135 DBMS_PREDICTIVE_ANALYTICS
Machine learning can discover useful information buried in vast amounts of data. However, both the programming interfaces and the machine learning expertise required to obtain these results are too complex for use by the wide audiences that can obtain benefits from using Oracle Machine Learning for SQL.
The DBMS_PREDICTIVE_ANALYTICS
package addresses both of these complexities by automating the entire machine learning process from data preprocessing through model building to scoring new data. This package provides an important tool that makes machine learning possible for a broad audience of users, in particular, business analysts.
This chapter contains the following topics:
135.1 DBMS_PREDICTIVE_ANALYTICS Overview
DBMS_PREDICTIVE_ANALYTICS automates parts of the machine learning process.
Machine learning, according to a commonly used process model, requires the following steps:
-
Understand the business problem.
-
Understand the data.
-
Prepare the data for mining.
-
Create models using the prepared data.
-
Evaluate the models.
-
Deploy and use the model to score new data.
DBMS_PREDICTIVE_ANALYTICS
automates parts of step 3 — 5 of this process.
Predictive analytics procedures analyze and prepare the input data, create and test machine learning models using the input data, and then use the input data for scoring. The results of scoring are returned to the user. The models and supporting objects are not preserved after the operation completes.
135.2 DBMS_PREDICTIVE_ANALYTICS Security Model
The DBMS_PREDICTIVE_ANALYTICS
package is owned by user SYS
and is installed as part of database installation. Execution privilege on the package is granted to public. The routines in the package are run with invokers' rights (run with the privileges of the current user).
The DBMS_PREDICTIVE_ANALYTICS
package exposes APIs which are leveraged by the Oracle Machine Learning for SQL option. Users who wish to invoke procedures in this package require the CREATE MINING MODEL
system privilege (as well as the CREATE TABLE
and CREATE VIEW
system privilege).
135.3 Summary of DBMS_PREDICTIVE_ANALYTICS Subprograms
This table lists and briefly describes the DBMS_PREDICTIVE_ANALYTICS
package subprograms.
Table 135-1 DBMS_PREDICTIVE_ANALYTICS Package Subprograms
Subprogram | Purpose |
---|---|
Ranks attributes in order of influence in explaining a target column. |
|
Predicts the value of a target column based on values in the input data. |
|
Generates rules that identify the records that have the same target value. |
135.3.1 EXPLAIN Procedure
The EXPLAIN
procedure identifies the attributes that are important in explaining the variation in values of a target column.
The input data must contain some records where the target value is known (not NULL
). These records are used by the procedure to train a model that calculates the attribute importance.
Note:
EXPLAIN
supports DATE
and TIMESTAMP
datatypes in addition to the numeric, character, and nested datatypes supported by Oracle Machine Learning for SQL models.
Data requirements for Oracle Machine Learning for SQL are described in Oracle Machine Learning for SQL User’s Guide
The EXPLAIN
procedure creates a result table that lists the attributes in order of their explanatory power. The result table is described in the Usage Notes.
Syntax
DBMS_PREDICTIVE_ANALYTICS.EXPLAIN ( data_table_name IN VARCHAR2, explain_column_name IN VARCHAR2, result_table_name IN VARCHAR2, data_schema_name IN VARCHAR2 DEFAULT NULL);
Parameters
Table 135-2 EXPLAIN Procedure Parameters
Parameter | Description |
---|---|
|
Name of input table or view |
|
Name of the column to be explained |
|
Name of the table where results are saved |
|
Name of the schema where the input table or view resides and where the result table is created. Default: the current schema. |
Usage Notes
The EXPLAIN
procedure creates a result table with the columns described in Table 135-3.
Table 135-3 EXPLAIN Procedure Result Table
Column Name | Datatype | Description |
---|---|---|
|
|
Name of a column in the input data; all columns except the explained column are listed in the result table. |
|
|
Value indicating how useful the column is for determining the value of the explained column. Higher values indicate greater explanatory power. Value can range from 0 to 1. An individual column's explanatory value is independent of other columns in the input table. The values are based on how strong each individual column correlates with the explained column. The value is affected by the number of records in the input table, and the relations of the values of the column to the values of the explain column. An explanatory power value of 0 implies there is no useful correlation between the column's values and the explain column's values. An explanatory power of 1 implies perfect correlation; such columns should be eliminated from consideration for |
|
|
Ranking of explanatory power. Rows with equal values for |
Example
The following example performs an EXPLAIN
operation on the SUPPLEMENTARY_DEMOGRAPHICS
table of Sales History.
--Perform EXPLAIN operation BEGIN DBMS_PREDICTIVE_ANALYTICS.EXPLAIN( data_table_name => 'supplementary_demographics', explain_column_name => 'home_theater_package', result_table_name => 'demographics_explain_result'); END; / --Display results SELECT * FROM demographics_explain_result;
ATTRIBUTE_NAME EXPLANATORY_VALUE RANK ---------------------------------------- ----------------- ---------- Y_BOX_GAMES .524311073 1 YRS_RESIDENCE .495987246 2 HOUSEHOLD_SIZE .146208506 3 AFFINITY_CARD .0598227 4 EDUCATION .018462703 5 OCCUPATION .009721543 6 FLAT_PANEL_MONITOR .00013733 7 PRINTER_SUPPLIES 0 8 OS_DOC_SET_KANJI 0 8 BULK_PACK_DISKETTES 0 8 BOOKKEEPING_APPLICATION 0 8 COMMENTS 0 8 CUST_ID 0 8
The results show that Y_BOX_GAMES
, YRS_RESIDENCE
, and HOUSEHOLD_SIZE
are the best predictors of HOME_THEATER_PACKAGE
.
135.3.2 PREDICT Procedure
The PREDICT
procedure predicts the values of a target column.
The input data must contain some records where the target value is known (not NULL
). These records are used by the procedure to train and test a model that makes the predictions.
Note:
PREDICT
supports DATE
and TIMESTAMP
datatypes in addition to the numeric, character, and nested datatypes supported by Oracle Machine Learning for SQL models.
Data requirements for OML4SQL are described in Oracle Machine Learning for SQL User’s Guide
The PREDICT
procedure creates a result table that contains a predicted target value for every record. The result table is described in the Usage Notes.
Syntax
DBMS_PREDICTIVE_ANALYTICS.PREDICT ( accuracy OUT NUMBER, data_table_name IN VARCHAR2, case_id_column_name IN VARCHAR2, target_column_name IN VARCHAR2, result_table_name IN VARCHAR2, data_schema_name IN VARCHAR2 DEFAULT NULL);
Parameters
Table 135-4 PREDICT Procedure Parameters
Parameter | Description |
---|---|
|
Output parameter that returns the predictive confidence, a measure of the accuracy of the predicted values. The predictive confidence for a categorical target is the most common target value; the predictive confidence for a numerical target is the mean. |
|
Name of the input table or view. |
|
Name of the column that uniquely identifies each case (record) in the input data. |
|
Name of the column to predict. |
|
Name of the table where results will be saved. |
|
Name of the schema where the input table or view resides and where the result table is created. Default: the current schema. |
Usage Notes
The PREDICT
procedure creates a result table with the columns described in Table 135-5.
Table 135-5 PREDICT Procedure Result Table
Column Name | Datatype | Description |
---|---|---|
Case ID column name |
|
The name of the case ID column in the input data. |
|
|
The predicted value of the target column for the given case. |
|
|
For classification (categorical target), the probability of the prediction. For regression problems (numerical target), this column contains |
Note:
Make sure that the name of the case ID column is not 'PREDICTION
' or 'PROBABILITY
'.
Predictions are returned for all cases whether or not they contained target values in the input.
Predicted values for known cases may be interesting in some situations. For example, you could perform deviation analysis to compare predicted values and actual values.
Example
The following example performs a PREDICT
operation and displays the first 10 predictions. The results show an accuracy of 79% in predicting whether each customer has an affinity card.
--Perform PREDICT operation DECLARE v_accuracy NUMBER(10,9); BEGIN DBMS_PREDICTIVE_ANALYTICS.PREDICT( accuracy => v_accuracy, data_table_name => 'supplementary_demographics', case_id_column_name => 'cust_id', target_column_name => 'affinity_card', result_table_name => 'pa_demographics_predict_result'); DBMS_OUTPUT.PUT_LINE('Accuracy = ' || v_accuracy); END; / Accuracy = .788696903 --Display results SELECT * FROM pa_demographics_predict_result WHERE rownum < 10; CUST_ID PREDICTION PROBABILITY ---------- ---------- ----------- 101501 1 .834069848 101502 0 .991269965 101503 0 .99978311 101504 1 .971643388 101505 1 .541754127 101506 0 .803719133 101507 0 .999999303 101508 0 .999999987 101509 0 .999953074
135.3.3 PROFILE Procedure
The PROFILE
procedure generates rules that describe the cases (records) from the input data.
For example, if a target column CHURN
has values 'Yes' and 'No', PROFILE
generates a set of rules describing the expected outcomes. Each profile includes a rule, record count, and a score distribution.
The input data must contain some cases where the target value is known (not NULL
). These cases are used by the procedure to build a model that calculates the rules.
Note:
PROFILE
does not support nested types or dates.
Data requirements for Oracle Machine Learning for SQL are described in Oracle Machine Learning for SQL User’s Guide
The PROFILE
procedure creates a result table that specifies rules (profiles) and their corresponding target values. The result table is described in the Usage Notes.
Syntax
DBMS_PREDICTIVE_ANALYTICS.PROFILE ( data_table_name IN VARCHAR2, target_column_name IN VARCHAR2, result_table_name IN VARCHAR2, data_schema_name IN VARCHAR2 DEFAULT NULL);
Parameters
Table 135-6 PROFILE Procedure Parameters
Parameter | Description |
---|---|
|
Name of the table containing the data to be analyzed. |
|
Name of the target column. |
|
Name of the table where the results will be saved. |
|
Name of the schema where the input table or view resides and where the result table is created. Default: the current schema. |
Usage Notes
The PROFILE
procedure creates a result table with the columns described in Table 135-7.
Table 135-7 PROFILE Procedure Result Table
Column Name | Datatype | Description |
---|---|---|
|
|
A unique identifier for this profile (rule). |
|
|
The number of records described by the profile. |
|
|
The profile rule. See "XML Schema for Profile Rules". |
XML Schema for Profile Rules
The DESCRIPTION
column of the result table contains XML that conforms to the following XSD:
<xs:element name="SimpleRule"> <xs:complexType> <xs:sequence> <xs:group ref="PREDICATE"/> <xs:element ref="ScoreDistribution" minOccurs="0" maxOccurs="unbounded"/> </xs:sequence> <xs:attribute name="id" type="xs:string" use="optional"/> <xs:attribute name="score" type="xs:string" use="required"/> <xs:attribute name="recordCount" type="NUMBER" use="optional"/> </xs:complexType> </xs:element>
Example
This example generates a rule describing customers who are likely to use an affinity card (target value is 1) and a set of rules describing customers who are not likely to use an affinity card (target value is 0). The rules are based on only two predictors: education and occupation.
SET serveroutput ON SET trimspool ON SET pages 10000 SET long 10000 SET pagesize 10000 SET linesize 150 CREATE VIEW cust_edu_occ_view AS SELECT cust_id, education, occupation, affinity_card FROM sh.supplementary_demographics; BEGIN DBMS_PREDICTIVE_ANALYTICS.PROFILE( DATA_TABLE_NAME => 'cust_edu_occ_view', TARGET_COLUMN_NAME => 'affinity_card', RESULT_TABLE_NAME => 'profile_result'); END; /
This example generates eight rules in the result table profile_result
. Seven of the rules suggest a target value of 0; one rule suggests a target value of 1. The score
attribute on a rule identifies the target value.
This SELECT
statement returns all the rules in the result table.
SELECT a.profile_id, a.record_count, a.description.getstringval() FROM profile_result a;
This SELECT
statement returns the rules for a target value of 0.
SELECT * FROM profile_result t WHERE extractvalue(t.description, '/SimpleRule/@score') = 0;
The eight rules generated by this example are displayed as follows.
<SimpleRule id="1" score="0" recordCount="443"> <CompoundPredicate booleanOperator="and"> <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn"> <Array type="string">"Armed-F" "Exec." "Prof." "Protec." </Array> </SimpleSetPredicate> <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn"> <Array type="string">"< Bach." "Assoc-V" "HS-grad" </Array> </SimpleSetPredicate> </CompoundPredicate> <ScoreDistribution value="0" recordCount="297" /> <ScoreDistribution value="1" recordCount="146" /> </SimpleRule> <SimpleRule id="2" score="0" recordCount="18"> <CompoundPredicate booleanOperator="and"> <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn"> <Array type="string">"Armed-F" "Exec." "Prof." "Protec." </Array> </SimpleSetPredicate> <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn"> <Array type="string">"10th" "11th" "12th" "1st-4th" "5th-6th" "7th-8th" "9th" "Presch." </Array> </SimpleSetPredicate> </CompoundPredicate> <ScoreDistribution value="0" recordCount="18" /> </SimpleRule> <SimpleRule id="3" score="0" recordCount="458"> <CompoundPredicate booleanOperator="and"> <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn"> <Array type="string">"Armed-F" "Exec." "Prof." "Protec." </Array> </SimpleSetPredicate> <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn"> <Array type="string">"Assoc-A" "Bach." </Array> </SimpleSetPredicate> </CompoundPredicate> <ScoreDistribution value="0" recordCount="248" /> <ScoreDistribution value="1" recordCount="210" /> </SimpleRule> <SimpleRule id="4" score="1" recordCount="276"> <CompoundPredicate booleanOperator="and"> <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn"> <Array type="string">"Armed-F" "Exec." "Prof." "Protec." </Array> </SimpleSetPredicate> <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn"> <Array type="string">"Masters" "PhD" "Profsc" </Array> </SimpleSetPredicate> </CompoundPredicate> <ScoreDistribution value="1" recordCount="183" /> <ScoreDistribution value="0" recordCount="93" /> </SimpleRule> <SimpleRule id="5" score="0" recordCount="307"> <CompoundPredicate booleanOperator="and"> <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn"> <Array type="string">"Assoc-A" "Bach." "Masters" "PhD" "Profsc" </Array> </SimpleSetPredicate> <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn"> <Array type="string">"Crafts" "Sales" "TechSup" "Transp." </Array> </SimpleSetPredicate> </CompoundPredicate> <ScoreDistribution value="0" recordCount="184" /> <ScoreDistribution value="1" recordCount="123" /> </SimpleRule> <SimpleRule id="6" score="0" recordCount="243"> <CompoundPredicate booleanOperator="and"> <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn"> <Array type="string">"Assoc-A" "Bach." "Masters" "PhD" "Profsc" </Array> </SimpleSetPredicate> <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn"> <Array type="string">"?" "Cleric." "Farming" "Handler" "House-s" "Machine" "Other" </Array> </SimpleSetPredicate> </CompoundPredicate> <ScoreDistribution value="0" recordCount="197" /> <ScoreDistribution value="1" recordCount="46" /> </SimpleRule> <SimpleRule id="7" score="0" recordCount="2158"> <CompoundPredicate booleanOperator="and"> <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn"> <Array type="string"> "10th" "11th" "12th" "1st-4th" "5th-6th" "7th-8th" "9th" "< Bach." "Assoc-V" "HS-grad" "Presch." </Array> </SimpleSetPredicate> <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn"> <Array type="string">"?" "Cleric." "Crafts" "Farming" "Machine" "Sales" "TechSup" " Transp." </Array> </SimpleSetPredicate> </CompoundPredicate> <ScoreDistribution value="0" recordCount="1819"/> <ScoreDistribution value="1" recordCount="339"/> </SimpleRule> <SimpleRule id="8" score="0" recordCount="597"> <CompoundPredicate booleanOperator="and"> <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn"> <Array type="string"> "10th" "11th" "12th" "1st-4th" "5th-6th" "7th-8th" "9th" "< Bach." "Assoc-V" "HS-grad" "Presch." </Array> </SimpleSetPredicate> <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn"> <Array type="string">"Handler" "House-s" "Other" </Array> </SimpleSetPredicate> </CompoundPredicate> <ScoreDistribution value="0" recordCount="572"/> <ScoreDistribution value="1" recordCount="25"/> </SimpleRule>