
Oracle® Machine Learning for SQL
User's Guide

21c
F31931-06
January 2022

Oracle Machine Learning for SQL User's Guide, 21c

F31931-06

Copyright © 2005, 2022, Oracle and/or its affiliates.

Primary Author: Sarika Surampudi

Contributors: David McDermid, Boriana Milanova

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Technology Rebrand xii

Audience xii

Documentation Accessibility xii

Related Documentation xiii

Conventions xiv

 Changes in This Release for Oracle Machine Learning for SQL User's
Guide

 Other Changes

1 Oracle Machine Learning With SQL

1.1 Highlights of the Oracle Machine Learning for SQL API 1-1

1.2 Example: Predicting Likely Candidates for a Sales Promotion 1-2

1.3 Example: Analyzing Preferred Customers 1-3

1.4 Example: Segmenting Customer Data 1-5

1.5 Example : Comparison of Texts Using an ESA Model 1-7

2 About the Oracle Machine Learning for SQL API

2.1 About Oracle Machine Learning Models 2-1

2.2 Oracle Machine Learning Data Dictionary Views 2-2

2.2.1 ALL_MINING_MODELS 2-2

2.2.2 ALL_MINING_MODEL_ATTRIBUTES 2-3

2.2.3 ALL_MINING_MODEL_PARTITIONS 2-4

2.2.4 ALL_MINING_MODEL_SETTINGS 2-5

2.2.5 ALL_MINING_MODEL_VIEWS 2-6

2.2.6 ALL_MINING_MODEL_XFORMS 2-7

2.3 Oracle Machine Learning Modeling, Transformations, and Convenience Functions 2-8

iii

2.3.1 DBMS_DATA_MINING 2-8

2.3.2 DBMS_DATA_MINING_TRANSFORM 2-9

2.3.2.1 Transformation Methods in DBMS_DATA_MINING_TRANSFORM 2-9

2.3.3 DBMS_PREDICTIVE_ANALYTICS 2-10

2.4 Oracle Machine Learning for SQL Scoring Functions 2-10

2.5 Oracle Machine Learning for SQL Statistical Functions 2-12

3 Prepare the Data

3.1 Data Requirements 3-1

3.1.1 Column Data Types 3-2

3.1.2 Data Sets for Classification and Regression 3-2

3.1.3 Scoring Requirements 3-2

3.2 About Attributes 3-3

3.2.1 Data Attributes and Model Attributes 3-3

3.2.2 Target Attribute 3-4

3.2.3 Numericals, Categoricals, and Unstructured Text 3-5

3.2.4 Model Signature 3-5

3.2.5 Scoping of Model Attribute Name 3-6

3.2.6 Model Details 3-6

3.3 Use Nested Data 3-7

3.3.1 Nested Object Types 3-7

3.3.2 Example: Transforming Transactional Data for Machine Learning 3-8

3.4 Use Market Basket Data 3-10

3.4.1 Example: Creating a Nested Column for Market Basket Analysis 3-10

3.5 Use Retail Data for Analysis 3-11

3.5.1 Example: Calculating Aggregates 3-12

3.6 Handle Missing Values 3-12

3.6.1 Examples: Missing Values or Sparse Data? 3-13

3.6.1.1 Sparsity in a Sales Table 3-13

3.6.1.2 Missing Values in a Table of Customer Data 3-13

3.6.2 Missing Value Treatment in Oracle Machine Learning for SQL 3-13

3.6.3 Changing the Missing Value Treatment 3-15

3.7 About Transformations 3-15

3.8 Prepare the Case Table 3-16

3.8.1 Convert Column Data Types 3-16

3.8.2 Extract Datetime Column Values 3-17

3.8.3 Text Transformation 3-17

3.8.4 About Business and Domain-Sensitive Transformations 3-17

3.8.5 Create Nested Columns 3-18

iv

4 Create a Model

4.1 Before Creating a Model 4-1

4.2 Choose the Machine Learning Function 4-2

4.3 Choose the Algorithm 4-3

4.4 Automatic Data Preparation 4-5

4.4.1 Binning 4-5

4.4.2 Normalization 4-5

4.4.3 How ADP Transforms the Data 4-5

4.5 Embed Transformations in a Model 4-7

4.5.1 Build a Transformation List 4-7

4.5.1.1 SET_TRANSFORM 4-7

4.5.1.2 The STACK Interface 4-8

4.5.1.3 GET_MODEL_TRANSFORMATIONS and GET_TRANSFORM_LIST 4-8

4.5.2 Transformation List and Automatic Data Preparation 4-9

4.5.3 Specify Transformation Instructions for an Attribute 4-10

4.5.3.1 Expression Records 4-11

4.5.3.2 Attribute Specifications 4-11

4.5.4 Oracle Machine Learning for SQL Transformation Routines 4-12

4.5.4.1 Binning Routines 4-12

4.5.4.2 Normalization Routines 4-13

4.5.4.3 Outlier Treatment 4-13

4.5.4.4 Routines for Outlier Treatment 4-13

4.5.5 Understand Reverse Transformations 4-14

4.6 The CREATE_MODEL2 Procedure 4-15

4.7 The CREATE_MODEL Procedure 4-16

4.8 Specify Model Settings 4-17

4.8.1 Specify Costs 4-19

4.8.2 Specify Prior Probabilities 4-20

4.8.3 Specify Class Weights 4-20

4.8.5 Specify Oracle Machine Learning Model Settings for an R Model 4-21

4.8.5.1 ALGO_EXTENSIBLE_LANG 4-21

4.8.5.2 RALG_BUILD_FUNCTION 4-22

4.8.5.3 RALG_DETAILS_FUNCTION 4-24

4.8.5.4 RALG_DETAILS_FORMAT 4-25

4.8.5.5 RALG_SCORE_FUNCTION 4-25

4.8.5.6 RALG_WEIGHT_FUNCTION 4-28

4.8.5.7 Registered R Scripts 4-29

4.8.5.8 Algorithm Metadata Registration 4-29

4.8.4 About Partitioned Models 4-29

4.8.4.1 Partitioned Model Build Process 4-30

v

4.8.4.2 DDL in Partitioned model 4-31

4.8.4.3 Partitioned Model Scoring 4-32

4.9 Model Settings in the Data Dictionary 4-33

4.10 Model Detail Views 4-34

4.10.1 Model Detail Views for Association Rules 4-35

4.10.2 Model Detail View for Frequent Itemsets 4-40

4.10.3 Model Detail Views for Transactional Itemsets 4-41

4.10.4 Model Detail View for Transactional Rule 4-42

4.10.5 Model Detail Views for Classification Algorithms 4-43

4.10.6 Model Detail Views for CUR Matrix Decomposition 4-43

4.10.7 Model Detail Views for Decision Tree 4-45

4.10.8 Model Detail Views for Generalized Linear Model 4-48

4.10.9 Model Detail View for Multivariate State Estimation Technique - Sequential
Probability Ratio Test 4-55

4.10.10 Model Detail Views for Naive Bayes 4-55

4.10.11 Model Detail Views for Neural Network 4-56

4.10.12 Model Detail Views for Random Forest 4-58

4.10.13 Model Detail View for Support Vector Machine 4-59

4.10.14 Model Detail Views for XGBoost 4-60

4.10.15 Model Detail Views for Clustering Algorithms 4-61

4.10.16 Model Detail Views for Expectation Maximization 4-64

4.10.17 Model Detail Views for k-Means 4-67

4.10.18 Model Detail Views for O-Cluster 4-69

4.10.19 Model Detail Views for Explicit Semantic Analysis 4-70

4.10.20 Model Detail Views for Non-Negative Matrix Factorization 4-72

4.10.21 Model Detail Views for Singular Value Decomposition 4-74

4.10.22 Model Detail Views for Minimum Description Length 4-77

4.10.23 Model Detail Views for Binning 4-77

4.10.24 Model Detail Views for Global Information 4-78

4.10.25 Model Detail Views for Normalization and Missing Value Handling 4-79

4.10.26 Model Detail Views for Exponential Smoothing 4-80

4.10.27 Model Detail Views for Text Features 4-81

5 Scoring and Deployment

5.1 About Scoring and Deployment 5-1

5.2 Use the Oracle Machine Learning for SQL Functions 5-2

5.2.1 Choose the Predictors 5-3

5.2.2 Single-Record Scoring 5-4

5.3 Prediction Details 5-4

5.3.1 Cluster Details 5-5

5.3.2 Feature Details 5-5

vi

5.3.3 Prediction Details 5-6

5.3.4 GROUPING Hint 5-8

5.4 Real-Time Scoring 5-8

5.5 Dynamic Scoring 5-9

5.6 Cost-Sensitive Decision Making 5-11

5.7 DBMS_DATA_MINING.APPLY 5-12

6 Machine Learning Operations on Unstructured Text

6.1 About Unstructured Text 6-1

6.2 About Machine Learning and Oracle Text 6-1

6.3 Create a Model that Includes Machine Learning Operations on Text 6-2

6.4 Create a Text Policy 6-4

6.5 Configure a Text Attribute 6-5

7 Administrative Tasks for Oracle Machine Learning for SQL

7.1 Install and Configure a Database for Oracle Machine Learning for SQL 7-1

7.1.1 About Installation 7-1

7.1.2 Enable or Disable a Database Option 7-2

7.1.3 Database Tuning Considerations for Oracle Machine Learning for SQL 7-2

7.2 Upgrade or Downgrade Oracle Machine Learning for SQL 7-3

7.2.1 Pre-Upgrade Steps 7-3

7.2.2 Upgrade Oracle Machine Learning for SQL 7-3

7.2.2.1 Use Database Upgrade Assistant to Upgrade Oracle Machine Learning
for SQL 7-3

7.2.2.2 Use Export/Import to Upgrade Machine Learning Models 7-4

7.2.3 Post Upgrade Steps 7-4

7.2.4 Downgrade Oracle Machine Learning for SQL 7-5

7.3 Export and Import Oracle Machine Learning for SQL Models 7-5

7.3.1 About Oracle Data Pump 7-6

7.3.2 Options for Exporting and Importing Oracle Machine Learning for SQL Models 7-6

7.3.3 Directory Objects for EXPORT_MODEL and IMPORT_MODEL 7-7

7.3.4 Use EXPORT_MODEL and IMPORT_MODEL 7-8

7.3.5 EXPORT and IMPORT Serialized Models 7-10

7.3.6 Import From PMML 7-10

7.4 Control Access to Oracle Machine Learning for SQL Models and Data 7-10

7.4.1 Create an Oracle Machine Learning for SQL User 7-11

7.4.1.1 Grant Privileges for Oracle Machine Learning for SQL 7-12

7.4.2 System Privileges for Oracle Machine Learning for SQL 7-13

7.4.3 Object Privileges for Oracle Machine Learning for SQL Models 7-14

7.5 Audit and Add Comments to Oracle Machine Learning for SQL Models 7-14

vii

7.5.1 Add a Comment to an Oracle Machine Learning for SQL Model 7-15

7.5.2 Audit Oracle Machine Learning for SQL Models 7-15

A Oracle Machine Learning for SQL Examples

A.1 About the OML4SQL Examples A-1

A.2 Install the OML4SQL Examples A-3

A.3 OML4SQL Sample Data A-4

Index

viii

List of Tables

1 New Function and Algorithm Settings xv

2-1 Data Dictionary Views for Oracle Machine Learning 2-2

2-2 Oracle Machine Learning PL/SQL Packages 2-8

2-3 DBMS_DATA_MINING_TRANSFORM Transformation Methods 2-9

2-4 OML4SQL Functions 2-11

2-5 SQL Statistical Functions Supported by OML4SQL 2-13

3-1 Target Data Types 3-4

3-2 Grocery Store Data 3-12

3-3 Missing Value Treatment by Algorithm 3-14

4-1 Preparation for Creating an Oracle Machine Learning for SQL Model 4-1

4-2 Oracle Machine Learning mining_function Values 4-2

4-3 Oracle Machine Learning Algorithms 4-3

4-4 Oracle Machine Learning Algorithms With ADP 4-5

4-5 Fields in a Transformation Record for an Attribute 4-10

4-6 Binning Methods in DBMS_DATA_MINING_TRANSFORM 4-12

4-7 Normalization Methods in DBMS_DATA_MINING_TRANSFORM 4-13

4-8 Outlier Treatment Methods in DBMS_DATA_MINING_TRANSFORM 4-14

4-9 Settings Table Required Columns 4-17

4-10 General Model Settings 4-17

4-11 Algorithm-Specific Model Settings 4-17

4-12 Cost Matrix Table Required Columns 4-19

4-13 Priors Table Required Columns 4-20

4-14 Class Weights Table Required Columns 4-20

4-15 ALL_MINING_MODEL_SETTINGS 4-33

4-16 Rule View Columns for Transactional Inputs 4-36

4-17 Rule View for 2-Dimensional Input 4-39

4-18 Global Detail for an Association Model 4-40

4-19 Frequent Itemsets View 4-41

4-20 Transactional Itemsets View 4-41

4-21 Transactional Rule View 4-42

4-22 Target Map View 4-43

4-23 Scoring Cost View 4-43

4-24 Attribute Importance and Rank View 4-44

4-25 Row Importance and Rank View 4-44

4-26 CUR Matrix Decomposition Statistics Information In Model Global View. 4-45

ix

4-27 Split Information View 4-45

4-28 Node Statistics View 4-46

4-29 Node Description View 4-47

4-30 Cost Matrix View 4-47

4-31 Decision Tree Statistics Information In Model Global View 4-47

4-32 Model View for Linear and Logistic Regression Models 4-48

4-33 Row Diagnostic View for Linear Regression 4-50

4-34 Row Diagnostic View for Logistic Regression 4-51

4-35 Global Details for Linear Regression 4-53

4-36 Global Details for Logistic Regression 4-54

4-37 MSET-SPRT Information in the Model Global View 4-55

4-38 Prior View for Naive Bayes 4-55

4-39 Result View for Naive Bayes 4-56

4-40 Naive Bayes Statistics Information In Model Global View 4-56

4-41 Weights View 4-57

4-42 Neural Networks Statistics Information In Model Global View 4-57

4-43 Variable Importance Model View 4-58

4-44 Random Forest Statistics Information In Model Global View 4-58

4-45 Linear Coefficient View for Support Vector Machine 4-59

4-46 Support Vector Statistics Information In Model Global View 4-59

4-47 Feature Importance View for a Tree Model 4-60

4-48 Feature Importance View for a Linear Model 4-61

4-49 Cluster Description View for Clustering Algorithm 4-61

4-50 Attribute View for Clustering Algorithms 4-62

4-51 Histogram View for Clustering Algorithms 4-63

4-52 Rule View for Clustering Algorithms 4-63

4-53 Component View 4-64

4-54 Frequency Component View 4-65

4-55 2–Dimensional Attribute Ranking for Expectation Maximization 4-66

4-56 Kullback-Leibler Divergence for Expectation Maximization 4-66

4-57 Projection table for Expectation Maximization 4-67

4-58 Global Details for Expectation Maximization 4-67

4-59 Cluster Description for k-Means 4-68

4-60 Scoring View for k-Means 4-68

4-61 k–Means Statistics Information In Model Global View 4-68

4-62 Description View 4-69

4-63 Histogram Component View 4-70

x

4-64 O-Cluster Statistics Information In Model Global View 4-70

4-65 Explicit Semantic Analysis Matrix for Feature Extraction 4-71

4-66 Explicit Semantic Analysis Matrix for Classification 4-71

4-67 Explicit Semantic Analysis Features for Explicit Semantic Analysis 4-72

4-68 Explicit Semantic Analysis Statistics Information In Model Global View 4-72

4-69 Encoding H Matrix View for Non-Negative Matrix Factorization 4-73

4-70 Inverse H Matrix View for Non-Negative Matrix Factorization 4-73

4-71 Non-Negative Matrix Factorization Statistics Information In Model Global View 4-74

4-72 S Matrix View 4-74

4-73 Right-singular Vectors of Singular Value Decomposition 4-75

4-74 Left-singular Vectors of Singular Value Decomposition or Projection Data in Principal

Components 4-76

4-75 Global Details for Singular Value Decomposition 4-76

4-76 Attribute Importance View for Minimum Description Length 4-77

4-77 Minimum Description Length Statistics Information In Model Global View 4-77

4-78 Model Details View for Binning 4-78

4-79 Global Statistics View 4-78

4-80 Alert View 4-79

4-81 Computed Settings View 4-79

4-82 Normalization and Missing Value Handling View 4-79

4-83 Exponential Smoothing Model Statistics Information In Model Global View 4-80

4-84 Text Feature View for Extracted Text Features 4-81

5-1 Sample Cost Matrix 5-11

5-2 APPLY Output Table 5-13

6-1 Column Data Types That May Contain Unstructured Text 6-2

6-2 Model Settings for Text 6-2

6-3 CTX_DDL.CREATE_POLICY Procedure Parameters 6-5

6-4 Attribute-Specific Text Transformation Instructions 6-6

7-1 Export and Import Options for Oracle Machine Learning for SQL 7-6

7-2 System Privileges Granted by dmshgrants.sql to the OML4SQL User 7-12

7-3 System Privileges for Oracle Machine Learning for SQL 7-13

7-4 Object Privileges for Oracle Machine Learning for SQL Models 7-14

A-1 Models Created by Examples A-1

A-2 Views Created by dmsh.sql A-4

xi

Preface

This guide explains how to use the programmatic interfaces to Oracle Machine
Learning for SQL (OML4SQL), previously known as Oracle Data Mining. This guide
also describes how to use features of Oracle Database to administer OML4SQL, and
presents the tools and procedures for implementing the concepts that are presented in
Oracle Machine Learning for SQL Concepts .

This preface contains these topics:

• Technology Rebrand

• Audience

• Documentation Accessibility

• Related Documentation

• Conventions

Technology Rebrand
Oracle is rebranding the suite of products and components that support machine
learning with Oracle Database and Big Data. This technology is now known as Oracle
Machine Learning (OML).

The OML application programming interfaces (APIs) for SQL include PL/SQL
packages, SQL functions, and data dictionary views. Using these APIs is described in
publications, previously under the name Oracle Data Mining, that are now named
Oracle Machine Learning for SQL (OML4SQL).

Audience
This guide is intended for application developers and database administrators who are
familiar with SQL programming and Oracle Database administration and who have a
basic understanding of machine learning concepts.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/

Preface

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info

lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Related Documentation
The following manuals document Oracle Machine Learning for SQL:

• Oracle Machine Learning for SQL Concepts

• Oracle Machine Learning for SQL User’s Guide (this guide)

• Oracle Machine Learning for SQL API Guide

Note:

This publication combines key passages from the other two Oracle Machine
Learning for SQL manuals with related reference documentation in Oracle
Database PL/SQL Packages and Types Reference, Oracle Database SQL
Language Reference, and Oracle Database Reference.

• Oracle Database PL/SQL Packages and Types Reference (PL/SQL packages)

– DBMS_DATA_MINING
– DBMS_DATA_MINING_TRANSFORM
– DBMS_PREDICTIVE_ANALYTICS

• Oracle Database Reference (data dictionary views for ALL_, USER_, and DBA_)

– ALL_MINING_MODELS
– ALL_MINING_MODEL_ATTRIBUTES
– ALL_MINING_MODEL_SETTINGS

• Oracle Database SQL Language Reference (OML4SQL functions)

– CLUSTER_DETAILS, CLUSTER_DISTANCE, CLUSTER_ID, CLUSTER_PROBABILITY,
CLUSTER_SET

– FEATURE_DETAILS, FEATURE_ID, FEATURE_SET, FEATURE_VALUE
– PREDICTION, PREDICTION_BOUNDS, PREDICTION_COST, PREDICTION_DETAILS,

PREDICTION_PROBABILITY, PREDICTION_SET

Oracle Machine Learning for SQL Resources on the Oracle Technology
Network

The Oracle Machine Learning for SQL page on the Oracle Technology Network (OTN)
provides a wealth of information, including white papers, demonstrations, blogs, discussion
forums, and Oracle By Example tutorials.

You can download Oracle Data Miner, the graphical user interface to Oracle Machine
Learning for SQL, from this site:

Oracle Data Miner

Preface

xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/database/technologies/datawarehouse-bigdata/oml4sql.html

Application Development and Database Administration Documentation
For documentation to assist you in developing database applications and in
administering Oracle Database, refer to the following:

• Oracle Database Concepts

• Oracle Database Administrator’s Guide

• Oracle Database Development Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xiv

Changes in This Release for Oracle Machine
Learning for SQL User's Guide

Describes changes in Oracle Machine Learning for SQL User’s Guide for Oracle Database
21c.

Beginning in this release, the Oracle Database technologies formally known as Oracle Data
Mining are renamed Oracle Machine Learning for SQL (OML4SQL).

Machine Learning Functions and Algorithms

You can now specify these algorithm settings for these OML4SQL functions.

Table 1 New Function and Algorithm Settings

Function Algorithm Setting

CLASSIFICATION ALGO_MSET_SPRT
ALGO_XGBOOST

REGRESSION ALGO_XGBOOST

Model Views

These model views are new in 21c.

• Model Detail View for Multivariate State Estimation Technique - Sequential Probability
Ratio Test

• Model Detail Views for XGBoost

xv

Other Changes

The following is an additional change in Oracle Machine Learning for SQL User’s
Guide for 21c:

• Removed obsolete information from “Administrative Tasks for Oracle Machine
Learning for SQL”.

– Dropping Models Created in Java

– Dropping Mining Activities Created in Oracle Data Miner Classic

– Upgrading from Release 10g

– Upgrading from Release 11g

– Export/Import Release 10g Data Mining Models

– Export/Import Release 11g Data Mining Models

• Added the CREATE_MODEL2 topic. See The CREATE_MODEL2 Procedure.

• Removed "Transform the Data" chapter and merged the content in "Prepare the
Data" chapter and "Create a Model" chapter.

• Added "Extract Datetime Column Values" topic. See Extract Datetime Column
Values.

Other Changes

xvi

1
Oracle Machine Learning With SQL

Learn how to solve business problems using the Oracle Machine Learning for SQL
application programming interface (API).

• Highlights of the Oracle Machine Learning for SQL API

• Example: Targeting Likely Candidates for a Sales Promotion

• Example: Analyzing Preferred Customers

• Example: Segmenting Customer Data

• Example : Comparison of Texts Using an ESA Model

1.1 Highlights of the Oracle Machine Learning for SQL API
Learn about the advantages of OML4SQL application programming interface (API).

Machine learning is a valuable technology in many application domains. It has become
increasingly indispensable in the private sector as a tool for optimizing operations and
maintaining a competitive edge. Machine learning also has critical applications in the public
sector and in scientific research. However, the complexities of machine learning application
development and the complexities inherent in managing and securing large stores of data
can limit the adoption of machine learning technology.

OML4SQL is uniquely suited to addressing these challenges. The machine learning engine is
implemented in the database kernel, and the robust administrative features of Oracle
Database are available for managing and securing the data. While supporting a full range of
machine learning algorithms and procedures, the API also has features that simplify the
development of machine learning applications.

The OML4SQL API consists of extensions to Oracle SQL, the native language of the
database. The API offers the following advantages:

• Scoring in the context of SQL queries. Scoring can be performed dynamically or by
applying machine learning models.

• Automatic Data Preparation (ADP) and embedded transformations.

• Model transparency. Algorithm-specific queries return details about the attributes that
were used to create the model.

• Scoring transparency. Details about the prediction, clustering, or feature extraction
operation can be returned with the score.

• Simple routines for predictive analytics.

• A workflow-based graphical user interface (GUI) within Oracle SQL Developer. You can
download SQL Developer free of charge from the following site:

Oracle Data Miner

1-1

Note:

The examples in this publication are taken from the OML4SQL examples that
are available on GitHub. For information on the examples, see Oracle
Machine Learning for SQL Examples.

Related Topics

• Oracle Machine Learning for SQL Concepts

1.2 Example: Predicting Likely Candidates for a Sales
Promotion

This example shows PREDICTION query to target customers in Brazil for a special
promotion that offers coupons and an affinity card.

The query uses data on marital status, education, and income to predict the customers
who are most likely to take advantage of the incentives. The query applies a Decision
Tree model called dt_sh_clas_sample to score the customer data. The model is
created by the oml4sql-classification-decision-tree.sql example.

Example 1-1 Predict Best Candidates for an Affinity Card

SELECT cust_id
 FROM mining_data_apply_v
 WHERE
 PREDICTION(dt_sh_clas_sample
 USING cust_marital_status, education, cust_income_level) = 1
 AND country_name IN 'Brazil';

 CUST_ID

 100404
 100607
 101113

The same query, but with a bias to favor false positives over false negatives, is shown
here.

SELECT cust_id
 FROM mining_data_apply_v
 WHERE
 PREDICTION(dt_sh_clas_sample COST MODEL
 USING cust_marital_status, education, cust_income_level) = 1
 AND country_name IN 'Brazil';

 CUST_ID

 100139
 100163
 100275
 100404
 100607
 101113
 101170
 101463

Chapter 1
Example: Predicting Likely Candidates for a Sales Promotion

1-2

The COST MODEL keywords cause the cost matrix associated with the model to be used in
making the prediction. The cost matrix, stored in a table called dt_sh_sample_costs,
specifies that a false negative is eight times more costly than a false positive. Overlooking a
likely candidate for the promotion is far more costly than including an unlikely candidate.

SELECT * FROM dt_sh_sample_cost;

ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST
------------------- ---------------------- ----------
 0 0 0
 0 1 1
 1 0 8
 1 1 0

1.3 Example: Analyzing Preferred Customers
The examples in this section reveal information about customers who use affinity cards or are
likely to use affinity cards.

Example 1-2 Find Demographic Information About Preferred Customers

This query returns the gender, age, and length of residence of typical affinity card holders.
The anomaly detection model, SVMO_SH_Clas_sample, returns 1 for typical cases and 0 for
anomalies. The demographics are predicted for typical customers only; outliers are not
included in the sample. The model is created by the oml4sql-singular-value-
decomposition.sql example.

SELECT cust_gender, round(avg(age)) age,
 round(avg(yrs_residence)) yrs_residence,
 count(*) cnt
FROM mining_data_one_class_v
WHERE PREDICTION(SVMO_SH_Clas_sample using *) = 1
GROUP BY cust_gender
ORDER BY cust_gender;

CUST_GENDER AGE YRS_RESIDENCE CNT
------------ ---------- ------------- ----------
F 40 4 36
M 45 5 304

Example 1-3 Dynamically Identify Customers Who Resemble Preferred Customers

This query identifies customers who do not currently have an affinity card, but who share
many of the characteristics of affinity card holders. The PREDICTION and
PREDICTION_PROBABILITY functions use an OVER clause instead of a predefined model to
classify the customers. The predictions and probabilities are computed dynamically.

SELECT cust_id, pred_prob
 FROM
 (SELECT cust_id, affinity_card,
 PREDICTION(FOR TO_CHAR(affinity_card) USING *) OVER () pred_card,
 PREDICTION_PROBABILITY(FOR TO_CHAR(affinity_card),1 USING *) OVER () pred_prob
 FROM mining_data_build_v)
 WHERE affinity_card = 0
 AND pred_card = 1
 ORDER BY pred_prob DESC;

 CUST_ID PRED_PROB
---------- ---------

Chapter 1
Example: Analyzing Preferred Customers

1-3

 102434 .96
 102365 .96
 102330 .96
 101733 .95
 102615 .94
 102686 .94
 102749 .93
.
.
.
.
 102580 .52
 102269 .52
 102533 .51
 101604 .51
 101656 .51

226 rows selected.

Example 1-4 Predict the Likelihood that a New Customer Becomes a Preferred
Customer

This query computes the probability of a first-time customer becoming a preferred
customer (an affinity card holder). This query can be run in real time at the point of
sale.

The new customer is a 44-year-old American executive who has a bachelors degree
and earns more than $300,000/year. He is married, lives in a household of 3, and has
lived in the same residence for the past 6 years. The probability of this customer
becoming a typical affinity card holder is only 5.8%.

SELECT PREDICTION_PROBABILITY(SVMO_SH_Clas_sample, 1 USING
 44 AS age,
 6 AS yrs_residence,
 'Bach.' AS education,
 'Married' AS cust_marital_status,
 'Exec.' AS occupation,
 'United States of America' AS country_name,
 'M' AS cust_gender,
 'L: 300,000 and above' AS cust_income_level,
 '3' AS houshold_size
) prob_typical
FROM DUAL;

PROB_TYPICAL

 5.8

Example 1-5 Use Predictive Analytics to Find Top Predictors

The DBMS_PREDICTIVE_ANALYTICS PL/SQL package contains routines that perform
simple machine learning operations without a predefined model. In this example, the
EXPLAIN routine computes the top predictors for affinity card ownership. The procedure
does not create a model that can be stored in the database for further exploration.
Automatic Data Preparation is also performed behind the scenes. The results show
that household size, marital status, and age are the top three predictors.

BEGIN
 DBMS_PREDICTIVE_ANALYTICS.EXPLAIN(
 data_table_name => 'mining_data_test_v',
 explain_column_name => 'affinity_card',

Chapter 1
Example: Analyzing Preferred Customers

1-4

 result_table_name => 'cust_explain_result');
END;
/

SELECT * FROM cust_explain_result
 WHERE rank < 4;

ATTRIBUTE_NAME ATTRIBUTE_SUBNAME EXPLANATORY_VALUE RANK
------------------------ -------------------- ----------------- ----------
HOUSEHOLD_SIZE .209628541 1
CUST_MARITAL_STATUS .199794636 2
AGE .111683067 3

Another way to arrive at top predictors for affinity ownership is by using attribute importance
mining function. Create a model with the Minimum Description Length algorithm. Define
mining_function as ATTRIBUTE_IMPORTANCE. You can then query the DM$VA model detail view
to get the top three predictors.

BEGIN DBMS_DATA_MINING.DROP_MODEL('AI_EXPLAIN_OUTPUT');
EXCEPTION WHEN OTHERS THEN NULL; END;
/
DECLARE
 v_setlst DBMS_DATA_MINING.SETTING_LIST;
BEGIN
 v_setlst('ALGO_NAME') := 'ALGO_AI_MDL';
 V_setlst('PREP_AUTO') := 'ON';

 DBMS_DATA_MINING.CREATE_MODEL2(
 MODEL_NAME => 'AI_EXPLAIN_OUTPUT',
 MINING_FUNCTION => 'ATTRIBUTE_IMPORTANCE',
 DATA_QUERY => 'select * from mining_data_test_v',
 SET_LIST => v_setlst,
 CASE_ID_COLUMN_NAME => 'CUST_ID',
 TARGET_COLUMN_NAME => 'AFFINITY_CARD');
END;

Find the top 3 predictors from the DM$VA model detail view:
SELECT ATTRIBUTE_NAME, ATTRIBUTE_IMPORTANCE_VALUE, ATTRIBUTE_RANK FROM
DM$VAAI_EXPLAIN_OUTPUT;

ATTRIBUTE_NAME ATTRIBUTE_IMPORTANCE_VALUE ATTRIBUTE_RANK
HOUSEHOLD_SIZE 0.16154338717879052 1
CUST_MARITAL_STATUS 0.1561477632217005 2
AGE 0.08440594628406521 3

1.4 Example: Segmenting Customer Data
The examples in this section use an Expectation Maximization clustering model to segment
the customer data based on common characteristics.

Chapter 1
Example: Segmenting Customer Data

1-5

Example 1-6 Compute Customer Segments

This query computes natural groupings of customers and returns the number of
customers in each group. The em_sh_clus_sample model is created by the oml4sql-
singular-value-decomposition.sql example.

SELECT CLUSTER_ID(em_sh_clus_sample USING *) AS clus, COUNT(*) AS cnt
 FROM mining_data_apply_v
GROUP BY CLUSTER_ID(em_sh_clus_sample USING *)
ORDER BY cnt DESC;

 CLUS CNT
---------- ----------
 9 311
 3 294
 7 215
 12 201
 17 123
 16 114
 14 86
 19 64
 15 56
 18 36

Example 1-7 Find the Customers Who Are Most Likely To Be in the Largest
Segment

The query in Example 1-6 shows that segment 9 has the most members. The following
query lists the five customers who are most likely to be in segment 9.

SELECT cust_id
FROM (SELECT cust_id, RANK() over (ORDER BY prob DESC, cust_id) rnk_clus2
 FROM (SELECT cust_id,
 ROUND(CLUSTER_PROBABILITY(em_sh_clus_sample, 9 USING *),3) prob
 FROM mining_data_apply_v))
WHERE rnk_clus2 <= 5
ORDER BY rnk_clus2;

 CUST_ID

 100002
 100012
 100016
 100019
 100021

Example 1-8 Find Key Characteristics of the Most Representative Customer in the Largest
Cluster

The query in Example 1-7 lists customer 100002 first in the list of likely customers for
segment 9. The following query returns the five characteristics that are most significant
in determining the assignment of customer 100002 to segments with probability > 20%
(only segment 9 for this customer).

SELECT S.cluster_id, probability prob,
 CLUSTER_DETAILS(em_sh_clus_sample, S.cluster_id, 5 using T.*) det
 FROM
 (SELECT v.*, CLUSTER_SET(em_sh_clus_sample, NULL, 0.2 USING *) pset
 FROM mining_data_apply_v v
 WHERE cust_id = 100002) T,
 TABLE(T.pset) S

Chapter 1
Example: Segmenting Customer Data

1-6

 ORDER BY 2 desc;

CLUSTER_ID PROB DET
---------- ------- --
 9 1.0000 <Details algorithm="Expectation Maximization" cluster="9">
 <Attribute name="YRS_RESIDENCE" actualValue="4" weight="1" rank="1"/>
 <Attribute name="EDUCATION" actualValue="Bach." weight="0" rank="2"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight="0" rank="3"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight="0" rank="4"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight="0" rank="5"/>
 </Details>

1.5 Example : Comparison of Texts Using an ESA Model
The examples shows the FEATURE_COMPARE function comparing texts for semantic relatedness
(similarity) using the Explicit Semantic Analysis (ESA) prebuilt Wikipedia-based model, which
extracts topics and compares text.

The examples shows an ESA model built against a prebuilt Wiki data set rendering over
200,000 features. The documents are analyzed as text and the document titles are given as
the feature IDs. In the first example, the pair of sentence scores higher because Nick Price is
a golfer born in South Africa.

Similar Texts

SELECT 1-FEATURE_COMPARE(esa_wiki_mod USING 'There are several PGA tour
golfers from South Africa' text AND USING 'Nick Price won the 2002
Mastercard Colonial Open' text) similarity FROM DUAL;

SIMILARITY

 .110

The output metric shows distance calculation. Therefore, smaller number represent more
similar texts. So, 1 minus the distance in the queries result in similarity.

Dissimilar Texts

SELECT 1-FEATURE_COMPARE(esa_wiki_mod USING 'There are several PGA tour
golfers from South Africa' text AND USING 'John Elway played quarterback for
the Denver Broncos' text) similarity FROM DUAL;

SIMILARITY

 .004

Chapter 1
Example : Comparison of Texts Using an ESA Model

1-7

2
About the Oracle Machine Learning for SQL
API

Overview of the OML4SQL application programming interface (API) components.

• About Oracle Machine Learning Models

• Oracle Machine Learning Data Dictionary Views

• Oracle Machine Learning Modeling, Transformations, and Convenience Functions

• Oracle Machine Learning for SQL Scoring Functions

• Oracle Machine Learning for SQL Statistical Functions

2.1 About Oracle Machine Learning Models
Machine learning models are database schema objects that perform machine learning
functions.

As with all schema objects, access to machine learning models is controlled by database
privileges. Models can be exported and imported. They support comments and they can be
tracked in the Oracle Database auditing system.

Machine learning models are created by the CREATE_MODEL2 or the CREATE_MODEL procedures
in the DBMS_DATA_MINING PL/SQL package. Models are created for a specific machine
learning function, and they use a specific algorithm to perform that function. Machine
learning function is a term that refers to a class of machine learning problems to be solved.
Examples of machine learning functions are: regression, classification, attribute importance,
clustering, anomaly detection, and feature selection. OML4SQL supports one or more
algorithms for each machine learning function.

Along with the machine learning function, in the CREATE_MODEL2 procedure, you can specify
an algorithm and other characteristics of a model. In CREATE_MODEL procedure you can
specify a settings table to specify an algorithm and other characteristics of a model. Some
settings are general, some are specific to a machine learning function, and some are specific
to an algorithm.

Note:

Most types of machine learning models can be used to score data. However, it is
possible to score data without applying a model. Dynamic scoring and predictive
analytics return scoring results without a user-supplied model. They create and
apply transient models that are not visible to you.

2-1

Related Topics

• Dynamic Scoring
You can perform dynamic scoring if, for some reason, you do not want to apply a
predefined model.

• DBMS_PREDICTIVE_ANALYTICS
Understand the routines of DBMS_PREDICTIVE_ANALYTICS package.

• Create a Model
Explains how to create Oracle Machine Learning for SQL models and to query
model details.

• Administrative Tasks for Oracle Machine Learning for SQL
Explains how to perform administrative tasks related to Oracle Machine Learning
for SQL.

2.2 Oracle Machine Learning Data Dictionary Views
Lists Oracle Machine Learning data dictionary views.

The data dictionary views for Oracle Machine Learning are listed in the following table.
A database administrator (DBA) and USER versions of the views are also available.

Table 2-1 Data Dictionary Views for Oracle Machine Learning

View Name Description

ALL_MINING_MODELS Provides information about all accessible machine
learning models

ALL_MINING_MODEL_ATTRIBUTES Provides information about the attributes of all
accessible machine learning models

ALL_MINING_MODEL_PARTITIONS Provides information about the partitions of all
accessible partitioned machine learning models

ALL_MINING_MODEL_SETTINGS Provides information about the configuration
settings for all accessible machine learning
models

ALL_MINING_MODEL_VIEWS Provides information about the model views for all
accessible machine learning models

ALL_MINING_MODEL_XFORMS Provides the user-specified transformations
embedded in all accessible machine learning
models.

2.2.1 ALL_MINING_MODELS
Describes an example of ALL_MINING_MODELS and shows a sample query.

The following example describes ALL_MINING_MODELS and shows a sample query.

Example 2-1 ALL_MINING_MODELS

 describe ALL_MINING_MODELS
 Name Null? Type
 --- --------

Chapter 2
Oracle Machine Learning Data Dictionary Views

2-2

 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 MINING_FUNCTION VARCHAR2(30)
 ALGORITHM VARCHAR2(30)
 CREATION_DATE NOT NULL DATE
 BUILD_DURATION NUMBER
 MODEL_SIZE NUMBER
 PARTITIONED VARCHAR2(3)
 COMMENTS VARCHAR2(4000)

The following query returns the models accessible to you that use the Support Vector
Machine algorithm.

SELECT mining_function, model_name
 FROM all_mining_models
 WHERE algorithm = 'SUPPORT_VECTOR_MACHINES'
 ORDER BY mining_function, model_name;

MINING_FUNCTION MODEL_NAME
------------------------- --------------------
CLASSIFICATION PART2_CLAS_SAMPLE
CLASSIFICATION PART_CLAS_SAMPLE
CLASSIFICATION SVMC_SH_CLAS_SAMPLE
CLASSIFICATION SVMO_SH_CLAS_SAMPLE
CLASSIFICATION T_SVM_CLAS_SAMPLE
REGRESSION SVMR_SH_REGR_SAMPLE

The models are created by the following examples:

• PART2_CLAS_SAMPLE by oml4sql-partitioned-models-svm.sql
• PART_CLAS_SAMPLE by oml4sql-partitioned-models-svm.sql
• SVMC_SH_CLAS_SAMPLE by oml4sql-classification-svm.sql
• SVMO_SH_CLAS_SAMPLE by oml4sql-anomaly-detection-1csvm.sql
• T_SVM_CLAS_SAMPLE by oml4sql-classification-text-analysis-svm.sql
• SVMR_SH_REGR_SAMPLE by oml4sql-regression-svm.sql
Related Topics

• ALL_MINING_MODELS

2.2.2 ALL_MINING_MODEL_ATTRIBUTES
Describes an example of ALL_MINING_MODEL_ATTRIBUTES and shows a sample query.

The following example describes ALL_MINING_MODEL_ATTRIBUTES and shows a sample query.
Attributes are the predictors or conditions that are used to create models and score data.

Example 2-2 ALL_MINING_MODEL_ATTRIBUTES

describe ALL_MINING_MODEL_ATTRIBUTES
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 ATTRIBUTE_NAME NOT NULL VARCHAR2(128)
 ATTRIBUTE_TYPE VARCHAR2(11)

Chapter 2
Oracle Machine Learning Data Dictionary Views

2-3

 DATA_TYPE VARCHAR2(106)
 DATA_LENGTH NUMBER
 DATA_PRECISION NUMBER
 DATA_SCALE NUMBER
 USAGE_TYPE VARCHAR2(8)
 TARGET VARCHAR2(3)
 ATTRIBUTE_SPEC VARCHAR2(4000)

The following query returns the attributes of an SVM classification model named
T_SVM_CLAS_SAMPLE. The model has both categorical and numerical attributes
and includes one attribute that is unstructured text. The model is created by the
oml4sql-classification-text-analysis-svm.sql example

SELECT attribute_name, attribute_type, target
 FROM all_mining_model_attributes
 WHERE model_name = 'T_SVM_CLAS_SAMPLE'
 ORDER BY attribute_name;

ATTRIBUTE_NAME ATTRIBUTE_TYPE TAR
------------------------- -------------------- ---
AFFINITY_CARD CATEGORICAL YES
AGE NUMERICAL NO
BOOKKEEPING_APPLICATION NUMERICAL NO
BULK_PACK_DISKETTES NUMERICAL NO
COMMENTS TEXT NO
COUNTRY_NAME CATEGORICAL NO
CUST_GENDER CATEGORICAL NO
CUST_INCOME_LEVEL CATEGORICAL NO
CUST_MARITAL_STATUS CATEGORICAL NO
EDUCATION CATEGORICAL NO
FLAT_PANEL_MONITOR NUMERICAL NO
HOME_THEATER_PACKAGE NUMERICAL NO
HOUSEHOLD_SIZE CATEGORICAL NO
OCCUPATION CATEGORICAL NO
OS_DOC_SET_KANJI NUMERICAL NO
PRINTER_SUPPLIES NUMERICAL NO
YRS_RESIDENCE NUMERICAL NO
Y_BOX_GAMES NUMERICAL NO

Related Topics

• ALL_MINING_MODEL_ATTRIBUTES

2.2.3 ALL_MINING_MODEL_PARTITIONS
Describes an example of ALL_MINING_MODEL_PARTITIONS and shows a sample query.

The following example describes ALL_MINING_MODEL_PARTITIONS and shows a sample
query.

Example 2-3 ALL_MINING_MODEL_PARTITIONS

describe ALL_MINING_MODEL_PARTITIONS
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 PARTITION_NAME VARCHAR2(128)
 POSITION NUMBER
 COLUMN_NAME NOT NULL VARCHAR2(128)
 COLUMN_VALUE VARCHAR2(4000)

Chapter 2
Oracle Machine Learning Data Dictionary Views

2-4

The following query returns the partition names and partition key values for two partitioned
models. Model PART2_CLAS_SAMPLE has a two column partition key with system-
generated partition names. The models are created by the oml4sql-partitioned-models-
svm.sql example.

SELECT model_name, partition_name, position, column_name, column_value
 FROM all_mining_model_partitions
 ORDER BY model_name, partition_name, position;

MODEL_NAME PARTITION_ POSITION COLUMN_NAME
COLUMN_VALUE
-------------------- ---------- -------- --------------------

PART2_CLAS_SAMPLE DM$$_P0 1 CUST_GENDER
F
PART2_CLAS_SAMPLE DM$$_P0 2 CUST_INCOME_LEVEL
HIGH
PART2_CLAS_SAMPLE DM$$_P1 1 CUST_GENDER
F
PART2_CLAS_SAMPLE DM$$_P1 2 CUST_INCOME_LEVEL
LOW
PART2_CLAS_SAMPLE DM$$_P2 1 CUST_GENDER
F
PART2_CLAS_SAMPLE DM$$_P2 2 CUST_INCOME_LEVEL
MEDIUM
PART2_CLAS_SAMPLE DM$$_P3 1 CUST_GENDER
M
PART2_CLAS_SAMPLE DM$$_P3 2 CUST_INCOME_LEVEL
HIGH
PART2_CLAS_SAMPLE DM$$_P4 1 CUST_GENDER
M
PART2_CLAS_SAMPLE DM$$_P4 2 CUST_INCOME_LEVEL
LOW
PART2_CLAS_SAMPLE DM$$_P5 1 CUST_GENDER
M
PART2_CLAS_SAMPLE DM$$_P5 2 CUST_INCOME_LEVEL
MEDIUM
PART_CLAS_SAMPLE F 1 CUST_GENDER
F
PART_CLAS_SAMPLE M 1 CUST_GENDER
M
PART_CLAS_SAMPLE U 1 CUST_GENDER U

Related Topics

• ALL_MINING_MODEL_PARTITIONS

2.2.4 ALL_MINING_MODEL_SETTINGS
Describes an example of ALL_MINING_MODEL_SETTINGS and shows a sample query.

The following example describes ALL_MINING_MODEL_SETTINGS and shows a sample query.
Settings influence model behavior. Settings may be specific to an algorithm or to a machine
learning function, or they may be general.

Chapter 2
Oracle Machine Learning Data Dictionary Views

2-5

Example 2-4 ALL_MINING_MODEL_SETTINGS

 describe ALL_MINING_MODEL_SETTINGS
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 SETTING_NAME NOT NULL VARCHAR2(30)
 SETTING_VALUE VARCHAR2(4000)
 SETTING_TYPE VARCHAR2(7)

The following query returns the settings for a model named SVD_SH_SAMPLE. The
model uses the Singular Value Decomposition algorithm for feature extraction. The
model is created by the oml4sql-singular-value-decomposition.sql example.

SELECT setting_name, setting_value, setting_type
 FROM all_mining_model_settings
 WHERE model_name = 'SVD_SH_SAMPLE'
 ORDER BY setting_name;

SETTING_NAME SETTING_VALUE SETTING
------------------------------ ------------------------------ -------
ALGO_NAME ALGO_SINGULAR_VALUE_DECOMP INPUT
ODMS_MISSING_VALUE_TREATMENT ODMS_MISSING_VALUE_AUTO DEFAULT
ODMS_SAMPLING ODMS_SAMPLING_DISABLE DEFAULT
PREP_AUTO OFF INPUT
SVDS_SCORING_MODE SVDS_SCORING_SVD DEFAULT
SVDS_U_MATRIX_OUTPUT SVDS_U_MATRIX_ENABLE INPUT

Related Topics

• ALL_MINING_MODEL_SETTINGS

2.2.5 ALL_MINING_MODEL_VIEWS
Describes an example of ALL_MINING_MODEL_VIEWS and shows a sample query.

The following example describes ALL_MINING_MODEL_VIEWS and shows a sample
query. Model views provide details on the models.

Example 2-5 ALL_MINING_MODEL_VIEWS

describe ALL_MINING_MODEL_VIEWS
 Name Null? Type
 --- --------

 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 VIEW_NAME NOT NULL VARCHAR2(128)
 VIEW_TYPE VARCHAR2(128)

The following query returns the model views for the SVD_SH_SAMPLE model. The
model uses the Singular Value Decomposition algorithm for feature extraction. The
model is created by the oml4sql-singular-value-decomposition.sql example.

SELECT view_name, view_type
 FROM all_mining_model_views
 WHERE model_name = 'SVD_SH_SAMPLE'

Chapter 2
Oracle Machine Learning Data Dictionary Views

2-6

 ORDER BY view_name;

VIEW_NAME
VIEW_TYPE

--
DM$VESVD_SH_SAMPLE Singular Value Decomposition S
Matrix
DM$VGSVD_SH_SAMPLE Global Name-Value
Pairs
DM$VNSVD_SH_SAMPLE Normalization and Missing Value
Handling
DM$VSSVD_SH_SAMPLE Computed
Settings
DM$VUSVD_SH_SAMPLE Singular Value Decomposition U
Matrix
DM$VVSVD_SH_SAMPLE Singular Value Decomposition V
Matrix
DM$VWSVD_SH_SAMPLE Model Build Alerts

Related Topics

• ALL_MINING_MODEL_VIEWS

2.2.6 ALL_MINING_MODEL_XFORMS
Describes an example of ALL_MINING_MODEL_XFORMS and provides a sample query.

The following example describes ALL_MINING_MODEL_XFORMS and provides a sample query.

Example 2-6 ALL_MINING_MODEL_XFORMS

describe ALL_MINING_MODEL_XFORMS
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_SPEC VARCHAR2(4000)
 EXPRESSION CLOB
 REVERSE VARCHAR2(3)

The following query returns the embedded transformations for a model PART2_CLAS_SAMPLE
The model is created by the oml4sql-partitioned-models-svm.sql example.

SELECT attribute_name, expression
 FROM all_mining_model_xforms
 WHERE model_name = 'PART2_CLAS_SAMPLE'
 ORDER BY attribute_name;

ATTRIBUTE_NAME

EXPRESSION

Chapter 2
Oracle Machine Learning Data Dictionary Views

2-7

CUST_INCOME_LEVEL

CASE CUST_INCOME_LEVEL WHEN 'A: Below 30,000' THEN
'LOW'
 WHEN 'L: 300,000 and above' THEN
'HIGH'
 ELSE 'MEDIUM' END

Related Topics

• ALL_MINING_MODEL_XFORMS

2.3 Oracle Machine Learning Modeling, Transformations,
and Convenience Functions

You can access PL/SQL interface to perform data modeling, transformations, and
predictive analytics.

The following table displays the PL/SQL packages for Oracle Machine Learning. In
Oracle Database releases prior to Release 21c, Oracle Machine Learning was named
Oracle Data Mining.

Table 2-2 Oracle Machine Learning PL/SQL Packages

Package Name Description

DBMS_DATA_MINING Routines for creating and managing machine learning
models

DBMS_DATA_MINING_TRANSFORM Routines for transforming the data for machine learning

DBMS_PREDICTIVE_ANALYTICS Routines that perform predictive analytics

Related Topics

• DBMS_DATA_MINING

• DBMS_DATA_MINING_TRANSFORM

• DBMS_PREDICTIVE_ANALYTICS

2.3.1 DBMS_DATA_MINING
Understand the routines of DBMS_DATA_MINING package.

The DBMS_DATA_MINING package contains routines for creating machine learning
models, for performing operations on the models, and for querying them. The package
includes routines for:

• Creating, dropping, and performing other DDL operations on machine learning
models

Chapter 2
Oracle Machine Learning Modeling, Transformations, and Convenience Functions

2-8

• Obtaining detailed information about model attributes, rules, and other information
internal to the model (model details)

• Computing test metrics for classification models

• Specifying costs for classification models

• Exporting and importing models

• Building models using Oracle Machine Learning native algorithms as well as algorithms
written in R

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

2.3.2 DBMS_DATA_MINING_TRANSFORM
Understand the routines of DBMS_DATA_MINING_TRANSFORM package.

The DBMS_DATA_MINING_TRANSFORM package contains routines that perform data
transformations such as binning, normalization, and outlier treatment. The package includes
routines for:

• Specifying transformations in a format that can be embedded in a machine learning
model.

• Specifying transformations as relational views (external to machine learning model
objects).

• Specifying distinct properties for columns in the build data. For example, you can specify
that the column must be interpreted as unstructured text, or that the column must be
excluded from Automatic Data Preparation.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

2.3.2.1 Transformation Methods in DBMS_DATA_MINING_TRANSFORM
Summarizes the methods for transforming data in DBMS_DATA_MINING_TRANSFORM package.

Table 2-3 DBMS_DATA_MINING_TRANSFORM Transformation Methods

Transformation Method Description

XFORM interface CREATE, INSERT, and XFORM routines specify transformations in external
views

STACK interface CREATE, INSERT, and XFORM routines specify transformations for
embedding in a model

SET_TRANSFORM Specifies transformations for embedding in a model

The statements in the following example create a Support Vector Machine (SVM)
classification model called T_SVM_Clas_sample with an embedded transformation that
causes the comments attribute to be treated as unstructured text data. The
T_SVM_CLAS_SAMPLE model is created by oml4sql-classification-text-analysis-
svm.sql example.

Chapter 2
Oracle Machine Learning Modeling, Transformations, and Convenience Functions

2-9

Example 2-7 Sample Embedded Transformation

DECLARE
 xformlist dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.SET_TRANSFORM(
 xformlist, 'comments', null, 'comments', null, 'TEXT');
 DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'T_SVM_Clas_sample',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_build_text',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 settings_table_name => 't_svmc_sample_settings',
 xform_list => xformlist);
END;
/

2.3.3 DBMS_PREDICTIVE_ANALYTICS
Understand the routines of DBMS_PREDICTIVE_ANALYTICS package.

The DBMS_PREDICTIVE_ANALYTICS package contains routines that perform an
automated form of machine learning known as predictive analytics. With predictive
analytics, you do not need to be aware of model building or scoring. All machine
learning activities are handled internally by the procedure. The
DBMS_PREDICTIVE_ANALYTICS package includes these routines:

• EXPLAIN ranks attributes in order of influence in explaining a target column.

• PREDICT predicts the value of a target column based on values in the input data.

• PROFILE generates rules that describe the cases from the input data.

The EXPLAIN statement in the following example lists attributes in the view
mining_data_build_v in order of their importance in predicting affinity_card.

Example 2-8 Sample EXPLAIN Statement

BEGIN
 DBMS_PREDICTIVE_ANALYTICS.EXPLAIN(
 data_table_name => 'mining_data_build_v',
 explain_column_name => 'affinity_card',
 result_table_name => 'explain_results');
END;
/

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

2.4 Oracle Machine Learning for SQL Scoring Functions
Understand the different OML4SQL scoring functions.

Use these OML4SQL functions to score data. The functions can apply a machine
learning model schema object to the data, or they can dynamically mine the data by
executing an analytic clause. SQL functions are available for all OML4SQL algorithms
that support the scoring operation. All OML4SQL functions, as listed in the following

Chapter 2
Oracle Machine Learning for SQL Scoring Functions

2-10

table can operate on an R machine learning model with the corresponding OML4SQL
function. However, the functions are not limited to the ones listed here.

Table 2-4 OML4SQL Functions

Function Description

CLUSTER_ID Returns the ID of the predicted
cluster

CLUSTER_DETAILS Returns detailed information
about the predicted cluster

CLUSTER_DISTANCE Returns the distance from the
centroid of the predicted cluster

CLUSTER_PROBABILITY Returns the probability of a case
belonging to a given cluster

CLUSTER_SET Returns a list of all possible
clusters to which a given case
belongs along with the associated
probability of inclusion

FEATURE_COMPARE Compares two similar and
dissimilar set of texts from two
different documents or keyword
phrases or a combination of both

FEATURE_ID Returns the ID of the feature with
the highest coefficient value

FEATURE_DETAILS Returns detailed information
about the predicted feature

FEATURE_SET Returns a list of objects
containing all possible features
along with the associated
coefficients

FEATURE_VALUE Returns the value of the predicted
feature

ORA_DM_PARTITION_NAME Returns the partition names for a
partitioned model

PREDICTION Returns the best prediction for
the target

PREDICTION_BOUNDS (GLM only) Returns the upper
and lower bounds of the interval
wherein the predicted values
(linear regression) or probabilities
(logistic regression) lie.

PREDICTION_COST Returns a measure of the cost of
incorrect predictions

PREDICTION_DETAILS Returns detailed information
about the prediction

PREDICTION_PROBABILITY Returns the probability of the
prediction

PREDICTION_SET Returns the results of a
classification model, including the
predictions and associated
probabilities for each case

Chapter 2
Oracle Machine Learning for SQL Scoring Functions

2-11

The following example shows a query that returns the results of the CLUSTER_ID
function. The query applies the model em_sh_clus_sample, which finds groups of
customers that share certain characteristics. The query returns the identifiers of the
clusters and the number of customers in each cluster. The em_sh_clus_sample model
is created by the oml4sql-singular-value-decomposition.sql example.

Example 2-9 CLUSTER_ID Function

-- -List the clusters into which the customers in this
-- -data set have been grouped.
--
SELECT CLUSTER_ID(em_sh_clus_sample USING *) AS clus, COUNT(*) AS cnt
 FROM mining_data_apply_v
GROUP BY CLUSTER_ID(em_sh_clus_sample USING *)
ORDER BY cnt DESC;

SQL> -- List the clusters into which the customers in this
SQL> -- data set have been grouped.
SQL> --
SQL> SELECT CLUSTER_ID(em_sh_clus_sample USING *) AS clus, COUNT(*) AS cnt
 2 FROM mining_data_apply_v
 3 GROUP BY CLUSTER_ID(em_sh_clus_sample USING *)
 4 ORDER BY cnt DESC;

 CLUS CNT
---------- ----------
 9 311
 3 294
 7 215
 12 201
 17 123
 16 114
 14 86
 19 64
 15 56
 18 36

Related Topics

• Scoring and Deployment
Explains the scoring and deployment features of Oracle Machine Learning for
SQL.

• OML4SQL Scoring Functions

2.5 Oracle Machine Learning for SQL Statistical Functions
Various SQL statistical functions are available in Oracle Database to explore and
analyze data.

A variety of scalable statistical functions are accessible through SQL in Oracle
Database. These statistical functions are implemented as SQL functions. The SQL
statistical functions can be used to compute standard univariate statistics such as
MEAN, MAX, MIN, MEDIAN, MODE, and standard deviation on the data. Users can also
perform various other statistical functions such as t-test, f-test, aggregate functions,
analytic functions, or ANOVA. The functions listed in the following table are available
from SQL.

Chapter 2
Oracle Machine Learning for SQL Statistical Functions

2-12

Table 2-5 SQL Statistical Functions Supported by OML4SQL

Function Description

APPROX_COUNT Returns approximate count of an expression

APPROX_SUM Returns approximate sum of an expression

APPROX_RANK Returns approximate value in a group of values

CORR Retuns the coefficient of correlation of a set of
number pairs

CORR_S Calculates the Spearman's rho correlation
coefficient

CORR_K Calculates the Kendall's tau-b correlation
coefficient

COVAR_POP Returns the population covariance of a set of
number pairs

COVAR_SAMP Returns the sample covariance of a set of number
pairs.

LAG LAG is an analytic function. It provides access to
more than one row of a table at the same time
without a self join.

LEAD LEAD is an analytic function. It provides access to
more than one row of a table at the same time
without a self join.

STATS_BINOMIAL_TEST STATS_BINOMIAL_TEST is an exact probability
test used for dichotomous variables, where only
two possible values exist.

STATS_CROSSTAB STATS_CROSSTAB is a method used to analyze
two nominal variables.

STATS_F_TEST STATS_F_TEST tests whether two variances are
significantly different.

STATS_KS_TEST STATS_KS_TEST is a Kolmogorov-Smirnov
function that compares two samples to test
whether they are from the same population or from
populations that have the same distribution.

STATS_MODE Takes as its argument a set of values and returns
the value that occurs with the greatest frequency

STATS_MW_TEST A Mann Whitney test compares two independent
samples to test the null hypothesis that two
populations have the same distribution function
against the alternative hypothesis that the two
distribution functions are different.

STATS_ONE_WAY_ANOVA Tests differences in means (for groups or
variables) for statistical significance by comparing
two different estimates of variance

STATS_T_TEST_* The t-test measures the significance of a
difference of means

STATS_T_TEST_ONE A one-sample t-test

STATS_T_TEST_PAIRED A two-sample, paired t-test (also known as a
crossed t-test)

STATS_T_TEST_INDEP and
STATS_T_TEST_INDEPU

A t-test of two independent groups with the same
variance (pooled variances)
A t-test of two independent groups with unequal
variance (unpooled variances)

Chapter 2
Oracle Machine Learning for SQL Statistical Functions

2-13

Table 2-5 (Cont.) SQL Statistical Functions Supported by OML4SQL

Function Description

STDDEV returns the sample standard deviation of a set of
numbers

STDDEV_POP Computes the population standard deviation and
returns the square root of the population variance

STDDEV_SAMP Computes the cumulative sample standard
deviation and returns the square root of the
sample variance

SUM Returns the sum of values

DBMS_STAT_FUNCS PL/SQL package is also available for users.

Related Topics

• Scoring and Deployment
Explains the scoring and deployment features of Oracle Machine Learning for
SQL.

• Oracle Machine Learning for R User’s Guide

Chapter 2
Oracle Machine Learning for SQL Statistical Functions

2-14

3
Prepare the Data

Learn how to access and treat the data that can be used to build a model.

• Data Requirements

• About Attributes

• Use Nested Data

• Use Market Basket Data

• Use Retail Data for Analysis

• Handle Missing Values

3.1 Data Requirements
Understand how data is stored and viewed for Oracle Machine Learning.

Machine learning activities require data that is defined within a single table or view. The
information for each record must be stored in a separate row. The data records are
commonly called cases. Each case can optionally be identified by a unique case ID. The
table or view itself can be referred to as a case table.

The CUSTOMERS table in the SH schema is an example of a table that could be used for
machine learning. All the information for each customer is contained in a single row. The case
ID is the CUST_ID column. The rows listed in the following example are selected from
SH.CUSTOMERS.

Note:

Oracle Machine Learning requires single-record case data for all types of models
except association models, which can be built on native transactional data.

Example 3-1 Sample Case Table

SQL> select cust_id, cust_gender, cust_year_of_birth,
 cust_main_phone_number from sh.customers where cust_id < 11;

CUST_ID CUST_GENDER CUST_YEAR_OF_BIRTH CUST_MAIN_PHONE_NUMBER
------- ----------- ---- ------------- -------------------------
1 M 1946 127-379-8954
2 F 1957 680-327-1419
3 M 1939 115-509-3391
4 M 1934 577-104-2792
5 M 1969 563-667-7731
6 F 1925 682-732-7260
7 F 1986 648-272-6181
8 F 1964 234-693-8728

3-1

9 F 1936 697-702-2618
10 F 1947 601-207-4099

Related Topics

• Use Market Basket Data
Understand the use of association and Apriori for market basket analysis.

3.1.1 Column Data Types
Understand the different types of column data in a case table.

The columns of the case table hold the attributes that describe each case. In
Example 3-1, the attributes are: CUST_GENDER, CUST_YEAR_OF_BIRTH, and
CUST_MAIN_PHONE_NUMBER. The attributes are the predictors in a supervised model or
the descriptors in an unsupervised model. The case ID, CUST_ID, can be viewed as a
special attribute; it is not a predictor or a descriptor.

OML4SQL supports standard Oracle data types as well as the following collection
types:

DM_NESTED_CATEGORICALS
DM_NESTED_NUMERICALS
DM_NESTED_BINARY_DOUBLES
DM_NESTED_BINARY_FLOATS

Related Topics

• Use Nested Data
A join between the tables for one-to-many relationship is represented through
nested columns.

• Machine Learning Operations on Unstructured Text
Explains how to use Oracle Machine Learning for SQL to operate on unstructured
text.

• Oracle Database SQL Language Reference

3.1.2 Data Sets for Classification and Regression
Understand how data sets are used for training and testing the model.

You need two case tables to build and validate classification and regression models.
One set of rows is used for training the model, another set of rows is used for testing
the model. It is often convenient to derive the build data and test data from the same
data set. For example, you could randomly select 60% of the rows for training the
model; the remaining 40% could be used for testing the model.

Models that implement other machine learning functions, such as attribute importance,
clustering, association, or feature extraction, do not use separate test data.

3.1.3 Scoring Requirements
Learn how scoring is done in Oracle Machine Learning for SQL.

Most machine learning models can be applied to separate data in a process known as
scoring. Oracle Machine Learning for SQL supports the scoring operation for
classification, regression, anomaly detection, clustering, and feature extraction.

Chapter 3
Data Requirements

3-2

The scoring process matches column names in the scoring data with the names of the
columns that were used to build the model. The scoring process does not require all the
columns to be present in the scoring data. If the data types do not match, OML4SQL
attempts to perform type coercion. For example, if a column called PRODUCT_RATING is
VARCHAR2 in the training data but NUMBER in the scoring data, OML4SQL effectively applies a
TO_CHAR() function to convert it.

The column in the test or scoring data must undergo the same transformations as the
corresponding column in the build data. For example, if the AGE column in the build data was
transformed from numbers to the values CHILD, ADULT, and SENIOR, then the AGE column in
the scoring data must undergo the same transformation so that the model can properly
evaluate it.

Note:

OML4SQL can embed user-specified transformation instructions in the model and
reapply them whenever the model is applied. When the transformation instructions
are embedded in the model, you do not need to specify them for the test or scoring
data sets.

OML4SQL also supports Automatic Data Preparation (ADP). When ADP is enabled,
the transformations required by the algorithm are performed automatically and
embedded in the model along with any user-specified transformations.

See Also:

Automatic Data Preparation and Embed Transformations in a Model for more
information on automatic and embedded data transformations

3.2 About Attributes
Attributes are the items of data that are used in machine learning. Attributes are also referred
as variables, fields, or predictors.

In predictive models, attributes are the predictors that affect a given outcome. In descriptive
models, attributes are the items of information being analyzed for natural groupings or
associations. For example, a table of employee data that contains attributes such as job title,
date of hire, salary, age, gender, and so on.

3.2.1 Data Attributes and Model Attributes
Data attributes are columns in the data set used to build, test, or score a model. Model
attributes are the data representations used internally by the model.

Data attributes and model attributes can be the same. For example, a column called SIZE,
with values S, M, and L, are attributes used by an algorithm to build a model. Internally, the
model attribute SIZE is most likely be the same as the data attribute from which it was
derived.

Chapter 3
About Attributes

3-3

On the other hand, a nested column SALES_PROD, containing the sales figures for a
group of products, does not correspond to a model attribute. The data attribute can be
SALES_PROD, but each product with its corresponding sales figure (each row in the
nested column) is a model attribute.

Transformations also cause a discrepancy between data attributes and model
attributes. For example, a transformation can apply a calculation to two data attributes
and store the result in a new attribute. The new attribute is a model attribute that has
no corresponding data attribute. Other transformations such as binning, normalization,
and outlier treatment, cause the model's representation of an attribute to be different
from the data attribute in the case table.

Related Topics

• Use Nested Data
A join between the tables for one-to-many relationship is represented through
nested columns.

• Embed Transformations in a Model
You can specify your own transformations and embed them in a model by creating
a transformation list and passing it to DBMS_DATA_MINING.CREATE_MODEL2 or
DBMS_DATA_MINING.CREATE_MODEL.

See Also:

3.2.2 Target Attribute
Understand what a target means in machine learning and understand the different
target data types.

The target of a supervised model is a special kind of attribute. The target column in
the training data contains the historical values used to train the model. The target
column in the test data contains the historical values to which the predictions are
compared. The act of scoring produces a prediction for the target.

Clustering, feature extraction, association, and anomaly detection models do not use a
target.

Nested columns and columns of unstructured data (such as BFILE, CLOB, or BLOB)
cannot be used as targets.

Table 3-1 Target Data Types

Machine Learning
Function

Target Data Types

Classification VARCHAR2, CHAR
NUMBER, FLOAT
BINARY_DOUBLE, BINARY_FLOAT, ORA_MINING_VARCHAR2_NT

Regression NUMBER, FLOAT
BINARY_DOUBLE, BINARY_FLOAT

Chapter 3
About Attributes

3-4

You can query the *_MINING_MODEL_ATTRIBUTES view to find the target for a given model.

Related Topics

• ALL_MINING_MODEL_ATTRIBUTES
Describes an example of ALL_MINING_MODEL_ATTRIBUTES and shows a sample query.

• Oracle Database PL/SQL Packages and Types Reference

3.2.3 Numericals, Categoricals, and Unstructured Text
Explains numeric, categorical, and unstructured text attributes.

Model attributes are numerical, categorical, or unstructured (text). Data attributes, which are
columns in a case table, have Oracle data types, as described in "Column Data Types".

Numerical attributes can theoretically have an infinite number of values. The values have an
implicit order, and the differences between them are also ordered. Oracle Machine Learning
for SQL interprets NUMBER, FLOAT, BINARY_DOUBLE, BINARY_FLOAT, DM_NESTED_NUMERICALS,
DM_NESTED_BINARY_DOUBLES, and DM_NESTED_BINARY_FLOATS as numerical.

Categorical attributes have values that identify a finite number of discrete categories or
classes. There is no implicit order associated with the values. Some categoricals are binary:
they have only two possible values, such as yes or no, or male or female. Other categoricals
are multi-class: they have more than two values, such as small, medium, and large.

OML4SQL interprets CHAR and VARCHAR2 as categorical by default, however these columns
may also be identified as columns of unstructured data (text). OML4SQL interprets columns
of DM_NESTED_CATEGORICALS as categorical. Columns of CLOB, BLOB, and BFILE always
contain unstructured data.

The target of a classification model is categorical. (If the target of a classification model is
numeric, it is interpreted as categorical.) The target of a regression model is numerical. The
target of an attribute importance model is either categorical or numerical.

Related Topics

• Column Data Types
Understand the different types of column data in a case table.

• Machine Learning Operations on Unstructured Text
Explains how to use Oracle Machine Learning for SQL to operate on unstructured text.

3.2.4 Model Signature
Learn about model signature and the data types that are considered in the build data.

The model signature is the set of data attributes that are used to build a model. Some or all of
the attributes in the signature must be present for scoring. The model accounts for any
missing columns on a best-effort basis. If columns with the same names but different data
types are present, the model attempts to convert the data type. If extra, unused columns are
present, they are disregarded.

The model signature does not necessarily include all the columns in the build data. Algorithm-
specific criteria can cause the model to ignore certain columns. Other columns can be
eliminated by transformations. Only the data attributes actually used to build the model are
included in the signature.

The target and case ID columns are not included in the signature.

Chapter 3
About Attributes

3-5

3.2.5 Scoping of Model Attribute Name
Learn about model attribute name.

The model attribute name consists of two parts: a column name, and a subcolumn
name.

column_name[.subcolumn_name]

The column_name component is the name of the data attribute. It is present in all model
attribute names. Nested attributes and text attributes also have a subcolumn_name
component as shown in the following example.

Example 3-2 Model Attributes Derived from a Nested Column

The nested column SALESPROD has three rows.

SALESPROD(ATTRIBUTE_NAME, VALUE)

((PROD1, 300),
 (PROD2, 245),
 (PROD3, 679))

The name of the data attribute is SALESPROD. Its associated model attributes are:

SALESPROD.PROD1
SALESPROD.PROD2
SALESPROD.PROD3

3.2.6 Model Details
Model details reveal information about model attributes and their treatment by the
algorithm. Oracle recommends that users leverage the model detail views for the
respective algorithm.

Transformation and reverse transformation expressions are associated with model
attributes. Transformations are applied to the data attributes before the algorithmic
processing that creates the model. Reverse transformations are applied to the model
attributes after the model has been built, so that the model details are expressed in the
form of the original data attributes, or as close to it as possible.

Reverse transformations support model transparency. They provide a view of the data
that the algorithm is working with internally but in a format that is meaningful to a user.

Deprecated GET_MODEL_DETAILS
There is a separate GET_MODEL_DETAILS routine for each algorithm. Starting from
Oracle Database 12c Release 2, the GET_MODEL_DETAILS are deprecated. Oracle
recommends to use Model Detail Views for the respective algorithms.

Related Topics

• Model Detail Views
To obtain information about the model and various settings in the model, you can
query model detail views. Model detail views are specific to the algorithm. You can
obtain more insights about the model you created by viewing the model detail
views. The names of model detail views begin with DM$.

Chapter 3
About Attributes

3-6

3.3 Use Nested Data
A join between the tables for one-to-many relationship is represented through nested
columns.

Oracle Machine Learning for SQL requires a case table in single-record case format, with
each record in a separate row. What if some or all of your data is in multi-record case format,
with each record in several rows? What if you want one attribute to represent a series or
collection of values, such as a student's test scores or the products purchased by a
customer?

This kind of one-to-many relationship is usually implemented as a join between tables. For
example, you can join your customer table to a sales table and thus associate a list of
products purchased with each customer.

OML4SQL supports dimensioned data through nested columns. To include dimensioned data
in your case table, create a view and cast the joined data to one of the machine learning
nested table types. Each row in the nested column consists of an attribute name/value pair.
OML4SQL internally processes each nested row as a separate attribute.

Note:

O-Cluster is the only algorithm that does not support nested data.

Related Topics

• Example: Creating a Nested Column for Market Basket Analysis
The example shows how to define a nested column for market basket analysis.

3.3.1 Nested Object Types
Nested tables are object data types that can be used in place of other data types.

Oracle Database supports user-defined data types that make it possible to model real-world
entities as objects in the database. Collection types are object data types for modeling
multi-valued attributes. Nested tables are collection types. Nested tables can be used
anywhere that other data types can be used.

OML4SQL supports the following nested object types:

DM_NESTED_BINARY_DOUBLES
DM_NESTED_BINARY_FLOATS
DM_NESTED_NUMERICALS
DM_NESTED_CATEGORICALS

Descriptions of the nested types are provided in this example.

Example 3-3 OML4SQL Nested Data Types

describe dm_nested_binary_double
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)

Chapter 3
Use Nested Data

3-7

 VALUE BINARY_DOUBLE

describe dm_nested_binary_doubles
 DM_NESTED_BINARY_DOUBLES TABLE OF SYS.DM_NESTED_BINARY_DOUBLE
 Name Null? Type
 -- -------- ---------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE BINARY_DOUBLE

describe dm_nested_binary_float
 Name Null? Type
 --- -------- ---------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE BINARY_FLOAT

describe dm_nested_binary_floats
 DM_NESTED_BINARY_FLOATS TABLE OF SYS.DM_NESTED_BINARY_FLOAT
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE BINARY_FLOAT

describe dm_nested_numerical
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE NUMBER

describe dm_nested_numericals
 DM_NESTED_NUMERICALS TABLE OF SYS.DM_NESTED_NUMERICAL
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE NUMBER

describe dm_nested_categorical
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE VARCHAR2(4000)

describe dm_nested_categoricals
 DM_NESTED_CATEGORICALS TABLE OF SYS.DM_NESTED_CATEGORICAL
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE VARCHAR2(4000)

Related Topics

• Oracle Database Object-Relational Developer's Guide

3.3.2 Example: Transforming Transactional Data for Machine Learning
In this example, a comparison is shown for sale of products in four regions with data
before transformation and then after transformation.

Example 3-4 shows data from a view of a sales table. It includes sales for three of the
many products sold in four regions. This data is not suitable for machine learning at
the product level because sales for each case (product), is stored in several rows.

Chapter 3
Use Nested Data

3-8

Example 3-5 shows how this data can be transformed for machine learning. The case ID
column is PRODUCT. SALES_PER_REGION, a nested column of type DM_NESTED_NUMERICALS, is a
data attribute. This table is suitable for machine learning at the product case level, because
the information for each case is stored in a single row.

Oracle Machine Learning for SQL treats each nested row as a separate model attribute, as
shown in Example 3-6.

Note:

The presentation in this example is conceptual only. The data is not actually pivoted
before being processed.

Example 3-4 Product Sales per Region in Multi-Record Case Format

PRODUCT REGION SALES
------- -------- ----------
Prod1 NE 556432
Prod2 NE 670155
Prod3 NE 3111
.
.
Prod1 NW 90887
Prod2 NW 100999
Prod3 NW 750437
.
.
Prod1 SE 82153
Prod2 SE 57322
Prod3 SE 28938
.
.
Prod1 SW 3297551
Prod2 SW 4972019
Prod3 SW 884923
.
.

Example 3-5 Product Sales per Region in Single-Record Case Format

PRODUCT SALES_PER_REGION
 (ATTRIBUTE_NAME, VALUE)
------ --------------------------
Prod1 ('NE' , 556432)
 ('NW' , 90887)
 ('SE' , 82153)
 ('SW' , 3297551)
Prod2 ('NE' , 670155)
 ('NW' , 100999)
 ('SE' , 57322)
 ('SW' , 4972019)
Prod3 ('NE' , 3111)
 ('NW' , 750437)
 ('SE' , 28938)
 ('SW' , 884923)
.
.

Chapter 3
Use Nested Data

3-9

Example 3-6 Model Attributes Derived From SALES_PER_REGION

PRODUCT SALES_PER_REGION.NE SALES_PER_REGION.NW SALES_PER_REGION.SE
SALES_PER_REGION.SW
------- ------------------ ------------------- ------------------ -------------------
Prod1 556432 90887 82153 3297551
Prod2 670155 100999 57322 4972019
Prod3 3111 750437 28938 884923
.
.

3.4 Use Market Basket Data
Understand the use of association and Apriori for market basket analysis.

Market basket data identifies the items sold in a set of baskets or transactions. Oracle
Machine Learning for SQL provides the association machine learning function for
market basket analysis.

Association models use the Apriori algorithm to generate association rules that
describe how items tend to be purchased in groups. For example, an association rule
can assert that people who buy peanut butter are 80% likely to also buy jelly.

Market basket data is usually transactional. In transactional data, a case is a
transaction and the data for a transaction is stored in multiple rows. OML4SQL
association models can be built on transactional data or on single-record case data.
The ODMS_ITEM_ID_COLUMN_NAME and ODMS_ITEM_VALUE_COLUMN_NAME settings specify
whether the data for association rules is in transactional format.

Note:

Association models are the only type of model that can be built on native
transactional data. For all other types of models, OML4SQL requires that the
data be presented in single-record case format.

The Apriori algorithm assumes that the data is transactional and that it has many
missing values. Apriori interprets all missing values as sparse data, and it has its own
native mechanisms for handling sparse data.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information on
the ODMS_ITEM_ID_COLUMN_NAME and ODMS_ITEM_VALUE_COLUMN_NAME
settings.

3.4.1 Example: Creating a Nested Column for Market Basket Analysis
The example shows how to define a nested column for market basket analysis.

Association models can be built on native transactional data or on nested data. The
following example shows how to define a nested column for market basket analysis.

Chapter 3
Use Market Basket Data

3-10

The following SQL statement transforms this data to a column of type DM_NESTED_NUMERICALS
in a view called SALES_TRANS_CUST_NESTED. This view can be used as a case table for
machine learning.

CREATE VIEW sales_trans_cust_nested AS
 SELECT trans_id,
 CAST(COLLECT(DM_NESTED_NUMERICAL(
 prod_name, 1))
 AS DM_NESTED_NUMERICALS) custprods
 FROM sales_trans_cust
 GROUP BY trans_id;

This query returns two rows from the transformed data.

SELECT * FROM sales_trans_cust_nested
 WHERE trans_id < 101000
 AND trans_id > 100997;

TRANS_ID CUSTPRODS(ATTRIBUTE_NAME, VALUE)
------- --
100998 DM_NESTED_NUMERICALS
 (DM_NESTED_NUMERICAL('O/S Documentation Set - English', 1)
100999 DM_NESTED_NUMERICALS
 (DM_NESTED_NUMERICAL('CD-RW, High Speed Pack of 5', 1),
 DM_NESTED_NUMERICAL('External 8X CD-ROM', 1),
 DM_NESTED_NUMERICAL('SIMM- 16MB PCMCIAII card', 1))

Example 3-7 Convert to a Nested Column

The view SALES_TRANS_CUST provides a list of transaction IDs to identify each market basket
and a list of the products in each basket.

describe sales_trans_cust
 Name Null? Type
 --- -------- ----------------
 TRANS_ID NOT NULL NUMBER
 PROD_NAME NOT NULL VARCHAR2(50)
 QUANTITY NUMBER

Related Topics

• Handle Missing Values
Understand sparse data and missing values.

3.5 Use Retail Data for Analysis
Retail analysis often makes use of association rules and association models.

The association rules are enhanced to calculate aggregates along with rules or itemsets.

Related Topics

• Oracle Machine Learning for SQL Concepts

Chapter 3
Use Retail Data for Analysis

3-11

3.5.1 Example: Calculating Aggregates
This example shows how to calculate aggregates using the customer grocery
purchase and profit data.

Calculating Aggregates for Grocery Store Data

Assume a grocery store has the following data:

Table 3-2 Grocery Store Data

Customer Item A Item B Item C Item D

Customer 1 Buys
(Profit $5.00)

Buys
(Profit $3.20)

Buys
(Profit $12.00)

NA

Customer 2 Buys
(Profit $4.00)

NA Buys
(Profit $4.20)

NA

Customer 3 Buys
(Profit $3.00)

Buys
(Profit $10.00)

Buys
(Profit $14.00)

Buys
(Profit $8.00)

Customer 4 Buys
(Profit $2.00)

NA NA Buys
(Profit $1.00)

The basket of each customer can be viewed as a transaction. The manager of the
store is interested in not only the existence of certain association rules, but also in the
aggregated profit if such rules exist.

In this example, one of the association rules can be (A, B)=>C for customer 1 and
customer 3. Together with this rule, the store manager may want to know the following:

• The total profit of item A appearing in this rule

• The total profit of item B appearing in this rule

• The total profit for consequent C appearing in this rule

• The total profit of all items appearing in the rule

For this rule, the profit for item A is $5.00 + $3.00 = $8.00, for item B the profit is $3.20
+ $10.00 = $13.20, for consequent C, the profit is $12.00 + $14.00 = $26.00, for the
antecedent itemset (A, B) is $8.00 + $13.20 = $21.20. For the whole rule, the profit
is $21.20 + $26.00 = $47.40.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

3.6 Handle Missing Values
Understand sparse data and missing values.

Oracle Machine Learning for SQL distinguishes between sparse data and data that
contains random missing values. The latter means that some attribute values are
unknown. Sparse data, on the other hand, contains values that are assumed to be
known, although they are not represented in the data.

A typical example of sparse data is market basket data. Out of hundreds or thousands
of available items, only a few are present in an individual case (the basket or

Chapter 3
Handle Missing Values

3-12

transaction). All the item values are known, but they are not all included in the basket.
Present values have a quantity, while the items that are not represented are sparse (with a
known quantity of zero).

OML4SQL interprets missing data as follows:

• Missing at random: Missing values in columns with a simple data type (not nested) are
assumed to be missing at random.

• Sparse: Missing values in nested columns indicate sparsity.

3.6.1 Examples: Missing Values or Sparse Data?
Example to show sparse and missing data.

The examples in this section illustrate how Oracle Machine Learning for SQL identifies data
as either sparse or missing at random.

3.6.1.1 Sparsity in a Sales Table
Understand how Oracle Machine Learning for SQL interprets missing data in nested column.

A sales table contains point-of-sale data for a group of products that are sold in several
stores to different customers over a period of time. A particular customer buys only a few of
the products. The products that the customer does not buy do not appear as rows in the
sales table.

If you were to figure out the amount of money a customer has spent for each product, the
unpurchased products have an inferred amount of zero. The value is not random or unknown;
it is zero, even though no row appears in the table.

Note that the sales data is dimensioned (by product, stores, customers, and time) and are
often represented as nested data for machine learning.

Since missing values in a nested column always indicate sparsity, you must ensure that this
interpretation is appropriate for the data that you want to mine. For example, when trying to
mine a multi-record case data set containing movie ratings from users of a large movie
database, the missing ratings are unknown (missing at random), but Oracle Machine
Learning for SQL treats the data as sparse and infer a rating of zero for the missing value.

3.6.1.2 Missing Values in a Table of Customer Data
When the data is not available for some attributes, those missing values are considered to be
missing at random.

A table of customer data contains demographic data about customers. The case ID column is
the customer ID. The attributes are age, education, profession, gender, house-hold size, and
so on. Not all the data is available for each customer. Any missing values are considered to
be missing at random. For example, if the age of customer 1 and the profession of customer
2 are not present in the data, that information is unknown. It does not indicate sparsity.

Note that the customer data is not dimensioned. There is a one-to-one mapping between the
case and each of its attributes. None of the attributes are nested.

3.6.2 Missing Value Treatment in Oracle Machine Learning for SQL
Summarizes the treatment of missing values in OML4SQL.

Chapter 3
Handle Missing Values

3-13

Missing value treatment depends on the algorithm and on the nature of the data
(categorical or numerical, sparse or missing at random). Missing value treatment is
summarized in the following table.

Note:

OML4SQL performs the same missing value treatment whether or not you
are using Automatic Data Preparation (ADP).

Table 3-3 Missing Value Treatment by Algorithm

Missing Data EM, GLM, NMF, k-Means,
SVD, SVM

DT, MDL, NB, OC Apriori

NUMERICAL
missing at
random

The algorithm replaces missing
numerical values with the
mean.

For Expectation Maximization
(EM), the replacement only
occurs in columns that are
modeled with Gaussian
distributions.

The algorithm handles
missing values
naturally as missing at
random.

The algorithm
interprets all
missing data as
sparse.

CATEGORICAL
missing at
random

Generalized Linear Model
(GLM), Non-Negative Matrix
Factorization (NMF), k-Means,
and Support Vector Machine
(SVM) replaces missing
categorical values with the
mode.

Singular Value Decomposition
(SVD) does not support
categorical data.

EM does not replace missing
categorical values. EM treats
NULLs as a distinct value with
its own frequency count.

The algorithm handles
missing values
naturally as missing
random.

The algorithm
interprets all
missing data as
sparse.

NUMERICAL
sparse

The algorithm replaces sparse
numerical data with zeros.

O-Cluster does not
support nested data
and therefore does not
support sparse data.
Decision Tree (DT),
Minimum Description
Length (MDL), and
Naive Bayes (NB)
replace sparse
numerical data with
zeros.

The algorithm
handles sparse
data.

Chapter 3
Handle Missing Values

3-14

Table 3-3 (Cont.) Missing Value Treatment by Algorithm

Missing Data EM, GLM, NMF, k-Means,
SVD, SVM

DT, MDL, NB, OC Apriori

CATEGORICAL
sparse

All algorithms except SVD
replace sparse categorical
data with zero vectors. SVD
does not support categorical
data.

O-Cluster does not
support nested data
and therefore does not
support sparse data.
DT, MDL, and NB
replace sparse
categorical data with
the special value
DM$SPARSE.

The algorithm
handles sparse
data.

3.6.3 Changing the Missing Value Treatment
Transform the missing data as sparse or missing at random.

If you want Oracle Machine Learning for SQL to treat missing data as sparse instead of
missing at random or missing at random instead of sparse, transform it before building the
model.

If you want missing values to be treated as sparse, but OML4SQL interprets them as missing
at random, you can use a SQL function like NVL to replace the nulls with a value such as
"NA". OML4SQL does not perform missing value treatment when there is a specified value.

If you want missing nested attributes to be treated as missing at random, you can transform
the nested rows into physical attributes in separate columns — as long as the case table
stays within the 1000 column limitation imposed by the Database. Fill in all of the possible
attribute names, and specify them as null. Alternatively, insert rows in the nested column for
all the items that are not present and assign a value such as the mean or mode to each one.

Related Topics

• Oracle Database SQL Language Reference

3.7 About Transformations
Understand how you can transform data by using Automatic Data Preparation (ADP) and
embedded data transformation.

A transformation is a SQL expression that modifies the data in one or more columns. Data
must typically undergo certain transformations before it can be used to build a model. Many
Oracle Machine Learning algorithms have specific transformation requirements. Before data
can be scored, it must be transformed in the same way that the training data was
transformed.

Oracle Machine Learning for SQL supports ADP, which automatically implements the
transformations required by the algorithm. The transformations are embedded in the model
and automatically run whenever the model is applied.

If additional transformations are required, you can specify them as SQL expressions and
supply them as input when you create the model. These transformations are embedded in
the model as they are with ADP.

Chapter 3
About Transformations

3-15

With automatic and embedded data transformation, most of the work of data
preparation is handled for you. You can create a model and score multiple data sets in
a few steps:

1. Identify the columns to include in the case table.

2. Create nested columns if you want to include transactional data.

3. Write SQL expressions for any transformations not handled by ADP.

4. Create the model, supplying the SQL expressions (if specified) and identifying any
columns that contain text data.

5. Ensure that some or all of the columns in the scoring data have the same name
and type as the columns used to train the model.

Related Topics

• Scoring Requirements
Learn how scoring is done in Oracle Machine Learning for SQL.

See Also:

OML provides algorithm-specific automatic data preparation and other model
building-related features

3.8 Prepare the Case Table
The first step in preparing data for machine learning is the creation of a case table.

If all the data resides in a single table and all the information for each case (record) is
included in a single row (single-record case), this process is already taken care of. If
the data resides in several tables, creating the data source involves the creation of a
view. For the sake of simplicity, the term "case table" is used here to refer to either a
table or a view.

Related Topics

• Prepare the Data
Learn how to access and treat the data that can be used to build a model.

3.8.1 Convert Column Data Types
In OML, string columns are treated as categorical and number columns as numerical.
If you have a numeric column that you want to be treated as a categorical, you must
convert it to a string. For example, the day number of the week.

For example, zip codes identify different postal zones; they do not imply order. If the
zip codes are stored in a numeric column, they are interpreted as a numeric attribute.
You must convert the data type so that the column data can be used as a categorical
attribute by the model. You can do this using the TO_CHAR function to convert the digits
1-9 and the LPAD function to retain the leading 0, if there is one.

LPAD(TO_CHAR(ZIPCODE),5,'0')

Chapter 3
Prepare the Case Table

3-16

3.8.2 Extract Datetime Column Values
You can extract values from a datatime or interval value using the EXTRACT function.

The EXTRACT function extracts and returns the value of a specified datetime field from a
datetime or interval value expression. The values that can be extracted are YEAR, MONTH, DAY,
HOUR, MINUTE, SECOND, TIMEZONE_HOUR, TIMEZONE_MINUTE, TIMEZONE_REGION, and
TIMEZONE_ABBR.

sales_tssales_tsCUST_IDTIME_STAMP

select cust_id, time_stamp,
 extract(year from time_stamp) year,
 extract(month from time_stamp) month,
 extract(day from time_stamp) day_of_month,
 to_char(time_stamp,'ww') week_of_year,
 to_char(time_stamp,'D') day_of_week,
 extract(hour from time_stamp) hour,
 extract(minute from time_stamp) minute,
 extract(second from time_stamp) second
from sales_ts

3.8.3 Text Transformation
Learn text processing using Oracle Machine Learning for SQL.

You can use OML4SQL to process text. Columns of text in the case table can be processed
once they have undergone the proper transformation.

The text column must be in a table, not a view. The transformation process uses several
features of Oracle Text; it treats the text in each row of the table as a separate document.
Each document is transformed to a set of text tokens known as terms, which have a numeric
value and a text label. The text column is transformed to a nested column of
DM_NESTED_NUMERICALS.

3.8.4 About Business and Domain-Sensitive Transformations
Understand why you need to transform data according to business problems.

Some transformations are dictated by the definition of the business problem. For example,
you want to build a model to predict high-revenue customers. Since your revenue data for
current customers is in dollars you need to define what "high-revenue" means. Using some
formula that you have developed from past experience, you can recode the revenue attribute
into ranges Low, Medium, and High before building the model.

Another common business transformation is the conversion of date information into elapsed
time. For example, date of birth can be converted to age.

Domain knowledge can be very important in deciding how to prepare the data. For example,
some algorithms produce unreliable results if the data contains values that fall far outside of
the normal range. In some cases, these values represent errors or abnormalities. In others,
they provide meaningful information.

Chapter 3
Prepare the Case Table

3-17

Related Topics

• Outlier Treatment
Understand what you must do to treat outliers.

3.8.5 Create Nested Columns
In transactional data, the information for each case is contained in multiple rows.
When the data source includes transactional data (multi-record case), the transactions
must be aggregated to the case level in nested columns.

An example is sales data in a star schema when machine learning at the product level.
Sales is stored in many rows for a single product (the case) because the product is
sold in many stores to many customers over a period of time.

See Also:

Using Nested Data for information about converting transactional data to
nested columns

Chapter 3
Prepare the Case Table

3-18

4
Create a Model

Explains how to create Oracle Machine Learning for SQL models and to query model details.

• Before Creating a Model

• Choose the Machine Learning Function

• Choose the Algorithm

• Automatic Data Preparation

• Embed Transformations in a Model

• The CREATE_MODEL2 Procedure

• The CREATE_MODEL Procedure

• Specify Model Settings

• Model Settings in the Data Dictionary

• Model Detail Views

4.1 Before Creating a Model
Explains the preparation steps before creating a model.

Models are database schema objects that perform machine learning. The DBMS_DATA_MINING
PL/SQL package is the API for creating, configuring, evaluating, and querying machine
learning models (model details).

Before you create a model, you must decide what you want the model to do. You must
identify the training data and determine if transformations are required. You can specify
model settings to influence the behavior of the model behavior. The preparation steps are
summarized in the following table.

Table 4-1 Preparation for Creating an Oracle Machine Learning for SQL Model

Preparation Step Description

Choose the machine learning function See Choose the Machine Learning Function

Choose the algorithm See Choose the Algorithm

Identify the build (training) data See Prepare the Data

For classification and regression models, identify the
test data

See Data Sets for Classification and Regression

Determine your data transformation strategy and
create and populate a settings tables (if needed)

See Specify Model Settings

4-1

Related Topics

• About Oracle Machine Learning Models
Machine learning models are database schema objects that perform machine
learning functions.

• DBMS_DATA_MINING
Understand the routines of DBMS_DATA_MINING package.

4.2 Choose the Machine Learning Function
Describes providing an Oracle Machine Learning for SQL machine learning function
for the CREATE_MODEL and CREATE_MODEL2procedure.

An OML4SQL machine learning function specifies a class of problems that can be
modeled and solved. You specify a machine learning with the mining_function
argument of the CREATE_MODEL and CREATE_MODEL2 procedure.

OML4SQL machine learning functions implement either supervised or unsupervised
learning. Supervised learning uses a set of independent attributes to predict the value
of a dependent attribute or target. Unsupervised learning does not distinguish
between dependent and independent attributes. Supervised functions are predictive.
Unsupervised functions are descriptive.

Note:

In OML4SQL terminology, a function is a general type of problem to be
solved by a given approach to machine learning. In SQL language
terminology, a function is an operation that returns a result.

In OML4SQL documentation, the term function, or machine learning
function refers to an OML4SQL machine learning function; the term SQL
function or SQL machine learning function refers to a SQL function for
scoring (applying machine learning models).

You can specify any of the values in the following table for the mining_function
parameter to the CREATE_MODEL and CREATE_MODEL2 procedure.

Table 4-2 Oracle Machine Learning mining_function Values

mining_function Value Description

ASSOCIATION Association is a descriptive machine learning function. An
association model identifies relationships and the probability of
their occurrence within a data set (association rules).

Association models use the Apriori algorithm.

ATTRIBUTE_IMPORTANCE Attribute importance is a predictive machine learning function.
An attribute importance model identifies the relative importance
of attributes in predicting a given outcome.

Attribute importance models use the Minimum Description
Length algorithm and CUR Matrix Decomposition.

Chapter 4
Choose the Machine Learning Function

4-2

Table 4-2 (Cont.) Oracle Machine Learning mining_function Values

mining_function Value Description

CLASSIFICATION Classification is a predictive machine learning function. A
classification model uses historical data to predict a categorical
target.

Classification models can use Naive Bayes, Neural Network,
Decision Tree, logistic regression, Random Forest, Support
Vector Machine, Explicit Semantic Analysis, or XGBoost. The
default is Naive Bayes.

You can also specify the classification machine learning function
for anomaly detection for a One-Class SVM model and a
Multivariate State Estimation Technique - Sequential Probability
Ratio Test model.

CLUSTERING Clustering is a descriptive machine learning function. A
clustering model identifies natural groupings within a data set.

Clustering models can use k-Means, O-Cluster, or Expectation
Maximization. The default is k-Means.

FEATURE_EXTRACTION Feature extraction is a descriptive machine learning function. A
feature extraction model creates a set of optimized attributes.

Feature extraction models can use Non-Negative Matrix
Factorization, Singular Value Decomposition (which can also be
used for Principal Component Analysis) or Explicit Semantic
Analysis. The default is Non-Negative Matrix Factorization.

REGRESSION Regression is a predictive machine learning function. A
regression model uses historical data to predict a numerical
target.

Regression models can use Support Vector Machine, GLM
regression, or XGBoost. The default is Support Vector Machine.

TIME_SERIES Time series is a predictive machine learning function. A time
series model forecasts the future values of a time-ordered series
of historical numeric data over a user-specified time window.
Time series models use the Exponential Smoothing algorithm.
The default is Exponential Smoothing.

Related Topics

• Oracle Machine Learning for SQL Concepts

4.3 Choose the Algorithm
Learn about providing the algorithm settings for a model.

The ALGO_NAME setting specifies the algorithm for a model. If you use the default algorithm for
the machine learning function, or if there is only one algorithm available for the machine
learning function, then you do not need to specify the ALGO_NAME setting.

Table 4-3 Oracle Machine Learning Algorithms

ALGO_NAME Value Algorithm Default? Machine Learning Model
Function

ALGO_AI_MDL Minimum Description Length — Attribute importance

Chapter 4
Choose the Algorithm

4-3

Table 4-3 (Cont.) Oracle Machine Learning Algorithms

ALGO_NAME Value Algorithm Default? Machine Learning Model
Function

ALGO_APRIORI_ASSOCIATION_RU
LES

Apriori — Association

ALGO_CUR_DECOMPOSITION CUR Matrix Decomposition — Attribute importance

ALGO_DECISION_TREE Decision Tree — Classification

ALGO_EXPECTATION_MAXIMIZATI
ON

Expectation Maximization — Clustering

ALGO_EXPLICIT_SEMANTIC_ANAL
YS

Explicit Semantic Analysis — Feature extraction and
classification

ALGO_EXPONENTIAL_SMOOTHING Exponential Smoothing — Time series

ALGO_EXTENSIBLE_LANG Language used for an extensible
algorithm

— All machine learning
functions are supported

ALGO_GENERALIZED_LINEAR_MOD
EL

Generalized Linear Model — Classification and
regression

ALGO_KMEANS k-Means yes Clustering

ALGO_MSET_SPRT Multivariate State Estimation
Technique - Sequential Probability
Ratio Test

— Anomaly detection
(classification with no target)

ALGO_NAIVE_BAYES Naive Bayes yes Classification

ALGO_NEURAL_NETWORK Neural Network — Classification

ALGO_NONNEGATIVE_MATRIX_FAC
TOR

Non-Negative Matrix Factorization yes Feature extraction

ALGO_O_CLUSTER O-Cluster — Clustering

ALGO_RANDOM_FOREST Random Forest — Classification

ALGO_SINGULAR_VALUE_DECOMP Singular Value Decomposition (can
also be used for Principal
Component Analysis)

— Feature extraction

ALGO_SUPPORT_VECTOR_MACHINE
S

Support Vector Machine yes Default regression algorithm;
regression, classification,
and anomaly detection
(classification with no target)

ALGO_XGBOOST XGBoost — Classification and
regression

Related Topics

• Specify Model Settings
Understand how to configure machine learning models at build time.

• Oracle Machine Learning for SQL Concepts

Chapter 4
Choose the Algorithm

4-4

4.4 Automatic Data Preparation
Most algorithms require some form of data transformation. During the model build process,
Oracle Machine Learning for SQL can automatically perform the transformations required by
the algorithm.

You can choose to supplement the automatic transformations with additional transformations
of your own, or you can choose to manage all the transformations yourself.

In calculating automatic transformations, OML4SQL uses heuristics that address the common
requirements of a given algorithm. This process results in reasonable model quality in most
cases.

Binning and normalization are transformations that are commonly needed by machine
learning algorithms.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

4.4.1 Binning
Binning, also called discretization, is a technique for reducing the cardinality of continuous
and discrete data. Binning groups related values together in bins to reduce the number of
distinct values.

Binning can improve resource utilization and model build response time dramatically without
significant loss in model quality. Binning can improve model quality by strengthening the
relationship between attributes.

Supervised binning is a form of intelligent binning in which important characteristics of the
data are used to determine the bin boundaries. In supervised binning, the bin boundaries are
identified by a single-predictor decision tree that takes into account the joint distribution with
the target. Supervised binning can be used for both numerical and categorical attributes.

4.4.2 Normalization
Learn about normalization.

Normalization is the most common technique for reducing the range of numerical data. Most
normalization methods map the range of a single variable to another range (often 0,1).

4.4.3 How ADP Transforms the Data
The following table shows how ADP prepares the data for each algorithm.

Table 4-4 Oracle Machine Learning Algorithms With ADP

Algorithm Machine Learning
Function

Treatment by ADP

Apriori Association rules ADP has no effect on association rules.

Chapter 4
Automatic Data Preparation

4-5

Table 4-4 (Cont.) Oracle Machine Learning Algorithms With ADP

Algorithm Machine Learning
Function

Treatment by ADP

CUR Matrix
Decompositi
on

Feature selection ADP has no effect on CUR Matrix Decomposition

Decision
Tree

Classification ADP has no effect on Decision Tree. Data preparation is handled by the
algorithm.

Expectation
Maximizatio
n

Clustering Single-column (not nested) numerical columns that are modeled with
Gaussian distributions are normalized. ADP has no effect on the other
types of columns.

GLM Classification and
regression

Numerical attributes are normalized.

k-Means Clustering Numerical attributes are normalized.

MDL Attribute importance All attributes are binned with supervised binning.

MSET-SPRT Classification (for
anomaly detection)

Z-score normalization is performed.

Naive Bayes Classification All attributes are binned with supervised binning.

Neural
Network

Classification and
regression

Numerical attributes are normalized.

NMF Feature extraction Numerical attributes are normalized.

O-Cluster Clustering Numerical attributes are binned with a specialized form of equi-width
binning, which computes the number of bins per attribute automatically.
Numerical columns with all nulls or a single value are removed.

Random
Forest

Classification ADP has no effect on Random Forest. Data preparation is handled by the
algorithm.

SVD Feature extraction Numeric attributes are centered if PCA is selected.

SVM Classification, anomaly
detection, and regression

Numerical attributes are normalized.

XG Boost Classification and
regression

ADP has no effect on XG Boost.

See Also:

• Oracle Database PL/SQL Packages and Types Reference

• Part III, Algorithms, in Oracle Machine Learning for SQL Concepts for
more information about algorithm-specific data preparation

Chapter 4
Automatic Data Preparation

4-6

4.5 Embed Transformations in a Model
You can specify your own transformations and embed them in a model by creating a
transformation list and passing it to DBMS_DATA_MINING.CREATE_MODEL2 or
DBMS_DATA_MINING.CREATE_MODEL.

The transformation instructions are embedded in the model and reapplied whenever the
model is applied to new data.

An example of how you can use xform_list to embed your transformations is shown here
with CREATE_MODEL2 and CREATE_MODEL procedures.

DBMS_DATA_MINING.CREATE_MODEL2 (
model_name IN VARCHAR2,
mining_function IN VARCHAR2,
data_query IN CLOB,
set_list IN SETTING_LIST,
case_id_column_name IN VARCHAR2 DEFAULT NULL,
target_column_name IN VARCHAR2 DEFAULT NULL,
xform_list IN TRANSFORM_LIST DEFAULT NULL);

DBMS_DATA_MINING.CREATE_MODEL(
 model_name IN VARCHAR2,
 mining_function IN VARCHAR2,
 data_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2 DEFAULT NULL,
 settings_table_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 settings_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_list IN TRANSFORM_LIST DEFAULT NULL);

4.5.1 Build a Transformation List
You can build transformation list by SET_TRANSFORM, STACK, and GET_* methods. These
methods are listed here.

A transformation list is a collection of transformation records. When a new transformation
record is added, it is appended to the top of the transformation list. You can use any of the
following methods to build a transformation list:

• The SET_TRANFORM procedure in DBMS_DATA_MINING_TRANSFORM
• The STACK interface in DBMS_DATA_MINING_TRANSFORM
• The GET_MODEL_TRANSFORMATIONS and GET_TRANSFORM_LIST functions in

DBMS_DATA_MINING

4.5.1.1 SET_TRANSFORM
The SET_TRANSFORM procedure applies a specified SQL expression to a specified attribute.

The SET_TRANSFORM procedure adds a single transformation record to a transformation list.

DBMS_DATA_MINING_TRANSFORM.SET_TRANSFORM (
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 attribute_name VARCHAR2,

Chapter 4
Embed Transformations in a Model

4-7

 attribute_subname VARCHAR2,
 expression VARCHAR2,
 reverse_expression VARCHAR2,
 attribute_spec VARCHAR2 DEFAULT NULL);

SQL expressions that you specify with SET_TRANSFORM must fit within a VARCHAR2. To
specify a longer expression, you can use the SET_EXPRESSION procedure, which builds
an expression by appending rows to a VARCHAR2 array. For example, the following
statement appends a transformation instruction for country_id to a list of
transformations called my_xforms. The transformation instruction divides country_id
by 10 before algorithmic processing begins. The reverse transformation multiplies
country_id by 10.

 dbms_data_mining_transform.SET_TRANSFORM (my_xforms,
 'country_id', NULL, 'country_id/10', 'country_id*10');

The reverse transformation is applied in the model details. If country_id is the target
of a supervised model, the reverse transformation is also applied to the scored target.

4.5.1.2 The STACK Interface
The STACK interface creates transformation records from a table of transformation
instructions and adds them to a transformation list.

The STACK interface offers a set of pre-defined transformations that you can apply to
an attribute or to a group of attributes. For example, you can specify supervised
binning for all categorical attributes.

The STACK interface specifies that all or some of the attributes of a given type must be
transformed in the same way. For example, STACK_BIN_CAT appends binning
instructions for categorical attributes to a transformation list. The STACK interface
consists of three steps:

1. A CREATE procedure creates a transformation definition table. For example,
CREATE_BIN_CAT creates a table to hold categorical binning instructions. The table
has columns for storing the name of the attribute, the value of the attribute, and
the bin assignment for the value.

2. An INSERT procedure computes the bin boundaries for one or more attributes and
populates the definition table. For example, INSERT_BIN_CAT_FREQ performs
frequency-based binning on some or all of the categorical attributes in the data
source and populates a table created by CREATE_BIN_CAT.

3. A STACK procedure creates transformation records from the information in the
definition table and appends the transformation records to a transformation list.
For example, STACK_BIN_CAT creates transformation records for the information
stored in a categorical binning definition table and appends the transformation
records to a transformation list.

4.5.1.3 GET_MODEL_TRANSFORMATIONS and GET_TRANSFORM_LIST
Use the functions to create a new transformation list.

These two functions can be used to create a new transformation list from the
transformations embedded in an existing model.

The GET_MODEL_TRANSFORMATIONS function returns a list of embedded transformations.

Chapter 4
Embed Transformations in a Model

4-8

DBMS_DATA_MINING.GET_MODEL_TRANSFORMATIONS (
 model_name IN VARCHAR2)
RETURN DM_TRANSFORMS PIPELINED;

GET_MODEL_TRANSFORMATIONS returns a table of dm_transform objects. Each dm_transform
has these fields

attribute_name VARCHAR2(4000)
attribute_subname VARCHAR2(4000)
expression CLOB
reverse_expression CLOB

The components of a transformation list are transform_rec, not dm_transform. The fields of
a transform_rec are described in Table 4-5. You can call GET_MODEL_TRANSFORMATIONS to
convert a list of dm_transform objects to transform_rec objects and append each
transform_rec to a transformation list.

DBMS_DATA_MINING.GET_TRANSFORM_LIST (
 xform_list OUT NOCOPY TRANSFORM_LIST,
 model_xforms IN DM_TRANSFORMS);

See Also:

"DBMS_DATA_MINING_TRANSFORM Operational Notes", "SET_TRANSFORM
Procedure", "CREATE_MODEL Procedure", and
"GET_MODEL_TRANSFORMATIONS Function" in Oracle Database PL/SQL
Packages and Types Reference

4.5.2 Transformation List and Automatic Data Preparation
You can provide transformation list and Automatic Data Preparation (ADP) to customize the
data transformation.

The transformation list argument to CREATE_MODEL2 and CREATE_MODEL interacts with the
PREP_AUTO setting, which controls ADP:

• When ADP is on and you specify a transformation list, your transformations are applied
with the automatic transformations and embedded in the model. The transformations that
you specify are processed before the automatic transformations.

• When ADP is off and you specify a transformation list, your transformations are applied
and embedded in the model, but no system-generated transformations are performed.

• When ADP is on and you do not specify a transformation list, the system-generated
transformations are applied and embedded in the model.

• When ADP is off and you do not specify a transformation list, no transformations are
embedded in the model; you must separately prepare the data sets you use for building,
testing, and scoring the model.

Related Topics

• Embed Transformations in a Model
You can specify your own transformations and embed them in a model by creating a
transformation list and passing it to DBMS_DATA_MINING.CREATE_MODEL2 or
DBMS_DATA_MINING.CREATE_MODEL.

Chapter 4
Embed Transformations in a Model

4-9

• Oracle Database PL/SQL Packages and Types Reference

4.5.3 Specify Transformation Instructions for an Attribute
You can pass transformation instructions for an attribute by defining a transformation
list.

A transformation list is defined as a table of transformation records. Each record
(transform_rec) specifies the transformation instructions for an attribute.

TYPE transform_rec IS RECORD (
 attribute_name VARCHAR2(30),
 attribute_subname VARCHAR2(4000),
 expression EXPRESSION_REC,
 reverse_expression EXPRESSION_REC,
 attribute_spec VARCHAR2(4000));

The fields in a transformation record are described in this table.

Table 4-5 Fields in a Transformation Record for an Attribute

Field Description

attribute_name and
attribute_subname

These fields identify the attribute, as described in "Scoping of Model
Attribute Name"

expression A SQL expression for transforming the attribute. For example, this
expression transforms the age attribute into two categories: child and
adult:[0,19) for 'child' and [19,) for adult

CASE WHEN age < 19 THEN 'child' ELSE 'adult'

Expression and reverse expressions are stored in expression_rec
objects. See "Expression Records" for details.

reverse_expression A SQL expression for reversing the transformation. For example, this
expression reverses the transformation of the age attribute:

DECODE(age,'child','(-Inf,19)','[19,Inf)')

attribute_spec Specifies special treatment for the attribute. The attribute_spec
field can be null or it can have one or more of these values:

• FORCE_IN — For GLM, forces the inclusion of the attribute in the
model build when the ftr_selection_enable setting is
enabled. (ftr_selection_enable is disabled by default.) If the
model is not using GLM, this value has no effect. FORCE_IN
cannot be specified for nested attributes or text.

• NOPREP — When ADP is on, prevents automatic transformation of
the attribute. If ADP is not on, this value has no effect. You can
specify NOPREP for a nested attribute, but not for an individual
subname (row) in the nested attribute.

• TEXT — Indicates that the attribute contains unstructured text.
ADP has no effect on this setting. TEXT may optionally include
subsettings POLICY_NAME, TOKEN_TYPE, and MAX_FEATURES.

See Example 4-1 and Example 4-2.

Chapter 4
Embed Transformations in a Model

4-10

Related Topics

• Scoping of Model Attribute Name
Learn about model attribute name.

• Expression Records
Example of a transformation record.

4.5.3.1 Expression Records
Example of a transformation record.

The transformation expressions in a transformation record are expression_rec objects.

TYPE expression_rec IS RECORD (
 lstmt DBMS_SQL.VARCHAR2A,
 lb BINARY_INTEGER DEFAULT 1,
 ub BINARY_INTEGER DEFAULT 0);

TYPE varchar2a IS TABLE OF VARCHAR2(32767)
INDEX BY BINARY_INTEGER;

The lstmt field stores a VARCHAR2A, which allows transformation expressions to be very long,
as they can be broken up across multiple rows of VARCHAR2. Use the
DBMS_DATA_MINING_TRANSFORM.SET_EXPRESSION procedure to create an expression_rec.

4.5.3.2 Attribute Specifications
Learn how to define the characteristics specific to an attribute through attribute specification.

The attribute specification in a transformation record defines characteristics that are specific
to this attribute. If not null, the attribute specification can include values FORCE_IN, NOPREP, or
TEXT, as described in Table 4-5.

Example 4-1 An Attribute Specification with Multiple Keywords

If more than one attribute specification keyword is applicable, you can provide them in a
comma-delimited list. The following expression is the specification for an attribute in a GLM
model. Assuming that the ftr_selection_enable setting is enabled, this expression forces
the attribute to be included in the model. If ADP is on, automatic transformation of the
attribute is not performed.

"FORCE_IN,NOPREP"

Example 4-2 A Text Attribute Specification

For text attributes, you can optionally specify subsettings POLICY_NAME, TOKEN_TYPE, and
MAX_FEATURES. The subsettings provide configuration information that is specific to text
transformation. In this example, the transformation instructions for the text content are
defined in a text policy named my_policy with token type is THEME. The maximum number of
extracted features is 3000.

"TEXT(POLICY_NAME:my_policy)(TOKEN_TYPE:THEME)(MAX_FEATURES:3000)"

Related Topics

• Configure a Text Attribute
Provide transformation instructions for text attribute or unstructured text by explicitly
identifying the column datatypes.

Chapter 4
Embed Transformations in a Model

4-11

4.5.4 Oracle Machine Learning for SQL Transformation Routines
Learn about transformation routines.

OML4SQL provides routines that implement various transformation techniques in the
DBMS_DATA_MINING_TRANSFORM package.

Related Topics

• Oracle Database SQL Language Reference

4.5.4.1 Binning Routines
Explains binning techniques in OML4SQL.

A number of factors go into deciding a binning strategy. Having fewer values typically
leads to a more compact model and one that builds faster, but it can also lead to some
loss in accuracy.

Model quality can improve significantly with well-chosen bin boundaries. For example,
an appropriate way to bin ages is to separate them into groups of interest, such as
children 0-13, teenagers 13-19, youth 19-24, working adults 24-35, and so on.

The following table lists the binning techniques provided by OML4SQL:

Table 4-6 Binning Methods in DBMS_DATA_MINING_TRANSFORM

Binning Method Description

Top-N Most Frequent Items You can use this technique to bin categorical attributes. You
specify the number of bins. The value that occurs most
frequently is labeled as the first bin, the value that appears with
the next frequency is labeled as the second bin, and so on. All
remaining values are in an additional bin.

Supervised Binning Supervised binning is a form of intelligent binning, where bin
boundaries are derived from important characteristics of the
data. Supervised binning builds a single-predictor decision tree
to find the interesting bin boundaries with respect to a target. It
can be used for numerical or categorical attributes.

Equi-Width Binning You can use equi-width binning for numerical attributes. The
range of values is computed by subtracting the minimum value
from the maximum value, then the range of values is divided into
equal intervals. You can specify the number of bins or it can be
calculated automatically. Equi-width binning must usually be
used with outlier treatment.

Quantile Binning Quantile binning is a numerical binning technique. Quantiles are
computed using the SQL analytic function NTILE. The bin
boundaries are based on the minimum values for each quantile.
Bins with equal left and right boundaries are collapsed, possibly
resulting in fewer bins than requested.

Related Topics

• Routines for Outlier Treatment
Understand the transformations used for outlier treatment.

Chapter 4
Embed Transformations in a Model

4-12

4.5.4.2 Normalization Routines
Learn about normalization routines in Oracle Machine Learning for SQL.

Most normalization methods map the range of a single attribute to another range, typically 0
to 1 or -1 to +1.

Normalization is very sensitive to outliers. Without outlier treatment, most values are mapped
to a tiny range, resulting in a significant loss of information.

Table 4-7 Normalization Methods in DBMS_DATA_MINING_TRANSFORM

Transformation Description

Min-Max Normalization This technique computes the normalization of an attribute using the
minimum and maximum values. The shift is the minimum value, and
the scale is the difference between the maximum and minimum
values.

Scale Normalization This normalization technique also uses the minimum and maximum
values. For scale normalization, shift = 0, and scale = max{abs(max),
abs(min)}.

Z-Score Normalization This technique computes the normalization of an attribute using the
mean and the standard deviation. Shift is the mean, and scale is the
standard deviation.

Related Topics

• Routines for Outlier Treatment
Understand the transformations used for outlier treatment.

4.5.4.3 Outlier Treatment
Understand what you must do to treat outliers.

A value is considered an outlier if it deviates significantly from most other values in the
column. The presence of outliers can have a skewing effect on the data and can interfere with
the effectiveness of transformations such as normalization or binning.

Outlier treatment methods such as trimming or clipping can be implemented to minimize the
effect of outliers.

Outliers represent problematic data, for example, a bad reading due to the abnormal
condition of an instrument. However, in some cases, especially in the business arena, outliers
are perfectly valid. For example, in census data, the earnings for some of the richest
individuals can vary significantly from the general population. Do not treat this information as
an outlier, since it is an important part of the data. You need domain knowledge to determine
outlier handling.

4.5.4.4 Routines for Outlier Treatment
Understand the transformations used for outlier treatment.

Outliers are extreme values, typically several standard deviations from the mean. To
minimize the effect of outliers, you can Winsorize or trim the data.

Chapter 4
Embed Transformations in a Model

4-13

Winsorizing involves setting the tail values of an attribute to some specified value. For
example, for a 90% Winsorization, the bottom 5% of values are set equal to the
minimum value in the 5th percentile, while the upper 5% of values are set equal to the
maximum value in the 95th percentile.

Trimming sets the tail values to NULL. The algorithm treats them as missing values.

Outliers affect the different algorithms in different ways. In general, outliers cause
distortion with equi-width binning and min-max normalization.

Table 4-8 Outlier Treatment Methods in DBMS_DATA_MINING_TRANSFORM

Transformation Description

Trimming This technique trims the outliers in numeric columns by sorting
the non-null values, computing the tail values based on some
fraction, and replacing the tail values with nulls.

Windsorizing This technique trims the outliers in numeric columns by sorting
the non-null values, computing the tail values based on some
fraction, and replacing the tail values with some specified value.

4.5.5 Understand Reverse Transformations
Reverse transformations ensure that information returned by the model is expressed in
a format that is similar to or the same as the format of the data that was used to train
the model. Internal transformation are reversed in the model details and in the results
of scoring.

Some of the attributes used by the model correspond to columns in the build data.
However, because of logic specific to the algorithm, nested data, and transformations,
some attributes do not correspond to columns.

For example, a nested column in the training data is not interpreted as an attribute by
the model. During the model build,OML4SQL explodes nested columns, and each row
(an attribute name/value pair) becomes an attribute.

Some algorithms, for example Support Vector Machine (SVM) and Generalized Linear
Model (GLM), only operate on numeric attributes. Any non-numeric column in the build
data is exploded into binary attributes, one for each distinct value in the column (SVM).
GLM does not generate a new attribute for the most frequent value in the original
column. These binary attributes are set to one only if the column value for the case is
equal to the value associated with the binary attribute.

Algorithms that generate coefficients present challenges in interpreting the results.
Examples are SVM and Non-Negative Matrix Factorization (NMF). These algorithms
produce coefficients that are used in combination with the transformed attributes. The
coefficients are relevant to the data on the transformed scale, not the original data
scale.

For all these reasons, the attributes listed in the model details do not resemble the
columns of data used to train the model. However, attributes that undergo embedded
transformations, whether initiated by Automatic Data Preparation (ADP) or by a user-
specified transformation list, appear in the model details in their pre-transformed state,
as close as possible to the original column values. Although the attributes are
transformed when they are used by the model, they are visible in the model details in a
form that can be interpreted by a user.

Chapter 4
Embed Transformations in a Model

4-14

Related Topics

• ALTER_REVERSE_EXPRESSION Procedure

• GET_MODEL_TRANSFORMATIONS Function

• Model Detail Views
To obtain information about the model and various settings in the model, you can query
model detail views. Model detail views are specific to the algorithm. You can obtain more
insights about the model you created by viewing the model detail views. The names of
model detail views begin with DM$.

4.6 The CREATE_MODEL2 Procedure
Shows the settings in the CREATE_MODEL2 procedure.

The CREATE_MODEL2 procedure in the DBMS_DATA_MINING package is a procedure to define
model settings and build a model. In the CREATE_MODEL procedure, the input is a table or a
view and if such an object is not already present, the user must create it. By using the
CREATE_MODEL2 procedure, the user does not need to create such transient database objects.
The model can use configuration settings and user-specified transformations.

DBMS_DATA_MINING.CREATE_MODEL2 (
model_name IN VARCHAR2,
mining_function IN VARCHAR2,
data_query IN CLOB,
set_list IN SETTING_LIST,
case_id_column_name IN VARCHAR2 DEFAULT NULL,
target_column_name IN VARCHAR2 DEFAULT NULL,
xform_list IN TRANSFORM_LIST DEFAULT NULL);

The data_query parameter species a query which provides training data for building the
model. The set_list parameter specifies the SETTING_LIST. SETTING_LIST is a table of CLOB
index by VARCHAR2(30); Where the index is the setting name and the CLOB is the setting
value for that name. The rest of the parameters are covered in the CREATE.MODEL procedure.

The following CREATE_MODEL2 procedure builds a regression model using GLM algorithm.

DECLARE
 v_setlst DBMS_DATA_MINING.SETTING_LIST;
 BEGIN
 v_setlst('PREP_AUTO') := 'ON';
 v_setlst('ALGO_NAME') := 'ALGO_GENERALIZED_LINEAR_MODEL';
 v_setlst('GLMS_DIAGNOSTICS_TABLE_NAME') := 'GLMR_DIAG';
 v_setlst('GLMS_FTR_SELECTION') := 'GLMS_FTR_SELECTION_ENABLE';
 v_setlst('GLMS_FTR_GENERATION') := 'GLMS_FTR_GENERATION_ENABLE';

 DBMS_DATA_MINING.CREATE_MODEL2(
 MODEL_NAME =>'GLMR_REGR',
 MINING_FUNCTION =>'REGRESSION',
 DATA_QUERY =>'SELECT * FROM TRAINING_DATA',
 SET_LIST =>v_setlst,
 CASE_ID_COLUMN_NAME =>'HID',
 TARGET_COLUMN_NAME =>'MEDV');
END;

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 4
The CREATE_MODEL2 Procedure

4-15

4.7 The CREATE_MODEL Procedure
Shows the settings in the CREATE_MODEL procedure.

The CREATE_MODEL procedure in the DBMS_DATA_MINING package uses the specified
data to create a machine learning model with the specified name and machine
learning function. The model can be created with configuration settings and user-
specified transformations.

PROCEDURE CREATE_MODEL(
 model_name IN VARCHAR2,
 mining_function IN VARCHAR2,
 data_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2 DEFAULT NULL,
 settings_table_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 settings_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_list IN TRANSFORM_LIST DEFAULT NULL);

The following example builds a classification model using the Support Vector Machine
algorithm.

 Create the settings table
CREATE TABLE svm_model_settings (
 setting_name VARCHAR2(30),
 setting_value VARCHAR2(30));

-- Populate the settings table
-- Specify SVM. By default, Naive Bayes is used for classification.
-- Specify ADP. By default, ADP is not used.
BEGIN
 INSERT INTO svm_model_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.algo_name, dbms_data_mining.algo_support_vector_machines);
 INSERT INTO svm_model_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.prep_auto,dbms_data_mining.prep_auto_on);
 COMMIT;
END;
/
-- Create the model using the specified settings
BEGIN
 DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'svm_model',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data_build_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 settings_table_name => 'svm_model_settings');
END;
/

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 4
The CREATE_MODEL Procedure

4-16

4.8 Specify Model Settings
Understand how to configure machine learning models at build time.

Numerous configuration settings are available for configuring machine learning models at
build time. To specify settings, create a settings table with the columns shown in the following
table and pass the table to CREATE_MODEL.

You can use CREATE_MODEL2 procedure where you can directly pass the model settings to a
variable that can be used in the procedure. The variable can be declared with
DBMS_DATA_MINING.SETTING_LIST procedure.

Table 4-9 Settings Table Required Columns

Column Name Data Type

setting_name VARCHAR2(30)
setting_value VARCHAR2(4000)

Example 4-3 creates a settings table for a Support Vector Machine (SVM) classification
model. Since SVM is not the default classifier, the ALGO_NAME setting is used to specify the
algorithm. Setting the SVMS_KERNEL_FUNCTION to SVMS_LINEAR causes the model to be built
with a linear kernel. If you do not specify the kernel function, the algorithm chooses the kernel
based on the number of attributes in the data.

Example 4-4 creates a model with the model settings that are stored in a variable from
SETTING_LIST.

Some settings apply generally to the model, others are specific to an algorithm. Model
settings are referenced in Table 4-10 and Table 4-11.

Table 4-10 General Model Settings

Settings Description

Machine learning function
settings

Machine Learning Function Settings

Algorithm names Algorithm Names

Global model characteristics Global Settings

Automatic Data Preparation Automatic Data Preparation

Table 4-11 Algorithm-Specific Model Settings

Algorithm Description

CUR Matrix Decomposition DBMS_DATA_MINING —Algorithm Settings: CUR Matrix Decomposition

Decision Tree DBMS_DATA_MINING —Algorithm Settings: Decision Tree

Expectation Maximization DBMS_DATA_MINING —Algorithm Settings: Expectation Maximization

Explicit Semantic Analysis DBMS_DATA_MINING —Algorithm Settings: Explicit Semantic Analysis

Exponential Smoothing DBMS_DATA_MINING —Algorithm Settings: Exponential Smoothing Models

Generalized Linear Model DBMS_DATA_MINING —Algorithm Settings: Generalized Linear Models

Chapter 4
Specify Model Settings

4-17

Table 4-11 (Cont.) Algorithm-Specific Model Settings

Algorithm Description

k-Means DBMS_DATA_MINING —Algorithm Settings: k-Means

Multivariate State Estimation
Technique - Sequential
Probability Ratio Test

DBMS_DATA_MINING - Algorithm Settings: Multivariate State Estimation
Technique - Sequential Probability Ratio Test

Naive Bayes Algorithm Settings: Naive Bayes

Neural Network DBMS_DATA_MINING —Algorithm Settings: Neural Network

Non-Negative Matrix
Factorization

DBMS_DATA_MINING —Algorithm Settings: Non-Negative Matrix Factorization

O-Cluster Algorithm Settings: O-Cluster

Random Forest DBMS_DATA_MINING — Algorithm Settings: Random Forest

Singular Value Decomposition DBMS_DATA_MINING —Algorithm Settings: Singular Value Decomposition

Support Vector Machine DBMS_DATA_MINING —Algorithm Settings: Support Vector Machine

XGBoost DBMS_DATA_MINING — Algorithm Settings: XGBoost

Note:

Some XGBoost objectives apply only to classification function models and
other objectives apply only to regression function models. If you specify an
incompatible objective value, an error is raised. In the
DBMS_DATA_MINING.CREATE_MODEL procedure, if you specify
DBMS_DATA_MINING.CLASSIFICATION as the function, then the only objective
values that you can use are the binary and multi values. The one exception
is binary: logitraw, which produces a continuous value and applies only to
a regression model. If you specify DBMS_DATA_MINING.REGRESSION as the
function, then you can specify binary: logitraw or any of the count, rank,
reg, and survival values as the objective.

The values for the XGBoost objective setting are listed in the Settings for
Learning Tasks table in DBMS_DATA_MINING — Algorithm Settings:
XGBoost.

Example 4-3 Creating a Settings Table and Creating an SVM Classification
Model Using CREATE.MODEL procedure

CREATE TABLE svmc_sh_sample_settings (
 setting_name VARCHAR2(30),
 setting_value VARCHAR2(4000));

BEGIN
 INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.algo_name, dbms_data_mining.algo_support_vector_machines);
 INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.svms_kernel_function, dbms_data_mining.svms_linear);
 COMMIT;
END;
/

Chapter 4
Specify Model Settings

4-18

-- Create the model using the specified settings
BEGIN
 DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'svm_model',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data_build_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 settings_table_name => 'svmc_sh_sample_settings');
END;

Example 4-4 Specify Model Settings for a GLM Regression Model Using
CREATE_MODEL2 procedure

DECLARE
 v_setlist DBMS_DATA_MINING.SETTING_LIST;
BEGIN
 v_setlist('PREP_AUTO') := 'ON';
 v_setlist('ALGO_NAME') := 'ALGO_GENERALIZED_LINEAR_MODEL';
 v_setlist('GLMS_DIAGNOSTICS_TABLE_NAME') := 'GLMR_DIAG';
 v_setlist('GLMS_FTR_SELECTION') := 'GLMS_FTR_SELECTION_ENABLE';
 v_setlist('GLMS_FTR_GENERATION') := 'GLMS_FTR_GENERATION_ENABLE';

 DBMS_DATA_MINING.CREATE_MODEL2(
 MODEL_NAME => 'GLM_REGR',
 MINING_FUNCTION => 'REGRESSION',
 DATA_QUERY => 'select * from TRAINING_DATA',
 SET_LIST => v_setlist,
 CASE_ID_COLUMN_NAME => 'HID',
 TARGET_COLUMN_NAME => 'MEDV');
END;

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

4.8.1 Specify Costs
Specify a cost matrix table to build a Decision Tree model.

The CLAS_COST_TABLE_NAME setting specifies the name of a cost matrix table to be used in
building a Decision Tree model. A cost matrix biases a classification model to minimize costly
misclassifications. The cost matrix table must have the columns shown in the following table:

Table 4-12 Cost Matrix Table Required Columns

Column Name Data Type

actual_target_value valid target data type

predicted_target_value valid target data type

cost NUMBER

Decision Tree is the only algorithm that supports a cost matrix at build time. However, you
can create a cost matrix and associate it with any classification model for scoring.

If you want to use costs for scoring, create a table with the columns shown in Table 4-12, and
use the DBMS_DATA_MINING.ADD_COST_MATRIX procedure to add the cost matrix table to the

Chapter 4
Specify Model Settings

4-19

model. You can also specify a cost matrix inline when invoking a PREDICTION function.
Table 3-1 has details for valid target data types.

Related Topics

• Oracle Machine Learning for SQL Concepts

4.8.2 Specify Prior Probabilities
Prior probabilities can be used to offset differences in distribution between the build
data and the actual population.

The CLAS_PRIORS_TABLE_NAME setting specifies the name of a table of prior
probabilities to be used in building a Naive Bayes model. The priors table must have
the columns shown in the following table.

Table 4-13 Priors Table Required Columns

Column Name Data Type

target_value valid target data type

prior_probability NUMBER

Related Topics

• Target Attribute
Understand what a target means in machine learning and understand the different
target data types.

• Oracle Machine Learning for SQL Concepts

4.8.3 Specify Class Weights
Specify class weights table settings in logistic regression or Support Vector Machine
(SVM) classification to favor higher weighted classes.

The CLAS_WEIGHTS_TABLE_NAME setting specifies the name of a table of class weights
to be used to bias a logistic regression (Generalized Linear Model classification) or
SVM classification model to favor higher weighted classes. The weights table must
have the columns shown in the following table.

Table 4-14 Class Weights Table Required Columns

Column Name Data Type

target_value Valid target data type

class_weight NUMBER

Related Topics

• Target Attribute
Understand what a target means in machine learning and understand the different
target data types.

• Oracle Machine Learning for SQL Concepts

Chapter 4
Specify Model Settings

4-20

4.8.5 Specify Oracle Machine Learning Model Settings for an R Model

 This topic applies only to Oracle on-premises.

The machine learning model settings for an R language model determine the characteristics
of the model and are specified in the model settings table.

You can build a machine learning model in the R language by specifying R as the value of the
ALGO_EXTENSIBLE_LANG setting in the model settings table. You can create a model by
combining in the settings table generic settings that do not require an algorithm, such as
ODMS_PARTITION_COLUMNS and ODMS_SAMPLING. You can also specify the following settings,
which are exclusive to an R machine learning model.

• ALGO_EXTENSIBLE_LANG

• RALG_BUILD_FUNCTION

• RALG_BUILD_PARAMETER

• RALG_DETAILS_FORMAT

• RALG_DETAILS_FUNCTION

• RALG_SCORE_FUNCTION

• RALG_WEIGHT_FUNCTION

Related Topics

• Registered R Scripts
The RALG_*_FUNCTION settings must specify R scripts that exist in the Oracle Machine
Learning for R script repository.

4.8.5.1 ALGO_EXTENSIBLE_LANG
Use the ALGO_EXTENSIBLE_LANG setting to specify the language for the Oracle Machine
Learning for SQL extensible algorithm framework.

Currently, R is the only valid value for the ALGO_EXTENSIBLE_LANG setting. When you set the
value for ALGO_EXTENSIBLE_LANG to R, the machine learning models are built using the R
language. You can use the following settings in the settings table to specify the
characteristics of the R model.

• RALG_BUILD_FUNCTION

• RALG_BUILD_PARAMETER

• RALG_DETAILS_FUNCTION

• RALG_DETAILS_FORMAT

• RALG_SCORE_FUNCTION

• RALG_WEIGHT_FUNCTION

Related Topics

• Registered R Scripts
The RALG_*_FUNCTION settings must specify R scripts that exist in the Oracle Machine
Learning for R script repository.

Chapter 4
Specify Model Settings

4-21

4.8.5.2 RALG_BUILD_FUNCTION
Use the RALG_BUILD_FUNCTION setting to specify the name of an existing registered R
script for building an Oracle Machine Learning for SQL model using the R language.

You must specify both the RALG_BUILD_FUNCTION and ALGO_EXTENSIBLE_LANG settings
in the model settings table. The R script defines an R function that has as the first
input argument an R data.frame object for training data. The function returns an
Oracle Machine Learning model object. The first data argument is mandatory. The
RALG_BUILD_FUNCTION can accept additional model build parameters.

Note:

The valid inputs for input parameters are numeric and string scalar data
types.

Example 4-5 Example of RALG_BUILD_FUNCTION

This example shows how to specify the name of the R script MY_LM_BUILD_SCRIPT that
is used to build the model.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_build_function,'MY_LM_BUILD_SCRIPT');
End;
/

The R script MY_LM_BUILD_SCRIPT defines an R function that builds the LM model. You
must register the script MY_LM_BUILD_SCRIPT in the Oracle Machine Learning for R
script repository which uses the existing OML4R security restrictions. You can use the
OML4R sys.rqScriptCreate procedure to register the script. OML4R requires the
RQADMIN role to register R scripts.

For example:

Begin
sys.rqScriptCreate('MY_LM_BUILD_SCRIPT', 'function(data, formula,
model.frame) {lm(formula = formula, data=data, model =
as.logical(model.frame)}');
End;
/

For Clustering and Feature Extraction machine learning function model builds, the R
attributes dm$nclus and dm$nfeat must be set on the return R model to indicate the
number of clusters and features respectively.

Chapter 4
Specify Model Settings

4-22

The R script MY_KM_BUILD_SCRIPT defines an R function that builds the k-Means model for
clustering. The R attribute dm$nclus is set with the number of clusters for the returned
clustering model.

'function(dat) {dat.scaled <- scale(dat)
 set.seed(6543); mod <- list()
 fit <- kmeans(dat.scaled, centers = 3L)
 mod[[1L]] <- fit
 mod[[2L]] <- attr(dat.scaled, "scaled:center")
 mod[[3L]] <- attr(dat.scaled, "scaled:scale")
 attr(mod, "dm$nclus") <- nrow(fit$centers)
 mod}'

The R script MY_PCA_BUILD_SCRIPT defines an R function that builds the PCA model. The R
attribute dm$nfeat is set with the number of features for the returned feature extraction
model.

'function(dat) {
 mod <- prcomp(dat, retx = FALSE)
 attr(mod, "dm$nfeat") <- ncol(mod$rotation)
 mod}'

Related Topics

• RALG_BUILD_PARAMETER
The RALG_BUILD_FUNCTION input parameter specifies a list of numeric and string scalar
values in SQL SELECT query statement format.

• Registered R Scripts
The RALG_*_FUNCTION settings must specify R scripts that exist in the Oracle Machine
Learning for R script repository.

4.8.5.2.1 RALG_BUILD_PARAMETER
The RALG_BUILD_FUNCTION input parameter specifies a list of numeric and string scalar values
in SQL SELECT query statement format.

Example 4-6 Example of RALG_BUILD_PARAMETER

The RALG_BUILD_FUNCTION input parameters must be a list of numeric and string scalar
values. The input parameters are optional.

The syntax of the parameter is:

'SELECT value parameter name ...FROM dual'

This example shows how to specify a formula for the input argument 'formula' and a
numeric value of zero for input argument 'model.frame' using the RALG_BUILD_PARAMETER.
These input arguments must match with the function signature of the R script used in the
RALG_BUILD_FUNCTION parameter.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_build_parameter, 'select ''AGE ~ .'' as "formula", 0

Chapter 4
Specify Model Settings

4-23

as "model.frame" from dual');
End;
/

Related Topics

• RALG_BUILD_FUNCTION
Use the RALG_BUILD_FUNCTION setting to specify the name of an existing registered
R script for building an Oracle Machine Learning for SQL model using the R
language.

4.8.5.3 RALG_DETAILS_FUNCTION
The RALG_DETAILS_FUNCTION specifies the R model metadata that is returned in the R
data.frame.

Use the RALG_DETAILS_FUNCTION to specify an existing registered R script that
generates model information. The script defines an R function that contains the first
input argument for the R model object. The output of the R function must be a
data.frame. The columns of the data.frame are defined by the RALG_DETAILS_FORMAT
setting, and may contain only numeric or string scalar types.

Example 4-7 Example of RALG_DETAILS_FUNCTION

This example shows how to specify the name of the R script MY_LM_DETAILS_SCRIPT in
the model settings table. This script defines the R function that is used to provide the
model information.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_details_function, 'MY_LM_DETAILS_SCRIPT');
End;
/

In the Oracle Machine Learning for R script repository, the script
MY_LM_DETAILS_SCRIPT is registered as:

 'function(mod) data.frame(name=names(mod$coefficients),
 coef=mod$coefficients)'

Related Topics

• Registered R Scripts
The RALG_*_FUNCTION settings must specify R scripts that exist in the Oracle
Machine Learning for R script repository.

• RALG_DETAILS_FORMAT
Use the RALG_DETAILS_FORMAT setting to specify the names and column types in
the model view.

Chapter 4
Specify Model Settings

4-24

4.8.5.4 RALG_DETAILS_FORMAT
Use the RALG_DETAILS_FORMAT setting to specify the names and column types in the model
view.

The value of the setting is a string that contains a SELECT statement to specify a list of
numeric and string scalar data types for the name and type of the model view columns.

When the RALG_DETAILS_FORMAT and RALG_DETAILS_FUNCTION settings are both specified, a
model view by the name DM$VD <model_name> is created along with an R model in the current
schema. The first column of the model view is PARTITION_NAME. It has the value NULL for non-
partitioned models. The other columns of the model view are defined by
RALG_DETAILS_FORMAT setting.

Example 4-8 Example of RALG_DETAILS_FORMAT

This example shows how to specify the name and type of the columns for the generated
model view. The model view contains the varchar2 column attr_name and the number
column coef_value after the first column partition_name.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_details_format, 'select cast(''a'' as varchar2(20))
as attr_name, 0 as coef_value from dual');
End;
/

Related Topics

• RALG_DETAILS_FUNCTION
The RALG_DETAILS_FUNCTION specifies the R model metadata that is returned in the R
data.frame.

4.8.5.5 RALG_SCORE_FUNCTION
Use the RALG_SCORE_FUNCTION setting to specify an existing registered R script for R
algorithm machine learning model to use for scoring data.

The specified R script defines an R function. The first input argument defines the model
object. The second input argument defines the R data.frame that is used for scoring data.

Example 4-9 Example of RALG_SCORE_FUNCTION

This example shows how the R function takes the Linear Model model and scores the data in
the data.frame. The function argument object is the LM model. The argument newdata is a
data.frame containing the data to score.

function(object, newdata) {res <- predict.lm(object, newdata = newdata,
se.fit = TRUE); data.frame(fit=res$fit, se=res$se.fit,
df=summary(object)$df[1L])}

The output of the R function must be a data.frame. Each row represents the prediction for
the corresponding scoring data from the input data.frame. The columns of the data.frame
are specific to machine learning functions, such as:

Chapter 4
Specify Model Settings

4-25

Regression: A single numeric column for the predicted target value, with two optional
columns containing the standard error of the model fit, and the degrees of freedom
number. The optional columns are needed for the SQL function PREDICTION_BOUNDS to
work.

Example 4-10 Example of RALG_SCORE_FUNCTION for Regression

This example shows how to specify the name of the R script MY_LM_PREDICT_SCRIPT
that is used to score the model in the model settings table model_setting_table.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_score_function, 'MY_LM_PREDICT_SCRIPT');
End;
/

In the Oracle Machine Learning for R script repository, the script
MY_LM_PREDICT_SCRIPT is registered as:

function(object, newdata) {data.frame(pre = predict(object, newdata =
newdata))}

Classification: Each column represents the predicted probability of one target class.
The column name is the target class name.

Example 4-11 Example of RALG_SCORE_FUNCTION for Classification

This example shows how to specify the name of the R script
MY_LOGITGLM_PREDICT_SCRIPT that is used to score the logit Classification model in the
model settings table model_setting_table.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_score_function, 'MY_LOGITGLM_PREDICT_SCRIPT');
End;
/

In the OML4R script repository, MY_LOGITGLM_PREDICT_SCRIPT is registered as follows.
It is a logit Classification with two target classes, "0" and "1".

'function(object, newdata) {
 pred <- predict(object, newdata = newdata, type="response");
 res <- data.frame(1-pred, pred);
 names(res) <- c("0", "1");
 res}'

Clustering: Each column represents the predicted probability of one cluster. The
columns are arranged in order of cluster ID. Each cluster is assigned a cluster ID, and
they are consecutive values starting from 1. To support CLUSTER_DISTANCE in the R
model, the output of R score function returns an extra column containing the value of
the distance to each cluster in order of cluster ID after the columns for the predicted
probability.

Chapter 4
Specify Model Settings

4-26

Example 4-12 Example of RALG_SCORE_FUNCTION for Clustering

This example shows how to specify the name of the R script MY_CLUSTER_PREDICT_SCRIPT
that is used to score the model in the model settings table model_setting_table.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_score_function, 'MY_CLUSTER_PREDICT_SCRIPT');
End;
/

In the OML4R script repository, the script MY_CLUSTER_PREDICT_SCRIPT is registered as:

'function(object, dat){
 mod <- object[[1L]]; ce <- object[[2L]]; sc <- object[[3L]];
 newdata = scale(dat, center = ce, scale = sc);
 centers <- mod$centers;
 ss <- sapply(as.data.frame(t(centers)),
 function(v) rowSums(scale(newdata, center=v, scale=FALSE)^2));
 if (!is.matrix(ss)) ss <- matrix(ss, ncol=length(ss));
 disp <- -1 / (2* mod$tot.withinss/length(mod$cluster));
 distr <- exp(disp*ss);
 prob <- distr / rowSums(distr);
 as.data.frame(cbind(prob, sqrt(ss)))}'

Feature Extraction: Each column represents the coefficient value of one feature. The
columns are arranged in order of feature ID. Each feature is assigned a feature ID, which are
consecutive values starting from 1.

Example 4-13 Example of RALG_SCORE_FUNCTION for Feature Extraction

This example shows how to specify the name of the R script MY_FEATURE_EXTRACTION_SCRIPT
that is used to score the model in the model settings table model_setting_table.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_score_function, 'MY_FEATURE_EXTRACTION_SCRIPT');
End;
/

In the OML4R script repository, the script MY_FEATURE_EXTRACTION_SCRIPT is registered as:

 'function(object, dat) { as.data.frame(predict(object, dat)) }'

The function fetches the centers of the features from the R model, and computes the feature
coefficient based on the distance of the score data to the corresponding feature center.

Related Topics

• Registered R Scripts
The RALG_*_FUNCTION settings must specify R scripts that exist in the Oracle Machine
Learning for R script repository.

Chapter 4
Specify Model Settings

4-27

4.8.5.6 RALG_WEIGHT_FUNCTION
Use the RALG_WEIGHT_FUNCTION setting to specify the name of an existing registered R
script that computes the weight or contribution for each attribute in scoring. The
specified R script is used in the SQL function PREDICTION_DETAILS to evaluate
attribute contribution.

The specified R script defines an R function containing the first input argument for a
model object, and the second input argument of an R data.frame for scoring data.
When the machine learning function is Classification, Clustering, or Feature Extraction,
the target class name, cluster ID, or feature ID is passed by the third input argument to
compute the weight for that particular class, cluster, or feature. The script returns a
data.frame containing the contributing weight for each attribute in a row. Each row
corresponds to that input scoring data.frame.

Example 4-14 Example of RALG_WEIGHT_FUNCTION

This example specifies the name of the R script MY_PREDICT_WEIGHT_SCRIPT that
computes the weight or contribution of R model attributes in the
model_setting_table.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_weight_function, 'MY_PREDICT_WEIGHT_SCRIPT');
End;
/

In the Oracle Machine Learning for R script repository, the script
MY_PREDICT_WEIGHT_SCRIPT for Regression is registered as:

'function(mod, data) { coef(mod)[-1L]*data }'

In the OML4R script repository, the script MY_PREDICT_WEIGHT_SCRIPT for logit
Classification is registered as:

'function(mod, dat, clas) {
 v <- predict(mod, newdata=dat, type = "response");
 v0 <- data.frame(v, 1-v); names(v0) <- c("0", "1");
 res <- data.frame(lapply(seq_along(dat),
 function(x, dat) {
 if(is.numeric(dat[[x]])) dat[,x] <- as.numeric(0)
 else dat[,x] <- as.factor(NA);
 vv <- predict(mod, newdata = dat, type = "response");
 vv = data.frame(vv, 1-vv); names(vv) <- c("0", "1");
 v0[[clas]] / vv[[clas]]}, dat = dat));
 names(res) <- names(dat);
 res}'

Related Topics

• Registered R Scripts
The RALG_*_FUNCTION settings must specify R scripts that exist in the Oracle
Machine Learning for R script repository.

Chapter 4
Specify Model Settings

4-28

4.8.5.7 Registered R Scripts
The RALG_*_FUNCTION settings must specify R scripts that exist in the Oracle Machine
Learning for R script repository.

You can register the R scripts using the OML4R SQL procedure sys.rqScriptCreate. To
register a scripts, you must have the RQADMIN role.

The RALG_*_FUNCTION settings include the following functions:

• RALG_BUILD_FUNCTION

• RALG_DETAILS_FUNCTION

• RALG_SCORE_FUNCTION

• RALG_WEIGHT_FUNCTION

Note:

The R scripts must exist in the OML4R script repository for an R model to function.

After an R model is built, the name of the specified R script become a model setting. These R
script must exist in the OML4R script repository for an R model to remain functional.

You can manage the R memory that is used to build, score, and view the R models through
OML4R as well.

4.8.5.8 Algorithm Metadata Registration
Algorithm metadata registration allows for a uniform and consistent approach of registering
new algorithm functions and their settings.

User have the ability to add new algorithms through the REGISTER_ALGORITHM procedure
registration process. The new algorithms can appear as available within Oracle Machine
Learning for SQL for their appropriate machine learning functions. Based on the registration
metadata, the settings page is dynamically rendered. Algorithm metadata registration extends
the machine learning model capability of OML4SQL.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

• FETCH_JSON_SCHEMA Procedure

• REGISTER_ALGORITHM Procedure

• JSON Schema for R Extensible Algorithm

4.8.4 About Partitioned Models
Introduces partitioned models to organize and represent multiple models.

When you build a model on your data set and apply it to new data, sometimes the prediction
may be generic that performs badly when run on new and evolving data. To overcome this,
the data set can be divided into different parts based on some characteristics. Oracle
Machine Learning for SQL supports partitioned model. Partitioned models allow users to build

Chapter 4
Specify Model Settings

4-29

a type of ensemble model for each data partition. The top-level model has sub models
that are automatically produced. The sub models are based on the attribute options.
For example, if your data set has an attribute called MARITAL with four values and you
have defined it as the partitioned attribute. Then, four sub models are created for this
attribute. The sub models are automatically managed and used as a single model. The
partitioned model automates a typical machine learning task and can potentially
achieve better accuracy through multiple targeted models.

The partitioned model and its sub models reside as first class, persistent database
objects. Persistent means that the partitioned model has an on-disk representation.

To create a partitioned model, include the ODMS_PARTITION_COLUMNS setting. To define
the number of partitions, include the ODMS_MAX_PARTITIONS setting. When you are
making predictions, you must use the top-level model. The correct sub model is
selected automatically based on the attribute, the attribute options, and the partition
setting. You must include the partition columns as part of the USING clause when
scoring. The GROUPING hint is an optional hint that applies to machine learning scoring
functions when scoring partitioned models.

The partition names, key values, and the structure of the partitioned model are
available in the ALL_MINING_MODEL_PARTITIONS view.

Related Topics

• Oracle Database Reference

See Also:

Oracle Database SQL Language Reference on how to use GROUPING hint.
Oracle Machine Learning for SQL User’s Guide to understand more about
partitioned models.

4.8.4.1 Partitioned Model Build Process
To build a partitioned model, Oracle Machine Learning for SQL requires a partitioning
key specified in a settings table.

The partitioning key is a comma-separated list of one or more columns (up to 16) from
the input data set. The partitioning key horizontally slices the input data based on
discrete values of the partitioning key. That is, partitioning is performed as list values
as opposed to range partitioning against a continuous value. The partitioning key
supports only columns of the data type NUMBER and VARCHAR2.

During the build process the input data set is partitioned based on the distinct values
of the specified key. Each data slice (unique key value) results in its own model
partition. The resultant model partition is not separate and is not visible to you as a
standalone model. The default value of the maximum number of partitions for
partitioned models is 1000 partitions. You can also set a different maximum partitions
value. If the number of partitions in the input data set exceeds the defined maximum,
OML4SQL throws an exception.

The partitioned model organizes features common to all partitions and the partition
specific features. The common features consist of the following metadata:

Chapter 4
Specify Model Settings

4-30

• The model name

• The machine learning function

• The machine learning algorithm

• A super set of all machine learning model attributes referenced by all partitions
(signature)

• A common set of user-defined column transformations

• Any user-specified or default build settings that are interpreted as global; for example, the
Auto Data Preparation (ADP) setting

4.8.4.2 DDL in Partitioned model
Learn about maintenance of partitioned models thorough DDL operations.

Partitioned models are maintained through the following DDL operations:

• Drop model or drop partition

• Add partition

4.8.4.2.1 Drop Model or Drop Partition
Oracle Machine Learning for SQL supports dropping a single model partition for a given
partition name.

If only a single partition remains, you cannot explicitly drop that partition. Instead, you must
either add additional partitions prior to dropping the partition or you may choose to drop the
model itself. When dropping a partitioned model, all partitions are dropped in a single atomic
operation. From a performance perspective, Oracle recommends DROP_PARTITION followed
by an ADD_PARTITION instead of leveraging the REPLACE option due to the efficient behavior of
the DROP_PARTITION option.

4.8.4.2.2 Add Partition
Oracle Machine Learning for SQL supports adding a single partition or multiple partitions to
an existing partitioned model.

The addition occurs based on the input data set and the name of the existing partitioned
model. The operation takes the input data set and the existing partitioned model as
parameters. The partition keys are extracted from the input data set and the model partitions
are built against the input data set. These partitions are added to the partitioned model. In the
case where partition keys for new partitions conflict with the existing partitions in the model,
you can select from the following three approaches to resolve the conflicts:

• ERROR: Terminates the ADD operation without adding any partitions.

• REPLACE: Replaces the existing partition for which the conflicting keys are found.

• IGNORE: Eliminates the rows having the conflicting keys.

If the input data set contains multiple keys, then the operation creates multiple partitions. If
the total number of partitions in the model increases to more than the user-defined maximum
specified when the model was created, then you get an error. The default threshold value for
the number of partitions is 1000.

Chapter 4
Specify Model Settings

4-31

4.8.4.3 Partitioned Model Scoring
The scoring of the partitioned model is the same as that of the non-partitioned model.

The syntax of the machine learning function remains the same but is extended to
provide an optional hint. The optional hint can impact the performance of a query
which involves scoring a partitioned model.

For scoring a partitioned model, the signature columns used during the build for the
partitioning key must be present in the scoring data set. These columns are combined
to form a unique partition key. The unique key is then mapped to a specific underlying
model partition, and the identified model partition is used to score that row.

The partitioned objects that are necessary for scoring are loaded on demand during
the query execution and are aged out depending on the System Global Area (SGA)
memory.

In this example an SVM model is used to predict the number of years a customer
resides at their residence but partitioned on customer gender. The model is then used
to predict the target. This example highlights the model settings that you can define
when you create a partitioned model. The following example is using a view created
from the SH schema tables. The CREATE_MODEL2 procedure is used for creating the
model. The partition attribute is CUST_GENDER. This attribute has two options M and F.

%script
BEGIN DBMS_DATA_MINING.DROP_MODEL('SVM_MOD_PARTITIONED');
EXCEPTION WHEN OTHERS THEN NULL; END;
/
DECLARE
 v_setlst DBMS_DATA_MINING.SETTING_LIST;
BEGIN
 v_setlst('ALGO_NAME'):= 'ALGO_SUPPORT_VECTOR_MACHINES';
 v_setlst('SVMS_KERNEL_FUNCTION') :='SVMS_LINEAR';
 v_setlst('ODMS_PARTITION_COLUMNS'):='CUST_GENDER';

 DBMS_DATA_MINING.CREATE_MODEL2(
 MODEL_NAME => 'SVM_MOD_PARTITIONED',
 MINING_FUNCTION => 'REGRESSION',
 DATA_QUERY => 'SELECT * FROM CUSTOMERS_DEMO',
 SET_LIST => v_setlst,
 CASE_ID_COLUMN_NAME => 'CUST_ID',
 TARGET_COLUMN_NAME => 'YRS_RESIDENCE');
END;

PL/SQL procedure successfully completed.

PL/SQL procedure successfully completed.

Chapter 4
Specify Model Settings

4-32

The following code sample shows the prediction.

%script

SELECT cust_id, YRS_RESIDENCE,
 ROUND(PREDICTION(SVM_MOD_PARTITIONED USING *),2) pred_YRS_RESIDENCE
FROM CUSTOMERS_DEMO;

CUST_ID YRS_RESIDENCE PRED_YRS_RESIDENCE
 100100 4 4.71
 100200 2 1.62
 100300 4 4.66
 100400 6 5.9
 100500 2 2.07
 100600 3 2.74
 100700 6 5.78
 100800 5 7.22
 100900 4 4.88
 101000 7 6.49
 101100 4 3.54
 101200 1 1.46
 101300 4 4.34
 101400 4 4.34 ...

Related Topics

• Oracle Database SQL Language Reference

4.9 Model Settings in the Data Dictionary
Explains about ALL/USER/DBA_MINING_MODEL_SETTINGS in data dictionary view.

Information about Oracle Machine Learning model settings can be obtained from the data
dictionary view ALL/USER/DBA_MINING_MODEL_SETTINGS. When used with the ALL prefix, this
view returns information about the settings for the models accessible to the current user.
When used with the USER prefix, it returns information about the settings for the models in the
user's schema. The DBA prefix is only available for DBAs.

The columns of ALL_MINING_MODEL_SETTINGS are described as follows and explained in the
following table.

SQL> describe all_mining_model_settings
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(30)
 MODEL_NAME NOT NULL VARCHAR2(30)
 SETTING_NAME NOT NULL VARCHAR2(30)
 SETTING_VALUE VARCHAR2(4000)
 SETTING_TYPE VARCHAR2(7)

Table 4-15 ALL_MINING_MODEL_SETTINGS

Column Description

owner Owner of the machine learning model.

model_name Name of the machine learning model.

Chapter 4
Model Settings in the Data Dictionary

4-33

Table 4-15 (Cont.) ALL_MINING_MODEL_SETTINGS

Column Description

setting_name Name of the setting.

setting_value Value of the setting.

setting_type INPUT if the value is specified by a user. DEFAULT if the value is system-
generated.

The following query lists the settings for the Support Vector Machine (SVM)
classification model SVMC_SH_CLAS_SAMPLE. The ALGO_NAME,
CLAS_WEIGHTS_TABLE_NAME, and SVMS_KERNEL_FUNCTION settings are user-specified.
These settings have been specified in a settings table for the model. The
SVMC_SH_CLAS_SAMPLE model is created by the oml4sql-classification-
svm.sql example.

Example 4-15 ALL_MINING_MODEL_SETTINGS

SQL> COLUMN setting_value FORMAT A35
SQL> SELECT setting_name, setting_value, setting_type
 FROM all_mining_model_settings
 WHERE model_name in 'SVMC_SH_CLAS_SAMPLE';

SETTING_NAME SETTING_VALUE SETTING
------------------------------ ----------------------------------- -------
SVMS_ACTIVE_LEARNING SVMS_AL_ENABLE DEFAULT
PREP_AUTO OFF DEFAULT
SVMS_COMPLEXITY_FACTOR 0.244212 DEFAULT
SVMS_KERNEL_FUNCTION SVMS_LINEAR INPUT
CLAS_WEIGHTS_TABLE_NAME svmc_sh_sample_class_wt INPUT
SVMS_CONV_TOLERANCE .001 DEFAULT
ALGO_NAME ALGO_SUPPORT_VECTOR_MACHINES INPUT

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

4.10 Model Detail Views
To obtain information about the model and various settings in the model, you can
query model detail views. Model detail views are specific to the algorithm. You can
obtain more insights about the model you created by viewing the model detail views.
The names of model detail views begin with DM$.

The following are the model views, grouped by model function:

Association:

• Model Detail Views for Association Rules

• Model Detail View for Frequent Itemsets

• Model Detail Views for Transactional Itemsets

• Model Detail View for Transactional Rule

Classification, Regression, and Anomaly Detection:

Chapter 4
Model Detail Views

4-34

• Model Detail Views for Classification Algorithms

• Model Detail Views for CUR Matrix Decomposition

• Model Detail Views for Decision Tree

• Model Detail Views for Generalized Linear Model

• Model Detail View for Multivariate State Estimation Technique - Sequential Probability
Ratio Test

• Model Detail Views for Naive Bayes

• Model Detail Views for Neural Network

• Model Detail Views for Random Forest

• Model Detail View for Support Vector Machine

• Model Detail Views for XGBoost

Clustering:

• Model Detail Views for Clustering Algorithms

• Model Detail Views for Expectation Maximization

• Model Detail Views for k-Means

• Model Detail Views for O-Cluster

Feature Extraction:

• Model Detail Views for Explicit Semantic Analysis

• Model Detail Views for Non-Negative Matrix Factorization

• Model Detail Views for Singular Value Decomposition

Feature Selection:

• Model Detail Views for Minimum Description Length

Data Preparation and Other:

• Model Detail Views for Binning

• Model Detail Views for Global Information

• Model Detail Views for Normalization and Missing Value Handling

Time Series:

Model Detail Views for Exponential Smoothing

4.10.1 Model Detail Views for Association Rules
The model detail view DM$VRmodel_name contains the generated rules for association
models.

Depending on the settings of the model, this rule view has different sets of columns. Settings
ODMS_ITEM_ID_COLUMN_NAME and ODMS_ITEM_VALUE_COLUMN_NAME determine how each item is
defined. If ODMS_ITEM_ID_COLUMN_NAME is set, the input format is called transactional input,
otherwise, the input format is called 2-Dimensional input. With transactional input, if setting
ODMS_ITEM_VALUE_COLUMN_NAME is not set, each item is defined by ITEM_NAME, otherwise,
each item is defined by ITEM_NAME and ITEM_VALUE. With 2-Dimensional input, each item is

Chapter 4
Model Detail Views

4-35

defined by ITEM_NAME, ITEM_SUBNAME and ITEM_VALUE. Setting ASSO_AGGREGATES
specifies the columns to aggregate, which is displayed in the view.

Note:

Setting ASSO_AGGREGATES is not allowed for 2-dimensional input.

The following shows the views with different settings.

Transactional Input Without ASSO_AGGREGATES Setting

When you sett ITEM_NAME (ODMS_ITEM_ID_COLUMN_NAME) and do not set ITEM_VALUE
(ODMS_ITEM_VALUE_COLUMN_NAME), the view contains the following. The consequent
item is defined with only the name field. If you also set ITEM_VALUE, the view has the
additional column CONSEQUENT_VALUE that specifies the value field.

Name Type
 --- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 RULE_ID NUMBER
 RULE_SUPPORT NUMBER
 RULE_CONFIDENCE NUMBER
 RULE_LIFT NUMBER
 RULE_REVCONFIDENCE NUMBER
 ANTECEDENT_SUPPORT NUMBER
 NUMBER_OF_ITEMS NUMBER
 CONSEQUENT_SUPPORT NUMBER
 CONSEQUENT_NAME VARCHAR2(4000)
 ANTECEDENT SYS.XMLTYPE

Table 4-16 Rule View Columns for Transactional Inputs

Column Name Description

PARTITION_NAME A partition in a partitioned model to retrieve details.

RULE_ID The identifier of the rule.

RULE_SUPPORT The number of transactions that satisfy the rule.

RULE_CONFIDENCE The likelihood of a transaction satisfying the rule.

RULE_LIFT The degree of improvement in the prediction over random chance when the
rule is satisfied.

RULE_REVCONFIDENCE The number of transactions in which the rule occurs divided by the number of
transactions in which the consequent occurs.

ANTECEDENT_SUPPORT The ratio of the number of transactions that satisfy the antecedent to the total
number of transactions.

NUMBER_OF_ITEMS The total number of attributes referenced in the antecedent and consequent of
the rule.

CONSEQUENT_SUPPORT The ratio of the number of transactions that satisfy the consequent to the total
number of transactions.

CONSEQUENT_NAME The name of the consequent.

Chapter 4
Model Detail Views

4-36

Table 4-16 (Cont.) Rule View Columns for Transactional Inputs

Column Name Description

CONSEQUENT_VALUE The value of the consequent. This column is present when Item_value
(ODMS_ITEM_VALUE_COLUMN_NAME) is set with TYPE as numerical or
categorical.

ANTECEDENT The antecedent is described as an itemset. At the itemset level, it specifies
the number of aggregates, and if not zero, the names of the columns to be
aggregated (as well as the mapping to ASSO_AGG*). The itemset contains >=
1 items.

• When ODMS_ITEM_VALUE_COLUMN_NAME is not set, each item is defined
by item_name. As an example, if the antecedent contains one item B,
then it is represented as follows:

<itemset NUMAGGR="0"><item><item_name>B</item_name></
item></itemset>

As another example, if the antecedent contains two items, A and C, then
it is represented as follows:

<itemset NUMAGGR="0"><item><item_name>A</item_name></
item><item><item_name>C</item_name></item></itemset>

• When setting ODMS_ITEM_VALUE_COLUMN_NAME is set, each item is
defined by item_name and item_value. As an example, if the
antecedent contains two items, (name A, value 1) and (name C, value 1),
then it is represented as follows:

<itemset NUMAGGR="0"><item><item_name>A</
item_name><item_value>1</item_value></
item><item><item_name>C</item_name><item_value>1</
item_value></item></itemset>

Transactional Input With ASSO_AGGREGATES Setting

Similar to the view without an aggregates setting, there are three cases:

• Rule view when ODMS_ITEM_ID_COLUMN_NAME is set and Item_value
(ODMS_ITEM_VALUE_COLUMN_NAME) is not set.

• Rule view when ODMS_ITEM_ID_COLUMN_NAME is set and Item_value
(ODMS_ITEM_VALUE_COLUMN_NAME) is set with TYPE as numerical, the view has a
CONSEQUENT_VALUE column.

• Rule view when ODMS_ITEM_ID_COLUMN_NAME is set and Item_value
(ODMS_ITEM_VALUE_COLUMN_NAME) is set with TYPE as categorical, the view has a
CONSEQUENT_VALUE column.

For the example that produces the following rules, see “Example: Calculating Aggregates” in
Oracle Machine Learning for SQL Concepts.

The view reports two sets of aggregates results:

Chapter 4
Model Detail Views

4-37

1. ANT_RULE_PROFIT refers to the total profit for the antecedent itemset with respect to
the rule, the profit for each individual item of the antecedent itemset is shown in
the ANTECEDENT(XMLtype) column, CON_RULE_PROFIT refers to the total profit for
the consequent item with respect to the rule.

In the example, for rule (A, B) => C, the rule itemset (A, B, C) occurs in the
transactions of customer 1 and customer 3. The ANT_RULE_PROFIT is $21.20, The
ANTECEDENT is shown as follow, which tells that item A has profit 5.00 + 3.00
= $8.00 and item B has profit 3.20 + 10.00 = $13.20, which sum up to
ANT_RULE_PROFIT.

<itemset NUMAGGR="1" ASSO_AGG0="profit"><item><item_name>A</
item_name><ASSO_AGG0>8.0E+000</ASSO_AGG0></item><item><item_name>B</
item_name><ASSO_AGG0>1.32E+001</ASSO_AGG0></item></itemset>
The CON_RULE_PROFIT is 12.00 + 14.00 = $26.00

2. ANT_PROFIT refers to the total profit for the antecedent itemset, while CON_PROFIT
refers to the total profit for the consequent item. The difference between
CON_PROFIT and CON_RULE_PROFIT (the same applies to ANT_PROFIT and
ANT_RULE_PROFIT) is that CON_PROFIT counts all profit for the consequent item
across all transactions where the consequent occurs, while CON_RULE_PROFIT only
counts across transactions where the rule itemset occurs.

For example, item C occurs in transactions for customer 1, 2 and 3, CON_PROFIT is
12.00 + 4.20 + 14.00 = $30.20, while CON_RULE_PROFIT only counts transactions
for customer 1 and 3 where the rule itemset (A, B, C) occurs.

Similarly, ANT_PROFIT counts all transactions where itemset (A, B) occurs, while
ANT_RULE_PROFIT counts only transactions where the rule itemset (A, B, C) occurs.
In this example, by coincidence, both count transactions for customer 1 and 3, and
have the same value.

Example 4-16 Examples

The following example shows the view when setting ASSO_AGGREGATES specifies
column profit and column sales to be aggregated. In this example, ITEM_VALUE column
is not specified.

Name Type
 --- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 RULE_ID NUMBER
 RULE_SUPPORT NUMBER
 RULE_CONFIDENCE NUMBER
 RULE_LIFT NUMBER
 RULE_REVCONFIDENCE NUMBER
 ANTECEDENT_SUPPORT NUMBER
 NUMBER_OF_ITEMS NUMBER
 CONSEQUENT_SUPPORT NUMBER
 CONSEQUENT_NAME VARCHAR2(4000)
 ANTECEDENT SYS.XMLTYPE
 ANT_RULE_PROFIT BINARY_DOUBLE
 CON_RULE_PROFIT BINARY_DOUBLE
 ANT_PROFIT BINARY_DOUBLE
 CON_PROFIT BINARY_DOUBLE
 ANT_RULE_SALES BINARY_DOUBLE

Chapter 4
Model Detail Views

4-38

 CON_RULE_SALES BINARY_DOUBLE
 ANT_SALES BINARY_DOUBLE
 CON_SALES BINARY_DOUBLE

The rule view has a CONSEQUENT_VALUE column when ODMS_ITEM_ID_COLUMN_NAME is set and
Item_value (ODMS_ITEM_VALUE_COLUMN_NAME) is set with TYPE as numerical or categorical.

2-Dimensional Inputs

In Oracle Machine Learning for SQL, association models can be built using either
transactional or two-dimensional data formats. For two-dimensional input, each item is
defined by three fields: NAME, VALUE and SUBNAME. The NAME field is the name of the column.
The VALUE field is the content of the column. The SUBNAME field is used when the input data
table contains a nested table. In that case, SUBNAME is the name of the nested table's column.
See, Example: Creating a Nested Column for Market Basket Analysis. In this example, there
is a nested column. The CONSEQUENT_SUBNAME is the ATTRIBUTE_NAME part of the nested
column. That is, 'O/S Documentation Set - English' and CONSEQUENT_VALUE is the value
part of the nested column, which is, 1.

The view uses three columns for the consequent. The rule view has the following columns:

Name Type
 ----------------------- ---------------------
 PARTITION_NAME VARCHAR2(128)
 RULE_ID NUMBER
 RULE_SUPPORT NUMBER
 RULE_CONFIDENCE NUMBER
 RULE_LIFT NUMBER
 RULE_REVCONFIDENCE NUMBER
 ANTECEDENT_SUPPORT NUMBER
 NUMBER_OF_ITEMS NUMBER
 CONSEQUENT_SUPPORT NUMBER
 CONSEQUENT_NAME VARCHAR2(4000)
 CONSEQUENT_SUBNAME VARCHAR2(4000)
 CONSEQUENT_VALUE VARCHAR2(4000)
 ANTECEDENT SYS.XMLTYPE

Note:

All of the types for three columns for the consequent are VARCHAR2.
ASSO_AGGREGATES is not applicable for 2-Dimensional input format.

The following table displays rule view columns for 2-Dimensional input with the descriptions
of only the fields that are specific to 2-D inputs.

Table 4-17 Rule View for 2-Dimensional Input

Column Name Description

CONSEQUENT_SUBNAME For two-dimensional inputs, CONSEQUENT_SUBNAME is used for nested
column in the input data table.

Chapter 4
Model Detail Views

4-39

Table 4-17 (Cont.) Rule View for 2-Dimensional Input

Column Name Description

CONSEQUENT_VALUE The value of the consequent when setting Item_value is set with TYPE
as numerical or categorical.

ANTECEDENT The antecedent is described as an itemset. The itemset contains >= 1
items. Each item is defined using ITEM_NAME, ITEM_SUBNAME, and
ITEM_VALUE:

As an example, assuming that this is not a nested table input, and the
antecedent contains one item: (name ADDR, value MA). The antecedent
(XMLtype) is as follows:

<itemset NUMAGGR="0"><item><item_name>ADDR</
item_name><item_subname></item_subna
me><item_value>MA</item_value></item></itemset>

For 2-Dimensional input with nested table, the subname field is filled.

Global Detail for Association Rules

A single global detail is produced by an association model. The following table
describes a global detail returned for association model.

Table 4-18 Global Detail for an Association Model

Name Description

ITEMSET_COUNT The number of itemsets generated.

MAX_SUPPORT The maximum support.

NUM_ROWS The total number of rows used in the build.

RULE_COUNT The number of association rules in the model generated.

TRANSACTION_COUNT The number of the transactions in the input data.

4.10.2 Model Detail View for Frequent Itemsets
The model detail view contains information about frequent itemsets.

The frequent itemsets view DM$VImodel_name has the following columns:

Name Type
------------- ------------------
PARTITION_NAME VARCHAR2 (128)
ITEMSET_ID NUMBER
SUPPORT NUMBER
NUMBER_OF_ITEMS NUMBER
 ITEMSET SYS.XMLTYPE

Chapter 4
Model Detail Views

4-40

Table 4-19 Frequent Itemsets View

Column Name Description

PARTITION_NAME A partition in a partitioned model

ITEMSET_ID Itemset identifier

SUPPORT Support of the itemset

NUMBER_OF_ITEMS Number of items in the itemset

ITEMSET Frequent itemset

The structure of the SYS.XMLTYPE column itemset is the
same as the corresponding Antecedent column of the rule
view.

4.10.3 Model Detail Views for Transactional Itemsets
The model detail view contains information about the transactional itemsets.

For the very common case of transactional data without aggregates, DM$VTmodel_name view
provides the itemsets information in transactional format. This view can help improve
performance for some queries as compared to the view with the XML column. The
transactional itemsets view has the following columns:

Name Type
----------------- -----------------
PARTITION_NAME VARCHAR2(128)
ITEMSET_ID NUMBER
ITEM_ID NUMBER
SUPPORT NUMBER
NUMBER_OF_ITEMS NUMBER
ITEM_NAME VARCHAR2(4000)

Table 4-20 Transactional Itemsets View

Column Name Description

PARTITION_NAME A partition in a partitioned model

ITEMSET_ID Itemset identifier

ITEM_ID Item identifier

SUPPORT Support of the itemset

NUMBER_OF_ITEMS Number of items in the itemset

ITEM_NAME The name of the item

Chapter 4
Model Detail Views

4-41

4.10.4 Model Detail View for Transactional Rule
The model detail view for transactional rules contains information about transactional
rules and transactional itemsets.

Transactional data without aggregates also has a transactional rule view
DM$VAmodel_name. This view can improve performance for some queries as
compared to the view with the XML column. The transactional rule view has the
following columns:

Name Type
--- ----------------------------
PARTITION_NAME VARCHAR2(128)
RULE_ID NUMBER
ANTECEDENT_PREDICATE VARCHAR2(4000)
CONSEQUENT_PREDICATE VARCHAR2(4000)
RULE_SUPPORT NUMBER
RULE_CONFIDENCE NUMBER
RULE_LIFT NUMBER
RULE_REVCONFIDENCE NUMBER
RULE_ITEMSET_ID NUMBER
ANTECEDENT_SUPPORT NUMBER
CONSEQUENT_SUPPORT NUMBER
NUMBER_OF_ITEMS NUMBER

Table 4-21 Transactional Rule View

Column Name Description

PARTITION_NAME A partition in a partitioned model

RULE_ID Rule identifier

ANTECEDENT_PREDICATE Name of the Antecedent item.

CONSEQUENT_PREDICATE Name of the Consequent item

RULE_SUPPORT Support of the rule

RULE_CONFIDENCE The likelihood a transaction satisfies the rule when it
contains the Antecedent.

RULE_LIFT The degree of improvement in the prediction over random
chance when the rule is satisfied

RULE_REVCONFIDENCE The number of transactions in which the rule occurs
divided by the number of transactions in which the
consequent occurs

RULE_ITEMSET_ID Itemset identifier

ANTECEDENT_SUPPORT The ratio of the number of transactions that satisfy the
antecedent to the total number of transactions

CONSEQUENT_SUPPORT The ratio of the number of transactions that satisfy the
consequent to the total number of transactions

NUMBER_OF_ITEMS Number of items in the rule

Chapter 4
Model Detail Views

4-42

4.10.5 Model Detail Views for Classification Algorithms
Model detail views for classification algorithms are the target map view and scoring cost view,
which are applicable to all classification algorithms.

The target map view DM$VTmodel_name describes the target distribution for classification
models. The view has the following columns:

Name Type
--- ----------------------------
PARTITION_NAME VARCHAR2(128)
TARGET_VALUE NUMBER/VARCHAR2
TARGET_COUNT NUMBER
TARGET_WEIGHT NUMBER

Table 4-22 Target Map View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

TARGET_VALUE Target value, numerical or categorical

TARGET_COUNT Number of rows for a given TARGET_VALUE
TARGET_WEIGHT Weight for a given TARGET_VALUE

The scoring cost view DM$VCmodel_name describes the scoring cost matrix for classification
models. The view has the following columns:

Name Type
--- --------------------------------
PARTITION_NAME VARCHAR2(128)
ACTUAL_TARGET_VALUE NUMBER/VARCHAR2
PREDICTED_TARGET_VALUE NUMBER/VARCHAR2
COST NUMBER

Table 4-23 Scoring Cost View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ACTUAL_TARGET_VALUE A valid target value

PREDICTED_TARGET_VALUE Predicted target value

COST Associated cost for the actual and predicted target value pair

4.10.6 Model Detail Views for CUR Matrix Decomposition
Model detail views for CUR Matrix Decomposition contain information about the scores and
ranks of attributes and rows.

CUR Matrix Decomposition models have the following views:

Chapter 4
Model Detail Views

4-43

Attribute importance and rank: DM$VCmodel_name

Row importance and rank: DM$VRmodel_name

Global statistics: DM$VG
The attribute importance and rank view DM$VCmodel_name has the following columns:

Name Type
----------------- -----------------
PARTITION_NAME VARCHAR2(128)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
ATTRIBUTE_IMPORTANCE NUMBER
ATTRIBUTE_RANK NUMBER

Table 4-24 Attribute Importance and Rank View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ATTRIBUTE_NAME Attribute name

ATTRIBUTE_SUBNAME Attribute subname. The value is null for non-nested
columns.

ATTRIBUTE_VALUE Value of the attribute

ATTRIBUTE_IMPORTANCE Attribute leverage score

ATTRIBUTE_RANK Attribute rank based on leverage score

The view DM$VRmodel_name exposes the leverage scores and ranks of all selected
rows through a view. This view is created when users decide to perform row
importance and the CASE_ID column is present. The view has the following columns:

Name Type
--------------------- ------------------------
PARTITION_NAME VARCHAR2(128)
CASE_ID Original cid data types,
 including NUMBER, VARCHAR2,
 DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE
ROW_IMPORTANCE NUMBER
ROW_RANK NUMBER

Table 4-25 Row Importance and Rank View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CASE_ID Case ID. The supported case ID types are the same as
that supported for GLM, SVD, and ESA algorithms.

Chapter 4
Model Detail Views

4-44

Table 4-25 (Cont.) Row Importance and Rank View

Column Name Description

ROW_IMPORTANCE Row leverage score

ROW_RANK Row rank based on leverage score

The following table describes global statistics for CUR Matrix Decomposition.

Table 4-26 CUR Matrix Decomposition Statistics Information In Model Global View.

Name Description

NUM_COMPONENTS Number of SVD components (SVD rank)

NUM_ROWS Number of rows used in the model build

4.10.7 Model Detail Views for Decision Tree
The model detail views for Decision Tree are the split information view, node statistics view,
node description view, and the cost matrix view.

The split information view DM$VPmodel_name describes the decision tree hierarchy and the
split information for each level in the decision tree. The view has the following columns:

Name Type
---------------------------------- ---------------------------
PARTITION_NAME VARCHAR2(128)
PARENT NUMBER
SPLIT_TYPE VARCHAR2
NODE NUMBER
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
OPERATOR VARCHAR2
VALUE SYS.XMLTYPE

Table 4-27 Split Information View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

PARENT Node ID of the parent

SPLIT_TYPE The main or surrogate split

NODE The node ID

ATTRIBUTE_NAME The attribute used as the splitting criterion at the parent node
to produce this node.

ATTRIBUTE_SUBNAME Split attribute subname. The value is null for non-nested
columns.

OPERATOR Split operator

Chapter 4
Model Detail Views

4-45

Table 4-27 (Cont.) Split Information View

Column Name Description

VALUE Value used as the splitting criterion. This is an XML element
described using the <Element> tag.

For example, <Element>Windy</
Element><Element>Hot</Element>.

The node statistics view DM$VImodel_name describes the statistics associated with
individual tree nodes. The statistics include a target histogram for the data in the node.
The view has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
NODE NUMBER
NODE_SUPPORT NUMBER
PREDICTED_TARGET_VALUE NUMBER/VARCHAR2
TARGET_VALUE NUMBER/VARCHAR2
TARGET_SUPPORT NUMBER

Table 4-28 Node Statistics View

Parameter Description

PARTITION_NAME Partition name in a partitioned model

NODE The node ID

NODE_SUPPORT Number of records in the training set that belong to the
node

PREDICTED_TARGET_VALUE Predicted Target value

TARGET_VALUE A target value seen in the training data

TARGET_SUPPORT The number of records that belong to the node and have
the value specified in the TARGET_VALUE column

Higher level node descriptions are in the DM$VOmodel_name view. The
DM$VOmodel_name has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
NODE NUMBER
NODE_SUPPORT NUMBER
PREDICTED_TARGET_VALUE NUMBER/VARCHAR2
PARENT NUMBER
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
OPERATOR VARCHAR2
VALUE SYS.XMLTYPE

Chapter 4
Model Detail Views

4-46

Table 4-29 Node Description View

Parameter Description

PARTITION_NAME Partition name in a partitioned model

NODE The node ID

NODE_SUPPORT Number of records in the training set that belong to the node

PREDICTED_TARGET_VALUE Predicted Target value

PARENT The ID of the parent

ATTRIBUTE_NAME Specifies the attribute name

ATTRIBUTE_SUBNAME Specifies the attribute subname

OPERATOR Attribute predicate operator - a conditional operator taking the
following values:

IN, = , <>, < , >, <=, and >=

VALUE Value used as the description criterion. This is an XML
element described using the <Element> tag.

For example, <Element>Windy</
Element><Element>Hot</Element>.

The DM$VMmodel_name view describes the cost matrix used by the Decision Tree build. The
DM$VMmodel_name view has the following columns:

Name Type
--- --------------------------------
PARTITION_NAME VARCHAR2(128)
ACTUAL_TARGET_VALUE NUMBER/VARCHAR2
PREDICTED_TARGET_VALUE NUMBER/VARCHAR2
COST NUMBER

Table 4-30 Cost Matrix View

Parameter Description

PARTITION_NAME Partition name in a partitioned model

ACTUAL_TARGET_VALUE Valid target value

PREDICTED_TARGET_VALUE Predicted Target value

COST Associated cost for the actual and predicted target value pair

The following table describes the global view for a Decision Tree model.

Table 4-31 Decision Tree Statistics Information In Model Global View

Name Description

NUM_ROWS The total number of rows used in the build

Chapter 4
Model Detail Views

4-47

4.10.8 Model Detail Views for Generalized Linear Model
Model detail views for Generalized Linear Model (GLM) contain details and row
diagnostics for linear and logistic regression models.

The model details view DM$VDmodel_name describes the final model information for
both linear regression models and logistic regression models.

For linear regression, the view DM$VDmodel_name has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
FEATURE_EXPRESSION VARCHAR2(4000)
COEFFICIENT BINARY_DOUBLE
STD_ERROR BINARY_DOUBLE
TEST_STATISTIC BINARY_DOUBLE
P_VALUE BINARY_DOUBLE
VIF BINARY_DOUBLE
STD_COEFFICIENT BINARY_DOUBLE
LOWER_COEFF_LIMIT BINARY_DOUBLE
UPPER_COEFF_LIMIT BINARY_DOUBLE

For logistic regression, the view DM$VDmodel_name has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
TARGET_VALUE NUMBER/VARCHAR2
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
FEATURE_EXPRESSION VARCHAR2(4000)
COEFFICIENT BINARY_DOUBLE
STD_ERROR BINARY_DOUBLE
TEST_STATISTIC BINARY_DOUBLE
P_VALUE BINARY_DOUBLE
STD_COEFFICIENT BINARY_DOUBLE
LOWER_COEFF_LIMIT BINARY_DOUBLE
UPPER_COEFF_LIMIT BINARY_DOUBLE
EXP_COEFFICIENT BINARY_DOUBLE
EXP_LOWER_COEFF_LIMIT BINARY_DOUBLE
EXP_UPPER_COEFF_LIMIT BINARY_DOUBLE

Table 4-32 Model View for Linear and Logistic Regression Models

Column Name Description

PARTITION_NAME The name of a feature in the model

Chapter 4
Model Detail Views

4-48

Table 4-32 (Cont.) Model View for Linear and Logistic Regression Models

Column Name Description

TARGET_VALUE Valid target value

ATTRIBUTE_NAME The attribute name when there is no subname, or first part of the
attribute name when there is a subname. ATTRIBUTE_NAME is the
name of a column in the source table or view. If the column is a non-
nested, numeric column, then ATTRIBUTE_NAME is the name of the
machine learning attribute. For the intercept, ATTRIBUTE_NAME is
null. Intercepts are equivalent to the bias term in SVM models.

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-nested columns.

When the nested column is numeric, the machine learning attribute is
identified by the combination ATTRIBUTE_NAME -
ATTRIBUTE_SUBNAME. If the column is not nested,
ATTRIBUTE_SUBNAME is null. If the attribute is an intercept, both the
ATTRIBUTE_NAME and the ATTRIBUTE_SUBNAME are null.

ATTRIBUTE_VALUE A unique value that can be assumed by a categorical column or
nested categorical column. For categorical columns, a machine
learning attribute is identified by a unique
ATTRIBUTE_NAME.ATTRIBUTE_VALUE pair. For nested categorical
columns, a machine learning attribute is identified by the
combination:
ATTRIBUTE_NAME.ATTRIBUTE_SUBNAME.ATTRIBUTE_VALUE. For
numerical attributes, ATTRIBUTE_VALUE is null.

FEATURE_EXPRESSION The feature name constructed by the algorithm when feature
selection is enabled. If feature selection is not enabled, the feature
name is the fully-qualified attribute name
(attribute_name.attribute_subname if the attribute is in a nested
column). For categorical attributes, the algorithm constructs a feature
name that has the following form:

fully-qualified_attribute_name.attribute_value

When feature generation is enabled, a term in the model can be a
single machine learning attribute or the product of up to 3 machine
learning attributes. Component machine learning attributes can be
repeated within a single term. If feature generation is not enabled or,
if feature generation is enabled, but no multiple component terms are
discovered by the CREATE model process, then
FEATURE_EXPRESSION is null.

Note:

In 12c Release 2, the algorithm does
not subtract the mean from numerical
components.

COEFFICIENT The estimated coefficient.

STD_ERROR Standard error of the coefficient estimate.

TEST_STATISTIC For linear regression, the t-value of the coefficient estimate.

For logistic regression, the Wald chi-square value of the coefficient
estimate.

Chapter 4
Model Detail Views

4-49

Table 4-32 (Cont.) Model View for Linear and Logistic Regression Models

Column Name Description

P_VALUE Probability of the TEST_STATISTIC under the (NULL) hypothesis
that the term in the model is not statistically significant. A low
probability indicates that the term is significant, while a high
probability indicates that the term can be better discarded. Used to
analyze the significance of specific attributes in the model.

VIF Variance Inflation Factor. The value is zero for the intercept. For
logistic regression, VIF is null.

STD_COEFFICIENT Standardized estimate of the coefficient.

LOWER_COEFF_LIMIT Lower confidence bound of the coefficient.

UPPER_COEFF_LIMIT Upper confidence bound of the coefficient.

EXP_COEFFICIENT Exponentiated coefficient for logistic regression. For linear
regression, EXP_COEFFICIENT is null.

EXP_LOWER_COEFF_LIMIT Exponentiated coefficient for lower confidence bound of the
coefficient for logistic regression. For linear regression,
EXP_LOWER_COEFF_LIMIT is null.

EXP_UPPER_COEFF_LIMIT Exponentiated coefficient for upper confidence bound of the
coefficient for logistic regression. For linear regression,
EXP_UPPER_COEFF_LIMIT is null.

The row diagnostic view DM$VAmodel_name describes row level information for both
linear regression models and logistic regression models. For linear regression, the
view DM$VAmodel_name has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
CASE_ID NUMBER/VARHCAR2, DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE
TARGET_VALUE BINARY_DOUBLE
PREDICTED_TARGET_VALUE BINARY_DOUBLE
Hat BINARY_DOUBLE
RESIDUAL BINARY_DOUBLE
STD_ERR_RESIDUAL BINARY_DOUBLE
STUDENTIZED_RESIDUAL BINARY_DOUBLE
PRED_RES BINARY_DOUBLE
COOKS_D BINARY_DOUBLE

Table 4-33 Row Diagnostic View for Linear Regression

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CASE_ID Name of the case identifier

TARGET_VALUE The actual target value as taken from the input row

PREDICTED_TARGET_VALUE The model predicted target value for the row

Chapter 4
Model Detail Views

4-50

Table 4-33 (Cont.) Row Diagnostic View for Linear Regression

Column Name Description

HAT The diagonal element of the n*n (n=number of rows) that the Hat
matrix identifies with a specific input row. The model predictions for
the input data are the product of the Hat matrix and vector of input
target values. The diagonal elements (Hat values) represent the
influence of the ith row on the ith fitted value. Large Hat values are
indicators that the ith row is a point of high leverage, a potential
outlier.

RESIDUAL The difference between the predicted and actual target value for a
specific input row.

STD_ERR_RESIDUAL The standard error residual, sometimes called the Studentized
residual, re-scales the residual to have constant variance across all
input rows in an effort to make the input row residuals comparable.
The process multiplies the residual by square root of the row weight
divided by the product of the model mean square error and 1 minus
the Hat value.

STUDENTIZED_RESIDUAL Studentized deletion residual adjusts the standard error residual for
the influence of the current row.

PRED_RES The predictive residual is the weighted square of the deletion
residuals, computed as the row weight multiplied by the square of the
residual divided by 1 minus the Hat value.

COOKS_D Cook's distance is a measure of the combined impact of the ith case
on all of the estimated regression coefficients.

For logistic regression, the view DM$VAmodel_name has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
CASE_ID NUMBER/VARHCAR2, DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE
TARGET_VALUE NUMBER/VARCHAR2
TARGET_VALUE_PROB BINARY_DOUBLE
Hat BINARY_DOUBLE
WORKING_RESIDUAL BINARY_DOUBLE
PEARSON_RESIDUAL BINARY_DOUBLE
DEVIANCE_RESIDUAL BINARY_DOUBLE
C BINARY_DOUBLE
CBAR BINARY_DOUBLE
DIFDEV BINARY_DOUBLE
DIFCHISQ BINARY_DOUBLE

Table 4-34 Row Diagnostic View for Logistic Regression

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CASE_ID Name of the case identifier

Chapter 4
Model Detail Views

4-51

Table 4-34 (Cont.) Row Diagnostic View for Logistic Regression

Column Name Description

TARGET_VALUE The actual target value as taken from the input row

TARGET_VALUE_PROB Model estimate of the probability of the predicted target value.

Hat The Hat value concept from linear regression is extended to logistic
regression by multiplying the linear regression Hat value by the
variance function for logistic regression, the predicted probability
multiplied by 1 minus the predicted probability.

WORKING_RESIDUAL The working residual is the residual of the working response. The
working response is the response on the linearized scale. For logistic
regression it has the form: the ith row residual divided by the variance
of the ith row prediction. The variance of the prediction is the
predicted probability multiplied by 1 minus the predicted probability.

WORKING_RESIDUAL is the difference between the working response
and the linear predictor at convergence.

PEARSON_RESIDUAL The Pearson residual is a re-scaled version of the working residual,
accounting for the weight. For logistic regression, the Pearson
residual multiplies the residual by a factor that is computed as square
root of the weight divided by the variance of the predicted probability
for the ith row.

RESIDUAL is 1 minus the predicted probability of the actual target
value for the row.

DEVIANCE_RESIDUAL The DEVIANCE_RESIDUAL is the contribution to the model deviance
of the ith observation. For logistic regression it has the form the
square root of 2 times the log(1 + e^eta) - eta for the non-
reference class and -square root of 2 time the log (1 + eta) for
the reference class, where eta is the linear prediction (the prediction
as if the model were a linear regression).

C Measures the overall change in the fitted logits due to the deletion of
the ith observation for all points including the one deleted (the ith

point). It is computed as the square of the Pearson residual multiplied
by the Hat value divided by the square of 1 minus the Hat value.

Confidence interval displacement diagnostics that provides scalar
measure of the influence of individual observations.

CBAR C and CBAR are extensions of Cooks’ distance for logistic regression.
CBAR measures the overall change in the fitted logits due to the
deletion of the ith observation for all points excluding the one deleted
(the ith point). It is computed as the square of the Pearson residual
multiplied by the Hat value divided by (1 minus the Hat value)
Confidence interval displacement diagnostic which measures the
influence of deleting an individual observation.

DIFDEV A statistic that measures the change in deviance that occurs when an
observation is deleted from the input. It is computed as the square of
the deviance residual plus CBAR.

DIFCHISQ A statistic that measures the change in the Pearson chi-square
statistic that occurs when an observation is deleted from the input. It
is computed as CBAR divided by the Hat value.

Global Details for GLM: Linear Regression

The following table describes global details for a linear regression model.

Chapter 4
Model Detail Views

4-52

Table 4-35 Global Details for Linear Regression

Name Description

ADJUSTED_R_SQUARE Adjusted R-Square

AIC Akaike's information criterion

COEFF_VAR Coefficient of variation

CONVERGED Indicates whether the model build process has converged to
specified tolerance. The following are the possible values:
• YES
• NO

CORRECTED_TOTAL_DF Corrected total degrees of freedom

CORRECTED_TOT_SS Corrected total sum of squares

DEPENDENT_MEAN Dependent mean

ERROR_DF Error degrees of freedom

ERROR_MEAN_SQUARE Error mean square

ERROR_SUM_SQUARES Error sum of squares

F_VALUE Model F value statistic

GMSEP Estimated mean square error of the prediction, assuming
multivariate normality

HOCKING_SP Hocking Sp statistic

ITERATIONS Tracks the number of SGD iterations. Applicable only when the
solver is SGD.

J_P JP statistic (the final prediction error)

MODEL_DF Model degrees of freedom

MODEL_F_P_VALUE Model F value probability

MODEL_MEAN_SQUARE Model mean square error

MODEL_SUM_SQUARES Model sum of square errors

NUM_PARAMS Number of parameters (the number of coefficients, including the
intercept)

NUM_ROWS Number of rows

R_SQ R-Square

RANK_DEFICIENCY The number of predictors excluded from the model due to multi-
collinearity

ROOT_MEAN_SQ Root mean square error

SBIC Schwarz's Bayesian information criterion

Global Details for GLM: Logistic Regression

The following table returns global details for a logistic regression model.

Chapter 4
Model Detail Views

4-53

Table 4-36 Global Details for Logistic Regression

Name Description

AIC_INTERCEPT Akaike's criterion for the fit of the baseline, intercept-only,
model

AIC_MODEL Akaike's criterion for the fit of the intercept and the
covariates (predictors) mode

CONVERGED Indicates whether the model build process has converged to
specified tolerance. The following are the possible values:
• YES
• NO

DEPENDENT_MEAN Dependent mean

ITERATIONS Tracks the number of SGD iterations (number of IRLS
iterations). Applicable only when the solver is SGD.

LR_DF Likelihood ratio degrees of freedom

LR_CHI_SQ Likelihood ratio chi-square value

LR_CHI_SQ_P_VALUE Likelihood ratio chi-square probability value

NEG2_LL_INTERCEPT -2 log likelihood of the baseline, intercept-only, model

NEG2_LL_MODEL -2 log likelihood of the model

NUM_PARAMS Number of parameters (the number of coefficients, including
the intercept)

NUM_ROWS Number of rows

PCT_CORRECT Percent of correct predictions

PCT_INCORRECT Percent of incorrectly predicted rows

PCT_TIED Percent of cases where the estimated probabilities are equal
for both target classes

PSEUDO_R_SQ_CS Pseudo R-square Cox and Snell

PSEUDO_R_SQ_N Pseudo R-square Nagelkerke

RANK_DEFICIENCY The number of predictors excluded from the model due to
multi-collinearity

SC_INTERCEPT Schwarz's Criterion for the fit of the baseline, intercept-only,
model

SC_MODEL Schwarz's Criterion for the fit of the intercept and the
covariates (predictors) model

Note:

• When ridge regression is enabled, fewer global details are returned. For
information about ridge, see Oracle Machine Learning for SQL
Concepts.

• When the value is NULL for a partitioned model, an exception is thrown.
When the value is not null, it must contain the desired partition name.

Chapter 4
Model Detail Views

4-54

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

• Model Detail Views for Global Information
Model detail views for global information contain information about global statistics,
alerts, and computed settings.

4.10.9 Model Detail View for Multivariate State Estimation Technique -
Sequential Probability Ratio Test

The model detail view for Multivariate State Estimation Technique - Sequential Probability
Ratio Test contains information about an MSET-SPRT model.

The following table lists the name-value pair for an MSET-SPRT model that appears in the
DM$VGmodel_name view of global statistics. This statistic is included when due to memory
constraints MSET-SPRT cannot use the MSET_MEMORY_VECTORS value set by the user.

Table 4-37 MSET-SPRT Information in the Model Global View

Name Description

NUM_MVEC The number of memory vectors used by the model.

4.10.10 Model Detail Views for Naive Bayes
The model detail views for Naive Bayes are the prior view and result view.

The prior view DM$VPmodel_name describes the priors of the targets for a Naive Bayes
model. The view has the following columns:

Name Type
--- ----------------------------
PARTITION_NAME VARCHAR2(128)
TARGET_NAME VARCHAR2(128)
TARGET_VALUE NUMBER/VARCHAR2
PRIOR_PROBABILITY BINARY_DOUBLE
COUNT NUMBER

Table 4-38 Prior View for Naive Bayes

Column Name Description

PARTITION_NAME The name of a feature in the model

TARGET_NAME Name of the target column

TARGET_VALUE Target value, numerical or categorical

PRIOR_PROBABILITY Prior probability for a given TARGET_VALUE
COUNT Number of rows for a given TARGET_VALUE

Chapter 4
Model Detail Views

4-55

The Naive Bayes result view DM$VVmodel_view describes the conditional probabilities
of the Naive Bayes model. The view has the following columns:

Name Type
--- ----------------------------
PARTITION_NAME VARCHAR2(128)
TARGET_NAME VARCHAR2(128)
TARGET_VALUE NUMBER/VARCHAR2
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
CONDITIONAL_PROBABILITY BINARY_DOUBLE
COUNT NUMBER

Table 4-39 Result View for Naive Bayes

Column Name Description

PARTITION_NAME The name of a feature in the model

TARGET_NAME Name of the target column

TARGET_VALUE Target value, numerical or categorical

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Machine learning attribute value for the column
ATTRIBUTE_NAME or the nested column
ATTRIBUTE_SUBNAME (if any).

CONDITIONAL_PROBABILITY Conditional probability of a machine learning attribute for
a given target

COUNT Number of rows for a given machine learning attribute
and a given target

The following table describes the global view for a Naive Bayes model.

Table 4-40 Naive Bayes Statistics Information In Model Global View

Name Description

NUM_ROWS The total number of rows used in the build

4.10.11 Model Detail Views for Neural Network
Model detail views for Neural Network contain information about the weights of the
neurons: input layer and hidden layers.

A Neural Network model has the following views:

Weights: DM$VAmodel_name

Chapter 4
Model Detail Views

4-56

The view DM$VAmodel_name has the following columns:

Name
Type
---------------------- -----------------------
PARTITION_NAME VARCHAR2(128)
LAYER NUMBER
IDX_FROM NUMBER
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
IDX_TO NUMBER
TARGET_VALUE NUMBER/VARCHAR2
WEIGHT BINARY_DOUBLE

Table 4-41 Weights View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

LAYER Layer ID, 0 as an input layer

IDX_FROM Node index that the weight connects from (attribute id for
input layer)

ATTRIBUTE_NAME Attribute name (only for the input layer)

ATTRIBUTE_SUBNAME Attribute subname. The value is null for non-nested columns.

ATTRIBUTE_VALUE Categorical attribute value

IDX_TO Node index that the weights connects to

TARGET_VALUE Target value. The value is null for regression.

WEIGHT Value of the weight

The view DM$VGmodel_name is a pre-existing view. The following name-value pairs are added
to the view.

Table 4-42 Neural Networks Statistics Information In Model Global View

Name Description

CONVERGED Indicates whether the model build process has converged to
specified tolerance. The following are the possible values:

• YES
• NO

ITERATIONS Number of iterations

LOSS_VALUE Loss function value (if it is with
NNET_REGULARIZER_HELDASIDE regularization, it is the loss
function value on test data)

NUM_ROWS Number of rows in the model (or partitioned model)

Chapter 4
Model Detail Views

4-57

4.10.12 Model Detail Views for Random Forest
Model detail views for Random Forest contain variable importance measures and
statistics.

A Random Forest model has the following statistics views:

• Variable importance statistics DM$VAmodel_name

• Random Forest statistics in the model global view DM$VGmodel_name

One of the important outputs from a Random Forest model build is a ranking of
attributes based on their relative importance. This is measured using Mean Decrease
Gini. The view DM$VAmodel_name has the following columns:

Name Type
------------------------ ---------------
PARTITION_NAME VARCHAR2(128)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(128)
ATTRIBUTE_IMPORTANCE BINARY_DOUBLE

Table 4-43 Variable Importance Model View

Column Name Description

PARTITION_NAME Partition name. The value is null for models which are not
partitioned.

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_IMPORTANCE Measure of importance for an attribute in the forest
(mean Decrease Gini value)

The view DM$VGmodel_name is a pre-existing view. The following name-value pairs are
added to the view.

Table 4-44 Random Forest Statistics Information In Model Global View

Name Description

AVG_DEPTH Average depth of the trees in the forest

AVG_NODECOUNT Average number of nodes per tree

MAX_DEPTH Maximum depth of the trees in the forest

MAX_NODECOUNT Maximum number of nodes per tree

MIN_DEPTH Minimum depth of the trees in the forest

MIN_NODECOUNT Minimum number of nodes per tree

NUM_ROWS The total number of rows used in the build

Chapter 4
Model Detail Views

4-58

4.10.13 Model Detail View for Support Vector Machine
Model detail views for Support Vector Machine (SVM) contain linear coefficients and support
vector statistics.

The linear coefficient view DM$VLmodel_name describes the coefficients of a linear SVM
algorithm. The target_value field in the view is present only for classification and has the type
of the target. Regression models do not have a target_value field.

The reversed_coefficient field shows the value of the coefficient after reversing the automatic
data preparation transformations. If data preparation is disabled, then coefficient and
reversed_coefficient have the same value. The view has the following columns:

Name Type
--- --------------------------------
PARTITION_NAME VARCHAR2(128)
TARGET_VALUE NUMBER/VARCHAR2
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
COEFFICIENT BINARY_DOUBLE
REVERSED_COEFFICIENT BINARY_DOUBLE

Table 4-45 Linear Coefficient View for Support Vector Machine

Column Name Description

PARTITION_NAME Partition name in a partitioned model

TARGET_VALUE Target value, numerical or categorical

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-nested
columns.

ATTRIBUTE_VALUE Value of a categorical attribute

COEFFICIENT Projection coefficient value

REVERSED_COEFFICIENT Coefficient transformed on the original scale

The following table describes the SVM statistics global view.

Table 4-46 Support Vector Statistics Information In Model Global View

Name Description

CONVERGED Indicates whether the model build process has
converged to specified tolerance:
• YES
• NO

ITERATIONS Number of iterations performed during build

NUM_ROWS Number of rows used for the build

REMOVED_ROWS_ZERO_NORM Number of rows removed due to 0 norm. This
applies to one-class linear models only.

Chapter 4
Model Detail Views

4-59

4.10.14 Model Detail Views for XGBoost
The model detail views for XGBoost contain information about an XGBoost model.

The DM$VImodel_name view reports the feature importance values for each attribute of
each partition of the model.

The view has the following columns for tree models (gbtree and dart boosters).

Name Type
----------------- --------------
PNAME VARCHAR2(128)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
GAIN BINARY_DOUBLE
COVER BINARY_DOUBLE
FREQUENCY BINARY_DOUBLE

Table 4-47 Feature Importance View for a Tree Model

Column Name Description

PNAME The name of a partition in a partitioned model.

ATTRIBUTE_NAME The column name.

ATTRIBUTE_SUBNAME The nested column subname; the value is null for non-nested columns.

ATTRIBUTE_VALUE The value of a categorical attribute.

GAIN The fractional contribution of each feature to the model based on the
total gain of a feature’s splits; a higher percentage means a more
important predictive feature.

COVER The number of observations related to the feature.

FREQUENCY A percentage representing the relative number of times a feature has
been used in trees.

For a linear model (gblinear) booster, the feature importance is the absolute
magnitude of linear coefficients.

The view has the following columns for linear models.

Name Type
----------------- --------------
PNAME VARCHAR2(128)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
WEIGHT BINARY_DOUBLE
CLASS BINARY_DOUBLE

Chapter 4
Model Detail Views

4-60

Table 4-48 Feature Importance View for a Linear Model

Column Name Description

PNAME The name of a partition in a partitioned model.

ATTRIBUTE_NAME The column name.

ATTRIBUTE_SUBNAME The nested column subname; the value is null for non-nested
columns.

ATTRIBUTE_VALUE The value of a categorical attribute.

WEIGHT The linear coefficient of the feature.

CLASS The class label for a multiclass model.

The DM$VGmodel_name view reports global statistics for an XGBoost model. The statistics
include an evaluation of the training data set done by the evaluation metric you specified with
the learning task eval_metric setting, or by the default eval_metric if you didn't specify one.
The view contains only the result of the last training iteration. When you specify more than
one eval_metric, the view contains multiple rows, one for each eval_metric.

4.10.15 Model Detail Views for Clustering Algorithms
Oracle Machine Learning for SQL supports these clustering algorithms: Expectation
Maximization (EM), k-Means (KM), and orthogonal partitioning clustering (O-Cluster, OC).

All clustering algorithms share the following views:

• Cluster description DM$VDmodel_name

• Attribute statistics DM$VAmodel_name

• Histogram statistics DM$VHmodel_name

• Rule statistics DM$VRmodel_name

The cluster description view DM$VDmodel_name describes cluster level information about a
clustering model. The view has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
CLUSTER_ID NUMBER
CLUSTER_NAME NUMBER/VARCHAR2
RECORD_COUNT NUMBER
PARENT NUMBER
TREE_LEVEL NUMBER
LEFT_CHILD_ID NUMBER
RIGHT_CHILD_ID NUMBER

Table 4-49 Cluster Description View for Clustering Algorithm

Column Name Description

PARTITION_NAME Partition name in a partitioned model

Chapter 4
Model Detail Views

4-61

Table 4-49 (Cont.) Cluster Description View for Clustering Algorithm

Column Name Description

CLUSTER_ID The ID of a cluster in the model

CLUSTER_NAME Specifies the label of the cluster

RECORD_COUNT Specifies the number of records

PARENT The ID of the parent

TREE_LEVEL Specifies the number of splits from the root

LEFT_CHILD_ID The ID of the child cluster on the left side of the split

RIGHT_CHILD_ID The ID of the child cluster on the right side of the split

The attribute view DM$VAmodel_name describes attribute level information about a
clustering model. The values of the mean, variance, and mode for a particular cluster
can be obtained from this view. The view has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
CLUSTER_ID NUMBER
CLUSTER_NAME NUMBER/VARCHAR2
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
MEAN BINARY_DOUBLE
VARIANCE BINARY_DOUBLE
MODE_VALUE VARCHAR2(4000)

Table 4-50 Attribute View for Clustering Algorithms

Column Name Description

PARTITION_NAME A partition in a partitioned model

CLUSTER_ID The ID of a cluster in the model

CLUSTER_NAME Specifies the label of the cluster

ATTRIBUTE_NAME Specifies the attribute name

ATTRIBUTE_SUBNAME Specifies the attribute subname

MEAN The field returns the average value of a numeric attribute

VARIANCE The variance of a numeric attribute

MODE_VALUE The mode is the most frequent value of a categorical
attribute

The histogram view DM$VHmodel_name describes histogram level information about a
clustering model. The bin information as well as bin counts can be obtained from this
view. The view has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)

Chapter 4
Model Detail Views

4-62

CLUSTER_ID NUMBER
CLUSTER_NAME NUMBER/VARCHAR2
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
BIN_ID NUMBER
LOWER_BIN_BOUNDARY BINARY_DOUBLE
UPPER_BIN_BOUNDARY BINARY_DOUBLE
ATTRIBUTE_VALUE VARCHAR2(4000)
COUNT NUMBER

Table 4-51 Histogram View for Clustering Algorithms

Column Name Description

PARTITION_NAME A partition in a partitioned model

CLUSTER_ID The ID of a cluster in the model

CLUSTER_NAME Specifies the label of the cluster

ATTRIBUTE_NAME Specifies the attribute name

ATTRIBUTE_SUBNAME Specifies the attribute subname

BIN_ID Bin ID

LOWER_BIN_BOUNDARY Numeric lower bin boundary

UPPER_BIN_BOUNDARY Numeric upper bin boundary

ATTRIBUTE_VALUE Categorical attribute value

COUNT Histogram count

The rule view DM$VRmodel_name describes the rule level information about a clustering
model. The information is provided at attribute predicate level. The view has the following
columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
CLUSTER_ID NUMBER
CLUSTER_NAME NUMBER/VARCHAR2
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
OPERATOR VARCHAR2(2)
NUMERIC_VALUE NUMBER
ATTRIBUTE_VALUE VARCHAR2(4000)
SUPPORT NUMBER
CONFIDENCE BINARY_DOUBLE
RULE_SUPPORT NUMBER
RULE_CONFIDENCE BINARY_DOUBLE

Table 4-52 Rule View for Clustering Algorithms

Column Name Description

PARTITION_NAME A partition in a partitioned model

Chapter 4
Model Detail Views

4-63

Table 4-52 (Cont.) Rule View for Clustering Algorithms

Column Name Description

CLUSTER_ID The ID of a cluster in the model

CLUSTER_NAME Specifies the label of the cluster

ATTRIBUTE_NAME Specifies the attribute name

ATTRIBUTE_SUBNAME Specifies the attribute subname

OPERATOR Attribute predicate operator - a conditional operator taking the
following values: IN, = , <>, < , >, <=, and >=

NUMERIC_VALUE Numeric lower bin boundary

ATTRIBUTE_VALUE Categorical attribute value

SUPPORT Attribute predicate support

CONFIDENCE Attribute predicate confidence

RULE_SUPPORT Rule level support

RULE_CONFIDENCE Rule level confidence

4.10.16 Model Detail Views for Expectation Maximization
Model detail views for Expectation Maximization (EM) contain additional information
about an EM model.

The following views contain information that is not in the clustering views for an EM
model. For the clustering views, refer to "Model Detail Views for Clustering
Algorithms".

The component view DM$VOmodel_name describes the EM components. The
component view contains information about their prior probabilities and what cluster
they map to. The view has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
COMPONENT_ID NUMBER
CLUSTER_ID NUMBER
PRIOR_PROBABILITY BINARY_DOUBLE

Table 4-53 Component View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

COMPONENT_ID Unique identifier of a component

CLUSTER_ID The ID of a cluster in the model

PRIOR_PROBABILITY Component prior probability

Chapter 4
Model Detail Views

4-64

The mean and variance component view DM$VMmodel_name provides information about the
mean and variance parameters for the attributes by Gaussian distribution models. The view
has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
COMPONENT_ID NUMBER
ATTRIBUTE_NAME VARCHAR2(4000)
MEAN BINARY_DOUBLE
VARIANCE BINARY_DOUBLE

The frequency component view DM$VFmodel_name provides information about the
parameters of the multi-valued Bernoulli distributions used by the EM model. The view has
the following columns:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 COMPONENT_ID NUMBER
 ATTRIBUTE_NAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 FREQUENCY BINARY_DOUBLE

Table 4-54 Frequency Component View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

COMPONENT_ID Unique identifier of a component

ATTRIBUTE_NAME Column name

ATTRIBUTE_VALUE Categorical attribute value

FREQUENCY The frequency of the multivalued Bernoulli distribution for the
attribute/value combination specified by ATTRIBUTE_NAME and
ATTRIBUTE_VALUE.

For 2-Dimensional columns, EM provides an attribute ranking similar to that of attribute
importance. This ranking is based on a rank-weighted average over Kullback–Leibler
divergence computed for pairs of columns. This unsupervised attribute importance is shown
in the DM$VImodel_name view and has the following columns:

Name Type
--- ----------------------------
PARTITION_NAME VARCHAR2(128)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_IMPORTANCE_VALUE BINARY_DOUBLE
ATTRIBUTE_RANK NUMBER

Chapter 4
Model Detail Views

4-65

Table 4-55 2–Dimensional Attribute Ranking for Expectation Maximization

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ATTRIBUTE_NAME Column name

ATTRIBUTE_IMPORTANCE_VALUE Importance value

ATTRIBUTE_RANK An attribute rank based on the importance value

The pairwise Kullback–Leibler divergence is reported in the DM$VBmodel_name
view. This metric evaluates how much the observed joint distribution of two attributes
diverges from the expected distribution under the assumption of independence. That
is, the higher the value, the more dependent the two attributes are. The dependency
value is scaled based on the size of the grid used for each pairwise computation. That
ensures that all values fall within the [0; 1] range and are comparable. The view has
the following columns:

Name Type
--- ----------------------------
PARTITION_NAME VARCHAR2(128)
ATTRIBUTE_NAME_1 VARCHAR2(128)
ATTRIBUTE_NAME_2 VARCHAR2(128)
DEPENDENCY BINARY_DOUBLE

Table 4-56 Kullback-Leibler Divergence for Expectation Maximization

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ATTRIBUTE_NAME_1 Name of an attribute 1

ATTRIBUTE_NAME_2 Name of an attribute 2

DEPENDENCY Scaled pairwise Kullback-Leibler divergence

The projection table DM$VPmodel_name shows the coefficients used by random
projections to map nested columns to a lower dimensional space. The view has rows
only when nested or text data is present in the build data. The view has the following
columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
FEATURE_NAME VARCHAR2(4000)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
COEFFICIENT NUMBER

Chapter 4
Model Detail Views

4-66

Table 4-57 Projection table for Expectation Maximization

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_NAME Name of feature

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-nested
columns.

ATTRIBUTE_VALUE Categorical attribute value

COEFFICIENT Projection coefficient. The representation is sparse; only the
non-zero coefficients are returned.

Global Details for Expectation Maximization

The following table describes global details for EM.

Table 4-58 Global Details for Expectation Maximization

Name Description

CONVERGED Indicates whether the model build process has converged to specified
tolerance. The possible values are:

• YES
• NO

LOGLIKELIHOOD Loglikelihood on the build data

NUM_COMPONENTS Number of components produced by the model

NUM_CLUSTERS Number of clusters produced by the model

NUM_ROWS Number of rows used in the build

RANDOM_SEED The random seed value used for the model build

REMOVED_COMPONENTS The number of empty components excluded from the model

Related Topics

• Model Detail Views for Clustering Algorithms
Oracle Machine Learning for SQL supports these clustering algorithms: Expectation
Maximization (EM), k-Means (KM), and orthogonal partitioning clustering (O-Cluster, OC).

4.10.17 Model Detail Views for k-Means
Model detail views for k-Means (KM) contain clustering and scoring information.

The following views contain information that is not in the clustering views for a k-Means
model. For the clustering views, refer to "Model Detail Views for Clustering Algorithms". For k-
Means, the cluster description view DM$VDmodel_name has an additional column:

Name Type
---------------------------------- ----------------------------
DISPERSION BINARY_DOUBLE

Chapter 4
Model Detail Views

4-67

Table 4-59 Cluster Description for k-Means

Column Name Description

DISPERSION A measure used to quantify whether a set of observed
occurrences are dispersed compared to a standard
statistical model.

The scoring view DM$VCmodel_name describes the centroid of each leaf clusters:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 CLUSTER_ID NUMBER
 CLUSTER_NAME NUMBER/VARCHAR2
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 VALUE BINARY_DOUBLE

Table 4-60 Scoring View for k-Means

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CLUSTER_ID The ID of a cluster in the model

CLUSTER_NAME Specifies the label of the cluster

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Categorical attribute value

VALUE Specifies the centroid value

The following table describes global view for k-Means.

Table 4-61 k–Means Statistics Information In Model Global View

Name Description

CONVERGED Indicates whether the model build process has
converged to specified tolerance. The following
are the possible values:

• YES
• NO

NUM_ROWS Number of rows used in the build

REMOVED_ROWS_ZERO_NORM Number of rows removed due to 0 norm. This
applies only to models using cosine distance.

Chapter 4
Model Detail Views

4-68

Related Topics

• Model Detail Views for Clustering Algorithms
Oracle Machine Learning for SQL supports these clustering algorithms: Expectation
Maximization (EM), k-Means (KM), and orthogonal partitioning clustering (O-Cluster, OC).

4.10.18 Model Detail Views for O-Cluster
Model detail views for O-Cluster (OC) contain information about OC models.

The following views contain information that is not in the clustering views for an O-Cluster
model. For the clustering views, refer to "Model Detail Views for Clustering Algorithms". The
OC algorithm uses the same descriptive statistics views as Expectation Maximization (EM)
and k-Means (KM). The following are the statistics views:

• Cluster description DM$VDmodel_name

• Attribute statistics DM$VAmodel_name

• Rule statistics DM$VRmodel_name

• Histogram statistics DM$VHmodel_name

The cluster description view DM$VDmodel_name describes the O-Cluster components. The
cluster description view has additional fields that specify the split predicate. The view has the
following columns:

Name Type
---------------------------------- ----------------------------
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
OPERATOR VARCHAR2(2)
VALUE SYS.XMLTYPE

Table 4-62 Description View

Column Name Description

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-nested
columns.

OPERATOR Split operator

VALUE List of split values

The structure of the SYS.XMLTYPE is as follows:

<Element>splitval1</Element>

The OC algorithm uses a histogram view DM$VHmodel_name with different columns than EM
and KM. The view has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITON_NAME VARCHAR2(128)
CLUSTER_ID NUMBER

Chapter 4
Model Detail Views

4-69

ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
BIN_ID NUMBER
LABEL VARCHAR2(4000)
COUNT NUMBER

Table 4-63 Histogram Component View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CLUSTER_ID Unique identifier of a component

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-nested
columns.

BIN_ID Unique identifier

LABEL Bin label

COUNT Bin histogram count

The following table describes the global view for O-Cluster.

Table 4-64 O-Cluster Statistics Information In Model Global View

Name Description

NUM_ROWS The total number of rows used in the build

Related Topics

• Model Detail Views for Clustering Algorithms
Oracle Machine Learning for SQL supports these clustering algorithms:
Expectation Maximization (EM), k-Means (KM), and orthogonal partitioning
clustering (O-Cluster, OC).

4.10.19 Model Detail Views for Explicit Semantic Analysis
Model detail views for Explicit Semantic Analysis (ESA) contain information about
attribute statistics and features.

ESA algorithm has the following views:

• Explicit Semantic Analysis Matrix DM$VAmodel_name: This view has different
columns for feature extraction and classification. For feature extraction, this view
contains model attribute coefficients per feature. For classification, this view
contains model attribute coefficients per target class.

• Explicit Semantic Analysis Features DM$VFmodel_name: This view is applicable
only for feature extraction.

The view DM$VAmodel_name has the following columns for feature extraction:

Name Type
---------------------------------- ----------------------------

Chapter 4
Model Detail Views

4-70

PARTITION_NAME VARCHAR2(128)
FEATURE_ID NUMBER/VARHCAR2, DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
COEFFICIENT BINARY_DOUBLE

Table 4-65 Explicit Semantic Analysis Matrix for Feature Extraction

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID Unique identifier of a feature as it appears in the training data

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-nested
columns.

ATTRIBUTE_VALUE Categorical attribute value

COEFFICIENT A measure of the weight of the attribute with respect to the
feature

The DM$VAmodel_name view comprises attribute coefficients for all target classes.

The view DM$VAmodel_name has the following columns for classification:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
TARGET_VALUE NUMBER/VARCHAR2
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
COEFFICIENT BINARY_DOUBLE

Table 4-66 Explicit Semantic Analysis Matrix for Classification

Column Name Description

PARTITION_NAME Partition name in a partitioned model

TARGET_VALUE Value of the target

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for
non-nested columns.

ATTRIBUTE_VALUE Categorical attribute value

COEFFICIENT A measure of the weight of the attribute with
respect to the feature

Chapter 4
Model Detail Views

4-71

The view DM$VFmodel_name has a unique row for every feature in one view. This
feature is helpful if the model was pre-built and the source training data are not
available. The view has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
FEATURE_ID NUMBER/VARHCAR2, DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE

Table 4-67 Explicit Semantic Analysis Features for Explicit Semantic Analysis

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID Unique identifier of a feature as it appears in the training
data

The following table describes the global view for ESA.

Table 4-68 Explicit Semantic Analysis Statistics Information In Model Global
View

Name Description

NUM_ROWS The total number of input rows

REMOVED_ROWS_BY_FILTERS Number of rows removed by filters

4.10.20 Model Detail Views for Non-Negative Matrix Factorization
Model detail views for Non-Negative Matrix Factorization (NMF) contain information
about the encoding H matrix and H inverse matrix.

The NMF algorithm has two matrix content views:

• Encoding (H) matrix DM$VEmodel_name

• H inverse matrix DM$VImodel_name

The view DM$VEmodel_name describes the encoding (H) matrix of an NMF model. The
FEATURE_NAME column type may be either NUMBER or VARCHAR2. The view has the
following columns.

Name Type
------------------- --------------------------
PARTITION_NAME VARCHAR2(128)
FEATURE_ID NUMBER
FEATURE_NAME NUMBER/VARCHAR2
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)

Chapter 4
Model Detail Views

4-72

ATTRIBUTE_VALUE VARCHAR2(4000)
COEFFICIENT BINARY_DOUBLE

Table 4-69 Encoding H Matrix View for Non-Negative Matrix Factorization

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-nested
columns.

ATTRIBUTE_VALUE Specifies the value of attribute

COEFFICIENT The attribute encoding that represents its contribution to the
feature

The view DM$VImodel_view describes the inverse H matrix of an NMF model. The
FEATURE_NAME column type may be either NUMBER or VARCHAR2. The view has the following
schema:

Name Type
----------------- ------------------------
PARTITION_NAME VARCHAR2(128)
FEATURE_ID NUMBER
FEATURE_NAME NUMBER/VARCHAR2
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
COEFFICIENT BINARY_DOUBLE

Table 4-70 Inverse H Matrix View for Non-Negative Matrix Factorization

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-nested
columns.

ATTRIBUTE_VALUE Specifies the value of attribute

COEFFICIENT The attribute encoding that represents its contribution to the
feature

The following table describes the global statistics for NMF.

Chapter 4
Model Detail Views

4-73

Table 4-71 Non-Negative Matrix Factorization Statistics Information In Model
Global View

Name Description

CONV_ERROR Convergence error

CONVERGED Indicates whether the model build process has
converged to specified tolerance. The following
are the possible values:
• YES
• NO

ITERATIONS Number of iterations performed during build

NUM_ROWS Number of rows used in the build input data
set

SAMPLE_SIZE Number of rows used by the build

4.10.21 Model Detail Views for Singular Value Decomposition
Model detail views for Singular Value Decomposition (SVD) contain information about
the S matrix, right-singular vectors, and left-singular vectors.

The DM$VEmodel_name view leverages the fact that each singular value in the SVD
model has a corresponding principal component in the associated Principal
Components Analysis (PCA) model to relate a common set of information for both
classes of models. For an SVD model, it describes the content of the S matrix. When
PCA scoring is selected as a build setting, the variance and percentage cumulative
variance for the corresponding principal components are shown as well. The view has
the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
FEATURE_ID NUMBER
FEATURE_NAME NUMBER/VARCHAR2
VALUE BINARY_DOUBLE
VARIANCE BINARY_DOUBLE
PCT_CUM_VARIANCE BINARY_DOUBLE

Table 4-72 S Matrix View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

VALUE The matrix entry value

Chapter 4
Model Detail Views

4-74

Table 4-72 (Cont.) S Matrix View

Column Name Description

VARIANCE The variance explained by a component. This column is
only present for SVD models with setting
dbms_data_mining.svds_scoring_mode set to
dbms_data_mining.svds_scoring_pca
This column is non-null only if the build data is centered,
either manually or because of the following
setting:dbms_data_mining.prep_auto is set to
dbms_data_mining.prep_auto_on.

PCT_CUM_VARIANCE The percent cumulative variance explained by the
components thus far. The components are ranked by the
explained variance in descending order.

This column is only present for SVD models with setting
dbms_data_mining.svds_scoring_mode set to
dbms_data_mining.svds_scoring_pca
This column is non-null only if the build data is centered,
either manually or because of the following
setting:dbms_data_mining.prep_auto is set to
dbms_data_mining.prep_auto_on.

The SVD DM$VVmodel_view describes the right-singular vectors of an SVD model. For a PCA
model it describes the principal components (eigenvectors). The view has the following
columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
FEATURE_ID NUMBER
FEATURE_NAME NUMBER/VARCHAR2
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
VALUE BINARY_DOUBLE

Table 4-73 Right-singular Vectors of Singular Value Decomposition

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-nested
columns.

ATTRIBUTE_VALUE Categorical attribute value. For numerical attributes,
ATTRIBUTE_VALUE is null.

VALUE The matrix entry value

Chapter 4
Model Detail Views

4-75

The view DM$VUmodel_name describes the left-singular vectors of an SVD model. For
a PCA model, it describes the projection of the data in the principal components. This
view does not exist unless the settings dbms_data_mining.svds_u_matrix_output is
set to dbms_data_mining.svds_u_matrix_enable. The view has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
CASE_ID NUMBER/VARHCAR2, DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE
FEATURE_ID NUMBER
FEATURE_NAME NUMBER/VARCHAR2
VALUE BINARY_DOUBLE

Table 4-74 Left-singular Vectors of Singular Value Decomposition or Projection
Data in Principal Components

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CASE_ID Unique identifier of the row in the build data described by
the U matrix projection.

FEATURE_ID The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

VALUE The matrix entry value

Global Details for Singular Value Decomposition

The following table describes the global details for an SVD model.

Table 4-75 Global Details for Singular Value Decomposition

Name Description

NUM_COMPONENTS Number of features (components) produced by the model

NUM_ROWS The total number of rows used in the build

SUGGESTED_CUTOFF Suggested cutoff that indicates how many of the top computed
features capture most of the variance in the model. Using only
the features below this cutoff would be a reasonable strategy for
dimensionality reduction.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 4
Model Detail Views

4-76

4.10.22 Model Detail Views for Minimum Description Length
Model detail views for Minimum Description :Length (MDL) (for calculating attribute
importance) contain information about attribute importance models.

The attribute importance view DM$VAmodel_name describes the attribute importance as well
as the attribute importance rank. The view has the following columns:

Name Type
--- ----------------------------
PARTITION_NAME VARCHAR2(128)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_IMPORTANCE_VALUE BINARY_DOUBLE
ATTRIBUTE_RANK NUMBER

Table 4-76 Attribute Importance View for Minimum Description Length

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-nested
columns.

ATTRIBUTE_IMPORTANCE_VALUE Importance value

ATTRIBUTE_RANK Rank based on importance

The following table describes the global view for MDL.

Table 4-77 Minimum Description Length Statistics Information In Model Global View

Name Description

NUM_ROWS The total number of rows used in the build

4.10.23 Model Detail Views for Binning
The binning view DM$VB describes the bin boundaries used in automatic data preparation.

The view has the following columns:

Name Type
-------------------- --------------------
PARTITION_NAME VARCHAR2(128)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
BIN_ID NUMBER
LOWER_BIN_BOUNDARY BINARY_DOUBLE
UPPER_BIN_BOUNDARY BINARY_DOUBLE
ATTRIBUTE_VALUE VARCHAR2(4000)

Chapter 4
Model Detail Views

4-77

Table 4-78 Model Details View for Binning

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ATTRIBUTE_NAME Specifies the attribute name

ATTRIBUTE_SUBNAME Specifies the attribute subname

BIN_ID Bin ID (or bin identifier)

LOWER_BIN_BOUNDARY Numeric lower bin boundary

UPPER_BIN_BOUNDARY Numeric upper bin boundary

ATTRIBUTE_VALUE Categorical value

4.10.24 Model Detail Views for Global Information
Model detail views for global information contain information about global statistics,
alerts, and computed settings.

The global statistics view DM$VGmodel_name describes global statistics related to the
model build. Examples include the number of rows used in the build, the convergence
status, and the model quality metrics. The view has the following columns:

Name Type
------------------- --------------------
PARTITION_NAME VARCHAR2(128)
NAME VARCHAR2(30)
NUMERIC_VALUE NUMBER
STRING_VALUE VARCHAR2(4000)

Table 4-79 Global Statistics View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

NAME Name of the statistic

NUMERIC_VALUE Numeric value of the statistic

STRING_VALUE Categorical value of the statistic

The alert view DM$VWmodel_name lists alerts issued during the model build. The view
has the following columns:

Name Type
------------------- ----------------------
PARTITION_NAME VARCHAR2(128)
ERROR_NUMBER BINARY_DOUBLE
ERROR_TEXT VARCHAR2(4000)

Chapter 4
Model Detail Views

4-78

Table 4-80 Alert View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ERROR_NUMBER Error number (valid when event is Error)

ERROR_TEXT Error message

The computed settings view DM$VSmodel_name lists the algorithm computed settings. The
view has the following columns:

Name Type
----------------- --------------------
PARTITION_NAME VARCHAR2(128)
SETTING_NAME VARCHAR2(30)
SETTING_VALUE VARCHAR2(4000)

Table 4-81 Computed Settings View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

SETTING_NAME Name of the setting

SETTING_VALUE Value of the setting

4.10.25 Model Detail Views for Normalization and Missing Value Handling
The Normalization and Missing Value Handling view DM$VN describes the normalization
parameters used in Automatic Data Preparation (ADP) and the missing value replacement
when a NULL value is encountered. Missing value replacement applies only to the two‐
dimensional columns and does not apply to the nested columns.

The view has the following columns:

Name Type
---------------------- -----------------------
PARTITION_NAME VARCHAR2(128)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
NUMERIC_MISSING_VALUE BINARY_DOUBLE
CATEGORICAL_MISSING_VALUE VARCHAR2(4000)
NORMALIZATION_SHIFT BINARY_DOUBLE
NORMALIZATION_SCALE BINARY_DOUBLE

Table 4-82 Normalization and Missing Value Handling View

Column Name Description

PARTITION_NAME A partition in a partitioned model

ATTRIBUTE_NAME Column name

Chapter 4
Model Detail Views

4-79

Table 4-82 (Cont.) Normalization and Missing Value Handling View

Column Name Description

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-nested
columns.

NUMERIC_MISSING_VALUE Numeric missing value replacement

CATEGORICAL_MISSING_VALUE Categorical missing value replacement

NORMALIZATION_SHIFT Normalization shift value

NORMALIZATION_SCALE Normalization scale value

4.10.26 Model Detail Views for Exponential Smoothing
Model detail views for Exponential Smoothing (ESM) contain information about the
model output and global information.

An ESM model has the following views:

• Model output: DM$VPmodel_name

• Model global information: DM$VGmodel_name

Model output: This view contains the result of an ESM model. The output has a set of
records such as partition, CASE_ID, value, prediction, lower, upper, and so on and
ordered by partition and CASE_ID (time). Each partition has a separate smoothing
model. For a given partition, for each time (CASE_ID) point that the input time series
covers, the value is the observed or accumulated value at the time point, and the
prediction is the one-step-ahead forecast at that time point. For each time point (future
prediction) beyond the range of input time series, the value is NULL, and the prediction
is the model forecast for that time point. Lower and upper are the lower bound and
upper bound of the user specified confidence interval for the prediction.

Model global Information: This view contains the global information of the model along
with the estimated smoothing constants, the estimated initial state, and global
diagnostic measures.

Depending on the type of model, the global diagnostics include some or all of the
following for Exponential Smoothing.

Table 4-83 Exponential Smoothing Model Statistics Information In Model
Global View

Name Description

–2 LOG-LIKELIHOOD Negative log-likelihood of model

ALPHA Smoothing constant

AIC Akaike information criterion

AICC Corrected Akaike information criterion

AMSE Average mean square error over user-
specified time window

BETA Trend smoothing constant

Chapter 4
Model Detail Views

4-80

Table 4-83 (Cont.) Exponential Smoothing Model Statistics Information In
Model Global View

Name Description

BIC Bayesian information criterion

GAMMA Seasonal smoothing constant

INITIAL LEVEL Model estimate of value one time interval prior
to start of observed series

INITIAL SEASON i Model estimate of seasonal effect for season i
one time interval prior to start of observed
series

INITIAL TREND Model estimate of trend one time interval prior
to start of observed series

MAE Model mean absolute error

MSE Model mean square error

PHI Damping parameter

STD Model standard error

SIGMA Model standard deviation of residuals

4.10.27 Model Detail Views for Text Features
The model details view for text features is DM$VXmodel_name.

The text feature view DM$VXmodel_name describes the extracted text features if there are text
attributes present. The view has the following schema:

Name Type
 -------------- ---------------------
 PARTITION_NAME VARCHAR2(128)
 COLUMN_NAME VARCHAR2(128)
 TOKEN VARCHAR2(4000)
 DOCUMENT_FREQUENCY NUMBER

Table 4-84 Text Feature View for Extracted Text Features

Column Name Description

PARTITION_NAME A partition in a partitioned model to retrieve details

COLUMN_NAME Name of the identifier column

TOKEN Text token which is usually a word or stemmed word

DOCUMENT_FREQUENCY A measure of token frequency in the entire training set

Chapter 4
Model Detail Views

4-81

5
Scoring and Deployment

Explains the scoring and deployment features of Oracle Machine Learning for SQL.

• About Scoring and Deployment

• Use the Oracle Machine Learning for SQL Functions

• Prediction Details

• Real-Time Scoring

• Dynamic Scoring

• Cost-Sensitive Decision Making

• DBMS_DATA_MINING.Apply

5.1 About Scoring and Deployment
Scoring is the application of models to new data. In Oracle Machine Learning for SQL,
scoring is performed by SQL language functions.

Predictive functions perform classification, regression, or anomaly detection. Clustering
functions assign rows to clusters. Feature extraction functions transform the input data to a
set of higher order predictors. A scoring procedure is also available in the DBMS_DATA_MINING
PL/SQL package.

Deployment refers to the use of models in a target environment. Once the models have
been built, the challenges come in deploying them to obtain the best results, and in
maintaining them within a production environment. Deployment can be any of the following:

• Scoring data either for batch or real-time results. Scores can include predictions,
probabilities, rules, and other statistics.

• Extracting model details to produce reports. For example: clustering rules, decision tree
rules, or attribute rankings from an Attribute Importance model.

• Extending the business intelligence infrastructure of a data warehouse by incorporating
machine learning results in applications or operational systems.

• Moving a model from the database where it was built to the database where it used for
scoring (export/import)

OML4SQL supports all of these deployment scenarios.

5-1

Note:

OML4SQL scoring operations support parallel execution. When parallel
execution is enabled, multiple CPU and I/O resources are applied to the
execution of a single database operation.

Parallel execution offers significant performance improvements, especially
for operations that involve complex queries and large databases typically
associated with decision support systems (DSS) and data warehouses.

Related Topics

• Oracle Database VLDB and Partitioning Guide

• Oracle Machine Learning for SQL Concepts

• Export and Import Oracle Machine Learning for SQL Models
You can export machine learning models to flat files to back up work in progress or
to move models to a different instance of Oracle Database Enterprise Edition
(such as from a development database to a test database).

5.2 Use the Oracle Machine Learning for SQL Functions
Some of the benefits of using SQL functions for Oracle Machine Learning for SQL are
listed.

The OML4SQL functions provide the following benefits:

• Models can be easily deployed within the context of existing SQL applications.

• Scoring operations take advantage of existing query execution functionality. This
provides performance benefits.

• Scoring results are pipelined, enabling the rows to be processed without requiring
materialization.

The machine learning functions produce a score for each row in the selection. The
functions can apply a machine learning model schema object to compute the score, or
they can score dynamically without a pre-defined model, as described in "Dynamic
Scoring".

Related Topics

• Dynamic Scoring
You can perform dynamic scoring if, for some reason, you do not want to apply a
predefined model.

• Scoring Requirements
Learn how scoring is done in Oracle Machine Learning for SQL.

• Oracle Machine Learning for SQL Scoring Functions
Understand the different OML4SQL scoring functions.

• Oracle Database SQL Language Reference

Chapter 5
Use the Oracle Machine Learning for SQL Functions

5-2

5.2.1 Choose the Predictors
You can select different attributes as predictors in a PREDICTION function through a USING
clause.

The OML4SQL functions support a USING clause that specifies which attributes to use for
scoring. You can specify some or all of the attributes in the selection and you can specify
expressions. The following examples all use the PREDICTION function to find the customers
who are likely to use an affinity card, but each example uses a different set of predictors.

The query in Example 5-1 uses all the predictors.

The query in Example 5-2 uses only gender, marital status, occupation, and income as
predictors.

The query in Example 5-3 uses three attributes and an expression as predictors. The
prediction is based on gender, marital status, occupation, and the assumption that all
customers are in the highest income bracket.

Example 5-1 Using All Predictors

The dt_sh_clas_sample model is created by the oml4sql-classification-decision-
tree.sql example.

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION(dt_sh_clas_sample USING *) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 25 38
M 213 43

Example 5-2 Using Some Predictors

 SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION(dt_sh_clas_sample USING
 cust_gender,cust_marital_status,
 occupation, cust_income_level) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 30 38
M 186 43

Example 5-3 Using Some Predictors and an Expression

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION(dt_sh_clas_sample USING
 cust_gender, cust_marital_status, occupation,
 'L: 300,000 and above' AS cust_income_level) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

Chapter 5
Use the Oracle Machine Learning for SQL Functions

5-3

C CNT AVG_AGE
- ---------- ----------
F 30 38
M 186 43

5.2.2 Single-Record Scoring
Learn how a score of 0 and 1 is used in predicting customers who are likely to use
affinity card.

The Oracle Machine Learning for SQL functions can produce a score for a single
record, as shown in Example 5-4 and Example 5-5.

Example 5-4 returns a prediction for customer 102001 by applying the classification
model NB_SH_Clas_sample. The resulting score is 0, meaning that this customer is
unlikely to use an affinity card. The NB_SH_Clas_Sample model is created by the
oml4sql-classification-naive-bayes.sql example.

Example 5-5 returns a prediction for 'Affinity card is great' as the comments attribute
by applying the text machine learning model T_SVM_Clas_sample. The resulting
score is 1, meaning that this customer is likely to use an affinity card. The
T_SVM_Clas_sample model is created by the oml4sql-classification-text-
analysis-svm.sql example.

Example 5-4 Scoring a Single Customer or a Single Text Expression

SELECT PREDICTION (NB_SH_Clas_Sample USING *)
 FROM sh.customers where cust_id = 102001;

PREDICTION(NB_SH_CLAS_SAMPLEUSING*)

 0

Example 5-5 Scoring a Single Text Expression

SELECT
 PREDICTION(T_SVM_Clas_sample USING 'Affinity card is great' AS comments)
FROM DUAL;

PREDICTION(T_SVM_CLAS_SAMPLEUSING'AFFINITYCARDISGREAT'ASCOMMENTS)

 1

5.3 Prediction Details
Prediction details are XML strings that provide information about the score.

Details are available for all types of scoring: clustering, feature extraction,
classification, regression, and anomaly detection. Details are available whether
scoring is dynamic or the result of model apply.

The details functions, CLUSTER_DETAILS, FEATURE_DETAILS, and PREDICTION_DETAILS
return the actual value of attributes used for scoring and the relative importance of the
attributes in determining the score. By default, the functions return the five most
important attributes in descending order of importance.

Chapter 5
Prediction Details

5-4

5.3.1 Cluster Details
Shows an example of the CLUSTER_DETAILS function.

For the most likely cluster assignments of customer 100955 (probability of assignment >
20%), the query in the following example produces the five attributes that have the most
impact for each of the likely clusters. The clustering functions apply an Expectation
Maximization model named em_sh_clus_sample to the data selected from
mining_data_apply_v. The "5" specified in CLUSTER_DETAILS is not required, because five
attributes are returned by default. The em_sh_clus_sample model is created by the oml4sql-
singular-value-decomposition.sql example.

Example 5-6 Cluster Details

SELECT S.cluster_id, probability prob,
 CLUSTER_DETAILS(em_sh_clus_sample, S.cluster_id, 5 USING T.*) det
 FROM
 (SELECT v.*, CLUSTER_SET(em_sh_clus_sample, NULL, 0.2 USING *) pset
 FROM mining_data_apply_v v
 WHERE cust_id = 100955) T,
 TABLE(T.pset) S
 ORDER BY 2 DESC;

CLUSTER_ID PROB DET
---------- ----- --
 14 .6761 <Details algorithm="Expectation Maximization" cluster="14">
 <Attribute name="AGE" actualValue="51" weight=".676" rank="1"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".557" rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".412" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".171" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION"actualValue="1" weight="-.003"
 rank="5"/>
 </Details>

 3 .3227 <Details algorithm="Expectation Maximization" cluster="3">
 <Attribute name="YRS_RESIDENCE" actualValue="3" weight=".323" rank="1"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".265" rank="2"/>
 <Attribute name="EDUCATION" actualValue="HS-grad" weight=".172" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".125" rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Crafts" weight=".055" rank="5"/>
 </Details>

5.3.2 Feature Details
Shows an example of the FEATURE_DETAILS function.

The query in the following example returns the three attributes that have the greatest impact
on the top Principal Components Analysis (PCA) projection for customer 101501. The
FEATURE_DETAILS function applies a Singular Value Decomposition (SVD) model named
svd_sh_sample to the data selected from the svd_sh_sample_build_num table. The table
and model are created by the oml4sql-singular-value-decomposition.sql example.

Example 5-7 Feature Details

SELECT FEATURE_DETAILS(svd_sh_sample, 1, 3 USING *) proj1det
 FROM svd_sh_sample_build_num
 WHERE CUST_ID = 101501;

Chapter 5
Prediction Details

5-5

PROJ1DET
--
<Details algorithm="Singular Value Decomposition" feature="1">
<Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".352" rank="1"/>
<Attribute name="Y_BOX_GAMES" actualValue="0" weight=".249" rank="2"/>
<Attribute name="AGE" actualValue="41" weight=".063" rank="3"/>
</Details>

5.3.3 Prediction Details
Shows an examples of PREDICTION_DETAILS function.

The query in the following example returns the attributes that are most important in
predicting the age of customer 100010. The prediction functions apply a Generalized
Linear Model regression model named GLMR_SH_Regr_sample to the data selected
from mining_data_apply_v. The GLMR_SH_Regr_sample model is created by the
oml4sql-regression-glm.sql example.

Example 5-8 Prediction Details for Regression

SELECT cust_id,
 PREDICTION(GLMR_SH_Regr_sample USING *) pr,
 PREDICTION_DETAILS(GLMR_SH_Regr_sample USING *) pd
 FROM mining_data_apply_v
 WHERE CUST_ID = 100010;

CUST_ID PR PD
------- ----- -----------
 100010 25.45 <Details algorithm="Generalized Linear Model">
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".025" rank="1"/>
 <Attribute name="OCCUPATION" actualValue="Crafts" weight=".019" rank="2"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".01" rank="3"/>
 <Attribute name="OS_DOC_SET_KANJI" actualValue="0" weight="0" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight="-.004" rank="5"/>
 </Details>

The query in the following example returns the customers who work in Tech Support
and are likely to use an affinity card (with more than 85% probability). The prediction
functions apply an Support Vector Machine (SVM) classification model named
svmc_sh_clas_sample. to the data selected from mining_data_apply_v. The query
includes the prediction details, which show that education is the most important
predictor. The svmc_sh_clas_sample model is created by the oml4sql-
classification-svm.sql example.

Example 5-9 Prediction Details for Classification

SELECT cust_id, PREDICTION_DETAILS(svmc_sh_clas_sample, 1 USING *) PD
 FROM mining_data_apply_v
 WHERE PREDICTION_PROBABILITY(svmc_sh_clas_sample, 1 USING *) > 0.85
 AND occupation = 'TechSup'
 ORDER BY cust_id;

CUST_ID PD
------- ---
 100029 <Details algorithm="Support Vector Machines" class="1">
 <Attribute name="EDUCATION" actualValue="Assoc-A" weight=".199" rank="1"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="I: 170\,000 - 189\,999" weight=".044"
 rank="2"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".028" rank="3"/>

Chapter 5
Prediction Details

5-6

 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".024" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight=".022" rank="5"/>
 </Details>

 100378 <Details algorithm="Support Vector Machines" class="1">
 <Attribute name="EDUCATION" actualValue="Assoc-A" weight=".21" rank="1"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="B: 30\,000 - 49\,999" weight=".047"
 rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".043" rank="3"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".03" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight=".023" rank="5"/>
 </Details>

 100508 <Details algorithm="Support Vector Machines" class="1">
 <Attribute name="EDUCATION" actualValue="Bach." weight=".19" rank="1"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="L: 300\,000 and above" weight=".046"
 rank="2"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".031" rank="3"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".026" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight=".024" rank="5"/>
 </Details>

 100980 <Details algorithm="Support Vector Machines" class="1">
 <Attribute name="EDUCATION" actualValue="Assoc-A" weight=".19" rank="1"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".038" rank="2"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".026" rank="3"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".022" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight=".02" rank="5"/>
 </Details>

The query in the following example returns the two customers that differ the most from the
rest of the customers. The prediction functions apply an anomaly detection model named
SVMO_SH_Clas_sample to the data selected from mining_data_apply_v. anomaly detection
uses a one-class SVM classifier. The model is created by the oml4sql-singular-value-
decomposition.sql example.

Example 5-10 Prediction Details for Anomaly Detection

SELECT cust_id, pd FROM
 (SELECT cust_id,
 PREDICTION_DETAILS(SVMO_SH_Clas_sample, 0 USING *) pd,
 RANK() OVER (ORDER BY prediction_probability(
 SVMO_SH_Clas_sample, 0 USING *) DESC, cust_id) rnk
 FROM mining_data_one_class_v)
 WHERE rnk <= 2
 ORDER BY rnk;

 CUST_ID PD
---------- ---
 102366 <Details algorithm="Support Vector Machines" class="0">
 <Attribute name="COUNTRY_NAME" actualValue="United Kingdom" weight=".078" rank="1"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="Divorc." weight=".027" rank="2"/>
 <Attribute name="CUST_GENDER" actualValue="F" weight=".01" rank="3"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="9+" weight=".009" rank="4"/>
 <Attribute name="AGE" actualValue="28" weight=".006" rank="5"/>
 </Details>

 101790 <Details algorithm="Support Vector Machines" class="0">
 <Attribute name="COUNTRY_NAME" actualValue="Canada" weight=".068" rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="4-5" weight=".018" rank="2"/>
 <Attribute name="EDUCATION" actualValue="7th-8th" weight=".015" rank="3"/>

Chapter 5
Prediction Details

5-7

 <Attribute name="CUST_GENDER" actualValue="F" weight=".013" rank="4"/>
 <Attribute name="AGE" actualValue="38" weight=".001" rank="5"/>
 </Details>

5.3.4 GROUPING Hint
OML4SQL functions include PREDICTION*, CLUSTER*, FEATURE*, and ORA_DM_*. The
GROUPING hint is an optional hint that applies to machine learning scoring functions
when scoring partitioned models.

This hint results in partitioning the input data set into distinct data slices so that each
partition is scored in its entirety before advancing to the next partition. However,
parallelism by partition is still available. Data slices are determined by the partitioning
key columns used when the model was built. This method can be used with any
machine learning function against a partitioned model. The hint may yield a query
performance gain when scoring large data that is associated with many partitions but
may negatively impact performance when scoring large data with few partitions on
large systems. Typically, there is no performance gain if you use the hint for single row
queries.

Enhanced PREDICTION Function Command Format

<prediction function> ::=
 PREDICTION <left paren> /*+ GROUPING */ <prediction model>
 [<comma> <class value> [<comma> <top N>]]
 USING <machine learning attribute list> <right paren>

The syntax for only the PREDICTION function is given but it is applicable to any
machine learning function in which PREDICTION, CLUSTERING, and
FEATURE_EXTRACTION scoring functions occur.

Example 5-11 Example

SELECT PREDICTION(/*+ GROUPING */my_model USING *) pred FROM <input
table>;

Related Topics

• Oracle Database SQL Language Reference

5.4 Real-Time Scoring
You can perform real-time scoring by running a SQL query. An example shows a real-
time query using PREDICTION_PROBABILITY function. Based on the result, a customer
representative can offer a value card to the customer.

Oracle Machine Learning for SQL functions enable prediction, clustering, and feature
extraction analysis to be easily integrated into live production and operational systems.
Because machine learning results are returned within SQL queries, machine learning
can occur in real time.

With real-time scoring, point-of-sales database transactions can be mined. Predictions
and rule sets can be generated to help front-line workers make better analytical

Chapter 5
Real-Time Scoring

5-8

decisions. Real-time scoring enables fraud detection, identification of potential liabilities, and
recognition of better marketing and selling opportunities.

The query in the following example uses a Decision Tree model named dt_sh_clas_sample
to predict the probability that customer 101488 uses an affinity card. A customer
representative can retrieve this information in real time when talking to this customer on the
phone. Based on the query result, the representative can offer an extra-value card, since
there is a 73% chance that the customer uses a card. The model is created by the oml4sql-
classification-decision-tree.sql example.

Example 5-12 Real-Time Query with Prediction Probability

SELECT PREDICTION_PROBABILITY(dt_sh_clas_sample, 1 USING *) cust_card_prob
 FROM mining_data_apply_v
 WHERE cust_id = 101488;

CUST_CARD_PROB

 .72764

5.5 Dynamic Scoring
You can perform dynamic scoring if, for some reason, you do not want to apply a predefined
model.

The Oracle Machine Learning for SQL functions operate in two modes: by applying a
predefined model, or by executing an analytic clause. If you supply an analytic clause instead
of a model name, the function builds one or more transient models and uses them to score
the data.

The ability to score data dynamically without a predefined model extends the application of
basic embedded machine learning techniques into environments where models are not
available. Dynamic scoring, however, has limitations. The transient models created during
dynamic scoring are not available for inspection or fine tuning. Applications that require
model inspection, the correlation of scoring results with the model, special algorithm settings,
or multiple scoring queries that use the same model, require a predefined model.

The following example shows a dynamic scoring query. The example identifies the rows in
the input data that contain unusual customer age values.

Example 5-13 Dynamic Prediction

SELECT cust_id, age, pred_age, age-pred_age age_diff, pred_det FROM
 (SELECT cust_id, age, pred_age, pred_det,
 RANK() OVER (ORDER BY ABS(age-pred_age) DESC) rnk FROM
 (SELECT cust_id, age,
 PREDICTION(FOR age USING *) OVER () pred_age,
 PREDICTION_DETAILS(FOR age ABS USING *) OVER () pred_det
 FROM mining_data_apply_v))
WHERE rnk <= 5;

CUST_ID AGE PRED_AGE AGE_DIFF PRED_DET
------- ---- ---------- -------- --
 100910 80 40.6686505 39.33 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="1"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0"
 weight=".059" rank="2"/>
 <Attribute name="AFFINITY_CARD" actualValue="0"

Chapter 5
Dynamic Scoring

5-9

 weight=".059" rank="3"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1"
 weight=".059" rank="4"/>
 <Attribute name="YRS_RESIDENCE" actualValue="4"
 weight=".059" rank="5"/>
 </Details>

 101285 79 42.1753571 36.82 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".059"
 rank="2"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="Mabsent"
 weight=".059" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Prof." weight=".059"
 rank="5"/>
 </Details>

 100694 77 41.0396722 35.96 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="1"/>
 <Attribute name="EDUCATION" actualValue="< Bach."
 weight=".059" rank="2"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="3"/>
 <Attribute name="CUST_ID" actualValue="100694" weight=".059"
 rank="4"/>
 <Attribute name="COUNTRY_NAME" actualValue="United States of
 America" weight=".059" rank="5"/>
 </Details>

 100308 81 45.3252491 35.67 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="1"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="2"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".059"
 rank="3"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1"
 weight=".059" rank="4"/>
 <Attribute name="CUST_GENDER" actualValue="F" weight=".059"
 rank="5"/>
 </Details>

 101256 90 54.3862214 35.61 <Details algorithm="Support Vector Machines">
 <Attribute name="YRS_RESIDENCE" actualValue="9" weight=".059"
 rank="1"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="2"/>
 <Attribute name="EDUCATION" actualValue="< Bach."
 weight=".059" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="4"/>
 <Attribute name="COUNTRY_NAME" actualValue="United States of
 America" weight=".059" rank="5"/>
 </Details>

Chapter 5
Dynamic Scoring

5-10

5.6 Cost-Sensitive Decision Making
Costs are user-specified numbers that bias classification. The algorithm uses positive
numbers to penalize more expensive outcomes over less expensive outcomes. Higher
numbers indicate higher costs.

The algorithm uses negative numbers to favor more beneficial outcomes over less beneficial
outcomes. Lower negative numbers indicate higher benefits.

All classification algorithms can use costs for scoring. You can specify the costs in a cost
matrix table, or you can specify the costs inline when scoring. If you specify costs inline and
the model also has an associated cost matrix, only the inline costs are used. The
PREDICTION, PREDICTION_SET, and PREDICTION_COST functions support costs.

Only the Decision Tree algorithm can use costs to bias the model build. If you want to create
a Decision Tree model with costs, create a cost matrix table and provide its name in the
CLAS_COST_TABLE_NAME setting for the model. If you specify costs when building the model,
the cost matrix used to create the model is used when scoring. If you want to use a different
cost matrix table for scoring, first remove the existing cost matrix table then add the new one.

A sample cost matrix table is shown in the following table. The cost matrix specifies costs for
a binary target. The matrix indicates that the algorithm must treat a misclassified 0 as twice
as costly as a misclassified 1.

Table 5-1 Sample Cost Matrix

ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST

0 0 0

0 1 2

1 0 1

1 1 0

Example 5-14 Sample Queries With Costs

The table nbmodel_costs contains the cost matrix described in Table 5-1.

SELECT * from nbmodel_costs;

ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST
------------------- ---------------------- ----------
 0 0 0
 0 1 2
 1 0 1
 1 1 0

The following statement associates the cost matrix with a Naive Bayes model called
nbmodel.
BEGIN
 dbms_data_mining.add_cost_matrix('nbmodel', 'nbmodel_costs');
END;
/

Chapter 5
Cost-Sensitive Decision Making

5-11

The following query takes the cost matrix into account when scoring
mining_data_apply_v. The output is restricted to those rows where a prediction of 1 is
less costly then a prediction of 0.

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION (nbmodel COST MODEL
 USING cust_marital_status, education, household_size) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 25 38
M 208 43

You can specify costs inline when you invoke the scoring function. If you specify costs
inline and the model also has an associated cost matrix, only the inline costs are used.
The same query is shown below with different costs specified inline. Instead of the "2"
shown in the cost matrix table (Table 5-1), "10" is specified in the inline costs.

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION (nbmodel
 COST (0,1) values ((0, 10),
 (1, 0))
 USING cust_marital_status, education, household_size) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 74 39
M 581 43

The same query based on probability instead of costs is shown below.

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION (nbmodel
 USING cust_marital_status, education, household_size) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 73 39
M 577 44

Related Topics

• Example 1-1

5.7 DBMS_DATA_MINING.APPLY
The APPLY procedure in DBMS_DATA_MINING is a batch apply operation that writes the
results of scoring directly to a table.

The columns in the table are machine learning function-dependent.

Chapter 5
DBMS_DATA_MINING.APPLY

5-12

Scoring with APPLY generates the same results as scoring with the SQL scoring functions.
Classification produces a prediction and a probability for each case; clustering produces a
cluster ID and a probability for each case, and so on. The difference lies in the way that
scoring results are captured and the mechanisms that can be used for retrieving them.

APPLY creates an output table with the columns shown in the following table:

Table 5-2 APPLY Output Table

Machine Learning Function Output Columns

classification CASE_ID
PREDICTION
PROBABILITY

regression CASE_ID
PREDICTION

anomaly detection CASE_ID
PREDICTION
PROBABILITY

clustering CASE_ID
CLUSTER_ID
PROBABILITY

feature extraction CASE_ID
FEATURE_ID
MATCH_QUALITY

Since APPLY output is stored separately from the scoring data, it must be joined to the scoring
data to support queries that include the scored rows. Thus any model that is used with APPLY
must have a case ID.

A case ID is not required for models that is applied with SQL scoring functions. Likewise,
storage and joins are not required, since scoring results are generated and consumed in real
time within a SQL query.

The following example illustrates anomaly detection with APPLY. The query of the APPLY
output table returns the ten first customers in the table. Each has a a probability for being
typical (1) and a probability for being anomalous (0). The SVMO_SH_Clas_sample model is
created by the oml4sql-singular-value-decomposition.sql example.

Example 5-15 Anomaly Detection with DBMS_DATA_MINING.APPLY

EXEC dbms_data_mining.apply
 ('SVMO_SH_Clas_sample','svmo_sh_sample_prepared',
 'cust_id', 'one_class_output');

SELECT * from one_class_output where rownum < 11;

 CUST_ID PREDICTION PROBABILITY
---------- ---------- -----------
 101798 1 .567389309
 101798 0 .432610691
 102276 1 .564922469
 102276 0 .435077531
 102404 1 .51213544

Chapter 5
DBMS_DATA_MINING.APPLY

5-13

 102404 0 .48786456
 101891 1 .563474346
 101891 0 .436525654
 102815 0 .500663683
 102815 1 .499336317

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 5
DBMS_DATA_MINING.APPLY

5-14

6
Machine Learning Operations on
Unstructured Text

Explains how to use Oracle Machine Learning for SQL to operate on unstructured text.

• About Unstructured Text

• About Machine Learning and Oracle Text

• Model Detail Views for Text Features

• Create a Model that Includes Machine Learning Operations on Text

• Creating a Text Policy

• Configuring a Text Attribute

6.1 About Unstructured Text
Unstructured text may contain important information that is critical to the success of a
business.

Machine learning algorithms act on data that is numerical or categorical. Numerical data is
ordered. It is stored in columns that have a numeric data type, such as NUMBER or FLOAT.
Categorical data is identified by category or classification. It is stored in columns that have a
character data type, such as VARCHAR2 or CHAR.

Unstructured text data is neither numerical nor categorical. Unstructured text includes items
such as web pages, document libraries, Power Point presentations, product specifications,
emails, comment fields in reports, and call center notes. It has been said that unstructured
text accounts for more than three quarters of all enterprise data. Extracting meaningful
information from unstructured text can be critical to the success of a business.

6.2 About Machine Learning and Oracle Text
Understand machine learning operations on text and Oracle Text.

Machine learning operations on text is the process of applying machine learning techniques
to text terms, also called text features or tokens. Text terms are words or groups of words that
have been extracted from text documents and assigned numeric weights. Text terms are the
fundamental unit of text that can be manipulated and analyzed.

Oracle Text is an Oracle Database technology that provides term extraction, word and theme
searching, and other utilities for querying text. When columns of text are present in the
training data, Oracle Machine Learning for SQL uses Oracle Text utilities and term weighting
strategies to transform the text for machine learning operations. OML4SQL passes
configuration information supplied by you to Oracle Text and uses the results in the model
creation process.

Related Topics

• Oracle Text Application Developer's Guide

6-1

6.3 Create a Model that Includes Machine Learning
Operations on Text

Learn how to create a model that includes machine learning operations on text.

Oracle Machine Learning for SQL supports unstructured text within columns of
VARCHAR2, CHAR, CLOB, BLOB, and BFILE, as described in the following table:

Table 6-1 Column Data Types That May Contain Unstructured Text

Data Type Description

BFILE and
BLOB

Oracle Machine Learning for SQL interprets BLOB and BFILE as text only if you
identify the columns as text when you create the model. If you do not identify the
columns as text, then CREATE_MODEL returns an error.

CLOB OML4SQL interprets CLOB as text.

CHAR OML4SQL interprets CHAR as categorical by default. You can identify columns of
CHAR as text when you create the model.

VARCHAR2 OML4SQL interprets VARCHAR2 with data length > 4000 as text.

OML4SQL interprets VARCHAR2 with data length <= 4000 as categorical by
default. You can identify these columns as text when you create the model.

Note:

Text is not supported in nested columns or as a target in supervised machine
learning.

The settings described in the following table control the term extraction process for text
attributes in a model. Instructions for specifying model settings are in "Specifying
Model Settings".

Table 6-2 Model Settings for Text

Setting Name Data Type Setting Value Description

ODMS_TEXT_POLICY_NAM
E

VARCHAR2(40
00)

Name of an Oracle Text
policy object created with
CTX_DDL.CREATE_POLICY

Affects how individual tokens are
extracted from unstructured text.

ODMS_TEXT_MAX_FEATUR
ES

INTEGER 1 <= value <= 100000 Maximum number of features to use from
the document set (across all documents
of each text column) passed to
CREATE_MODEL.

Default is 3000.

A model can include one or more text attributes. A model with text attributes can also
include categorical and numerical attributes.

Chapter 6
Create a Model that Includes Machine Learning Operations on Text

6-2

To create a model that includes text attributes:

1. Create an Oracle Text policy object.

2. Specify the model configuration settings that are described in "Table 6-2".

3. Specify which columns must be treated as text and, optionally, provide text
transformation instructions for individual attributes.

4. Pass the model settings and text transformation instructions to
DBMS_DATA_MINING.CREATE_MODEL2 or DBMS_DATA_MINING.CREATE_MODEL.

Note:

All algorithms except O-Cluster can support columns of unstructured text.

The use of unstructured text is not recommended for association rules (Apriori).

In the following example, an SVM model is used to predict customers that are most likely to
be positive responders to an Affinity Card loyalty program. The data comes with a text column
that contains user generated comments. By creating an Oracle Text policy and specifying
model settings, the algorithm automatically uses the text column and builds the model on
both the structured data and unstructured text.

This example uses a view called mining_data which is created from SH.SALES table. A
training data set called mining_train_text is also created.

The following queries show you how to create an Oracle Text policy followed by building a
model using CREATE_MODEL2 procedure.

%script

BEGIN

EXECUTE ctx_ddl.create_policy('dmdemo_svm_policy');

PL/SQL procedure successfully completed.

PL/SQL procedure successfully completed.

%script

BEGIN DBMS_DATA_MINING.DROP_MODEL('T_SVM_Clas_sample');
EXCEPTION WHEN OTHERS THEN NULL; END;
/
DECLARE
 v_setlst DBMS_DATA_MINING.SETTING_LIST;
 xformlist dbms_data_mining_transform.TRANSFORM_LIST;

BEGIN

 v_setlst(dbms_data_mining.algo_name) :=
dbms_data_mining.algo_support_vector_machines;
 v_setlst(dbms_data_mining.prep_auto) := dbms_data_mining.prep_auto_on;
 v_setlst(dbms_data_mining.svms_kernel_function) := dbms_data_mining.svms_linear;

Chapter 6
Create a Model that Includes Machine Learning Operations on Text

6-3

 v_setlst(dbms_data_mining.svms_complexity_factor) := '100';
 v_setlst(dbms_data_mining.odms_text_policy_name) := 'DMDEMO_SVM_POLICY';

 v_setlst(dbms_data_mining.svms_solver) := dbms_data_mining.svms_solver_sgd;
 dbms_data_mining_transform.SET_TRANSFORM(
 xformlist, 'comments', null, 'comments', null, 'TEXT');
 DBMS_DATA_MINING.CREATE_MODEL2(
 model_name => 'T_SVM_Clas_sample',
 mining_function => dbms_data_mining.classification,
 data_query => 'select * from mining_train_text',
 set_list => v_setlst,
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 xform_list => xformlist);
END;
/

PL/SQL procedure successfully completed.

PL/SQL procedure successfully completed.

Related Topics

• Specify Model Settings
Understand how to configure machine learning models at build time.

• Create a Text Policy
An Oracle Text policy specifies how text content must be interpreted. You can
provide a text policy to govern a model, an attribute, or both the model and
individual attributes.

• Configure a Text Attribute
Provide transformation instructions for text attribute or unstructured text by
explicitly identifying the column datatypes.

• Embed Transformations in a Model
You can specify your own transformations and embed them in a model by creating
a transformation list and passing it to DBMS_DATA_MINING.CREATE_MODEL2 or
DBMS_DATA_MINING.CREATE_MODEL.

6.4 Create a Text Policy
An Oracle Text policy specifies how text content must be interpreted. You can provide
a text policy to govern a model, an attribute, or both the model and individual
attributes.

If a model-specific policy is present and one or more attributes have their own policies,
Oracle Machine Learning for SQL uses the attribute policies for the specified attributes
and the model-specific policy for the other attributes.

The CTX_DDL.CREATE_POLICY procedure creates a text policy.

CTX_DDL.CREATE_POLICY(
 policy_name IN VARCHAR2,

Chapter 6
Create a Text Policy

6-4

 filter IN VARCHAR2 DEFAULT NULL,
 section_group IN VARCHAR2 DEFAULT NULL,
 lexer IN VARCHAR2 DEFAULT NULL,
 stoplist IN VARCHAR2 DEFAULT NULL,
 wordlist IN VARCHAR2 DEFAULT NULL);

The parameters of CTX_DDL.CREATE_POLICY are described in the following table.

Table 6-3 CTX_DDL.CREATE_POLICY Procedure Parameters

Parameter Name Description

policy_name Name of the new policy object. Oracle Text policies and text indexes share the
same namespace.

filter Specifies how the documents must be converted to plain text for indexing.
Examples are: CHARSET_FILTER for character sets and NULL_FILTER for plain
text, HTML and XML.

For filter values, see "Filter Types" in Oracle Text Reference.

section_group Identifies sections within the documents. For example, HTML_SECTION_GROUP
defines sections in HTML documents.

For section_group values, see "Section Group Types" in Oracle Text
Reference.

Note: You can specify any section group that is supported by CONTEXT indexes.

lexer Identifies the language that is being indexed. For example, BASIC_LEXER is the
lexer for extracting terms from text in languages that use white space delimited
words (such as English and most western European languages).

For lexer values, see "Lexer Types" in Oracle Text Reference.

stoplist Specifies words and themes to exclude from term extraction. For example, the
word "the" is typically in the stoplist for English language documents.

The system-supplied stoplist is used by default.

See "Stoplists" in Oracle Text Reference.

wordlist Specifies how stems and fuzzy queries must be expanded. A stem defines a root
form of a word so that different grammatical forms have a single representation. A
fuzzy query includes common misspellings in the representation of a word.

See "BASIC_WORDLIST" in Oracle Text Reference.

Related Topics

• Oracle Text Reference

6.5 Configure a Text Attribute
Provide transformation instructions for text attribute or unstructured text by explicitly
identifying the column datatypes.

As shown in Table 6-1, you can identify columns of CHAR,shorter VARCHAR2 (<=4000), BFILE,
and BLOB as text attributes. If CHAR and shorter VARCHAR2 columns are not explicitly identified
as unstructured text, then CREATE_MODEL processes them as categorical attributes. If BFILE
and BLOB columns are not explicitly identified as unstructured text, then CREATE_MODEL returns
an error.

To identify a column as a text attribute, supply the keyword TEXT in an Attribute
specification. The attribute specification is a field (attribute_spec) in a transformation

Chapter 6
Configure a Text Attribute

6-5

record (transform_rec). Transformation records are components of transformation
lists (xform_list) that can be passed to CREATE_MODELor CREATE_MODEL2.

Note:

An attribute specification can also include information that is not related to
text. Instructions for constructing an attribute specification are in "Embedding
Transformations in a Model".

You can provide transformation instructions for any text attribute by qualifying the TEXT
keyword in the attribute specification with the subsettings described in the following
table.

Table 6-4 Attribute-Specific Text Transformation Instructions

Subsetting
Name

Description Example

BIGRAM A sequence of two adjacent elements from a
string of tokens, which are typically letters,
syllables, or words.

Here, NORMAL tokens are mixed with their
bigrams.

(TOKEN_TYPE:BIGRAM)

POLICY_NAME Name of an Oracle Text policy object created
with CTX_DDL.CREATE_POLICY

(POLICY_NAME:my_polic
y)

STEM_BIGRAM Here, STEM tokens are extracted first and then
stem bigrams are formed.

(TOKEN_TYPE:STEM_BIGR
AM)

SYNONYM Oracle Machine Learning for SQL supports
synonyms. The following is an optional
parameter:

<thesaurus> where <thesaurus> is the
name of the thesaurus defining synonyms. If
SYNONYM is used without this parameter, then
the default thesaurus is used.

(TOKEN_TYPE:SYNONYM)

(TOKEN_TYPE:SYNONYM[N
AMES])

TOKEN_TYPE The following values are supported:

NORMAL (the default)

STEM
THEME

See "Token Types in an Attribute Specification"

(TOKEN_TYPE:THEME)

MAX_FEATURES Maximum number of features to use from the
attribute.

(MAX_FEATURES:3000)

Chapter 6
Configure a Text Attribute

6-6

Note:

The TEXT keyword is only required for CLOB and longer VARCHAR2 (>4000) when you
specify transformation instructions. The TEXT keyword is always required for CHAR,
shorter VARCHAR2, BFILE, and BLOB — whether or not you specify transformation
instructions.

Tip:

You can view attribute specifications in the data dictionary view
ALL_MINING_MODEL_ATTRIBUTES, as shown in Oracle Database Reference.

Token Types in an Attribute Specification

When stems or themes are specified as the token type, the lexer preference for the text
policy must support these types of tokens.

The following example adds themes and English stems to BASIC_LEXER.

BEGIN
 CTX_DDL.CREATE_PREFERENCE('my_lexer', 'BASIC_LEXER');
 CTX_DDL.SET_ATTRIBUTE('my_lexer', 'index_stems', 'ENGLISH');
 CTX_DDL.SET_ATTRIBUTE('my_lexer', 'index_themes', 'YES');
END;

Example 6-1 A Sample Attribute Specification for Text

This expression specifies that text transformation for the attribute must use the text policy
named my_policy. The token type is THEME, and the maximum number of features is 3000.

"TEXT(POLICY_NAME:my_policy)(TOKEN_TYPE:THEME)(MAX_FEATURES:3000)"

Related Topics

• Embed Transformations in a Model
You can specify your own transformations and embed them in a model by creating a
transformation list and passing it to DBMS_DATA_MINING.CREATE_MODEL2 or
DBMS_DATA_MINING.CREATE_MODEL.

• Specify Transformation Instructions for an Attribute
You can pass transformation instructions for an attribute by defining a transformation list.

• Oracle Database PL/SQL Packages and Types Reference

• ALL_MINING_MODEL_ATTRIBUTES

Chapter 6
Configure a Text Attribute

6-7

7
Administrative Tasks for Oracle Machine
Learning for SQL

Explains how to perform administrative tasks related to Oracle Machine Learning for SQL.

• Install and Configure a Database for Oracle Machine Learning for SQL

• Upgrade or Downgrade Oracle Machine Learning for SQL

• Export and Import Oracle Machine Learning for SQL Models

• Control Access to Oracle Machine Learning for SQL Models and Data

• Audit and Add Comments to Oracle Machine Learning for SQL Models

7.1 Install and Configure a Database for Oracle Machine
Learning for SQL

You can install and configure a database for Oracle Machine Learning for SQL by following
the listed steps.

• About Installation

• Enabling or Disabling a Database Option

• Database Tuning Considerations for Oracle Machine Learning for SQL

7.1.1 About Installation
Oracle Machine Learning for SQL is a component of the Oracle Database Enterprise Edition.

To install Oracle Database, follow the installation instructions for your platform. Choose a
Data Warehousing configuration during the installation.

Oracle Data Miner, the graphical user interface to Oracle Machine Learning for SQL, is an
extension to Oracle SQL Developer. Instructions for downloading SQL Developer and
installing the Data Miner repository are available on the Oracle Technology Network.

To perform machine learning activities, you must be able to log on to the Oracle database,
and your user ID must have the database privileges described in Grant Privileges for Oracle
Machine Learning for SQL.

Related Topics

• Oracle Data Miner

7-1

unilink:dataminer_wf

See Also:

Install and Upgrade page of the Oracle Database online documentation
library for your platform-specific installation instructions: Oracle Database
21c Release

7.1.2 Enable or Disable a Database Option
You can enable or disable the Oracle Advanced Analytics option after the installation.
The Oracle Advanced Analytics option is enabled by default during the installation of
Oracle Database Enterprise Edition.

After installation, you can use the command-line utility chopt to enable or disable a
database option.

7.1.3 Database Tuning Considerations for Oracle Machine Learning
for SQL

Standard administrative practices can be followed to manage workload on the system
when machine learning activities are running.

DBAs managing production databases that support Oracle Machine Learning for SQL
must follow standard administrative practices as described in Oracle Database
Administrator’s Guide.

Building machine learning models and batch scoring of machine learning models tend
to put a DSS-like workload on the system. Single-row scoring tends to put an OLTP-
like workload on the system.

Database memory management can have a major impact on machine learning. The
correct sizing of Program Global Area (PGA) memory is very important for model
building, complex queries, and batch scoring. From a machine learning perspective,
the System Global Area (SGA) is generally less of a concern. However, the SGA must
be sized to accommodate real-time scoring, which loads models into the shared cursor
in the SGA. In most cases, you can configure the database to manage memory
automatically. To do so, specify the total maximum memory size in the tuning
parameter MEMORY_TARGET. With automatic memory management, Oracle Database
dynamically exchanges memory between the SGA and the instance PGA as needed
to meet processing demands.

Most machine learning algorithms can take advantage of parallel execution when it is
enabled in the database. Parameters in INIT.ORA control the behavior of parallel
execution.

Related Topics

• Oracle Database Administrator’s Guide

• Scoring and Deployment
Explains the scoring and deployment features of Oracle Machine Learning for
SQL.

• Oracle Database Administrator’s Guide

• Part I Database Performance Fundamentals

Chapter 7
Install and Configure a Database for Oracle Machine Learning for SQL

7-2

• Tuning Database Memory

• Oracle Database VLDB and Partitioning Guide

7.2 Upgrade or Downgrade Oracle Machine Learning for SQL
Upgrade and downgrade Oracle Machine Learning for SQL by following the steps listed.

• Pre-Upgrade Steps

• Upgrade Oracle Machine Learning for SQL

• Post Upgrade Steps

• Downgrade Oracle Machine Learning for SQL

7.2.1 Pre-Upgrade Steps
Pre-upgrade considerations.

Before upgrading, you must drop any machine learning models and machine learning
activities that were created inOracle Data Miner.

7.2.2 Upgrade Oracle Machine Learning for SQL
You can upgrade your database by using the Database Upgrade Assistant (DBUA) or you
can perform a manual upgrade using export/import utilities.

All models and machine learning metadata are fully integrated with the Oracle Database
upgrade process whether you are upgrading from 19c or from earlier releases.

Upgraded models continue to work as they did in prior releases. Both upgraded models and
new models that you create in the upgraded environment can make use of the new machine
learning functionality introduced in the new release.

Related Topics

• Pre-Upgrade Steps
Pre-upgrade considerations.

• Oracle Database Upgrade Guide

7.2.2.1 Use Database Upgrade Assistant to Upgrade Oracle Machine Learning for
SQL

Oracle Database Upgrade Assistant provides a graphical user interface that guides you
interactively through the upgrade process.

On Windows platforms, follow these steps to start the Upgrade Assistant:

1. Go to the Windows Start menu and choose the Oracle home directory.

2. Choose the Configuration and Migration Tools menu.

3. Launch the Upgrade Assistant.

On Linux platforms, run the DBUA utility to upgrade Oracle Database.

Chapter 7
Upgrade or Downgrade Oracle Machine Learning for SQL

7-3

Related Topics

• Oracle Database Upgrade Guide

7.2.2.2 Use Export/Import to Upgrade Machine Learning Models
Use Export and Import functions of the Oracle Database to export the previously
created models and import the models in an instance of Oracle Database version.

If required, you can use a less automated approach to upgrading machine learning
models. You can export the models created in a previous version of Oracle Database
and import them into an instance of the Oracle Database version.

7.2.2.2.1 Export/Import Oracle Machine Learning for SQL Models
Export and import Oracle Machine Learning for SQL models.

To export models from an instance of a previous release of Oracle Database to a
dump file, follow the instructions in Export and Import Oracle Machine Learning for
SQL Models.

To import the dump file into the Oracle Database database:

%ORACLE_HOME\bin\impdp system\<password>
 dumpfile=<dumpfile_name>
 directory=<directory_name>
 logfile=<logfile_name>
SQL>CONNECT / as sysdba;
SQL>EXECUTE dmp_sys.upgrade_models();
SQL>ALTER SYSTEM flush shared_pool;
SQL>ALTER SYSTEM flush buffer_cache;
SQL>EXIT;

ALTER SYSTEM Statement

You can flush the Database Smart Flash Cache by issuing an ALTER SYSTEM FLUSH
FLASH_CACHE statement. Flushing the Database Smart Flash Cache can be useful if
you need to measure the performance of rewritten queries or a suite of queries from
identical starting points.

7.2.3 Post Upgrade Steps
Perform steps to view the upgraded database.

After upgrading the database, check the DBA_MINING_MODELS view in the upgraded
database. The newly upgraded machine learning models must be listed in this view.

After you have verified the upgrade and confirmed that there is no need to downgrade,
you must set the initialization parameter COMPATIBLE to 21.0.0. In Oracle Database
21c, when the COMPATIBLE initialization parameter is not set in your parameter file, the
COMPATIBLE parameter value defaults to 21.0.0.

Chapter 7
Upgrade or Downgrade Oracle Machine Learning for SQL

7-4

Note:

The CREATE MINING MODEL privilege must be granted to Oracle Machine Learning
for SQL user accounts that are used to create machine learning models.

Related Topics

• Create an Oracle Machine Learning for SQL User
An OML4SQL user is a database user account that has privileges for performing machine
learning activities.

• Control Access to Oracle Machine Learning for SQL Models and Data
You can create a Oracle Machine Learning for SQL user and grant necessary privileges
by following the steps listed.

7.2.4 Downgrade Oracle Machine Learning for SQL
Before downgrading the Oracle database back to the previous version, ensure that no
models are present.

Use the DBMS_DATA_MINING.DROP_MODEL routine to drop the models before downgrading. If
you do not do this, the database downgrade process terminates.

Issue the following SQL statement in SYS to verify the downgrade:

SQL>SELECT o.name FROM sys.model$ m, sys.obj$ o
 WHERE m.obj#=o.obj# AND m.version=2;

7.3 Export and Import Oracle Machine Learning for SQL Models
You can export machine learning models to flat files to back up work in progress or to move
models to a different instance of Oracle Database Enterprise Edition (such as from a
development database to a test database).

All methods for exporting and importing models are based on Oracle Data Pump technology.

The DBMS_DATA_MINING package includes the EXPORT_MODEL and IMPORT_MODEL procedures
for exporting and importing individual machine learning models. EXPORT_MODEL and
IMPORT_MODEL use the export and import facilities of Oracle Data Pump.

• About Oracle Data Pump

• Options for Exporting and Importing Oracle Machine Learning for SQL Models

• Directory Objects for EXPORT_MODEL and IMPORT_MODEL

• Use EXPORT_MODEL and IMPORT_MODEL

• EXPORT and IMPORT Serialized Models

• Import From PMML

Related Topics

• EXPORT_MODEL
• IMPORT_MODEL

Chapter 7
Export and Import Oracle Machine Learning for SQL Models

7-5

7.3.1 About Oracle Data Pump
Learn to use Oracle Data Pump export utility.

Oracle Data Pump consists of two command-line clients and two PL/SQL packages.
The command-line clients, expdp and impdp, provide an easy-to-use interface to the
Data Pump export and import utilities. You can use expdp and impdp to export and
import entire schemas or databases.

The Data Pump export utility writes the schema objects, including the tables and
metadata that constitute machine learning models, to a dump file set. The Data Pump
import utility retrieves the schema objects, including the model tables and metadata,
from the dump file set and restores them in the target database.

expdp and impdp cannot be used to export/import individual machine learning models.

See Also:

Oracle Database Utilities for information about Oracle Data Pump and the
expdp and impdp utilities

7.3.2 Options for Exporting and Importing Oracle Machine Learning for
SQL Models

Lists options for exporting and importing machine learning models.

Options for exporting and importing machine learning models are described in the
following table.

Table 7-1 Export and Import Options for Oracle Machine Learning for SQL

Task Description

Export or import
a full database

(DBA only) Use expdp to export a full database and impdp to import a full database. All
machine learning models in the database are included.

Export or import
a schema

Use expdp to export a schema and impdp to import a schema. All machine learning models in
the schema are included.

Chapter 7
Export and Import Oracle Machine Learning for SQL Models

7-6

Table 7-1 (Cont.) Export and Import Options for Oracle Machine Learning for SQL

Task Description

Export or import
individual models
within a database

Use DBMS_DATA_MINING.EXPORT_MODEL to export individual models and
DBMS_DATA_MINING.IMPORT_MODEL to import individual models. These procedures can export
and import a single machine learning model, all machine learning models, or machine learning
models that match specific criteria.

By default, IMPORT_MODEL imports models back into the schema from which they were
exported. You can specify the schema_remap parameter to import models into a different
schema. You can specify tablespace_remap with schema_remap to import models into a
schema that uses a different tablespace.

You may need special privileges in the database to import models into a different schema.
These privileges are granted by the EXP_FULL_DATABASE and IMP_FULL_DATABASE roles,
which are only available to privileged users (such as SYS or a user with the DBA role). You do
not need these roles to export or import models within your own schema.

To import models, you must have the same database privileges as the user who created the
dump file set. Otherwise, a DBA with full system privileges must import the models.

Export or import
individual models
to or from a
remote database

Use a database link to export individual models to a remote database or import individual
models from a remote database. A database link is a schema object in one database that
enables access to objects in a different database. The link must be created before you run
EXPORT_MODEL or IMPORT_MODEL.

To create a private database link, you must have the CREATE DATABASE LINK system
privilege. To create a public database link, you must have the CREATE PUBLIC DATABASE
LINK system privilege. Also, you must have the CREATE SESSION system privilege on the
remote Oracle Database. Oracle Net must be installed on both the local and remote Oracle
Databases.

Related Topics

• IMPORT_MODEL Procedure

• EXPORT_MODEL Procedure

• Oracle Database SQL Language Reference

7.3.3 Directory Objects for EXPORT_MODEL and IMPORT_MODEL
Learn how to use directory objects to identify the location of the dump file set.

EXPORT_MODEL and IMPORT_MODEL use a directory object to identify the location of the dump
file set. A directory object is a logical name in the database for a physical directory on the
host computer.

To export machine learning models, you must have write access to the directory object and to
the file system directory that it represents. To import machine learning models, you must have
read access to the directory object and to the file system directory. Also, the database itself
must have access to file system directory. You must have the CREATE ANY DIRECTORY
privilege to create directory objects.

The following SQL command creates a directory object named oml_user_dir. The file system
directory that it represents must already exist and have shared read/write access rights
granted by the operating system.

CREATE OR REPLACE DIRECTORY oml_user_dir AS '/dm_path/dm_mining';

Chapter 7
Export and Import Oracle Machine Learning for SQL Models

7-7

The following SQL command gives user oml_user both read and write access to
oml_user_dir.

GRANT READ,WRITE ON DIRECTORY oml_user_dir TO oml_user;

Related Topics

• Oracle Database SQL Language Reference

7.3.4 Use EXPORT_MODEL and IMPORT_MODEL
The examples illustrate various export and import scenarios with EXPORT_MODEL and
IMPORT_MODEL.

The examples use the directory object dmdir shown in Example 7-1 and two schemas,
dm1 and dm2. Both schemas have machine learning privileges. dm1 has two models.
dm2 has one model.

The EM_SH_CLUS_SAMPLE model is created by the oml4sql-clustering-expectation-
maximization.sql example. The DT_SH_CLAS_SAMPLE model is created by the
oml4sql-classification-decision-tree.sql example. The SVD_SH_SAMPLE
model is created by the oml4sql-singular-value-decomposition.sql example,

SELECT owner, model_name, mining_function, algorithm FROM all_mining_models;

OWNER MODEL_NAME MINING_FUNCTION ALGORITHM
---------- -------------------- -------------------- --------------------------
DM1 EM_SH_CLUS_SAMPLE CLUSTERING EXPECTATION_MAXIMIZATION
DM1 DT_SH_CLAS_SAMPLE CLASSIFICATION DECISION_TREE
DM2 SVD_SH_SAMPLE FEATURE_EXTRACTION SINGULAR_VALUE_DECOMP

Example 7-1 Creating the Directory Object

-- connect as system user
CREATE OR REPLACE DIRECTORY dmdir AS '/scratch/oml_user/expimp';
GRANT READ,WRITE ON DIRECTORY dmdir TO dm1;
GRANT READ,WRITE ON DIRECTORY dmdir TO dm2;
SELECT * FROM all_directories WHERE directory_name IN 'DMDIR';

OWNER DIRECTORY_NAME DIRECTORY_PATH
---------- -------------------------- --
SYS DMDIR /scratch/oml_user/expimp

Example 7-2 Exporting All Models From DM1

-- connect as dm1
BEGIN
 dbms_data_mining.export_model (
 filename => 'all_dm1',
 directory => 'dmdir');
END;
/

A log file and a dump file are created in /scratch/oml_user/expimp, the physical
directory associated with dmdir. The name of the log file is dm1_exp_11.log. The name
of the dump file is all_dm101.dmp.

Chapter 7
Export and Import Oracle Machine Learning for SQL Models

7-8

Example 7-3 Importing the Models Back Into DM1

The models that were exported in Example 7-2 still exist in dm1. Since an import does not
overwrite models with the same name, you must drop the models before importing them back
into the same schema.

BEGIN
 dbms_data_mining.drop_model('EM_SH_CLUS_SAMPLE');
 dbms_data_mining.drop_model('DT_SH_CLAS_SAMPLE');
 dbms_data_mining.import_model(
 filename => 'all_dm101.dmp',
 directory => 'DMDIR');
END;
/
SELECT model_name FROM user_mining_models;

MODEL_NAME

DT_SH_CLAS_SAMPLE
EM_SH_CLUS_SAMPLE

Example 7-4 Importing Models Into a Different Schema

In this example, the models that were exported from dm1 in Example 7-2 are imported into
dm2. The dm1 schema uses the example tablespace; the dm2 schema uses the sysaux
tablespace.

-- CONNECT as sysdba
BEGIN
 dbms_data_mining.import_model (
 filename => 'all_d101.dmp',
 directory => 'DMDIR',
 schema_remap => 'DM1:DM2',
 tablespace_remap => 'EXAMPLE:SYSAUX');
END;
/
-- CONNECT as dm2
SELECT model_name from user_mining_models;

MODEL_NAME
--
SVD_SH_SAMPLE
EM_SH_CLUS_SAMPLE
DT_SH_CLAS_SAMPLE

Example 7-5 Exporting Specific Models

You can export a single model, a list of models, or a group of models that share certain
characteristics.

-- Export the model named dt_sh_clas_sample
EXECUTE dbms_data_mining.export_model (
 filename => 'one_model',
 directory =>'DMDIR',
 model_filter => 'name in (''DT_SH_CLAS_SAMPLE'')');
-- one_model01.dmp and dm1_exp_37.log are created in /scratch/oml_user/expimp

-- Export Decision Tree models
EXECUTE dbms_data_mining.export_model(
 filename => 'algo_models',
 directory => 'DMDIR',

Chapter 7
Export and Import Oracle Machine Learning for SQL Models

7-9

 model_filter => 'ALGORITHM_NAME IN (''DECISION_TREE'')');
-- algo_model01.dmp and dm1_exp_410.log are created in /scratch/oml_user/expimp

-- Export clustering models
EXECUTE dbms_data_mining.export_model(
 filename =>'func_models',
 directory => 'DMDIR',
 model_filter => 'FUNCTION_NAME = ''CLUSTERING''');
-- func_model01.dmp and dm1_exp_513.log are created in /scratch/oml_user/expimp

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

7.3.5 EXPORT and IMPORT Serialized Models
From Oracle Database Release 18c onwards, EXPORT_SERMODEL and IMPORT_SERMODEL
procedures are available to export and import serialized models.

The serialized format allows the models to be moved to another platform (outside the
database) for scoring. The model is exported in a BLOB that can be saved in a BFILE.
The import routine takes the serialized content in the BLOB and the name of the model
to be created with the content.

Related Topics

• EXPORT_SERMODEL Procedure

• IMPORT_SERMODEL Procedure

7.3.6 Import From PMML
You can import regression models represented in Predictive Model Markup Language
(PMML).

PMML is an XML-based standard specified by the Data Mining Group (http://
www.dmg.org). Applications that are PMML-compliant can deploy PMML-compliant
models that were created by any vendor. Oracle Machine Learning for SQL supports
the core features of PMML 3.1 for regression models.

You can import regression models represented in PMML. The models must be of type
RegressionModel, either linear regression or binary logistic regression.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

7.4 Control Access to Oracle Machine Learning for SQL
Models and Data

You can create a Oracle Machine Learning for SQL user and grant necessary
privileges by following the steps listed.

• Create an Oracle Machine Learning for SQL User

• System Privileges for Oracle Machine Learning for SQL

Chapter 7
Control Access to Oracle Machine Learning for SQL Models and Data

7-10

• Object Privileges for Oracle Machine Learning for SQL Models

7.4.1 Create an Oracle Machine Learning for SQL User
An OML4SQL user is a database user account that has privileges for performing machine
learning activities.

Example 7-6 shows how to create a database user. Example 7-7 shows how to assign
machine learning privileges to the user.

Note:

To create a user for the OML4SQL examples, you must run two configuration
scripts as described in Oracle Machine Learning for SQL Examples.

Example 7-6 Creating a Database User in SQL*Plus

1. Log in to SQL*Plus with system privileges.

 Enter user-name: sys as sysdba
 Enter password: password

2. To create a user named oml_user, type these commands. Specify a password of your
choosing.

CREATE USER oml_user IDENTIFIED BY password
 DEFAULT TABLESPACE USERS
 TEMPORARY TABLESPACE TEMP
 QUOTA UNLIMITED ON USERS;
Commit;

The USERS and TEMP tablespaces are included in Oracle Database. USERS is used mostly
by demo users; it is appropriate for running the examples described in Oracle Machine
Learning for SQL Examples. TEMP is the temporary tablespace that is shared by most
database users.

Note:

Tablespaces for OML4SQL users must be assigned according to standard DBA
practices, depending on system load and system resources.

3. To log in as oml_user, enter the following.

CONNECT oml_user
Enter password: password

See Also:

Oracle Database SQL Language Reference for the complete syntax of the CREATE
USER statement

Chapter 7
Control Access to Oracle Machine Learning for SQL Models and Data

7-11

7.4.1.1 Grant Privileges for Oracle Machine Learning for SQL
The CREATE MINING MODEL is a privilege that you must have to create and perform
operations on your model. Some other machine learning privileges can be assigned by
issuing GRANT statements.

You must have the CREATE MINING MODEL privilege to create models in your own
schema. You can perform any operation on models that you own. This includes
applying the model, adding a cost matrix, renaming the model, and dropping the
model.

The GRANT statements in the following example assign a set of basic machine learning
privileges to the oml_user account. Some of these privileges are not required for all
machine learning activities, however it is prudent to grant them all as a group.

Additional system and object privileges are required for enabling or restricting specific
machine learning activities.

The following table lists the system privileges required for running the OML4SQL
examples.

Table 7-2 System Privileges Granted by dmshgrants.sql to the OML4SQL User

Privilege Allows the OML4SQL User To

CREATE SESSION Log in to a database session

CREATE TABLE Create tables, such as the settings tables for CREATE_MODEL
CREATE VIEW Create views, such as the views of tables in the SH schema

CREATE MINING MODEL Create OML4SQL models

EXECUTE ON
ctxsys.ctx_ddl

Execute procedures in the ctxsys.ctx_ddl PL/SQL
package; required for text mining

Example 7-7 Privileges Required for Machine Learning

This example grants the required privileges to the user oml_user.

GRANT CREATE SESSION TO oml_user;
GRANT CREATE TABLE TO oml_user;
GRANT CREATE VIEW TO oml_user;
GRANT CREATE MINING MODEL TO oml_user;
GRANT EXECUTE ON CTXSYS.CTX_DDL TO oml_user;

READ or SELECT privileges are required for data that is not in your schema. For
example, the following statement grants SELECT access to the sh.customers table.

GRANT SELECT ON sh.customers TO oml_user;

Chapter 7
Control Access to Oracle Machine Learning for SQL Models and Data

7-12

7.4.2 System Privileges for Oracle Machine Learning for SQL
A system privilege confers the right to perform a particular action in the database or to
perform an action on a type of schema objects. For example, the privileges to create
tablespaces and to delete the rows of any table in a database are system privileges.

.
You can perform specific operations on machine learning models in other schemas if you
have the appropriate system privileges. For example, CREATE ANY MINING MODEL enables you
to create models in other schemas. SELECT ANY MINING MODEL enables you to apply models
that reside in other schemas. You can add comments to models if you have the COMMENT ANY
MINING MODEL privilege.

To grant a system privilege, you must either have been granted the system privilege with the
ADMIN OPTION or have been granted the GRANT ANY PRIVILEGE system privilege.

The system privileges listed in the following table control operations on machine learning
models.

Table 7-3 System Privileges for Oracle Machine Learning for SQL

System Privilege Allows you to....

CREATE MINING MODEL Create machine learning models in your own schema.

CREATE ANY MINING MODEL Create machine learning models in any schema.

ALTER ANY MINING MODEL Change the name or cost matrix of any machine learning model
in any schema.

DROP ANY MINING MODEL Drop any machine learning model in any schema.

SELECT ANY MINING MODEL Apply a machine learning model in any schema, also view model
details in any schema.

COMMENT ANY MINING MODEL Add a comment to any machine learning model in any schema.

AUDIT_ADMIN role Generate an audit trail for any machine learning model in any
schema. (See Oracle Database Security Guide for details.)

Example 7-8 Grant System Privileges for Oracle Machine Learning for SQL

The following statements allow oml_user to score data and view model details in any schema
as long as SELECT access has been granted to the data. However, oml_user can only create
models in the oml_user schema.

GRANT CREATE MINING MODEL TO oml_user;
GRANT SELECT ANY MINING MODEL TO oml_user;

The following statement revokes the privilege of scoring or viewing model details in other
schemas. When this statement is run, oml_user can only perform machine learning activities
in the oml_user schema.

REVOKE SELECT ANY MINING MODEL FROM oml_user;

Related Topics

• Add a Comment to an Oracle Machine Learning for SQL Model
You can add a comment to an OML4SQL model object using SQL COMMENT statement.

Chapter 7
Control Access to Oracle Machine Learning for SQL Models and Data

7-13

• Oracle Database Security Guide

7.4.3 Object Privileges for Oracle Machine Learning for SQL Models
Learn about machine learning object privileges.

An object privilege confers the right to perform a particular action on a specific schema
object. For example, the privilege to delete rows from the SH.PRODUCTS table is an
example of an object privilege.

You automatically have all object privileges for schema objects in your own schema.
You can grant object privilege on objects in your own schema to other users or roles.

The object privileges listed in the following table control operations on specific
machine learning models.

Table 7-4 Object Privileges for Oracle Machine Learning for SQL Models

Object Privilege Allows you to....

ALTER MINING MODEL Change the name or cost matrix of the specified machine learning
model object.

SELECT MINING
MODEL

Apply the specified machine learning model object and view its model
details.

Example 7-9 Grant Object Privileges on Oracle Machine Learning for SQL
Models

The following statements allow oml_user to apply the model testmodel to the sales
table, specifying different cost matrixes with each apply. The user oml_user can also
rename the model testmodel. The testmodel model and sales table are in the sh
schema, not in the oml_user schema.

GRANT SELECT ON MINING MODEL sh.testmodel TO oml_user;
GRANT ALTER ON MINING MODEL sh.testmodel TO oml_user;
GRANT SELECT ON sh.sales TO oml_user;

The following statement prevents oml_user from renaming or changing the cost matrix
of testmodel. However, oml_user can still apply testmodel to the sales table.

REVOKE ALTER ON MINING MODEL sh.testmodel FROM oml_user;

7.5 Audit and Add Comments to Oracle Machine Learning
for SQL Models

Perform audit of Oracle Machine Learning for SQL model objects through SQL
statements.

OML4SQL model objects support SQL COMMENT and AUDIT statements.

Chapter 7
Audit and Add Comments to Oracle Machine Learning for SQL Models

7-14

7.5.1 Add a Comment to an Oracle Machine Learning for SQL Model
You can add a comment to an OML4SQL model object using SQL COMMENT statement.

Comments can be used to associate descriptive information with a database object. You can
associate a comment with a machine learning model using a SQL COMMENT statement.

COMMENT ON MINING MODEL schema_name.model_name IS string;

Note:

To add a comment to a model in another schema, you must have the COMMENT ANY
MINING MODEL system privilege.

To drop a comment, set it to the empty '' string.

The following statement adds a comment to the model DT_SH_CLAS_SAMPLE in your own
schema.

COMMENT ON MINING MODEL dt_sh_clas_sample IS
 'Decision Tree model predicts promotion response';

You can view the comment by querying the catalog view USER_MINING_MODELS.

SELECT model_name, mining_function, algorithm, comments FROM user_mining_models;

MODEL_NAME MINING_FUNCTION ALGORITHM COMMENTS
----------------- ---------------- -------------- ---
DT_SH_CLAS_SAMPLE CLASSIFICATION DECISION_TREE Decision Tree model predicts promotion response

To drop this comment from the database, issue the following statement:

COMMENT ON MINING MODEL dt_sh_clas_sample '';

See Also:

• Table 7-3

• Oracle Database SQL Language Reference for details about SQL COMMENT
statements

7.5.2 Audit Oracle Machine Learning for SQL Models
Use Oracle Database auditing system to audit models to track operations on machine
learning models.

The Oracle Database auditing system is a powerful, highly configurable tool for tracking
operations on schema objects in a production environment. The auditing system can be used
to track operations on machine learning models.

Chapter 7
Audit and Add Comments to Oracle Machine Learning for SQL Models

7-15

Note:

To audit machine learning models, you must have the AUDIT_ADMIN role.

Unified auditing is documented in Oracle Database Security Guide. However, the full
unified auditing system is not enabled by default. Instructions for migrating to unified
auditing are provided in Oracle Database Upgrade Guide.

See Also:

• "Auditing Oracle Machine Learning for SQL Events" in Oracle Database
Security Guide for details about auditing machine learning models

• "Monitoring Database Activity with Auditing" in Oracle Database Security
Guide for a comprehensive discussion of unified auditing in Oracle
Database

• "About the Unified Auditing Migration Process for Oracle Database" in
Oracle Database Upgrade Guide for information about migrating to
unified auditing

• Oracle Database Upgrade Guide

Chapter 7
Audit and Add Comments to Oracle Machine Learning for SQL Models

7-16

A
Oracle Machine Learning for SQL Examples

Describes the OML4SQL examples.

• About the OML4SQL Examples

• Install the OML4SQL Examples

• OML4SQL Sample Data

A.1 About the OML4SQL Examples
The OML4SQL examples illustrate typical approaches to data preparation, algorithm
selection, algorithm tuning, testing, and scoring.

You can learn a great deal about the OML4SQL application programming interface from the
OML4SQL examples. The examples are simple. They include extensive inline comments to
help you understand the code. They delete all temporary objects on exit so that you can run
the examples repeatedly without setup or cleanup.

The OML4SQL examples are available on GitHub at https://github.com/oracle/oracle-db-
examples/tree/master/machine-learning/sql/21c.

The OML4SQL examples create a set of machine learning models in the user's schema. The
following table lists the file name of the example and the mining_function value and
algorithm the example uses.

Table A-1 Models Created by Examples

File Name MINING_FUNCTION Algorithm

oml4sql-association-
rules.sql

ASSOCIATION ALGO_APRIORI_ASSOCIATION_RULES

oml4sql-feature-extraction-
cur.sql

ATTRIBUTE_IMPORTANCE ALGO_CUR_DECOMPOSITION

oml4sql-classification-
decision-tree.sql

CLASSIFICATION ALGO_DECISION_TREE

oml4sql-cross-validation-
decision-tree.sql

CLASSIFICATION ALGO_DECISION_TREE

oml4sql-classification-
glm.sql

CLASSIFICATION ALGO_GENERALIZED_LINEAR_MODEL

oml4sql-time-series-mset.sql CLASSIFICATION ALGO_MSET_SPRT
oml4sql-classification-
naive-bayes.sql

CLASSIFICATION ALGO_NAIVE_BAYES

oml4sql-classification-
neural-networks.sql

CLASSIFICATION ALGO_NEURAL_NETWORK

oml4sql-classification-
random-forest.sql

CLASSIFICATION ALGO_RANDOM_FOREST

A-1

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/sql/21c
https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/sql/21c

Table A-1 (Cont.) Models Created by Examples

File Name MINING_FUNCTION Algorithm

oml4sql-anomaly-
detection-1csvm.sql

CLASSIFICATION ALGO_SUPPORT_VECTOR_MACHINES

oml4sql-classification-
svm.sql

CLASSIFICATION ALGO_SUPPORT_VECTOR_MACHINES

oml4sql-classification-text-
analysis-svm.sql

CLASSIFICATION ALGO_SUPPORT_VECTOR_MACHINES

oml4sql-partitioned-models-
svm.sql

CLASSIFICATION ALGO_SUPPORT_VECTOR_MACHINES

oml4sql-classification-
regression-xgboost.sql

CLASSIFICATION ALGO_XGBOOST

oml4sql-clustering-
expectation-maximization.sql

CLUSTERING ALGO_EXPECTATION_MAXIMIZATION

oml4sql-clustering-
kmeans.sql

CLUSTERING ALGO_KMEANS

oml4sql-clustering-kmeans-
star-schema.sql

CLUSTERING ALGO_KMEANS

oml4sql-clustering-o-
cluster.sql

CLUSTERING ALGO_O_CLUSTER

oml4sql-feature-extraction-
text-analysis-esa.sql

FEATURE_EXTRACTION ALGO_EXPLICIT_SEMANTIC_ANALYS

oml4sql-feature-extraction-
nmf.sql

FEATURE_EXTRACTION ALGO_NONNEGATIVE_MATRIX_FACTOR

oml4sql-feature-extraction-
text-analysis-nmf.sql

FEATURE_EXTRACTION ALGO_NONNEGATIVE_MATRIX_FACTOR

oml4sql-singular-value-
decomposition.sql

FEATURE_EXTRACTION ALGO_SINGULAR_VALUE_DECOMP

oml4sql-regression-glm.sql REGRESSION ALGO_GENERALIZED_LINEAR_MODEL
oml4sql-regression-neural-
networks.sql

REGRESSION ALGO_NEURAL_NETWORK

oml4sql-regression-random-
forest.sql

REGRESSION ALGO_RANDOM_FOREST

oml4sql-regression-svm.sql REGRESSION ALGO_SUPPORT_VECTOR_MACHINES
oml4sql-classification-
regression-xgboost.sql

REGRESSION ALGO_XGBOOST

oml4sql-time-series-
exponential-smoothing.sql

TIME_SERIES ALGO_EXPONENTIAL_SMOOTHING

Another example is oml4sql-attribute-importance.sql, which uses the
DBMS_PREDICTIVE_ANALYTICS.EXPLAIN procedure to find the importance of attributes
that independently impact the target attribute.

Another set of examples demonstrates the use of the ALGO_EXTENSIBLE_LANG
algorithm to register R language functions and create R models. The following table
lists the R Extensibility examples. It shows the file name of the example and the
MINING_FUNCTION value and R function used.

Appendix A
About the OML4SQL Examples

A-2

File Name MINING_FUNCTION R Function

oml4sql-rextensible-
algorithm-registration.sql

CLASSIFICATION glm

oml4sql-rextensible-
association-rules.sql

ASSOCIATION apriori

oml4sql-rextensible-
attribute-importance-via-
rf.sql

REGRESSION randomForest

oml4sql-rextensible-glm.sql REGRESSION glm
oml4sql-rextensible-
kmeans.sql

CLUSTERING kmeans

oml4sql-rextensible-
principal-components.sql

FEATURE_EXTRACTION prcomp

oml4sql-rextensible-
regression-tree.sql

REGRESSION rpart

oml4sql-regression-r-neural-
networks.sql

REGRESSION nnet

A.2 Install the OML4SQL Examples
Learn how to install OML4SQL examples.

The OML4SQL examples require:

• Oracle Database (on-premises, Oracle Database Cloud Service, or Oracle Autonomous
Database)

• Oracle Database sample schemas

• A user account with the privileges described in Grant Privileges for Oracle Machine
Learning for SQL.

• Execution of dmshgrants.sql by a system administrator

• Execution of dmsh.sql by the OML4SQL user

Follow these steps to install the OML4SQL examples:

1. Install or obtain access to an Oracle Database 21c instance. To install the database, see
the installation instructions for your platform at Oracle Database 21c.

2. Ensure that the sample schemas are installed in the database. See Oracle Database
Sample Schemas for details about the sample schemas.

3. Download the example code files from GitHub at https://github.com/oracle/oracle-db-
examples/tree/master/machine-learning/sql/21c. Place the files in a directory to which
you have access on the Oracle Database server.

4. Verify that your user account has the required privileges described in Grant Privileges for
Oracle Machine Learning for SQL.

5. Ask your system administrator to run the dmshgrants.sql script, or run it yourself if you
have administrative privileges. The script grants the privileges that are required for
running the examples. These include SELECT access to tables in the SH schema as

Appendix A
Install the OML4SQL Examples

A-3

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/sql/21c
https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/sql/21c

described in OML4SQL Sample Data and the system privileges listed in the
following table.

Pass the name of the OML4SQL user to dmshgrants.

SQL> CONNECT sys / as sysdba
Enter password: sys_password
Connected.
SQL> @<location_of_examples>/dmshgrants oml_user

6. Connect to the database and run the dmsh.sql script. This script creates views of
the sample data in the schema of the OML4SQL user.

SQL> CONNECT oml_user
Enter password: oml_user_password
Connected.
SQL> @<location_of_examples>/dmsh

Related Topics

• Oracle Database Sample Schemas

A.3 OML4SQL Sample Data
The data used by the OML4SQL examples is based on these tables in the SH schema.

Those tables are:

SH.CUSTOMERS
SH.SALES
SH.PRODUCTS
SH.SUPPLEMENTARY_DEMOGRAPHICS
SH.COUNTRIES

The dmshgrants script grants SELECT access to the tables in the SH schema. The
dmsh.sql script creates views of the SH tables in the schema of the OML4SQL user.
The views are described in the following table.

Table A-2 Views Created by dmsh.sql

View Name Description

MINING_DATA Joins and filters data

MINING_DATA_BUILD_V Data for building models

MINING_DATA_TEST_V Data for testing models

MINING_DATA_APPLY_V Data to be scored

MINING_BUILD_TEXT Data for building models that include text

MINING_TEST_TEXT Data for testing models that include text

MINING_APPLY_TEXT Data, including text columns, to be scored

MINING_DATA_ONE_CLASS_
V

Data for anomaly detection

The association rules example creates its own transactional data.

Appendix A
OML4SQL Sample Data

A-4

Index

A
ADP, 4-9
ALGO_EXTENSIBLE_LANG, 4-21
algorithms, 4-1, 4-3

metadata registration, 4-29
parallel execution, 7-2
used by examples, A-1

ALL_MINING_MODEL_ATTRIBUTES, 2-2
ALL_MINING_MODEL_PARTITIONS, 2-2
ALL_MINING_MODEL_SETTINGS, 2-2, 4-33
ALL_MINING_MODEL_VIEWS, 2-2
ALL_MINING_MODEL_XFORMS, 2-2
ALL_MINING_MODELS, 2-2
anomaly detection, 2-1, 3-2, 4-2, 4-3, 5-13
APPLY, 5-1
APPROX_COUNT, 2-12
APPROX_RANK, 2-12
APPROX_SUM, 2-12
Apriori, 3-10, 4-2, 4-3, 4-5

example: calculating aggregates, 3-12
association rules, 4-2, 4-3

model detail view, 4-35
attribute importance, 2-1, 4-2, 4-3
attribute specification, 4-10, 6-5, 6-7
attributes, 3-2, 3-3, 6-2

categorical, 3-5, 6-1
data attributes, 3-3
data dictionary, 2-2
model attributes, 3-3, 3-5
nested, 3-2
numerical, 3-5, 6-1
subname, 3-6
target, 3-4
text, 3-5
unstructured text, 6-1

AUDIT, 7-13, 7-15
Automatic Data Preparation, 1-1, 3-3, 4-5

B
binning, 4-5

equi-width, 4-12
quantile, 4-12
supervised, 4-5, 4-12

binning (continued)
top-n frequency, 4-12

build data, 3-2

C
case ID, 3-1, 3-2, 3-5, 5-13
case table, 3-1, 3-16
categorical attributes, 6-1
chopt utility, 7-2
class weights, 4-20
classification, 2-1, 3-2, 3-4, 4-2, 4-3
clipping, 4-13
CLUSTER_DETAILS, 1-6, 2-10
CLUSTER_DISTANCE, 2-10
CLUSTER_ID, 1-6, 2-10, 2-12
CLUSTER_PROBABILITY, 2-10
CLUSTER_SET, 1-6, 2-10
clustering, 1-6, 2-1, 3-2, 4-3
COMMENT, 7-13
CORR, 2-12
CORR_K, 2-12
CORR_S, 2-12
cost matrix, 4-19, 5-11, 7-14
cost-sensitive prediction, 5-11
COVAR_POP, 2-12
COVAR_SAMP, 2-12
CUR Matrix Decomposition, 4-2, 4-3, 4-6

D
data

categorical, 3-5
dimensioned, 3-8
for examples, A-4
market basket, 3-10
missing values, 3-12
multi-record case, 3-8
nested, 3-2
numerical, 3-5
READ access, 7-12
SELECT access, 7-12
single-record case, 3-1
sparse, 3-12
transactional, 3-10

Index-1

data (continued)
unstructured text, 3-5

Data preparation
model view

text features, 4-81
data types, 3-2, 3-16

nested, 3-7
Database Upgrade Assistant, 7-3
DBMS_DATA_MINING, 2-8, 4-2
DBMS_DATA_MINING_TRANSFORM, 2-8, 2-9
DBMS_PREDICTIVE_ANALYTICS, 1-4, 2-8,

2-10
Decision Tree, 4-2, 4-3, 4-6, 5-8
directory objects, 7-7
downgrading, 7-5

E
examples, A-1

data used by, A-4
file names of, A-1
installing, A-3
Oracle Database Examples, A-3
requirements, A-3
sample schemas for, A-3

Expectation Maximization, 4-6
EXPLAIN, 2-10
Explicit Semantic Analysis, 4-2, 4-3
Exponential Smoothing, 4-2, 4-3
Export and Import

serialized models, 7-10
exporting, 7-4, 7-5

F
feature extraction, 2-1, 3-2, 4-2, 4-3
FEATURE_COMPARE, 2-10

ESA, 1-7
FEATURE_DETAILS, 2-10
FEATURE_ID, 2-10
FEATURE_SET, 2-10
FEATURE_VALUE, 2-10

G
Generalized Linear Model, 4-6
GLM, 4-4
graphical user interface, 1-1

I
importing, 7-4, 7-5
installation

Oracle Database, 7-1

installing
OML4SQL examples, A-3
Oracle Database, A-3
Oracle Database Examples, A-3
sample schemas, A-3

K
k-Means, 4-2, 4-3, 4-6

L
LAG, 2-12
LEAD, 2-12
linear regression, 2-11, 4-2
logistic regression, 2-11, 4-2

M
machine learning

database tuning for, 7-2
examples, A-1
privileges for, 7-1, 7-11
scoring, 4-2, 5-1

machine learning for SQL
privileges for, A-3

machine learning for SQL models
adding a comment, 7-14, 7-15
auditing, 7-15
object privileges, 7-14

machine learning functions, 2-1, 4-1, 4-2
supervised, 4-2
unsupervised, 4-2
used by examples, A-1

machine learning models
auditing, 7-15

machine learning models for SQL
adding a comment, 2-1
applying, 7-14
auditing, 2-1
changing the name, 7-14
data dictionary, 2-2
privileges for, 2-1
upgrading, 7-3
viewing model details, 7-14

market basket data, 3-10
MDL, 4-6
memory, 7-2
Minimum Description Length, 4-3, 4-6
missing value treatment, 3-14
model attributes

categorical, 3-5
derived from nested column, 3-6
numerical, 3-5

Index

Index-2

model attributes (continued)
scoping of name, 3-6
text, 3-5

model detail views, 4-34
association rules, 4-35
clustering algorithms, 4-61
CUR Matrix Decomposition, 4-43
Decision Tree, 4-45
EM, 4-64
Explicit Semantic Analysis, 4-70
Exponential Smoothing, 4-80
for binning, 4-77
for classification algorithms, 4-43
for frequent itemsets, 4-40
for global information, 4-78
for normalization and missing value handling,

4-79
for transactional itemsets, 4-41
for transactional rules and itemsets, 4-42
GLM, 4-48
k-Means, 4-67
Minimum Description Length, 4-77
MSET-SPRT, 4-55
Naive Bayes, 4-55
Neural Network, 4-56
Non-Negative Matrix Factorization, 4-72
O-Cluster, 4-69
Random Forest, 4-58
SVD, 4-74
SVM, 4-59
XGBoost, 4-60

model details, 3-6
model signature, 3-5
models

algorithms, 4-3
deploying, 5-1
partitions, 2-2
privileges for, 7-12
settings, 2-2, 4-33
testing, 3-2
training, 3-2
transparency, 1-1
XFORMS, 2-2

MSET-SPRT, 4-3
Multivariate State Estimation Technique -

Sequential Probability Ratio Test, 4-2,
4-5

N
Naive Bayes, 4-2, 4-3, 4-6
nested data, 3-7, 6-2
Neural Network, 4-2, 4-3, 4-6
NMF, 4-3
non-negative matrix factorization, 4-6

Non-Negative Matrix Factorization, 4-2
normalization, 4-5

min-max, 4-13
scale, 4-13
z-score, 4-13

numerical attributes, 6-1

O
O-Cluster, 3-7, 4-2, 4-3, 4-6
object privileges, 7-14
OML4SQL, xii

applications of, 1-1
example, A-1

One-Class SVM, 4-2
ORA_DM_PARTITION_NAME ORA, 2-10
Oracle Data Miner, 1-1, 7-3
Oracle Data Pump, 7-5
Oracle Machine Learning for SQL functions,

2-10, 2-12
Oracle Text, 6-1
outliers, 4-13

P
parallel execution, 5-2, 7-2
partitioned model, 4-29

add partition, 4-31
build, 4-30
DDL implementation, 4-31
drop model, 4-31
drop partition, 4-31
scoring, 4-32

partitions
data dictionary, 2-2

PGA, 7-2
PL/SQL packages, 2-8
PMML, 7-10
PREDICTION, 1-2, 1-3, 2-10, 5-9
PREDICTION function

GROUPING hint, 5-8
PREDICTION_BOUNDS, 2-10
PREDICTION_COST, 2-10
PREDICTION_DETAILS, 2-10, 5-9
PREDICTION_PROBABILITY, 1-3, 2-10, 5-8
PREDICTION_SET, 2-10
predictive analytics, 1-1, 1-4, 2-1
preparing data

using retail analysis data aggregates, 3-11
prior probabilities, 4-20
priors table, 4-20
privileges, 7-7, 7-11

for creating machine learning models, 7-5
for data mining, 7-7
for exporting and importing, 7-7

Index

Index-3

privileges (continued)
for machine learning, 7-1
for OML4SQL examples, A-3
required for machine learning, 7-12

R
R extensible language, 4-3
R machine learning model

settings, 4-21
RALG_BUILD_FUNCTION, 4-22
RALG_BUILD_PARAMETER, 4-23
RALG_DETAILS_FORMAT, 4-25
RALG_DETAILS_FUNCTION, 4-24
RALG_SCORE_FUNCTION, 4-25
RALG_WEIGHT_FUNCTION, 4-28
Random Forest, 4-2, 4-3, 4-6
REGISTER_ALGORITHM procedure, 4-29
regression, 2-1, 3-2, 3-4, 4-2, 4-3
reverse transformations, 3-6

S
scoring, 1-1, 2-1, 5-1, 7-2, 7-14

data, 3-2
dynamic, 1-3, 2-1, 5-9
parallel execution, 5-2
privileges for, 7-13
requirements, 3-2
SQL functions, 2-10, 2-12
transparency, 1-1

settings
data dictionary, 2-2
table for specifying, 4-1

SGA, 7-2
Singular Value Decomposition, 4-6
sparse data, 3-12
SQL AUDIT, 2-1, 7-15
SQL COMMENT, 2-1, 7-15
SQL Developer, 1-1
STACK, 2-9, 4-8
Static Dictionary Views

ALL_MINING_MODEL_VIEWS, 2-6
STATS_BINOMIAL_TEST, 2-12
STATS_CROSSTAB, 2-12
STATS_F_TEST, 2-12
STATS_KS_TEST, 2-12
STATS_MODE, 2-12
STATS_MW_TEST, 2-12
STATS_ONE_WAY_ANOVA, 2-12
STATS_T_TEST_*, 2-12
STATS_T_TEST_INDEP, 2-12
STATS_T_TEST_INDEPU, 2-12
STATS_T_TEST_ONE, 2-12
STATS_T_TEST_PAIRED, 2-12

STATS_WSR_TEST, 2-12
STDDEV, 2-12
STDDEV_POP, 2-12
STDDEV_SAMP, 2-12
SUM, 2-12
Support Vector Machine, 4-2, 4-3, 4-6
SVD, 4-3
system privileges, 7-13, A-3

T
target, 3-4, 3-5, 6-2
test data, 3-2, 4-1
text

operations on, 2-9, 6-1
text attributes, 6-2, 6-5
text policy, 6-4
text terms, 6-1
time series, 4-2, 4-3
training data, 4-1
transactional data, 3-1, 3-8, 3-10
transformations, 2-9, 3-2, 3-4, 3-6, 4-1

attribute-specific, 2-9
embedded, 2-9, 3-2
user-specified, 3-2

transparency, 3-6
trimming, 4-14

U
upgrading, 7-3

exporting and importing, 7-4
pre-upgrade steps, 7-3
using Database Upgrade Assistant, 7-3

users, 7-1, 7-7, A-3
assigning machine learning privileges to,

7-12
creating, 7-11
privileges for machine learning, 7-11
privileges for machine learning for SQL, 7-5

W
weights, 4-20
windsorize, 4-14

X
XFORM, 2-9
XFORMS

data dictionary, 2-2
XG Boost, 4-6
XGBoost, 4-2, 4-3

model detail views, 4-60

Index

Index-4

	Contents
	List of Tables
	Preface
	Technology Rebrand
	Audience
	Documentation Accessibility
	Related Documentation
	Oracle Machine Learning for SQL Resources on the Oracle Technology Network
	Application Development and Database Administration Documentation

	Conventions

	Changes in This Release for Oracle Machine Learning for SQL User's Guide
	Other Changes
	1 Oracle Machine Learning With SQL
	1.1 Highlights of the Oracle Machine Learning for SQL API
	1.2 Example: Predicting Likely Candidates for a Sales Promotion
	1.3 Example: Analyzing Preferred Customers
	1.4 Example: Segmenting Customer Data
	1.5 Example : Comparison of Texts Using an ESA Model

	2 About the Oracle Machine Learning for SQL API
	2.1 About Oracle Machine Learning Models
	2.2 Oracle Machine Learning Data Dictionary Views
	2.2.1 ALL_MINING_MODELS
	2.2.2 ALL_MINING_MODEL_ATTRIBUTES
	2.2.3 ALL_MINING_MODEL_PARTITIONS
	2.2.4 ALL_MINING_MODEL_SETTINGS
	2.2.5 ALL_MINING_MODEL_VIEWS
	2.2.6 ALL_MINING_MODEL_XFORMS

	2.3 Oracle Machine Learning Modeling, Transformations, and Convenience Functions
	2.3.1 DBMS_DATA_MINING
	2.3.2 DBMS_DATA_MINING_TRANSFORM
	2.3.2.1 Transformation Methods in DBMS_DATA_MINING_TRANSFORM

	2.3.3 DBMS_PREDICTIVE_ANALYTICS

	2.4 Oracle Machine Learning for SQL Scoring Functions
	2.5 Oracle Machine Learning for SQL Statistical Functions

	3 Prepare the Data
	3.1 Data Requirements
	3.1.1 Column Data Types
	3.1.2 Data Sets for Classification and Regression
	3.1.3 Scoring Requirements

	3.2 About Attributes
	3.2.1 Data Attributes and Model Attributes
	3.2.2 Target Attribute
	3.2.3 Numericals, Categoricals, and Unstructured Text
	3.2.4 Model Signature
	3.2.5 Scoping of Model Attribute Name
	3.2.6 Model Details

	3.3 Use Nested Data
	3.3.1 Nested Object Types
	3.3.2 Example: Transforming Transactional Data for Machine Learning

	3.4 Use Market Basket Data
	3.4.1 Example: Creating a Nested Column for Market Basket Analysis

	3.5 Use Retail Data for Analysis
	3.5.1 Example: Calculating Aggregates

	3.6 Handle Missing Values
	3.6.1 Examples: Missing Values or Sparse Data?
	3.6.1.1 Sparsity in a Sales Table
	3.6.1.2 Missing Values in a Table of Customer Data

	3.6.2 Missing Value Treatment in Oracle Machine Learning for SQL
	3.6.3 Changing the Missing Value Treatment

	3.7 About Transformations
	3.8 Prepare the Case Table
	3.8.1 Convert Column Data Types
	3.8.2 Extract Datetime Column Values
	3.8.3 Text Transformation
	3.8.4 About Business and Domain-Sensitive Transformations
	3.8.5 Create Nested Columns

	4 Create a Model
	4.1 Before Creating a Model
	4.2 Choose the Machine Learning Function
	4.3 Choose the Algorithm
	4.4 Automatic Data Preparation
	4.4.1 Binning
	4.4.2 Normalization
	4.4.3 How ADP Transforms the Data

	4.5 Embed Transformations in a Model
	4.5.1 Build a Transformation List
	4.5.1.1 SET_TRANSFORM
	4.5.1.2 The STACK Interface
	4.5.1.3 GET_MODEL_TRANSFORMATIONS and GET_TRANSFORM_LIST

	4.5.2 Transformation List and Automatic Data Preparation
	4.5.3 Specify Transformation Instructions for an Attribute
	4.5.3.1 Expression Records
	4.5.3.2 Attribute Specifications

	4.5.4 Oracle Machine Learning for SQL Transformation Routines
	4.5.4.1 Binning Routines
	4.5.4.2 Normalization Routines
	4.5.4.3 Outlier Treatment
	4.5.4.4 Routines for Outlier Treatment

	4.5.5 Understand Reverse Transformations

	4.6 The CREATE_MODEL2 Procedure
	4.7 The CREATE_MODEL Procedure
	4.8 Specify Model Settings
	4.8.1 Specify Costs
	4.8.2 Specify Prior Probabilities
	4.8.3 Specify Class Weights
	4.8.5 Specify Oracle Machine Learning Model Settings for an R Model
	4.8.5.1 ALGO_EXTENSIBLE_LANG
	4.8.5.2 RALG_BUILD_FUNCTION
	4.8.5.2.1 RALG_BUILD_PARAMETER

	4.8.5.3 RALG_DETAILS_FUNCTION
	4.8.5.4 RALG_DETAILS_FORMAT
	4.8.5.5 RALG_SCORE_FUNCTION
	4.8.5.6 RALG_WEIGHT_FUNCTION
	4.8.5.7 Registered R Scripts
	4.8.5.8 Algorithm Metadata Registration

	4.8.4 About Partitioned Models
	4.8.4.1 Partitioned Model Build Process
	4.8.4.2 DDL in Partitioned model
	4.8.4.2.1 Drop Model or Drop Partition
	4.8.4.2.2 Add Partition

	4.8.4.3 Partitioned Model Scoring

	4.9 Model Settings in the Data Dictionary
	4.10 Model Detail Views
	4.10.1 Model Detail Views for Association Rules
	4.10.2 Model Detail View for Frequent Itemsets
	4.10.3 Model Detail Views for Transactional Itemsets
	4.10.4 Model Detail View for Transactional Rule
	4.10.5 Model Detail Views for Classification Algorithms
	4.10.6 Model Detail Views for CUR Matrix Decomposition
	4.10.7 Model Detail Views for Decision Tree
	4.10.8 Model Detail Views for Generalized Linear Model
	4.10.9 Model Detail View for Multivariate State Estimation Technique - Sequential Probability Ratio Test
	4.10.10 Model Detail Views for Naive Bayes
	4.10.11 Model Detail Views for Neural Network
	4.10.12 Model Detail Views for Random Forest
	4.10.13 Model Detail View for Support Vector Machine
	4.10.14 Model Detail Views for XGBoost
	4.10.15 Model Detail Views for Clustering Algorithms
	4.10.16 Model Detail Views for Expectation Maximization
	4.10.17 Model Detail Views for k-Means
	4.10.18 Model Detail Views for O-Cluster
	4.10.19 Model Detail Views for Explicit Semantic Analysis
	4.10.20 Model Detail Views for Non-Negative Matrix Factorization
	4.10.21 Model Detail Views for Singular Value Decomposition
	4.10.22 Model Detail Views for Minimum Description Length
	4.10.23 Model Detail Views for Binning
	4.10.24 Model Detail Views for Global Information
	4.10.25 Model Detail Views for Normalization and Missing Value Handling
	4.10.26 Model Detail Views for Exponential Smoothing
	4.10.27 Model Detail Views for Text Features

	5 Scoring and Deployment
	5.1 About Scoring and Deployment
	5.2 Use the Oracle Machine Learning for SQL Functions
	5.2.1 Choose the Predictors
	5.2.2 Single-Record Scoring

	5.3 Prediction Details
	5.3.1 Cluster Details
	5.3.2 Feature Details
	5.3.3 Prediction Details
	5.3.4 GROUPING Hint

	5.4 Real-Time Scoring
	5.5 Dynamic Scoring
	5.6 Cost-Sensitive Decision Making
	5.7 DBMS_DATA_MINING.APPLY

	6 Machine Learning Operations on Unstructured Text
	6.1 About Unstructured Text
	6.2 About Machine Learning and Oracle Text
	6.3 Create a Model that Includes Machine Learning Operations on Text
	6.4 Create a Text Policy
	6.5 Configure a Text Attribute

	7 Administrative Tasks for Oracle Machine Learning for SQL
	7.1 Install and Configure a Database for Oracle Machine Learning for SQL
	7.1.1 About Installation
	7.1.2 Enable or Disable a Database Option
	7.1.3 Database Tuning Considerations for Oracle Machine Learning for SQL

	7.2 Upgrade or Downgrade Oracle Machine Learning for SQL
	7.2.1 Pre-Upgrade Steps
	7.2.2 Upgrade Oracle Machine Learning for SQL
	7.2.2.1 Use Database Upgrade Assistant to Upgrade Oracle Machine Learning for SQL
	7.2.2.2 Use Export/Import to Upgrade Machine Learning Models
	7.2.2.2.1 Export/Import Oracle Machine Learning for SQL Models

	7.2.3 Post Upgrade Steps
	7.2.4 Downgrade Oracle Machine Learning for SQL

	7.3 Export and Import Oracle Machine Learning for SQL Models
	7.3.1 About Oracle Data Pump
	7.3.2 Options for Exporting and Importing Oracle Machine Learning for SQL Models
	7.3.3 Directory Objects for EXPORT_MODEL and IMPORT_MODEL
	7.3.4 Use EXPORT_MODEL and IMPORT_MODEL
	7.3.5 EXPORT and IMPORT Serialized Models
	7.3.6 Import From PMML

	7.4 Control Access to Oracle Machine Learning for SQL Models and Data
	7.4.1 Create an Oracle Machine Learning for SQL User
	7.4.1.1 Grant Privileges for Oracle Machine Learning for SQL

	7.4.2 System Privileges for Oracle Machine Learning for SQL
	7.4.3 Object Privileges for Oracle Machine Learning for SQL Models

	7.5 Audit and Add Comments to Oracle Machine Learning for SQL Models
	7.5.1 Add a Comment to an Oracle Machine Learning for SQL Model
	7.5.2 Audit Oracle Machine Learning for SQL Models

	A Oracle Machine Learning for SQL Examples
	A.1 About the OML4SQL Examples
	A.2 Install the OML4SQL Examples
	A.3 OML4SQL Sample Data

	Index

