42.15 PREDICTION_DETAILS
Syntax
prediction_details::=
Analytic Syntax
prediction_details_analytic::=
mining_attribute_clause::=
mining_analytic_clause::=
See Also:
"Analytic Functions" for information on the syntax, semantics, and restrictions of mining_analytic_clause
Purpose
PREDICTION_DETAILS
returns prediction details for each row in the selection. The return value is an XML string that describes the attributes of the prediction.
For regression, the returned details refer to the predicted target value. For classification and anomaly detection, the returned details refer to the highest probability class or the specified class_value
.
topN
If you specify a value for topN
, the function returns the N
attributes that have the most influence on the prediction (the score). If you do not specify topN
, the function returns the 5 most influential attributes.
DESC, ASC, or ABS
The returned attributes are ordered by weight. The weight of an attribute expresses its positive or negative impact on the prediction. For regression, a positive weight indicates a higher value prediction; a negative weight indicates a lower value prediction. For classification and anomaly detection, a positive weight indicates a higher probability prediction; a negative weight indicates a lower probability prediction.
By default, PREDICTION_DETAILS
returns the attributes with the highest positive weight (DESC
). If you specify ASC
, the attributes with the highest negative weight are returned. If you specify ABS
, the attributes with the greatest weight, whether negative or positive, are returned. The results are ordered by absolute value from highest to lowest. Attributes with a zero weight are not included in the output.
Syntax Choice
PREDICTION_DETAILS
can score the data by applying a mining model object to the data, or it can dynamically mine the data by executing an analytic clause that builds and applies one or more transient mining models. Choose Syntax or Analytic Syntax:
-
Syntax: Use the
prediction_details
syntax to score the data with a pre-defined model. Supply the name of a model that performs classification, regression, or anomaly detection.Use the
prediction_details_ordered
syntax for a model that requires ordered data, such as an MSET-SPRT model. Theprediction_details_ordered
syntax requires anorder_by_clause
clause.Restrictions on the
prediction_details_ordered
syntax are that you cannot use it in theWHERE
clause of a query. Also, you cannot use aquery_partition_clause
or awindowing_clause
with theprediction_details_ordered
syntax.Note:
When random projections are engaged for an MSET-SPRT model., only the overallPREDICTION
andPREDICTION_PROBABILITY
are computed andPREDICTION_DETAILS
are not reported.For details about the
order_by_clause
, see "Analytic Functions" in Oracle Database SQL Language Reference. -
Analytic Syntax: Use the
prediction_details_analytic
syntax to score the data without a pre-defined model. The analytic syntax usesmining_analytic_clause
, which specifies if the data should be partitioned for multiple model builds. Themining_analytic_clause
supports aquery_partition_clause
and anorder_by_clause
. (See "analytic_clause::=".)-
For classification, specify
FOR
expr
, whereexpr
is an expression that identifies a target column that has a character data type. -
For regression, specify
FOR
expr
, whereexpr
is an expression that identifies a target column that has a numeric data type. -
For anomaly detection, specify the keywords
OF ANOMALY
.
-
The syntax of the PREDICTION_DETAILS
function can use an optional GROUPING
hint when scoring a partitioned model. See GROUPING Hint.
mining_attribute_clause
mining_attribute_clause
identifies the column attributes to use as predictors for scoring. When the function is invoked with the analytic syntax, these predictors are also used for building the transient models. The mining_attribute_clause
behaves as described for the PREDICTION
function. (See "mining_attribute_clause".)
See Also:
-
Oracle Machine Learning for SQL User’s Guide for information about scoring.
-
Oracle Machine Learning for SQL Concepts for information about predictive Oracle Machine Learning for SQL.
Note:
The following examples are excerpted from the Oracle Machine Learning for SQL examples. For more information about the examples, see Appendix A in Oracle Machine Learning for SQL User’s Guide.
Example
This example uses the model svmr_sh_regr_sample
to score the data. The query returns the three attributes that have the greatest influence on predicting a higher value for customer age.
SELECT PREDICTION_DETAILS(svmr_sh_regr_sample, null, 3 USING *) prediction_details FROM mining_data_apply_v WHERE cust_id = 100001; PREDICTION_DETAILS --------------------------------------------------------------------------------------- <Details algorithm="Support Vector Machines"> <Attribute name="CUST_MARITAL_STATUS" actualValue="Widowed" weight=".361" rank="1"/> <Attribute name="CUST_GENDER" actualValue="F" weight=".14" rank="2"/> <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".135" rank="3"/> </Details>
Analytic Syntax
This example dynamically identifies customers whose age is not typical for the data. The query returns the attributes that predict or detract from a typical age.
SELECT cust_id, age, pred_age, age-pred_age age_diff, pred_det FROM (SELECT cust_id, age, pred_age, pred_det, RANK() OVER (ORDER BY ABS(age-pred_age) DESC) rnk FROM (SELECT cust_id, age, PREDICTION(FOR age USING *) OVER () pred_age, PREDICTION_DETAILS(FOR age ABS USING *) OVER () pred_det FROM mining_data_apply_v)) WHERE rnk <= 5; CUST_ID AGE PRED_AGE AGE_DIFF PRED_DET ------- --- -------- -------- ------------------------------------------------------------------ 100910 80 40.67 39.33 <Details algorithm="Support Vector Machines"> <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".059" rank="1"/> <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059" rank="2"/> <Attribute name="AFFINITY_CARD" actualValue="0" weight=".059" rank="3"/> <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".059" rank="4"/> <Attribute name="YRS_RESIDENCE" actualValue="4" weight=".059" rank="5"/> </Details> 101285 79 42.18 36.82 <Details algorithm="Support Vector Machines"> <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".059" rank="1"/> <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".059" rank="2"/> <Attribute name="CUST_MARITAL_STATUS" actualValue="Mabsent" weight=".059" rank="3"/> <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059" rank="4"/> <Attribute name="OCCUPATION" actualValue="Prof." weight=".059" rank="5"/> </Details> 100694 77 41.04 35.96 <Details algorithm="Support Vector Machines"> <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".059" rank="1"/> <Attribute name="EDUCATION" actualValue="< Bach." weight=".059" rank="2"/> <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059" rank="3"/> <Attribute name="CUST_ID" actualValue="100694" weight=".059" rank="4"/> <Attribute name="COUNTRY_NAME" actualValue="United States of America" weight=".059" rank="5"/> </Details> 100308 81 45.33 35.67 <Details algorithm="Support Vector Machines"> <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".059" rank="1"/> <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059" rank="2"/> <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".059" rank="3"/> <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".059" rank="4"/> <Attribute name="CUST_GENDER" actualValue="F" weight=".059" rank="5"/> </Details> 101256 90 54.39 35.61 <Details algorithm="Support Vector Machines"> <Attribute name="YRS_RESIDENCE" actualValue="9" weight=".059" rank="1"/> <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".059" rank="2"/> <Attribute name="EDUCATION" actualValue="< Bach." weight=".059" rank="3"/> <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059" rank="4"/> <Attribute name="COUNTRY_NAME" actualValue="United States of America" weight=".059" rank="5"/> </Details>