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Welcome to the Machine Learning poster. This poster will walk you through the cross-industry standard process
for data mining (CRISP-DM), which is a widely adopted process to guide the implementation of machine
learning projects.The poster also depicts how the Oracle Machine Learning products help at each step of the
process as well as the primary actors involved at each step.

In the poster we show CRISP-DM as a linearly progressing process, however, in practice this is rarely the case. At
many steps, based on the output, you may need to revert to the preceding step or steps.

For instance, during modelling, you may �nd that the model is not performing well on test data but does well on
the training data, which could be because of model over��ing. This may necessitate reverting to the data
preparation step for either be�er feature selection or to increase the size of training data set. It could also mean
needing to supplement with additional data (predictors), do additional feature engineering, or explore data
quality issues.

This poster depicts:

CRISP-DM process steps for machine learning projects
Oracle Machine Learning technologies that apply to a step
Roles involved in each step
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A machine learning project, like any other technology implementation project, is triggered by business needs of
the enterprise. Business leaders within an enterprise determine the business challenges and de�ne business-
level goals, objectives, and requirements the project must address. In a consultative process, a data scientist
then analyzes the business requirements and objectives, and translates these into machine learning objectives.
A budget and schedule is typically also put in place.
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Once the machine learning objectives are de�ned, you acquire, integrate and analyze the business data. Data
may exist in many places. Ideally, most data resides conveniently in Oracle Database, Oracle Database Cloud
Service, or Oracle Autonomous Database (ADB). Other data may reside in Cloud Storage, �at �les, or other
repositories. Oracle can provide access to such data so that it can be explored, integrated, and analyzed through
Oracle Database.
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Data preparation is the step that follows understanding and analyzing the data. In this step, you use the
outcome of the previous step to �ll in any gaps in the data. If the data contains outlier values, you may want to
treat or remove those, and you may want to exclude a�ributes (a.k.a. features or predictors) that are not
signi�cant. It is likely that new a�ributes need to be engineered, such as computing a person's age from their
date of birth.
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After the data has been prepared, it is ready for the next step, modeling. In this step, one or more algorithms are
used to build models that re�ect the pa�erns extracted from the data according to each algorithm's behavior.
Each algorithm has various se�ings, or hyperparameters, that a�ect algorithm performance and resulting
model quality. In the case of supervised learning, where there are known outcomes by which the algorithm
determines pa�erns, data scientists will assess the accuracy of the competing algorithms using a variety of
evaluation metrics. In the case of unsupervised learning, where there is not a known outcome, pa�erns are
discovered and various techniques may be applied to compare and select useful models.
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The modeling step may generate multiple machine learning models that address the business objectives and
success criteria posed at the beginning of the project. However, some of these models may do be�er than
others. In the evaluation step of the CRISP-DM process you zero in on the model of choice by evaluating it
against the business objectives. In addition, in this step, you typically also test the overall solution in a pre-
production environment.
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Deployment is the last stage of the CRISP-DM process. At this stage, you operationalize the machine learning
solution by deploying it in a production environment.

Deployment can take on many forms. The most common is to take a predictive model and score data, either in
batch or interactively through an application or dashboard. While some uses require only the prediction, others
may also require prediction details, i.e., what factors contributed to the prediction. In other cases, the model
itself contains information that can be surfaced to end users, e.g., overall important factors (feature coe�cients)
that determine predictions, rules of a decision tree that identify customer segments, cluster centroid de�nitions
that represent each cluster, or rules from market basket analysis describing which items are frequently
purchased together.

Deployment may involve using a speci�c model produced from an earlier phase, or may include the automatic
rebuilding of models either on a set schedule or triggered when model monitoring determines that predictions
are losing accuracy.

Note: The deployment mechanisms are applicable to Oracle Database, Database Cloud Service (DBCS), and
Oracle Autonomous Database or ADB. The graphic uses ADB as an example.
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