytic views with OLTP applications, external tables, and non-relational data types (for
example, JSON) when these non-relational data types are wrapped by relational views.

Deprecated Views in Oracle Database 21c
As part of your upgrade plan, review the views that are deprecated starting with this Oracle
Database release.

• Deprecation of Traditional Auditing Views
As a result of deprecating traditional auditing, the views associated with traditional
auditing are also deprecated.

Deprecation of Traditional Auditing Views
As a result of deprecating traditional auditing, the views associated with traditional auditing
are also deprecated.

• Static data dictionary views:

– ALL_DEF_AUDIT_OPTS

– AUDIT_ACTIONS

– DBA_AUDIT_EXISTS

– DBA_AUDIT_OBJECT

– DBA_AUDIT_SESSION

– DBA_AUDIT_STATEMENT

– DBA_AUDIT_TRAIL

– DBA_COMMON_AUDIT_TRAIL

– DBA_FGA_AUDIT_TRAIL

– DBA_OBJ_AUDIT_OPTS

– DBA_PRIV_AUDIT_OPTS

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 21c

10-13

– DBA_STMT_AUDIT_OPTS

– USER_AUDIT_OBJECT

– USER_AUDIT_SESSION

– USER_AUDIT_STATEMENT

– USER_AUDIT_TRAIL

– USER_OBJ_AUDIT_OPTS

• Dynamic performance view:

– V$XML_AUDIT_TRAIL

Deprecated Parameters in Oracle Database 21c
As part of your upgrade plan, review the initialization parameters that are deprecated
starting with this Oracle Database release.

• Deprecation of Traditional Auditing Initialization Parameters
As a result of deprecating traditional auditing, the initialization parameters
associated with traditional auditing are also deprecated.

Deprecation of Traditional Auditing Initialization Parameters
As a result of deprecating traditional auditing, the initialization parameters associated
with traditional auditing are also deprecated.

• Initialization parameters:

– AUDIT_FILE_DEST

– AUDIT_SYS_OPERATIONS

– AUDIT_SYSLOG_LEVEL

– AUDIT_TRAIL

Desupported Features in Oracle Database 21c
As part of your upgrade plan, review the desupported features in this Oracle Database
release.

• Desupport of DBMS_OBFUSCATION_TOOLKIT Package
Starting in Oracle Database 21c, the package DBMS_OBFUSCATION_TOOLKIT is
desupported, and replaced with DBMS_CRYPTO.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 21c

10-14

• Desupport of Several XML Database (XDB) features
Starting with Oracle Database 21c, several XML Database features are desupported.

• Desupport of DBMS_LOB.LOADFROMFILE and LOB Buffering
Starting in Oracle Database 21c, the Large Object (LOB) features
DBMS_LOB.LOADFROMFILE and LOB buffering are desupported.

• Desupport of Oracle Data Guard Broker Properties and Logical Standby
Oracle Data Guard broker properties and logical standby properties whose functionality is
replaced with the new EDIT … SET PARAMETER command in DGMGRL are now
desupported.

• Desupport of DBMS_CRYPTO_TOOLKIT_TYPES and DBMS_CRYPTO_TOOLKIT
Starting with Oracle Database 21c, the data types DBMS_CRYPTO_TOOLKIT_TYPES and
package DBMS_CRYPTO_TOOLKIT are desupported.

• Desupport of Non-CDB Oracle Databases
Starting with Oracle Database 21c, installation of non-CDB Oracle Database architecture
is no longer supported.

• Desupport of Cluster Domain Member Clusters
Effective with Oracle Grid Infrastructure 21c, Member Clusters, which are part of the
Oracle Cluster Domain architecture, are desupported.

• Desupport of Unicode Collation Algorithm (UCA) 6.1 Collations
Starting with Oracle Database 21c, the Unicode Collation Algorithm (UCA) 6.1 collations
(UCA0610_*) are desupported. Use UCA 12.1 instead.

• Desupport of ACFS on Microsoft Windows
Starting with Oracle Database 21c, the Oracle Grid Infrastructure feature Automatic
Storage Management Cluster File System (Oracle ACFS) is desupported with Microsoft
Windows

• Desupport of Oracle ACFS Security (Vault) and ACFS Auditing
Starting with Oracle Grid Infrastructure 21c, Oracle ASM Cluster File System (ACFS)
Security (Vault) and ACFS Auditing are desupported.

• Desupport of Oracle ACFS on Member Clusters (ACFS Remote)
Starting with Oracle Grid Infrastructure 21c, Oracle ASM Cluster File System (ACFS) on
Member Clusters (ACFS Remote) is desupported.

• Desupport of ACFS Encryption on Solaris and Windows
Starting with Oracle Database 21c, Oracle ACFS Encryption is desupported with no
replacement on Oracle Solaris and Microsoft Windows.

• Desupport of ACFS Replication REPV1
Starting with Oracle Database 21c, the Oracle ACFS replication protocol repv1 is
desupported.

• Desupport of Vendor Clusterware Integration with Oracle Clusterware
Starting with Oracle Clusterware 21c, the integration of vendor or third party clusterware
with Oracle Clusterware is desupported.

• Desupport of VERIFY_FUNCTION and VERIFY_FUNCTION_11G
The VERIFY_FUNCTION and VERIFY_FUNCTION_11G password verify functions are
desupported in Oracle Database 21c.

• Desupport of Deprecated Oracle Database Vault Roles
The Oracle Database Vault roles DV_PUBLIC, DV_REALM_OWNER, and DV_REALM_RESOURCE
are desupported in Oracle Database 21c.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 21c

10-15

• Desupport of Anonymous RC4 Cipher Suite
The use of the anonymous RC4 cipher suite for non-authenticated TLS
connections is desupported in Oracle Database 21c
(SSL_DH_anon_WITH_RC4_128_MD5)

• Desupport of Adobe Flash-Based Oracle Enterprise Manager Express
Flash-based Oracle EM Express is desupported in Oracle 21c. Use the JET-based
Oracle EM Express, which is the default.

• Desupport of Intelligent Data Placement (IDP)
Intelligent Data Placement (IDP) is desupported in Oracle Database 21c.

• Desupport of XML DB Content Connector
Oracle XML DB Content Connector was deprecated in Oracle Database 12c
Release 2. It is desupported and removed in Oracle Database 21c.

• Desupport of DBMS_XMLSAVE
The PL/SQL package DBMS_XMLSAVE is desupported in Oracle Database 21c. Use
DBMS_XMLSTORE instead.

• Desupport of DBMS_XMLQUERY
The PL/SQL package DBMS_XMLQUERY is desupported in Oracle Database 21c. Use
DBMS_XMLGEN instead.

• Desupport of FIPS Protect and Process Strength 0
The protect and process strength 0 (RSA key length 512) equivalent is
desupported for FIPS. This strength is still available for the non-FIPS mode.

• Desupport of PDB Flat File Dictionary Dumps
The ability to create flat file dictionary dumps of pluggable databases (PDBs) is
desupported in Oracle Database 21c.

• Desupport of Oracle Fail Safe
Starting with Oracle Database 21c, Oracle Fail Safe is desupported for Oracle
Database releases.

Desupport of DBMS_OBFUSCATION_TOOLKIT Package
Starting in Oracle Database 21c, the package DBMS_OBFUSCATION_TOOLKIT is
desupported, and replaced with DBMS_CRYPTO.

DBMS_OBFUSCATION_TOOLKIT was deprecated in Oracle Database 10g Release 2. It is
now removed in Oracle Database 21c. DBMS_CRYPTO replaces the functionality that
DBMS_OBFUSCATION_TOOLKIT provided previously. DBMS_CRYPTO includes more modern
and secure encryption technologies for your security requirements.

Desupport of Several XML Database (XDB) features
Starting with Oracle Database 21c, several XML Database features are desupported.

The following features are desupported:

• Package DBMS_XDBT. There is no replacement.

• Oracle XQuery function ora:contains. Use XQuery Full Text instead.

• Oracle SQL function XMLRoot. Use SQL/XML function XMLSerialize() with a
version number instead.

• Nested tables stored as index-ordered tables (IOTs). This includes both the use of
option DBMS_XMLSCHEMA.REGISTER_NT_AS_IOT, and the use of clause NESTED TABLE

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 21c

10-16

N STORE AS ... (ORGANIZATION INDEX) when creating a table with nested-table column
N. Instead, store nested-table columns using heap storage (the default behavior for
PL/SQL procedure DBMS_XMLSCHEMA.registerSchema).

• PL/SQL procedure DBMS_XSLPROCESSOR.CLOB2FILE. Use DBMS_LOB.CLOB2FILE instead.

• PL/SQL function DBMS_XSLPROCESSOR.READ2CLOB. Use DBMS_LOB.LOADCLOBFROMFILE
instead.

• Oracle XML DB Content Connector.

Desupport of DBMS_LOB.LOADFROMFILE and LOB Buffering
Starting in Oracle Database 21c, the Large Object (LOB) features DBMS_LOB.LOADFROMFILE
and LOB buffering are desupported.

The following features are desupported:

• DBMS_LOB.LOADFROMFILE Procedure. Use DBMS_LOB.LoadClobFromFile or
DBMS_LOB.LoadBlobFromFile instead.

• The LOB buffering subsystem APIs:

– OCILobEnableBuffering()

– OCILobDisableBuffering()

– OCILobFlushBuffer()

In place of using these LOB buffering functions, use the LOB prefetch feature.

Desupport of Oracle Data Guard Broker Properties and Logical Standby
Oracle Data Guard broker properties and logical standby properties whose functionality is
replaced with the new EDIT … SET PARAMETER command in DGMGRL are now
desupported.

The following Oracle Data Guard broker properties are desupported in Oracle Database 21c:

• ArchiveLagTarget

• DataGuardSyncLatency

• LogArchiveMaxProcesses

• LogArchiveMinSucceedDest

• LogArchiveTrace

• StandbyFileManagement

• DbFileNameConvert

• LogArchiveFormat

• LogFileNameConvert

The following Oracle Data Guard broker Properties that affect Logical Standby are
desupported in Oracle Database 21c:

• LsbyMaxEventsRecorded

• LsbyMaxServers

• LsbyMaxSga

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 21c

10-17

• LsbyPreserveCommitOrder

• LsbyRecordAppliedDdl

• LsbyRecordSkippedDdl

• LsbyRecordSkipErrors

• LsbyParameter

Desupport of DBMS_CRYPTO_TOOLKIT_TYPES and
DBMS_CRYPTO_TOOLKIT

Starting with Oracle Database 21c, the data types DBMS_CRYPTO_TOOLKIT_TYPES and
package DBMS_CRYPTO_TOOLKIT are desupported.

The data types DBMS_CRYPTO_TOOLKIT_TYPES and the DBMS_CRYPTO_TOOLKIT package
were deprecated in Oracle9i Database. These data types and package are now
removed from Oracle Database 21c.

Desupport of Non-CDB Oracle Databases
Starting with Oracle Database 21c, installation of non-CDB Oracle Database
architecture is no longer supported.

The non-CDB architecture was deprecated in Oracle Database 12c. It is desupported
in Oracle Database 21c. Oracle Universal Installer can no longer be used to create
non-CDB Oracle Database instances.

Desupport of Cluster Domain Member Clusters
Effective with Oracle Grid Infrastructure 21c, Member Clusters, which are part of the
Oracle Cluster Domain architecture, are desupported.

Desupporting certain clustering features with limited adoption allows Oracle to focus
on improving core scaling, availability, and manageability across all features and
functionality. Oracle Cluster Domains consist of a Domain Services Cluster (DSC) and
Member Clusters. It also includes Remote Oracle Automatic Storage Management
Cluster File System (Remote ACFS).. Member Clusters were first introduced to
simplify the management of larger cluster estates, and to minimize outage times for
certain failures and configurations. However, additional enhancements in Standalone
Clusters provide the same benefits. These enhancements make the use of Member
Clusters unnecessary. Consequently, if you are currently using Member Clusters, then
Oracle recommends that you use Standalone Clusters going forward.

Desupport of Unicode Collation Algorithm (UCA) 6.1 Collations
Starting with Oracle Database 21c, the Unicode Collation Algorithm (UCA) 6.1
collations (UCA0610_*) are desupported. Use UCA 12.1 instead.

Oracle recommends that you use the latest supported version of Unicode Collation
Algorithm (UCA) collations, which in Oracle Database 21c is UCA 12.1. UCA 6.1
collations were deprecated in Oracle Database 12c Release 2. UCA 12.1 incorporates
all of the UCA enhancements since version 6.1, as well as proper collation weight
assignments for all new characters introduced since Unicode 6.1.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 21c

10-18

Desupport of ACFS on Microsoft Windows
Starting with Oracle Database 21c, the Oracle Grid Infrastructure feature Automatic Storage
Management Cluster File System (Oracle ACFS) is desupported with Microsoft Windows

Oracle ACFS is used for two major use cases:

• Oracle Database Files for Oracle Real Application Clusters (Oracle RAC)

• Generic files (unstructured data) that need to be shared across multiple hosts.

For Oracle Real Application Clusters files, Oracle recommends that you use Oracle ASM. For
generic files, depending on your use case, Oracle recommends that you either move files to
Oracle Database File System (DBFS), or move files to Microsoft Windows shared files.

Desupport of Oracle ACFS Security (Vault) and ACFS Auditing
Starting with Oracle Grid Infrastructure 21c, Oracle ASM Cluster File System (ACFS) Security
(Vault) and ACFS Auditing are desupported.

To manage security and auditing, Oracle recommends that you use your operating system
access controls and auditing systems. For example, with Linux, you can use the Linux
Auditing System.

Desupport of Oracle ACFS on Member Clusters (ACFS Remote)
Starting with Oracle Grid Infrastructure 21c, Oracle ASM Cluster File System (ACFS) on
Member Clusters (ACFS Remote) is desupported.

Oracle ASM Cluster File System (ACFS) on Member Clusters (ACFS Remote) is
desupported. Desupporting certain clustering features with limited adoption allows Oracle to
focus on improving core scaling, availability, and manageability across all features and
functionality. Deprecating certain clustering features with limited adoption allows Oracle to
focus on improving core scaling, availability, and manageability across all features and
functionality.

Desupport of ACFS Encryption on Solaris and Windows
Starting with Oracle Database 21c, Oracle ACFS Encryption is desupported with no
replacement on Oracle Solaris and Microsoft Windows.

Oracle ACFS Encryption on Oracle Solaris and Microsoft Windows is based on RSA
technology. Retirement of RSA technology has been announced. Oracle ACFS Encryption
continues to be supported on Linux, and is unaffected by this deprecation, because Linux
uses an alternative technology.

Desupport of ACFS Replication REPV1
Starting with Oracle Database 21c, the Oracle ACFS replication protocol repv1 is
desupported.

The initial ACFS replication protocol repv1 was released with Oracle Database 11g Release
2 (11.2).The replv2 protocol has been required since Oracle Database 12c Release 2 (12.2).
The replv1 protocol was available only during the required upgrade to replv2 in 12.2 and
later releases. The replv1 protocol was deprecated in Oracle Database 19c. It is
desupported in Oracle Database 21c.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 21c

10-19

Desupport of Vendor Clusterware Integration with Oracle Clusterware
Starting with Oracle Clusterware 21c, the integration of vendor or third party
clusterware with Oracle Clusterware is desupported.

The integration of vendor clusterware with Oracle Clusterware is desupported in
Oracle Database 21c. Desupporting certain clustering features with limited adoption
allows Oracle to focus on improving core scaling, availability, and manageability across
all features and functionality. In the absence of an integration between different cluster
solutions, the system is subject to the dueling cluster solutions issue: Independent
cluster solutions can make individual decisions about which corrective actions must be
taken in case of certain failures. To avoid conflicts, only one cluster solution should be
active at any point in time. For this reason, Oracle recommends that you align your
next software or hardware upgrade with the transition off of vendor cluster solutions.

Desupport of VERIFY_FUNCTION and VERIFY_FUNCTION_11G
The VERIFY_FUNCTION and VERIFY_FUNCTION_11G password verify functions are
desupported in Oracle Database 21c.

These older functions are desupported because they enforce the weaker password
restrictions from earlier releases. Instead, use the functions ORA12C_VERIFY_FUNCTION,
ORA12C_STRONG_VERIFY_FUNCTION, or ORA12C_STIG_VERIFY_FUNCTIONS. These
functions enforce stronger, more up-to-date password verification restrictions.

Desupport of Deprecated Oracle Database Vault Roles
The Oracle Database Vault roles DV_PUBLIC, DV_REALM_OWNER, and
DV_REALM_RESOURCE are desupported in Oracle Database 21c.

Oracle deprecated these Oracle Database Vault roles in Oracle Database 19c. The
roles are granted powerful privileges,but were seldom used. During upgrades to
Oracle Database 21c, these roles are removed, and are not available in new Oracle
Database installations. If you are using these roles, and you are upgrading your
database, then note the roles and privileges granted to them and then create roles for
these privileges after the upgrade is complete.

Desupport of Anonymous RC4 Cipher Suite
The use of the anonymous RC4 cipher suite for non-authenticated TLS connections is
desupported in Oracle Database 21c (SSL_DH_anon_WITH_RC4_128_MD5)

Oracle recommends that you use the more secure authenticated connections available
with Oracle Database. If you use anonymous Diffie-Hellman with RC4 for connecting
to Oracle Internet Directory for Enterprise User Security, then you must migrate to use
a different algorithm connection. Oracle recommends that you use either TLS one-way,
or mutual authentication using certificates.

Desupport of Adobe Flash-Based Oracle Enterprise Manager Express
Flash-based Oracle EM Express is desupported in Oracle 21c. Use the JET-based
Oracle EM Express, which is the default.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 21c

10-20

Adobe Flash is desupported by all major browsers starting in January 2021. Oracle Database
19c and later releases of Oracle Enterprise Manager Express (Oracle EM Express) use
Oracle JavaScript Extension Toolkit (JET) technology as a replacement for Flash.

Desupport of Intelligent Data Placement (IDP)
Intelligent Data Placement (IDP) is desupported in Oracle Database 21c.

Intelligent Data Placement helped to place data on physical storage disks to reduce latency.
This feature was deprecated in Oracle Database 12c release 2 (12.2). There is no
replacement. Views and ASM disk group attributes associated with this feature are also
desupported.

Desupport of XML DB Content Connector
Oracle XML DB Content Connector was deprecated in Oracle Database 12c Release 2. It is
desupported and removed in Oracle Database 21c.

XML DB Content Connector implemented the Java standard JSR-170 API. This standard has
been replaced by Java standard JSR-283.

Desupport of DBMS_XMLSAVE
The PL/SQL package DBMS_XMLSAVE is desupported in Oracle Database 21c. Use
DBMS_XMLSTORE instead.

Replace DBMS_XMLSAVE calls with DBMS_XMLSTORE.

Desupport of DBMS_XMLQUERY
The PL/SQL package DBMS_XMLQUERY is desupported in Oracle Database 21c. Use
DBMS_XMLGEN instead.

Replace calls to DBMS_XMLQUERY with DBMS_XMLGEN.

Desupport of FIPS Protect and Process Strength 0
The protect and process strength 0 (RSA key length 512) equivalent is desupported for FIPS.
This strength is still available for the non-FIPS mode.

The default protect and process strength for Federal Information Processing Standard (FIPS)
mode is currently 80. The equivalent RSA key strength is 1024. The equivalent ECC key
strength is curves with minimum ECC curve key length 160, ECC named curves P192, K163
and B163 and above. The equivalent DH/DSA (Diffie Hellman, Digital Signature Algorithm)
key length is 1024. Oracle recommends that you use FIPS protect strength 112, because the
default FIPS protect strength, 80, is deprecated.

Desupport of PDB Flat File Dictionary Dumps
The ability to create flat file dictionary dumps of pluggable databases (PDBs) is desupported
in Oracle Database 21c.

In previous releases, using a flat file dictionary was one means of mining the redo logs for the
changes associated with a specific PDB whose data dictionary was contained within the flat
file. This feature is now desupported. Starting with Oracle Database 21c, Oracle recommends

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 21c

10-21

that you call DBMS_LOGMNR.START_LOGMNR, and supply the system change number
(SCN) or time range that you want to mine. The SCN or time range options of
START_LOGMNR are enhanced to support mining of individual PDBs.

Desupport of Oracle Fail Safe
Starting with Oracle Database 21c, Oracle Fail Safe is desupported for Oracle
Database releases.

This desupport notice does not apply to earlier releases of Oracle Database. Oracle
Fail Safe will continue to be supported for the lifetime of Oracle Database 19c. For
Oracle Database releases starting with Oracle Database 21c, if you are running Oracle
Database on Microsoft Windows, then Oracle recommends that you investigate other
failover solutions, such as Oracle RAC One Node, or Oracle Database Standard
Edition High Availability.

Desupported Initialization Parameters in Oracle Database 21c
Review this list of desupported initialization parameters for changes and replacements
in parameter settings in this release.

• Desupport of UNIFIED_AUDIT_SGA_QUEUE_SIZE
Starting in Oracle Database 21c, the initialization parameter
UNIFIED_AUDIT_SGA_QUEUE_SIZE is desupported.

• Desupport of IGNORECASE Parameter for Passwords
Starting in Oracle Database 21c, the IGNORECASE parameter for the orapwd file is
desupported. All newly created password files are case-sensitive.

• Desupport of DISABLE_DIRECTORY_LINK_CHECK
Starting in Oracle Database 21c, the DISABLE_DIRECTORY_LINK_CHECK parameter
is desupported, with no replacement.

• Desupport of REMOTE_OS_AUTHENT Parameter
The Oracle Database initialization parameter REMOTE_OS_AUTHENT has been
removed from Oracle Database 21c.

• Desupport of SEC_CASE_SENSITIVE_LOGON
The SEC_CASE_SENSITIVE_LOGON parameter is desupported in Oracle Database
21c.

Desupport of UNIFIED_AUDIT_SGA_QUEUE_SIZE
Starting in Oracle Database 21c, the initialization parameter
UNIFIED_AUDIT_SGA_QUEUE_SIZE is desupported.

The UNIFIED_AUDIT_SGA_QUEUE_SIZE parameter was deprecated in Oracle Database
12c Release 2 (12.2), and the value for the parameter was no longer was honored. It
is now removed.

Desupport of IGNORECASE Parameter for Passwords
Starting in Oracle Database 21c, the IGNORECASE parameter for the orapwd file is
desupported. All newly created password files are case-sensitive.

Case-sensitive password files provide more security than older non-case sensitive
password files. To enhance security, Oracle recommends that you use case-sensitive

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 21c

10-22

passwords. However, upgraded password files from earlier Oracle Database releases can
retain original case-insensitive passwords. To ensure that password files are case-sensitive,
Oracle recommends that you force case sensitivity by migrating password files from one
format to another, using the following syntax: orapwd input_file=input_password _file
file=output_password_file

Desupport of DISABLE_DIRECTORY_LINK_CHECK
Starting in Oracle Database 21c, the DISABLE_DIRECTORY_LINK_CHECK parameter is
desupported, with no replacement.

The DISABLE_DIRECTORY_LINK_CHECK parameter is disabled. Symbolic links managed
previously with this parameter fail in the new Oracle Database release. If you attempt to use
an affected feature after upgrade, where that feature used symbolic links, then you encounter
ORA-29283: invalid file operation: path traverses a symlink.

Desupport of REMOTE_OS_AUTHENT Parameter
The Oracle Database initialization parameter REMOTE_OS_AUTHENT has been removed from
Oracle Database 21c.

REMOTE_OS_AUTHENT was deprecated in Oracle Database 11g. To prevent potentially insecure
connections to the database, Oracle is removing this authentication option in Oracle
Database 21c.

Desupport of SEC_CASE_SENSITIVE_LOGON
The SEC_CASE_SENSITIVE_LOGON parameter is desupported in Oracle Database 21c.

The SEC_CASE_SENSITIVE_LOGON parameter was deprecated in Oracle Database 12c
Release 1 (12.1). To ensure that new passwords are case-sensitive, Oracle is removing this
parameter from Oracle Database 21c.

Related Topics

• Checking for Accounts Using Case-Insensitive Password Version
Use these procedures to identify if the Oracle Database that you want to upgrade has
accounts or configuration parameters that are using a case-insensitive password version.

Behavior Changes, Deprecations and Desupports in Oracle
Database 19c

Review for descriptions of Oracle Database 19c release changes.

• Behavior Changes for Oracle Database 19c Upgrade Planning
Review these behavior changes to help plan for upgrades to Oracle Database 19c

• Deprecated Features in Oracle Database 19c
As part of your upgrade plan, review the features that are deprecated in this Oracle
Database release, and review alternatives for your application strategies.

• Deprecated Initialization Parameters in Oracle Database 19c
As part of your upgrade plan, review the initialization parameters that are deprecated in
this Oracle Database release, and review alternatives.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 19c

10-23

• Desupported Features in Oracle Database 19c
As part of your upgrade plan, review the desupported features in this Oracle
Database release.

• Desupported Parameters in Oracle Database 19c
As part of your upgrade plan, review the initialization parameters that are not
supported starting with this Oracle Database release.

Behavior Changes for Oracle Database 19c Upgrade Planning
Review these behavior changes to help plan for upgrades to Oracle Database 19c

• Changes to Oracle Data Guard Properties Management
Starting with Oracle Database 19c, properties for Oracle Data Guard configuration
are stored in Oracle Database, instead of an external configuration file.

• Rapid Home Provisioning (RHP) Name Change
Starting with Oracle Database 19c and Oracle Grid Infrastructure 19c, Rapid
Home Provisioning is renamed to Fleet Patching and Provisioning (FPP).

• Resupport of Direct File Placement for OCR and Voting Disks
Starting with Oracle Grid Infrastructure 19c, the desupport for direct placement of
OCR and voting files on shared file systems is rescinded for Oracle Standalone
Clusters.

• Optional Install for the Grid Infrastructure Management Repository
Starting with Oracle Grid Infrastructure 19c, the Grid Infrastructure Management
Repository (GIMR) is optional for new installations of Oracle Standalone Cluster.
Oracle Domain Services Clusters still require the installation of a GIMR as a
service component.

• Support for DBMS_JOB
Oracle continues to support the DBMS_JOB package. However, you must grant the
CREATE JOB privilege to the database schemas that submit DBMS_JOB jobs.

• About Standard Edition High Availability
In this release, you can install Oracle Database Standard Edition 2 in high
availability mode.

• Manage "Installed but Disabled" Module Bug Fixes with DBMS_OPTIM_BUNDLE
To manage the implementation of Oracle Database bug fixes that cause a SQL
execution plan change, use DBMS_OPTIM_BUNDLE.

Changes to Oracle Data Guard Properties Management
Starting with Oracle Database 19c, properties for Oracle Data Guard configuration are
stored in Oracle Database, instead of an external configuration file.

Oracle Data Guard property names, storage locations, and behaviors are changed in
Oracle Database 19c.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 19c

10-24

Property Name Changes

Table 10-1 Oracle Data Guard Property Name Changes

Property Oracle Database 18c and earlier
releases

Oracle Database 19c and later
releases

Archive location OnlineArchiveLocation ArchiveLocation

Alternate location OnlineAlternateLocation AlternateLocation

Standby archive
location

StandbyArchiveLocation StandbyArchiveLocation

Standby alternate
location

StandbyAlternateLocation StandbyAlternateLocation

Property Behavior Changes

• When StandbyArchiveLocation and StandbyAlternateLocation have empty strings,
ArchiveLocation and AlternateLocation are locations for both online and standby log
files

• When StandbyArchiveLocation and StandbyAlternateLocation have non-empty
strings, ArchiveLocation and AlternateLocation are locations only for online log files

• The behavior of StandbyArchiveLocation and StandbyAlternateLocation are not
changed. These properties are only used for standby log file locations.

Scope Changes

Starting with Oracle Database 19c, all four of the Oracle Data Guard properties have the
scope Database. In earlier releases, they had the scope Instance.

Imports and Upgrades

Starting with Oracle Database 19c, note the following changes to the way Oracle Data Guard
manages property imports and upgrades:

• Oracle Data Guard broker no longer automatically imports local archiving location
properties.

• Oracle Data Guard broker no longer automatically upgrades the earlier release property
settings from metadata files created from Oracle Database 18c and earlier release Data
Guard broker exports.

Rapid Home Provisioning (RHP) Name Change
Starting with Oracle Database 19c and Oracle Grid Infrastructure 19c, Rapid Home
Provisioning is renamed to Fleet Patching and Provisioning (FPP).

Resupport of Direct File Placement for OCR and Voting Disks
Starting with Oracle Grid Infrastructure 19c, the desupport for direct placement of OCR and
voting files on shared file systems is rescinded for Oracle Standalone Clusters.

In Oracle Grid Infrastructure 12c Release 2 (12.2), Oracle announced that it would no longer
support the placement of the Oracle Grid Infrastructure Oracle Cluster Registry (OCR) and
voting files directly on a shared file system. This desupport is now rescinded. Starting with

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 19c

10-25

Oracle Grid Infrastructure 19c (19.3), with Oracle Standalone Clusters, you can again
place OCR and voting disk files directly on shared file systems. However, for Oracle
Domain Services Clusters, you must continue to place OCR and voting files in quorum
failure groups managed by Oracle Automatic Storage Management (Oracle ASM).

Optional Install for the Grid Infrastructure Management Repository
Starting with Oracle Grid Infrastructure 19c, the Grid Infrastructure Management
Repository (GIMR) is optional for new installations of Oracle Standalone Cluster.
Oracle Domain Services Clusters still require the installation of a GIMR as a service
component.

The Oracle Standalone Cluster locally hosts the GIMR on an Oracle ASM disk group
or a shared file system; this GIMR is a multitenant database with a single pluggable
database (PDB). The global GIMR runs in an Oracle Domain Services Cluster. Oracle
Domain Services Cluster locally hosts the GIMR in a separate Oracle ASM disk group.
Client clusters, such as Oracle Member Cluster for Database, use the remote GIMR
located on the Oracle Domain Services Cluster. For two-node or four-node clusters,
hosting the GIMR for a cluster on a remote cluster reduces the overhead of running an
extra infrastructure repository on a cluster. The GIMR for an Oracle Domain Services
Cluster is a multitenant database with one PDB, and additional PDB for each member
cluster that is added.

Support for DBMS_JOB
Oracle continues to support the DBMS_JOB package. However, you must grant the
CREATE JOB privilege to the database schemas that submit DBMS_JOB jobs.

Oracle Scheduler replaces the DBMS_JOB package. Although DBMS_JOB is still supported
for backward compatibility, Oracle strongly recommends that you switch from DBMS_JOB
to Oracle Scheduler.

In upgrades of Oracle Database 19c and later releases, if the upgrade can recreate
existing DBMS_JOB jobs using DBMS_SCHEDULER, then for backward compatibility, after
the upgrade, DBMS_JOB continues to act as a legacy interface to the DBMS_SCHEDULER
job. If existing jobs cannot be recreated using DBMS_SCHEDULER because of issues with
the metadata, then you receive a JOB_TABLE_INTEGRITY warning when you run
upgrade prechecks. In that case, you have three options:

• Fix the metadata. After the upgrade continue to run after the upgrade using
DBMS_JOBS as an interface, and run as DBMS_SCHEDULER jobs.

• Drop the jobs, if no longer required.

• Drop DBMS_JOBS jobs, and recreate the jobs manually using DBMS_SCHEDULER.

For existing jobs created with DBMS_JOB that are recreated during the upgrade, the
legacy DBMS_JOB job is still present as an interface, but using it always creates a
DBMS_SCHEDULER entry. Apart from the interface, the job is run as a DBMS_SCHEDULER
job. If you subsequently disable the DBMS_JOB job created before the upgrade, then the
DBMS_SCHEDULER job is also disabled. To avoid this behavior,drop the legacy job, and
replace it with a DBMS_SCHEDULER job.

For all new jobs, use DBMS_SCHEDULER.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 19c

10-26

About Standard Edition High Availability
In this release, you can install Oracle Database Standard Edition 2 in high availability mode.

Standard Edition High Availability provides cluster-based failover for single-instance Standard
Edition Oracle Databases using Oracle Clusterware.

Oracle Standard Edition High Availability benefits from the cluster capabilities and storage
solutions that are already part of Oracle Grid Infrastructure, such as Oracle Clusterware,
Oracle Automatic Storage Management (Oracle ASM) and Oracle ASM Cluster File System
(Oracle ACFS).

Using integrated, shared, and concurrently mounted storage, such as Oracle ASM and
Oracle ACFS for database files as well as for unstructured data, enables Oracle Grid
Infrastructure to restart an Oracle Database on a failover node much faster than any cluster
solution that relies on failing over and remounting volumes and file systems.

Standard Edition High Availability is supported on Linux x86-64.

Note:

This section is specific to Standard Edition High Availability, which provides cluster-
based database failover for Standard Edition Oracle Databases 21c and later. For
more information about high availability options for Oracle Database, see Oracle
Clusterware Administration and Deployment Guide.

Manage "Installed but Disabled" Module Bug Fixes with DBMS_OPTIM_BUNDLE
To manage the implementation of Oracle Database bug fixes that cause a SQL execution
plan change, use DBMS_OPTIM_BUNDLE.

After you upgrade your database, the bug fix patches that can cause execution plan changes
included in the Release Updates are installed disabled by default. These bug fixes will not be
activated until you enable the fixes. You can either enable these fixes manually, or use the
DBMS_OPTIM_BUNDLE package.

Oracle strongly recommends that you enable these disabled patches that you want to use in
your production system, and run complete workload performance tests using these patches
as part of your upgrade test plan.

For more information about using DBMS_OPTIM_BUNDLE to enable patches that were disabled
because they can change execution plans, see Oracle Database PL/SQL Packages and
Types Reference, and My Oracle Support note 2147007.1.

Related Topics

• DBMS_OPTIM_BUNDLE

• My Oracle Support Doc ID 2147007.1 Managing "installed but disabled" bug fixes in
Database Release Updates using DBMS_OPTIM_BUNDLE

Deprecated Features in Oracle Database 19c
As part of your upgrade plan, review the features that are deprecated in this Oracle Database
release, and review alternatives for your application strategies.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 19c

10-27

https://support.oracle.com/rs?type=doc&id=2147007.1
https://support.oracle.com/rs?type=doc&id=2147007.1

• Oracle Data Guard Broker Deprecated Properties
Starting in Oracle Database 19c, several Oracle Data Guard broker properties
associated with initialization parameters are deprecated. Their functionality is
replaced with the new EDIT … SET PARAMETER command in DGMGRL.

• Oracle Data Guard Logical Standby Properties Deprecated
Starting in Oracle Database 19c, Logical Standby properties of Oracle Data Guard
broker are deprecated.

• Deprecation of ASMCMD PWCREATE On Command Line
Using the Oracle ASM command-line utility ASMCMD command option pwcreate
password to create ASM passwords is deprecated in Oracle Grid Infrastructure 19c
(19.1).

• Deprecation of Addnode Script
The addnode script is deprecated in Oracle Grid Infrastructure 19c. The
functionality of adding nodes to clusters is available in the installer wizard.

• Deprecation of clone.pl Script
The clone.pl script is deprecated in Oracle Database 19c. The functionality of
performing a software-only installation, using the gold image, is available in the
installer wizard.

• Deprecation of Oracle Fail Safe
Oracle Fail Safe is deprecated as of Oracle Database 19c. It can be desupported
and unavailable in a future release.

• Deprecation of GDSCTL Operating System Command-Line Password Resets
To enhance security, starting with Oracle Database 19c, the ability to specify
passwords from the Global Data Services Control Utility (GDSCTL) command-line
when called from the operating system prompt is deprecated.

• Deprecation of Oracle Enterprise Manager Express
Flash-based Enterprise Manager Express is deprecated in Oracle Database 19c.
Starting with Oracle Database 19c, Enterprise Manager Express uses Java JET
technology for the user interface.

• Deprecation of DV_REALM_OWNER Role
The Oracle Data Vault role DV_REALM_OWNER role is deprecated with no
replacement.

• Deprecation of DV_REALM_RESOURCE Role
The Oracle Data Vault role DV_REALM_RESOURCE is deprecated with no
replacement.

• Deprecation of DV_PUBLIC Role
The Oracle Data Vault role DV_PUBLIC role is deprecated with no replacement.

• Deprecation of Oracle ACFS Replication Protocol REPV1
Starting with Oracle Database 19c (19.3), the Oracle ACFS replication protocol
repv1 is deprecated.

• Deprecation of Oracle ACFS Encryption on Solaris and Windows
Starting with Oracle Database 19c (19.3), Oracle ACFS Encryption is deprecated
with no replacement on Oracle Solaris and Microsoft Windows.

• Deprecation of Oracle ACFS on Windows
Starting with Oracle Grid Infrastructure 19c (19.5), Oracle ASM Cluster File
System (ACFS) is deprecated on Microsoft Windows.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 19c

10-28

• Deprecation of Oracle ACFS Security (Vault) and ACFS Auditing
Starting with Oracle Grid Infrastructure 19c (19.5), Oracle ASM Cluster File System
(ACFS) Security (Vault) and ACFS Auditing are deprecated

• Deprecation of Oracle ACFS on Member Clusters (ACFS Remote)
Starting with Oracle Grid Infrastructure 19c (19.5), Oracle ASM Cluster File System
(ACFS) on Member Clusters (ACFS Remote) is deprecated.

• Deprecation of Cluster Domain - Member Clusters
Starting with Oracle Grid Infrastructure 19c (19.5), Member Clusters, which are part of
the Oracle Cluster Domain architecture, are deprecated.

• Deprecation of Vendor Clusterware Integration with Oracle Clusterware
Starting with Oracle Clusterware 19c (19.5), the integration of vendor or third party
clusterware with Oracle Clusterware is deprecated.

Oracle Data Guard Broker Deprecated Properties
Starting in Oracle Database 19c, several Oracle Data Guard broker properties associated
with initialization parameters are deprecated. Their functionality is replaced with the new EDIT
… SET PARAMETER command in DGMGRL.

The following Oracle Data Guard broker properties are deprecated in Oracle Database 19c:

• ArchiveLagTarget

• DataGuardSyncLatency

• LogArchiveMaxProcesses

• LogArchiveMinSucceedDest

• LogArchiveTrace

• StandbyFileManagement

• DbFileNameConvert

• LogArchiveFormat

• LogFileNameConvert

Using the current EDIT ... SET PROPERTY command with these properties continues to work.
However, the update is automatically made with the new command, and the parameter data
is now no longer be stored in the broker metadata file.

The InconsistentProperties property is also deprecated. This parameter now always has
no value, because there can no longer be inconsistent values.

Using the new EDIT ... SET PARAMETER commands removes the possibility of inconsistent
configuration data between the broker and a database. When you use the new EDIT...SET
PARAMETER commands, you can change these parameters either by using either the new
broker command, or by using the standard SQL*Plus ALTER SYSTEM command. However,
when you use the broker command, you can be attached to any database in the
configuration, and perform parameter changes to any other database in the configuration.

Oracle Data Guard Logical Standby Properties Deprecated
Starting in Oracle Database 19c, Logical Standby properties of Oracle Data Guard broker are
deprecated.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 19c

10-29

The following Oracle Data Guard broker Properties that affect Logical Standby are
deprecated:

• LsbyMaxEventsRecorded

• LsbyMaxServers

• LsbyMaxSga

• LsbyPreserveCommitOrder

• LsbyRecordAppliedDdl

• LsbyRecordSkippedDdl

• LsbyRecordSkipErrors

• LsbyParameter

Using the EDIT ... SET PROPERTY command continues to work. However, the data
about the setting is no longer stored in the broker metadata file. Instead, Oracle
recommends that you use the SQL*Plus package DBMS_LOGSTDBY to change the
Logical Standby properties. The Logical Standby properties for Oracle Data Guard
broker can be desupported in a future release.

Directly using the SQL*Plus package DBMS_LOGSTDBY removes the possibility of
inconsistent configuration data between the broker and a Logical Standby database,
and provides one interface to manage a Logical Standby.

Deprecation of ASMCMD PWCREATE On Command Line
Using the Oracle ASM command-line utility ASMCMD command option pwcreate
password to create ASM passwords is deprecated in Oracle Grid Infrastructure 19c
(19.1).

The option to supply the password on the command line is still enabled in Oracle
Database 19c. However, to enhance security, Oracle is deprecating this method of
creating a new Oracle ASM password. It can be desupported in a future release. The
pwcreate option of ASMCMD enables you to specify a password on the command line.
However, if you run the command asmcmd pwcreate, and you do not provide the
password on the command line, then you are now prompted for the password.

Deprecation of Addnode Script
The addnode script is deprecated in Oracle Grid Infrastructure 19c. The functionality of
adding nodes to clusters is available in the installer wizard.

The addnode script can be removed in a future release. Instead of using the addnode
script (addnode.sh or addnode.bat), add nodes by using the installer wizard. The
installer wizard provides many enhancements over the addnode script. Using the
installer wizard simplifies management by consolidating all software lifecycle
operations into a single tool.

Deprecation of clone.pl Script
The clone.pl script is deprecated in Oracle Database 19c. The functionality of
performing a software-only installation, using the gold image, is available in the
installer wizard.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 19c

10-30

The clone.pl script can be removed in a future release. Instead of using the clone.pl script,
Oracle recommends that you install the extracted gold image as a home, using the installer
wizard.

Deprecation of Oracle Fail Safe
Oracle Fail Safe is deprecated as of Oracle Database 19c. It can be desupported and
unavailable in a future release.

Oracle recommends that you evaluate other single-node failover options, such as Oracle
RAC One Node.

Deprecation of GDSCTL Operating System Command-Line Password Resets
To enhance security, starting with Oracle Database 19c, the ability to specify passwords from
the Global Data Services Control Utility (GDSCTL) command-line when called from the
operating system prompt is deprecated.

This deprecation applies only to password changes where GDSCTL is called from a user
command-line prompt. For example, the following command is deprecated.

$ gdsctl add database -connect inst1 -pwd gsm_password

Specifying the password from the GDSCTL utility itself is still valid. For example, the following
command is valid:

GDSCTL> add database -connect inst1 -pwd gsm_password

This deprecation addresses the security vulnerability when specifying passwords in GDSCTL
commands called from the operating system prompt. Only enter the Global Data Services
password only when GDSCTL prompts for it.

Deprecation of Oracle Enterprise Manager Express
Flash-based Enterprise Manager Express is deprecated in Oracle Database 19c. Starting
with Oracle Database 19c, Enterprise Manager Express uses Java JET technology for the
user interface.

In accordance with industry standards, Oracle is deprecating Flash-based Oracle Enterprise
Manager Express (Oracle EM Express). Starting with Oracle Database 19c, Oracle EM
Express, the default management option for Oracle Database, is based on Java JET
technology. In this initial release, there are some options available in Flash-based Oracle EM
Express that are not available in the JET version. If necessary, use the following command to
revert to Flash Oracle EM Express:

SQL> @?/rdbms/admin/execemx emx

To return to JET Oracle EM Express, use the following command:

SQL> @?/rdbms/admin/execemx omx

Deprecation of DV_REALM_OWNER Role
The Oracle Data Vault role DV_REALM_OWNER role is deprecated with no replacement.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 19c

10-31

The DV_REALM_OWNER role is used for realm management to manage database objects
in multiple schemas that define a realm. Oracle has deprecated the use of this role. It
can be removed in a future release.

In addition, the following DV_REALM_OWNER privileges are revoked from the
DV_REALM_OWNER role: CREATE ROLE, ALTER ANY ROLE, DROP ANY ROLE, GRANT ANY
ROLE, GRANT ANY PRIVILEGE, and GRANT ANY OBJECT PRIVILEGE. If needed, you can
choose to grant these privileges to the DV_REALM_OWNER role. For example:

SQL> GRANT CREATE ROLE ON tablename TO DV_REALM_OWNER;

Deprecation of DV_REALM_RESOURCE Role
The Oracle Data Vault role DV_REALM_RESOURCE is deprecated with no replacement.

The DV_REALM_RESOURCE role is used for the management of realm resources. Oracle
has deprecated the use of this role. It can be removed in a future release.

Deprecation of DV_PUBLIC Role
The Oracle Data Vault role DV_PUBLIC role is deprecated with no replacement.

The DV_PUBLIC role is still created during installation, but it is not granted any roles
or privileges. All privileges that were granted to DV_PUBLIC in previous releases are
now granted directly to the PUBLIC role. This role is obsolete, and can be removed in
a future release.

Deprecation of Oracle ACFS Replication Protocol REPV1
Starting with Oracle Database 19c (19.3), the Oracle ACFS replication protocol repv1
is deprecated.

The initial ACFS replication protocol repv1 was released with Oracle Database 11g
Release 2 (11.2). Oracle Database 12c Release 2 introduced a new ACFS replication
protocol, Oracle ACFS snapshot-based replication (repv2). Oracle continued to use
the same management interface. Starting with Oracle Database 19c, the earlier ACFS
replication protocol (repv1) is deprecated. Update to snapshot-based replication.

Deprecation of Oracle ACFS Encryption on Solaris and Windows
Starting with Oracle Database 19c (19.3), Oracle ACFS Encryption is deprecated with
no replacement on Oracle Solaris and Microsoft Windows.

Oracle ACFS Encryption on Oracle Solaris and Microsoft Windows is based on RSA
technology. Retirement of RSA technology has been announced. Oracle ACFS
Encryption continues to be supported on Linux, and is unaffected by this deprecation,
because Linux uses an alternative technology.

Deprecation of Oracle ACFS on Windows
Starting with Oracle Grid Infrastructure 19c (19.5), Oracle ASM Cluster File System
(ACFS) is deprecated on Microsoft Windows.

Deprecating certain clustering features with limited adoption allows Oracle to focus on
improving core scaling, availability, and manageability across all features and

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 19c

10-32

functionality. ACFS file systems on Microsoft Windows are deprecated, and can be
desupported in a future release. Depending on the use case, to replace current ACFS file
systems, Oracle recommends that you move to Oracle Automatic Storage Management
(Oracle ASM), Oracle Database File System (DBFS), or Microsoft Windows shares.

Deprecation of Oracle ACFS Security (Vault) and ACFS Auditing
Starting with Oracle Grid Infrastructure 19c (19.5), Oracle ASM Cluster File System (ACFS)
Security (Vault) and ACFS Auditing are deprecated

Deprecating certain clustering features with limited adoption allows Oracle to focus on
improving core scaling, availability, and manageability across all features and functionality.
Oracle ACFS Security (Vault) and ACFS Auditing are deprecated, and can be desupported in
a future release.

Deprecation of Oracle ACFS on Member Clusters (ACFS Remote)
Starting with Oracle Grid Infrastructure 19c (19.5), Oracle ASM Cluster File System (ACFS)
on Member Clusters (ACFS Remote) is deprecated.

Oracle ASM Cluster File System (ACFS) on Member Clusters (ACFS Remote) is deprecated,
and can be removed in a future release. Deprecating certain clustering features with limited
adoption allows Oracle to focus on improving core scaling, availability, and manageability
across all features and functionality.

Deprecation of Cluster Domain - Member Clusters
Starting with Oracle Grid Infrastructure 19c (19.5), Member Clusters, which are part of the
Oracle Cluster Domain architecture, are deprecated.

Deprecating certain clustering features with limited adoption allows Oracle to focus on
improving core scaling, availability, and manageability across all features and functionality.
Oracle Cluster Domains consist of a Domain Services Cluster (DSC) and Member Clusters.
The deprecation of Member Clusters affects the clustering used with the DSC, but not its
ability to host services for other production clusters. Oracle recommends that you align your
next software or hardware upgrade with the transition off Cluster Domain - Member Clusters.

Deprecation of Vendor Clusterware Integration with Oracle Clusterware
Starting with Oracle Clusterware 19c (19.5), the integration of vendor or third party
clusterware with Oracle Clusterware is deprecated.

The integration of vendor clusterware with Oracle Clusterware is deprecated, and can be
desupported in a future release. Deprecating certain clustering features with limited adoption
allows Oracle to focus on improving core scaling, availability, and manageability across all
features and functionality. In the absence of an integration between different cluster solutions,
the system is subject to the dueling cluster solutions issue: Independent cluster solutions can
make individual decisions about which corrective actions must be taken in case of certain
failures. To avoid conflicts, only one cluster solution should be active at any point in time. For
this reason, Oracle recommends that you align your next software or hardware upgrade with
the transition off of vendor cluster solutions.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 19c

10-33

Deprecated Initialization Parameters in Oracle Database 19c
As part of your upgrade plan, review the initialization parameters that are deprecated
in this Oracle Database release, and review alternatives.

• CLUSTER_DATABASE_INSTANCES Initialization Parameter Deprecated
The Oracle Database initialization parameter CLUSTER_DATABASE_INSTANCES is
deprecated in Oracle Database 19c (19.1)

• Deprecation of SQLNET.ENCRYPTION_WALLET_LOCATION Parameter
The SQLNET.ENCRYPTION_WALLET_LOCATION sqlnet.ora parameter is
deprecated in Oracle Database 19c.

• Deprecation of the SERVICE_NAMES Initialization Parameter
Starting with Oracle Database 19c, customer use of the SERVICE_NAMES parameter
is deprecated. It can be desupported in a future release.

CLUSTER_DATABASE_INSTANCES Initialization Parameter Deprecated
The Oracle Database initialization parameter CLUSTER_DATABASE_INSTANCES is
deprecated in Oracle Database 19c (19.1)

The init.ora parameter CLUSTER_DATABASE_INSTANCES specifies the number of
configured Oracle Real Application Clusters (Oracle RAC) instances. Starting with
Oracle Database 19c and later releases, the number of configurable Oracle RAC
instances is derived automatically from the Oracle Clusterware resource definitions.
There is no replacement for this parameter, because there is no longer a reason to
have this parameter.

Deprecation of SQLNET.ENCRYPTION_WALLET_LOCATION Parameter
The SQLNET.ENCRYPTION_WALLET_LOCATION sqlnet.ora parameter is
deprecated in Oracle Database 19c.

The SQLNET.ENCRYPTION_WALLET_LOCATION parameter defines the location of the
software keystores for Transparent Data Encryption (TDE). To configure the software
keystore location, instead of setting SQLNET.ENCRYPTION_WALLET_LOCATION, Oracle
recommends that you set the WALLET_ROOT initialization parameter, and the
TDE_CONFIGURATION dynamic initialization parameter.

Oracle recommends that you use the WALLET_ROOT instance initialization parameter
as soon as possible, because the value is read once at instance startup time, so all
sessions and server background processes share the same path after startup. If the
SQLNET.ENCRYPTION_WALLET_LOCATION parameter is used, then it can lead to confusing
misconfigurations, because different sessions can have different SQLNET parameter
values. Another reason to use WALLET_ROOT is that it is the directory within which you
can locate the wallets of other features, such as Oracle Enterprise User Security, and
Transport Layer Security. This location can become the principal location for all server-
side wallets.

Related Topics

• Oracle Database Advanced Security Guide

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 19c

10-34

Deprecation of the SERVICE_NAMES Initialization Parameter
Starting with Oracle Database 19c, customer use of the SERVICE_NAMES parameter is
deprecated. It can be desupported in a future release.

The use of the SERVICE_NAMES parameter is no longer actively supported. It must not be used
for high availability (HA) deployments. It is not supported to use service names parameter for
any HA operations. This restriction includes FAN, load balancing, FAILOVER_TYPE,
FAILOVER_RESTORE, SESSION_STATE_CONSISTENCY, and any other uses.

To manage your services, Oracle recommends that you use the SRVCTL or GDSCTL command
line utilities, or the DBMS_SERVICE package.

Desupported Features in Oracle Database 19c
As part of your upgrade plan, review the desupported features in this Oracle Database
release.

• Desupport of Oracle Data Provider for .NET Promotable Transaction Setting
The Oracle Data Provider for .NET PromotableTransaction setting is desupported
because it is no longer necessary. All compatible database server versions support
transaction promotion.

• Desupport of Oracle Multimedia
Oracle Multimedia is desupported in Oracle Database 19c, and the implementation is
removed.

• Desupport of the CONTINUOUS_MINE feature of LogMiner
The continuous_mine option for the dbms_logmnr.start_logmnr package is desupported
in Oracle Database 19c, and is no longer available.

• Desupport of Extended Datatype Support (EDS)
The Extended Datatype Support (EDS) feature is desupported in Oracle Database 19c.
All Data types that the EDS feature supported are now supported natively by both Logical
Standby and Oracle GoldenGate.

• Data Guard Broker MaxConnections Property Desupported
Starting in Oracle Database 19c, the Oracle Data Guard broker MAX_CONNECTIONS
attribute is desupported.

• Desupport of Leaf Nodes in Flex Cluster Architecture
Leaf nodes are no longer supported in the Oracle Flex Cluster Architecture in Oracle Grid
Infrastructure 19c.

• Desupport of Oracle Streams
Starting in Oracle Database 19c (19.1), Oracle Streams is desupported. Oracle
GoldenGate is the replication solution for Oracle Database.

• Desupport of PRODUCT_USER_PROFILE Table
Starting in Oracle Database 19c, the SQL*Plus table PRODUCT_USER_PROFILE (PUP table)
is desupported.

• Desupport of Oracle Real Application Clusters for Standard Edition 2 (SE2) Database
Edition
Starting with Oracle Database 19c, Oracle Real Application Clusters (Oracle RAC) is not
supported in Oracle Database Standard Edition 2 (SE2).

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 19c

10-35

Desupport of Oracle Data Provider for .NET Promotable Transaction Setting
The Oracle Data Provider for .NET PromotableTransaction setting is desupported
because it is no longer necessary. All compatible database server versions support
transaction promotion.

The Oracle Data Provider for .NET registry, configuration, and property setting
PromotableTransaction indicates whether the application must keep transactions as
local, or if it can begin all single connection transactions as local, and then promote the
transaction to distributed when a second connection enlists. This is the concept of
promotable transactions.

The PromotableTransaction setting is desupported in Oracle Data Provider for .NET
18c, because all database versions compatible with this provider version support
promotable transactions. Developers no longer need to use this setting if they employ
promotable transactions. Existing applications remain unaffected, whether they use
promotable transactions or not.

Desupport of Oracle Multimedia
Oracle Multimedia is desupported in Oracle Database 19c, and the implementation is
removed.

As an alternative for image processing and conversion, Oracle recommends that you
store multimedia content in SecureFiles LOBs, and use third party products, such as
APEX Media Extension (AME). The ORDIM component remains in the registry and still
has a VALID status. Oracle Multimedia objects and packages remain in the database.
However, these objects and packages no longer function, and raise exceptions if there
is an attempt made to use them. Oracle Locator is not affected by the desupport of
Oracle Multimedia.

Related Topics

• https://www.apexmediaextension.com

Desupport of the CONTINUOUS_MINE feature of LogMiner
The continuous_mine option for the dbms_logmnr.start_logmnr package is
desupported in Oracle Database 19c, and is no longer available.

The continuous_mine functionality of the LogMiner package is obsolete. It was
deprecated in Oracle Database 12c Release 2 (12.2). There is no replacement
functionality.

Desupport of Extended Datatype Support (EDS)
The Extended Datatype Support (EDS) feature is desupported in Oracle Database
19c. All Data types that the EDS feature supported are now supported natively by both
Logical Standby and Oracle GoldenGate.

The Extended Datatype Support (EDS) feature provides a mechanism for logical
standbys to support certain Oracle data types that lack native redo-based support. For
example, EDS was used to replicate tables with a SDO_GEOMETRY column. However,
starting with Oracle Database 12c Release 2 (12.2), there are no EDS-supported

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 19c

10-36

https://www.apexmediaextension.com

Oracle data types that are not supported natively, either by Logical standby, or by Oracle
GoldenGate. This feature is desupported with Oracle Database 19c (19.1).

Data Guard Broker MaxConnections Property Desupported
Starting in Oracle Database 19c, the Oracle Data Guard broker MAX_CONNECTIONS attribute is
desupported.

The Oracle Data Guard broker MaxConnections property (pertaining to the MAX_CONNECTIONS
attribute of the LOG_ARCHIVE_DEST_n parameter) is desupported in Oracle Database 19c. It is
removed. Using commands to set this property from DGMGRL returns errors.

Desupport of Leaf Nodes in Flex Cluster Architecture
Leaf nodes are no longer supported in the Oracle Flex Cluster Architecture in Oracle Grid
Infrastructure 19c.

In Oracle Grid Infrastructure 19c (19.1) and later releases, all nodes in an Oracle Flex Cluster
function as hub nodes. The capabilities offered by Leaf nodes in the original implementation
of the Oracle Flex Cluster architecture can as easily be served by hub nodes. Therefore, leaf
nodes are no longer supported.

Desupport of Oracle Streams
Starting in Oracle Database 19c (19.1), Oracle Streams is desupported. Oracle GoldenGate
is the replication solution for Oracle Database.

Note that Oracle Database Advanced Queuing is not deprecated, and is fully supported in
Oracle Database 19c. Oracle Streams did not support features added in Oracle Database
12c (12.1) and later releases, including the multitenant architecture, LONG VARCHAR, and other
new features. Oracle Streams replication functionality is superseded by GoldenGate.

Desupport of PRODUCT_USER_PROFILE Table
Starting in Oracle Database 19c, the SQL*Plus table PRODUCT_USER_PROFILE (PUP table) is
desupported.

The SQL*Plus product-level security feature is unavailable in Oracle Database 19c. Oracle
recommends that you protect data by using Oracle Database settings, so that you ensure
consistent security across all client applications.

Desupport of Oracle Real Application Clusters for Standard Edition 2 (SE2)
Database Edition

Starting with Oracle Database 19c, Oracle Real Application Clusters (Oracle RAC) is not
supported in Oracle Database Standard Edition 2 (SE2).

Upgrading Oracle Database Standard Edition databases that use Oracle Real Application
Clusters (Oracle RAC) functionality from earlier releases to Oracle Database 19c is not
possible. To upgrade those databases to Oracle Database 19c, either remove the Oracle
RAC functionality before starting the upgrade, or upgrade from Oracle Database Standard
Edition to Oracle Database Enterprise Edition. For more information about each step,
including how to reconfigure your system after an upgrade, see My Oracle Support Note
2504078.1: "Desupport of Oracle Real Application Clusters (RAC) with Oracle Database
Standard Edition 19c."

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 19c

10-37

Related Topics

• My Oracle Support Document 2504078.1

Desupported Parameters in Oracle Database 19c
As part of your upgrade plan, review the initialization parameters that are not
supported starting with this Oracle Database release.

• EXAFUSION_ENABLED Initialization Parameter Desupported
The Oracle Exadata Database Machine initialization parameter
EXAFUSION_ENABLED is desupported in Oracle Database 19c.

• MAX_CONNECTIONS attribute of LOG_ARCHIVE_DEST_n Desupported
The MAX_CONNECTIONS attribute of the LOG_ARCHIVE_DEST_n parameters for Oracle
Data Guard Redo Transport is obsolete. It is desupported in Oracle Database 19c.

• Desupport of O7_DICTIONARY_ACCESS
The initialization parameter O7_DICTIONARY_ACCESSIBILITY is desupported in
Oracle Database 19c.

• Desupport of OPTIMIZE_PROGRESS_TABLE Parameter
OPTIMIZE_PROGRESS_TABLE for Oracle GoldenGate Integrated Replicat, XStream
In, and Logical Standby, is desupported in Oracle Database 19c.

EXAFUSION_ENABLED Initialization Parameter Desupported
The Oracle Exadata Database Machine initialization parameter EXAFUSION_ENABLED is
desupported in Oracle Database 19c.

The Exafusion feature was introduced for Oracle Database 12c Release 1 (12.1.0.2),
but disabled by default. It was only available for the Linux operating system, and only
available with Oracle Exadata Database Machine. You could enable this feature by
setting the EXAFUSION_ENABLED initialization parameter to 1. With Oracle Database 12c
Release 2 (12.2), the feature became enabled by default on Oracle Exadata Database
Machine running on Oracle Linux. You could disable this feature by changing the
EXAFUSION_ENABLED parameter setting to 0. However, with Oracle Database 18c and
later releases, the Exafusion feature cannot be disabled. For this reason, the
EXAFUSION_ENABLED parameter is desupported in Oracle Database 19c, because the
parameter no longer serves a function.

MAX_CONNECTIONS attribute of LOG_ARCHIVE_DEST_n Desupported
The MAX_CONNECTIONS attribute of the LOG_ARCHIVE_DEST_n parameters for Oracle Data
Guard Redo Transport is obsolete. It is desupported in Oracle Database 19c.

The MAX_CONNECTIONS attribute can interfere with the new Redo Transport Streaming
mechanism introduced in Oracle Database 11g, and increase the time necessary to
resolve gaps. To prevent these types of errors, Oracle has desupported and removed
this attribute.

Desupport of O7_DICTIONARY_ACCESS
The initialization parameter O7_DICTIONARY_ACCESSIBILITY is desupported in Oracle
Database 19c.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 19c

10-38

https://support.oracle.com/rs?type=doc&id=2504078.1

The O7_DICTIONARY_ACCESSIBILITY parameter controlled restrictions on System Privileges
from accessing SYS owned objects. It was retained to enable certain backward compatibility
for earlier release applications. Desupporting obsolete features enables Oracle to focus on
security across all features and functionality. Oracle recommends that you manage system
privileges in accordance with standard security best practices.

Desupport of OPTIMIZE_PROGRESS_TABLE Parameter
OPTIMIZE_PROGRESS_TABLE for Oracle GoldenGate Integrated Replicat, XStream In, and
Logical Standby, is desupported in Oracle Database 19c.

The apply parameter OPTIMIZE_PROGRESS_TABLE for Oracle GoldenGate Integrated Replicat,
XStream In, and Logical Standby, is desupported in Oracle Database 19c. Before you
upgrade to Oracle Database 19, you must turn off this parameter. If
OPTIMIZE_PROGRESS_TABLE is set to ON, then stop apply gracefully, turn off the parameter,
and restart apply. For GoldenGate Apply and XStream, this parameter is set to OFF by default.

Behavior Changes, Deprecations and Desupports in Oracle
Database 18c

Review for descriptions of Oracle Database 18c release changes.

• Behavior Changes for Oracle Database 18c Upgrade Planning
Review these behavior changes to help plan for upgrades to Oracle Database 18c

• Deprecated Features in Oracle Database 18c
Review the deprecated features listed in this section to prepare to use alternatives after
you upgrade.

• Desupported Features in Oracle Database 18c
Review this list of desupported features as part of your upgrade planning.

• Desupported Initialization Parameters in Oracle Database 18c
Review this list of desupported initialization parameters for changes and replacements in
parameter settings in this release.

• Deprecation of Oracle Multimedia
Starting in Oracle Database 18c, Oracle Multimedia is deprecated. Oracle Multimedia will
be desupported in Oracle Database 19c.

• Terminal Release of Oracle Streams
Oracle Database 18c is the terminal release for Oracle Streams support. Oracle Streams
will be desupported from Oracle Database 19c onwards.

Behavior Changes for Oracle Database 18c Upgrade Planning
Review these behavior changes to help plan for upgrades to Oracle Database 18c

• Simplified Image-Based Oracle Database Installation
Starting with Oracle Database 18c, installation and configuration of Oracle Database
software is simplified with image-based installation.

• Support Indexing of JSON Key Names Longer Than 64 Characters
If you use JSON keys, then you can take advantage of increased efficiency of searching
JSON documents generated from HASH MAP-like structures by using longer key names.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 18c

10-39

• Upgrading Existing Databases is Replaced With Image Installations
Starting with Oracle Database 18c, existing services are no longer migrated by the
installation. Use Database Upgrade Assistant (DBUA) to migrate services.

• About RPM-Based Oracle Database Installation
Starting with Oracle Database 18c, you can install a single-instance Oracle
Database or an Oracle Database Instant Client software using RPM packages.

• Token Limitations for Oracle Text Indexes
Starting with Oracle Database Release 18c, the indexed token maximum size is
increased to 255 characters for single-byte character sets.

• Changes to /ALL/USER/DBA User View and PL/SQL External Libraries
Starting in Oracle Database 18c, there are changes to the /USER/ALL/
DBA_ARGUMENTS and /USER/ALL/DBA_IDENTIFIERS views, and to LIBRARY object
creation in PDBs.

• Symbolic Links and UTL_FILE
You cannot use UTL_FILE with symbolic links. Use directory objects instead.

• Deprecation of Direct Registration of Listeners with DBCA
Using Database Configuration Assistant (DBCA) to register Oracle Database to
Oracle Internet Directory (OID) is deprecated in Oracle Database 18c.

• UNIFORM_LOG_TIMESTAMP_FORMAT Changes in INIT.ORA
By default, the format of timestamps is different in Oracle Database 12c release 2
(12.2) and later releases. To view alert logs, use the Oracle Database utility
Automatic Diagnostic Repository Command Interpreter (ADRCI) utility.

Simplified Image-Based Oracle Database Installation
Starting with Oracle Database 18c, installation and configuration of Oracle Database
software is simplified with image-based installation.

Starting with Oracle Database 18c, the Oracle Database software is available as an
image file for download and installation. You must extract the image software into the
directory where you want your Oracle home to be located, and then run the
runInstaller script to start the Oracle Database installation. For details, refer to
your operating system platform Oracle Database Installation Guide.

Note:

You must extract the image software (db_home.zip) into the directory where
you want your Oracle Database home to be located, and then run the
runInstaller script to start the Oracle Database installation and
configuration. Oracle recommends that the Oracle home directory path you
create is in compliance with the Oracle Optimal Flexible Architecture
recommendations.

Related Topics

• Oracle Database Installation Guide

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 18c

10-40

Support Indexing of JSON Key Names Longer Than 64 Characters
If you use JSON keys, then you can take advantage of increased efficiency of searching
JSON documents generated from HASH MAP-like structures by using longer key names.

The upper limit is increased for JSON key names that can be indexed by the JSON Search
index. The JSON key name upper limit in Oracle Database 12c Release 2 (12.2.0.2) and later
releases is 255 bytes. In previous releases, JSON search indexes that were created did not
index key names greater than 64 bytes.

Upgrading Existing Databases is Replaced With Image Installations
Starting with Oracle Database 18c, existing services are no longer migrated by the
installation. Use Database Upgrade Assistant (DBUA) to migrate services.

If you have an existing Oracle Database with services that you want to migrate, then to
migrate those services, you must install the new release Oracle Database software in the
Oracle home, and then start DBUA.

On Windows, to migrate the Microsoft Transaction Service to the new Oracle home, you must
also run the command %ORACLE_HOME%\bin\oramtsctl.exe -new

About RPM-Based Oracle Database Installation
Starting with Oracle Database 18c, you can install a single-instance Oracle Database or an
Oracle Database Instant Client software using RPM packages.

An RPM-based installation performs preinstallation checks, extracts the database software,
reassigns ownership of the extracted software to the preconfigured user and groups,
maintains the Oracle inventory, and executes all root operations required to configure the
Oracle Database software for a single-instance Oracle Database creation and configuration.

The RPM–based installation process detects when the minimum requirements for an
installation are not met and prompts you to finish these minimum preinstallation
requirements.

An RPM-based installation performs a software-only Oracle Database installation and creates
an Oracle home. After the Oracle home is created, you can then use Oracle Database
Configuration Assistant (Oracle DBCA) to create an Oracle Database.

The RPM-based installation process provides you with the option to create a database with
the default settings using the /etc/init.d/oracledb_ORCLCDB-21c service
configuration script.

Token Limitations for Oracle Text Indexes
Starting with Oracle Database Release 18c, the indexed token maximum size is increased to
255 characters for single-byte character sets.

Before Oracle Database Release 18c, all Oracle Text index types except SDATA sections
stored tokens in a table column of type VARCHAR2 (64 BYTE). Starting with Oracle Database
Release 18c, all Oracle Text index types except CTXCAT and CTXRULE indexes store tokens in
VARCHAR2 (255 BYTE) table column types. This change is an increase for the maximum size
of an indexed token to 255 characters for single-byte character sets. The size increase is less
with multibyte or variable-length character sets. Tokens longer than 255 bytes are truncated.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 18c

10-41

Truncated tokens do not prevent searches on the whole token string. However, the
system cannot distinguish between two tokens that have the same first 255 bytes.

Note:

Before Oracle Database Release 18c, tokens that were greater than 64
bytes were truncated to 64 bytes. After upgrading to Oracle Database
Release 18c, the token tables are increased to 255 bytes from 64 bytes.
Searches with more than 64 bytes in the search token (that is, any single
word in search string) cannot find any tokens which were truncated to 64
bytes. To avoid this problem, rebuild the index. If you never use search
tokens longer than 64 bytes, it is not necessary to rebuild the index.

SDATA sections store tokens in a table column of type VARCHAR2 (249 BYTE). CTXCAT
and CTXRULE indexes store tokens in a table column of type VARCHAR2 (64 BYTE).

Changes to /ALL/USER/DBA User View and PL/SQL External Libraries
Starting in Oracle Database 18c, there are changes to the /USER/ALL/DBA_ARGUMENTS
and /USER/ALL/DBA_IDENTIFIERS views, and to LIBRARY object creation in PDBs.

Review the changes that can affect your work.

ALL/USER/DBA_ARGUMENTS User Views Changes

ARGUMENTS views contain fewer rows. In particular, only top-level (DATA_LEVEL=0) items
are stored in the ARGUMENTS views.

In earlier Oracle Database releases, the PL/SQL compiler collected metadata for all
nested types in a PL/SQL datatype. DATA_LEVEL represented the nesting level of the
type. Starting in Oracle Database 18c, only top-level type metadata (DATA_LEVEL=0) is
stored in the ARGUMENTS views.

For instance: Note the changes in the create-or-replace package
NestedTypesExample:

Type Level2Record is RECORD (Field1 NUMBER);
Type Level1Collection is TABLE of Level2Record index by binary_integer;
Type Level0Record is RECORD (Field1 Level1Collection);
Procedure NestedTypesProc (Param1 Level0Record);

In previous Oracle Database releases, the top-level type of the NestedTypeProc
procedure, parameter Param1, Level0Record, is returned, and also an expanded
description of all the nested types within Level0Record. For example:

SQL> select argument_name,type_subname,position,sequence,data_level
from user_arguments where object_name='NESTEDTYPESPROC';
ARGUMENT_NAME TYPE_SUBNAME POSITION SEQUENCE DATA_LEVEL
--------------- ----------------- ---------- ---------- ---------
PARAM1 LEVEL0RECORD 1 1 0
FIELD1 LEVEL1COLLECTION 1 2 1

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 18c

10-42

 LEVEL2RECORD 1 3 2
FIELD1 1 4 3

In contrast, the same query in an 18.1 database returns the following:

ARGUMENT_NAME TYPE_SUBNAME POSITION SEQUENCE DATA_LEVEL
--------------- ----------------- ---------- ---------- ---------
PARAM1 LEVEL0RECORD 1 1 0

In releases earlier than Oracle Database 12c (12.1), PL/SQL package type descriptive
metadata was not accessible in the way that metadata is accessible for top-level object types.
With Top-level object types and collections, you can query ALL_TYPES and the associated
user views, ALL_TYPE_ATTRS, and ALL_COLL_TYPES, to obtain type metadata. However, before
Oracle Database 12.1, there was no way to obtain type metadata for PL/SQL package types,
such as records and packaged collections. Function or procedure parameters that referenced
those PL/SQL package types resulted in publishing all metadata about these types in the
ARGUMENTS views, including any nested types.

The problem with this approach is that deeply nested types can consume extensive memory
in the SYS tablespace. Also, because there is no way to share the type metadata in the
ARGUMENTS views, each parameter with deeply nested types required its own redundant
copy of the type metadata. The amount of metadata in the ARGUMENTS views and SYS
tablespace, can lead to various issues, including PL/SQL compiler performance degradation.
The degradation is caused because of the time it takes PL/SQL to update rows in the
underlying dictionary tables.

In the Oracle Database 12.1 release, PL/SQL introduced enhanced support for package
types, including the new user views, ALL_PLSQL_TYPES, ALL_PLSQL_TYPE_ATTRS, and
ALL_PLSQL_COLL_TYPES. As the names imply, these views are similar to the ALL_TYPES view
family. However, you can use the enhanced PL/SQL type views to query metadata about
PL/SQL package types, instead of top-level object and collection types.

Because of the package types added with Oracle Database 12.1, there is no longer a need to
insert large amounts of descriptive metadata into the ARGUMENTS views. A single row of
metadata that includes the type name is all that is required in the ARGUMENTS views for
each parameter type. You can obtain a full description of the type name in a query against the
PL/SQL type views, and any nested types.

OCIDescribeAny() is based on the same metadata used by the ARGUMENTS views.
OCIDescribeAny() also returns a single row for each parameter type, instead of the multiple
rows commonly returned before the change in Oracle Database 12.1.

ALL/DBA/USER_ARGUMENTS contains a new column type, TYPE_OBJECT_TYPE. To determine the
type of the type described by TYPE_OWNER, TYPE_NAME and TYPE_SUBNAME, you use the
TYPE_OBJECT_TYPE column. The possible values include TABLE, VIEW, PACKAGE, and TYPE.

If you prefer to continue to collect the ALL_TYPES and the associated user views,
ALL_TYPE_ATTRS and ALL_COLL_TYPES in ARGUMENTS views, then you can set events to
events='10946, level 65536'. Setting this event reverts the ARGUMENTS views back to the
behavior in Oracle Database releases earlier than 12.1, in which DATA_LEVEL can be
greater than 0, and descriptive metadata for the type and any nested types is included in the
view. If you make this change, then you must recompile affected packages after you set the
event. When you recompile the affected packages, the compiler recollects the additional
metadata. This event also reverts OCIDescribeAny() to the behavior in Oracle Database
releases earlier than 12.1.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 18c

10-43

Starting in Oracle Database 12c release 1 (12.1.0.2), if you enter a procedure with no
arguments, then the ARGUMENTS views do not have any rows. This change is an
additional change that is separate from the row reduction change to ARGUMENTS views.
Before Oracle Database 12.1.0.2, a procedure with no arguments was presented as a
single row in the ARGUMENTS views.

USER/ALL/DBA_IDENTIFIERS User View Changes

Starting with Oracle Database 18c, PL/Scope is enhanced to capture additional
information about user identifiers in PL/SQL code. The additional information includes
constraints placed on the identifiers, and an indicator that notes when a function is a
SQL builtin in PL/SQL.

The following columns are new in the USER/ALL/DBA_IDENTIFIERS views in Oracle
Database 18c:

• CHARACTER_SET: This column contains the value of the character set clause, when
the column is used in a variable identifier declaration. The possible values are
CHAR_CS, NCHAR_CS, and IDENTIFIER, when the character set is derived from
another variable identifier.

• ATTRIBUTE: This column contains the attribute value when %attribute is used in a
variable declaration. The possible values are ROWTYPE, TYPE, and CHARSET.

• CHAR_USED: This column contains the type of the length constraint when a
constraint is used in a string length constraint declaration. The possible values are
CHAR and BYTE.

• LENGTH: This column contains the numeric length constraint value for a string
length constraint declaration.

• PRECISION: This column contains the numeric precision when it is used in a
variable declaration.

• PRECISION2: This column contains the numeric second precision value (for
instance, interval types) used in a variable declaration.

• SCALE: This column contains the numeric scale value used in a variable
declaration.

• LOWER_RANGE: This column contains the numeric lower range value used by a
variable declaration with a range constraint.

• UPPER_RANGE: This column contains the numeric upper range value used by a
variable declaration with a range constraint.

• NULL_CONSTRAINT: When a NULL constraint is used by a variable declaration, this
column is set. The possible values are NULL, or NOT NULL.

• SQL_BUILTIN: When an identifier is a SQL builtin used in a SQL statement issued
from PL/SQL, this column is set to YES. If the identifier is not a SQL builtin, then
the column is set to NO.

PL/SQL EXTERNAL LIBRARY Changes

Starting with Oracle Database 18c, the methods change for how to create LIBRARY
objects in an Oracle Database 18c PDB with a pre-defined PATH_PREFIX.

• When you create a new LIBRARY object in a PDB that has a predefined
PATH_PREFIX, the LIBRARY must use a DIRECTORY object. The DIRECTORY object

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 18c

10-44

enforces the rules of PATH_PREFIX for the LIBRARY object. Failure to use a DIRECTORY
object in the LIBRARY object results in a PLS-1919 compile-time error.

• If a database is plugged into a CDB as a PDB with a predefined PATH_PREFIX, then
attempts to use a LIBRARY object that does not use a DIRECTORY object result in an
ORA-65394 runtime error. The LIBRARY object is not invalidated. However, to make the
LIBRARY useful (as opposed to always issuing a runtime error), you must recreate the
LIBRARY object so that it uses a DIRECTORY object.

These changes enhance the security and manageability of LIBRARY objects in a PDB by
accounting for the value of the PATH_PREFIX, which describes where the LIBRARY dynamic link
library (DLL) can appear in the file system. The use of a DIRECTORY object also allows
administrators to determine which users can access the DLL directory.

Symbolic Links and UTL_FILE
You cannot use UTL_FILE with symbolic links. Use directory objects instead.

The UTL_FILE_DIR symbolic link path is desupported in Oracle Database 18c and later
releases. After an upgrade if applications address the database using symbolic links through
UTL_FILE, then these links fail. Oracle recommends that you use directory objects. If
necessary, you can create real files that are the targets of file names in UTL_FILE.

This desupport can affect any feature from an earlier release using symbolic links, including
(but not restricted to) Oracle Data Pump, BFILEs, and External Tables. If you attempt to use
an affected feature after upgrade, where that feature used symbolic links, you encounter
ORA-29283: invalid file operation: path traverses a symlink. Before upgrade, to
help you to identify symbolic link that you need to correct, run AutoUpgrade in analyze mode.
Oracle recommends that you instead use directory objects in place of symbolic links.

Example 10-1 Example of Error Messages with UTL_FILE And Symbolic Links

Applications that use symbolic links that address UTL_FILE encounter an error. For example.
suppose you attempt to create a symbolic link, where Ia.c is a symbolic link file:

create or replace directory TEMP as '/home/PLSQL/TEMP';

declare
f utl_file.file_type;
begin
f := utl_file.fopen('TEMP','la.c','r');
end;
/

This command fails with the following errors:

ERROR at line 1:
ORA-29283: invalid file operation
ORA-06512: at "SYS.UTL_FILE", line 536
ORA-29283: invalid file operation
ORA-06512: at line 4

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 18c

10-45

Deprecation of Direct Registration of Listeners with DBCA
Using Database Configuration Assistant (DBCA) to register Oracle Database to Oracle
Internet Directory (OID) is deprecated in Oracle Database 18c.

Instead of using DBCA to migrate or register listeners to a database home during an
upgrade, use Net Configuration Assistant or Net Manager to create a LISTENER.ORA
file for the new release Oracle home, and then start this listener. You can also use
DBCA to de-register and register listeners again to OID.

UNIFORM_LOG_TIMESTAMP_FORMAT Changes in INIT.ORA
By default, the format of timestamps is different in Oracle Database 12c release 2
(12.2) and later releases. To view alert logs, use the Oracle Database utility Automatic
Diagnostic Repository Command Interpreter (ADRCI) utility.

If you use scripts to parse the alert log for timestamp dates, then be aware that the
default value for timestamp formats is set by the init.ora parameter
UNIFORM_LOG_TIMESTAMP_FORMAT. The default value for this parameter is
TRUE. When TRUE, the timestamp format changes from a day-month-year-time
format to a year-month-day-time format. For example:
2017-05-17T10:00:54.799968+00:00.

You can change to the timestamp format used in previous releases by changing the
value of UNIFORM_LOG_TIMESTAMP_FORMAT to FALSE. You can also use scripts
to parse log.xml instead of the alert log.

Oracle provides a dedicated command-line utility to find and analyze Oracle errors and
tracefiles, called Automatic Diagnostic Repository Command Interpreter (ADRCI)
Oracle recommends that you use the ADRCI utility for error management.

For example, you can use the ADRCI command show alert to view the alert log:

$ oracle@user> adrci
adrci> show alert -tail -f

ADRCI also enables you to use the show log command to pass predicates for a query.
For example:

adrci> show log -p "message_text like '%tablespace%'"

Refer to Oracle Database Utilities for more information about how to use the ADRCI
utility.

Related Topics

• Oracle Database Utilities

Deprecated Features in Oracle Database 18c
Review the deprecated features listed in this section to prepare to use alternatives
after you upgrade.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 18c

10-46

Note:

The non-CDB architecture was deprecated in Oracle Database 12c. It can be
desupported and unavailable in a release after Oracle Database 19c .

• Data Guard MAX_CONNECTIONS Attribute is Deprecated
The MAX_CONNECTIONS attribute of the LOG_ARCHIVE_DEST_n parameter for Data Guard
redo transport is deprecated in Oracle Database 18c.

• Extended Datatype Support (EDS) is Deprecated
Extended Datatype Support (EDS) is deprecated in Oracle Database 18c .

• GET_* Functions Deprecated in the DBMS_DATA_MINING Package
Starting in Oracle Database 18c, the GET_* functions in DBMS_DATA_MINING are
deprecated. Use the Oracle Data Mining (ODM) Model Details views instead.

• Package DBMS_XMLQUERY is deprecated
The PL/SQL package DBMS_XMLQUERY is deprecated in Oracle Database 18c. Use
DBMS_XMLGEN instead.

• Package DBMS_XMLSAVE is Deprecated
The PL/SQL package DBMS_XMLSAVE is deprecated in Oracle Database 18c. Use
DBMS_XMLSTORE instead.

• Deprecated Columns in Oracle Label Security Views
Starting in Oracle Database 18c, The LABELS column is deprecated in the
ALL_SA_USER_LABELS and DBA_SA_USER_LABELS views.

• Returning JSON True or False Values using NUMBER is Deprecated
Starting with Oracle Database 18c , the option to specify a SQL NUMBER value (1 or 0)
as the return value of a JSON value of true or false is deprecated.

• Deprecation of MAIL_FILTER in Oracle Text
Starting with Oracle Database 18c, the use of MAIL_FILTER in Oracle Text is deprecated.
Before adding email to the database, filter e-mails to indexable plain text, or to HTML.

• Deprecation of asmcmd showversion Option
Starting with Oracle Database 18c, the command options for asmcmd showversion are
replaced with new asmcmd options.

• Deprecation of NEWS_SECTION_GROUP in Oracle Text
Starting with Oracle Database 18c, use of NEWS_SECTION_GROUP is deprecated in Oracle
Text. Use external processing instead.

• Oracle Net Services Support for SDP is Deprecated
Starting with Oracle Database 18c, the Oracle Net Services support for Sockets Direct
Protocol (SDP) is deprecated.

• Deprecation of Flex Cluster (Hub/Leaf) Architecture
Starting with Oracle Database 18c, Leaf nodes are deprecated as part of Oracle Flex
Cluster architecture.

• Deprecation of PRODUCT_USER_PROFILE Table
Starting in Oracle Database 18c, the SQL*Plus table PRODUCT_USER_PROFILE (PUP) table
is deprecated.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 18c

10-47

Data Guard MAX_CONNECTIONS Attribute is Deprecated
The MAX_CONNECTIONS attribute of the LOG_ARCHIVE_DEST_n parameter for Data Guard
redo transport is deprecated in Oracle Database 18c.

Oracle Database 11g Release 1 (11.1) introduced the new streaming asynchronous
model for redo transport. Using the MAX_CONNECTIONS attribute setting no longer
provides any benefit when Oracle Data Guard is resolving gaps in the archive log files.

Extended Datatype Support (EDS) is Deprecated
Extended Datatype Support (EDS) is deprecated in Oracle Database 18c .

The Extended Datatype Support (EDS) feature provides a mechanism for logical
standbys to support certain Oracle data types that lack native redo-based support. For
example, EDS was used to replicate tables with SDO_GEOMETRY column. However,
starting with Oracle Database 12c Release 2 (12.2), there are no EDS-supported
Oracle data types that are not supported natively by Logical data or GoldenGate. This
feature is now obsolete.

GET_* Functions Deprecated in the DBMS_DATA_MINING Package
Starting in Oracle Database 18c, the GET_* functions in DBMS_DATA_MINING are
deprecated. Use the Oracle Data Mining (ODM) Model Details views instead.

In Oracle Database 12c Release 1, and earlier releases, the DBMS_DATA_MINING
package supports a separate GET_MODEL_DETAILS function for each data mining
algorithm. Global details are also available for Generalized Linear Models, Expectation
Maximization, Singular Value Decomposition, and Association Rules. There are many
DBMS_DATA_MINING Get_* functions. For example:

• GET_MODEL_DETAILS

• DBMS_DATA_MINING.GET_MODEL_TRANSFORMATIONS

For example, the Model detail view for Decision Tree describes the split information
view, node statistics view, node description view, and the cost matrix view.

Starting with Oracle Database 18c, Oracle recommends that you replace the
GET_MODEL_DETAILS_XML functions with the Oracle Data Mining Model Details views.
The split information view DM$VPmodel_name describes the decision tree hierarchy, in
which you append the name of the Oracle Data Mining model to the view prefix.

Package DBMS_XMLQUERY is deprecated
The PL/SQL package DBMS_XMLQUERY is deprecated in Oracle Database 18c. Use
DBMS_XMLGEN instead.

DBMS_XMLQUERY provides database-to-XMLType functionality. Oracle recommends
that you replace calls to DBMS_XMLQUERY with DBMS_XMLGEN. DBMS_XMLGEN is written in C,
and compiled into the kernel, so it provides higher performance.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 18c

10-48

Package DBMS_XMLSAVE is Deprecated
The PL/SQL package DBMS_XMLSAVE is deprecated in Oracle Database 18c. Use
DBMS_XMLSTORE instead.

The DBMS_XMLSAVE package is part of the Oracle XML SQL Utility. It is used to insert, update,
and delete data from XML documents in object-relational tables. Oracle recommends that
you replace DBMS_XMLSAVE calls with DBMS_XMLSTORE. DBMS_XMLSTORE is written in C, and
compiled into the kernel, so it provides higher performance.

For example: to replace DBMS_XMLSAVE, you can create a wrapper function or procedure that
you used to call DBMS_XMLSAVE on an earlier release Oracle Database, and change the call to
DBMS_XMLSTORE. Or you can create a synonym:

For example: to replace DBMS_XMLSAVE, you can create a wrapper function or procedure that
you used to call DBMS_XMLSAVE on an earlier release Oracle Database, and change the call to
DBMS_XMLSTORE. Or you can create a synonym:

CREATE OR REPLACE PUBLIC SYNONYM DBMS_XMLSAVE FOR DBMS_XMLSTORE;
GRANT EXECUTE ON DBMS_XMLSAVE TO PUBLIC;

Deprecated Columns in Oracle Label Security Views
Starting in Oracle Database 18c, The LABELS column is deprecated in the
ALL_SA_USER_LABELS and DBA_SA_USER_LABELS views.

Table 10-2 Deprecated columns in Oracle Label Security Views

Data Dictionary View Deprecated Column

ALL_SA_USER_LABELS LABELS

ALL_SA_USERS USER_LABELS

DBA_SA_USER_LABELS LABELS

DBA_SA_USERS USER_LABELS

The information in the LABELS and USER_LABELS columns is redundant. This information is
displayed in other columns in these data dictionary views.

Returning JSON True or False Values using NUMBER is Deprecated
Starting with Oracle Database 18c , the option to specify a SQL NUMBER value (1 or 0) as
the return value of a JSON value of true or false is deprecated.

Oracle Database 12c release 1 (12.1) provided support for JSON data, including the function
of specifying NUMBER as the type of a column that is returned. The option to specify
NUMBER is deprecated. Instead of specifying NUMBER as the output for JSON data for true/
false queries, you can use the default SQL value returned for a JSON Boolean value, and
specify the string as 'true' or 'false'. If you have an application that requires a numeric value,
then you can return the Boolean JSON value as a SQL VARCHAR2 value, and then test that
value and return a SQL NUMBER value as the result of that test.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 18c

10-49

Deprecation of MAIL_FILTER in Oracle Text
Starting with Oracle Database 18c, the use of MAIL_FILTER in Oracle Text is
deprecated. Before adding email to the database, filter e-mails to indexable plain text,
or to HTML.

MAIL_FILTER is based on an obsolete email protocol, RFC-822. Modern email systems
do not support RFC-822. There is no replacement.

Deprecation of asmcmd showversion Option
Starting with Oracle Database 18c, the command options for asmcmd showversion are
replaced with new asmcmd options.

In place of the command asmcmd showversion --softwarepatch, use the new option
asmcmd showpatches -l. In place of the command asmcmd showversion --
releasepatch, use the new option asmcmd showversion --active.

Deprecation of NEWS_SECTION_GROUP in Oracle Text
Starting with Oracle Database 18c, use of NEWS_SECTION_GROUP is deprecated in
Oracle Text. Use external processing instead.

If you want to index USENET posts, then preprocess the posts to use
BASIC_SECTION_GROUP or HTML_SECTION_GROUP within Oracle Text. USENET is rarely
used commercially.

USENET currently is rarely used for serious purpose. Performing index
processing using this section group type is obsolete.

Oracle Net Services Support for SDP is Deprecated
Starting with Oracle Database 18c, the Oracle Net Services support for Sockets Direct
Protocol (SDP) is deprecated.

Oracle recommends that you use TCP as an alternative.

Deprecation of Flex Cluster (Hub/Leaf) Architecture
Starting with Oracle Database 18c, Leaf nodes are deprecated as part of Oracle Flex
Cluster architecture.

With continuous improvements in the Oracle Clusterware stack towards providing
shorter reconfiguration times in case of a failure, Leaf nodes are no longer necessary
for implementing clusters that meet customer needs, either for on-premises, or in the
Cloud.

Deprecation of PRODUCT_USER_PROFILE Table
Starting in Oracle Database 18c, the SQL*Plus table PRODUCT_USER_PROFILE (PUP)
table is deprecated.

The only use for the PRODUCT_USER_PROFILE (PUP) table is to provide a mechanism to
control product-level security for SQL*Plus. Starting with Oracle Database 18c, this
mechanism is no longer relevant. This SQL*Plus product-level security feature will be

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 18c

10-50

unavailable in Oracle Database 19c. Oracle recommends that you protect data by using
Oracle Database settings, so that you ensure consistent security across all client
applications.

Desupported Features in Oracle Database 18c
Review this list of desupported features as part of your upgrade planning.

• Oracle Administration Assistant for Windows is Desupported
The Oracle Administration Assistant tool for Windows is desupported in Oracle Database
18c.

• Oracle Multimedia DICOM Desupported Features
Several Oracle Multimedia DICOM features are desupported in Oracle Database 18c.
Replace DICOM with Oracle SecureFiles and third-party DICOM products.

• Oracle Multimedia Java Client Classes Desupported
Oracle Multimedia proxy classes and Oracle Multimedia servlet and JSP classes are
desupported.

• Oracle XML DB Desupported Features
Starting withOracle Database 18c, schema subprograms in DBMS_XMLSCHEMA, many
DBMS_XDB subprograms, and many other Oracle XML DB schema features are
desupported.

• ODP.NET, Managed Driver - Distributed Transaction DLL Desupported
Oracle is desupporting the Oracle.ManagedDataAccessDTC.dll file in Oracle Database
18c.

• Data Guard Broker DGMGRL ALTER Syntax is Desupported
Starting with Oracle Database 18c, the Oracle Data Guard broker ALTER command in
DGMGRL is desupported.

• Desupport of CRSUSER on Microsoft Windows Systems
The crsuser utility and the CRSToken method to change the Windows service user is
desupported in Oracle Database 18c.

Oracle Administration Assistant for Windows is Desupported
The Oracle Administration Assistant tool for Windows is desupported in Oracle Database
18c.

Oracle Administration Assistant for Windows is desupported in the current database release.
Oracle Administration Assistant for Windows was a tool for creating database administrators,
operators, users, and roles in Windows. Oracle Administration Assistant also enabled
database services, startup and shutdown configurations, and Windows Registry parameter
management. There is no replacement.

Oracle Multimedia DICOM Desupported Features
Several Oracle Multimedia DICOM features are desupported in Oracle Database 18c.
Replace DICOM with Oracle SecureFiles and third-party DICOM products.

Digital Imaging and Communications in Medicine (DICOM) is a medical imaging technology
that supports the connectivity of radiological devices. Oracle’s native DICOM feature is
deprecated, and parts of it are desupported in this release. The desupport of Oracle
Multimedia DICOM includes the following features:

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 18c

10-51

• Oracle Multimedia DICOM protocol

• Oracle Multimedia DICOM mid-tier support

• Oracle Multimedia Oracle DICOM Component for WebCenter integration (DICOM/
UCM)

The following Oracle Multimedia DICOM features continue to be deprecated:

• DICOM support in Oracle Multimedia ORDImage object

• Oracle Multimedia DICOM objects and packages

There is no replacement for Oracle Multimedia DICOM. Oracle recommends that you
replace Oracle Multimedia DICOM by using Oracle SecureFiles with third-party
products for DICOM functionality. For example: Use third-party DICOM features to
carry out metadata management, DICOM image conversion, and so on.

Oracle Multimedia Java Client Classes Desupported
Oracle Multimedia proxy classes and Oracle Multimedia servlet and JSP classes are
desupported.

Oracle Multimedia Java client is desupported in Oracle Database 18c for the following
classes:

• Oracle Multimedia proxy classes, including DICOM proxy classes

• Oracle Multimedia servlet/jsp classes

To develop Java applications that manage multimedia content within Oracle
Databases, Oracle recommends that you embed PL/SQL blocks in Java.

Oracle XML DB Desupported Features
Starting withOracle Database 18c, schema subprograms in DBMS_XMLSCHEMA, many
DBMS_XDB subprograms, and many other Oracle XML DB schema features are
desupported.

In Oracle Database 12c release 1 (12.1), the PL/SQL package DBMS_XDB_CONFIG was
introduced. At the same time, all Oracle XML DB configuration functions, procedures,
and constants that were moved from package DBMS_XDB to DBMS_XDB_CONFIG. were
deprecated, and a series of other DBMS_XMLSCHEMA, DBMS_XDB subprograms, and other
schema features were deprecated. These components are now desupported.

Desupported PL/SQL subprograms in package DBMS_XMLSCHEMA

The following PL/SQL subprograms in package DBMS_XMLSCHEMA are
desupported:

• generateSchema

• generateSchemas

There are no replacements for these constructs. There is no workaround for this
change.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 18c

10-52

Desupported Oracle XML DB Configuration Functions, Procedures, and Constants

All Oracle XML DB configuration functions, procedures, and constants that were moved from
package DBMS_XDB to DBMS_XDB_CONFIG are desupported. Use DBMS_XDB_CONFIG.

The following list of subprograms are desupported in package DBMS_XDB:

• ADDHTTPEXPIREMAPPING

• ADDMIMEMAPPING

• ADDSCHEMALOCMAPPING

• ADDSERVLET

• ADDSERVLETMAPPING

• ADDSERVLETSECROLE

• ADDXMLEXTENSION

• CFG_GET

• CFG_REFRESH

• CFG_UPDATE

• DELETEHTTPEXPIREMAPPING

• DELETEMIMEMAPPING

• DELETESCHEMALOCMAPPING

• DELETESERVLET

• DELETESERVLETMAPPING

• DELETESERVLETSECROLE

• DELETEXMLEXTENSION

• GETFTPPORT

• GETHTTPPORT

• GETLISTENERENDPOINT

• SETFTPPORT

• SETHTTPPORT

• SETLISTENERENDPOINT

• SETLISTENERLOCALACCESS

The following constants are desupported in package DBMS_XDB:

• XDB_ENDPOINT_HTTP

• XDB_ENDPOINT_HTTP2

• XDB_PROTOCOL_TCP

• XDB_PROTOCOL_TCPS

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 18c

10-53

Desupported Oracle XQuery Functions

The following Oracle XQuery functions are desupported. Use the corresponding
standard XQuery functions instead. Corresponding functions are the functions that
have the same names, but that use the namespace prefix fn.

• ora:matches . Use fn:matches instead

• ora:replace. Use fn:replace instead

ODP.NET, Managed Driver - Distributed Transaction DLL Desupported
Oracle is desupporting the Oracle.ManagedDataAccessDTC.dll file in Oracle Database
18c.

Oracle provided a native managed distributed transaction support for Oracle Data
Provider for .NET (ODP.NET), Managed Driver using
Oracle.ManagedDataAccessDTC.dll. In .NET Framework 4.5.2, Microsoft introduced
its own native managed distributed transaction implementation, which managed
ODP.NET used. The new .NET Framework made the
Oracle.ManagedDataAccessDTC.dll unnecessary. Moreover, Microsoft has
desupported all .NET Framework 4 versions earlier than 4.5.2. In accordance with
Microsoft policy, Oracle is desupporting the Oracle.ManagedDataAccessDTC.dll file.

The desupport includes removing the UseManagedDTC .NET configuration file
parameter, and Oracle.ManagedDataAccessDTC.dll.

Data Guard Broker DGMGRL ALTER Syntax is Desupported
Starting with Oracle Database 18c, the Oracle Data Guard broker ALTER command in
DGMGRL is desupported.

The ALTER command syntax in the Data Guard broker DGMGRL command-line
interface was deprecated in Oracle Database 10g Release 1 and replaced with the
EDIT CONFIGURATION, EDIT DATABASE, and EDIT INSTANCE syntax.

Desupport of CRSUSER on Microsoft Windows Systems
The crsuser utility and the CRSToken method to change the Windows service user is
desupported in Oracle Database 18c.

In Oracle Grid Infrastructure releases before Release 12c (12.1), it was supported to
use the crsuser utility with Oracle Real Application Clusters (Oracle RAC) to modify
the database logon properties of the Oracle Database service from LocalSystem to a
user ID.

Oracle introduced the Oracle Home User system privileges role for the DB home in
Oracle Grid Infrastructure 12c Release 1 (12.1). This role makes the need for the
crsuser functionality unnecessary. The crsuser facility was also previously used to
create user-defined CRS resources that ran as a Windows user other than
LocalSystem. However, Oracle Grid Infrastructure 12c Release 1 (12.1) and later
releases provide that same functionality with crsctl add wallet -type OSUSER The
crsuser feature no longer works. It is no longer developed or supported.

For more information about the crsctl add wallet -type OSUSER command, refer to
Oracle Clusterware Administration and Deployment.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 18c

10-54

Related Topics

• Oracle Clusterware Administration and Deployment Guide

Desupported Initialization Parameters in Oracle Database 18c
Review this list of desupported initialization parameters for changes and replacements in
parameter settings in this release.

• Desupport of STANDBY_ARCHIVE_DEST Initialization Parameter
Support for the initialization parameter STANDBY_ARCHIVE_DEST is removed in Oracle
Database 18c.

• Desupport of UTL_FILE_DIR Initialization Parameter
Starting in Oracle Database 18c, the UTL_FILE_DIR parameter is no longer supported.
Instead, specify the name of a directory object.

Desupport of STANDBY_ARCHIVE_DEST Initialization Parameter
Support for the initialization parameter STANDBY_ARCHIVE_DEST is removed in Oracle
Database 18c.

Oracle Database 11g Release 2 (11.2) included an increase to 31 of the parameters LOCAL
and REMOTE archiving LOG_ARCHIVE_DEST_n. This increase, and the ALTERNATE attribute
enhancements to provide high availability for local and remote archiving, provides you with
more control over the results after an archiving destination fails. Because of these
enhancements, STANDBY_ARCHIVE_DEST is not required or practical to use.

Desupport of UTL_FILE_DIR Initialization Parameter
Starting in Oracle Database 18c, the UTL_FILE_DIR parameter is no longer supported.
Instead, specify the name of a directory object.

The UTL_FILE_DIR initialization parameter is no longer listed in V$SYSTEM_PARAMETER and
related views. If you attempt to set this parameter, then the attempt fails. If you attempt to
specify an operating system file directly by using the LOCATION parameter of UTL_FILE.FOPEN,
or by using the LOCATION parameter of FOPEN_NCHAR, then those attempts also fail. Specify the
name of a directory object instead.

The security model for the use of a directory object for UTL_FILE and other Oracle Database
subsystems is secure, because there is a clear privilege model. However, the use of an
explicit operating system directory is insecure, because there is no associated privilege
model. The notice of deprecation for the UTL_FILE_DIR initialization parameter was given in
Oracle Database 12c Release 2 (12.2). With Oracle Database 18c, the parameter is now
desupported.

UTL_FILE Package Symbolic Link in Directory Paths Not Supported

Using the UTL_FILE package to access a symbolic link fails in the new Oracle Database
release. To avoid the issue, you must change the directory object and the file name, so that
neither contains a symbolic link. This desupport can affect any feature from an earlier release
using symbolic links, including (but not restricted to) Oracle Data Pump, BFILEs, and External
Tables. If you attempt to use an affected feature after upgrade, where that feature used
symbolic links, you encounter ORA-29283: invalid file operation: path traverses a
symlink.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 18c

10-55

Deprecation of Oracle Multimedia
Starting in Oracle Database 18c, Oracle Multimedia is deprecated. Oracle Multimedia
will be desupported in Oracle Database 19c.

Oracle recommends that you store multimedia content in SecureFiles LOBs, and use
open source or third-party products such as Piction for image processing and
conversion. Oracle Locator is not affected by the deprecation of Oracle Multimedia.

Terminal Release of Oracle Streams
Oracle Database 18c is the terminal release for Oracle Streams support. Oracle
Streams will be desupported from Oracle Database 19c onwards.

Oracle Streams was deprecated in Oracle Database 12c Release 1 (12.1). It does not
support features introduced in Oracle Database 12c and later releases, including the
multitenant architecture, the LONG VARCHAR data type, long identifiers, and other
features. Oracle GoldenGate is the replication solution for Oracle Database.

Behavior Changes, Deprecations and Desupports in Oracle
Database 12c Release 2 (12.2)

Review for descriptions of Oracle Database 12c Release 2 (12.2) changes.

• Behavior Changes in Oracle Database 12c Release 2 (12.2)
Review these behavior changes to help plan for upgrades to Oracle Database 12c
release 2 (12.2)

• Deprecated Initialization Parameters in Oracle Database 12c Release 2 (12.2)
To understand changes and replacements in parameter settings, review the
parameters deprecated in the 12.2 release. These parameters can be removed in
a later release.

• Deprecated Features in Oracle Database 12c Release 2 (12.2)
Review the deprecated features listed in this section to prepare to use alternatives
after you upgrade.

• Desupported Initialization Parameters in Oracle Database 12c Release 2 (12.2)
Review this list of desupported initialization parameters for changes and
replacements in parameter settings in this release.

• Desupported Features in Oracle Database 12c Release 2 (12.2)
Review this list of desupported features as part of your upgrade planning.

Behavior Changes in Oracle Database 12c Release 2 (12.2)
Review these behavior changes to help plan for upgrades to Oracle Database 12c
release 2 (12.2)

• Initialization Parameter Default Changes in Oracle Database 12c Release 2 (12.2)
Review this list of initialization parameter default setting changes for Oracle
Database 12c release 2 (12.2).

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-56

• Database Upgrade Assistant (DBUA) Enhancements and Changes
Oracle Database 12c release 2 (12.2) includes several enhancements to DBUA, and
some features have been removed or modified.

• Enhancements to Oracle Data Guard Broker and Rolling Upgrades
Starting with Oracle Database 12c release 2 (12.2), Oracle Data Guard Broker has more
features to assist rolling upgrades.

• About Changes in Default SGA Permissions for Oracle Database
Starting with Oracle Database 12c Release 2 (12.2.0.1), by default, permissions to read
and write to the System Global Area (SGA) are limited to the Oracle software installation
owner.

• Network Access Control Lists and Upgrade to Oracle Database 12c
Network access control lists (ACLs) are implemented as Real Application Security ACLs
in 12c, and existing ACLs are migrated from XML DB ACLs and renamed during
upgrade.

• Parallel Upgrade Utility Batch Scripts
In Oracle Database 12c Release 2 and later releases, you can run the Parallel Upgrade
Utility using command-line batch scripts.catupgrd.sql is no longer distributed.

• Unified Auditing AUDIT_ADMIN and AUDIT_VIEWER Roles Changes
You can find it necessary to rename or drop AUDIT_ADMIN and AUDIT_VIEWER roles before
upgrading.

• Oracle Update Batching Batch Size Settings Disabled
Oracle update batching settings are disabled in Oracle Database 12c release 2 (12.2).
Use JDBC batching instead.

• About Upgrading Tables Dependent on Oracle-Maintained Types
Starting with Oracle Database 12c release 2 (12.2), you can run the Parallel Upgrade
Utility with the -T option to set tables to READ ONLY.

• Case-Insensitive Passwords and ORA-1017 Invalid Username or Password
The Oracle Database 12c release 2 (12.2) default authentication protocol is 12 (Exclusive
Mode). This protocol requires case-sensitive passwords for authentication. Review your
options if you have earlier release password versions.

• About Deploying Oracle Grid Infrastructure Using Oracle Fleet Patching and Provisioning
Learn how you can use Oracle Fleet Patching and Provisioning (Oracle FPP) to provision
your Oracle homes, and to manage your software lifecycle.

• Restrictions Using Zero Data Loss Recovery Appliance Release 12.1 Backups
Zero Data Loss Recovery Appliance release 12.1 does not support backups from
protected database clients using Oracle Database 12c release 2 (12.2).

• Client and Foreground Server Process Memory Changes
To increase optimization and performance, the Oracle Database Client and server
process memory requirements are greater than in previous releases.

Initialization Parameter Default Changes in Oracle Database 12c Release 2 (12.2)
Review this list of initialization parameter default setting changes for Oracle Database 12c
release 2 (12.2).

OPTIMIZER_ADAPTIVE_PLANS and OPTIMIZER_ADAPTIVE_STATISTICS

OPTIMIZER_ADAPTIVE_FEATURE functions are replaced by two new parameters:
OPTIMIZER_ADAPTIVE_PLANS, and OPTIMIZER_ADAPTIVE_STATISTICS.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-57

OPTIMIZER_ADAPTIVE_PLANS controls adaptive plans. It is set by default to TRUE.
When set to TRUE, this parameter determines alternate execution plans built with
alternative choices that are based on statistics collected as a query executes.

OPTIMIZER_ADAPTIVE_STATISTICS controls adaptive statistics. It is set by default
to FALSE. When set to TRUE, the optimizer augments the statistics gathered in the
database with adaptive statistics gathered at SQL statement parse time to improve the
quality of SQL execution plans. Some query shapes are too complex to rely upon base
table statistics alone. The optimizer augments them with adaptive statistics to
determine more accurately the best SQL execution plan.

SQL92_SECURITY Initialization Parameter Default is TRUE

The SQL standard specifies that security administrators should be able to require that
users have SELECT privilege on a table when running an UPDATE or DELETE
statement that references table column values in a WHERE or SET clause.
SQL92_SECURITY specifies whether users must have been granted the SELECT
object privilege to execute such UPDATE or DELETE statements.

Starting in Oracle Database 12c release 2 (12.2), the default setting for this parameter
changes from FALSE to TRUE.

When this parameter is set to TRUE, users must have SELECT privilege on the object
being deleted or updated.

Related Topics

• Oracle Database Reference

Database Upgrade Assistant (DBUA) Enhancements and Changes
Oracle Database 12c release 2 (12.2) includes several enhancements to DBUA, and
some features have been removed or modified.

In response to customer requests, and to improve functionality, Database Upgrade
Assistant (DBUA) includes new features and code enhancements. Also, some features
in previous releases have been removed.

DBUA New Features

DBUA includes the following new features for Oracle Database 12c release 2 (12.2):

• Selective PDB Plug-In Upgrades: You can plug in a PDB created in a previous
release into a release 12.2 multitenant architecture CDB environment, and
upgrade the PDB using DBUA started from the release 12.2 CDB home

You can unplug PDBs from a CDB, upgrade the CDB and any PDBs plugged in to
the CDB, and then plug in earlier release PDBs and upgrade them using DBCA.

• Priority-Based PDB Upgrades: You can set priority for PDB upgrades, so that
higher priority PDBs are upgraded first.

• Retry and Ignore Functionality: You can fix errors and retry upgrades, or select to
ignore certain errors and continue upgrades.

• Pause and Continue Functionality: You can stop the upgrade, and continue the
upgrade at a later time.

• Standalone Prerequisite Checks: You can run DBUA with the new -
executePrereqs option to check prerequisites for upgrades at any time.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-58

• Listener Configuration During Database Moves: You can configure the database with a
new listener during a database move operation.

• Improved Logging Mechanism: DBUA now has time-stamped logs.

• Performance Enhancements: DBUA includes code enhancements that reduce the
number of instance restarts during the upgrade process.

• Enhanced Error Reporting: All DBUA errors are reported using the error code prefix DBT,
and all errors are reported as a list on a progress page, instead of being presented in
message windows.

DBUA Removed Features

The following DBUA features available in previous releases are removed in Oracle Database
12c release 2 (12.2):

• Data Files Move: Data files can no longer be moved during upgrades.

• Database Renames During Upgrades: It is no longer supported to rename Oracle
Database names during the upgrade.

• Degree of Parallelism Selection Removed from DBUA: The default parallelism is
calculated depending on the use case.

– Upgrade: The default parallelism using DBUA is the same value used by the Parallel
Upgrade Utility for manual upgrades. However, in an upgrade operation, you can
override the default by specifying the number of cores that you want to use.

– Recompile: The default parallelism for object recompilation is determined by the
utlrp script used in manual upgrade.

• Recompile parallelism is the same value as the upgrade parallelism by default.

• Changing Diagnostic and Audit Dest No Longer Available: You can only change the
Diagnostic and Audit destination by using the DBUA command-line option -initParam.

• Remote DBUA Desupported: In previous releases, DBUA had an option on Windows
platforms for supporting Oracle Database remote upgrades. This feature is desupported.

Enhancements to Oracle Data Guard Broker and Rolling Upgrades
Starting with Oracle Database 12c release 2 (12.2), Oracle Data Guard Broker has more
features to assist rolling upgrades.

Oracle Data Guard Broker now supports Oracle Active Data Guard rolling upgrade. Oracle
Active Data Guard rolling upgrade was introduced in Oracle Database 12c release 1 (12.1). It
simplifies the execution of the transient logical database rolling upgrade process by
automating many manual steps in a simple PL/SQL package (DBMS_ROLLING). In addition
to making database rolling upgrades simpler, the automated process is much more reliable.
Oracle Data Guard broker can now direct Oracle Active Data Guard rolling upgrades from the
DGMGRL command-line interface. Broker support also adds substantial simplification to the
rolling upgrade process by transparently handling redo transport destination settings and
other tasks.

In Oracle Database 12c release 2 (12.2) and later releases, when you perform a rolling
upgrade using the DBMS_ROLLING PL/SQL package, you no longer have to disable the
broker. In addition, the broker now reports when a rolling upgrade is in place, and tracks its
status. The status information is displayed in the output of the DGMGRL commands SHOW
CONFIGURATION and SHOW DATABASE.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-59

Using Oracle Data Guard Broker to manage database rolling upgrades can simplify
the upgrade process by minimizing your downtime and risk when introducing change
to production environments.

Related Topics

• Oracle Data Guard Broker

About Changes in Default SGA Permissions for Oracle Database
Starting with Oracle Database 12c Release 2 (12.2.0.1), by default, permissions to
read and write to the System Global Area (SGA) are limited to the Oracle software
installation owner.

In previous releases, both the Oracle installation owner account and members of the
OSDBA group had access to shared memory. The change in Oracle Database 12c
Release 2 (12.2) and later releases to restrict access by default to the Oracle
installation owner account provides greater security than previous configurations.
However, this change may prevent DBAs who do not have access to the Oracle
installation owner account from administering the database.

The Oracle Database initialization parameter ALLOW_GROUP_ACCESS_TO_SGA
determines if the Oracle Database installation owner account (oracle in Oracle
documentation examples) is the only user that can read and write to the database
System Global Area (SGA), or if members of the OSDBA group can read the SGA. In
Oracle Database 12c Release 2 (12.2) and later releases, the default value for this
parameter is FALSE, so that only the Oracle Database installation owner has read and
write permissions to the SGA. Group access to the SGA is removed by default. This
change affects all Linux and UNIX platforms.

If members of the OSDBA group require read access to the SGA, then you can
change the initialization parameter ALLOW_GROUP_ACCESS_TO_SGA setting from
FALSE to TRUE. Oracle strongly recommends that you accept the default permissions
that limit access to the SGA to the oracle user account.

Related Topics

• Oracle Database Reference

Network Access Control Lists and Upgrade to Oracle Database 12c
Network access control lists (ACLs) are implemented as Real Application Security
ACLs in 12c, and existing ACLs are migrated from XML DB ACLs and renamed during
upgrade.

During Oracle Database upgrades to 12c Release 1 (12.1) and later releases, network
access control in Oracle Database is implemented using Real Application Security
access control lists (ACLs). Existing ACLs in XDB are migrated during upgrade.
Existing APIs in the DBMS_NETWORK_ACL_ADMIN PL/SQL package and catalog views are
deprecated. These deprecated views are replaced with new equivalents in Oracle
Database 12c.

Starting with Oracle Database 12c Release 1 (12.1), you can grant network privileges
by appending an access control entry (ACE) to a host ACL using
DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE. If you append an ACE to a host that has
no existing host ACL, then a new host ACL is created implicitly. If the host ACL exists,
then the ACEs are appended to the existing ACL.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-60

How Changing to Real Application Security ACLS Affects You

During upgrades, the following changes are made:

• Existing network ACLs are migrated from Oracle Database 11g XML DB to Oracle
Database 12c Real Application Security. All privileges of the existing ACLs are preserved
during this migration.

• Existing ACLs are renamed.

What You Need To Do Before Upgrades

• Check for existing Network ACLs before the upgrade.

• Preserve existing network ACLs and privileges (DBA_NETWORK_ACLS and
DBA_NETWORK_ACL_PRIVILEGES) in an intermediate staging table. Preserving the existing
privileges in a table enables you to restore them if the automatic migration fails, or if you
want to roll back an upgrade.

Related Topics

• Oracle Database Security Guide

• Oracle Database Reference

Parallel Upgrade Utility Batch Scripts
In Oracle Database 12c Release 2 and later releases, you can run the Parallel Upgrade
Utility using command-line batch scripts.catupgrd.sql is no longer distributed.

In Oracle Database 12c Release 2 (12.2) and later releases, you can run the Parallel
Upgrade Utility (catctl.pl) from the command line by entering the shell commands
dbupgrade for Linux and Unix, and dbupgrade.com for Microsoft Windows. These shell
scripts call the catctl.pl script from the upgrade binary home. You can either run these
scripts with default values, or you can run them with the same input parameters that you use
to run catctl.pl from the Perl prompt.

Related Topics

• About the Parallel Upgrade Utility for Oracle Database (CATCTL.PL and DBUPGRADE)

Unified Auditing AUDIT_ADMIN and AUDIT_VIEWER Roles Changes
You can find it necessary to rename or drop AUDIT_ADMIN and AUDIT_VIEWER roles before
upgrading.

In Oracle Database 12c, if you use Unified Auditing, then you can have two AUDSYS roles in
your Oracle Database 11g release 2 (11.2.0.4) and earlier releases that affect upgrading:
AUDIT_ADMIN and AUDIT_VIEWER. Because of changes in these roles, you must drop these
earlier release users or user roles before you can upgrade to Oracle Database 12c release 1
(12.1) or later.

If you have created AUDIT_ADMIN and AUDIT_VIEWER users or roles with Oracle Database 12c
release 1 (12.1), then you do not need to drop these users or roles.

Only drop the AUDSYS schema and the AUDIT_ADMIN and AUDIT_VIEWER roles if both of the
following conditions are true:

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-61

• The version from which you are upgrading is earlier than Oracle Database 12c
release 1 (12.1)

• You have created a custom schema with the name AUDSYS

If you are affected by this requirement, and you cannot drop these AUDSYS roles, then
select the UNIFIED_AUDIT_TRAIL view, create your own table, using similar definitions,
and use this table to take a backup of the Unified Audit data. Oracle recommends that
you also perform this procedure if you want to preserve your ability to downgrade to
your earlier release database.

Oracle recommends that you do not use these names in your databases. If these
users or roles exist, then you should rename or drop them as appropriate before
upgrading to Oracle Database 12.

See Also:

Oracle Database Security Guide for information on configuring privilege and
role authorization for database security

Oracle Update Batching Batch Size Settings Disabled
Oracle update batching settings are disabled in Oracle Database 12c release 2 (12.2).
Use JDBC batching instead.

Oracle update batching was deprecated in Oracle Database 12c Release 1 (12.1).
Starting in Oracle Database 12c Release 2 (12.2), Oracle update batching is a no
operation code (no-op). This means that if you implement Oracle update batching in
your application using the Oracle Database 12c Release 2 (12.2) JDBC driver, then
the specified batch size is not set, and results in a batch size of 1. With this batch
setting, your application processes one row at a time. Oracle strongly recommends
that you use the standard JDBC batching if you are using the Oracle Database 12c
Release 2 (12.2) JDBC driver.

About Upgrading Tables Dependent on Oracle-Maintained Types
Starting with Oracle Database 12c release 2 (12.2), you can run the Parallel Upgrade
Utility with the -T option to set tables to READ ONLY.

When you run the Parallel Upgrade Utility with the -T option, any tablespaces that do
not contain Oracle Maintained objects are set to READ ONLY. Setting these tables to
READ ONLY can reduce the amount of data that you need to back up before
upgrading the database.

If your database has user tables that depend on Oracle Maintained types (for example,
AQ queue tables), then you must upgrade these tables manually after upgrade.

After the upgrade is complete, to upgrade tables dependent on Oracle-Maintained
types, run the script utluptabdata.sql to carry out ALTER TABLE UPGRADE
commands on tables in tablespaces set to READ ONLY during the upgrade.

Starting with Oracle Database 12c release 2, the ALTER TYPE statement behavior is
also changed. If a dependent table is in an accessible tablespace, then it is
automatically upgraded to the new version of the type. If the dependent table is in a

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-62

READ ONLY tablespace, then it is not automatically upgraded. Run the utluptabdata.sql
script to upgrade those tables set to READ ONLY tablespace states during the upgrade. You
only need to run the utluptabdata.sql script when you run the Parallel Upgrade Utility
with the -T option to run the upgrade.

Note:

When tablespaces are set to READ ONLY, this setting prevents updates on all tables
in the tablespace, regardless of a user‘s update privilege level. For example, users
connecting as SYSDBA are prevented from changing their application data.

Related Topics

• Upgrading Tables Dependent on Oracle-Maintained Types

• Running Upgrades with Read-Only Tablespaces

Case-Insensitive Passwords and ORA-1017 Invalid Username or Password
The Oracle Database 12c release 2 (12.2) default authentication protocol is 12 (Exclusive
Mode). This protocol requires case-sensitive passwords for authentication. Review your
options if you have earlier release password versions.

Starting with Oracle Database 12c release 2 (12.2), the default value for the SQLNET.ORA
parameter ALLOWED_LOGON_VERSION_SERVER is changed to 12. This parameter refers
to the logon authentication protocol used for the server, not the Oracle Database release.

By default, Oracle no longer supports case-insensitive password-based authentication; only
the new password versions (11G and 12C) are allowed. The case-insensitive 10G password
version is no longer generated.

If the following conditions are true, then you may have accounts that are prevented from
logging into the database after upgrading to 12.2:

• You are upgrading a server that has user accounts created in an earlier Oracle Database
release.

• User accounts created in the earlier release use a case-insensitive password version
from an earlier release authentication protocol, such as the 10G password version.

• Earlier release user accounts have not reset passwords.

• The server has been configured with SEC_CASE_SENSITIVE_LOGON set to FALSE, so
that it can only authenticate users who have a 10G case-insensitive password version.

If you have accounts that require 10G password versions, then to prevent accounts using that
password version from being locked out of the database, you can change from an Exclusive
Mode to a more permissive authentication protocol.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-63

Note:

Oracle does not support case-insensitive password-based authentication
while running in an Exclusive Mode. The default authentication protocol in
Oracle Database 12c release 2 (12.2) is an Exclusive Mode. Oracle only
supports case-insensitive authentication with the following conditions:

• The server is running in a mode other than an Exclusive Mode

• The 10G password version is present

Option for Servers with Accounts Using Only 10G Password Version

After you upgrade to Oracle Database 12c release 2 (12.2), complete the following
procedure to enable accounts using the 10G password version:

1. Log in as an administrator.

2. Edit the SQLNET.ORA file to change the
SQLNET.ALLOWED_LOGON_VERSION_SERVER setting from the default, 12, to
11 or lower. For example:

SQLNET.ALLOWED_LOGON_VERSION_SERVER=11

After you change to a more permissive
SQLNET.ALLOWED_LOGON_VERSION_SERVER setting, expire users’ passwords
to require them to change their passwords. For detailed information, refer to Oracle
Database Security Guide.

About Deploying Oracle Grid Infrastructure Using Oracle Fleet Patching and
Provisioning

Learn how you can use Oracle Fleet Patching and Provisioning (Oracle FPP) to
provision your Oracle homes, and to manage your software lifecycle.

Note:

Starting with Oracle Grid Infrastructure 19c, the feature formerly known as
Rapid Home Provisioning (RHP) is now Oracle Fleet Patching and
Provisioning (Oracle FPP).

Oracle FPP is a software lifecycle management method for provisioning and
maintaining Oracle homes. Oracle Fleet Patching and Provisioning enables mass
deployment and maintenance of standard operating environments for databases,
clusters, and user-defined software types.

Oracle Fleet Patching and Provisioning enables you to install clusters, and provision,
patch, scale, and upgrade Oracle Grid Infrastructure, Oracle Restart, and Oracle
Database homes. The supported releases are 12.2 and later releases. You can also
provision applications and middleware using Oracle Fleet Patching and Provisioning.

Oracle Fleet Patching and Provisioning is a service in Oracle Grid Infrastructure that
you can use in either of the following modes:

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-64

• Central Oracle Fleet Patching and Provisioning Server

The Oracle Fleet Patching and Provisioning Server stores and manages standardized
images, called gold images. Gold images can be deployed to any number of nodes
across the data center. You can create new clusters and databases on the deployed
homes and can use them to patch, upgrade, and scale existing installations.

The Oracle Fleet Patching and Provisioning Server can manage the following types of
installations:

– Software homes on the cluster hosting the Oracle Fleet Patching and Provisioning
Server itself.

– Oracle Fleet Patching and Provisioning Clients running Oracle Grid Infrastructure 12c
Release 2 (12.2) and later releases.

– Installations running without Oracle Grid Infrastructure.

The Oracle Fleet Patching and Provisioning Server can provision new installations, and
manage existing installations, without requiring any changes to the existing installations.
The Oracle Fleet Patching and Provisioning Server can automatically share gold images
among peer servers to support enterprises with geographically distributed data centers.

• Oracle Fleet Patching and Provisioning Client

The Oracle Fleet Patching and Provisioning Client can be managed from the Oracle Fleet
Patching and Provisioning Server, or directly by executing commands on the client itself.
The Oracle Fleet Patching and Provisioning Client is a service built into the Oracle Grid
Infrastructure and is available in Oracle Grid Infrastructure 12c Release 2 (12.2) and later
releases. The Oracle Fleet Patching and Provisioning Client can retrieve gold images
from the Oracle Fleet Patching and Provisioning Server, upload new images based on
the policy, and apply maintenance operations to itself.

Oracle Fleet Patching and Provisioning

Deploying Oracle software using Oracle Fleet Patching and Provisioning has the following
advantages:

• Ensures standardization and enables high degrees of automation with gold images and
managed lineage of deployed software.

• Minimizes downtime by deploying new homes as images (called gold images) out-of-
place, without disrupting active databases or clusters.

• Simplifies maintenance by providing automatons which are invoked with a simple,
consistent API across database versions and deployment models.

• Reduces maintenance risk with built-in validations and a dry run mode to test the
operations.

• Enables you to resume or restart the commands in the event of an unforeseen issue,
reducing the risk of maintenance operations.

• Minimizes and often eliminates the impact of patching and upgrades, with features that
include:

– Zero-downtime database upgrade with fully automated upgrade, executed entirely
within the deployment without requiring any extra nodes or external storage.

– Adaptive management of database sessions and OJVM during rolling patching.

– Options for management of consolidated deployments.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-65

• The deployment and maintenance operations enable customizations to include
environment-specific actions into the automated workflow.

Related Topics

• Oracle Clusterware Administration and Deployment Guide

Restrictions Using Zero Data Loss Recovery Appliance Release 12.1 Backups
Zero Data Loss Recovery Appliance release 12.1 does not support backups from
protected database clients using Oracle Database 12c release 2 (12.2).

Zero Data Loss Recovery Appliance release 12.2 (Recovery Appliance) does support
backups from protected release 12.2 database clients.

If you back up your database to Recovery Appliance, then Oracle recommends that
you do not not upgrade your database to release 12.2 until your Recovery Appliance is
upgraded to release 12.2.

Client and Foreground Server Process Memory Changes
To increase optimization and performance, the Oracle Database Client and server
process memory requirements are greater than in previous releases.

Every release of Oracle Database includes new features and capabilities. To provide
optimal performance for the increased capability of the database, there can be an
increase in the Oracle Database Client and Oracle Database Server can increase from
one release to the next. The memory requirement increase can vary from platform to
platform.

As part of your upgrade plan, check to determine the memory requirements increase
that can be present in a new Oracle Database release. For example, in comparison to
Oracle Database 11g Release 2 (11.2), Oracle Database 12c on some platforms can
have as much as a 5 MB memory increase for each client, and a 10 MB increase for
each server.

Deprecated Initialization Parameters in Oracle Database 12c Release
2 (12.2)

To understand changes and replacements in parameter settings, review the
parameters deprecated in the 12.2 release. These parameters can be removed in a
later release.

O7_DICTIONARY_ACCESSIBILITY Initialization parameter

The initialization parameter O7_DICTIONARY_ACCESSIBILITY controls restrictions on
SYSTEM privileges. If the parameter is set to TRUE, then access to objects in the SYS
schema is allowed. The default setting is FALSE. This default setting prevents system
privileges that allow access to objects in any schema from allowing access to objects
in the SYS schema. The O7_DICTIONARY_ACCESSIBILITY parameter is deprecated.

ASM_PREFERRED_READ_FAILURE_GROUPS Initialization Parameter

The ASM_PREFERRED_READ_FAILURE_GROUPS initialization parameter is deprecated in
Oracle Automatic Storage Management 12c release 2 (12.2.0.1). Starting with Oracle
Automatic Storage Management (Oracle ASM) 12c release 2 (12.2.0.1), specifying the

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-66

preferred read failure groups is done automatically, so the use of the
ASM_PREFERRED_READ_FAILURE_GROUPS initialization parameter is no longer required. Use the
PREFERRED_READ.ENABLED disk group attribute to control the preferred read
functionality.

PARALLEL_ADAPTIVE_MULTI_USER Initialization Parameter

The initialization parameter PARALLEL_ADAPTIVE_MULTI_USER specifies if you want to use an
adaptive algorithm to improve performance in multi-user environments that use parallel
execution. This parameter is deprecated, and the default value is now FALSE. There is no
replacement for this parameter. Oracle recommends that you use the Oracle Database
feature Parallel Statement Queuing to obtain parallel execution performance gains.

UTL_FILE_DIR Initialization Parameter

The initialization parameter UTL_FILE_DIR specifies accessible directories for PL/SQL file I/O.
This parameter is deprecated, and Oracle recommends that you do not provide
UTL_FILE_DIR access. Oracle recommends that you instead use the directory object feature,
which replaces UTL_FILE_DIR. Directory objects provide the following benefits:

• They offer more flexibility and granular control to the UTL_FILE application administrator

• They can be maintained dynamically, without shutting down the database

• They are consistent with other Oracle tools.

Related Topics

• Oracle Database Reference

Deprecated Features in Oracle Database 12c Release 2 (12.2)
Review the deprecated features listed in this section to prepare to use alternatives after you
upgrade.

• Deprecation of ALTER TYPE REPLACE
Starting with Oracle Database 12c release 2 (12.2.0.1), the REPLACE clause of ALTER
TYPE is deprecated.

• Deprecation of configToolAllCommands Script
The postinstallation check script configToolAllCommands is deprecated in Oracle
Database 12c release 1 (12.1).

• Deprecation of DBMS_DEBUG Package
The DBMS_DEBUG package is deprecated in Oracle Database 12c release 2 (12.2).
Oracle recommends that you use DBMS_DEBUG_JDWP.

• Deprecation of Intelligent Data Placement (IDC)
Intelligent Data Placement is deprecated in Oracle Database 12c release 2 (12.2).

• Deprecation of CONTINUOUS_MINE Option
Starting with Oracle Database 12c Release 2 (12.2.0.1), the LogMiner
CONTINUOUS_MINE option is deprecated.

• Deprecation of Non-CDB Architecture
The non-CDB architecture was deprecated in Oracle Database 12c. It can be
desupported and unavailable in a release after Oracle Database 19c .

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-67

• Deprecation of Oracle Administration Assistant for Windows
Oracle Administration Assistant for Windows is deprecated in Oracle Database
12c release 2 (12.2).

• Deprecation of Oracle Data Provider for .NET PromotableTransaction Setting
The Oracle Data Provider for .NET PromotableTransaction setting is deprecated,
because it is no longer necessary.

• Deprecation of oracle.jdbc.OracleConnection.unwrap()
Starting in Oracle Database 12c release 2 (12.2), the Java package
oracle.jdbc.OracleConnection.unwrap() is deprecated.

• Deprecation of oracle.jdbc.rowset Package
Starting in Oracle Database 12c release 2 (12.2), the Java oracle.jdbc.rowset
package is deprecated

• Deprecation of oracle.sql.DatumWithConnection Classes
oracle.sql classes that extend oracle.sql.DatumWithConnection are
deprecated in Oracle Database 12c release 2 (12.2), in favor of oracle.jdbc
extension types.

• Deprecation of Oracle Multimedia Java APIs
The Oracle Multimedia Java APIs are deprecated in Oracle Database 12c release
2.

• Deprecation of Oracle Multimedia Support for DICOM
Starting in Oracle Database 12c release 2 (12.2), the Oracle Multimedia DICOM
feature is deprecated.

• Deprecation of Multimedia SQL/MM Still Image Standard Support
Starting in Oracle Database 12c release 2 (12.2), Oracle Multimedia SQL/MM Still
Image standard support is deprecated.

• Deprecation of Unicode Collation Algorithm (UCA) 6.1 Collations
Starting in Oracle Database 12c release 2, the Unicode Collation Algorithm (UCA)
6.1 collations are deprecated.

• Deprecation of UNIFIED_AUDIT_SGA_QUEUE_SIZE
Starting in Oracle Database 12c release 2, the initialization parameter
UNIFIED_AUDIT_SGA_QUEUE_SIZE is deprecated.

• Deprecation of VERIFY_FUNCTION and VERIFY_FUNCTION_11G
The VERIFY_FUNCTION and VERIFY_FUNCTION_11G password verify functions are
deprecated in this release, because they enforce the weaker password restrictions
from earlier releases.

• Deprecation of V$MANAGED_STANDBY
The V$MANAGED_STANDBY view is deprecated in Oracle Database 12c release
2 (12.2.0.1). Oracle recommends that you use the new view
V$DATAGUARD_PROCESS.

• Deprecation of Some XML DB Functions
Starting with Oracle Database 12c release 2 (12.2) the options listed in this topic
are deprecated.

• Deprecated Features for Oracle XML Database
These features are deprecated in Oracle Database 12c Release 1, and can be
desupported in a future release.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-68

Deprecation of ALTER TYPE REPLACE
Starting with Oracle Database 12c release 2 (12.2.0.1), the REPLACE clause of ALTER
TYPE is deprecated.

As an alternative, Oracle recommends that you use the ALTER TYPE methods ADD and
DROP, or use ALTER TYPE method ADD .

Related Topics

• Oracle Database PL/SQL Language Reference

Deprecation of configToolAllCommands Script
The postinstallation check script configToolAllCommands is deprecated in Oracle Database
12c release 1 (12.1).

The script configToolAllCommands runs in the response file mode to configure Oracle
products after installation. It uses a separate password response file. Starting with Oracle
Database 12c release 2 (12.2), configToolAllCommands is deprecated. It may be
desupported in a future release.

You can now obtain postinstallation checks as part of the installation process. Oracle
recommends that you run the Oracle Database or Oracle Grid Infrastructure installer with the
option -executeConfigTools. You can use the same response file created during installation
to complete postinstallation configuration.

Deprecation of DBMS_DEBUG Package
The DBMS_DEBUG package is deprecated in Oracle Database 12c release 2 (12.2). Oracle
recommends that you use DBMS_DEBUG_JDWP.

In earlier releases, PL/SQL included the DBMS_DEBUG package to enable internal and
third-party tools to debug PL/SQL programs. The DBMS_DEBUG package provides APIs to
set breakpoints, obtain values of variables, and so on. This functionality has been provided
by the DBMS_DEBUG_JDWP package for several releases. DBMS_DEBUG_JDWP
provides the equivalent PL/SQL debugging capabilities, and it enables seamless debugging
of PL/SQL routines when it calls into or is called from server-side Java (OJVM) with Java
stored procedures.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Deprecation of Intelligent Data Placement (IDC)
Intelligent Data Placement is deprecated in Oracle Database 12c release 2 (12.2).

Intelligent Data Placement enables you to specify disk regions on Oracle ASM disks for best
performance. Using the disk region settings, you can ensure that frequently accessed data is
placed on the outermost (hot) tracks which have greater speed and higher bandwidth. In
addition, files with similar access patterns are located physically close, reducing latency.
Intelligent Data Placement also enables the placement of primary and mirror extents into
different hot or cold regions

This feature is deprecated in Oracle Database 12c release 2 (12.2).

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-69

Related Topics

• Oracle Automatic Storage Management Administrator's Guide

Deprecation of CONTINUOUS_MINE Option
Starting with Oracle Database 12c Release 2 (12.2.0.1), the LogMiner
CONTINUOUS_MINE option is deprecated.

The LogMiner CONTINUOUS_MINE option is still supported for backward compatibility
reasons. However, Oracle recommends that you discontinue using it. There is no
replacement functionality.

Deprecation of Non-CDB Architecture
The non-CDB architecture was deprecated in Oracle Database 12c. It can be
desupported and unavailable in a release after Oracle Database 19c .

Oracle recommends use of the CDB architecture.

Deprecation of Oracle Administration Assistant for Windows
Oracle Administration Assistant for Windows is deprecated in Oracle Database 12c
release 2 (12.2).

Oracle Administration Assistant for Windows is a tool for creating database
administrators, operators, users, and roles in Windows. It also allows database
service, startup and shutdown configuration, and Windows Registry
parameter management.

Instead of using Oracle Administration Assistant for Windows, use native Windows
administration tools.

Deprecation of Oracle Data Provider for .NET PromotableTransaction Setting
The Oracle Data Provider for .NET PromotableTransaction setting is deprecated,
because it is no longer necessary.

Promotable transactions themselves are not being deprecated. Only this specific
setting is deprecated.

The Oracle Data Provider for .NET registry setting PromotableTransaction indicates
whether the application must keep transactions as local, or if it can begin all single
connection transactions as local, and then promote the transaction to distributed when
a second connection enlists. This is the concept of promotable transactions.

The Promotable Transaction setting is deprecated in Oracle Database 12c release 2
(12.2). There is no reason not to use promotable transactions. Oracle recommends
you accept the default value promotable.

Deprecation of oracle.jdbc.OracleConnection.unwrap()
Starting in Oracle Database 12c release 2 (12.2), the Java package
oracle.jdbc.OracleConnection.unwrap() is deprecated.

The Java package oracle.jdbc.OracleConnection.unwrap() is deprecated in Oracle
Database 12c release 2, and later releases. There is no replacement for this package.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-70

Oracle recommends that you replace this JDBC method in your applications with standard
Java methods.

Related Topics

• https://support.oracle.com/rs?type=doc&id=2024500.1

Deprecation of oracle.jdbc.rowset Package
Starting in Oracle Database 12c release 2 (12.2), the Java oracle.jdbc.rowset package is
deprecated

Oracle recommends that you use the Standard JDBC RowSet package to replace this
feature.

Related Topics

• Oracle Database JDBC Developer’s Guide

• https://support.oracle.com/rs?type=doc&id=2024500.1

Deprecation of oracle.sql.DatumWithConnection Classes
oracle.sql classes that extend oracle.sql.DatumWithConnection are deprecated in Oracle
Database 12c release 2 (12.2), in favor of oracle.jdbc extension types.

In previous releases, Oracle Database included Oracle JDBC drivers that provided specific
type extensions and performance extensions in both oracle.sql and oracle.jdbc Java
packages. Starting with Oracle Database 12c release 2 (12.2), the oracle.sql classes that
extend oracle.sql.DatumWithConnection are deprecated. The oracle.jdbc extensions
continue to be supported.

For example, here is a partial list of deprecated oracle.sql classes:

• ARRAY

• BFILE

• BLOB

• CLOB

• OPAQUE

• REF

• STRUCT

Oracle recommends that you replace oracle.sql classes that extend
oracle.sql.DatumWithConnection in your applications with standard Java types, or with
oracle.jdbc extensions.

Deprecation of Oracle Multimedia Java APIs
The Oracle Multimedia Java APIs are deprecated in Oracle Database 12c release 2.

The following Java APIs are deprecated in Oracle Database 12c Release 2 (12.2), and can
be desupported in a future release:

• Oracle Multimedia Java API

• Oracle Multimedia Servlets and JSP Java API

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-71

https://support.oracle.com/rs?type=doc&id=2024500.1
https://support.oracle.com/rs?type=doc&id=2024500.1

• Oracle Multimedia DICOM Java API

• Oracle Multimedia Mid-Tier Java API

Deprecation of Oracle Multimedia Support for DICOM
Starting in Oracle Database 12c release 2 (12.2), the Oracle Multimedia DICOM
feature is deprecated.

There is no replacement for DICOM support in Oracle Database.

Deprecation of Multimedia SQL/MM Still Image Standard Support
Starting in Oracle Database 12c release 2 (12.2), Oracle Multimedia SQL/MM Still
Image standard support is deprecated.

For image processing operations, Oracle Multimedia developers can call the new
ORD_IMAGE PL/SQL package, or call the ORDImage methods.

For image matching, Oracle Database developers can use open source packages,
such as OpenCV.

Deprecation of Unicode Collation Algorithm (UCA) 6.1 Collations
Starting in Oracle Database 12c release 2, the Unicode Collation Algorithm (UCA) 6.1
collations are deprecated.

The Unicode Collation Algorithm (UCA) 6.1 collations (UCA0610_*) are deprecated.
They can be desupported and unavailable in a future release. Oracle recommends
that you use the latest supported version of UCA collations for sorting multilingual
data.

Related Topics

• Oracle Database Globalization Support Guide

Deprecation of UNIFIED_AUDIT_SGA_QUEUE_SIZE
Starting in Oracle Database 12c release 2, the initialization parameter
UNIFIED_AUDIT_SGA_QUEUE_SIZE is deprecated.

The UNIFIED_AUDIT_SGA_QUEUE_SIZE parameter is deprecated, and the value for
this parameter is no longer honored. However, the parameter is currently retained for
backward compatibility.

See Oracle Database Security Guide for additional information about Unified Audit
records.

Related Topics

• Oracle Database Security Guide

Deprecation of VERIFY_FUNCTION and VERIFY_FUNCTION_11G
The VERIFY_FUNCTION and VERIFY_FUNCTION_11G password verify functions are
deprecated in this release, because they enforce the weaker password restrictions
from earlier releases.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-72

Oracle recommends that you use the functions ORA12C_VERIFY_FUNCTION and
ORA12C_STRONG_VERIFY_FUNCTION. These functions enforce stronger, more up-to-date
password verification restrictions.

See Also:

Oracle Database Security Guide

Deprecation of V$MANAGED_STANDBY
The V$MANAGED_STANDBY view is deprecated in Oracle Database 12c release 2
(12.2.0.1). Oracle recommends that you use the new view V$DATAGUARD_PROCESS.

The V$DATAGUARD_PROCESS view includes much more information about processes
used by Oracle Data Guard.

Related Topics

• Oracle Database Reference

Deprecation of Some XML DB Functions
Starting with Oracle Database 12c release 2 (12.2) the options listed in this topic are
deprecated.

The following options are deprecated:

• Oracle XQuery function ora:contains. Use XQuery Full Text instead.

• Oracle SQL function XMLRoot. Use SQL/XML function XMLSerialize() with a version
number instead.

• Nested tables stored as index-ordered tables (IOTs). This includes both the use of option
DBMS_XMLSCHEMA.REGISTER_NT_AS_IOT, and the use of clause NESTED TABLE N STORE
AS ... (ORGANIZATION INDEX) when creating a table with nested-table column N.
Instead, store nested-table columns using heap storage (the default behavior for PL/SQL
procedure DBMS_XMLSCHEMA.registerSchema).

• PL/SQL procedure DBMS_XSLPROCESSOR.CLOB2FILE. Use DBMS_LOB.CLOB2FILE instead.

• PL/SQL function DBMS_XSLPROCESSOR.READ2CLOB. Use DBMS_LOB.LOADCLOBFROMFILE
instead.

• Use of XLink with Oracle XML DB.

• Oracle XML DB Content Connector.

For more information, refer to Oracle XML DB Developer’s Guide.

Related Topics

• Oracle XML DB Developer’s Guide

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-73

Deprecated Features for Oracle XML Database
These features are deprecated in Oracle Database 12c Release 1, and can be
desupported in a future release.

• CLOB storage of XMLType, also known as unstructured storage, is deprecated. Use
binary XML storage of XMLType instead.

To preserve whitespace in an XML file, store two copies of your original XML
document. Use one file as an XMLType instance for database use and XML
processing, and use the other file as a CLOB instance to provide document fidelity.

• Creating an XMLIndex index over an XML fragment stored as a CLOB instance
embedded in object-relational XMLType data is deprecated. If you must index the
data in such a fragment, then store the document using binary XML storage,
instead of object-relational storage.

• The following PL/SQL subprograms in package DBMS_XMLSCHEMA are deprecated:

– generateSchema

– generateSchemas

There are no replacements for these constructs, and there is no workaround for
this change.

• PL/SQL package DBMS_XDB_CONFIG is new. All Oracle XML((nbsp))DB
configuration functions, procedures, and constants are moved from package
DBMS_XDB to DBMS_XDB_CONFIG. These functions, procedures and constants are
now deprecated for package DBMS_XDB. Use them in package DBMS_XDB_CONFIG
instead.

The following is a list of subprograms deprecated in package DBMS_XDB:

– ADDHTTPEXPIREMAPPING

– ADDMIMEMAPPING

– ADDSCHEMALOCMAPPING

– ADDSERVLET

– ADDSERVLETMAPPING

– ADDSERVLETSECROLE

– ADDXMLEXTENSION

– CFG_GET

– CFG_REFRESH

– CFG_UPDATE

– DELETEHTTPEXPIREMAPPING

– DELETEMIMEMAPPING

– DELETESCHEMALOCMAPPING

– DELETESERVLET

– DELETESERVLETMAPPING

– DELETESERVLETSECROLE

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-74

– DELETEXMLEXTENSION

– GETFTPPORT

– GETHTTPPORT

– GETLISTENERENDPOINT

– SETFTPPORT

– SETHTTPPORT

– SETLISTENERENDPOINT

– SETLISTENERLOCALACCESS

The following is a list of constants that are deprecated in package DBMS_XDB:

– XDB_ENDPOINT_HTTP

– XDB_ENDPOINT_HTTP2

– XDB_PROTOCOL_TCP

– XDB_PROTOCOL_TCPS

• All Oracle SQL functions for updating XML data are deprecated. Use XQuery Update
instead for these functions . The following is a list of deprecated XML updating functions:

– updateXML

– insertChildXML

– insertChildXMLbefore

– insertChildXMLafter

– insertXMLbefore

– insertXMLafter

– appendChildXML

– deleteXML

• Oracle SQL function sys_xmlgen is deprecated. Use the SQL/XML generation functions
instead.

• The following Oracle XQuery functions are deprecated. Use the corresponding standard
XQuery functions instead, that is, the functions with the same names but with namespace
prefix fn.

– ora:matches – use fn:matches instead

– ora:replace – use fn:replace instead

• The following Oracle constructs that provide support for XML translations are deprecated.

– PL/SQL package DBMS_XMLTRANSLATIONS

– Oracle XPath function ora:translate

– XML Schema annotations xdb:maxOccurs, xdb:srclang, and xdb:translate

There are no replacements for these constructs, and there is no workaround for this
change.

• The following XML Schema annotations are deprecated:

– xdb:defaultTableSchema

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-75

– xdb:maintainOrder

– xdb:mapUnboundedStringToLob

– xdb:maxOccurs

– xdb:SQLCollSchema

– xdb:SQLSchema

– xdb:srclang

– xdb:storeVarrayAsTable

– xdb:translate

There are no replacements for these constructs, and there is no workaround for
this change.

• The value xml_clobs for export parameter data_options is deprecated
starting with Oracle Database 12c.

Desupported Initialization Parameters in Oracle Database 12c
Release 2 (12.2)

Review this list of desupported initialization parameters for changes and replacements
in parameter settings in this release.

GLOBAL_CONTEXT_POOL_SIZE Initialization Parameter

The GLOBAL_CONTEXT_POOL_SIZE initialization parameter is removed and desupported
in this release.

GLOBAL_CONTEXT_POOL_SIZE specified the amount of memory to allocate in the SGA for
storing and managing global application context. The default value of this parameter
was null. The parameter was deprecated in Oracle Database 10g release 2 (10.2).

MAX_ENABLED_ROLES Initialization Parameter

The MAX_ENABLED_ROLES initialization parameter is removed and desupported in this
release.

There is no replacement for this parameter. Oracle Database has not used this
parameter since Oracle Database 10g release 2 (10.2).

OPTIMIZER_ADAPTIVE_FEATURES Initialization Parameter

The OPTIMIZER_ADAPTIVE_FEATURES initialization parameter is removed and
desupported in this release.

The functions of this parameter are replaced by two new parameters. The default
value for OPTIMIZER_ADAPTIVE_PLANS is TRUE. When set to TRUE, this parameter
determines alternate execution plans that are based on statistics collected as a query
executes. OPTIMIZER_ADAPTIVE_STATISTICS is set by default to FALSE. When set to
TRUE, the optimizer augments the statistics gathered in the database with adaptive
statistics gathered at SQL statement parse time to improve the quality of SQL
execution plans.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-76

PARALLEL_AUTOMATIC_TUNING Initialization Parameter

The PARALLEL_AUTOMATIC_TUNING initialization parameter is removed and desupported in this
release.

The PARALLEL_AUTOMATIC_TUNING initialization parameter determined the default values for
parameters that controlled parallel processing. It was deprecated in Oracle Database 10g
release 2 (10.2).

PARALLEL_IO_CAP_ENABLED Initialization Parameter

The PARALLEL_IO_CAP_ENABLED initialization parameter determined if Oracle Database set a
limit to the default degree of parallelism to a level no greater than the I/O system supported.
This parameter was deprecated in Oracle Database release 11.2. The function of this
parameter was replaced by the PARALLEL_DEGREE_LIMIT parameter, when that parameter is
set to IO.

PARALLEL_SERVER Initialization Parameter

The PARALLEL_SERVER initialization parameter is removed and desupported in this release.

The PARALLEL_SERVER initialization parameter was used to start a database in Oracle Parallel
Server mode. This parameter was deprecated in Oracle9i Database Release 1 (9.0.1).
Oracle Parallel Server was replaced with Oracle Real Application Clusters, which uses the
CLUSTER_DATABASEinitialization parameter.

PARALLEL_SERVER_INSTANCES Initialization Parameter

The PARALLEL_SERVER_INSTANCES initialization parameter is removed and desupported in this
release.

The PARALLEL_SERVER_INSTANCES initialization parameter specified the number of configured
instances in Oracle Parallel Server mode. This parameter was deprecated in Oracle9i
Database Release 1 (9.0.1). Oracle Parallel Server was replaced with Oracle Real
Application Clusters, which uses the CLUSTER_DATABASE_INSTANCES initialization
parameter.

USE_INDIRECT_DATA_BUFFERS Initialization Parameter

The initialization parameter USE_INDIRECT_DATA_BUFFERS is removed and desupported in this
release.

The parameter was used to enable the Very Large Memory feature for 32-bit platforms.
These platforms are no longer supported.

Related Topics

• Oracle Database Reference

Desupported Features in Oracle Database 12c Release 2 (12.2)
Review this list of desupported features as part of your upgrade planning.

• Desupport of Advanced Replication
Starting in Oracle Database 12c release 2 (12.2), the Advanced Replication feature of
Oracle Database is desupported.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-77

• Desupport of Direct File System Placement for OCR and Voting Files
Placing OCR and Voting Disk files on shared file systems is desupported in favor
of placing the files on Oracle ASM.

• Desupport of JPublisher
All Oracle JPublisher features are desupported and unavailable in Oracle
Database 12c Release 2 (12.2.0.1).

• Desupported Oracle Data Provider for .NET APIs for Transaction Guard
Application programming interfaces (APIs) for Transaction Guard listed here are
desupported in Oracle Database 12c release 2 (12.2).

• Desupported Views in Oracle Database 12c Release 2 (12.2)
The views listed in this topic are desupported in Oracle Database 12c release 2
(12.2).

• SQLJ Support Inside Oracle Database
Starting with Oracle Database 12c release 2 (12.2), Oracle does not support
running server-side SQLJ code.

• Desupport of Some XML DB Features
Starting in Oracle Database 12c release 2 (12.2), the XML DB features listed here
are desupported.

Desupport of Advanced Replication
Starting in Oracle Database 12c release 2 (12.2), the Advanced Replication feature of
Oracle Database is desupported.

The Oracle Database Advanced Replication feature is desupported in its entirety. The
desupport of this feature includes all functionality associated with this feature:
multimaster replication, updateable materialized views, and deployment templates.
Read-only materialized views are still supported with basic replication.

Oracle recommends that you replace your use of Advanced Replication with Oracle
GoldenGate.

Desupport of Direct File System Placement for OCR and Voting Files
Placing OCR and Voting Disk files on shared file systems is desupported in favor of
placing the files on Oracle ASM.

Starting with Oracle Grid Infrastructure 12c Release 2 (12.2), the placement of Oracle
Clusterware files: the Oracle Cluster Registry (OCR), and the Voting Files, directly on
a shared file system is desupported in favor of having Oracle Clusterware files
managed by Oracle Automatic Storage Management (Oracle ASM). You cannot place
Oracle Clusterware files directly on a shared file system. If you need to use a
supported shared file system, either a Network File System, or a shared cluster file
system instead of native disks devices, then you must create Oracle ASM disks on
supported network file systems that you plan to use for hosting Oracle Clusterware
files before installing Oracle Grid Infrastructure. You can then use the Oracle ASM
disks in an Oracle ASM disk group to manage Oracle Clusterware files.

If your Oracle Database files are stored on a shared file system, then you can continue
to use the same for database files, instead of moving them to Oracle ASM storage.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-78

Desupport of JPublisher
All Oracle JPublisher features are desupported and unavailable in Oracle Database 12c
Release 2 (12.2.0.1).

Oracle recommends that you use the following alternatives:

• To continue to use Web service callouts, Oracle recommends that you use the Oracle
JVM Web Services Callout utility, which is a replacement for the Web Services Callout
utility.

• To replace other JPublisher automation capabilities, including mapping user-defined SQL
types or SQL types, wrapping PL/SQL packages and similar capabilities, Oracle
recommends that developers use explicit steps, such as precompiling code with SQLJ
precompiler, building Java STRUCT classes, or using other prestructured options.

Related Topics

• https://support.oracle.com/rs?type=doc&id=1937939.1

See Also:

My Oracle Support Note 1937939.1 for more information about JDeveloper
deprecation and desupport

Desupported Oracle Data Provider for .NET APIs for Transaction Guard
Application programming interfaces (APIs) for Transaction Guard listed here are desupported
in Oracle Database 12c release 2 (12.2).

The following Oracle Data Provider for .NET application programming interfaces for
Transaction Guard are desupported in Oracle Database 12c Release 2 (12.2):

• OracleLogicalTransactionStatus class

• OracleConnection.GetLogicalTransactionStatus method

• OracleConnection.LogicalTransactionId property

• OracleConnection.OracleLogicalTransaction property

• OracleLogicalTransaction.DataSource property

• OracleLogicalTransaction.GetOutcome() method

• OracleLogicalTransaction.GetOutcome(string, string, string) method

• OracleLogicalTransaction.UserId property

Desupported Views in Oracle Database 12c Release 2 (12.2)
The views listed in this topic are desupported in Oracle Database 12c release 2 (12.2).

Revise any of your SQL statements that use these views.

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-79

https://support.oracle.com/rs?type=doc&id=1937939.1

DBA_REGISTERED_MVIEW_GROUPS View

V$REPLPROP View

V$REPLQUEUE View

SQLJ Support Inside Oracle Database
Starting with Oracle Database 12c release 2 (12.2), Oracle does not support running
server-side SQLJ code.

Oracle supports using client-side SQLJ. However, Oracle does not support the use of
server-side SQLJ, including running stored procedures, functions, and triggers in the
database environment.

Desupport of Some XML DB Features
Starting in Oracle Database 12c release 2 (12.2), the XML DB features listed here are
desupported.

The following features are desupported:

• Java classes in package oracle.xdb.dom

• Oracle XPath function ora:instanceof. Use XQuery operator instance of
instead.

• Oracle XPath function ora:instanceof-only. Use XML Schema attribute
xsi:type instead.

• Function-based indexes on XMLType. Use XMLIndex with a structured component
instead.

• Oracle XQuery function ora:view. Use XQuery functions fn:collection instead.

• PL/SQL procedure DBMS_XDB_ADMIN.CreateRepositoryXMLIndex

• PL/SQL procedure DBMS_XDB_ADMIN.XMLIndexAddPath

• PL/SQL procedure DBMS_XDB_ADMIN.XMLIndexRemovePath

• PL/SQL procedure DBMS_XDB_ADMIN.DropRepositoryXMLIndex

• XML schema annotation (attribute) csx:encodingType

• XMLIndex index on CLOB portions of hybrid XMLType storage (index on CLOB
data that is embedded within object-relational storage)

Chapter 10
Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)

10-80

A
Oracle Database Upgrade Utilities

Oracle Upgrade utility scripts help to carry out Oracle Database upgrades.

• Scripts for Upgrading Oracle Database
Oracle provides a set of tools and scripts for upgrades that you run before, during, and
after upgrading.

• Pre-Upgrade Information Tool and AutoUpgrade Preupgrade
Learn how to obtain the same features previously offered through the Pre-Upgrade
information tool (preupgrade.jar) by using AutoUpgrade with the preupgrade clause.

Scripts for Upgrading Oracle Database
Oracle provides a set of tools and scripts for upgrades that you run before, during, and after
upgrading.

Note:

Some of the scripts Oracle provides cannot be run in UPGRADE mode.

The following table lists the various scripts and tools with a description for each.

Table A-1 Upgrade, Post-Upgrade, and Downgrade Scripts

Script Description

catcon.pl Must be run in UPGRADE mode. This script is used when upgrading
a CDB.

catctl.pl Parallel Upgrade Utility (catctl.pl, and the shell script
dbupgrade). Run these scripts in UPGRADE mode. With Parallel
Upgrade Utility, you can run upgrade scripts and processes in
parallel. This capability takes full advantage of your server CPU
capacity, and can shorten upgrade time. DBUA uses this tool.

dbdowngrade Shell script utility that calls the catdwgrd.sql script, and ensures
that calls to the catcon.pl script use the recommended values for
the downgrade. This feature helps to reduce potential errors due to
excessive threads being spawned during the upgrade. It is
particularly helpful with multitenant architecture (CDB) downgrades.
Using this script is Oracle's recommended downgrade procedure.

dbupgrade, dbupgrade.cmd Shell scripts that call the catctl.pl script. The scripts enable
you to enter the dbupgrade command at the shell command
prompt. You can either run these scripts with default values, or you
can run them with the same input parameters that you use to run
catctl.pl from the Perl prompt. Use dbupgrade for Linux and
Unix systems, and dbupgrade.cmd for Windows systems.

A-1

Table A-1 (Cont.) Upgrade, Post-Upgrade, and Downgrade Scripts

Script Description

catdwgrd.sql This is the downgrade script, which is used in the procedure to
downgrade to the earlier release from which you upgraded.

catuppst.sql You must run this script, either through DBUA or manually, if you
perform a manual upgrade.

DBUA automatically runs catuppst.sql. You only must run this
script separately for manual upgrades.

Do not run this in UPGRADE mode. Run catuppst.sql, located in
the ORACLE_HOME/rdbms/admin directory, to perform remaining
upgrade actions that do not require the database to be in UPGRADE
mode. If an Oracle bundle patch or patch set update (PSU or BP) is
installed in the Oracle home, then this script automatically applies
that patch set update to the database.

Caution: If you perform a manual upgrade, and you do not run
catuppst.sql,, then your database suffers performance
degradation over time.

catuptabdata.sql The catuptabdata.sql script is run automatically by
catuppst.sql to run ALTER TABLE UPGRADE on any Oracle-
Maintained tables that are affected by changes to Oracle-
Maintained types during the upgrade.
You can run the catuptabdata.sql script manually to upgrade
any Oracle-Maintained tables that require upgrading because of
changes to any Oracle-Maintained types. You must run the
command with a user account that is granted the SYSDBA system
privileges, and that is connected AS SYSDBA.

emremove.sql The emremove.sql script drops the Oracle Enterprise Manager-
related schemas and objects. Use this script to manually remove
DB Control. Running emremove.sql before starting the upgrade
process minimizes downtime. This is an optional pre-upgrade step
because the Parallel Upgrade Utility and DBUA automatically run
this script.

Caution: If you want to preserve the DB Control configuration and
data to have the option of downgrading and restoring DB Control,
then you must first follow the procedure for using emdwgrd .

postupgrade_fixups.sql The postupgrade_fixups.sql script is supplied with Oracle
Database. Run postupgrade_fixups.sql after upgrading. DBUA
runs this script automatically; however, you can run it any time after
upgrading.

utlrp.sql Use utlrp.sql to recompile stored PL/SQL and Java code. DBUA
runs this script automatically. When you upgrade manually, you
must run this script.

utlusts.sql The utlusts.sql Post-Upgrade Status Tool is supplied with
Oracle Database and displays the version and elapsed upgrade
time for each component in DBA_REGISTRY. The Post-Upgrade
Status Tool can be run any time after upgrading the database.

Appendix A
Scripts for Upgrading Oracle Database

A-2

Table A-1 (Cont.) Upgrade, Post-Upgrade, and Downgrade Scripts

Script Description

utluptabdata.sql Run the utluptabdata.sql script after upgrades to perform an
ALTER TABLE UPGRADE command on any user tables that depend
on Oracle-Maintained types that changed during the upgrade.

You must run the utluptabdata.sql script either with a user
account that is assigned the ALTER TABLE system privilege for all
of the tables that you want to upgrade, or by a user account with
SYSDBA system privileges that is connected AS SYSDBA).

User tables are not automatically upgraded to new versions of types
during the database upgrade, so that you can run the upgrade with
user tablespaces set to READ ONLY.

Pre-Upgrade Information Tool and AutoUpgrade Preupgrade
Learn how to obtain the same features previously offered through the Pre-Upgrade
information tool (preupgrade.jar) by using AutoUpgrade with the preupgrade clause.

Starting with Oracle Database 21c, the Pre-Upgrade Information Tool is no longer offered. All
features that you previously obtained using the Pre-Upgrade Information Tool are now offered
using the AutoUpgrade tool

• Using AutoUpgrade To Obtain Pre-Upgrade Information Tool Checks
Learn how to obtain the same system checks you obtained previously through the Pre-
Upgrade Information Tool (preupgrade.jar) by using the AutoUpgrade utility.

• Examples of Preupgrade and Postupgrade Checks
Review the upgrade scenario examples to understand the differences between the Pre-
Upgrade Information Tool and AutoUpgrade using the preupgrade parameter.

Using AutoUpgrade To Obtain Pre-Upgrade Information Tool Checks
Learn how to obtain the same system checks you obtained previously through the Pre-
Upgrade Information Tool (preupgrade.jar) by using the AutoUpgrade utility.

To see how to use AutoUpgade to perform a check you performed in the past using the Pre-
Upgrade Information tool, review the comparison table that follows, and review the examples
in this topic.

For full details about how to use the AutoUpgrade utility to perform checks and run scripts,
refer to the topic Preupgrade under "AutoUpgrade Command Line Parameters."

Table A-2 Comparison of Preupgrade and Postupgrade Checks

Check Pre-Upgrade Information Tool AutoUpgrade

Check source Oracle Database
release readiness for upgrade

Run preupgrade.jar for
database checks. The generated
file upgrade.xml shows check
results.

Run AutoUpgrade with the
preupgrade parameter, run in
analyze mode. Obtain results
from upgrade.xml, which is
located in the directory
Log_dir/database_name/
job_number/prechecks/.

Appendix A
Pre-Upgrade Information Tool and AutoUpgrade Preupgrade

A-3

Table A-2 (Cont.) Comparison of Preupgrade and Postupgrade Checks

Check Pre-Upgrade Information Tool AutoUpgrade

Obtain and run scripts to fix
some issues found in the source
Oracle Database to prepare for
upgrade.

Run preupgrade.jar to obtain
scripts
(preupgrade_fixups.sql and
preupgrade_fixups_pdbname
.sql), which you run manually
using SQL*Plus

Run Autoupgrade with the
preupgrade parameter, run in
fixups mode. AutoUpgrade
runs all database checks, and on
the basis of those results, runs
fixups automatically.

Obtain and run scripts to perform
some postupgrade fixes on the
upgraded Oracle Database

Run preupgrade.jar to obtain
scripts
(postupgrade_fixups.sql
and
postupgrade_fixups_pdbnam
e.sql), which you run manually
using SQL*Plus

Run Autoupgrade with the
preupgrade parameter, run in
postfixups mode.
AutoUpgrade runs all database
checks, and on the basis of
those results, runs postfixups
automatically.

Related Topics

• Preupgrade
The AutoUpgrade parameter preupgrade runs database checks and preupgrade
fixups that fix most issues before you start an upgrade, and postupgrade fixups
that fix most issues after an upgrade is completed.

Examples of Preupgrade and Postupgrade Checks
Review the upgrade scenario examples to understand the differences between the
Pre-Upgrade Information Tool and AutoUpgrade using the preupgrade parameter.

In the examples that follow, consider the following configurations:

• Source: Oracle Database 12c Release 2 (12.2.0.1) Enterprise Edition

• Oracle home: /u01/app/oracle/product/12.2.0/dbhome_1

• Oracle System Identifier (SID): db122

• Target: Oracle Database 19c for the Pre-Upgrade Information Tool, and Oracle
Database 21c for AutoUpgrade using the preupgrade parameter

• Target release Oracle home for Pre-Upgrade Information Tool: /u01/app/oracle/
product/19.0.0/dbhome_1

• Target release Oracle home for AutoUpgrade using the preupgrade
parameter: /u01/app/oracle/product/21.0.0/dbhome_1

Example A-1 Non-CDB Upgrade Database Checks Using AutoUpgrade
Preupgrade Parameter

Previously, when you used the Pre-Upgrade Information Tool, to run all database
prechecks, you completed steps in this order:

1. Run setenv ORACLE_HOME /u01/app/oracle/product/12.2.0/dbhome_1

2. Run setenv ORACLE_SID db122

3. Switch directory to the target Oracle home: /u01/app/oracle/product/19.0.0/
dbhome_1/rdbms/admin

Appendix A
Pre-Upgrade Information Tool and AutoUpgrade Preupgrade

A-4

4. Run the Pre-Upgrade Information Tool:, directing output to a directory: java –jar
preupgrade.jar dir /user/log

5. Check the upgrade.xml file in the log directory

6. Find preupgrade_fixups.sql and postupgrade_fixups.sql in the log directory you
specified (/user/log/cfgtoollogs/db122/preupgrade).

Now, with the AutoUpgrade tool using the preupgrade parameter, you run steps in this order:

1. Run setenv ORACLE_HOME /u01/app/oracle/product/12.2.0/dbhome_1

2. Run setenv ORACLE_SID db122

3. Run java -jar autoupgrade.jar -preupgrade "target_version=21,dir=/
autoupgrade/test/log"

4. Check upgrade.xml under the directory /autoupgrade/test/log/db122/100/prechecks

Example A-2 Non-CDB Upgrade Running Prefixups Using AutoUpgrade Preupgrade
Parameter

Previously, when you used the Pre-Upgrade Information Tool, to run prefixups on your source
database, you completed steps in this order:

1. Change directory to the source Oracle home: /u01/app/oracle/product/12.2.0/
dbhome_1

2. Start SQL*Plus

3. Using SQL*Plus, run preupgrade_fixups.sql generated in the directory you specified (/
user/log/cfgtoollogs/db122/preupgrade)

4. Check fixups results from the SQL*Plus output.

Now, with the AutoUpgrade tool using the preupgrade parameter, you run preupgrade fixups
as follows:

1. Run setenv ORACLE_HOME /u01/app/oracle/product/12.2.0/dbhome_1.

2. Run setenv ORACLE_SID db122.

3. Run java -jar autoupgrade.jar -preupgrade "target_version=21,dir=/
autoupgrade/test/log" –mode fixups. The scripts run automatically.

4. Check prefixups.xml under the directory /autoupgrade/test/log/db122/102/
prefixups.

Example A-3 Non-CDB Upgrade Running Postupgrade Fixups Using AutoUpgrade
Preupgrade Parameter

Previously, when you used the Pre-Upgrade Information Tool, to run postupgrade fixups on
your source database, you completed steps in this order:

1. Start SQL*Plus under the source Oracle Home: /u01/app/oracle/product/12.2.0/
dbhome_1

2. Using SQL*Plus, run postupgrade_fixups.sql generated in the directory you specified
(/user/logcfgtoollogs/db122/preupgrade).

3. Check fixups results from SQL*Plus output.

Now, with the AutoUpgrade tool using the preupgrade parameter, you run postupgrade fixups
as follows:

Appendix A
Pre-Upgrade Information Tool and AutoUpgrade Preupgrade

A-5

1. Run setenv ORACLE_HOME /u01/app/oracle/product/12.2.0/dbhome_1.

2. Run setenv ORACLE_SID db122.

3. Run java -jar autoupgrade.jar -preupgrade "target_home=/u01/app/
oracle/product/21.0.0/dbhome_1,dir=/autoupgrade/test/log" –mode
postfixups

4. Check postfixups.xml under directory /autoupgrade/test/log/db122/102/
postfixups.

Example A-4 Comparison of Output Examples for Pre-Upgrade Information
Tool and AutoUpgrade

The following is an example of the output generated by running prechecks with the
Pre-Upgrade Information tool (using Oracle Database 19c as the target release), and
AutoUpgrade using the Pre-Upgrade Information Tool (using an upgrade to Oracle
Database 21c). Note that you are required to run scripts manually after the script
completes:

[oracle@localhost preupgrade]$ java -jar /databases/product/19c/
dbhome_1/rdbms/admin/preupgrade.jar \
xml dir /autoupgrade/test/preupgrade
==================
PREUPGRADE SUMMARY
==================
 /autoupgrade/test/preupgrade/upgrade.xml
 /autoupgrade/test/preupgrade/preupgrade_fixups.sql
 /autoupgrade/test/preupgrade/postupgrade_fixups.sql
Execute fixup scripts as indicated below:
Before upgrade:
Log into the database and execute the preupgrade fixups
@/autoupgrade/test/preupgrade/preupgrade_fixups.sql
After the upgrade:
Log into the database and execute the postupgrade fixups
@/autoupgrade/test/preupgrade/postupgrade_fixups.sql
Preupgrade complete: 2020-07-06T16:35:14

The following is an example for running AutoUpgrade with the preupgrade parameter
using analyze mode, with the target release Oracle Database 21c.

[oracle@localhost /autoupgrade]$ java -jar autoupgrade.jar -preupgrade
"target_version=21,dir=/autoupgrade/test/log" -mode analyze
AutoUpgrade tool launched with default options
Processing config file ...
+--------------------------------+
| Starting AutoUpgrade execution |
+--------------------------------+
1 databases will be analyzed
Type 'help' to list console commands
upg> Job 102 completed
------------------- Final Summary --------------------

Appendix A
Pre-Upgrade Information Tool and AutoUpgrade Preupgrade

A-6

Number of databases [1]
Jobs finished successfully [1]
Jobs failed [0]
Jobs pending [0]
------------- JOBS FINISHED SUCCESSFULLY -------------
Job 102 for db122

Appendix A
Pre-Upgrade Information Tool and AutoUpgrade Preupgrade

A-7

B
Upgrading with Oracle Database Upgrade
Assistant (DBUA)

Database Upgrade Assistant (DBUA) provides a graphical user interface to guide you
through the upgrade of Oracle Database.

• Requirements for Using DBUA
To use Database Upgrade Assistant (DBUA) for multitenant architecture and non-CDB
Oracle Database upgrades, complete these requirements.

• About Stopping DBUA When Upgrading
You must complete an upgrade manually if you stop DBUA.

• How DBUA Processes the Upgrade for Oracle Database
You can start DBUA as part of the database software installation, or you can start it
manually after installing the software.

• Upgrade Scripts Started by DBUA
During the upgrade, DBUA automatically runs the appropriate upgrade scripts to
automate the upgrade and minimize downtime.

• Using DBUA to Upgrade the Database on Linux, Unix, and Windows Systems
To upgrade a database using the DBUA graphical user interface, perform these steps
from within the new Oracle home.

• Moving a Database from an Existing Oracle Home
You can use Database Upgrade Assistant (DBUA) to migrate Oracle Database databases
from an existing Oracle home to another Oracle home.

• Using DBUA in Silent Mode to Upgrade Oracle Database
You can DBUA with the -silent command line option to carry out noninteractive
(“silent”) upgrades using DBUA.

• Running DBUA with Different ORACLE_HOME Owner
Review this topic if your Oracle Database homes are owned by different operating
system user accounts, or you encounter an upgrade.xml not found error.

• Migrating from Oracle ACFS to Alternative Storage Before Using DBUA
If your operating system is Microsoft Windows, and your Oracle Database release uses
Oracle ASM Cluster File System (ACFS), then you must migrate from that storage before
starting the upgrade.

Requirements for Using DBUA
To use Database Upgrade Assistant (DBUA) for multitenant architecture and non-CDB Oracle
Database upgrades, complete these requirements.

DBUA and Databases Using Oracle Database Vault

If Oracle Database Vault is enabled, then review the topic “Requirement for Upgrading Oracle
Databases That Use Oracle Database Vault”.

B-1

DBUA and Oracle Database Architecture Configuration

Oracle Database 19c is the terminal release for non-CDB architecture.

Note:

You cannot upgrade a database using Database Upgrade Assistant (DBUA)
when the source and target Oracle homes are owned by different users.
Attempting to do so returns error PRKH-1014. Either ensure that the source
and target databases have the same owner, or perform a manual upgrade.

You can use DBUA to upgrade multitenant architecture container databases (CDB),
pluggable databases (PDBs), and non-CDB databases. The procedures are the same,
but the choices you must make and the behavior of DBUA are different, depending on
the type of upgrade:

• To use guaranteed restore points, ensure that the database ARCHIVE LOG and
FLASHBACK modes are on during upgrade. You can confirm that they are on by
entering the following SQL command:

SQL> select log_mode,flashback_on from v$database;

• If the database instance is not running, then DBUA tries to start the instance. If the
instance is up and running, then DBUA connects to it.

• If you restore your database manually (not using DBUA), then before starting
DBUA, remove the Welcome_SID.txt file, which is located in the directory
ORACLE_HOME/cfgtoollogs/dbua/logs/. If DBUA finds this file, then DBUA starts
in a re-run operation.

• Restore scripts generally enable you to restore your database (Non-CDB single
instance, high availability, or Oracle RAC) back to the earlier release and earlier
Oracle home location. However, if you have registered your database with Oracle
Internet Directory (OID), then the restore script cannot unregister Oracle Internet
Directory. You must log in as an authorized user, and unregister the later release
database manually.

Downloads Required Before Using DBUA

Before you run DBUA, complete the following downloads:

• So that DBUA can perform preupgrade checks, you must download and install the
most recent AutoUpgrade utility from My Oracle Support note 2485457.1.

• For upgrades from Oracle Database 19c, download the latest version of
preupgrade.jar from My Oracle Support note 884522.1. Download
preupgrade.jar into the Oracle Database 19c Oracle home, under the directory
path Oracle_home/rdbms/admin, and unzip the file there.

Related Topics

• Requirements for Upgrading Databases That Use Oracle Label Security and
Oracle Database Vault
You must complete these tasks before starting an upgrade with a database using
Oracle Label Security or Oracle Database Vault.

Appendix B
Requirements for Using DBUA

B-2

• My Oracle Support note 2485457.1

• My Oracle Support note 884522.1

About Stopping DBUA When Upgrading
You must complete an upgrade manually if you stop DBUA.

If you stop the upgrade, but do not restore the database, then you cannot continue to
upgrade using DBUA. You must instead continue the upgrade using the manual (command
line) upgrade procedure. You cannot go back to the original Oracle Database server unless
you restore your database.

Related Topics

• Manually Upgrading a Multitenant Container Oracle Database (CDB)

How DBUA Processes the Upgrade for Oracle Database
You can start DBUA as part of the database software installation, or you can start it manually
after installing the software.

If you install the new Oracle Database software, and you specify that you are upgrading an
existing Oracle database, then DBUA starts automatically. You can also start DBUA
independently after the installation is completed.

While the upgrade is in process, DBUA shows the upgrade progress for each component.
DBUA writes detailed trace and log files and produces a complete HTML report for later
reference. To enhance security, DBUA automatically locks new user accounts in the
upgraded database. DBUA then proceeds to create new configuration files (parameter and
listener files) in the new Oracle home.

DBUA does not begin the upgrade process until all the pre-upgrade steps are completed.

Related Topics

• Rerunning Upgrades for Oracle Database

• Tasks to Prepare for Oracle Database Upgrades

Upgrade Scripts Started by DBUA
During the upgrade, DBUA automatically runs the appropriate upgrade scripts to automate
the upgrade and minimize downtime.

During the prerequisite phase, DBUA runs AutoUpgrade using the preupgrade parameter
(autoupgrade.jar -preupgrade -mode), which runs database checks and preupgrade fixups
that fix most issues before you start an upgrade.

DBUA uses the following logic to modify or create new required tablespaces:

• If the data files are auto-extensible and have enough disk space to grow, then DBUA
continues with the upgrade.

• If the data files are not auto-extensible, then DBUA prompts you and makes the files
auto-extensible.

Appendix B
About Stopping DBUA When Upgrading

B-3

https://support.oracle.com/rs?type=doc&id=2485457.1
https://support.oracle.com/rs?type=doc&id=884522.1

• If the tablespaces are auto-extensible and the MAXSIZE initialization parameter
needs adjustment, then DBUA prompts you to for this adjustment, and adjusts the
MAXSIZE parameter.

• If there is not enough disk space to grow, then DBUA prompts you to create space
by adding more data files. DBUA does not automatically add new data files,
because DBUA cannot determine where to create the files.

DBUA addresses many issues found during the prerequisite phase. For example,
DBUA can ensure that the correct time zone file is used, and make ACL adjustments
for network access control lists.

During the upgrade phase, DBUA runs catctl.pl, which runs the upgrade processes
in parallel instead of serially. Parallel runs optimize utilization of CPU resources to
hasten the upgrade and minimize downtime.

Related Topics

• Preupgrade
The AutoUpgrade parameter preupgrade runs database checks and preupgrade
fixups that fix most issues before you start an upgrade, and postupgrade fixups
that fix most issues after an upgrade is completed.

Using DBUA to Upgrade the Database on Linux, Unix, and
Windows Systems

To upgrade a database using the DBUA graphical user interface, perform these steps
from within the new Oracle home.

On Microsoft Windows systems (Windows), run DBUA either as an Oracle Database
administrative user (a user with the operating system-assigned ORA_DBA role), or as the
Oracle installation owner account.

1. Start Oracle Database Upgrade Assistant (DBUA) from the Oracle home where
the new database software is installed. The dbua executable is located in the
directory path ORACLE_HOME/bin.

• On Linux or Unix platforms, log in as a user with SYSDBA privileges, and
enter the following command at a system prompt in the new home for Oracle
Database 21c:

./dbua

• On Windows operating systems, select Start, then Programs, then Oracle
HOME_NAME, then Configuration and Migration Tools, and then Database
Upgrade Assistant.

2. The Select Database window displays. If you have earlier release Oracle
Database installations, then these installations are listed as available to upgrade.
If you need help on any DBUA window, or if you want to consult more
documentation about DBUA, then click Help to open the online help.

If needed, enter the SYSDBA user name and password for the database that you
select.

If you run DBUA from a user account that does not have SYSDBA privileges, or if
the source database does not have operating system authentication, then you
must enter the user name and password credentials to enable SYSDBA privileges

Appendix B
Using DBUA to Upgrade the Database on Linux, Unix, and Windows Systems

B-4

for the selected database. If the user account you use has SYSDBA privileges, or you
used operating system authentication, then you do not need to enter the user name and
password.

Click Next after making your selection.

Note:

• You can select only one database at a time.

• With single-instance upgrades, if the database does not appear in the list,
then check to see if an entry with the database name exists in /etc/
oratab. If the database is not listed there, then direct DBUA to upgrade
particular databases:

– If your single-instance database is not listed in /etc/oratab, and DBUA
can connect to the database, then you can direct DBUA to upgrade that
database explicitly by starting DBUA using the command-line
arguments -sid Oracle_SID, -oracleHome Oracle_home, and
sysDBAPassword password as a command-line argument. For example:

dbua -sid Oracle_SID –oracleHome /u01/app/oracle/18.1.0/
dbhome1 -sysDBAUserName SYS -sysDBAPassword password

• If your account does not have SYSDBA privileges, or you do not have
operating system authentication set up, then you can use the following
syntax to connect, where mydb is your Oracle Database SID, username is a
user name with SYSDBA privileges, and password is that user name’s
password:

dbua -sid mydb –oracleHome /u01/app/oracle/18.1.0/dbhome1 -
sysDBAUserName - username -sysDBAPassword - password

• Oracle Real Application Clusters (Oracle RAC) upgrades: If the database
does not appear on the list, then enter the following crsctl command to
check for Oracle RAC instances:

crsctl status resource -t

You can also enter the following command to check for a particular Oracle
RAC database, where db_name is the Oracle RAC database name:

crsctl status resource ora.db_name.db

• On Microsoft Windows, the following security changes affect authentication
and user accounts:

– For security reasons, Windows NTS authentication using the NTLM
protocol is no longer supported. Kerberos authentication is the only
supported authentication. In this release, NTS does not work either in
Windows NT domains, or in domains with Windows NT controllers.

– Oracle uses standard Microsoft Windows user accounts instead of the
Windows LocalSystem account to run Oracle database services.
Reducing the account access privileges for the Oracle installation
owner provides better security on Microsoft Windows.

Appendix B
Using DBUA to Upgrade the Database on Linux, Unix, and Windows Systems

B-5

3. DBUA displays the Pluggable Databases window. The Pluggable Databases
window lists the pluggable databases contained in the CDB. The listed PDBs are
upgraded as part of the upgrade for the selected CDB.

You can select the upgrade priority for PDBs. Click in the priority column for each
PDB, and enter a numeric value for upgrade priority, where 1 is upgraded first, 2 is
upgraded second, and so on.

By default, CDB$ROOT, PDB$SEED, and all PDBs that are plugged into the CDB are
upgraded. If you do not want some PDBs to be upgraded now, then unplug those
PDBs.

When you have completed selecting PDBs and upgrade priorities, click Next.

4. Windows platforms only: If the upgrade target home is a secure home that is
associated with an Oracle home user, then the Specify Oracle Home User
Password window opens. For other platforms, proceed to the next step.

Provide the Oracle home user name, and provide the password for this user
account, and click Next.

5. The Prerequisite Checks window opens. DBUA analyzes the databases,
performing preupgrade checks and displaying warnings as necessary. The
following is a list of examples of DBUA checks, and of actions that DBUA performs
on the database:

• Empty database recycle bin.

• Identify invalid objects.

• Identify deprecated and desupported initialization parameters.

• Identify time zone data file version.

The analysis takes several minutes to complete.

When DBUA finishes its analysis, the Prerequisite Checks window displays again,
showing the results of the checks.

The Prerequisite Checks window shows the checks that DBUA has completed,
and the severity of any errors discovered. When DBUA finds errors, it indicates
which errors are fixable, and what action you can take to correct the error.

Select Fix & Check Again if any errors that DBUA can fix appear.

If DBUA detects errors that it cannot correct, then fix the cause of the error
manually, and select Check Again.

If DBUA finds no errors or warnings, then the DBUA automatically bypasses this
window and proceeds to the next window.

When you have fixed detected errors, click Next.

6. The Select Upgrade Options window displays.

This window provides the following options:

Enable Parallel Upgrade

Select this option if you want to enable parallelism during the upgrade process.
Running upgrade processes in parallel reduces the time required to perform the
upgrade, based on the number of CPUs available to handle the running of scripts
and processes simultaneously.

Recompile Invalid Objects During Post Upgrade

Appendix B
Using DBUA to Upgrade the Database on Linux, Unix, and Windows Systems

B-6

This option recompiles all invalid PL/SQL modules after the upgrade is complete. If you
do not have DBUA recompile invalid objects in its post-upgrade phase, then you must
manually recompile invalid objects after the database is upgraded.

Upgrade Time Zone Data

This option updates the time zone data file for this release. If you do not select this
option, then you must update the time zone configuration file manually after the upgrade.

Specify custom SQL scripts to be executed.

If you want to run custom SQL scripts as part of your upgrade, then select this option. As
needed, click Browse for the Before Upgrade or After Upgrade input fields. Navigate to
the location where your custom SQL scripts are located.

When you have made your selections, click Next.

7. The Select Recovery Options window appears. To recover the database if a failure
occurs during upgrade, select from one of the following options:

• Use Flashback and Guaranteed Restore Point.

You can create a new Guaranteed Restore Point, or use an existing one. If you use
an existing restore point, then click the selection button to select the restore point that
you want to use.

Note:

If the database that you are upgrading has Oracle Data Guard physical
standbys, then you must first create a guaranteed restore point on each
standby before you create one on the primary database. If you do not
create restore points on each standby first, then you must recreate all
standby databases again after using the guaranteed restore point to
downgrade the primary database. After the upgrade is successful, you must
manually drop all guaranteed restore points on the standbys.

• Use RMAN Backup

Select among the following RMAN backup options:

– Create a new Offline RMAN backup. Select a path where you want to place the
backup.

– Create a New Partial Offline RMAN Backup with R/O User Tablespace. If you
select this option, then user tablespaces are placed into read-only mode during
the upgrade, and a new partial offline RMAN backup is created.

– Use Latest Available Full RMAN Backup. If you select this option, then click
Edit Restore Script to select the backup that you want to use.

• I have my own backup and restore strategy.

Select this option only if you have a third-party backup solution in place for your
existing database.

When you have made your selections, click Next.

8. For single-instance database installations, the Configure Network window opens. Select
one or more listeners from the source Oracle home that you want to migrate to the new
upgraded Oracle home, or create a new listener during installation.

Appendix B
Using DBUA to Upgrade the Database on Linux, Unix, and Windows Systems

B-7

The Listener Selection area of the Network Configuration window shows a table
with the following columns:

• Select column. Select the listeners that you want to update.

• Name This column shows listener names.

• Port This column shows the ports on which listeners are configured.

• Oracle Home This column shows the Oracle home where listeners are
configured.

• Status This column shows the listener status (up or down).

• Migrate Select this column, and choose Yes to migrate, or No if you do not
want to migrate.

You can also select to create a new listener. If you create a new listener, then
provide the listener name, the Oracle home where you want it placed, and the port
that you want to configure the listener to monitor.

After you make your choices, DBUA completes the following steps for any
listeners that you migrate:

a. DBUA adds the selected listener to the listener.ora file of the target
Oracle home, and starts it.

b. DBUA removes the entry of the upgraded database from the old (source)
listener.ora file.

c. DBUA reloads the listener.ora file in both the source and target Oracle
Database environments.

Note:

If there are other databases registered with the same listener, then their
new client connection requests can be affected during listener migration.

Click Next when you have completed your choices.

9. The Configure Management window appears. In the Configure Management
window, select the management options:

• Configure Enterprise Manager (EM) database express

Oracle Enterprise Manager Database Express is a web-based database
management application that is built into Oracle Database. EM Express
replaces the DB Control component that was available in earlier releases. If
you select to configure Enterprise Manager Database Express, then Enter the
EM Database Express Port number. For example: 5500. You can also select
the check box to configure the express port as the global port.

• Register with Enterprise Manager (EM) Cloud Control

Registering with Oracle Enterprise Manager Cloud Control adds the database
and its related entities, such as Listener, Oracle ASM disk groups, and Oracle
Clusterware, as targets that you can manage with EM Cloud Control.

If you select this option, then you must provide information in the following
fields:

Appendix B
Using DBUA to Upgrade the Database on Linux, Unix, and Windows Systems

B-8

– OMS Host

– OMS Port

– EM Admin Username

– EM Admin Password

– DBSNMP User Password

– ASMSNMP User Password

When you have completed entering information, click Next.

10. The Summary window opens. The Summary window shows the information that you
have provided for the upgrade. Scroll down the list to review the information. The
summary includes information such as the following:

• Source Database

• Target Database

• Pluggable Databases

• Pre-Upgrade Checks

• Initialization Parameters changes

• Timezone Upgrade

Check your selections. Then, either select a link to the item that you want to change, or
click Back to go to earlier pages, or select Finish:

• If you see information in the Summary window that you want to correct, then click a
link on an item that you want to update, or click Back to navigate backward through
the DBUA configuration interview.

• Click Finish if the information that you see in the Summary window is correct. The
upgrade begins after you select Finish.

The Progress window displays with the progress bar, as DBUA begins the upgrade. The
Progress window displays a table that shows the steps DBUA is completing during the
upgrade. This table shows the time duration, and the upgrade steps status as the
upgrade proceeds. DBUA provides a Stop button in case you must cancel the upgrade at
this point.

When the upgrade has progressed through finishing the upgrade of the CDB root and
each PDB seed, the Progress window marks the status as Finished.

11. After the upgrade is complete, the Results window opens. The Results window displays
information about the original database, and about the upgraded database. The Upgrade
Results report also shows changes that DBUA made to the initialization parameters. If
you are upgrading a multitenant architecture database, then the Results window also
shows pluggable databases, and the directory where log files are stored after the
upgrade. Scroll down to see more details about preupgrade checks. If the upgrade is
successful, then the Upgrade Results field reports the results, and you do not see
warning messages. If the upgrade was unsuccessful, then the Restore Database button
is displayed on the lower right corner below the display field. You can click this button to
start a database restoration.

12. Optional: Examine the log files to obtain more details about the upgrade process. If the
Oracle base environment variable is set, then the DBUA log files are located in the path /
ORACLE_BASE/cfgtoollogs/dbua/upgradesession_timestamp/SID. If Oracle
base is not set, then the DBUA log files are located in the path /ORACLE_HOME/
cfgtoollogs/dbua/upgradesession_timestamp/SID

Appendix B
Using DBUA to Upgrade the Database on Linux, Unix, and Windows Systems

B-9

Note:

An HTML version of the Upgrade Results window is also saved in the log
files directory. You can click the links in this HTML window to view the log
windows in your browser.

If you are satisfied with the upgrade results, then click Close to quit DBUA.

13. After your upgrade is completed, carry out post-upgrade procedures described in
this book. When you have completed post-upgrade procedures, your upgraded
database is ready to use.

Caution:

To prevent unauthorized use of the database, Oracle recommends that you
change all user passwords immediately after you upgrade your database.

If the default security settings for Oracle Database 12c and later releases are
in place, then passwords must be at least eight characters. Passwords such
as welcome and oracle are not allowed.

Moving a Database from an Existing Oracle Home
You can use Database Upgrade Assistant (DBUA) to migrate Oracle Database
databases from an existing Oracle home to another Oracle home.

1. Start DBUA.

DBUA opens the Select Database window.

All databases on the server are listed. DBUA indicates the type of operation that
you can perform for each database (upgrade, move, in place), depending on the
database release and location.

Select a database that you want to move to the new Oracle home. If you have not
enabled operating system authentication for the database, then provide the
SYSDBA user name and password for the database that you select.

Click Next. The Move Database Options window appears.

2. In the Select Move Options window, you can specify custom SQL scripts that you
want to run after moving the database, and identify where the files are located.

Click Next. The Configure Network window appears.

3. On single-instance systems, you can either select an existing listener, or create a
new listener. If you create a new listener, then you must provide a listener name,
and a port number for the listener.

Click Next. The Database Move Summary window appears.

4. Review the summary for the move operation.

After you complete you review, click Next.

Appendix B
Moving a Database from an Existing Oracle Home

B-10

5. The Setup window appears, which shows DBUA processes as it moves the database.

6. When the move operation completes, click Finish.

7. The Results window appears. You can review the source and target database
information, and check move steps, or check log files. When you are finished with your
review, click Close.

Using DBUA in Silent Mode to Upgrade Oracle Database
You can DBUA with the -silent command line option to carry out noninteractive (“silent”)
upgrades using DBUA.

. In silent mode, DBUA does not present a user interface. DBUA writes messages (including
information, errors, and warnings) to a log file in ORACLE_HOME/cfgtools/dbua/
upgradesession_timestamp, where session_timestamp represents the timestamp for the
upgrade that DBUA has run. Oracle strongly recommends that you read the resulting DBUA
log files to ensure a successful upgrade.

• Running DBUA in Silent Mode
Use this procedure to start DBUA in noninteractive (or “silent”) mode.

• DBUA Command-Line Syntax for Active and Silent Mode
Use this syntax to run Database Upgrade Assistant (DBUA) either interactively, or by
using the -silent option.

Running DBUA in Silent Mode
Use this procedure to start DBUA in noninteractive (or “silent”) mode.

1. To start DBUA in silent mode, enter the dbua -silent -sid command. The command
starts DBUA in silent mode, and identifies the database that you want to upgrade.

For example, enter the following command, where the database name is ORCL:

dbua -silent -sid ORCL &

DBUA Command-Line Syntax for Active and Silent Mode
Use this syntax to run Database Upgrade Assistant (DBUA) either interactively, or by using
the -silent option.

Purpose

When you run DBUA by using the command-line option, you can specify all valid DBUA
options in a script form. The script form enables you to avoid entering configuration
information in a graphic user interface dialog.

File Path

$ORACLE_HOME/directory_name

Syntax

Usage: dbua [flag] [option]

Appendix B
Using DBUA in Silent Mode to Upgrade Oracle Database

B-11

Flags

-createPartialBackup Flag to create a new offline partial RMAN backup by setting
the user tablespaces in Read-Only mode.
-backupLocation Flag to identify the path for the RMAN backup.
-disableParallelUpgrade Flag to disable the parallel execution of database upgrade.
-executePreReqs Flag to run the preupgrade checks alone for the specified database.
-sid | -dbName
-sid
-dbName
-help - Shows this usage help.
-ignorePreReqs Ignore error conditions in preupgrade checks.
-silent Runs configuration in silent mode.
-sid | -dbName
-sid
-dbName
-skipListenersMigration Flag to bypass the listener migration process as part of the
database upgrade.

Options

The DBUA command line options are as follows:

[-asmsnmpPassword - ASMSNMP user password]
[-backupLocation - Directory-where-you-want-to-back-up-your-database-
before-starting-upgrade
[-createGRP - [True | false] Create a guaranteed restore point when database is
in archive log and flashback mode.
[-createListener - [true [listenrName:lsnrPort] | false]] Create a listener in
later release Oracle home. If true, then add: listenerName:lsnrPort
[-dbName - database-name]
[-oracleHome - Oracle-home-path-of-database]
[-sysDBAUserName - User-name-with-SYSDBA-privileges]
[-sysDBAPassword - Password-for-sysDBAUserName-user-name]
[-dbsnmpPassword - DBSNMP-user-password]
[-disableUpgradeScriptLogging - [true | false]] This command disables the
detailed log generation for running SQL scripts during the upgrade process. By default
this is enabled. To enable the log generation, don't specify this command.
[-emConfiguration - [DBEXPRESS | CENTRAL | BOTH | NONE] Specifies Enterprise
Manager information.
[-dbsnmpPassword - DBSNMP-user password]
[-emPassword - Enterprise-Manager-administration-user-password]
[-emUser - Enterprise-Manager-Administration-username-to-add-or-modify-
targets]
[-emExpressPort - port-for-EM-Express]
[-omsHost - Enterprise-Manager-management-server-host-name]
[-omsPort - Enterprise-Manager-management-server-port-number]
[-asmsnmpPassword - ASMSNMP-user-password]
[-ignoreScriptErrors - [true | false]] Specify this flag for ignoring ORA errors
during custom scripts.
[-initParam - name=value,name=value,...] Specify a comma separated list of
initialization parameter values of the
format name=value,name=value
[-initParamsEscapeChar - [escape character] Escape character for comma when

Appendix B
Using DBUA in Silent Mode to Upgrade Oracle Database

B-12

a specific initParam has multiple values. If the escape character is not specified, then
backslash (\) is the default escape
[-excludeInitParams - comma-delimited-list-of-initialization-parameters-to-
exclude]
[-keepDeprecatedParams - [true | false]] Retain (or not) deprecated parameters during
database upgrade.
[-localListenerWithoutAlias] Sets LOCAL_LISTENER without TNS Alias.
[-listeners listenerName:Oracle Home, listenerName:Oracle Home, …] Registers the
database with existing listeners. Specify listeners by comma-delimited list in the form
listenerName:Oracle Home. Listeners from earlier release Oracle homes are migrated to
newer release,lsnrName2 or -listeners lsnrName1:Oracle home path,-listeners
lsnrName2:Oracle home path. DBUA searches specified listeners from the Grid Infrastructure
home (if configured), the target home, and source home.
[-localRacSid - local-System-Identifier-of-cluster-database] Use if if the cluster
database is not registered in the Oracle Cluster Registry (OCR).
[-logDir - Path-to-a-custom-log-directory]
[-newGlobalDbName - New Global Database Name] This option can only be used for Oracle
Express Edition upgrades
[-newSid - New System Identifier] This option can only be used for Oracle Express
Edition upgrades
[-newInitParam - name=value,name=value,...] Specify a comma-delimited list of
initialization parameter values of the format name=value,name=value. Use this option to
specify parameters that are allowed only on the target Oracle home.
[-initParamsEscapeChar - escape character] Specify an escape character for comma
when a specific initParam has multiple values. If the escape character is not specified, then
backslash (\) is the default escape.
[-oracleHomeUserPassword - Oracle-Home-user-password]
[-pdbs - [All | NONE | pdb, pdb,…]] Specify ALL to select all PDBs, NONE to select no
PDBs, or provide a comma-delimited list with
the names of the pluggable databases (PDBs) that you want upgraded.
-sid | -dbName
-sid - System Identifier
[-oracleHome - Oracle home path of the database]
[-sysDBAUserName - User-name-with-SYSDBA-privileges]
[-sysDBAPassword - Password-for-sysDBAUserName-user-name]
-dbName - Database-Name
[-oracleHome - Oracle-home-path-of-database]
[-sysDBAUserName - User-name-with-SYSDBA-privileges]
[-sysDBAPassword - Password-for-sysDBAUserName-user-name]
[-pdbsWithPriority - pdb:priority, pdb:priority, pdb:priority,...] Specify a
comma-delimited list of pluggable databases (PDB) that you want upgraded, including their
corresponding priorities (1 the top priority).
-sid | -dbName
-sid - system-identifier
[-oracleHome - Oracle-home-path-of-database
[-sysDBAUserName - User-name-with-SYSDBA-privileges]
[-sysDBAPassword - Password-for-sysDBAUserName-user-name]
-dbName - database-name
[-oracleHome - Oracle-home-path-of-the-database]
[-sysDBAUserName - User-name-with-SYSDBA-privileges]
[-sysDBAPassword - Password-for-sysDBAUserName-user-name]
[-performFixUp - [true | false] Enable or disable fixups for the silent upgrade mode.
[-postUpgradeScripts - SQLscript, SQLscript,…] Specify a comma-delimited list of SQL
scripts with their complete pathnames. After the upgrade completes, these SQL scripts are

Appendix B
Using DBUA in Silent Mode to Upgrade Oracle Database

B-13

run.
[-preUpgradeScripts - SQLscript, SQLscript,…]Specify a comma-delimited list of
SQL scripts with their complete pathnames. Before the upgrade starts, these SQL
scripts are run.
[-recompile_invalid_objects - [true | false]] If true, then recompiles invalid
objects as part of the upgrade.
[-upgrade_parallelism - number] Numeric value for the number of CPUs that you
want to use for parallel upgrade.
[-upgradeTimezone - [true | false]] If true, then upgrades the timezone files of
the database during the upgrade.
[-upgradeXML - Path-to-existing-preupgrade-XML-file] This option only applies
to in-place database upgrades.
[-useExistingBackup - [true | false]] Use to enable restoration of the database
using existing RMAN backup.
[-useGRP - Name-of-existing-guaranteed-restore-point] Use to enable
restoration of the database using a specified guaranteed restore point.

Example B-1 Selecting a Database for Upgrade with DBUA

The following command selects the database orcl for upgrade:

dbua -sid orcl

Note:

You can use DBUA commands to set passwords. If the default Oracle
Database security settings are in place, then passwords must be at least
eight characters, and passwords such as welcome and oracle are not
allowed.

Example B-2 Selecting a Database for Upgrade with DBUA Using
Noninteractive ("Silent") Option

The following command selects the database orcl for upgrade using the
noninteractive ("silent") option:

dbua -silent -sid orcl

Example B-3 Use Cases for Running DBUA in Noninteractive (”Silent") Mode

The examples that follow illustrate how you can use DBUA with the noninteractive
(”silent") option to carry out a variety of upgrade scenarios.

dbua -silent -sid sidb112 -backupLocation /u01/sidb1123/backup -
sysDBAUserName sys -sysDBAPassword r3aDy2upg -oracleHome /u01/app/
product/11.2.0/dbhome_1 -upgradeTimezone true dbua -silent -sid
sidb1123 -backupLocation /u01/sidb1123/backup -sysDBAUserName sys -

Appendix B
Using DBUA in Silent Mode to Upgrade Oracle Database

B-14

sysDBAPassword r3aDy2upg -oracleHome /u01/app/product/11.2.0/dbhome_1 -
upgrade_parallelism 1 -upgradeTimezone true

dbua -silent -sid db1124 -backupLocation /u01/sidb1123/backup -
sysDBAUserName sys -sysDBAPassword r3aDy2upg -performFixUp true -
upgradeTimezone true

dbua -silent -dbName rdbcdb -oracleHome /u01/app/product/11.2.0/dbhome_1 -
sysDBAUserName sys -sysDBAPassword r3aDy2upg -backupLocation /u01/sidb1123/
backup -recompile_invalid_objects true -upgradeTimezone true

dbua -silent -dbName amdb -oracleHome /u01/app/product/11.2.0/dbhome_1 -
sysDBAUserName sys -sysDBAPassword r3aDy2upg -recompile_invalid_objects true
-useGRP GRP_20170620bfupgrade -upgradeTimezone true

dbua -silent -dbName rdb12 -oracleHome /u01/app/product/12.2.0/dbhome_2 -
sysDBAUserName sys -sysDBAPassword r3aDy2upg -backupLocation /u01/sidb12/
backup -recompile_invalid_objects true -upgradeTimezone true

dbua -silent -dbName ronedb -oracleHome /u01/app/product/12.2.0/dbhome_2 -
sysDBAUserName sys -sysDBAPassword r3aDy2upg -recompile_invalid_objects true
-upgradeTimezone true -createGRP true

Note:

Refer to Oracle Database Security Guide for information about security best
practices.

Related Topics

• Oracle Database Security Guide

Running DBUA with Different ORACLE_HOME Owner
Review this topic if your Oracle Database homes are owned by different operating system
user accounts, or you encounter an upgrade.xml not found error.

DBUA upgrades by default assume that both the source Oracle home and the target Oracle
home are owned by the same user. If each Oracle home is not owned by the same user, then
you must change to database file permissions and pass additional parameters to DBUA. If
you do not do this, then during upgrade, the DBUA Prerequisite Checks page reports
upgrade.xml not found errors. You are not permitted to proceed with the upgrade until
this error is corrected.

• All Oracle Database installation owners should have the group that you designate as the
OINSTALL group (or Oracle Inventory group) as their primary group. Ensure all database
files (data files, the redo file, control files, archive log destination, recovery area, SPFILE,

Appendix B
Running DBUA with Different ORACLE_HOME Owner

B-15

and password file) are readable and writable by both the new target release and
the source (earlier) release binary owners. If this is not the case, then confirm that
each installation owner has the same group as their primary group, and ensure
that members of the OINSTALL group have read/write access to all of the earlier
release and later release Oracle Database files and directories.

• Run DBUA by specifying the -logdir command line option, and provide a
directory to which both the new release and earlier release binary owners can
write. For example: /tmp. DBUA uses the directory you designate with the logdir
parameter to store the output from the Pre-upgrade Information Tool, and to store
any DBUA log files generated during the upgrade. You run the Pre-Upgrade
Information tool from the earlier release Oracle Database instance as the earlier
release Oracle Database installation owner user account.

For example:

dbua -logdir /tmp

Migrating from Oracle ACFS to Alternative Storage Before
Using DBUA

If your operating system is Microsoft Windows, and your Oracle Database release
uses Oracle ASM Cluster File System (ACFS), then you must migrate from that
storage before starting the upgrade.

Starting with Oracle Database 21c, the Oracle Grid Infrastructure feature Automatic
Storage Management Cluster File System (Oracle ACFS) is desupported with
Microsoft Windows. Accordingly, if your source Oracle Database release used Oracle
ACFS for storage, then you must migrate to other storage before starting the upgrade.
If your source Oracle Database release uses Oracle ACFS for storage when the
upgrade is started, then you receive the error "PRVH-0570 : Oracle ACFS was found
configured with resources," specifying resources that use the desupported storage
feature.

For Oracle Real Application Clusters files, in place of Oracle ACFS, Oracle
recommends that you use Oracle ASM. For generic files, depending on your use case,
Oracle recommends that you either move files to Oracle Database File System
(DBFS), or move files to Microsoft Windows shared files.

Before you restart the upgrade, ensure that the following is true:

• Oracle ACFS is no longer in use.

• No Oracle ACFS resources, such as volumes, or file system resources, are
present in the current configuration.

• All Oracle ACFS resources indicated in the PRVH-0570 error messasge are
deconfigured and removed.

Appendix B
Migrating from Oracle ACFS to Alternative Storage Before Using DBUA

B-16

Caution:

After upgrade to Oracle Database 21c, no data can be recovered from files stored
on Oracle ACFS, because Oracle ACFS is not available in Oracle Database 21c
and later releases.

For more information about this requirement, refer to My Oracle Support note 1369107.1.

Related Topics

• My Oracle Support Note 1369107.1 ACFS Support On OS Platforms (Certification Matrix)

Appendix B
Migrating from Oracle ACFS to Alternative Storage Before Using DBUA

B-17

https://support.oracle.com/rs?type=doc&id=1369107.1

C
AutoUpgrade Error Messages

AutoUpgrade provides a set of errors and messages for failures in preupgrade, upgrade, and
postupgrade errors.

Host Errors (UPG-1000 to UPG-1200)

• UPG-1000: It was not possible to create the data file where the jobsTable is being written
or there was a problem during the writing, it might be thrown due to a permission error or
a busy resource scenario

• UPG-1001: There was a problem reading the state file perhaps there was corruption
writing the file and in the next write it might be fixed

• UPG-1002: Error deserializing the object for rerun, review log for any errors

• UPG-1100: Either the console or the job manager were interrupted and it might lead to
unknown errors because if there were active tasks running they won't be able to be finish
gracefully nor we will guarantee that we track their progress properly

• UPG-1200: Error reading the standard input, perhaps a malformed character or there
was a problem with the process's stdin

Preupgrade Errors (UPG-1300 to UPG-1319

• UPG-1300: The current execution of the database fixups was interrupted and a set of
checks is still pending

• UPG-1301: The current execution of the database fixups was not completed

• UPG-1302: The current execution of the database checks was interrupted

• UPG-1303: A failed check has an ERROR severity but the fixup is unavailable or failed to
correct the problem. Manually fix the problem and rerun AutoUpgrade

• UPG-1304: IO error creating before, during or after upgrade pfile

• UPG-1305: Error executing SQL statement in upgrade inspector during database
preupgrade checks

• UPG-1306: Error during the database preupgrade checks in upgrade inspector

• UPG-1307: Error running database postupgrade checks in upgrade inspector

• UPG-1308: Error running database postupgrade checks in upgrade inspector

• UPG-1309: Error accessing the log file that contains the check list (CFG format)

• UPG-1310: Error accessing the log file that contains the check list (log format)

• UPG-1311: Error accessing the checks HTML report file

• UPG-1312: A failed check has an ERROR severity but the fixup is unavailable or failed to
correct the problem. Manually fix the problem and rerun AutoUpgrade

• UPG-1313: Internal error, contact Oracle Support

• UPG-1314: User requested an abort of the checks

• UPG-1315: User requested an abort of the fixups

C-1

• UPG-1316: Error running database checks or fixups

• UPG-1317: Required checklist file unavailable; unable to run fixups

• UPG-1318: Error creating custom pfiles

• UPG-1319: Loading the current state of the database failed

Upgrade Process Errors

• UPG-1400: Database upgrade failed with errors

• UPG-1401: Opening database for upgrade in the target home failed

• UPG-1402: GRP creation prior to upgrade failed

• UPG-1403: Drop of existing GRP failed

• UPG-1404: Error running upgrade

• UPG-1405: Database upgrade was interrupted

• UPG-1406: Unexpected Exception occurred during database compilations

• UPG-1407: IO error creating database spfile

• UPG-1408: Unable to open pdb in upgrade mode

• UPG-1409: Unable to open pdb in normal mode

• UPG-1410: Unable to open database in normal mode

• UPG-1411: Invalid version of catctl.pl and catctl.pm

• UPG-1412: Unable to query database

• UPG-1413: Error occurred during upgrade

• UPG-1414: Database compilation interrupted

• UPG-1415: Database upgrade interrupted by a system shutdown or CTRL+C

• UPG-1416: Error during database compilations

• UPG-1417: PDB upgrade failed with errors

• UPG-1418: Database upgrade failed; review the upgrade log files

• UPG-1419 Database upgrade job has been killed, by abort or restore

• UPG-1420 Enabling Local Undo failed

Postupgrade Errors

• UPG-1500: Database post upgrade failed

• UPG-1501: Oratab file not readable

• UPG-1502: Oratab file not writable

• UPG-1503: IO error updating the oratab file

• UPG-1504: Error writing to oratab file

• UPG-1505: Error copying listener.ora file in postupgrade

• UPG-1506: Error copying tnsnames.ora file in postupgrade

• UPG-1507: Error copying sqlnet.ora file in postupgrade

• UPG-1508: Error processing the ifile

Appendix C

C-2

• UPG-1509: Error copying the wallet files

• UPG-1510: Unable to create the postupgrade directory

• UPG-1511: Error during user-defined postupgrade action

• UPG-1512: Error copying the password files

• UPG-1513: Error restoring the database state

• UPG-1514: Error deserializing the database state

• UPG-1515: Error dropping the GRP

• UPG-1516: Error restarting the databas

• UPG-1517: Error recreating the final spfile

• UPG-1518: An error occurred while copying Context text files in Postupgrade phase

• UPG-1519: An error occurred while generating Context text file list in Drain phase

• UPG-1520: Error copying oranfstab file in postupgrade

• UPG-1521: Error copying ldap.ora file in postupgrade

• UPG-1522: Error updating network file's ORACLE_HOME in postupgrade

• UPG-1523: Error restarting the pdbs

Database Upgrade Stage Errors

• UPG-1600: Error copying the pfile during an UPGRADE mode job

• UPG-1601: Error reading the error properties file

• UPG-1602: Job killed

• UPG-1603: Error executing a database command for PDB$SEED

• UPG-1604: Error executing a database command

• UPG-1605: Unable to abort a job in a unsupported stage

• UPG-1606: Source version cannot be upgraded to the specified target version

• UPG-1607: Target version is not supported by AutoUpgrade

• UPG-1608: Unable to determine database version; review the logs files

• UPG-1699: Error finding error definition, contact Oracle Support

• UPG-1700: Error generating Windows services in drain module

• UPG-1701: Error stopping queue jobs during drain

• UPG-1702: Error deleting service during drain, review log files

• UPG-1703: Error creating service during drain, review log files

• UPG-1704: Error commenting service during drain, review log files

• UPG-1705: Error changing service owner during drain, review log files

• UPG-1706: Error starting service during drain, review log files

• UPG-1707: Error stopping service during drain, review log files

• UPG-1708: Error changing the source database state

• UPG-1709: Error serializing the database state

Appendix C

C-3

• UPG-1710: Error during PDB operation in drain

• UPG-1711: An error occurred while deferring Standby in Drain phase

• UPG-1800: Progress report is empty, review log file

• UPG-1900: Unable to create preupgrade directory

• UPG-1901: Error during user-defined preupgrade action

• UPG-2000: Creation of GRP failed

• UPG-2001: Unable to drop GRP

• UPG-2002: Restoration of the GRP failed

Non-CDB to CDB Upgrade Errors (UPG-3000 to

• UPG-3000: Error executing noncdbtopdb task

• UPG-3001: Could not describe the specified database

• UPG-3002: Could not execute database action

• UPG-3003: Plugin violations found

• UPG-3004: Could not create pluggable database

• UPG-3005: Error running noncdb_to_pdb.sql script

• UPG-3006: Error starting the database

• UPG-3007: User requested an abort of the noncdbtopdb task

• UPG-3008: Unable to remove the oratab entry of the source DB

• UPG-3009: After running noncdb_to_pdb.sql, the pdb was closed or was opened
in restricted mode

• UPG-3010: Error running approot_to_pdb.sql script

• UPG-3100: Unable to list RAC service

• UPG-3101: Unable to shutdown RAC services

• UPG-3102: Unable to shutdown RAC database

• UPG-3103: Failed to disable RAC database

• UPG-3104: Unable to remove spfile parameter

• UPG-3105: Unable to start RAC database

• UPG-3106: Unable to upgrade RAC database on CRS

• UPG-3107: Unable to update spfile information on CRS

• UPG-3108: Failed to enable RAC database on CRS

• UPG-3109: Unable to stop current instance

• UPG-3110: Unable to downgrade RAC database source binaries on CRS

• UPG-3111: Failed to enable RAC database source binaries on CRS

• UPG-3112: Unable to start RAC database after downgrade source binaries on
CRS

• UPG-3113: After executing "srvctl stop database", AutoUpgrade sees that the RAC
database is still up, which suggests that the database was started up manually
and not via CRS. This condition can cause AutoUpgrade to stop the current job.

Appendix C

C-4

• CON-4000: Database {0} shutdown or open with incorrect binaries for {1}. Ensure it is
open with {2}

• CON-4001Database {0} currently has a status of {1}. For {2} mode, open it with one of
the following: {3}

Appendix C

C-5

Index

Symbols
.NET

PromotableTransaction deprecated, 10-70

A
access control lists (ACLs), 10-60

XDB ACLs migrated, 10-60
ACFS-9427: Failed to unload ADVM/ACFS

drivers, 6-8
ACFS-9428 Failed to load ADVM/ACFS drivers,

6-8
ACLs

See access control lists (ACLs)
addnode.bat

deprecated, 10-30
addnode.sh

deprecated, 10-30
adjusting after manual upgrades, 7-42
ALTER DATABASE statement

CREATE STANDBY CONTROLFILE clause,
3-6

RECOVER MANAGED STANDBY
DATABASE clause, 3-12

application code
not changing after upgrade, 8-8

applications
checking package dependencies, 7-7
compatibility, 8-2
linked and upgrading, 8-5
linking with newer libraries, 8-6
running against older server, 8-4
upgrading, 8-1

client/server configurations, 8-2
compatibility rules, 8-3
options, 8-8
relinking rules, 8-3

apxrelod.sql file
reloading after downgrade, 9-4

ArchiveLogTarget deprecated, 10-29
ARGUMENTS user views

changes to, 10-42
ASM_PREFERRED_READ_FAILURE_GROUPS

, 7-37

asmcmd pwcreate deprecated, 10-30
attributes

xdb defaultTableSchema (deprecated), 10-74
xdb maintainOrder (deprecated), 10-74
xdb mapUnboundedStringToLob

(deprecated), 10-74
xdb maxOccurs (deprecated), 10-74
xdb SQLCollSchema (deprecated), 10-74
xdb SQLSchema (deprecated), 10-74
xdb srclang (deprecated), 10-74
xdb storeVarrayAsTable (deprecated), 10-74
xdb translate (deprecated), 10-74

auditing, 7-25
about transferring audit records after

upgrade, 7-31
databases, when unavailable, 2-31
loading audit records to unified audit trail,

2-31
transferring unified audit records after

upgrade, 7-32
unified auditing migration

about, 7-25
audit options, 7-26
documentation references for non-unified

auditing, 7-30
managing earlier audit records after

migration, 7-29
procedure, 7-27
removing unified auditing, 7-29

Automatic Diagnostic Repository (ADR), 1-20
automatic undo management

migrating to, 7-24
Autoupgrade

jobid, 4-5
AutoUpgrade, 4-2

fast recovery area (FRA), 4-81
guaranteed restore points, 4-81
password files, 4-81
Transparent Data Encryption (TDE), 4-81

autoupgrade -config_values-
-console, 4-25
-debug, 4-25
-mode, 4-25
-noconsole, 4-25
-restore_on_fail, 4-25

Index-1

autoupgrade -config_values- (continued)
-zip, 4-25
clear_recovery_data, 4-25

autoupgrade -config-
-console, 4-24
-debug, 4-24
-mode, 4-24
-noconsole, 4-24
-restore_on_fail, 4-24
-zip, 4-24
clear_recovery_data, 4-24

autoupgrade -preupgrade, 4-34
AutoUpgrade postfixups mode, 7-17

B
backing up the database, 2-47
backups

after upgrading, 7-17
before downgrading, 9-3
Zero Data Loss Recovery Appliance

restriction, 10-66
benchmarks, 2-13
benefits of options for upgrading precompiler and

Oracle Call Interface (OCI) applications,
8-8

BFILE
migrating to, 7-24

BLOB
migrating to, 7-24

BP (bundle patches, 2-19
broker configuration

exporting, 2-16
bundle patch sets, 1-10

C
capturing and replaying database workload, 2-10
case sensitivity

for passwords, 7-19
catcon

and downgrades, 9-29
running SQL commands with, 9-30

catcon.pl, 5-11, 5-48, 9-13, A-1
catctl.pl, 5-3, 5-5, A-1

running shell commands to start, 5-2
catdwgrd.sql, A-1
catdwgrd.sql script, 9-13
CATRELOD.SQL script, 9-13, 9-20
catupgrd.log files

for CDBs and PDBs, 5-64
catuppst.sql, A-1
CDB_JAVA_POLICY, 6-8
CDBs, 5-24, 5-47, B-1

catctl.pl log files, 5-64

CDBs (continued)
downgrading, 9-4
Oracle Label Security, 5-24, 5-47
rerunning the upgrade for CDB and PDBs,

5-58
rerunning upgrades, 5-58
restarting from a failed phase, 5-64
restarting upgrades, 5-64
upgrade scenarios, 5-9
upgrading, 5-10
using catcon with, 9-30

cdbs and pdbs, 5-37
change passwords

for Oracle-supplied accounts, 7-38
changing PDB upgrade priority, 5-17
changing scripts to use new features, 8-10
client and server

configurations and upgrading, 8-3
client interoperability, 1-19
client software

upgrading, 8-5
client-server configurations, 1-20
client-side dynamic library, 8-6
CLOB

migrating to, 7-24
clone.pl

deprecated, 10-30
CLUSTER_DATABASE initialization parameter,

2-35, 6-3
command-line upgrade

See manual upgrade
commands

orabase, 9-9
orabasehome, 9-9
oracle_home, 9-9

compatibility
applications, 8-2
between Oracle releases, 1-9
checking for incompatibilities, 9-3
COMPATIBLE initialization parameter, 1-13
downgrading, 1-15
overview for Oracle Database, 1-12

COMPATIBLE initialization parameter, 1-13, 7-36
and PDB compatibility, 1-13
checking the level of, 1-16
considerations for downgrading, 1-15
default, 1-13
initial Java delay, 1-13
Oracle recommendation, 1-12
setting, 7-41
values, 1-15

COMPATIBLE setting; automatic update to CDB
setting, 1-19

component status, 6-9

Index

Index-2

compression
sqlnet.ora file parameters and, 2-21

compression scheme, 2-21
SQLNET.COMPRESSION, 2-21
SQLNET.COMPRESSION_LEVELS, 2-21
SQLNET.COMPRESSION_THRESHOLD,

2-21
configuration files

copying, 2-35
continuous_mine option desupported, 10-36
control files

copying, 3-10
creating for standby databases, 3-6

copying
control files, 3-10

copying configuration files, 2-35
CREATE pfile FROM spfile, 2-35
CREATE STANDBY CONTROLFILE clause

of ALTER DATABASE, 3-6
CREATE TABLE AS, 1-3
crsuser deprecated, 10-54
cursor cache, SMB, 2-11

D
data definition language (DDL), 1-17
data dictionary

about changes that affect applications, 8-2
checking the state of, 7-1

Data Pump Export/Import
advantages of using, 2-6
with subsets of production database, 2-42

database accounts
solution for lockouts, 2-22

database options, installing, 2-22
Database Replay

database workloads before upgrading, 2-10
Database Upgrade Assistant (DBUA)

-executePrereqs option, 10-58
advantages, 2-5
and multitenant architecture upgrades, 10-58
CDBs and, B-1
command-line options for, B-11
guaranteed restore points, B-1
noninteractive (silent) command-line syntax,

B-11
Pause and Continue, 10-58
PDBs and, B-1
registering the database in the listener.ora

file, 2-21
removed features, 10-58
running, B-1
silent mode, B-11
standalone prerequisite checks, 10-58
starting, B-3, B-4

Database Upgrade Assistant (DBUA) new
features, 10-58

Database XE, 1-27
databases

downgrading, 9-9
downgrading and Oracle Internet Directory

registration, B-1
downgrading manually, 9-13
upgrading the client software, 8-5

DataGuardSyncLatency deprecated, 10-29
DB_FILE_NAME_CONVERT initialization

parameter
setting on physical standby database, 3-6

DBA_ACL_NAME_MAP, 10-60
DBA_REGISTERED_MVIEW_GROUPS

desupported, 10-79
DBA_REGISTRY view, 6-9
dbdowngrade utility, 9-9
DbFileNameConvert deprecated, 10-29
DBMS_DEBUG

deprecated, 10-69
DBMS_NETWORK_ACL_ADMIN

deprecated, 10-60
DBMS_NETWORK_ACL_ADMIN_APPEND_HO

ST_ACE, 10-60
DBMS_PDB package, 5-39, 5-43
DBMS_ROLLING, 10-59
DBMS_STATS package

upgrading statistics tables, 7-9
DBMS_STATS.GATHER_DICTIONARY_STATS,

9-29
DBMS_STATS.GATHER_DICTIONARY_STATS

procedure, 9-30
DBMS_STATS.GATHER_FIXED_OBJECTS_ST

ATS, 9-29
DBMS_XMLQUERY, deprecated, 10-48
DBT error messages, 10-58
DBUA

See Database Upgrade Assistant
dbupgdiag.sql, 7-1
dbupgrade, 5-2, 5-3, A-1

manual upgrade and, 5-48
dbupgrade shell command

arguments for, 5-5
dbupgrade.cmd, 5-3, A-1
defaultTableSchema attribute (deprecated),

10-74
demo

replace in read-only Oracle homes, 7-11
deprecated features in 18c, 10-46
deprecated initialization parameters, 10-66
deprecated parameters and desupported

parameters, 2-35
DESCRIBE procedure, 5-43
desupported initialization parameters, 10-76

Index

Index-3

developer applications
upgrading forms and, 8-10

DGMGRL, 10-59
diagnostic data, 1-20
direct upgrade, 1-1
disk group compatibility, 7-36
disks

specifying preferred read failure groups, 7-37
downgrades

Oracle Data Guard broker configuration file
backup, 2-16

reapplying patches after, 9-23
downgrading

and gathering dictionary statistics, 9-29
backing up your database, 9-3
CATRELOD.SQL, 9-13, 9-20
checking for incompatibilities, 9-3
location of downgrade log files, 9-9
Oracle Enterprise Manager and, 9-24
ORADIM and, 9-13
patchset releases, 9-1
regathering fixed object statistics, 9-29
regathering stale statistics, 9-30
scripts, 9-9, 9-13

rerunning, 9-13
DV_PUBLIC

deprecated, 10-32
DV_REALM_OWNER

deprecated, 10-31
DV_REALM_RESOURCE

deprecated, 10-32
dvsys.dbms_macadm.enable_dv(), 7-13

E
emca -restore command, 9-24
emdwgrd, A-1
emdwgrd utility, 9-24
emremove.sql, A-1
emulation, 2-43
enforcing case-sensitivity for passwords, 7-19
environment variables

required for upgrading, 5-11, 5-48
exafusion_enabled desupported, 10-38
exclusion lists

about, 5-19
and PDB upgrades, 5-36
resume, 5-58

export/import
advantages and disadvantages, 2-6
benefits, 2-6
effects on upgraded databases, 2-6
time requirements, 2-7

exporting
broker configuration, 2-16

extended datatype support
deprecated, 10-48

extended distance cluster configurations
preferred read disks, 7-37

extents
reading from secondary, 7-37

F
failed phases, 5-54
Fast Recovery Area, 6-5
Fleet Patching and Provisioning, 5-9
Flex Cluster architecture deprecated, 10-50
Forms

upgrading Oracle Forms applications, 8-10
Full Transportable Export/Import, 5-36

G
GET_MODEL views

deprecated, 10-48

H
Hardware Assisted Resilient Data (HARD)

upgrading systems, 7-41

I
IFILE (include file)

editing entry, 2-35
image

install, 1-29, 8-5, 10-41
inclusion list, 5-62
inclusion lists

about, 5-19
incompatibilities

checking for, 9-3
init.ora

and SGA permissions, 10-60
initialization parameters

adjusting, 2-35, 7-40
ASM_PREFERRED_READ_FAILURE_GROUPS,

7-37
COMPATIBLE, 1-13, 7-36

install logs
component upgrade script, 6-9

installation
Oracle Database software, 2-17

instances
starting after a downgrade, 9-13

Intelligent Data Placement (IDC)
deprecated, 10-69

interim upgrade, 1-1

Index

Index-4

intermediate releases
interim upgrading, 1-1

interoperability, 1-17
invalid objects

and utlrp.sql, 1-17
recompiling, 7-4
utlrp.sql script and, 5-11, 5-48, 6-9, 9-13

INVALID objects, 6-4
INVALID status

component status, 6-9

K
knowledge base, 1-4

L
listener.ora file, 2-21

modifying, 2-21
listeners, 7-42

and Oracle RAC upgrades, 7-35
modifying with Oracle Net Configuration

Assistant, 2-21
load

level of concurrent demand when upgrading,
2-13

load testing, 2-13
locked out accounts, solution for, 2-22
LOG_ARCHIVE_CONFIG initialization

parameter, 3-6
log_archive_dest max_connections attribute

deprecated, 10-38
LOG_ARCHIVE_LOCAL_FIRST desupported,

10-76
LOG_FILE_NAME_CONVERT initialization

parameter
setting on physical standby databases, 3-6

LogArchiveFormat deprecated, 10-29
LogArchiveMaxProcesses deprecated, 10-29
LogArchiveMinSucceedDest deprecated, 10-29
LogArchiveTrace deprecated, 10-29
LogFileNameConvert deprecated, 10-29
logical standby databases

rolling upgrades, 1-22
LogMiner

CONTINUOUS_MINE deprecated, 10-70
lsnrctl command

Oracle Grid Infrastructure home and, 2-21

M
maintainOrder attribute (deprecated), 10-74
manual upgrade, 1-3, 2-5, 7-42

advantages, 2-5

manual upgrade (continued)
backing up the database, 2-47
OCR configuration, 7-40

manual upgrades
rerunning or restarting, 5-54

mapUnboundedStringToLob attribute
(deprecated), 10-74

matches Oracle XQuery function (deprecated),
10-74

matches XQuery function, 10-74
max_connections desupported, 10-37
maxOccurs attribute in xdb namespace

(deprecated), 10-74
migrating

defined, 1-3
migrating data, 1-3

to a different operating system, 1-28
migrating listener from Oracle home with lsnrctl

command, 2-21
Mulitenant

restarting upgrades, 5-64
Multiple Oracle Homes Support

advantages, 1-20
multitenant

transferring unified audit records after
upgrade, 7-32

multitenant architecture
parallel upgrade of, 5-28

multitenant architecture databases
upgrade scenarios, 5-9

Multitenant architecture databases
and PDB COMPATIBILITY parameter setting,

1-13
multitenant container databases

See CDBs
multitenant databases

setting upgrade priorities with lists, 5-19
multiversioning, 1-20
My Oracle Support, 1-4

knowledge base, 1-4

N
NCLOB

migrating to, 7-24
network administration file location, 7-6
network names and listeners, 7-42
new features

adding after upgrade, 7-23
changing scripts to use and, 8-10

new features, learning about, 2-2
NO AUTHENTICATION status accounts, 2-14,

8-7
NO SCRIPT status, 6-9

Index

Index-5

non-CDB architecture
deprecated, 10-70

non-CDB to CDB and PDB upgrades, 1-22
non-CDBs, 5-39, B-1
noncdb_to_pdb.sql script, 5-39, 5-44
not relinking upgraded application, 8-8

O
OCI applications

changing, 8-10
changing to use new features, 8-10
dynamically-linked, 8-6
statically-linked, 8-6
upgrade and linking, 8-6
upgrading, 8-7
upgrading options, 8-8

OCR, 10-78
OFA, 1-18, 1-20

See also Optimal Flexible Architecture
operating system

migrating data to, 1-28
operating system requirements, 1-28
Optimal Flexible Architecture, 1-18, 1-20

about, 1-20
optimizer statistics

regathering after downgrade, 9-30
OPTIMIZER_ADAPTIVE_PLANS, 10-57
OPTIMIZER_ADAPTIVE_STATISTICS, 10-57
OPTION OFF status, 6-9
options for upgrading precompiler and Oracle

Call Interface (OCI) applications, 8-8
ORA_TZFILE

unsetting after downgrade, 9-4
ORA-00336 log file size xxxx blocks error, 6-3
ORA-00401 value for parameter compatible

error, 6-3
ORA-00600 Internal Error, 9-4
ORA-00704: bootstrap process failure, 6-3
ORA-00904 "TZ_VERSION" invalid identifier

error, 6-5
ORA-00942 table or view does not exist error,

6-5
ORA-01092: ORACLE instance terminated.

Disconnection forced, 6-3
ORA-01562 failed to extend rollback segment

number error, 6-5
ORA-01650: unable to extend rollback segment,

6-5
ORA-01651: unable to extend save undo

segment, 6-5
ORA-01652: unable to extend temp segment, 6-5
ORA-01653: unable to extend table, 6-5
ORA-01654: unable to extend index, 6-5
ORA-01655: unable to extend cluster, 6-5

ORA-01722 invalid number error, 6-5
ORA-03134: Connections to this server version

are no longer supported., 10-63
ORA-04031 unable to allocate nnn bytes of

shared memory error, 6-5
ORA-1017 invalid username/password, 10-63
ORA-19815 WARNING

db_recovery_file_dest_size error, 6-5
ORA-20001: Downgrade cannot proceed, 9-31
ORA-24247: network access denied by access

control list (ACL), 7-13
ORA-27248: sys.dra_reevaluate_open_failures is

running, 6-15
ORA-28040 "No matching authentication

protocol, 2-23, 2-24
ORA-28040 No matching authentication

protocol., 10-63
ORA-28040: No matching authentication

protocol, 7-14
ORA-28365, 6-7
ORA-29283: Invalid File Option, 10-45
ORA-39700: database must be opened with

UPGRADE option, 6-3
ORA-39701 database must be mounted

EXCLUSIVE error, 6-3
ORA-39709: Incomplete component downgrade,

9-13, 9-20
ORA-39709: incomplete component downgrade;

string downgrade aborted, 9-31
ORA-O1722: invalid number, 6-2
Oracle ACFS Encryption

deprecated on Oracle Solaris and Microsoft
Windows, 10-32

Oracle ACFS Replication protocol REPV1
deprecated, 10-32

Oracle Administration Assistant tool, 10-51
Oracle Application Express

apexrelod.sql file, 9-4
Oracle ASM

change in Oracle home location, 7-23
Oracle Automatic Storage Management

disk group compatibility, 7-36
password file (PWFILE), 6-14
preferred read failure groups, 7-37
rolling upgrades and, 1-22

Oracle base, 1-20
Oracle Call Interface (OCI

upgrading applications and, 2-45
Oracle Cluster Registry (OCR)

upgrading manually, 7-40
Oracle Data Guard

and AutoUpgrade, 4-65
change in properties storage, 10-24
rolling upgrades, 1-22
rolling upgrades with DBUA, 3-2

Index

Index-6

Oracle Data Mining
Model Details views, 10-48

Oracle Data Provider for .NET
desupport of

Oracle.ManagedDataAccessDTC.dll,
10-54

Oracle Data Pump, 1-3
Oracle Database clients

backup restrictions, 10-66
Oracle Database Enterprise Edition

converting from Enterprise Edition to
Standard Edition, 1-27

Oracle Database Express Edition, 1-27
recommended tasks after upgrade, 7-37
upgrading to Oracle Database, 1-27

Oracle Database software
upgrading, 3-3

Oracle Database Standard Edition
converting to Enterprise Edition, 1-25

Oracle Database Vault, 2-17
disabling

reasons for, 2-22
enable after upgrade, 7-13
upgrading, 7-13

Oracle Database XE, 1-27
upgrading to Oracle Database, 1-27

Oracle Enterprise Manager Cloud Control
upgrading with, 1-24

Oracle Fleet Patching and Provisioning, 10-64
Oracle FPP, 10-64
Oracle GoldenGate

upgrading with, 1-24
Oracle Grid Infrastructure

file locations for OCR and voting disks, 10-78
Oracle home

copying configuration files from, 2-35
multiple, 1-19
ORACLE_HOME database directory on

Microsoft Windows, 2-35
ORACLE_HOME dbs directory on Linux or

Unix, 2-35
out-of-place requirement, 2-7

Oracle Label Security, 2-17
Oracle Layered File System, 10-64
Oracle Multimedia Java APIs

deprecated, 10-71
Oracle Multitenant

upgrade errors, 6-14
Oracle Multitenant upgrades, 5-10, 5-32
Oracle Net Configuration Assistant, 2-21
Oracle Optimal Flexible Architecture

See Optimal Flexible Architecture
Oracle Optimizer

and DBMS_STATS, 7-18

Oracle RAC
desupported on Oracle Database Standard

Edition 2 (SE2), 10-37
Oracle Real Application Clusters, 1-17
Oracle release numbers, 1-10
Oracle RMAN

backing up the database, 2-47
Oracle Streams

terminal release of, 10-56
Oracle Text

MAIL_FILTER, 10-50
Upgrading, 7-40
widened token columns, 7-30

Oracle Text-supplied knowledge bases
upgrading and, 7-10

Oracle Universal Installer, 1-3, 2-17
Oracle update batching size disabled, 10-62
Oracle wallet

upgrading, 6-7
Oracle-supplied accounts

change passwords, 7-38
oracle.dbc.OracleConnection

deprecated, 10-70
oracle.jdbc.rowset

deprecated, 10-71
ORADIM

downgrading and, 9-13
upgrading and, 5-11, 5-48

orapki
RSA 512 and 1024 keys deprecated, 10-9

orapwSID password file, 2-35
OUI

See Oracle Universal Installer

P
Parallel Upgrade Utility, 5-3, 6-3

and ability to upgrade schema-based
tablespaces, 2-28

manual upgrade and, 5-48
rerunning upgrades, 5-55
restarting, 5-54
resume option, 5-54
running on specified CDBs, 5-58
setting tablespaces to READ ONLY, 10-62

PARALLEL_ADAPTIVE_MULTI_USER
deprecated, 10-66

PARALLEL_AUTOMATIC_TUNING desupported,
10-76

PARALLEL_IO_CAP_ENABLED desupported,
10-76

PARALLEL_SERVER desupported, 10-76
PARALLEL_SERVER_INSTANCE desupported,

10-76

Index

Index-7

parameter file
and permissions to read and write the SGA,

10-60
backing up, 2-35

password verifiers, 2-23
password versions, 2-24
passwords

10G password version, finding and resetting,
7-20

case sensitive, 7-19
forgotten, solution for, 2-22

patch set updates, 2-19
patch sets, 1-10
patchset releases

downgrading, 9-1
Pause and Continue, 10-58
PDB

COMPATIBILITY parameter and CDB, 1-13
PDB upgrades after CDB upgrade, 5-36
PDB$SEED

counted as one PDB during upgrades, 5-8
PDBs, 5-24, 5-47, B-1

catupgrd.log files, 5-64
downgrading, 9-4
moving non-CDBs into, 5-43
Oracle Label Security, 5-24, 5-47
pluggable upgrades of, 10-58
plugging in, 5-47
priority-based PDB upgrades, 10-58
rerunning upgrades, 5-58
restarting from a failed phase, 5-64
restarting upgrades, 5-64
setting upgrade priorities with lists, 5-19
upgrade errors, 6-14
upgrade scenarios, 5-9
upgrades of, 10-58
upgrading, 5-10
upgrading individually, 5-32
upgrading using priority lists, 5-17

performance
unified audit trail, 7-31

physical standby database
rolling upgrades, 1-22

physical standby databases
converting datafile path names, 3-6
converting log file path names, 3-6
upgrading, 3-9

PL/SQL packages
checking, 7-7

placement on shared storage deprecated, 10-78
pluggable databases

See PDBs
Pluggable Databases

unified auditing migration and, 7-27

Post-Upgrade Status Tool, 7-1
rerunning upgrades, 5-55

postupgrade fixups, 7-17
postupgrade status tool

warning, 6-4
postupgrade_fixups.sql, A-1
precompiler application

changing to use new features, 8-10
precompiler applications

upgrading and, 2-45
precompilers

applications
changing, 8-10
upgrading options, 8-8

upgrading applications, 8-7
preferred read failure groups

setting up, 7-37
preupgrade steps, 2-5
preupgrd.jar, 6-4
preupgrd.sql, 6-4
priority lists, 5-17

about, 5-19
test upgrades using, 2-43

PRKH-1014 error, 2-17
Pro*C/C++ applications, 2-9
PRODUCT_USER_PROFILE

deprecated, 10-50
proxy PDBs

upgrades, 5-11
PRVH-0570 Oracle ACFS was found configured

with resources, B-16
PSU, 2-19

R
Rapid Home Provisioning

upgrades using, 1-3
read-only oracle home, 10-2
read-only Oracle homes

replace demo directory, 7-11
read-only tablespaces, 2-28
recompiling invalid objects, 5-11, 5-48, 7-4, 9-13
RECOVER MANAGED STANDBY DATABASE

clause
of ALTER DATABASE, 3-12

recovery catalog
upgrading, 7-33

Redo Apply
starting, 3-12

release numbers, 1-10
Release Update (Update, 2-19
release update (Update, RU), 1-10
release update revision (Revision, RUR), 1-10
Release Update Revision (Revision), 2-19

Index

Index-8

releases
definition, 1-10
multiple, 1-20
upgrade paths, 1-1

REMOVED status, 6-9
replace Oracle XQuery function (deprecated),

10-74
replace XQuery function, 10-74
Replay Upgrade, 5-37, 5-39
rerunning upgrades

multitenant database architecture, 5-58
reserved words

additions and applications, 8-2
resuming upgrades, 5-54
rollback segments

migrating to automatic undo management,
7-24

Rolling Upgrade Using Active Data Guard, 1-24
rolling upgrades

Oracle Clusterware and, 1-22
physical standby database, 1-22
rolling upgrades

with SQL Apply and logical standby
databases, 1-22

SQL Apply
rolling upgrades, 1-22

summary of methods, 1-22
rootupgrade.sh script, 2-17
rpath option for linking, 8-6
rpm –ivh, 10-41
RPM-based database installation, 10-41
run-time library search path, 8-6
running multiple Oracle releases, 1-20

S
schema-only accounts, 2-14, 8-7
scripts

checking the Oracle Data Dictionary state,
7-1

downgrading, 9-9, 9-13
manual upgrade and, 5-11, 5-48

seamless patching, 10-2
SEC_CASE_INSENSITIVE_LOGON, 10-63
security

case-sensitive passwords, 7-19
ORA_CIS_PROFILE, 2-27
ORA_STIG_PROFILE, 2-27

server
compatibility rules, 8-4

server parameter file (SPFILE), 2-35
migrating to, 7-39
upgrading systems with HARD-compliant

storage, 7-41

services
migrating, 10-41

Single Client Access Names (SCAN), 7-35
SP2-0152: ORACLE may not be functioning

properly, 9-4
SP2-1503: Unable to initialize Oracle call

interface, 9-4
SP2-1540 "Oracle Database cannot startup in an

Edition session" error, 6-7
SQL execution plans, 2-13
SQL Management Base (SMB), 2-11

cursor cache, 2-11
SQL Performance Analyzer, 2-11
SQL plan baselines

unpacking, 2-13
SQL plan management, 2-11

SQL Management Base and, 2-11
SQL queries

testing, 2-13
SQL workload, 2-11
SQL_92_SECURITY default change, 10-57
SQL*Plus

product-level security deprecated, 10-50
scripts

upgrading, 8-10
SQL/MM still image standard support, 10-72
SQLCollSchema attribute (deprecated), 10-74
SQLJ

client-side support only, 10-80
SQLNET.ALLOWED_LOGON_VERSION_SERV

ER, 2-23, 2-24
sqlnet.ora file

compression and, 2-21
sqlnet.ora location, 7-6
SQLSchema attribute (deprecated), 10-74
srclang attribute (deprecated), 10-74
staging table

creating, 2-13
Standard Edition

Export utility, 1-27
starter database, 6-14

standard edition high availability
guidelines, 2-31

standard operating environment, 10-64
StandbyFileManagement deprecated, 10-29
starting

physical standby databases, 3-12
STARTUP UPGRADE command, 9-13
statically linked Oracle client-side library code,

8-6
statistics tables

upgrading, 7-9
status

NO SCRIPT, 6-9
OPTION OFF, 6-9

Index

Index-9

status (continued)
REMOVED, 6-9
UPGRADED, 6-9

status INVALID
component status, 6-9

storeVarrayAsTable attribute (deprecated), 10-74
support

See My Oracle Support
symbolic link

Oracle Universal Installer and, 8-6
syntax check

application code, 8-8
system global area

permissions to read and write, 10-60

T
tablespaces

read-only, 2-28
testing

applications for upgrade, 2-14, 7-34
developing a plan, 2-7
functional for upgrade, 2-9
high availability for upgrade, 2-9
integration for upgrade, 2-9
minimal for upgrade, 2-9
multitenant architecture upgrades, 2-43
performance for upgrade, 2-10
upgraded test databases, 2-14
using Database Replay, 2-10
using priority list emulation, 2-43
volume/load stress for upgrade, 2-13

testing the upgrade process, 2-42
text initialization parameter file (PFILE), 2-35
time zone file

unsetting after downgrade, 9-4
TNS-03505: Failed to resolve name, 7-6
tnsnames.ora

adjusting after manual upgrades, 7-42
tnsnames.ora location, 7-6
token limitations, 10-41
training, where to find, 2-2
translate attribute (deprecated), 10-74
Transparent Data Encryption (TDE)

and Oracle wallet upgrades, 6-7
Transportable Export/Import, 5-36
troubleshooting

and using resume, 5-54
authentication protocol errors, 2-23, 2-24
AutoUpgrade, 4-7
Autoupgrade utility, 4-78
bringing up tablespaces after catastrophic

upgrade failures, 2-28
CDB_JAVA_POLICY errors, 6-8
datapatch failures, 6-15

troubleshooting (continued)
EDITION session error, 6-7
Flash Recovery Area, 6-5
INVALID objects, 6-4
locked out accounts, 2-22
ORA-00942 table or view does not exist, 6-5
ORA-03134: Connections to this server

version are no longer supported.,
10-63

ORA-1017 invalid username/password,
10-63

ORA-39709, 9-20
ORA-45415, 3-2
ORA-65394 runtime error, 10-42
Oracle Internet Directory

and downgrades to earlier releases, B-1
passwords, forgotten, 2-22
PDB upgrades, 5-36
PLS-1919 compile time error, 10-42
REMOTE_LOGIN_PASSWORDFILE

warning, 2-23
restore scripts and Oracle Internet Directory

registration, B-1
rollback segments/undo tablespace, 6-5
running out of resources, 6-5
services running in old Oracle home after

upgrade, 10-41
shared memory, 6-5
starting database in upgrade mode, 6-3
SYSTEM and SYSAUX tablespaces, 6-5
upgrade termination

due to ORA-00904, 6-5
due to ORA-01722, 6-5

upgrades, 6-1
Troubleshooting

ORA-39709, 9-13
troubleshooting the upgrade

termination due to ORA_00942, 6-5
type of software upgrade, 8-2

U
UNDO_MANAGEMENT initialization parameter,

7-24
unicode collation algorithm 6.1

deprecated, 10-72
unified audit trail

loading audit records to, 2-31
performance improvement, 7-31

unified auditing, 7-25
about transferring audit records after

upgrade, 7-31
transferring unified audit records after

upgrade, 7-32
See also auditing

Index

Index-10

upg_summary.rpt, 6-11
upgrade methods

choosing, 2-4
Data Pump Export/Import, 2-6
Database Upgrade Assistant, 1-3
Database Upgrade Assistant (DBUA), 2-5
emulation, 2-43
manual, 2-5
silent mode, B-11

upgrade path
determining, 1-1
table, 1-1

upgrade procedures
error messages, 10-58
summary of major steps, 1-5

upgrade process testing, 2-42
and utlrp.sql, 1-17

upgrade summary report
location of, 6-11

upgrade.xml not found error, B-15
UPGRADED status, 6-9
upgraded test databases, 2-14
upgrading

applications, 8-1
compatibility rules, 8-3
options, 8-8
relinking, 8-3

defined, 1-3
initialization parameters, 2-35
new administrative procedures, 7-23
Oracle Database software, 3-3
Oracle Forms applications, 8-10
ORADIM and, 5-11, 5-48
postupgrade actions, 7-1
preparation, 2-1
recovery catalog, 7-33
scripts and manual upgrade, 5-11, 5-48
SQL*Plus scripts, 8-10
statistics tables, 7-9
testing, 2-7
troubleshooting, 6-1
using the Database Upgrade Assistant, B-1
where to find information about, 1-4

upgrading a cluster database
setting the CLUSTER_DATABASE

initialization parameter, 2-35
UTL_FILE, 10-45
UTL_FILE_DIR deprecated, 10-66
utlrp.sql, 1-17, 7-4, A-1
utlrp.sql script

for recompiling invalid objects, 5-11, 5-48,
9-13

utluptabdata.sql, 10-62
utlusts.sql, 6-4, 6-9, 7-1, A-1

V
V$OPTION view, 6-9
V$REPLPROP

desupported, 10-79
V$REPLQUEUE

desupported, 10-79
VERIFY_FUNCTION

deprecated, 10-72
VERIFY_FUNCTION_11G

deprecated, 10-72
verifying

physical standby databases, 3-13
views

desupported, 10-79
volume

amount of data upgraded, 2-13
voting disk files

placement on shared storage deprecated,
10-78

W
warning XDB now invalid error, 6-14
Windows

remote upgrades deprecated, 10-58
workloads

capturing and replaying, 2-10

X
xdb defaultTableSchema attribute (deprecated),

10-74
xdb maintainOrder attribute (deprecated), 10-74
xdb mapUnboundedStringToLob attribute

(deprecated), 10-74
xdb maxOccurs attribute (deprecated), 10-74
xdb SQLCollSchema attribute (deprecated),

10-74
xdb SQLSchema attribute (deprecated), 10-74
xdb srclang attribute (deprecated), 10-74
xdb storeVarrayAsTable attribute (deprecated),

10-74
xdb translate attribute (deprecated), 10-74
XE, 1-27
XML DB

desupported functions and procedures,
10-80

XQuery language
functions, 10-74

matches, 10-74
matches (deprecated, Oracle), 10-74
replace (deprecated, Oracle), 10-74

Index

Index-11

Z
Zero Data Loss Recovery Appliance

Zero Data Loss Recovery Appliance (continued)
backup restriction, 10-66

Index

Index-12

	Contents
	Preface
	Audience
	Documentation Accessibility
	Set Up Java Access Bridge to Implement Java Accessibility
	Related Documentation
	Conventions

	1 Introduction to Upgrading Oracle Database
	Oracle Database Releases That Support Direct Upgrade
	Overview of Oracle Database Upgrade Tools and Processes
	Definition of Terms Upgrading and Migrating
	Upgrade and Data Migration Methods and Processes
	Where to Find the Latest Information About Upgrading Oracle Database

	Major Steps in the Upgrade Process for Oracle Database
	Compatibility and Interoperability Between Oracle Database Releases
	About Oracle Database Release Numbers
	Convention for Referring to Release Numbers in Upgrade Topics
	What Is Oracle Database Compatibility?
	Understanding Oracle Database Compatibility
	When to Set the COMPATIBLE Initialization Parameter in Oracle Database
	About the COMPATIBLE Initialization Parameter in Oracle Database
	Understanding the COMPATIBLE Initialization Parameter
	Rules for COMPATIBLE Parameter Settings in Multitenant Architecture

	Values for the COMPATIBLE Initialization Parameter in Oracle Database
	About Downgrading and Compatibility for Upgrading Oracle Database
	How the COMPATIBLE Initialization Parameter Operates in Oracle Database
	Checking the Compatibility Level of Oracle Database

	What Is Interoperability for Oracle Database Upgrades?
	About Invalid Schema Objects and Database Upgrades

	About Running Multiple Oracle Database Releases
	Organizing Oracle Software with Optimal Flexible Architecture
	Databases in Multiple Oracle Homes on Separate Computers
	Databases in Multiple Oracle Homes on the Same Computer
	About the Optimal Flexible Architecture Standard
	About Multiple Oracle Homes Support

	About Converting Databases During Upgrades
	Overview of Converting Databases During Upgrades
	About Upgrading Using Standby Databases
	Overview of Steps for Upgrading Oracle Database Using Oracle GoldenGate
	Migrating From Standard Edition to Enterprise Edition of Oracle Database
	Migrating from Enterprise Edition to Standard Edition of Oracle Database
	Migrating from Oracle Database Express Edition (Oracle Database XE) to Oracle Database

	About Upgrading Platforms for a New Oracle Database Release
	About Upgrading Your Operating System
	Options for Transporting Data to a Different Operating System

	About Image-Based Oracle Database Installation

	2 Preparing to Upgrade Oracle Database
	Tasks to Prepare for Oracle Database Upgrades
	Become Familiar with New Oracle Database Features
	Pre-Upgrade Information Check with AutoUpgrade
	Review Deprecated and Desupported Features
	Choose an Upgrade Method for Oracle Database
	The AutoUpgrade Utility Method for Upgrading Oracle Database
	The Replay Upgrade Method for Upgrading Oracle Database
	The Graphical User Interface Method for Upgrading Oracle Database
	The Manual, Command-Line Method for Upgrading Oracle Database
	The Export/Import Method for Migrating Data When Upgrading Oracle Database
	The Effects of Export/Import on Upgraded Oracle Databases
	Export/Import Benefits for Migrating Data for Oracle Database
	Time Requirements for Migrating Data with Export/Import

	Choose a New Location for Oracle Home when Upgrading
	Develop a Test Plan for Upgrading Oracle Database
	Upgrade Testing
	Minimal Testing
	Functional Testing After Upgrades
	High Availability Testing
	Integration Testing to Ensure Applications are Compatible
	Performance Testing an Upgraded Oracle Database
	Database Replay and Performance Testing
	SQL Performance Analyzer
	Use SQL Plan Management to Test SQL Execution Plans After Upgrade
	Why Perform SQL Plan Management?
	Bulk Load a SQL Management Base from the Cursor Cache
	Bulk Load a SQL Management Base with a SQL Tuning Set (STS)
	Unpack Existing SQL Plan Baselines from a Staging Table

	Volume and Load Stress Testing for Oracle Database Upgrades
	Test Plan Guidelines for Oracle Database Upgrade Planning

	Schema-Only Accounts and Upgrading EXPIRED Password Accounts
	Back Up Files to Preserve Downgrade and Recovery Options
	Prepare a Backup Strategy Before Upgrading Oracle Database
	Oracle Data Guard Broker Configuration File and Downgrades
	Exporting a Broker Configuration

	Installing the New Oracle Database Software for Single Instance
	Installing the New Oracle Database Software for Oracle RAC
	Database Preparation Tasks to Complete Before Starting Oracle Database Upgrades
	Release Updates and Requirements for Upgrading Oracle Database
	Upgrades and Transparent Data Encryption
	Recommendations for Oracle Net Services When Upgrading Oracle Database
	When You Must Disable Oracle Database Vault
	Create or Migrate Your Password File with ORAPWD
	Understanding Password Case Sensitivity and Upgrades
	Checking for Accounts Using Case-Insensitive Password Version
	Resource and Password Parameter Updates for STIG and CIS Profiles
	Check for Profile Scripts (glogin.sql and login.sql)
	Running Upgrades with Read-Only Tablespaces
	High Availability Options for Oracle Database
	Options for High Availability with Oracle Database Standard Edition
	Preparing to Upgrade Standard Edition Oracle RAC or Oracle RAC One Node
	Requirements for Using Standard Edition High Availability With Oracle Databases

	Moving Operating System Audit Records into the Unified Audit Trail
	Non-CDB Upgrades and Oracle GoldenGate
	Back Up Very Large Databases Before Using AutoUpgrade

	Preparing the New Oracle Home for Upgrading
	Prerequisites for Preparing Oracle Home on Windows
	Performing Preupgrade Checks Using AutoUpgrade
	About AutoUpgrade Utility System Checks
	Example of Running AutoUpgrade Prechecks Using Analyze Mode
	Checking the Upgrade Checks Overview File
	Creating a Configuration File to Run AutoUpgrade Prechecks On a CDB
	Running AutoUpgrade Fixups on the Earlier Release Oracle Database

	Testing the Upgrade Process for Oracle Database
	Example of Testing Upgrades Using Priority List Emulation
	Upgrade Oracle Call Interface (OCI) and Precompiler Applications

	Requirements for Upgrading Databases That Use Oracle Label Security and Oracle Database Vault
	DBUA, AutoUpgrade, and Oracle Database Vault
	Granting the DV_PATCH_ADMIN Role to SYS for Oracle Database Vault

	Back Up Oracle Database Before Upgrading

	3 Upgrading Databases with Oracle Data Guard Standbys
	Preparing for Database Rolling Upgrades Using Oracle Data Guard
	Before You Patch or Upgrade the Oracle Database Software
	Recovering After the NOLOGGING Clause Is Specified
	Enable an Appropriate Logging Mode
	Creating a Physical Standby Task 1: Create a Backup Copy of the Primary Database Data Files
	Creating a Physical Standby Task 2: Create a Control File for the Standby Database
	Creating a Physical Standby Task 3: Create a Parameter File for the Standby Database
	Upgrading Oracle Database with a Physical Standby Database in Place
	Creating a Physical Standby Task 4: Copy Files from the Primary System to the Standby System
	Creating a Physical Standby Task 5: Set Up the Environment to Support the Standby Database
	Creating a Physical Standby Task 6: Start the Physical Standby Database
	Creating a Physical Standby Task 7: Verify the Physical Standby Database Is Performing Properly

	4 Using AutoUpgrade for Oracle Database Upgrades
	About Oracle Database AutoUpgrade
	Examples of How to Use AutoUpgrade
	AutoUpgrade with Source and Target Database Homes on Same Server (Typical)
	AutoUpgrade with Source and Target Database Homes on Different Servers

	AutoUpgrade Messages and Process Description Terms
	Overview of AutoUpgrade Job IDs
	Overview of AutoUpgrade Stages
	Overview of AutoUpgrade Stage Operations and States

	About AutoUpgrade Processing Modes
	Preparations for Running AutoUpgrade Processing Modes
	About the AutoUpgrade Analyze Processing Mode
	About the AutoUpgrade Fixups Processing Mode
	About the AutoUpgrade Deploy Processing Mode
	About the AutoUpgrade Upgrade Processing Mode

	Understanding AutoUpgrade Workflows and Stages
	Understanding Non-CDB to PDB Upgrades with AutoUpgrade
	Understanding Unplug-Plug Upgrades with AutoUpgrade
	AutoUpgrade Command-Line Parameters and Options
	AutoUpgrade Command-Line Syntax
	Debug
	Clear_recovery_data
	Config
	Config_Values
	Console
	Create_sample_file
	Error_code
	Mode
	Noconsole
	Preupgrade
	Settings
	Version
	Restore
	Restore_on_fail
	Zip

	AutoUpgrade Utility Configuration Files
	Global Parameters for the AutoUpgrade User Configuration File
	Local Parameters for the AutoUpgrade Configuration File
	Locally Modifiable Global Parameters for AutoUpgrade Configuration File

	AutoUpgrade and Oracle Database Configuration Options
	Non-CDB to PDB Upgrade Guidelines and Examples
	AutoUpgrade Process Flow for Oracle Grid Infrastructure Managed Configurations
	Oracle RAC Requirements for Upgrade with AutoUpgrade
	Preparing for Oracle RAC Upgrades Using AutoUpgrade
	AutoUpgrade and Oracle Data Guard
	How AutoUpgrade Performs Oracle Data Guard Upgrades
	Steps AutoUpgrade Completes for Oracle Data Guard Upgrades
	Steps After the Primary Database is Upgraded

	How to Run AutoUpgrade Using the Fast Deploy Option

	AutoUpgrade Configuration File Examples
	Updating the TDE Wallet Store Location During Upgrade Using AutoUpgrade
	AutoUpgrade Configuration File with Two Database Entries
	Standardizing Upgrades With AutoUpgrade Configuration File Entries
	AutoUpgrade Configuration File for Incremental Upgrade of a Set of PDBs
	How to Run AutoUpgrade in a Script or Batch job

	AutoUpgrade before_action Local Parameter Example
	AutoUpgrade Internal Settings Configuration File
	AutoUpgrade Log File Structure
	Enabling Full Deployments for AutoUpgrade
	Examples of How to Use the AutoUpgrade Console
	How to Override Default Fixups
	Local Configuration File Parameter Fixups Checklist Example
	Proper Management of AutoUpgrade Database Changes
	AutoUpgrade and Microsoft Windows ACLs and CLIs

	5 Upgrading Oracle Database Using Parallel Upgrade Utility or Replay Upgrade
	Upgrading Manually with Parallel Upgrade Utility
	About the Parallel Upgrade Utility for Oracle Database (CATCTL.PL and DBUPGRADE)
	General Steps for Running the Parallel Upgrade Utility
	Parallel Upgrade Utility (catctl.pl) Parameters
	Example of Using the Parallel Upgrade Utility

	Manual Upgrade Scenarios for Multitenant Architecture Oracle Databases
	About Oracle Multitenant Oracle Database Upgrades
	Coordinate Upgrades of Proxy PDBs with Multitenant Upgrades
	Manually Upgrading a Multitenant Container Oracle Database (CDB)
	About Upgrading PDBs Using the Parallel Upgrade Utility with Priority Lists
	About PDB Upgrades Using Priority Lists, Inclusion Lists, and Exclusion Lists
	Oracle Label Security Integration in a Multitenant Environment
	Upgrading Multitenant Architecture In Parallel
	About Upgrading Pluggable Databases (PDBs) In Parallel
	Upgrading Multitenant Container Databases In Parallel

	Upgrading Multitenant Architecture Sequentially Using Unplug-Plug
	About Upgrading Pluggable Databases (PDBs) Sequentially
	Unplugging the Earlier Release PDB from the Earlier Release CDB
	Plugging in the Earlier Release PDB to the Later Release CDB
	Upgrading the Earlier Release PDB to the Later Release
	Use Inclusion or Exclusion Lists for PDB Upgrades

	About Transporting and Upgrading a Database (Full Transportable Export/Import)
	Upgrading Oracle Database Releases Using Replay Upgrade
	Upgrading CDBs or PDBs Using Replay Upgrade
	How to Disable or Enable Replay Upgrade
	About Upgrading Non-CDBs to PDBs Using Replay Upgrade
	Adopting and Upgrading a Non-CDB as a PDB with Replay Upgrade
	How the Replay Upgrade Procedure is Enabled or Disabled on CDBs and PDBs
	Failure and Recovery Scenarios for Replay Upgrade Processes

	Manual Non-CDB Oracle Database Release Upgrades to Multitenant Architecture
	About Adopting a Non-CDB as a PDB Using a PDB Plugin
	Adopting a Non-CDB as a PDB
	Oracle Label Security Integration in a Multitenant Environment
	Plugging In an Unplugged PDB
	Manually Upgrading Non-CDB Architecture Oracle Databases

	Upgrading Oracle Database Using Fleet Patching and Provisioning
	Rerunning Upgrades for Oracle Database
	About Rerunning Upgrades for Oracle Database
	Rerunning Upgrades with the Upgrade (catctl.pl) Script
	Options for Rerunning the Upgrade for Multitenant Databases (CDBs)
	Rerun the Entire Upgrade for the CDB
	Rerun the Upgrade Only on Specified PDBs
	Rerun the Upgrade While Other PDBs Are Online
	Rerun the Upgrade Using an Inclusion List to Specify a CDB or PDBs

	Restarting the Upgrade from a Specific Phase that Failed Using -p
	Reviewing CDB Log Files for Failed Phases
	Procedure for Finding and Restarting Multitenant Upgrades from a Failed Phase

	6 Troubleshooting the Upgrade for Oracle Database
	Error Upgrading Non-CDB Oracle Databases
	Fixed View Queries Restriction When Starting Oracle Database in Upgrade Mode
	Resolving PDBs in Restricted Mode After Successful Upgrades
	Invalid Object Warnings and DBA Registry Errors
	Invalid Objects and Premature Use of Postupgrade Tool
	Resolving Oracle Database Upgrade Script Termination Errors
	Troubleshooting Causes of Resource Limits Errors while Upgrading Oracle Database
	Resolving SQL*Plus Edition Session Startup Error for Oracle Database
	Error ORA-00020 Maximum Number of Processes Exceeded When Running utlrp.sql
	Fixing ORA-28365: Wallet Is Not Open Error
	Resolving issues with view CDB_JAVA_POLICY
	Continuing Upgrades After Server Restarts (ADVM/ACFS Driver Error)
	Component Status and Upgrades
	Understanding Component Status With the Post-Upgrade Status Tool
	Component OPTION OFF Status and Upgrades
	Example of an Upgrade Summary Report

	Standard Edition Starter Database and Components with Status OPTION OFF
	Adjusting Oracle ASM Password File Location After Upgrade
	Fixing "Warning XDB Now Invalid" Errors with Pluggable Database Upgrades
	Fixing ORA-27248: sys.dra_reevaluate_open_failures is running
	Fixing Failed Upgrades Where Only Datapatch Fails
	Fixing Failures to Complete Registration of Listeners with DBUA

	7 Postupgrade Tasks for Oracle Database
	Check the Upgrade With Post-Upgrade Status Tool
	How to Show the Current State of the Oracle Data Dictionary
	Required Tasks to Complete After Upgrading Oracle Database
	Setting Environment Variables on Linux and Unix Systems After Manual Upgrades
	Recompiling All Invalid Objects
	Track Invalid Object Recompilation Progress
	Update Listener Files Location on Oracle RAC Cluster Member Upgrades
	Setting oratab and Scripts to Point to the New Oracle Location After Upgrading Oracle Database
	Check PL/SQL Packages and Dependent Procedures
	Upgrading Tables Dependent on Oracle-Maintained Types
	Upgrading Statistics Tables Created by the DBMS_STATS Package After Upgrading Oracle Database
	Configuring the FTP and HTTP Ports and HTTP Authentication for Oracle XML DB
	Install Oracle Text Supplied Knowledge Bases After Upgrading Oracle Database
	Drop Earlier Release Oracle Application Express
	Replace the DEMO Directory in Read-Only Oracle Homes
	Configure Access Control Lists (ACLs) to External Network Services
	Enabling Oracle Database Vault After Upgrading Oracle Database
	Upgrading Oracle Database Without Disabling Oracle Database Vault
	Postupgrade Scenarios with Oracle Database Vault

	Check for the SQLNET.ALLOWED_LOGON_VERSION Parameter Behavior

	Recommended and Best Practices to Complete After Upgrading Oracle Database
	Back Up the Database
	Run AutoUpgrade Postupgrade Checks
	Gathering Dictionary Statistics After Upgrading
	Regathering Fixed Objects Statistics with DBMS_STATS
	Reset Passwords to Enforce Case-Sensitivity
	Finding and Resetting User Passwords That Use the 10G Password Version
	Understand Oracle Grid Infrastructure, Oracle ASM, and Oracle Clusterware
	Oracle Grid Infrastructure Installation and Upgrade and Oracle ASM
	Add New Features as Appropriate
	Develop New Administrative Procedures as Needed
	Migrating From Rollback Segments To Automatic Undo Mode
	Migrating Tables from the LONG Data Type to the LOB Data Type
	Migrate Your Upgraded Oracle Databases to Use Unified Auditing
	Understanding Unified Auditing Migration Process for Oracle Database
	Migrating to Unified Auditing for Oracle Database
	About Managing Earlier Audit Records After You Migrate to Unified Auditing
	Removing the Unified Auditing Functionality
	Obtaining Documentation References if You Choose Not to Use Unified Auditing

	Identify Oracle Text Indexes for Rebuilds
	Dropping and Recreating DBMS_SCHEDULER Jobs
	Transfer Unified Audit Records After the Upgrade
	About Transferring Unified Audit Records After an Upgrade
	Transferring Unified Audit Records After an Upgrade

	About Recovery Catalog Upgrade After Upgrading Oracle Database
	Enabling Disabled Release Update Bug Fixes in the Upgraded Database
	About Testing the Upgraded Production Oracle Database
	Upgrading the Time Zone File Version After Upgrading Oracle Database

	Recommended Tasks After Upgrading an Oracle RAC Database
	Recommended Tasks After Upgrading Oracle ASM
	Create a Shared Password File In the ASM Diskgroup
	Reset Oracle ASM Passwords to Enforce Case-Sensitivity
	Advancing the Oracle ASM and Oracle Database Disk Group Compatibility
	Set Up Oracle ASM Preferred Read Failure Groups

	Recommended Tasks After Upgrading Oracle Database Express Edition
	Tasks to Complete Only After Manually Upgrading Oracle Database
	Changing Passwords for Oracle Supplied Accounts
	Migrating Your Initialization Parameter File to a Server Parameter File
	Identifying and Copying Oracle Text Files to a New Oracle Home
	Upgrading the Oracle Clusterware Configuration
	Adjust the Initialization Parameter File for the New Release
	Setting the COMPATIBLE Initialization Parameter After Upgrade
	Adjust TNSNAMES.ORA and LISTENER Parameters After Upgrade

	Set CLUSTER_DATABASE Initialization Parameter For Oracle RAC After Upgrade

	8 Upgrading Applications After Upgrading Oracle Database
	Overview of Upgrading Applications on a New Oracle Database Release
	Compatibility Issues for Applications on Different Releases of Oracle Database
	Software Upgrades and Client and Server Configurations for Oracle Database
	Possible Client and Server Configurations for Oracle Database

	Compatibility Rules for Applications When Upgrading Oracle Database Client or Server Software
	Rules for Upgrading Oracle Database Server Software
	If You Do Not Change the Client Environment, Then You Are Not Required to Relink
	Applications Can Run Against Newer or Older Oracle Database Server Releases

	Upgrading the Oracle Database Client Software
	About Image-Based Oracle Database Client Installation
	About Linking Applications with Newer Libraries
	Statically Linked Applications Must Always Be Relinked
	About Relinking Dynamically Linked Applications

	About Upgrading Precompiler and OCI Applications in Oracle Database
	Schema-Only Accounts and Upgrading EXPIRED Password Accounts
	About Upgrading Options for Oracle Precompiler and OCI Applications
	Option 1: Leave the Application Unchanged
	Option 2: Precompile or Compile the Application Using the New Software
	Option 3: Change the Application Code to Use New Oracle Database Features
	Changing Oracle Precompiler and OCI Application Development Environments
	Changing Precompiler Applications
	Changing OCI Applications

	Upgrading SQL*Plus Scripts and PL/SQL after Upgrading Oracle Database
	About Upgrading Oracle Forms or Oracle Developer Applications

	9 Downgrading Oracle Database to an Earlier Release
	Supported Releases for Downgrading Oracle Database
	Check for Incompatibilities When Downgrading Oracle Database
	Perform a Full Backup Before Downgrading Oracle Database
	Performing Required Predowngrade Steps for Oracle Database
	Using Scripts to Downgrade Oracle Database 21c
	Using Dbdowngrade to Downgrade Oracle Databases To an Earlier Release
	Downgrading a CDB or Non-CDB Oracle Database Manually with catdwgrd.sql

	Downgrading a Single Pluggable Oracle Database (PDB)
	Downgrading PDBs That Contain Oracle Application Express
	Post-Downgrade Tasks for Oracle Database Downgrades
	Reapply Release Update and Other Patches After Downgrade
	Re-enabling Oracle Database Vault after Downgrading Oracle Database
	Restoring the Configuration for Oracle Clusterware
	Restoring Oracle Enterprise Manager after Downgrading Oracle Database
	Requirements for Restoring Oracle Enterprise Manager After Downgrading
	Running EMCA to Restore Oracle Enterprise Manager After Downgrading
	Running emca on a Single-Instance Oracle Database Without Oracle ASM
	Running EMCA on an Oracle RAC Database Without Oracle ASM
	Running EMCA on a Single-Instance Oracle ASM Instance
	Running emca on an Oracle ASM on Oracle RAC Instance
	Running emca on a Single-Instance Oracle Database With Oracle ASM
	Running emca on an Oracle RAC Database and Oracle ASM Instance

	Running the emdwgrd utility to restore Enterprise Manager Database Control

	Restoring Oracle Application Express to the Earlier Release
	Gathering Dictionary Statistics After Downgrading
	Regathering Fixed Object Statistics After Downgrading
	Regathering Stale CBO Statistics After Downgrade

	Troubleshooting the Downgrade of Oracle Database
	Errors Downgrading Oracle Database Components with catdwgrd.sql Script
	Downgrading Oracle Grid Infrastructure (Oracle Restart) After Successful or Failed Upgrade
	Errors Downgrading Databases with Oracle Messaging Gateway

	10 Behavior Changes, Deprecated and Desupported Features for Oracle Database
	About Deprecated and Desupported Status
	Behavior Changes, Deprecations and Desupports in Oracle Database 21c
	Behavior Changes for Oracle Database 21c Upgrade Planning
	About Read-Only Oracle Homes
	Multitenant Upgrades Only in Oracle Database 21c
	Logical Standby and New Data Types
	Relocation of HR Sample Schema
	Manage DRCP on PDBs

	Deprecated Features in Oracle Database 21c
	Deprecation of FILE_DATASTORE Type
	Deprecation of URL_DATASTORE Text Type
	Deprecation of AUTO OPTIMIZE Framework
	Deprecation of CTXFILTERCACHE Query Operator
	Deprecation of Policy-Managed Databases
	Deprecation of Traditional Auditing
	Deprecation of Older Encryption Algorithms
	Deprecation of Cluster Domain - Domain Services Cluster
	Deprecation of Enterprise User Security (EUS) User Migration Utility
	Logical Standby and New Data Types
	Deprecation of Sharded Queues
	Deprecation of MySQL Client Library Driver for Oracle
	Deprecation of TLS 1.0 and 1.1 Transport Layer Security
	Deprecation of Unix Crypt (or MD5crypt) Password Verifier
	Deprecation of ODP.NET OracleConfiguration.DirectoryType Property
	Deprecation of Weaker Encryption Key Strengths
	Deprecation of DBSNMP Packages for Adaptive Thresholds Feature
	Deprecation of Oracle GoldenGate Replication for Oracle Sharding High Availability
	Deprecation of Anonymous Cipher Suites with Outbound TLS Connections
	Deprecation of the KERBEROS5PRE Adapter
	Deprecation of Oracle Wallet Manager
	Deprecation of Oracle Enterprise Manager Database Express
	Deprecation of SHA-1 use for SQLNET and DBMS_CRYPTO
	Deprecation of Repository Events
	Deprecation of Service Attribute Value SESSION_STATE_CONSISTENCY = STATIC
	Deprecation of ACFSUTIL REPL REVERSE
	Deprecation of Oracle OLAP

	Deprecated Views in Oracle Database 21c
	Deprecation of Traditional Auditing Views

	Deprecated Parameters in Oracle Database 21c
	Deprecation of Traditional Auditing Initialization Parameters

	Desupported Features in Oracle Database 21c
	Desupport of DBMS_OBFUSCATION_TOOLKIT Package
	Desupport of Several XML Database (XDB) features
	Desupport of DBMS_LOB.LOADFROMFILE and LOB Buffering
	Desupport of Oracle Data Guard Broker Properties and Logical Standby
	Desupport of DBMS_CRYPTO_TOOLKIT_TYPES and DBMS_CRYPTO_TOOLKIT
	Desupport of Non-CDB Oracle Databases
	Desupport of Cluster Domain Member Clusters
	Desupport of Unicode Collation Algorithm (UCA) 6.1 Collations
	Desupport of ACFS on Microsoft Windows
	Desupport of Oracle ACFS Security (Vault) and ACFS Auditing
	Desupport of Oracle ACFS on Member Clusters (ACFS Remote)
	Desupport of ACFS Encryption on Solaris and Windows
	Desupport of ACFS Replication REPV1
	Desupport of Vendor Clusterware Integration with Oracle Clusterware
	Desupport of VERIFY_FUNCTION and VERIFY_FUNCTION_11G
	Desupport of Deprecated Oracle Database Vault Roles
	Desupport of Anonymous RC4 Cipher Suite
	Desupport of Adobe Flash-Based Oracle Enterprise Manager Express
	Desupport of Intelligent Data Placement (IDP)
	Desupport of XML DB Content Connector
	Desupport of DBMS_XMLSAVE
	Desupport of DBMS_XMLQUERY
	Desupport of FIPS Protect and Process Strength 0
	Desupport of PDB Flat File Dictionary Dumps
	Desupport of Oracle Fail Safe

	Desupported Initialization Parameters in Oracle Database 21c
	Desupport of UNIFIED_AUDIT_SGA_QUEUE_SIZE
	Desupport of IGNORECASE Parameter for Passwords
	Desupport of DISABLE_DIRECTORY_LINK_CHECK
	Desupport of REMOTE_OS_AUTHENT Parameter
	Desupport of SEC_CASE_SENSITIVE_LOGON

	Behavior Changes, Deprecations and Desupports in Oracle Database 19c
	Behavior Changes for Oracle Database 19c Upgrade Planning
	Changes to Oracle Data Guard Properties Management
	Rapid Home Provisioning (RHP) Name Change
	Resupport of Direct File Placement for OCR and Voting Disks
	Optional Install for the Grid Infrastructure Management Repository
	Support for DBMS_JOB
	About Standard Edition High Availability
	Manage "Installed but Disabled" Module Bug Fixes with DBMS_OPTIM_BUNDLE

	Deprecated Features in Oracle Database 19c
	Oracle Data Guard Broker Deprecated Properties
	Oracle Data Guard Logical Standby Properties Deprecated
	Deprecation of ASMCMD PWCREATE On Command Line
	Deprecation of Addnode Script
	Deprecation of clone.pl Script
	Deprecation of Oracle Fail Safe
	Deprecation of GDSCTL Operating System Command-Line Password Resets
	Deprecation of Oracle Enterprise Manager Express
	Deprecation of DV_REALM_OWNER Role
	Deprecation of DV_REALM_RESOURCE Role
	Deprecation of DV_PUBLIC Role
	Deprecation of Oracle ACFS Replication Protocol REPV1
	Deprecation of Oracle ACFS Encryption on Solaris and Windows
	Deprecation of Oracle ACFS on Windows
	Deprecation of Oracle ACFS Security (Vault) and ACFS Auditing
	Deprecation of Oracle ACFS on Member Clusters (ACFS Remote)
	Deprecation of Cluster Domain - Member Clusters
	Deprecation of Vendor Clusterware Integration with Oracle Clusterware

	Deprecated Initialization Parameters in Oracle Database 19c
	CLUSTER_DATABASE_INSTANCES Initialization Parameter Deprecated
	Deprecation of SQLNET.ENCRYPTION_WALLET_LOCATION Parameter
	Deprecation of the SERVICE_NAMES Initialization Parameter

	Desupported Features in Oracle Database 19c
	Desupport of Oracle Data Provider for .NET Promotable Transaction Setting
	Desupport of Oracle Multimedia
	Desupport of the CONTINUOUS_MINE feature of LogMiner
	Desupport of Extended Datatype Support (EDS)
	Data Guard Broker MaxConnections Property Desupported
	Desupport of Leaf Nodes in Flex Cluster Architecture
	Desupport of Oracle Streams
	Desupport of PRODUCT_USER_PROFILE Table
	Desupport of Oracle Real Application Clusters for Standard Edition 2 (SE2) Database Edition

	Desupported Parameters in Oracle Database 19c
	EXAFUSION_ENABLED Initialization Parameter Desupported
	MAX_CONNECTIONS attribute of LOG_ARCHIVE_DEST_n Desupported
	Desupport of O7_DICTIONARY_ACCESS
	Desupport of OPTIMIZE_PROGRESS_TABLE Parameter

	Behavior Changes, Deprecations and Desupports in Oracle Database 18c
	Behavior Changes for Oracle Database 18c Upgrade Planning
	Simplified Image-Based Oracle Database Installation
	Support Indexing of JSON Key Names Longer Than 64 Characters
	Upgrading Existing Databases is Replaced With Image Installations
	About RPM-Based Oracle Database Installation
	Token Limitations for Oracle Text Indexes
	Changes to /ALL/USER/DBA User View and PL/SQL External Libraries
	Symbolic Links and UTL_FILE
	Deprecation of Direct Registration of Listeners with DBCA
	UNIFORM_LOG_TIMESTAMP_FORMAT Changes in INIT.ORA

	Deprecated Features in Oracle Database 18c
	Data Guard MAX_CONNECTIONS Attribute is Deprecated
	Extended Datatype Support (EDS) is Deprecated
	GET_* Functions Deprecated in the DBMS_DATA_MINING Package
	Package DBMS_XMLQUERY is deprecated
	Package DBMS_XMLSAVE is Deprecated
	Deprecated Columns in Oracle Label Security Views
	Returning JSON True or False Values using NUMBER is Deprecated
	Deprecation of MAIL_FILTER in Oracle Text
	Deprecation of asmcmd showversion Option
	Deprecation of NEWS_SECTION_GROUP in Oracle Text
	Oracle Net Services Support for SDP is Deprecated
	Deprecation of Flex Cluster (Hub/Leaf) Architecture
	Deprecation of PRODUCT_USER_PROFILE Table

	Desupported Features in Oracle Database 18c
	Oracle Administration Assistant for Windows is Desupported
	Oracle Multimedia DICOM Desupported Features
	Oracle Multimedia Java Client Classes Desupported
	Oracle XML DB Desupported Features
	ODP.NET, Managed Driver - Distributed Transaction DLL Desupported
	Data Guard Broker DGMGRL ALTER Syntax is Desupported
	Desupport of CRSUSER on Microsoft Windows Systems

	Desupported Initialization Parameters in Oracle Database 18c
	Desupport of STANDBY_ARCHIVE_DEST Initialization Parameter
	Desupport of UTL_FILE_DIR Initialization Parameter

	Deprecation of Oracle Multimedia
	Terminal Release of Oracle Streams

	Behavior Changes, Deprecations and Desupports in Oracle Database 12c Release 2 (12.2)
	Behavior Changes in Oracle Database 12c Release 2 (12.2)
	Initialization Parameter Default Changes in Oracle Database 12c Release 2 (12.2)
	Database Upgrade Assistant (DBUA) Enhancements and Changes
	Enhancements to Oracle Data Guard Broker and Rolling Upgrades
	About Changes in Default SGA Permissions for Oracle Database
	Network Access Control Lists and Upgrade to Oracle Database 12c
	Parallel Upgrade Utility Batch Scripts
	Unified Auditing AUDIT_ADMIN and AUDIT_VIEWER Roles Changes
	Oracle Update Batching Batch Size Settings Disabled
	About Upgrading Tables Dependent on Oracle-Maintained Types
	Case-Insensitive Passwords and ORA-1017 Invalid Username or Password
	About Deploying Oracle Grid Infrastructure Using Oracle Fleet Patching and Provisioning
	Restrictions Using Zero Data Loss Recovery Appliance Release 12.1 Backups
	Client and Foreground Server Process Memory Changes

	Deprecated Initialization Parameters in Oracle Database 12c Release 2 (12.2)
	Deprecated Features in Oracle Database 12c Release 2 (12.2)
	Deprecation of ALTER TYPE REPLACE
	Deprecation of configToolAllCommands Script
	Deprecation of DBMS_DEBUG Package
	Deprecation of Intelligent Data Placement (IDC)
	Deprecation of CONTINUOUS_MINE Option
	Deprecation of Non-CDB Architecture
	Deprecation of Oracle Administration Assistant for Windows
	Deprecation of Oracle Data Provider for .NET PromotableTransaction Setting
	Deprecation of oracle.jdbc.OracleConnection.unwrap()
	Deprecation of oracle.jdbc.rowset Package
	Deprecation of oracle.sql.DatumWithConnection Classes
	Deprecation of Oracle Multimedia Java APIs
	Deprecation of Oracle Multimedia Support for DICOM
	Deprecation of Multimedia SQL/MM Still Image Standard Support
	Deprecation of Unicode Collation Algorithm (UCA) 6.1 Collations
	Deprecation of UNIFIED_AUDIT_SGA_QUEUE_SIZE
	Deprecation of VERIFY_FUNCTION and VERIFY_FUNCTION_11G
	Deprecation of V$MANAGED_STANDBY
	Deprecation of Some XML DB Functions
	Deprecated Features for Oracle XML Database

	Desupported Initialization Parameters in Oracle Database 12c Release 2 (12.2)
	Desupported Features in Oracle Database 12c Release 2 (12.2)
	Desupport of Advanced Replication
	Desupport of Direct File System Placement for OCR and Voting Files
	Desupport of JPublisher
	Desupported Oracle Data Provider for .NET APIs for Transaction Guard
	Desupported Views in Oracle Database 12c Release 2 (12.2)
	SQLJ Support Inside Oracle Database
	Desupport of Some XML DB Features

	A Oracle Database Upgrade Utilities
	Scripts for Upgrading Oracle Database
	Pre-Upgrade Information Tool and AutoUpgrade Preupgrade
	Using AutoUpgrade To Obtain Pre-Upgrade Information Tool Checks
	Examples of Preupgrade and Postupgrade Checks

	B Upgrading with Oracle Database Upgrade Assistant (DBUA)
	Requirements for Using DBUA
	About Stopping DBUA When Upgrading
	How DBUA Processes the Upgrade for Oracle Database
	Upgrade Scripts Started by DBUA
	Using DBUA to Upgrade the Database on Linux, Unix, and Windows Systems
	Moving a Database from an Existing Oracle Home
	Using DBUA in Silent Mode to Upgrade Oracle Database
	Running DBUA in Silent Mode
	DBUA Command-Line Syntax for Active and Silent Mode

	Running DBUA with Different ORACLE_HOME Owner
	Migrating from Oracle ACFS to Alternative Storage Before Using DBUA

	C AutoUpgrade Error Messages
	Index

