Index
A
- accuracy 5.3.1.1, 5.3.2
- active sampling 27.1.2
- Aggregates
- performance 14.4.7
- Algorithm
- algorithms 3.2.1, 3.2.2
- Apriori 3.2.2, 9.3, 14, 14.3.4, 14.3.4.1
- association 14.1
- Decision Tree 3.2.1, 16
- Expectation Maximization 3.2.2, 17
- Exponential Smoothing 3.2.1, 13.4
- Generalized Linear Model 3.2.1, 20
- k-Means 3.2.2, 8.3, 21
- Minimum Description Length 3.2.1, 22
- Naive Bayes 3.2.1, 24
- Neural Network 3.2.1
- regularization 25.1.5
- Non-Negative Matrix Factorization 3.2.2, 26
- O-Cluster 3.2.2, 8.3, 27
- One-Class Support Vector Machine 3.2.2, 31.5
- Principal Component Analysis 3.2.2, 30.1
- Random Forest 3.2.1
- Singular Value Decomposition 3.2.2, 30
- supervised 3.2.1
- Support Vector Machine 3.2.1
- unsupervised 3.2.2
- XGBoost 32.1
- Algorithms
- About ESA 18.1
- About Exponential Smoothing 19.1
- About Neural Network 25.1
- About Random Forest 29.1
- Accumulation 19.2.2
- algorithm metadata registration 28.2
- Algorithm Meta Data Registration 28
- Building a Random Forest 29.2
- Column selection or attribute selection and row selection 15.4
- CUR matrix decomposition 7.2, 15, 15.3
- CUR Matrix Decomposition 15.1, 15.2, 15.4
- Data preparation 19.2
- double exponential smoothing 19.1.3
- ESA 18.1, 18.1.1
- Explicit Semantic Analysis 18.1, 18.4
- text mining 18.1.1
- exponential smoothing 19.2.4
- Exponential Smoothing 15.1, 15.2, 19, 19.1, 19.1.1, 19.1.2, 19.1.3, 19.1.4, 19.1.5, 19.1.6, 19.2, 19.2.1, 19.2.2, 19.2.3, 19.2.5
- exponential smoothing models 19.2.4
- Exponential Smoothing models 19.2.2
- Exponential Smoothing Models 19.1.1, 19.2.1, 19.2.3, 19.2.5
- Input Data 19.2.1
- Missing value 19.2.3
- Neural Network 25, 25.1
- Parallellish by partition 19.2.4, 19.2.5
- Prediction intervals 19.1.6
- Random Forest 29, 29.1, 29.2
- Seasonality 19.1.4
- Simple Exponential Smoothing 19.1.2
- singular vectors 15.2
- Statistical Leverage Score 7.2, 15.3
- Terminologies in Explicit Semantic Analysis 18.4
- text analysis 18.1.1
- trend 19.1.3
- Trend and Seasonality 19.1.5
- anomaly detection 3.1.2.1, 3.2.2, 5.3.2, 6, 6.1, 8.1
- MSET-SPRT 23.1
- apply
- See: scoring
- Apriori 3.2.2, 9.3, 14
- artificial intelligence 3.1
- association rules 3.1.2.1, 3.2.2, 9, 14
- attribute importance 3.1.1.3, 3.2.1, 3.2.2, 10, 22.1
- attributes 3.1.2.1
- Automatic Data Preparation 1.2.2, 3.3.1
C
- categorical target 5
- centroid 8.1.1, 21.1.2
- classification 3.1.1.3, 3.2.1, 5
- class weights 5.3.2
- clustering 3.1.2.1, 3.2.2, 8
- coefficients
- computational learning 1.1.6
- confidence 1.1.2
- confidence bounds 3.2.1, 4.1.1.6, 20.2.3
- confusion matrix 5.2.1, 5.3.1.1
- cost matrix 5.3.1, 16.2.2
- costs 5.3.1
- CUR Matrix Decomposition
- configuration 15.5
D
F
M
- machine learning 3.1, 3.2.1
- machine learning function
- anomaly detection 6.1
- Machine Learning Function
- classification 18.1
- machine learning functions 3.1, 3.1.1.3
- anomaly detection 3.1.2.1, 3.2.2
- association rules 3.1.2.1, 3.2.2, 9
- attribute importance 3.2.1, 3.2.2, 10, 22.1
- Build apply 13.3.4
- classification 3.1.1.3, 3.2.1, 5
- clustering 3.1.2.1, 3.2.2, 8
- feature extraction 3.1.2.1, 3.2.2, 11
- regression 3.1.1.3, 3.2.1, 4
- time series 3.2.1, 13
- Time Series 13.3.4
- market-basket data 9.2
- MDL 3.2.1
- See: Minimum Description Length
- Minimum Description Length 22
- mining functions 10
- Mining functions
- Time Series
- Statistics 13.3
- Time Series
- Mining Functions
- missing value treatment 3.3.1
- model details 16.1.1
- MSET-SPRT
- multicollinearity 20.2.4
- multidimensional analysis 1.1.6, 2.6
- multivariate linear regression 4.1.1.2
- Multivariate State Estimation Technique - Sequential Probability Ratio Test 23
O
- O-Cluster 3.2.2, 8.3, 27
- OLAP 1.1.6, 2.6
- OML4SQL
- One-Class Support Vector Machine 3.2.2, 31.5
- optimization solvers 25.1.4
- Oracle Business Intelligence Suite Enterprise Edition 2.6
- Oracle Database
- Oracle Data Miner 2.5.3
- Oracle OLAP 2.6
- Oracle Spatial 2.6
- Oracle Text 2.6
- outliers 1.2.2, 27.3.1
- overfitting 3.1.1.2, 16.2.3
P
- parallel execution 3.4.1, 14.1, 16.1.2, 22.1, 24.1.1
- partitioned model 2.4
- PCA
- See: Principal Component Analysis
- PL/SQL API 2.5, 2.5.1
- PREDICTION_PROBABILITY function 2.6
- PREDICTION Function 2.5.2
- predictive analytics 2.5.4
- predictive models 3.1.1
- Principal Component Analysis 3.2.2, 30.1
- prior probabilities 5.3.2, 24.1
R
- Random Forest 3.2.1
- Receiver Operating Characteristic 5.2.3
- Registration 28.1
- regression 3.1.1.3, 3.2.1, 4
- Regression
- Ranking 7.1
- R extensibility 28.1
- R extensible
- build and score with R 28.3
- ridge regression 20.2.4
- ROC
- See: Receiver Operating Characteristic
- Row importance 12.1
- Row importance algorithm
- CUR Matrix Decomposition 12.2
- R scripts registration 28.1
- rules
S
- sampling 14.3.4
- sampling implementation 14.3.4.1
- scoring 3.1.2.1
- singularity 20.2.4
- Singular Value Decomposition 30
- sparse data 3.3.1, 14.3
- SQL machine learning functions 2.5, 2.5.2
- SQL statistical functions 2.6
- star schema 14.3.1
- statistical functions 2.6
- statistics 1.1.5
- stratified sampling 5.3.2, 6.1.1
- Sub-Gradient Descent 31.1.1
- supervised learning 3.1.1
- support 1.1.2
- Support Vector Machine 3.2.1, 31
- SVD
- See: Singular Value Decomposition
- SVM
- See: Support Vector Machine