33.2 Oracle Machine Learning Data Dictionary Views

Lists Oracle Machine Learning data dictionary views.

The data dictionary views for Oracle Machine Learning are listed in the following table. A database administrator (DBA) and USER versions of the views are also available.

Table 33-1 Data Dictionary Views for Oracle Machine Learning

View Name Description

ALL_MINING_MODELS

Provides information about all accessible machine learning models

ALL_MINING_MODEL_ATTRIBUTES

Provides information about the attributes of all accessible machine learning models

ALL_MINING_MODEL_PARTITIONS

Provides information about the partitions of all accessible partitioned machine learning models

ALL_MINING_MODEL_SETTINGS

Provides information about the configuration settings for all accessible machine learning models

ALL_MINING_MODEL_VIEWS

Provides information about the model views for all accessible machine learning models

ALL_MINING_MODEL_XFORMS

Provides the user-specified transformations embedded in all accessible machine learning models.

33.2.1 ALL_MINING_MODELS

Describes an example of ALL_MINING_MODELS and shows a sample query.

The following example describes ALL_MINING_MODELS and shows a sample query.

Example 33-1 ALL_MINING_MODELS

 describe ALL_MINING_MODELS
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 OWNER                                     NOT NULL VARCHAR2(128)
 MODEL_NAME                                NOT NULL VARCHAR2(128)
 MINING_FUNCTION                                    VARCHAR2(30)
 ALGORITHM                                          VARCHAR2(30)
 CREATION_DATE                             NOT NULL DATE
 BUILD_DURATION                                     NUMBER
 MODEL_SIZE                                         NUMBER
 PARTITIONED                                        VARCHAR2(3)
 COMMENTS                                           VARCHAR2(4000)

The following query returns the models accessible to you that use the Support Vector Machine algorithm.

SELECT mining_function, model_name
    FROM all_mining_models
    WHERE algorithm = 'SUPPORT_VECTOR_MACHINES'
    ORDER BY mining_function, model_name;

MINING_FUNCTION           MODEL_NAME                                            
------------------------- --------------------                                  
CLASSIFICATION            PART2_CLAS_SAMPLE                                     
CLASSIFICATION            PART_CLAS_SAMPLE                                      
CLASSIFICATION            SVMC_SH_CLAS_SAMPLE                                   
CLASSIFICATION            SVMO_SH_CLAS_SAMPLE                                   
CLASSIFICATION            T_SVM_CLAS_SAMPLE                                     
REGRESSION                SVMR_SH_REGR_SAMPLE  

The models are created by the following examples:

  • PART2_CLAS_SAMPLE by oml4sql-partitioned-models-svm.sql
  • PART_CLAS_SAMPLE by oml4sql-partitioned-models-svm.sql
  • SVMC_SH_CLAS_SAMPLE by oml4sql-classification-svm.sql
  • SVMO_SH_CLAS_SAMPLE by oml4sql-anomaly-detection-1csvm.sql
  • T_SVM_CLAS_SAMPLE by oml4sql-classification-text-analysis-svm.sql
  • SVMR_SH_REGR_SAMPLE by oml4sql-regression-svm.sql

33.2.2 ALL_MINING_MODEL_ATTRIBUTES

Describes an example of ALL_MINING_MODEL_ATTRIBUTES and shows a sample query.

The following example describes ALL_MINING_MODEL_ATTRIBUTES and shows a sample query. Attributes are the predictors or conditions that are used to create models and score data.

Example 33-2 ALL_MINING_MODEL_ATTRIBUTES

describe ALL_MINING_MODEL_ATTRIBUTES
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 OWNER                                     NOT NULL VARCHAR2(128)
 MODEL_NAME                                NOT NULL VARCHAR2(128)
 ATTRIBUTE_NAME                            NOT NULL VARCHAR2(128)
 ATTRIBUTE_TYPE                                     VARCHAR2(11)
 DATA_TYPE                                          VARCHAR2(106)
 DATA_LENGTH                                        NUMBER
 DATA_PRECISION                                     NUMBER
 DATA_SCALE                                         NUMBER
 USAGE_TYPE                                         VARCHAR2(8)
 TARGET                                             VARCHAR2(3)
 ATTRIBUTE_SPEC                                     VARCHAR2(4000)

The following query returns the attributes of an SVM classification model named T_SVM_CLAS_SAMPLE. The model has both categorical and numerical attributes and includes one attribute that is unstructured text. The model is created by the oml4sql-classification-text-analysis-svm.sql example

SELECT attribute_name, attribute_type, target
    FROM all_mining_model_attributes
    WHERE model_name = 'T_SVM_CLAS_SAMPLE'
    ORDER BY attribute_name;

ATTRIBUTE_NAME            ATTRIBUTE_TYPE       TAR                              
------------------------- -------------------- ---                              
AFFINITY_CARD             CATEGORICAL          YES                              
AGE                       NUMERICAL            NO                               
BOOKKEEPING_APPLICATION   NUMERICAL            NO                               
BULK_PACK_DISKETTES       NUMERICAL            NO                               
COMMENTS                  TEXT                 NO                               
COUNTRY_NAME              CATEGORICAL          NO                               
CUST_GENDER               CATEGORICAL          NO                               
CUST_INCOME_LEVEL         CATEGORICAL          NO                               
CUST_MARITAL_STATUS       CATEGORICAL          NO                               
EDUCATION                 CATEGORICAL          NO                               
FLAT_PANEL_MONITOR        NUMERICAL            NO                               
HOME_THEATER_PACKAGE      NUMERICAL            NO                               
HOUSEHOLD_SIZE            CATEGORICAL          NO                               
OCCUPATION                CATEGORICAL          NO                               
OS_DOC_SET_KANJI          NUMERICAL            NO                               
PRINTER_SUPPLIES          NUMERICAL            NO                               
YRS_RESIDENCE             NUMERICAL            NO                               
Y_BOX_GAMES               NUMERICAL            NO 

33.2.3 ALL_MINING_MODEL_PARTITIONS

Describes an example of ALL_MINING_MODEL_PARTITIONS and shows a sample query.

The following example describes ALL_MINING_MODEL_PARTITIONS and shows a sample query.

Example 33-3 ALL_MINING_MODEL_PARTITIONS

describe ALL_MINING_MODEL_PARTITIONS
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 OWNER                                     NOT NULL VARCHAR2(128)
 MODEL_NAME                                NOT NULL VARCHAR2(128)
 PARTITION_NAME                                     VARCHAR2(128)
 POSITION                                           NUMBER
 COLUMN_NAME                               NOT NULL VARCHAR2(128)
 COLUMN_VALUE                                       VARCHAR2(4000) 

The following query returns the partition names and partition key values for two partitioned models. Model PART2_CLAS_SAMPLE has a two column partition key with system-generated partition names. The models are created by the oml4sql-partitioned-models-svm.sql example.

SELECT model_name, partition_name, position, column_name, column_value
    FROM all_mining_model_partitions
    ORDER BY model_name, partition_name, position;

MODEL_NAME           PARTITION_ POSITION COLUMN_NAME          COLUMN_VALUE      
-------------------- ---------- -------- -------------------- ---------------   
PART2_CLAS_SAMPLE    DM$$_P0           1 CUST_GENDER          F                 
PART2_CLAS_SAMPLE    DM$$_P0           2 CUST_INCOME_LEVEL    HIGH              
PART2_CLAS_SAMPLE    DM$$_P1           1 CUST_GENDER          F                 
PART2_CLAS_SAMPLE    DM$$_P1           2 CUST_INCOME_LEVEL    LOW               
PART2_CLAS_SAMPLE    DM$$_P2           1 CUST_GENDER          F                 
PART2_CLAS_SAMPLE    DM$$_P2           2 CUST_INCOME_LEVEL    MEDIUM            
PART2_CLAS_SAMPLE    DM$$_P3           1 CUST_GENDER          M                 
PART2_CLAS_SAMPLE    DM$$_P3           2 CUST_INCOME_LEVEL    HIGH              
PART2_CLAS_SAMPLE    DM$$_P4           1 CUST_GENDER          M                 
PART2_CLAS_SAMPLE    DM$$_P4           2 CUST_INCOME_LEVEL    LOW               
PART2_CLAS_SAMPLE    DM$$_P5           1 CUST_GENDER          M                 
PART2_CLAS_SAMPLE    DM$$_P5           2 CUST_INCOME_LEVEL    MEDIUM            
PART_CLAS_SAMPLE     F                 1 CUST_GENDER          F                 
PART_CLAS_SAMPLE     M                 1 CUST_GENDER          M                 
PART_CLAS_SAMPLE     U                 1 CUST_GENDER          U         

33.2.4 ALL_MINING_MODEL_SETTINGS

Describes an example of ALL_MINING_MODEL_SETTINGS and shows a sample query.

The following example describes ALL_MINING_MODEL_SETTINGS and shows a sample query. Settings influence model behavior. Settings may be specific to an algorithm or to a machine learning function, or they may be general.

Example 33-4 ALL_MINING_MODEL_SETTINGS

 describe ALL_MINING_MODEL_SETTINGS
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 OWNER                                     NOT NULL VARCHAR2(128)
 MODEL_NAME                                NOT NULL VARCHAR2(128)
 SETTING_NAME                              NOT NULL VARCHAR2(30)
 SETTING_VALUE                                      VARCHAR2(4000)
 SETTING_TYPE                                       VARCHAR2(7)

The following query returns the settings for a model named SVD_SH_SAMPLE. The model uses the Singular Value Decomposition algorithm for feature extraction. The model is created by the oml4sql-singular-value-decomposition.sql example.

SELECT setting_name, setting_value, setting_type
    FROM all_mining_model_settings
    WHERE model_name = 'SVD_SH_SAMPLE'
    ORDER BY setting_name;

SETTING_NAME                   SETTING_VALUE                  SETTING           
------------------------------ ------------------------------ -------           
ALGO_NAME                      ALGO_SINGULAR_VALUE_DECOMP     INPUT             
ODMS_MISSING_VALUE_TREATMENT   ODMS_MISSING_VALUE_AUTO        DEFAULT           
ODMS_SAMPLING                  ODMS_SAMPLING_DISABLE          DEFAULT           
PREP_AUTO                      OFF                            INPUT             
SVDS_SCORING_MODE              SVDS_SCORING_SVD               DEFAULT           
SVDS_U_MATRIX_OUTPUT           SVDS_U_MATRIX_ENABLE           INPUT  

33.2.5 ALL_MINING_MODEL_VIEWS

Describes an example of ALL_MINING_MODEL_VIEWS and shows a sample query.

The following example describes ALL_MINING_MODEL_VIEWS and shows a sample query. Model views provide details on the models.

Example 33-5 ALL_MINING_MODEL_VIEWS

describe ALL_MINING_MODEL_VIEWS
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 OWNER                                     NOT NULL VARCHAR2(128)
 MODEL_NAME                                NOT NULL VARCHAR2(128)
 VIEW_NAME                                 NOT NULL VARCHAR2(128)
 VIEW_TYPE                                          VARCHAR2(128)

The following query returns the model views for the SVD_SH_SAMPLE model. The model uses the Singular Value Decomposition algorithm for feature extraction. The model is created by the oml4sql-singular-value-decomposition.sql example.

SELECT view_name, view_type
    FROM all_mining_model_views
    WHERE model_name = 'SVD_SH_SAMPLE'
    ORDER BY view_name;

VIEW_NAME                 VIEW_TYPE                                             
------------------------- --------------------------------------------------    
DM$VESVD_SH_SAMPLE        Singular Value Decomposition S Matrix                 
DM$VGSVD_SH_SAMPLE        Global Name-Value Pairs                               
DM$VNSVD_SH_SAMPLE        Normalization and Missing Value Handling              
DM$VSSVD_SH_SAMPLE        Computed Settings                                     
DM$VUSVD_SH_SAMPLE        Singular Value Decomposition U Matrix                 
DM$VVSVD_SH_SAMPLE        Singular Value Decomposition V Matrix                 
DM$VWSVD_SH_SAMPLE        Model Build Alerts 

33.2.6 ALL_MINING_MODEL_XFORMS

Describes an example of ALL_MINING_MODEL_XFORMS and provides a sample query.

The following example describes ALL_MINING_MODEL_XFORMS and provides a sample query.

Example 33-6 ALL_MINING_MODEL_XFORMS

describe ALL_MINING_MODEL_XFORMS
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 OWNER                                     NOT NULL VARCHAR2(128)
 MODEL_NAME                                NOT NULL VARCHAR2(128)
 ATTRIBUTE_NAME                                     VARCHAR2(128)
 ATTRIBUTE_SUBNAME                                  VARCHAR2(4000)
 ATTRIBUTE_SPEC                                     VARCHAR2(4000)
 EXPRESSION                                         CLOB
 REVERSE                                            VARCHAR2(3)

The following query returns the embedded transformations for a model PART2_CLAS_SAMPLE The model is created by the oml4sql-partitioned-models-svm.sql example.

SELECT attribute_name, expression
    FROM all_mining_model_xforms
    WHERE model_name = 'PART2_CLAS_SAMPLE'
    ORDER BY attribute_name;

ATTRIBUTE_NAME                                                                  
-------------------------                                                       
EXPRESSION                                                                      
--------------------------------------------------------------------------------
CUST_INCOME_LEVEL                                                               
CASE CUST_INCOME_LEVEL WHEN 'A: Below 30,000' THEN 'LOW'                        
    WHEN 'L: 300,000 and above' THEN 'HIGH'                                     
    ELSE 'MEDIUM' END