6 Explaining and Displaying Execution Plans
Knowledge of how to explain a statement and display its plan is essential to SQL tuning.
6.1 Introduction to Execution Plans
An execution plan is the sequence of operations that the database performs to run a SQL statement.
6.1.1 Contents of an Execution Plan
The execution plan operation alone cannot differentiate between well-tuned statements and those that perform suboptimally.
The plan consists of a series of steps. Every step either retrieves rows of data physically from the database or prepares them for the user issuing the statement. The following plan shows a join of the employees
and departments
tables:
SQL_ID g9xaqjktdhbcd, child number 0
-------------------------------------
SELECT employee_id, last_name, first_name, department_name from
employees e, departments d WHERE e.department_id = d.department_id and
last_name like 'T%' ORDER BY last_name
Plan hash value: 1219589317
----------------------------------------------------------------------------------------
| Id | Operation | Name |Rows | Bytes |Cost (%CPU)| Time |
----------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | | | 5 (100)| |
| 1 | NESTED LOOPS | | 5 | 190 | 5 (0)| 00:00:01 |
| 2 | TABLE ACCESS BY INDEX ROWID| EMPLOYEES | 5 | 110 | 2 (0)| 00:00:01 |
|* 3 | INDEX RANGE SCAN | EMP_NAME_IX | 5 | | 1 (0)| 00:00:01 |
|* 4 | TABLE ACCESS FULL | DEPARTMENTS | 1 | 16 | 1 (0)| 00:00:01 |
----------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
3 - access("LAST_NAME" LIKE 'T%')
filter("LAST_NAME" LIKE 'T%')
4 - filter("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")
The row source tree is the core of the execution plan. The tree shows the following information:
-
The join order of the tables referenced by the statement
In the preceding plan,
employees
is the outer row source anddepartments
is the inner row source. -
An access path for each table mentioned in the statement
In the preceding plan, the optimizer chooses to access
employees
using an index scan anddepartments
using a full scan. -
A join method for tables affected by join operations in the statement
In the preceding plan, the optimizer chooses a nested loops join.
-
Data operations like filter, sort, or aggregation
In the preceding plan, the optimizer filters on last names that begin with
T
and matches ondepartment_id
.
In addition to the row source tree, the plan table contains information about the following:
-
Optimization, such as the cost and cardinality of each operation
-
Partitioning, such as the set of accessed partitions
-
Parallel execution, such as the distribution method of join inputs
6.1.2 Why Execution Plans Change
Execution plans can and do change as the underlying optimizer inputs change.
Note:
To avoid possible SQL performance regression that may result from execution plan changes, consider using SQL plan management.
See Also:
-
Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SPM
package
6.1.2.1 Different Schemas
Schemas can differ for various reasons.
Principal reasons include the following:
-
The execution and explain plan occur on different databases.
-
The user explaining the statement is different from the user running the statement. Two users might be pointing to different objects in the same database, resulting in different execution plans.
-
Schema changes (often changes in indexes) between the two operations.
6.1.2.2 Different Costs
Even if the schemas are the same, the optimizer can choose different execution plans when the costs are different.
Some factors that affect the costs include the following:
-
Data volume and statistics
-
Bind variable types and values
-
Initialization parameters set globally or at session level
6.2 Generating Plan Output Using the EXPLAIN PLAN Statement
The EXPLAIN PLAN
statement enables you to examine the execution plan that the optimizer chose for a SQL statement.
6.2.1 About the EXPLAIN PLAN Statement
The EXPLAIN PLAN
statement displays execution plans that the optimizer chooses for SELECT
, UPDATE
, INSERT
, and DELETE
statements.
EXPLAIN PLAN
output shows how the database would have run the SQL statement when the statement was explained. Because of differences in the execution environment and explain plan environment, the explained plan can differ from the actual plan used during statement execution.
When the EXPLAIN PLAN
statement is issued, the optimizer chooses an execution plan and then inserts a row describing each step of the execution plan into a specified plan table. You can also issue the EXPLAIN PLAN
statement as part of the SQL trace facility.
The EXPLAIN PLAN
statement is a DML statement rather than a DDL statement. Therefore, Oracle Database does not implicitly commit the changes made by an EXPLAIN PLAN
statement.
See Also:
-
Oracle Database SQL Language Reference to learn about the
EXPLAIN PLAN
statement
6.2.1.1 About PLAN_TABLE
PLAN_TABLE
is the default sample output table into which the EXPLAIN PLAN
statement inserts rows describing execution plans.
Oracle Database automatically creates a global temporary table PLAN_TABLE$
in the SYS
schema, and creates PLAN_TABLE
as a synonym. All necessary privileges to PLAN_TABLE
are granted to PUBLIC
. Consequently, every session gets its own private copy of PLAN_TABLE
in its temporary tablespace.
You can use the SQL script catplan.sql
to manually create the global temporary table and the PLAN_TABLE
synonym. The name and location of this script depends on your operating system. On UNIX and Linux, the script is located in the $ORACLE_HOME/rdbms/admin
directory. For example, start a SQL*Plus session, connect with SYSDBA
privileges, and run the script as follows:
@$ORACLE_HOME/rdbms/admin/catplan.sql
The definition of a sample output table PLAN_TABLE
is available in a SQL script on your distribution media. Your output table must have the same column names and data types as this table. The common name of this script is utlxplan.sql
. The exact name and location depend on your operating system.
See Also:
Oracle Database SQL Language Reference for a complete description of EXPLAIN PLAN
syntax.
6.2.1.2 EXPLAIN PLAN Restrictions
Oracle Database does not support EXPLAIN PLAN
for statements performing implicit type conversion of date bind variables.
With bind variables in general, the EXPLAIN PLAN
output might not represent the real execution plan.
From the text of a SQL statement, TKPROF
cannot determine the types of the bind variables. It assumes that the type is VARCHAR
, and gives an error message otherwise. You can avoid this limitation by putting appropriate type conversions in the SQL statement.
See Also:
-
Oracle Database SQL Language Reference to learn more about SQL data types
6.2.2 Explaining a SQL Statement: Basic Steps
Use EXPLAIN PLAN
to store the plan for a SQL statement in PLAN_TABLE
.
Prerequisites
This task assumes that a sample output table named PLAN_TABLE
exists in your schema. If this table does not exist, then run the SQL script catplan.sql
.
To execute EXPLAIN PLAN
, you must have the following privileges:
-
You must have the privileges necessary to insert rows into an existing output table that you specify to hold the execution plan
-
You must also have the privileges necessary to execute the SQL statement for which you are determining the execution plan. If the SQL statement accesses a view, then you must have privileges to access any tables and views on which the view is based. If the view is based on another view that is based on a table, then you must have privileges to access both the other view and its underlying table.
To examine the execution plan produced by an EXPLAIN PLAN
statement, you must have the privileges necessary to query the output table.
To explain a statement:
-
Start SQL*Plus or SQL Developer, and log in to the database as a user with the requisite permissions.
-
Include the
EXPLAIN PLAN FOR
clause immediately before the SQL statement.The following example explains the plan for a query of the
employees
table:EXPLAIN PLAN FOR SELECT e.last_name, d.department_name, e.salary FROM employees e, departments d WHERE salary < 3000 AND e.department_id = d.department_id ORDER BY salary DESC;
-
After issuing the
EXPLAIN PLAN
statement, use a script or package provided by Oracle Database to display the most recent plan table output.The following example uses the
DBMS_XPLAN.DISPLAY
function:SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY(format => 'ALL'));
-
Review the plan output.
For example, the following plan shows a hash join:
SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY(format => 'ALL')); Plan hash value: 3556827125 ------------------------------------------------------------------------------ | Id | Operation | Name |Rows | Bytes |Cost (%CPU)| Time | ------------------------------------------------------------------------------ | 0 | SELECT STATEMENT | | 4 | 124 | 5 (20)| 00:00:01 | | 1 | SORT ORDER BY | | 4 | 124 | 5 (20)| 00:00:01 | |* 2 | HASH JOIN | | 4 | 124 | 4 (0)| 00:00:01 | |* 3 | TABLE ACCESS FULL| EMPLOYEES | 4 | 60 | 2 (0)| 00:00:01 | | 4 | TABLE ACCESS FULL| DEPARTMENTS | 27 | 432 | 2 (0)| 00:00:01 | ------------------------------------------------------------------------------ Query Block Name / Object Alias (identified by operation id): ------------------------------------------------------------- 1 - SEL$1 3 - SEL$1 / E@SEL$1 4 - SEL$1 / D@SEL$1 Predicate Information (identified by operation id): --------------------------------------------------- 2 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID") 3 - filter("SALARY"<3000) Column Projection Information (identified by operation id): ----------------------------------------------------------- 1 - (#keys=1) INTERNAL_FUNCTION("E"."SALARY")[22], "E"."LAST_NAME"[VARCHAR2,25], "D"."DEPARTMENT_NAME"[VARCHAR2,30] 2 - (#keys=1) "E"."LAST_NAME"[VARCHAR2,25], "SALARY"[NUMBER,22], "D"."DEPARTMENT_NAME"[VARCHAR2,30], "D"."DEPARTMENT_NAME"[VARCHAR2,30] 3 - "E"."LAST_NAME"[VARCHAR2,25], "SALARY"[NUMBER,22], "E"."DEPARTMENT_ID"[NUMBER,22] 4 - "D"."DEPARTMENT_ID"[NUMBER,22], "D"."DEPARTMENT_NAME"[VARCHAR2,30] Note ----- - this is an adaptive plan
The execution order in
EXPLAIN PLAN
output begins with the line that is the furthest indented to the right. The next step is the parent of that line. If two lines are indented equally, then the top line is normally executed first.Note:
The steps in the
EXPLAIN PLAN
output in this chapter may be different on your database. The optimizer may choose different execution plans, depending on database configurations.
See Also:
-
Oracle Database SQL Language Reference for the syntax and semantics of
EXPLAIN PLAN
6.2.3 Specifying a Statement ID in EXPLAIN PLAN: Example
With multiple statements, you can specify a statement identifier and use that to identify your specific execution plan.
Before using SET STATEMENT ID
, remove any existing rows for that statement ID. In the following example, st1
is specified as the statement identifier.
Example 6-1 Using EXPLAIN PLAN with the STATEMENT ID Clause
EXPLAIN PLAN
SET STATEMENT_ID = 'st1' FOR
SELECT last_name FROM employees;
6.2.4 Specifying a Different Location for EXPLAIN PLAN Output: Example
The INTO
clause of EXPLAIN PLAN
specifies a different table in which to store the output.
If you do not want to use the name PLAN_TABLE
, create a new synonym after running the catplan.sql
script. For example:
CREATE OR REPLACE PUBLIC SYNONYM my_plan_table for plan_table$
The following statement directs output to my_plan_table
:
EXPLAIN PLAN
INTO my_plan_table FOR
SELECT last_name FROM employees;
You can specify a statement ID when using the INTO
clause, as in the following statement:
EXPLAIN PLAN
SET STATEMENT_ID = 'st1'
INTO my_plan_table FOR
SELECT last_name FROM employees;
See Also:
-
"PLAN_TABLE Columns" for a description of the columns in
PLAN_TABLE
-
Oracle Database SQL Language Reference to learn about
CREATE SYNONYM
6.2.5 EXPLAIN PLAN Output for a CONTAINERS Query: Example
The CONTAINERS
clause can be used to query both user-created and
Oracle-supplied tables and views. It enables you to query these tables and views across
all containers.
The following example illustrates the output of an EXPLAIN PLAN
for a
query using the CONTAINERS
clause.
SQL> explain plan for select con_id, count(*) from containers(sys.dba_tables) where con_id < 10 group by con_id order by con_id;
Explained.
SQL> @?/rdbms/admin/utlxpls
PLAN_TABLE_OUTPUT
---------------------------------------------------------------------------------------------------------------
Plan hash value: 891225627
---------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |
---------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 234K| 2970K| 145 (100)| 00:00:01 | | |
| 1 | PX COORDINATOR | | | | | | | |
| 2 | PX SEND QC (ORDER) | :TQ10001 | 234K| 2970K| 145 (100)| 00:00:01 | | |
| 3 | SORT GROUP BY | | 234K| 2970K| 145 (100)| 00:00:01 | | |
| 4 | PX RECEIVE | | 234K| 2970K| 145 (100)| 00:00:01 | | |
| 5 | PX SEND RANGE | :TQ10000 | 234K| 2970K| 145 (100)| 00:00:01 | | |
| 6 | HASH GROUP BY | | 234K| 2970K| 145 (100)| 00:00:01 | | |
| 7 | PX PARTITION LIST ITERATOR| | 234K| 2970K| 139 (100)| 00:00:01 | 1 | 9 |
| 8 | CONTAINERS FULL | DBA_TABLES | 234K| 2970K| 139 (100)| 00:00:01 | | |
---------------------------------------------------------------------------------------------------------------
15 rows selected.
At Row 8 of this plan, CONTAINERS
is shown in the
Operation
column as the value CONTAINERS FULL
. The
Name column in the same row shows the argument to CONTAINERS
.
Default Partitioning
A query using the CONTAINERS
clause is partitioned by
default. At Row 7 in the plan, the PX PARTITION LIST ITERATOR
in
the Operation
column indicates that the query is partitioned.
Iteration over containers is implemented in this partition iterator. On the same
row, the Pstart
and Pstop
values 1 and 9 are
derived from the con_id < 10
predicate in the query.
Default Parallelism
A query using the CONTAINERS
clause uses parallel
execution servers by default. In Row 1 of the plan above, PX
COORDINATOR
in the Operation
column indicates that
parallel execution servers will be used. Each container is assigned to a parallel
execution process (P00*
). When the parallel execution process
executes the part of the query EXECUTION PLAN
that corresponds to
CONTAINERS FULL
, then the process switches into the container
it has been assigned to work on. It retrieves rows from the base object by executing
a recursive SQL statement.
6.3 Displaying Execution Plans
The easiest way to display execution plans is to use DBMS_XPLAN
display functions or V$
views.
6.3.1 About the Display of PLAN_TABLE Output
To display the plan table output, you can use either SQL scripts or the DBMS_XPLAN
package.
After you have explained the plan, use the following SQL scripts or PL/SQL package provided by Oracle Database to display the most recent plan table output:
-
DBMS_XPLAN.DISPLAY
table functionThis function accepts options for displaying the plan table output. You can specify:
-
A plan table name if you are using a table different than
PLAN_TABLE
-
A statement ID if you have set a statement ID with the
EXPLAIN PLAN
-
A format option that determines the level of detail:
BASIC
,SERIAL
,TYPICAL
, andALL
Examples of using
DBMS_XPLAN
to displayPLAN_TABLE
output are:SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY()); SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY('MY_PLAN_TABLE', 'st1','TYPICAL'));
-
-
utlxpls.sql
This script displays the plan table output for serial processing
-
utlxplp.sql
This script displays the plan table output including parallel execution columns.
See Also:
Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_XPLAN
package
6.3.1.1 DBMS_XPLAN Display Functions
You can use the DBMS_XPLAN
display functions to show plans.
The display functions accept options for displaying the plan table output. You can specify:
-
A plan table name if you are using a table different from
PLAN_TABLE
-
A statement ID if you have set a statement ID with the
EXPLAIN PLAN
-
A format option that determines the level of detail:
BASIC
,SERIAL
,TYPICAL
,ALL
, and in some casesADAPTIVE
Table 6-1 DBMS_XPLAN Display Functions
Display Functions | Notes |
---|---|
|
This table function displays the contents of the plan table. In addition, you can use this table function to display any plan (with or without statistics) stored in a table as long as the columns of this table are named the same as columns of the plan table (or The |
|
This table function displays the contents of an execution plan stored in AWR. The |
|
This table function displays the explain plan of any cursor loaded in the cursor cache. In addition to the explain plan, various plan statistics (such as. I/O, memory and timing) can be reported (based on the The
|
|
This table function displays the contents of the plan table in a variety of formats with CLOB output type.The If the |
|
This table function displays one or more execution plans for the specified SQL handle of a SQL plan baseline. This function uses plan information stored in the plan baseline to explain and display the plans. The |
|
This table function displays the execution plan of a given statement stored in a SQL tuning set. The |
See Also:
Oracle Database PL/SQL Packages and Types Reference to learn more about DBMS_XPLAN
display functions
6.3.1.2 Plan-Related Views
You can obtain information about execution plans by querying dynamic performance and data dictionary views.
Table 6-2 Execution Plan Views
View | Description |
---|---|
|
Lists statistics for cursors and contains one row for each child of the original SQL text entered. Starting in Oracle Database 19c, |
|
Explains why a particular child cursor is not shared with existing child cursors. Each column identifies a specific reason why the cursor cannot be shared. The |
|
Contains the plan for every statement stored in the shared SQL area. The view definition is similar to As an alternative to |
|
Provides the actual execution statistics for every operation in the plan, such as the number of output rows and elapsed time. All statistics, except the number of output rows, are cumulative. For example, the statistics for a join operation also includes the statistics for its two inputs. The statistics in |
|
Contains memory usage statistics for row sources that use SQL memory (sort or hash join). This view concatenates information in
|
See Also:
-
"Monitoring Database Operations" for information about the
V$SQL_PLAN_MONITOR
view -
Oracle Database Reference for more information about
V$SQL_PLAN
views -
Oracle Database Reference for information about the
STATISTICS_LEVEL
initialization parameter
6.3.2 Displaying Execution Plans: Basic Steps
The DBMS_XPLAN.DISPLAY
function is a simple way to display an explained plan.
By default, the DISPLAY
function uses the format setting of TYPICAL
. In this case, the plan the most relevant information in the plan: operation id, name and option, rows, bytes and optimizer cost. Pruning, parallel and predicate information are only displayed when applicable.
To display an execution plan:
-
Start SQL*Plus or SQL Developer and log in to the session in which you explained the plan.
-
Explain a plan.
-
Query
PLAN_TABLE
usingDBMS_XPLAN.DISPLAY
.Specify the query as follows:
SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY);
Alternatively, specify the statement ID using the
statement_id
parameter:SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY(statement_id => 'statement_id));
Example 6-2 EXPLAIN PLAN for Statement ID ex_plan1
This example explains a query of employees
that uses the statement ID ex_plan1
, and then queries PLAN_TABLE
:
EXPLAIN PLAN
SET statement_id = 'ex_plan1' FOR
SELECT phone_number
FROM employees
WHERE phone_number LIKE '650%';
SELECT PLAN_TABLE_OUTPUT
FROM TABLE(DBMS_XPLAN.DISPLAY(statement_id => 'ex_plan1'));
Sample output appears below:
Plan hash value: 1445457117
---------------------------------------------------------------------------
|Id | Operation | Name |Rows | Bytes | Cost (%CPU)| Time |
---------------------------------------------------------------------------
| 0| SELECT STATEMENT | | 1 | 15 | 2 (0)| 00:00:01 |
|* 1| TABLE ACCESS FULL| EMPLOYEES | 1 | 15 | 2 (0)| 00:00:01 |
---------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter("PHONE_NUMBER" LIKE '650%')
Example 6-3 EXPLAIN PLAN for Statement ID ex_plan2
This example explains a query of employees
that uses the statement ID ex_plan2
, and then displays the plan using the BASIC
format:
EXPLAIN PLAN
SET statement_id = 'ex_plan2' FOR
SELECT last_name
FROM employees
WHERE last_name LIKE 'Pe%';
SELECT PLAN_TABLE_OUTPUT
FROM TABLE(DBMS_XPLAN.DISPLAY(NULL, 'ex_plan2','BASIC'));
Sample output appears below:
----------------------------------------
| Id | Operation | Name |
----------------------------------------
| 0 | SELECT STATEMENT | |
| 1 | INDEX RANGE SCAN| EMP_NAME_IX |
----------------------------------------
See Also:
Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_XPLAN
package
6.3.3 Displaying Adaptive Query Plans: Tutorial
The adaptive optimizer is a feature of the optimizer that enables it to adapt plans based on run-time statistics. All adaptive mechanisms can execute a final plan for a statement that differs from the default plan.
An adaptive query plan chooses among subplans during the current statement execution. In contrast, automatic reoptimization changes a plan only on executions that occur after the current statement execution.
You can determine whether the database used adaptive query optimization for a SQL statement based on the comments in the Notes
section of plan. The comments indicate whether row sources are dynamic, or whether automatic reoptimization adapted a plan.
Assumptions
This tutorial assumes the following:
-
The
STATISTICS_LEVEL
initialization parameter is set toALL
. -
The database uses the default settings for adaptive execution.
-
As user
oe
, you want to issue the following separate queries:SELECT o.order_id, v.product_name FROM orders o, ( SELECT order_id, product_name FROM order_items o, product_information p WHERE p.product_id = o.product_id AND list_price < 50 AND min_price < 40 ) v WHERE o.order_id = v.order_id SELECT product_name FROM order_items o, product_information p WHERE o.unit_price = 15 AND quantity > 1 AND p.product_id = o.product_id
-
Before executing each query, you want to query
DBMS_XPLAN.DISPLAY_PLAN
to see the default plan, that is, the plan that the optimizer chose before applying its adaptive mechanism. -
After executing each query, you want to query
DBMS_XPLAN.DISPLAY_CURSOR
to see the final plan and adaptive query plan. -
SYS
has grantedoe
the following privileges:-
GRANT SELECT ON V_$SESSION TO oe
-
GRANT SELECT ON V_$SQL TO oe
-
GRANT SELECT ON V_$SQL_PLAN TO oe
-
GRANT SELECT ON V_$SQL_PLAN_STATISTICS_ALL TO oe
-
To see the results of adaptive optimization:
-
Start SQL*Plus, and then connect to the database as user
oe
. -
Query
orders
.For example, use the following statement:
SELECT o.order_id, v.product_name FROM orders o, ( SELECT order_id, product_name FROM order_items o, product_information p WHERE p.product_id = o.product_id AND list_price < 50 AND min_price < 40 ) v WHERE o.order_id = v.order_id;
-
View the plan in the cursor.
For example, run the following commands:
SET LINESIZE 165 SET PAGESIZE 0 SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'+ALLSTATS'));
The following sample output has been reformatted to fit on the page. In this plan, the optimizer chooses a nested loops join. The original optimizer estimates are shown in the
E-Rows
column, whereas the actual statistics gathered during execution are shown in theA-Rows
column. In theMERGE JOIN
operation, the difference between the estimated and actual number of rows is significant.-------------------------------------------------------------------------------------------- |Id| Operation | Name |Start|E-Rows|A-Rows|A-Time|Buff|OMem|1Mem|O/1/M| -------------------------------------------------------------------------------------------- | 0| SELECT STATEMENT | | 1| | 269|00:00:00.09|1338| | | | | 1| NESTED LOOPS | | 1| 1| 269|00:00:00.09|1338| | | | | 2| MERGE JOIN CARTESIAN| | 1| 4|9135|00:00:00.03| 33| | | | |*3| TABLE ACCESS FULL |PRODUCT_INFORMAT| 1| 1| 87|00:00:00.01| 32| | | | | 4| BUFFER SORT | | 87|105|9135|00:00:00.01| 1|4096|4096|1/0/0| | 5| INDEX FULL SCAN | ORDER_PK | 1|105| 105|00:00:00.01| 1| | | | |*6| INDEX UNIQUE SCAN | ORDER_ITEMS_UK |9135| 1| 269|00:00:00.03|1305| | | | -------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 3 - filter(("MIN_PRICE"<40 AND "LIST_PRICE"<50)) 6 - access("O"."ORDER_ID"="ORDER_ID" AND "P"."PRODUCT_ID"="O"."PRODUCT_ID")
-
Run the same query of
orders
that you ran in Step 2. -
View the execution plan in the cursor by using the same
SELECT
statement that you ran in Step 3.The following example shows that the optimizer has chosen a different plan, using a hash join. The Note section shows that the optimizer used statistics feedback to adjust its cost estimates for the second execution of the query, thus illustrating automatic reoptimization.
-------------------------------------------------------------------------------------------- |Id| Operation |Name |Start|E-Rows|A-Rows|A-Time|Buff|Reads|OMem|1Mem|O/1/M| -------------------------------------------------------------------------------------------- | 0| SELECT STATEMENT | | 1 | |269|00:00:00.02|60|1| | | | | 1| NESTED LOOPS | | 1 |269|269|00:00:00.02|60|1| | | | |*2| HASH JOIN | | 1 |313|269|00:00:00.02|39|1|1000K|1000K|1/0/0| |*3| TABLE ACCESS FULL |PRODUCT_INFORMA| 1 | 87| 87|00:00:00.01|15|0| | | | | 4| INDEX FAST FULL SCAN|ORDER_ITEMS_UK | 1 |665|665|00:00:00.01|24|1| | | | |*5| INDEX UNIQUE SCAN |ORDER_PK |269| 1|269|00:00:00.01|21|0| | | | -------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 2 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID") 3 - filter(("MIN_PRICE"<40 AND "LIST_PRICE"<50)) 5 - access("O"."ORDER_ID"="ORDER_ID") Note ----- - statistics feedback used for this statement
-
Query
V$SQL
to verify the performance improvement.The following query shows the performance of the two statements (sample output included).
SELECT CHILD_NUMBER, CPU_TIME, ELAPSED_TIME, BUFFER_GETS FROM V$SQL WHERE SQL_ID = 'gm2npz344xqn8'; CHILD_NUMBER CPU_TIME ELAPSED_TIME BUFFER_GETS ------------ ---------- ------------ ----------- 0 92006 131485 1831 1 12000 24156 60
The second statement executed, which is child number
1
, used statistics feedback. CPU time, elapsed time, and buffer gets are all significantly lower. -
Explain the plan for the query of
order_items
.For example, use the following statement:
EXPLAIN PLAN FOR SELECT product_name FROM order_items o, product_information p WHERE o.unit_price = 15 AND quantity > 1 AND p.product_id = o.product_id
-
View the plan in the plan table.
For example, run the following statement:
SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY);
Sample output appears below:
------------------------------------------------------------------------------- |Id| Operation | Name |Rows|Bytes|Cost (%CPU)|Time| ------------------------------------------------------------------------------- | 0| SELECT STATEMENT | |4|128|7 (0)|00:00:01| | 1| NESTED LOOPS | | | | | | | 2| NESTED LOOPS | |4|128|7 (0)|00:00:01| |*3| TABLE ACCESS FULL |ORDER_ITEMS |4|48 |3 (0)|00:00:01| |*4| INDEX UNIQUE SCAN |PRODUCT_INFORMATION_PK|1| |0 (0)|00:00:01| | 5| TABLE ACCESS BY INDEX ROWID|PRODUCT_INFORMATION |1|20 |1 (0)|00:00:01| ------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 3 - filter("O"."UNIT_PRICE"=15 AND "QUANTITY">1) 4 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID")
In this plan, the optimizer chooses a nested loops join.
-
Run the query that you previously explained.
For example, use the following statement:
SELECT product_name FROM order_items o, product_information p WHERE o.unit_price = 15 AND quantity > 1 AND p.product_id = o.product_id
-
View the plan in the cursor.
For example, run the following commands:
SET LINESIZE 165 SET PAGESIZE 0 SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY(FORMAT=>'+ADAPTIVE'));
Sample output appears below. Based on statistics collected at run time (Step 4), the optimizer chose a hash join rather than the nested loops join. The dashes (
-
) indicate the steps in the nested loops plan that the optimizer considered but do not ultimately choose. The switch illustrates the adaptive query plan feature.------------------------------------------------------------------------------- |Id | Operation | Name |Rows|Bytes|Cost(%CPU)|Time | ------------------------------------------------------------------------------- | 0| SELECT STATEMENT | |4|128|7(0)|00:00:01| | *1| HASH JOIN | |4|128|7(0)|00:00:01| |- 2| NESTED LOOPS | | | | | | |- 3| NESTED LOOPS | | |128|7(0)|00:00:01| |- 4| STATISTICS COLLECTOR | | | | | | | *5| TABLE ACCESS FULL | ORDER_ITEMS |4| 48|3(0)|00:00:01| |-*6| INDEX UNIQUE SCAN | PRODUCT_INFORMATI_PK|1| |0(0)|00:00:01| |- 7| TABLE ACCESS BY INDEX ROWID| PRODUCT_INFORMATION |1| 20|1(0)|00:00:01| | 8| TABLE ACCESS FULL | PRODUCT_INFORMATION |1| 20|1(0)|00:00:01| ------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID") 5 - filter("O"."UNIT_PRICE"=15 AND "QUANTITY">1) 6 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID") Note ----- - this is an adaptive plan (rows marked '-' are inactive)
See Also:
-
Oracle Database Reference to learn about the
STATISTICS_LEVEL
initialization parameter -
Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_XPLAN
6.3.4 Display Execution Plans: Examples
These examples show different ways of displaying execution plans.
6.3.4.1 Customizing PLAN_TABLE Output
If you have specified a statement identifier, then you can write your own script to query the PLAN_TABLE
.
For example:
-
Start with ID = 0 and given
STATEMENT_ID
. -
Use the
CONNECT BY
clause to walk the tree from parent to child, the join keys beingSTATEMENT_ID = PRIOR STATMENT_ID
andPARENT_ID = PRIOR ID
. -
Use the pseudo-column
LEVEL
(associated withCONNECT BY
) to indent the children.SELECT cardinality "Rows", lpad(' ',level-1) || operation ||' '||options||' '||object_name "Plan" FROM PLAN_TABLE CONNECT BY prior id = parent_id AND prior statement_id = statement_id START WITH id = 0 AND statement_id = 'st1' ORDER BY id; Rows Plan ------- ---------------------------------------- SELECT STATEMENT TABLE ACCESS FULL EMPLOYEES
The
NULL
in theRows
column indicates that the optimizer does not have any statistics on the table. Analyzing the table shows the following:Rows Plan ------- ---------------------------------------- 16957 SELECT STATEMENT 16957 TABLE ACCESS FULL EMPLOYEES
You can also select the
COST
. This is useful for comparing execution plans or for understanding why the optimizer chooses one execution plan over another.Note:
These simplified examples are not valid for recursive SQL.
6.3.4.2 Displaying Parallel Execution Plans: Example
Plans for parallel queries differ in important ways from plans for serial queries.
6.3.4.2.1 About EXPLAIN PLAN and Parallel Queries
Tuning a parallel query begins much like a non-parallel query tuning exercise by choosing the driving table. However, the rules governing the choice are different.
In the serial case, the best driving table produces the fewest numbers of rows after applying limiting conditions. The database joins a small number of rows to larger tables using non-unique indexes.
For example, consider a table hierarchy consisting of customer
, account
, and transaction
.
In this example, customer
is the smallest table, whereas transaction
is the largest table. A typical OLTP query retrieves transaction information about a specific customer account. The query drives from the customer
table. The goal is to minimize logical I/O, which typically minimizes other critical resources including physical I/O and CPU time.
For parallel queries, the driving table is usually the largest table. It would not be efficient to use parallel query in this case because only a few rows from each table are accessed. However, what if it were necessary to identify all customers who had transactions of a certain type last month? It would be more efficient to drive from the transaction
table because no limiting conditions exist on the customer
table. The database would join rows from the transaction
table to the account
table, and then finally join the result set to the customer
table. In this case, the used on the account
and customer
table are probably highly selective primary key or unique indexes rather than the non-unique indexes used in the first query. Because the transaction
table is large and the column is not selective, it would be beneficial to use parallel query driving from the transaction
table.
Parallel operations include the following:
-
PARALLEL_TO_PARALLEL
-
PARALLEL_TO_SERIAL
A
PARALLEL_TO_SERIAL
operation is always the step that occurs when the query coordinator consumes rows from a parallel operation. Another type of operation that does not occur in this query is aSERIAL
operation. If these types of operations occur, then consider making them parallel operations to improve performance because they too are potential bottlenecks. -
PARALLEL_FROM_SERIAL
-
PARALLEL_TO_PARALLEL
If the workloads in each step are relatively equivalent, then the
PARALLEL_TO_PARALLEL
operations generally produce the best performance. -
PARALLEL_COMBINED_WITH_CHILD
-
PARALLEL_COMBINED_WITH_PARENT
A
PARALLEL_COMBINED_WITH_PARENT
operation occurs when the database performs the step simultaneously with the parent step.
If a parallel step produces many rows, then the QC may not be able to consume the rows as fast as they are produced. Little can be done to improve this situation.
See Also:
The OTHER_TAG
column in "PLAN_TABLE Columns"
6.3.4.2.2 Viewing Parallel Queries with EXPLAIN PLAN: Example
When using EXPLAIN PLAN
with parallel queries, the database compiles and executes one parallel plan. This plan is derived from the serial plan by allocating row sources specific to the parallel support in the QC plan.
The table queue row sources (PX
Send
and PX
Receive
), the granule iterator, and buffer sorts, required by the two parallel execution server set PQ model, are directly inserted into the parallel plan. This plan is the same plan for all parallel execution servers when executed in parallel or for the QC when executed serially.
Example 6-4 Parallel Query Explain Plan
The following simple example illustrates an EXPLAIN
PLAN
for a parallel query:
CREATE TABLE emp2 AS SELECT * FROM employees;
ALTER TABLE emp2 PARALLEL 2;
EXPLAIN PLAN FOR
SELECT SUM(salary)
FROM emp2
GROUP BY department_id;
SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY());
-------------------------------------------------------------------------------------
|Id | Operation | Name |Rows| Bytes |Cost %CPU| TQ |IN-OUT|PQ Distrib|
-------------------------------------------------------------------------------------
|0| SELECT STATEMENT | |107| 2782 | 3 (34) | | | |
|1| PX COORDINATOR | | | | | | | |
|2| PX SEND QC (RANDOM) |:TQ10001|107| 2782 | 3 (34) | Q1,01 | P->S |QC (RAND) |
|3| HASH GROUP BY | |107| 2782 | 3 (34) | Q1,01 | PCWP | |
|4| PX RECEIVE | |107| 2782 | 3 (34) | Q1,01 | PCWP | |
|5| PX SEND HASH |:TQ10000|107| 2782 | 3 (34) | Q1,00 | P->P |HASH |
|6| HASH GROUP BY | |107| 2782 | 3 (34) | Q1,00 | PCWP | |
|7| PX BLOCK ITERATOR | |107| 2782 | 2 (0) | Q1,00 | PCWP | |
|8| TABLE ACCESS FULL|EMP2 |107| 2782 | 2 (0) | Q1,00 | PCWP | |
-------------------------------------------------------------------------------------
One set of parallel execution servers scans EMP2
in parallel, while the second set performs the aggregation for the GROUP BY
operation. The PX BLOCK ITERATOR
row source represents the splitting up of the table EMP2
into pieces to divide the scan workload between the parallel execution servers. The PX SEND
and PX RECEIVE
row sources represent the pipe that connects the two sets of parallel execution servers as rows flow up from the parallel scan, get repartitioned through the HASH
table queue, and then read by and aggregated on the top set. The PX SEND QC
row source represents the aggregated values being sent to the QC in random (RAND) order. The PX COORDINATOR
row source represents the QC or Query Coordinator which controls and schedules the parallel plan appearing below it in the plan tree.
6.3.4.3 Displaying Bitmap Index Plans: Example
Index row sources using bitmap indexes appear in the EXPLAIN PLAN
output with the word BITMAP
indicating the type of the index.
Example 6-5 EXPLAIN PLAN with Bitmap Indexes
In this example, the predicate c1=2
yields a bitmap from which a subtraction can take place. From this bitmap, the bits in the bitmap for c2=6
are subtracted. Also, the bits in the bitmap for c2 IS NULL
are subtracted, explaining why there are two MINUS
row sources in the plan. The NULL
subtraction is necessary for semantic correctness unless the column has a NOT NULL
constraint. The TO ROWIDS
option generates the rowids necessary for the table access.
Note:
Queries using bitmap join index indicate the bitmap join index access path. The operation for bitmap join index is the same as bitmap index.
EXPLAIN PLAN FOR SELECT *
FROM t
WHERE c1 = 2
AND c2 <> 6
OR c3 BETWEEN 10 AND 20;
SELECT STATEMENT
TABLE ACCESS T BY INDEX ROWID
BITMAP CONVERSION TO ROWID
BITMAP OR
BITMAP MINUS
BITMAP MINUS
BITMAP INDEX C1_IND SINGLE VALUE
BITMAP INDEX C2_IND SINGLE VALUE
BITMAP INDEX C2_IND SINGLE VALUE
BITMAP MERGE
BITMAP INDEX C3_IND RANGE SCAN
6.3.4.4 Displaying Result Cache Plans: Example
When your query contains the result_cache
hint, the ResultCache
operator is inserted into the execution plan.
Starting in Oracle Database 21c, the result_cache
hint accepts a new
option: result_cache(TEMP={TRUE|FALSE})
. A value of
TRUE
enables the query to spill to disk, whereas
FALSE
prevents a Temp object from being formed. Instead, the Result
object will enter the ’Bypass’ status.
For example, you might explain a query as follows:
EXPLAIN PLAN FOR
SELECT /*+ result_cache(TEMP=TRUE) */ department_id, AVG(salary)
FROM employees
GROUP BY department_id;
SELECT PLAN_TABLE_OUTPUT FROM TABLE (DBMS_XPLAN.DISPLAY(format => 'ALL'));
The EXPLAIN PLAN
output for this query includes a Result Cache Information
section, and should look similar to the following:
PLAN_TABLE_OUTPUT
-------------------------------------------------------------------------------------------
Plan hash value: 1192169904
------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows |Bytes|Cost (%CPU)| Time|
------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 11 | 77 | 4 (25)| 00:00:01 |
| 1 | RESULT CACHE | ch5r45jxt05rk0xc1brct197fp | 11 | 77 | 4 (25)| 00:00:01 |
| 2 | HASH GROUP BY | | 11 | 77 | 4 (25)| 00:00:01 |
| 3 | TABLE ACCESS FULL| EMPLOYEES | 107 | 749 | 3 (0)| 00:00:01 |
------------------------------------------------------------------------------------------
Query Block Name / Object Alias (identified by operation id):
-------------------------------------------------------------
1 - SEL$1
3 - SEL$1 / "EMPLOYEES"@"SEL$1"
Column Projection Information (identified by operation id):
-----------------------------------------------------------
1 - "DEPARTMENT_ID"[NUMBER,22], SUM("SALARY")/COUNT("SALARY")[22]
2 - (#keys=1) "DEPARTMENT_ID"[NUMBER,22], COUNT("SALARY")[22], SUM("SALARY")[22]
3 - (rowset=256) "SALARY"[NUMBER,22], "DEPARTMENT_ID"[NUMBER,22]
Result Cache Information (identified by operation id):
------------------------------------------------------
1 - column-count=2; dependencies=(HR.EMPLOYEES);
name="SELECT /*+ result_cache(TEMP=TRUE) */ department_id, AVG(salary)
FROM employees
GROUP BY department_id"
In this plan, the RESULT CACHE
operations is identified by its cache ID, which is ch5r45jxt05rk0xc1brct197fp
. You can query the V$RESULT_CACHE_OBJECTS
view by using this CACHE_ID
, as shown in the following example (sample output included):
SELECT SUBCACHE_ID, TYPE, STATUS, BLOCK_COUNT,
ROW_COUNT, INVALIDATIONS
FROM V$RESULT_CACHE_OBJECTS
WHERE CACHE_ID = 'ch5r45jxt05rk0xc1brct197fp';
SUBCACHE_ID TYPE STATUS BLOCK_COUNT ROW_COUNT INVALIDATIONS
----------- ---------- --------- ----------- ---------- -------------
0 Result Published 1 12 0
6.3.4.5 Displaying Plans for Partitioned Objects: Example
Use EXPLAIN PLAN
to determine how Oracle Database accesses partitioned objects for specific queries.
Partitions accessed after pruning are shown in the PARTITION START
and PARTITION STOP
columns. The row source name for the range partition is PARTITION RANGE
. For hash partitions, the row source name is PARTITION HASH
.
A join is implemented using partial partition-wise join if the DISTRIBUTION
column of the plan table of one of the joined tables contains PARTITION(KEY)
. Partial partition-wise join is possible if one of the joined tables is partitioned on its join column and the table is parallelized.
A join is implemented using full partition-wise join if the partition row source appears before the join row source in the EXPLAIN PLAN
output. Full partition-wise joins are possible only if both joined tables are equipartitioned on their respective join columns. Examples of execution plans for several types of partitioning follow.
6.3.4.5.1 Displaying Range and Hash Partitioning with EXPLAIN PLAN: Examples
This example illustrates pruning by using the emp_range
table, which partitioned by range on hire_date
.
Assume that the tables employees
and departments
from the Oracle Database sample schema exist.
CREATE TABLE emp_range
PARTITION BY RANGE(hire_date)
(
PARTITION emp_p1 VALUES LESS THAN (TO_DATE('1-JAN-1992','DD-MON-YYYY')),
PARTITION emp_p2 VALUES LESS THAN (TO_DATE('1-JAN-1994','DD-MON-YYYY')),
PARTITION emp_p3 VALUES LESS THAN (TO_DATE('1-JAN-1996','DD-MON-YYYY')),
PARTITION emp_p4 VALUES LESS THAN (TO_DATE('1-JAN-1998','DD-MON-YYYY')),
PARTITION emp_p5 VALUES LESS THAN (TO_DATE('1-JAN-2001','DD-MON-YYYY'))
)
AS SELECT * FROM employees;
For the first example, consider the following statement:
EXPLAIN PLAN FOR
SELECT * FROM emp_range;
Oracle Database displays something similar to the following:
--------------------------------------------------------------------
|Id| Operation | Name |Rows| Bytes|Cost|Pstart|Pstop|
--------------------------------------------------------------------
| 0| SELECT STATEMENT | | 105| 13965 | 2 | | |
| 1| PARTITION RANGE ALL| | 105| 13965 | 2 | 1 | 5 |
| 2| TABLE ACCESS FULL | EMP_RANGE | 105| 13965 | 2 | 1 | 5 |
--------------------------------------------------------------------
The database creates a partition row source on top of the table access row source. It iterates over the set of partitions to be accessed. In this example, the partition iterator covers all partitions (option ALL
), because a predicate was not used for pruning. The PARTITION_START
and PARTITION_STOP
columns of the PLAN_TABLE
show access to all partitions from 1 to 5.
For the next example, consider the following statement:
EXPLAIN PLAN FOR
SELECT *
FROM emp_range
WHERE hire_date >= TO_DATE('1-JAN-1996','DD-MON-YYYY');
-----------------------------------------------------------------------
| Id | Operation | Name |Rows|Bytes|Cost|Pstart|Pstop|
-----------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 3 | 399 | 2 | | |
| 1 | PARTITION RANGE ITERATOR| | 3 | 399 | 2 | 4 | 5 |
| *2 | TABLE ACCESS FULL |EMP_RANGE| 3 | 399 | 2 | 4 | 5 |
-----------------------------------------------------------------------
In the previous example, the partition row source iterates from partition 4 to 5 because the database prunes the other partitions using a predicate on hire_date
.
Finally, consider the following statement:
EXPLAIN PLAN FOR
SELECT *
FROM emp_range
WHERE hire_date < TO_DATE('1-JAN-1992','DD-MON-YYYY');
-----------------------------------------------------------------------
| Id | Operation | Name |Rows|Bytes|Cost|Pstart|Pstop|
-----------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 133 | 2 | | |
| 1 | PARTITION RANGE SINGLE| | 1 | 133 | 2 | 1 | 1 |
|* 2 | TABLE ACCESS FULL | EMP_RANGE | 1 | 133 | 2 | 1 | 1 |
-----------------------------------------------------------------------
In the previous example, only partition 1 is accessed and known at compile time; thus, there is no need for a partition row source.
Note:
Oracle Database displays the same information for hash partitioned objects, except the partition row source name is PARTITION HASH
instead of PARTITION RANGE
. Also, with hash partitioning, pruning is only possible using equality or IN
-list predicates.
6.3.4.5.2 Pruning Information with Composite Partitioned Objects: Examples
To illustrate how Oracle Database displays pruning information for composite partitioned objects, consider the table emp_comp
. It is range-partitioned on hiredate
and subpartitioned by hash on deptno
.
CREATE TABLE emp_comp PARTITION BY RANGE(hire_date)
SUBPARTITION BY HASH(department_id) SUBPARTITIONS 3
(
PARTITION emp_p1 VALUES LESS THAN (TO_DATE('1-JAN-1992','DD-MON-YYYY')),
PARTITION emp_p2 VALUES LESS THAN (TO_DATE('1-JAN-1994','DD-MON-YYYY')),
PARTITION emp_p3 VALUES LESS THAN (TO_DATE('1-JAN-1996','DD-MON-YYYY')),
PARTITION emp_p4 VALUES LESS THAN (TO_DATE('1-JAN-1998','DD-MON-YYYY')),
PARTITION emp_p5 VALUES LESS THAN (TO_DATE('1-JAN-2001','DD-MON-YYYY'))
)
AS SELECT * FROM employees;
For the first example, consider the following statement:
EXPLAIN PLAN FOR
SELECT * FROM emp_comp;
-----------------------------------------------------------------------
|Id| Operation | Name | Rows | Bytes |Cost|Pstart|Pstop|
-----------------------------------------------------------------------
| 0| SELECT STATEMENT | | 10120 | 1314K| 78 | | |
| 1| PARTITION RANGE ALL| | 10120 | 1314K| 78 | 1 | 5 |
| 2| PARTITION HASH ALL| | 10120 | 1314K| 78 | 1 | 3 |
| 3| TABLE ACCESS FULL| EMP_COMP | 10120 | 1314K| 78 | 1 | 15 |
-----------------------------------------------------------------------
This example shows the plan when Oracle Database accesses all subpartitions of all partitions of a composite object. The database uses two partition row sources for this purpose: a range partition row source to iterate over the partitions, and a hash partition row source to iterate over the subpartitions of each accessed partition.
In the following example, the range partition row source iterates from partition 1 to 5, because the database performs no pruning. Within each partition, the hash partition row source iterates over subpartitions 1 to 3 of the current partition. As a result, the table access row source accesses subpartitions 1 to 15. In other words, the database accesses all subpartitions of the composite object.
EXPLAIN PLAN FOR
SELECT *
FROM emp_comp
WHERE hire_date = TO_DATE('15-FEB-1998', 'DD-MON-YYYY');
-----------------------------------------------------------------------
| Id | Operation | Name |Rows|Bytes |Cost|Pstart|Pstop|
-----------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 20 | 2660 | 17 | | |
| 1 | PARTITION RANGE SINGLE| | 20 | 2660 | 17 | 5 | 5 |
| 2 | PARTITION HASH ALL | | 20 | 2660 | 17 | 1 | 3 |
|* 3 | TABLE ACCESS FULL | EMP_COMP | 20 | 2660 | 17 | 13 | 15 |
-----------------------------------------------------------------------
In the previous example, only the last partition, partition 5, is accessed. This partition is known at compile time, so the database does not need to show it in the plan. The hash partition row source shows accessing of all subpartitions within that partition; that is, subpartitions 1 to 3, which translates into subpartitions 13 to 15 of the emp_comp
table.
Now consider the following statement:
EXPLAIN PLAN FOR
SELECT *
FROM emp_comp
WHERE department_id = 20;
------------------------------------------------------------------------
| Id | Operation |Name |Rows | Bytes |Cost|Pstart|Pstop|
------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 101 | 13433 | 78 | | |
| 1 | PARTITION RANGE ALL | | 101 | 13433 | 78 | 1 | 5 |
| 2 | PARTITION HASH SINGLE| | 101 | 13433 | 78 | 3 | 3 |
|* 3 | TABLE ACCESS FULL | EMP_COMP | 101 | 13433 | 78 | | |
------------------------------------------------------------------------
In the previous example, the predicate deptno=20
enables pruning on the hash dimension within each partition. Therefore, Oracle Database only needs to access a single subpartition. The number of this subpartition is known at compile time, so the hash partition row source is not needed.
Finally, consider the following statement:
VARIABLE dno NUMBER;
EXPLAIN PLAN FOR
SELECT *
FROM emp_comp
WHERE department_id = :dno;
-----------------------------------------------------------------------
| Id| Operation | Name |Rows| Bytes |Cost|Pstart|Pstop|
-----------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 101| 13433 | 78 | | |
| 1 | PARTITION RANGE ALL | | 101| 13433 | 78 | 1 | 5 |
| 2 | PARTITION HASH SINGLE| | 101| 13433 | 78 | KEY | KEY |
|*3 | TABLE ACCESS FULL | EMP_COMP | 101| 13433 | 78 | | |
-----------------------------------------------------------------------
The last two examples are the same, except that department_id
= :dno
replaces deptno=20
. In this last case, the subpartition number is unknown at compile time, and a hash partition row source is allocated. The option is SINGLE
for this row source because Oracle Database accesses only one subpartition within each partition. In Step 2, both PARTITION
_START
and PARTITION
_STOP
are set to KEY
. This value means that Oracle Database determines the number of subpartitions at run time.
6.3.4.5.3 Examples of Partial Partition-Wise Joins
In these examples, the PQ_DISTRIBUTE
hint explicitly forces a partial partition-wise join because the query optimizer could have chosen a different plan based on cost in this query.
Example 6-6 Partial Partition-Wise Join with Range Partition
In the following example, the database joins emp_range_did
on the partitioning column department_id
and parallelizes it. The database can use a partial partition-wise join because the dept2
table is not partitioned. Oracle Database dynamically partitions the dept2
table before the join.
CREATE TABLE dept2 AS SELECT * FROM departments;
ALTER TABLE dept2 PARALLEL 2;
CREATE TABLE emp_range_did PARTITION BY RANGE(department_id)
(PARTITION emp_p1 VALUES LESS THAN (150),
PARTITION emp_p5 VALUES LESS THAN (MAXVALUE) )
AS SELECT * FROM employees;
ALTER TABLE emp_range_did PARALLEL 2;
EXPLAIN PLAN FOR
SELECT /*+ PQ_DISTRIBUTE(d NONE PARTITION) ORDERED */ e.last_name,
d.department_name
FROM emp_range_did e, dept2 d
WHERE e.department_id = d.department_id;
-------------------------------------------------------------------------------------------
|Id| Operation |Name |Row|Byte|Cost|Pstart|Pstop|TQ|IN-OUT|PQ Distrib|
-------------------------------------------------------------------------------------------
| 0| SELECT STATEMENT | |284 |16188|6| | | | | |
| 1| PX COORDINATOR | | | | | | | | | |
| 2| PX SEND QC (RANDOM) |:TQ10001 |284 |16188|6| | | Q1,01 |P->S|QC (RAND) |
|*3| HASH JOIN | |284 |16188|6| | | Q1,01 |PCWP| |
| 4| PX PARTITION RANGE ALL | |284 |7668 |2|1 |2| Q1,01 |PCWC| |
| 5| TABLE ACCESS FULL |EMP_RANGE_DID|284 |7668 |2|1 |2| Q1,01 |PCWP| |
| 6| BUFFER SORT | | | | | | | Q1,01 |PCWC| |
| 7| PX RECEIVE | | 21 | 630 |2| | | Q1,01 |PCWP| |
| 8| PX SEND PARTITION (KEY)|:TQ10000 | 21 | 630 |2| | | |S->P|PART (KEY)|
| 9| TABLE ACCESS FULL |DEPT2 | 21 | 630 |2| | | | | |
-------------------------------------------------------------------------------------------
The execution plan shows that the table dept2
is scanned serially and all rows with the same partitioning column value of emp_range_did (department_id)
are sent through a PART (KEY)
, or partition key, table queue to the same parallel execution server doing the partial partition-wise join.
Example 6-7 Partial Partition-Wise Join with Composite Partition
In the following example, emp_comp
is joined on the partitioning column and is parallelized, enabling use of a partial partition-wise join because dept2
is not partitioned. The database dynamically partitions dept2
before the join.
ALTER TABLE emp_comp PARALLEL 2;
EXPLAIN PLAN FOR
SELECT /*+ PQ_DISTRIBUTE(d NONE PARTITION) ORDERED */ e.last_name,
d.department_name
FROM emp_comp e, dept2 d
WHERE e.department_id = d.department_id;
SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY());
-------------------------------------------------------------------------------------------
| Id| Operation | Name |Rows |Bytes |Cost|Pstart|Pstop|TQ |IN-OUT|PQ Distrib|
-------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 445 |17800| 5 | | | | | |
| 1 | PX COORDINATOR | | | | | | | | | |
| 2 | PX SEND QC (RANDOM) |:TQ10001| 445 |17800| 5 | | | Q1,01 |P->S| QC (RAND)|
|*3 | HASH JOIN | | 445 |17800| 5 | | | Q1,01 |PCWP| |
| 4 | PX PARTITION RANGE ALL | | 107 | 1070| 3 |1 | 5 | Q1,01 |PCWC| |
| 5 | PX PARTITION HASH ALL | | 107 | 1070| 3 |1 | 3 | Q1,01 |PCWC| |
| 6 | TABLE ACCESS FULL |EMP_COMP| 107 | 1070| 3 |1 | 15| Q1,01 |PCWP| |
| 7 | PX RECEIVE | | 21 | 630| 1 | | | Q1,01 |PCWP| |
| 8 | PX SEND PARTITION (KEY)|:TQ10000| 21 | 630| 1 | | | Q1,00 |P->P|PART (KEY)|
| 9 | PX BLOCK ITERATOR | | 21 | 630| 1 | | | Q1,00 |PCWC| |
|10 | TABLE ACCESS FULL |DEPT2 | 21 | 630| 1 | | | Q1,00 |PCWP| |
-------------------------------------------------------------------------------------------
The plan shows that the optimizer selects partial partition-wise join from one of two columns. The PX SEND
node type is PARTITION (KEY)
and the PQ Distrib
column contains the text PART (KEY)
, or partition key. This implies that the table dept2
is re-partitioned based on the join column department_id
to be sent to the parallel execution servers executing the scan of EMP_COMP
and the join.
6.3.4.5.4 Example of Full Partition-Wise Join
In this example, emp_comp
and dept_hash
are joined on their hash partitioning columns, enabling use of a full partition-wise join.
The PARTITION HASH
row source appears on top of the join row source in the plan table output.
CREATE TABLE dept_hash
PARTITION BY HASH(department_id)
PARTITIONS 3
PARALLEL 2
AS SELECT * FROM departments;
EXPLAIN PLAN FOR
SELECT /*+ PQ_DISTRIBUTE(e NONE NONE) ORDERED */ e.last_name,
d.department_name
FROM emp_comp e, dept_hash d
WHERE e.department_id = d.department_id;
-------------------------------------------------------------------------------------------
|Id| Operation | Name |Rows|Bytes|Cost|Pstart|Pstop|TQ |IN-OUT|PQ Distrib|
-------------------------------------------------------------------------------------------
| 0| SELECT STATEMENT | | 106 | 2544 |8| | | | | |
| 1| PX COORDINATOR | | | | | | | | | |
| 2| PX SEND QC (RANDOM) |:TQ10000 | 106 | 2544 |8| | | Q1,00 | P->S |QC (RAND)|
| 3| PX PARTITION HASH ALL | | 106 | 2544 |8|1 | 3 | Q1,00 | PCWC | |
|*4| HASH JOIN | | 106 | 2544 |8| | | Q1,00 | PCWP | |
| 5| PX PARTITION RANGE ALL| | 107 | 1070 |3|1 | 5 | Q1,00 | PCWC | |
| 6| TABLE ACCESS FULL |EMP_COMP | 107 | 1070 |3|1 |15 | Q1,00 | PCWP | |
| 7| TABLE ACCESS FULL |DEPT_HASH | 27 | 378 |4|1 | 3 | Q1,00 | PCWP | |
-------------------------------------------------------------------------------------------
The PX PARTITION HASH
row source appears on top of the join row source in the plan table output while the PX PARTITION RANGE
row source appears over the scan of emp_comp
. Each parallel execution server performs the join of an entire hash partition of emp_comp
with an entire partition of dept_hash
.
6.3.4.5.5 Examples of INLIST ITERATOR and EXPLAIN PLAN
An INLIST ITERATOR
operation appears in the EXPLAIN PLAN
output if an index implements an IN
-list predicate.
Consider the following statement:
SELECT * FROM emp WHERE empno IN (7876, 7900, 7902);
The EXPLAIN PLAN
output appears as follows:
OPERATION OPTIONS OBJECT_NAME
---------------- --------------- --------------
SELECT STATEMENT
INLIST ITERATOR
TABLE ACCESS BY ROWID EMP
INDEX RANGE SCAN EMP_EMPNO
The INLIST ITERATOR
operation iterates over the next operation in the plan for each value in the IN
-list predicate. The following sections describe the three possible types of IN
-list columns for partitioned tables and indexes.
6.3.4.5.5.1 When the IN-List Column is an Index Column: Example
If the IN
-list column empno
is an index column but not a partition column, then the IN
-list operator appears before the table operation but after the partition operation in the plan.
OPERATION OPTIONS OBJECT_NAME PARTIT_START PARTITI_STOP
---------------- ------------ ----------- ------------ ------------
SELECT STATEMENT
PARTITION RANGE ALL KEY(INLIST) KEY(INLIST)
INLIST ITERATOR
TABLE ACCESS BY LOCAL INDEX ROWID EMP KEY(INLIST) KEY(INLIST)
INDEX RANGE SCAN EMP_EMPNO KEY(INLIST) KEY(INLIST)
The KEY(INLIST)
designation for the partition start and stop keys specifies that an IN
-list predicate appears on the index start and stop keys.
6.3.4.5.5.2 When the IN-List Column is an Index and a Partition Column: Example
If empno
is an indexed and a partition column, then the plan contains an INLIST ITERATOR
operation before the partition operation.
OPERATION OPTIONS OBJECT_NAME PARTITION_START PARTITION_STOP
---------------- ------------ ----------- --------------- --------------
SELECT STATEMENT
INLIST ITERATOR
PARTITION RANGE ITERATOR KEY(INLIST) KEY(INLIST)
TABLE ACCESS BY LOCAL INDEX ROWID EMP KEY(INLIST) KEY(INLIST)
INDEX RANGE SCAN EMP_EMPNO KEY(INLIST) KEY(INLIST)
6.3.4.5.5.3 When the IN-List Column is a Partition Column: Example
If empno
is a partition column and no indexes exist, then no INLIST ITERATOR
operation is allocated.
OPERATION OPTIONS OBJECT_NAME PARTITION_START PARTITION_STOP
---------------- ------------ ----------- --------------- --------------
SELECT STATEMENT
PARTITION RANGE INLIST KEY(INLIST) KEY(INLIST)
TABLE ACCESS FULL EMP KEY(INLIST) KEY(INLIST)
If emp_empno
is a bitmap index, then the plan is as follows:
OPERATION OPTIONS OBJECT_NAME
---------------- --------------- --------------
SELECT STATEMENT
INLIST ITERATOR
TABLE ACCESS BY INDEX ROWID EMP
BITMAP CONVERSION TO ROWIDS
BITMAP INDEX SINGLE VALUE EMP_EMPNO
6.3.4.5.6 Example of Domain Indexes and EXPLAIN PLAN
You can use EXPLAIN PLAN
to derive user-defined CPU and I/O costs for domain indexes.
EXPLAIN PLAN
displays domain index statistics in the OTHER
column of PLAN_TABLE
. For example, assume table emp
has user-defined operator CONTAINS
with a domain index emp_resume
on the resume
column, and the index type of emp_resume
supports the operator CONTAINS
. You explain the plan for the following query:
SELECT * FROM emp WHERE CONTAINS(resume, 'Oracle') = 1
The database could display the following plan:
OPERATION OPTIONS OBJECT_NAME OTHER
----------------- ----------- ------------ ----------------
SELECT STATEMENT
TABLE ACCESS BY ROWID EMP
DOMAIN INDEX EMP_RESUME CPU: 300, I/O: 4
6.4 Comparing Execution Plans
The plan comparison tool takes a reference plan and an arbitrary list of test plans and highlights the differences between them. The plan comparison is logical rather than line by line.
6.4.1 Purpose of Plan Comparison
The plan comparison report identifies the source of differences, which helps users triage plan reproducibility issues.
The plan comparison report is particularly useful in the following scenarios:
-
You want to compare the current plan of a query whose performance is regressing with an old plan captured in AWR.
-
A SQL plan baseline fails to reproduce the originally intended plan, and you want to determine the difference between the new plan and the intended plan.
-
You want to determine how adding a hint, changing a parameter, or creating an index will affect a plan.
-
You want to determine how a plan generated based on a SQL profile or by SQL Performance Analyzer differs from the original plan.
6.4.2 User Interface for Plan Comparison
You can use DBMS_XPLAN.COMPARE_PLANS
to generate a report in text, XML, or HTML format.
Compare Plans Report Format
The report begins with a summary. The COMPARE PLANS REPORT
section includes information such as the user who ran the report and the number of plans compared, as shown in the following example:
COMPARE PLANS REPORT
-------------------------------------------------------------------------
Current user : SH
Total number of plans : 2
Number of findings : 1
-------------------------------------------------------------------------
The COMPARISON DETAILS
section of the report contains the following information:
-
Plan information
The information includes the plan number, the plan source, plan attributes (which differ depending on the source), parsing schema, and SQL text.
-
Plans
This section displays the plan rows, including the predicates and notes.
-
Comparison results
This section summarizes the comparison findings, highlighting logical differences such as join order, join methods, access paths, and parallel distribution method. The findings start at number
1
. For findings that relate to a particular query block, the text starts with the name of the block. For findings that relate to a particular object alias, the text starts with the name of the query block and the object alias. The followingComparison Results (1): ----------------------------- 1. Query block SEL$1, Alias PRODUCTS@SEL$1: Some columns (OPERATION, OPTIONS, OBJECT_NAME) do not match between the reference plan (id: 2) and the current plan (id: 2).
DBMS_XPLAN.PLAN_OBJECT_LIST Table Type
The plan_object_list
type allows for a list of generic objects as input to the DBMS_XPLAN.COMPARE_PLANS
function. The syntax is as follows:
TYPE plan_object_list IS TABLE OF generic_plan_object;
The generic object abstracts the common attributes of plans from all plan sources. Every plan source is a subclass of the plan_object_list
superclass. The following table summarizes the different plan sources. Note that when an optional parameter is null, it can correspond to multiple objects. For example, if you do not specify a child number for cursor_cache_object
, then it matches all cursor cache statements with the specified SQL ID.
Table 6-3 Plan Sources for PLAN_OBJECT_LIST
Plan Source | Specification | Description |
---|---|---|
Plan table |
|
The parameters are as follows:
|
Cursor cache |
|
The parameters are as follows:
|
AWR |
|
The parameters are as follows:
|
SQL tuning set |
|
The parameters are as follows:
|
SQL plan management |
|
The parameters are as follows:
|
SQL profile |
|
The |
Advisor |
|
The parameters are as follows:
|
DBMS_XPLAN.COMPARE_PLANS Function
The interface for the compare plan tools is the following function:
DBMS_XPLAN.COMPARE_PLANS(
reference_plan IN generic_plan_object,
compare_plan_list IN plan_object_list,
type IN VARCHAR2 := 'TEXT',
level IN VARCHAR2 := 'TYPICAL',
section IN VARCHAR2 := 'ALL')
RETURN CLOB;
The following table describes the parameters that specify that plans to be compared.
Table 6-4 Parameters for the COMPARE_PLANS Function
Parameter | Description |
---|---|
|
Specifies a single plan of type |
|
Specifies a list of plan objects. An object might correspond to one or more plans. |
Example 6-8 Comparing Plans from Child Cursors
This example compares the plan of child cursor number 2 for the SQL ID 8mkxm7ur07za0
with the plan for child cursor number 4 for the same SQL ID.
VAR v_report CLOB;
BEGIN
:v_report := DBMS_XPLAN.COMPARE_PLANS(
reference_plan => CURSOR_CACHE_OBJECT('8mkxm7ur07za0', 2),
compare_plan_list => PLAN_OBJECT_LIST(CURSOR_CACHE_OBJECT('8mkxm7ur07za0', 4)));
END;
/
PRINT v_report
Example 6-9 Comparing Plan from Child Cursor with Plan from SQL Plan Baseline
This example compares the plan of child cursor number 2 for the SQL ID 8mkxm7ur07za0
with the plan from the SQL plan baseline. The baseline query has a SQL handle of SQL_024d0f7d21351f5d
and a plan name of SQL_PLAN_sdfjkd
.
VAR v_report CLOB;
BEGIN
:v_report := DBMS_XPLAN.COMPARE_PLANS( -
reference_plan => CURSOR_CACHE_OBJECT('8mkxm7ur07za0', 2),
compare_plan_list => PLAN_OBJECT_LIST(SPM_OBJECT('SQL_024d0f7d21351f5d', 'SQL_PLAN_sdfjkd')));
END;
PRINT v_report
Example 6-10 Comparing a Plan with Plans from Multiple Sources
This example prints the summary section only. The program compares the plan of child cursor number 2 for the SQL ID 8mkxm7ur07za0
with every plan in the following list:
-
All plans in the shared SQL area that are generated for the SQL ID
8mkxm7ur07za0
-
All plans generated in the SQL tuning set
SH. SQLT_WORKLOAD
for the SQL ID6vfqvav0rgyad
-
All plans in AWR that are captured for database ID 5 and SQL ID
6vfqvav0rgyad
-
The plan baseline for the query with handle
SQL_024d0f7d21351f5d
with nameSQL_PLAN_sdfjkd
-
The plan stored in
sh.plan_table
identified byplan_id=38
-
The plan identified by the SQL profile name
pe3r3ejsfd
-
All plans stored in SQL advisor identified by task name
TASK_1228
, execution nameEXEC_1928
, and SQL ID8mkxm7ur07za0
VAR v_report CLOB
BEGIN
:v_report := DBMS_XPLAN.COMPARE_PLANS(
reference_plan => CURSOR_CACHE_OBJECT('8mkxm7ur07za0', 2),
compare_plan_list => plan_object_list(
cursor_cache_object('8mkxm7ur07za0'),
sqlset_object('SH', 'SQLT_WORKLOAD', '6vfqvav0rgyad'),
awr_object('6vfqvav0rgyad', 5),
spm_object('SQL_024d0f7d21351f5d', 'SQL_PLAN_sdfjkd'),
plan_table_object('SH', 'plan_table', 38),
sql_profile_object('pe3r3ejsfd'),
advisor_object('TASK_1228', 'EXEC_1928', '8mkxm7ur07za0')),
type => 'XML',
level => 'ALL',
section => 'SUMMARY');
END;
/
PRINT v_report
Note:
Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_XPLAN
package
6.4.3 Comparing Execution Plans: Tutorial
To compare plans, use the DBMS_XPLAN.COMPARE_PLANS
function.
Assumptions
This tutorial assumes that user sh
issued the following queries:
select count(*)
from products p, sales s
where p.prod_id = s.prod_id
and p.prod_min_price > 200;
select count(*)
from products p, sales s
where p.prod_id = s.prod_id
and s.quantity_sold = 43;
To compare execution plans:
-
Start SQL*Plus, and log in to the database with administrative privileges.
-
Query
V$SQL
to determine the SQL IDs of the two queries.The following query queries
V$SQL
for queries that contain the stringproducts
:SET LINESIZE 120 COL SQL_ID FORMAT a20 COL SQL_TEXT FORMAT a60 SELECT SQL_ID, SQL_TEXT FROM V$SQL WHERE SQL_TEXT LIKE '%products%' AND SQL_TEXT NOT LIKE '%SQL_TEXT%' ORDER BY SQL_ID; SQL_ID SQL_TEXT ----------------- ------------------------------------------------ 0hxmvnfkasg6q select count(*) from products p, sales s where p.prod_id = s.prod_id and s.quantity_sold = 43 10dqxjph6bwum select count(*) from products p, sales s where p.prod_id = s.prod_id and p.prod_min_price > 200
-
Log in to the database as user
sh
. -
Execute the
DBMS_XPLAN.COMPARE_PLANS
function, specifying the SQL IDs obtained in the previous step.For example, execute the following program:
VARIABLE v_rep CLOB BEGIN :v_rep := DBMS_XPLAN.COMPARE_PLANS( reference_plan => cursor_cache_object('0hxmvnfkasg6q', NULL), compare_plan_list => plan_object_list(cursor_cache_object('10dqxjph6bwum', NULL)), type => 'TEXT', level => 'TYPICAL', section => 'ALL'); END; /
-
Print the report.
For example, run the following query:
SET PAGESIZE 50000 SET LONG 100000 SET LINESIZE 210 COLUMN report FORMAT a200 SELECT :v_rep REPORT FROM DUAL;
The
Comparison Results
section of the following sample report shows that only the first query used a join elimination transformation:REPORT --------------------------------------------------------------------------------------- COMPARE PLANS REPORT --------------------------------------------------------------------------------------- Current user : SH Total number of plans : 2 Number of findings : 1 --------------------------------------------------------------------------------------- COMPARISON DETAILS --------------------------------------------------------------------------------------- Plan Number : 1 (Reference Plan) Plan Found : Yes Plan Source : Cursor Cache SQL ID : 0hxmvnfkasg6q Child Number : 0 Plan Database Version : 19.0.0.0 Parsing Schema : "SH" SQL Text : select count(*) from products p, sales s where p.prod_id = s.prod_id and s.quantity_sold = 43 Plan ----------------------------- Plan Hash Value : 3519235612 ------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost | Time | ------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | | | 469 | | | 1 | SORT AGGREGATE | | 1 | 3 | | | | 2 | PARTITION RANGE ALL | | 1 | 3 | 469 | 00:00:01 | | * 3 | TABLE ACCESS FULL | SALES | 1 | 3 | 469 | 00:00:01 | ------------------------------------------------------------------------- Predicate Information (identified by operation id): ------------------------------------------ * 3 - filter("S"."QUANTITY_SOLD"=43) --------------------------------------------------------------------------------------- Plan Number : 2 Plan Found : Yes Plan Source : Cursor Cache SQL ID : 10dqxjph6bwum Child Number : 0 Plan Database Version : 19.0.0.0 Parsing Schema : "SH" SQL Text : select count(*) from products p, sales s where p.prod_id = s.prod_id and p.prod_min_price > 200 Plan ----------------------------- Plan Hash Value : 3037679890 --------------------------------------------------------------------------------------- |Id| Operation | Name | Rows | Bytes |Cost |Time | --------------------------------------------------------------------------------------- | 0| SELECT STATEMENT | | | |34| | | 1| SORT AGGREGATE | | 1 | 13 | | | |*2| HASH JOIN | |781685 |10161905 |34|00:00:01| |*3| TABLE ACCESS FULL | PRODUCTS | 61 | 549 | 2|00:00:01| | 4| PARTITION RANGE ALL | |918843 | 3675372 |29|00:00:01| | 5| BITMAP CONVERSION TO ROWIDS | |918843 | 3675372 |29|00:00:01| | 6| BITMAP INDEX FAST FULL SCAN | SALES_PROD_BIX | | | | | --------------------------------------------------------------------------------------- Predicate Information (identified by operation id): ------------------------------------------ * 2 - access("P"."PROD_ID"="S"."PROD_ID") * 3 - filter("P"."PROD_MIN_PRICE">200) Notes ----- - This is an adaptive plan Comparison Results (1): ----------------------------- 1. Query block SEL$1: Transformation JOIN REMOVED FROM QUERY BLOCK occurred only in the reference plan (result query block: SEL$A43D1678).
See Also:
Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_XPLAN
package
6.4.4 Comparing Execution Plans: Examples
These examples demonstrate how to generate compare plans reports for queries of tables in the sh
schema.
Example 6-11 Comparing an Explained Plan with a Plan in a Cursor
This example explains a plan for a query of tables in the sh
schema, and then executes the query:
EXPLAIN PLAN
SET STATEMENT_ID='TEST' FOR
SELECT c.cust_city, SUM(s.quantity_sold)
FROM customers c, sales s, products p
WHERE c.cust_id=s.cust_id
AND p.prod_id=s.prod_id
AND prod_min_price>100
GROUP BY c.cust_city;
SELECT c.cust_city, SUM(s.quantity_sold)
FROM customers c, sales s, products p
WHERE c.cust_id=s.cust_id
AND p.prod_id=s.prod_id
AND prod_min_price>100
GROUP BY c.cust_city;
Assume that the SQL ID of the executed query is 9mp7z6qq83k5y
. The following PL/SQL program compares the plan in PLAN_TABLE
and the plan in the shared SQL area:
BEGIN
:v_rep := DBMS_XPLAN.COMPARE_PLANS(
reference_plan => plan_table_object('SH', 'PLAN_TABLE', 'TEST', NULL),
compare_plan_list => plan_object_list(cursor_cache_object('9mp7z6qq83k5y')),
type => 'TEXT',
level => 'TYPICAL',
section => 'ALL');
END;
/
PRINT v_rep
The following sample report shows that the plans are the same:
COMPARE PLANS REPORT
-------------------------------------------------------------------------
Current user : SH
Total number of plans : 2
Number of findings : 1
-------------------------------------------------------------------------
COMPARISON DETAILS
-------------------------------------------------------------------------
Plan Number : 1 (Reference Plan)
Plan Found : Yes
Plan Source : Plan Table
Plan Table Owner : SH
Plan Table Name : PLAN_TABLE
Statement ID : TEST
Plan ID : 52
Plan Database Version : 19.0.0.0
Parsing Schema : "SH"
SQL Text : No SQL Text
Plan
-----------------------------
Plan Hash Value : 3473931970
--------------------------------------------------------------------------
| Id| Operation | Name | Rows | Bytes |Cost| Time |
--------------------------------------------------------------------------
| 0| SELECT STATEMENT | | 620| 22320|1213| 00:00:01 |
| 1| HASH GROUP BY | | 620| 22320|1213| 00:00:01 |
|* 2| HASH JOIN | |160348| 5772528|1209| 00:00:01 |
| 3| TABLE ACCESS FULL |CUSTOMERS| 55500| 832500| 414| 00:00:01 |
|* 4| HASH JOIN | |160348| 3367308| 472| 00:00:01 |
|* 5| TABLE ACCESS FULL |PRODUCTS | 13| 117| 2| 00:00:01 |
| 6| PARTITION RANGE ALL | |918843|11026116| 467| 00:00:01 |
| 7| TABLE ACCESS FULL |SALES |918843|11026116| 467| 00:00:01 |
--------------------------------------------------------------------------
Predicate Information (identified by operation id):
------------------------------------------
* 2 - access("C"."CUST_ID"="S"."CUST_ID")
* 4 - access("P"."PROD_ID"="S"."PROD_ID")
* 5 - filter("PROD_MIN_PRICE">100)
Notes
-----
- This is an adaptive plan
--------------------------------------------------------------------------
Plan Number : 2
Plan Found : Yes
Plan Source : Cursor Cache
SQL ID : 9mp7z6qq83k5y
Child Number : 0
Plan Database Version : 19.0.0.0
Parsing Schema : "SH"
SQL Text : select c.cust_city, sum(s.quantity_sold) from
customers c, sales s, products p where
c.cust_id=s.cust_id and p.prod_id=s.prod_id and
prod_min_price>100 group by c.cust_city
Plan
-----------------------------
Plan Hash Value : 3473931970
---------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost|Time |
---------------------------------------------------------------------------
| 0| SELECT STATEMENT | | | |1213 | |
| 1| HASH GROUP BY | | 620| 22320|1213 |00:00:01 |
|* 2| HASH JOIN | |160348| 5772528|1209 |00:00:01 |
| 3| TABLE ACCESS FULL |CUSTOMERS | 55500| 832500| 414 |00:00:01 |
|* 4| HASH JOIN | |160348| 3367308| 472 |00:00:01 |
|* 5| TABLE ACCESS FULL |PRODUCTS | 13| 117| 2 |00:00:01 |
| 6| PARTITION RANGE ALL | |918843|11026116| 467 |00:00:01 |
| 7| TABLE ACCESS FULL |SALES |918843|11026116| 467 |00:00:01 |
---------------------------------------------------------------------------
Predicate Information (identified by operation id):
------------------------------------------
* 2 - access("C"."CUST_ID"="S"."CUST_ID")
* 4 - access("P"."PROD_ID"="S"."PROD_ID")
* 5 - filter("PROD_MIN_PRICE">100)
Notes
-----
- This is an adaptive plan
Comparison Results (1):
-----------------------------
1. The plans are the same.
Example 6-12 Comparing Plans in a Baseline and SQL Tuning Set
Assume that you want to compare the plans for the following queries, which differ only in the NO_MERGE
hint contained in the subquery:
SELECT c.cust_city, SUM(s.quantity_sold)
FROM customers c, sales s,
(SELECT prod_id FROM products WHERE prod_min_price>100) p
WHERE c.cust_id=s.cust_id
AND p.prod_id=s.prod_id
GROUP BY c.cust_city;
SELECT c.cust_city, SUM(s.quantity_sold)
FROM customers c, sales s,
(SELECT /*+ NO_MERGE */ prod_id FROM products WHERE prod_min_price>100)
WHERE c.cust_id=s.cust_id
AND p.prod_id=s.prod_id
GROUP BY c.cust_city;
The plan for the first query is captured in a SQL plan management baseline with SQL handle SQL_c522f5888cc4613e
. The plan for the second query is stored in a SQL tuning set named MYSTS1
and has a SQL ID of d07p7qmrm13nc
. You run the following PL/SQL program to compare the plans:
VAR v_rep CLOB
BEGIN
v_rep := DBMS_XPLAN.COMPARE_PLANS(
reference_plan => spm_object('SQL_c522f5888cc4613e'),
compare_plan_list => plan_object_list(sqlset_object('SH', 'MYSTS1', 'd07p7qmrm13nc', null)),
type => 'TEXT',
level => 'TYPICAL',
section => 'ALL');
END;
/
PRINT v_rep
The following output shows that the only the reference plan, which corresponds to the query without the hint, used a view merge:
---------------------------------------------------------------------------
COMPARE PLANS REPORT
---------------------------------------------------------------------------
Current user : SH
Total number of plans : 2
Number of findings : 1
---------------------------------------------------------------------------
COMPARISON DETAILS
---------------------------------------------------------------------------
Plan Number : 1 (Reference Plan)
Plan Found : Yes
Plan Source : SQL Plan Baseline
SQL Handle : SQL_c522f5888cc4613e
Plan Name : SQL_PLAN_ca8rpj26c8s9y7c2279c4
Plan Database Version : 19.0.0.0
Parsing Schema : "SH"
SQL Text : select c.cust_city, sum(s.quantity_sold) from
customers c, sales s, (select prod_id from
products where prod_min_price>100) p where
c.cust_id=s.cust_id and p.prod id=s.prod_id
group by c.cust_city
Plan
-----------------------------
Plan Hash Value : 2082634180
---------------------------------------------------------------------------
| Id | Operation | Name |Rows |Bytes |Cost | Time |
---------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | | | 22 | |
| 1 | HASH GROUP BY | | 300 |11400 | 22 | 00:00:01 |
| 2 | HASH JOIN | | 718 |27284 | 21 | 00:00:01 |
| 3 | TABLE ACCESS FULL | CUSTOMERS | 630 | 9450 | 5 | 00:00:01 |
| 4 | HASH JOIN | | 718 |16514 | 15 | 00:00:01 |
| 5 | TABLE ACCESS FULL | PRODUCTS | 573 | 5730 | 9 | 00:00:01 |
| 6 | PARTITION RANGE ALL | | 960 |12480 | 5 | 00:00:01 |
| 7 | TABLE ACCESS FULL | SALES | 960 |12480 | 5 | 00:00:01 |
---------------------------------------------------------------------------
---------------------------------------------------------------------------
Plan Number : 2
Plan Found : Yes
Plan Source : SQL Tuning Set
SQL Tuning Set Owner : SH
SQL Tuning Set Name : MYSTS1
SQL ID : d07p7qmrm13nc
Plan Hash Value : 655891922
Plan Database Version : 19.0.0.0
Parsing Schema : "SH"
SQL Text : select c.cust_city, sum(s.quantity_sold) from
customers c, sales s, (select /*+ NO_MERGE */
prod_id from products where prod_min_price>100)
p where c.cust_id=s.cust_id and
p.prod_id=s.prod_id group by c.cust_city
Plan
-----------------------------
Plan Hash Value : 655891922
-------------------------------------------------------------------------
|Id | Operation | Name |Rows | Bytes |Cost| Time |
-------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | | | 23 | |
| 1 | HASH GROUP BY | | 300 | 9900 | 23 |00:00:01 |
| 2 | HASH JOIN | | 718 | 23694 | 21 |00:00:01 |
| 3 | HASH JOIN | | 718 | 12924 | 15 |00:00:01 |
| 4 | VIEW | | 573 | 2865 | 9 |00:00:01 |
| 5 | TABLE ACCESS FULL | PRODUCTS | 573 | 5730 | 9 |00:00:01 |
| 6 | PARTITION RANGE ALL | | 960 | 12480 | 5 |00:00:01 |
| 7 | TABLE ACCESS FULL | SALES | 960 | 12480 | 5 |00:00:01 |
| 8 | TABLE ACCESS FULL | CUSTOMERS | 630 | 9450 | 5 |00:00:01 |
-------------------------------------------------------------------------
Notes
-----
- This is an adaptive plan
Comparison Results (1):
-----------------------------
1. Query block SEL$1: Transformation VIEW MERGE occurred only in the
reference plan (result query block: SEL$F5BB74E1).
Example 6-13 Comparing Plans Before and After Adding an Index
In this example, you test the effect of an index on a query plan:
EXPLAIN PLAN
SET STATEMENT_ID='TST1' FOR
SELECT COUNT(*) FROM products WHERE prod_min_price>100;
CREATE INDEX newprodidx ON products(prod_min_price);
EXPLAIN PLAN
SET STATEMENT_ID='TST2' FOR
SELECT COUNT(*) FROM products WHERE prod_min_price>100;
You execute the following PL/SQL program to generate the report:
VAR v_rep CLOB
BEGIN
:v_rep := DBMS_XPLAN.COMPARE_PLANS(
reference_plan => plan_table_object('SH','PLAN_TABLE','TST1',NULL),
compare_plan_list => plan_object_list(plan_table_object('SH','PLAN_TABLE','TST2',NULL)),
TYPE => 'TEXT',
level => 'TYPICAL',
section => 'ALL');
END;
/
PRINT v_rep
The following report indicates that the operations in the two plans are different:
COMPARE PLANS REPORT
--------------------------------------------------------------------------
Current user : SH
Total number of plans : 2
Number of findings : 1
--------------------------------------------------------------------------
COMPARISON DETAILS
--------------------------------------------------------------------------
Plan Number : 1 (Reference Plan)
Plan Found : Yes
Plan Source : Plan Table
Plan Table Owner : SH
Plan Table Name : PLAN_TABLE
Statement ID : TST1
Plan ID : 56
Plan Database Version : 19.0.0.0
Parsing Schema : "SH"
SQL Text : No SQL Text
Plan
-----------------------------
Plan Hash Value : 3421487369
--------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost | Time |
--------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 5 | 2 | 00:00:01 |
| 1 | SORT AGGREGATE | | 1 | 5 | | |
| * 2 | TABLE ACCESS FULL | PRODUCTS | 13 | 65 | 2 | 00:00:01 |
--------------------------------------------------------------------------
Predicate Information (identified by operation id):
------------------------------------------
* 2 - filter("PROD_MIN_PRICE">100)
--------------------------------------------------------------------------
Plan Number : 2
Plan Found : Yes
Plan Source : Plan Table
Plan Table Owner : SH
Plan Table Name : PLAN_TABLE
Statement ID : TST2
Plan ID : 57
Plan Database Version : 19.0.0.0
Parsing Schema : "SH"
SQL Text : No SQL Text
Plan
-----------------------------
Plan Hash Value : 2694011010
---------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost | Time |
---------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 5 | 1 | 00:00:01 |
| 1 | SORT AGGREGATE | | 1 | 5 | | |
| * 2 | INDEX RANGE SCAN | NEWPRODIDX | 13 | 65 | 1 | 00:00:01 |
---------------------------------------------------------------------------
Predicate Information (identified by operation id):
------------------------------------------
* 2 - access("PROD_MIN_PRICE">100)
Comparison Results (1):
-----------------------------
1. Query block SEL$1, Alias PRODUCTS@SEL$1: Some columns (OPERATION,
OPTIONS, OBJECT_NAME) do not match between the reference plan
(id: 2) and the current plan (id: 2).
Example 6-14 Comparing Plans with Visible and Invisible Indexes
In this example, an application executes the following query:
select count(*)
from products p, sales s
where p.prod_id = s.prod_id
and p.prod_status = 'obsolete';
The plan for this query uses two indexes: sales_prod_bix
and products_prod_status_bix
. The database generates four plans, using all combinations of visible and invisible for both indexes. Assume that SQL plan management accepts the following plans in the baseline for the query:
-
sales_prod_bix
visible andproducts_prod_status_bix
visible -
sales_prod_bix
visible andproducts_prod_status_bix
invisible -
sales_prod_bix
invisible andproducts_prod_status_bix
visible
You make both indexes invisible, and then execute the query again. The optimizer, unable to use the invisible indexes, generates a new plan. The three baseline plans, all of which rely on at least one index being visible, fail to reproduce. Therefore, the optimizer uses the new plan and adds it to the SQL plan baseline for the query. To compare the plan currently in the shared SQL area, which is the reference plan, with all four plans in the baseline, you execute the following PL/SQL code:
VAR v_rep CLOB
BEGIN
:v_rep := DBMS_XPLAN.COMPARE_PLANS(
reference_plan => cursor_cache_object('45ns3tzutg0ds'),
compare_plan_list => plan_object_list(spm_object('SQL_aec814b0d452da8a')),
TYPE => 'TEXT',
level => 'TYPICAL',
section => 'ALL');
END;
/
PRINT v_rep
The following report compares all five plans:
-----------------------------------------------------------------------------
COMPARE PLANS REPORT
-----------------------------------------------------------------------------
Current user : SH
Total number of plans : 5
Number of findings : 19
-----------------------------------------------------------------------------
COMPARISON DETAILS
-----------------------------------------------------------------------------
Plan Number : 1 (Reference Plan)
Plan Found : Yes
Plan Source : Cursor Cache
SQL ID : 45ns3tzutg0ds
Child Number : 0
Plan Database Version : 19.0.0.0
Parsing Schema : "SH"
SQL Text : select count(*) from products p, sales s where p.prod_id
= s.prod_id and p.prod_status = 'obsolete'
Plan
-----------------------------
Plan Hash Value : 1136711713
------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost | Time |
------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | | | 15 | |
| 1 | SORT AGGREGATE | | 1 | 30 | | |
| * 2 | HASH JOIN | | 320 | 9600 | 15 | 00:00:01 |
| 3 | JOIN FILTER CREATE | :BF0000 | 255 | 6375 | 9 | 00:00:01 |
| * 4 | TABLE ACCESS FULL | PRODUCTS | 255 | 6375 | 9 | 00:00:01 |
| 5 | JOIN FILTER USE | :BF0000 | 960 | 4800 | 5 | 00:00:01 |
| 6 | PARTITION RANGE ALL | | 960 | 4800 | 5 | 00:00:01 |
| * 7 | TABLE ACCESS FULL | SALES | 960 | 4800 | 5 | 00:00:01 |
------------------------------------------------------------------------------
Predicate Information (identified by operation id):
------------------------------------------
* 2 - access("P"."PROD_ID"="S"."PROD_ID")
* 4 - filter("P"."PROD_STATUS"='obsolete')
* 7 - filter(SYS_OP_BLOOM_FILTER(:BF0000,"S"."PROD_ID"))
Notes
-----
- baseline_repro_fail = yes
-----------------------------------------------------------------------------------
Plan Number : 2
Plan Found : Yes
Plan Source : SQL Plan Baseline
SQL Handle : SQL_aec814b0d452da8a
Plan Name : SQL_PLAN_axk0nq3a55qna6e039463
Plan Database Version : 19.0.0.0
Parsing Schema : "SH"
SQL Text : select count(*) from products p, sales s where p.prod_id =
s.prod_id and p.prod_status = 'obsolete'
Plan
-----------------------------
Plan Hash Value : 1845728355
-------------------------------------------------------------------------------------------
| Id| Operation | Name |Rows|Bytes|Cost| Time |
-------------------------------------------------------------------------------------------
| 0| SELECT STATEMENT | | 1| 30 |11 |00:00:01|
| 1| SORT AGGREGATE | | 1| 30 | | |
| *2| HASH JOIN | |320|9600 |11 |00:00:01|
| 3| JOIN FILTER CREATE | :BF0000 |255|6375 | 5 |00:00:01|
| *4| VIEW | index$_join$_001 |255|6375 | 5 |00:00:01|
| *5| HASH JOIN | | | | | |
| 6| BITMAP CONVERSION TO ROWIDS | |255|6375 | 1 |00:00:01|
| *7| BITMAP INDEX SINGLE VALUE | PRODUCTS_PROD_STATUS_BIX| | | | |
| 8| INDEX FAST FULL SCAN | PRODUCTS_PK |255|6375 | 4 |00:00:01|
| 9| JOIN FILTER USE | :BF0000 |960|4800 | 5 |00:00:01|
| 10| PARTITION RANGE ALL | |960|4800 | 5 |00:00:01|
|*11| TABLE ACCESS FULL | SALES |960|4800 | 5 |00:00:01|
-------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
------------------------------------------
* 2 - access("P"."PROD_ID"="S"."PROD_ID")
* 4 - filter("P"."PROD_STATUS"='obsolete')
* 5 - access(ROWID=ROWID)
* 7 - access("P"."PROD_STATUS"='obsolete')
* 11 - filter(SYS_OP_BLOOM_FILTER(:BF0000,"S"."PROD_ID"))
Comparison Results (4):
-----------------------------
1. Query block SEL$1, Alias P@SEL$1: Some lines (id: 4) in the reference plan are missing
in the current plan.
2. Query block SEL$1, Alias S@SEL$1: Some columns (ID) do not match between the reference
plan (id: 5) and the current plan (id: 9).
3. Query block SEL$1, Alias S@SEL$1: Some columns (ID, PARENT_ID, PARTITION_ID) do not
match between the reference plan (id: 6) and the current plan (id: 10).
4. Query block SEL$1, Alias S@SEL$1: Some columns (ID, PARENT_ID, PARTITION_ID) do not
match between the reference plan (id: 7) and the current plan (id: 11).
-------------------------------------------------------------------------------------------
Plan Number : 3
Plan Found : Yes
Plan Source : SQL Plan Baseline
SQL Handle : SQL_aec814b0d452da8a
Plan Name : SQL_PLAN_axk0nq3a55qna43c0d821
Plan Database Version : 19.0.0.0
Parsing Schema : "SH"
SQL Text : select count(*) from products p, sales s where p.prod_id = s.prod_id and
p.prod_status = 'obsolete'
Plan
-----------------------------
Plan Hash Value : 1136711713
------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost | Time |
------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 30 | 15 | 00:00:01 |
| 1 | SORT AGGREGATE | | 1 | 30 | | |
| * 2 | HASH JOIN | | 320 | 9600 | 15 | 00:00:01 |
| 3 | JOIN FILTER CREATE | :BF0000 | 255 | 6375 | 9 | 00:00:01 |
| * 4 | TABLE ACCESS FULL | PRODUCTS | 255 | 6375 | 9 | 00:00:01 |
| 5 | JOIN FILTER USE | :BF0000 | 960 | 4800 | 5 | 00:00:01 |
| 6 | PARTITION RANGE ALL | | 960 | 4800 | 5 | 00:00:01 |
| * 7 | TABLE ACCESS FULL | SALES | 960 | 4800 | 5 | 00:00:01 |
------------------------------------------------------------------------------
Predicate Information (identified by operation id):
------------------------------------------
* 2 - access("P"."PROD_ID"="S"."PROD_ID")
* 4 - filter("P"."PROD_STATUS"='obsolete')
* 7 - filter(SYS_OP_BLOOM_FILTER(:BF0000,"S"."PROD_ID"))
Comparison Results (1):
-----------------------------
1. The plans are the same.
------------------------------------------------------------------------------
Plan Number : 4
Plan Found : Yes
Plan Source : SQL Plan Baseline
SQL Handle : SQL_aec814b0d452da8a
Plan Name : SQL_PLAN_axk0nq3a55qna1b7aea6c
Plan Database Version : 19.0.0.0
Parsing Schema : "SH"
SQL Text : select count(*) from products p, sales s where p.prod_id = s.prod_id and
p.prod_status = 'obsolete'
Plan
-----------------------------
Plan Hash Value : 461040236
-------------------------------------------------------------------------------------
| Id | Operation | Name |Rows|Bytes | Cost | Time |
--------------------------------------------------------- ---------------------------
| 0 | SELECT STATEMENT | | 1 | 30 | 10 | 00:00:01 |
| 1 | SORT AGGREGATE | | 1 | 30 | | |
| 2 | NESTED LOOPS | |320 | 9600 | 10 | 00:00:01 |
|* 3 | TABLE ACCESS FULL | PRODUCTS |255 | 6375 | 9 | 00:00:01 |
| 4 | PARTITION RANGE ALL | | 1 | 5 | 10 | 00:00:01 |
| 5 | BITMAP CONVERSION COUNT | | 1 | 5 | 10 | 00:00:01 |
|* 6 | BITMAP INDEX SINGLE VALUE | SALES_PROD_BIX | | | | |
-------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
------------------------------------------
* 3 - filter("P"."PROD_STATUS"='obsolete')
* 6 - access("P"."PROD_ID"="S"."PROD_ID")
Comparison Results (7):
-----------------------------
1. Query block SEL$1, Alias P@SEL$1: Some lines (id: 3) in the reference plan are missing
in the current plan.
2. Query block SEL$1, Alias S@SEL$1: Some lines (id: 5) in the reference plan are missing
in the current plan.
3. Query block SEL$1, Alias S@SEL$1: Some lines (id: 7) in the reference plan are missing
in the current plan.
4. Query block SEL$1, Alias S@SEL$1: Some lines (id: 5,6) in the current plan are missing
in the reference plan.
5. Query block SEL$1, Alias P@SEL$1: Some columns (OPERATION) do not match between the
reference plan (id: 2) and the current plan (id: 2).
6. Query block SEL$1, Alias P@SEL$1: Some columns (ID, PARENT_ID, DEPTH) do not match
between the reference plan (id: 4) and the current plan (id: 3).
7. Query block SEL$1, Alias S@SEL$1: Some columns (ID, PARENT_ID, DEPTH, POSITION,
PARTITION_ID) do not match between the reference plan (id: 6) and the current plan (id: 4).
-------------------------------------------------------------------------------------------
Plan Number : 5
Plan Found : Yes
Plan Source : SQL Plan Baseline
SQL Handle : SQL_aec814b0d452da8a
Plan Name : SQL_PLAN_axk0nq3a55qna0628afbd
Plan Database Version : 19.0.0.0
Parsing Schema : "SH"
SQL Text : select count(*) from products p, sales s where p.prod_id = s.prod_id and
p.prod_status = 'obsolete'
Plan
-----------------------------
Plan Hash Value : 103329725
-------------------------------------------------------------------------------------------
|Id| Operation | Name | Rows|Bytes|Cost|Time |
-------------------------------------------------------------------------------------------
| 0| SELECT STATEMENT | | | | 5 | |
| 1| SORT AGGREGATE | | 1 | 30 | | |
| 2| NESTED LOOPS | |320 |9600 | 5 |00:00:01|
| 3| VIEW | index$_join$_001 |255 |6375 | 5 |00:00:01|
| 4| HASH JOIN | | | | | |
| 5| BITMAP CONVERSION TO ROWIDS | |255 |6375 | 1 |00:00:01|
| 6| BITMAP INDEX SINGLE VALUE | PRODUCTS_PROD_STATUS_BIX | | | | |
| 7| INDEX FAST FULL SCAN | PRODUCTS_PK |255 |6375 | 4 |00:00:01|
| 8| PARTITION RANGE ALL | | 1 | 5 | 5 |00:00:01|
| 9| BITMAP CONVERSION TO ROWIDS | | 1 | 5 | 5 |00:00:01|
|10| BITMAP INDEX SINGLE VALUE | SALES_PROD_BIX | | | | |
-------------------------------------------------------------------------------------------
Comparison Results (7):
-----------------------------
1. Query block SEL$1, Alias P@SEL$1: Some lines (id: 3) in the reference plan are missing
in the current plan.
2. Query block SEL$1, Alias P@SEL$1: Some lines (id: 4) in the reference plan are missing
in the current plan.
3. Query block SEL$1, Alias S@SEL$1: Some lines (id: 5) in the reference plan are missing
in the current plan.
4. Query block SEL$1, Alias S@SEL$1: Some lines (id: 7) in the reference plan are missing
in the current plan.
5. Query block SEL$1, Alias S@SEL$1: Some lines (id: 9,10) in the current plan are missing
in the reference plan.
6. Query block SEL$1, Alias P@SEL$1: Some columns (OPERATION) do not match between the
reference plan (id: 2) and the current plan (id: 2).
7. Query block SEL$1, Alias S@SEL$1: Some columns (ID, PARENT_ID, DEPTH, POSITION,
PARTITION_ID) do not match between the reference plan (id: 6) and the current plan (id: 8).
The preceding report shows the following:
-
Plan 1 is the reference plan from the shared SQL area. The plan does not use the indexes, which are both invisible, and does not reproduce a baseline plan.
-
Plan 2 is in the baseline and assumes
sales_prod_bix
is invisible andproducts_prod_status_bix
is visible. -
Plan 3 is in the baseline and assumes both indexes are invisible. Plan 1 and Plan 3 are the same.
-
Plan 4 is in the baseline and assumes
sales_prod_bix
is visible andproducts_prod_status_bix
is invisible. -
Plan 5 is in the baseline and assumes that both indexes are visible.
The comparison report shows that Plan 1 could not reproduce a plan from that baseline. The reason is that the plan in the cursor (Plan 1) was added to the baseline because no baseline plan was available at the time of execution, so the database performed a soft parse of the statement and generated the no-index plan. If the current cursor were to be invalidated, and if the query were to be executed again, then a comparison report would show that the cursor plan did reproduce a baseline plan.
See Also:
Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_XPLAN
package
Example 6-15 Comparing a Baseline That Fails to Reproduce
One use case is to compare a cost-based plan with a SQL plan baseline. In this example, you create a unique index. The database captures a plan baseline that uses this index. You then make the index invisible and execute the query again. The baseline plan fails to reproduce because the index is not visible, forcing the optimizer to choose a different plan. A compare plans report between the baseline plan and the cost-based plan shows the difference in the access path between the two plans.
-
Log in to the database as user
hr
, and then create a plan table:CREATE TABLE PLAN_TABLE ( STATEMENT_ID VARCHAR2(30), PLAN_ID NUMBER, TIMESTAMP DATE, REMARKS VARCHAR2(4000), OPERATION VARCHAR2(30), OPTIONS VARCHAR2(255), OBJECT_NODE VARCHAR2(128), OBJECT_OWNER VARCHAR2(30), OBJECT_NAME VARCHAR2(30), OBJECT_ALIAS VARCHAR2(65), OBJECT_INSTANCE NUMBER(38), OBJECT_TYPE VARCHAR2(30), OPTIMIZER VARCHAR2(255), SEARCH_COLUMNS NUMBER, ID NUMBER(38), PARENT_ID NUMBER(38), DEPTH NUMBER(38), POSITION NUMBER(38), COST NUMBER(38), CARDINALITY NUMBER(38), BYTES NUMBER(38), OTHER_TAG VARCHAR2(255), PARTITION_START VARCHAR2(255), PARTITION_STOP VARCHAR2(255), PARTITION_ID NUMBER(38), OTHER LONG, DISTRIBUTION VARCHAR2(30), CPU_COST NUMBER(38), IO_COST NUMBER(38), TEMP_SPACE NUMBER(38), ACCESS_PREDICATES VARCHAR2(4000), FILTER_PREDICATES VARCHAR2(4000), PROJECTION VARCHAR2(4000), TIME NUMBER(38), QBLOCK_NAME VARCHAR2(30), OTHER_XML CLOB);
-
Execute the following DDL statements, which create a table named
staff
and an index on thestaff.employee_id
column:CREATE TABLE staff AS (SELECT * FROM employees); CREATE UNIQUE INDEX staff_employee_id ON staff (employee_id);
-
Execute the following statements to place a query of
staff
under the protection of SQL Plan Management, and then make the index invisible:ALTER SESSION SET optimizer_capture_sql_plan_baselines = TRUE; SELECT COUNT(*) FROM staff WHERE employee_id = 20; -- execute query a second time to create a baseline SELECT COUNT(*) FROM staff WHERE employee_id = 20; ALTER SESSION SET optimizer_capture_sql_plan_baselines = FALSE; ALTER INDEX staff_employee_id INVISIBLE;
-
Explain the plan, and then query the plan table (sample output included):
EXPLAIN PLAN SET STATEMENT_ID='STAFF' FOR SELECT COUNT(*) FROM staff WHERE employee_id = 20; SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY(FORMAT=>'TYPICAL')); PLAN_TABLE_OUTPUT ------------------------------------------------------------------------ Plan hash value: 1778552452 ------------------------------------------------------------------------ | Id | Operation | Name |Rows |Bytes |Cost (%CPU)|Time | ------------------------------------------------------------------------ | 0 | SELECT STATEMENT | | 1 | 4 | 2 (0)|00:00:01 | | 1 | SORT AGGREGATE | | 1 | 4 | | | |* 2 | TABLE ACCESS FULL| STAFF | 1 | 4 | 2 (0)|00:00:01 | ------------------------------------------------------------------------ Predicate Information (identified by operation id): PLAN_TABLE_OUTPUT ------------------------------------------------------------------------ 2 - filter("EMPLOYEE_ID"=20) Note ----- - dynamic statistics used: dynamic sampling (level=2) - Failed to use SQL plan baseline for this statement
As the preceding output shows, the optimizer chooses a full table scan because the index is invisible. Because the SQL plan baseline uses an index, the optimizer cannot reproduce the plan.
-
In a separate session, log in as
SYS
and query the handle and plan name of the SQL plan baseline (sample output included):SET LINESIZE 120 COL SQL_HANDLE FORMAT a25 COL PLAN_NAME FORMAT a35 SELECT DISTINCT SQL_HANDLE,PLAN_NAME,ACCEPTED FROM DBA_SQL_PLAN_BASELINES WHERE PARSING_SCHEMA_NAME = 'HR'; SQL_HANDLE PLAN_NAME ACC ------------------------- ----------------------------------- --- SQL_3fa3b23c5ba1bf60 SQL_PLAN_3z8xk7jdu3gv0b7aa092a YES
-
Compare the plans, specifying the SQL handle and plan baseline name obtained from the previous step:
VAR v_report CLOB BEGIN :v_report := DBMS_XPLAN.COMPARE_PLANS( reference_plan => plan_table_object('HR', 'PLAN_TABLE', 'STAFF'), compare_plan_list => plan_object_list (SPM_OBJECT('SQL_3fa3b23c5ba1bf60','SQL_PLAN_3z8xk7jdu3gv0b7aa092a')), type => 'TEXT', level => 'ALL', section => 'ALL'); END; /
-
Query the compare plans report (sample output included):
SET LONG 1000000 SET PAGESIZE 50000 SET LINESIZE 200 SELECT :v_report rep FROM DUAL; REP ------------------------------------------------------------------------ COMPARE PLANS REPORT ------------------------------------------------------------------------ Current user : SYS Total number of plans : 2 Number of findings : 1 ------------------------------------------------------------------------ COMPARISON DETAILS ------------------------------------------------------------------------ Plan Number : 1 (Reference Plan) Plan Found : Yes Plan Source : Plan Table Plan Table Owner : HR Plan Table Name : PLAN_TABLE Statement ID : STAFF Plan ID : 72 Plan Database Version : 19.0.0.0 Parsing Schema : "HR" SQL Text : No SQL Text Plan ----------------------------- Plan Hash Value : 1766070819 -------------------------------------------------------------------- | Id | Operation | Name |Rows| Bytes | Cost | Time | -------------------------------------------------------------------- | 0| SELECT STATEMENT | | 1 | 13 | 2 | 00:00:01 | | 1| SORT AGGREGATE | | 1 | 13 | | | | * 2| TABLE ACCESS FULL | STAFF | 1 | 13 | 2 | 00:00:01 | -------------------------------------------------------------------- Predicate Information (identified by operation id): ------------------------------------------ * 2 - filter("EMPLOYEE_ID"=20) Notes ----- - Dynamic sampling used for this statement ( level = 2 ) - baseline_repro_fail = yes -------------------------------------------------------------------- Plan Number : 2 Plan Found : Yes Plan Source : SQL Plan Baseline SQL Handle : SQL_3fa3b23c5ba1bf60 Plan Name : SQL_PLAN_3z8xk7jdu3gv0b7aa092a Plan Database Version : 19.0.0.0 Parsing Schema : "HR" SQL Text : SELECT COUNT(*) FROM staff WHERE employee_id = 20 Plan ----------------------------- Plan Hash Value : 3081373994 ------------------------------------------------------------------------ |Id| Operation | Name |Rows|Bytes |Cost |Time | ------------------------------------------------------------------------ | 0| SELECT STATEMENT | | 1 | 13 | 0 |00:00:01| | 1| SORT AGGREGATE | | 1 | 13 | | | |*2| INDEX UNIQUE SCAN | STAFF_EMPLOYEE_ID | 1 | 13 | 0 |00:00:01| ------------------------------------------------------------------------ Predicate Information (identified by operation id): ------------------------------------------ * 2 - access("EMPLOYEE_ID"=20) Comparison Results (1): ----------------------------- 1. Query block SEL$1, Alias "STAFF"@"SEL$1": Some columns (OPERATION, OPTIONS, OBJECT_NAME) do not match between the reference plan (id: 2) and the current plan (id: 2) ------------------------------------------------------------------------