39.1 About the OML4SQL Examples

The OML4SQL examples illustrate typical approaches to data preparation, algorithm selection, algorithm tuning, testing, and scoring.

You can learn a great deal about the OML4SQL application programming interface from the OML4SQL examples. The examples are simple. They include extensive inline comments to help you understand the code. They delete all temporary objects on exit so that you can run the examples repeatedly without setup or cleanup.

The OML4SQL examples are available on GitHub at https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/sql/21c.

The OML4SQL examples create a set of machine learning models in the user's schema. The following table lists the file name of the example and the mining_function value and algorithm the example uses.

Table 39-1 Models Created by Examples

File Name MINING_FUNCTION Algorithm
oml4sql-association-rules.sql ASSOCIATION ALGO_APRIORI_ASSOCIATION_RULES
oml4sql-feature-extraction-cur.sql ATTRIBUTE_IMPORTANCE ALGO_CUR_DECOMPOSITION
oml4sql-classification-decision-tree.sql CLASSIFICATION ALGO_DECISION_TREE
oml4sql-cross-validation-decision-tree.sql CLASSIFICATION ALGO_DECISION_TREE
oml4sql-classification-glm.sql CLASSIFICATION ALGO_GENERALIZED_LINEAR_MODEL
oml4sql-time-series-mset.sql CLASSIFICATION ALGO_MSET_SPRT
oml4sql-classification-naive-bayes.sql CLASSIFICATION ALGO_NAIVE_BAYES
oml4sql-classification-neural-networks.sql CLASSIFICATION ALGO_NEURAL_NETWORK
oml4sql-classification-random-forest.sql CLASSIFICATION ALGO_RANDOM_FOREST
oml4sql-anomaly-detection-1csvm.sql CLASSIFICATION ALGO_SUPPORT_VECTOR_MACHINES
oml4sql-classification-svm.sql CLASSIFICATION ALGO_SUPPORT_VECTOR_MACHINES
oml4sql-classification-text-analysis-svm.sql CLASSIFICATION ALGO_SUPPORT_VECTOR_MACHINES
oml4sql-partitioned-models-svm.sql CLASSIFICATION ALGO_SUPPORT_VECTOR_MACHINES
oml4sql-classification-regression-xgboost.sql CLASSIFICATION ALGO_XGBOOST
oml4sql-clustering-expectation-maximization.sql CLUSTERING ALGO_EXPECTATION_MAXIMIZATION
oml4sql-clustering-kmeans.sql CLUSTERING ALGO_KMEANS
oml4sql-clustering-kmeans-star-schema.sql CLUSTERING ALGO_KMEANS
oml4sql-clustering-o-cluster.sql CLUSTERING ALGO_O_CLUSTER
oml4sql-feature-extraction-text-analysis-esa.sql FEATURE_EXTRACTION ALGO_EXPLICIT_SEMANTIC_ANALYS
oml4sql-feature-extraction-nmf.sql FEATURE_EXTRACTION ALGO_NONNEGATIVE_MATRIX_FACTOR
oml4sql-feature-extraction-text-analysis-nmf.sql FEATURE_EXTRACTION ALGO_NONNEGATIVE_MATRIX_FACTOR
oml4sql-singular-value-decomposition.sql FEATURE_EXTRACTION ALGO_SINGULAR_VALUE_DECOMP
oml4sql-regression-glm.sql REGRESSION ALGO_GENERALIZED_LINEAR_MODEL
oml4sql-regression-neural-networks.sql REGRESSION ALGO_NEURAL_NETWORK
oml4sql-regression-random-forest.sql REGRESSION ALGO_RANDOM_FOREST
oml4sql-regression-svm.sql REGRESSION ALGO_SUPPORT_VECTOR_MACHINES
oml4sql-classification-regression-xgboost.sql REGRESSION ALGO_XGBOOST
oml4sql-time-series-exponential-smoothing.sql TIME_SERIES ALGO_EXPONENTIAL_SMOOTHING

Another example is oml4sql-attribute-importance.sql, which uses the DBMS_PREDICTIVE_ANALYTICS.EXPLAIN procedure to find the importance of attributes that independently impact the target attribute.

Another set of examples demonstrates the use of the ALGO_EXTENSIBLE_LANG algorithm to register R language functions and create R models. The following table lists the R Extensibility examples. It shows the file name of the example and the MINING_FUNCTION value and R function used.

File Name MINING_FUNCTION R Function
oml4sql-rextensible-algorithm-registration.sql CLASSIFICATION glm
oml4sql-rextensible-association-rules.sql ASSOCIATION apriori
oml4sql-rextensible-attribute-importance-via-rf.sql REGRESSION randomForest
oml4sql-rextensible-glm.sql REGRESSION glm
oml4sql-rextensible-kmeans.sql CLUSTERING kmeans
oml4sql-rextensible-principal-components.sql FEATURE_EXTRACTION prcomp
oml4sql-rextensible-regression-tree.sql REGRESSION rpart
oml4sql-regression-r-neural-networks.sql REGRESSION nnet