Index

A  B  C  D  E  F  G  H  I  K  L  M  N  O  P  R  S  T  U  W  X  

A


B


C


D

  • data preparation 1.2.2
    • for Apriori 14.3
    • for Expectation Maximization 17.4
    • for Generalized Linear Model 20.6
    • for k-Means 21.3
    • for Minimum Description Length 22.2
    • for Naive Bayes 24.3
    • for Neural Network 25.2
    • for O-Cluster 27.3
    • for SVD 30.3
  • data warehouse 1.1.7
  • DBMS_DATA_MINING 2.5.1
  • DBMS_STAT_FUNCS 2.6
  • Decision Tree 3.2.1, 16
  • descriptive models 3.1.2
  • directed learning 3.1.1

E


F


G

  • Generalized Linear Model 3.2.1, 20
    • classification 20.8.1
    • feature generation 20.3
    • feature selection and creation
      • feature selection 20.3
    • regression 20.7
  • GLM
    • See: Generalized Linear Model
  • gradient boosting 32.1
  • graphical user interface 2.5.3

H


I


K


L


M


N

  • Naive Bayes 3.2.1, 24
  • nested data 14.3.1
  • Neural Network 3.2.1
    • configuration 25.3
  • NMF
    • See: Non-Negative Matrix Factorization
  • nonlinear regression 4.1.1.4
  • Non-Negative Matrix Factorization 3.2.2, 26
  • nontransactional data 9.2
  • numerical target 5.1

O


P


R


S


T


U

  • unstructured data 3.3.3
  • unsupervised learning 3.1.2
  • UTL_NLA 2.6

W


X

  • XGBoost 7.3
  • XGBoost algorithm